
Available online at www.sciencedirect.com

ScienceDirect

Stochastic Processes and their Applications 126 (2016) 2554–2592
www.elsevier.com/locate/spa

Minimal supersolutions for BSDEs with singular
terminal condition and application to optimal

position targeting

T. Krusea, A. Popierb,∗

a University of Duisburg–Essen, Thea-Leymann-Str. 9, 45127 Essen, Germany
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Abstract

We study the existence of a minimal supersolution for backward stochastic differential equations when
the terminal data can take the value +∞ with positive probability. We deal with equations on a general fil-
tered probability space and with generators satisfying a general monotonicity assumption. With this minimal
supersolution we then solve an optimal stochastic control problem related to portfolio liquidation problems.
We generalize the existing results in three directions: firstly there is no assumption on the underlying filtra-
tion (except completeness and quasi-left continuity), secondly we relax the terminal liquidation constraint
and finally the time horizon can be random.
c⃝ 2016 Elsevier B.V. All rights reserved.
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0. Introduction

This paper is devoted to the study of backward stochastic differential equations (BSDEs)
with singular terminal condition. We adopt from [28,29] the notion of a weak (super) solution
(Y, ψ,M) to a BSDE of the following form

dYt = − f (t, Yt , ψt )dt +


Z
ψt (z)π(dz, dt)+ d Mt , (1)
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where π is a compensated Poisson random measure on a probability space (Ω ,F ,P) with a
filtration F = (Ft )t≥0. The filtration F is supposed to be complete and right continuous. In
particular, it can support a Brownian motion orthogonal to π . The solution component M is
required to be a local martingale orthogonal to π . The function f : Ω × R+ × R × Rd

→ R is
called the driver (or generator) of the BSDE. The particularity here is that we allow the terminal
condition ξ to be singular: for a stopping time τ , the random variable ξ is Fτ -measurable and
takes the value +∞ with positive probability.

In our first main result (Theorem 1) we establish existence of a minimal weak supersolution
to (1). This supersolution is constructed via approximation from below. For each L > 0 we
consider a truncated version of (1) with terminal condition ξ ∧ L . We impose that the driver f
satisfies a monotonicity assumption in the y-variable and is Lipschitz continuous with respect
to ψ . Then existence, uniqueness and comparison results for a solution (Y L , ψ L ,M L) to the
truncated BSDE can be deduced from [23], where the theory of BSDEs with a monotone driver
in a general filtration has been developed. We obtain the minimal supersolution (Y, ψ,M) with
singular terminal condition by passing to the limit L → ∞. The crucial task is to establish
suitable a priori estimates for Y L guaranteeing that when passing to the limit the solution Y
does not explode before time τ . To this end, the generator f cannot be Lipschitz continuous
w.r.t. y. Hence we impose that f is monotone and decreases at least polynomially with random
coefficient in the y-variable. In the case where τ is deterministic this condition suffices to ensure
boundedness of Y L . When τ is random, we restrict attention to first exit of diffusions from a
regular set.

BSDEs with singular terminal condition were already studied in [3,28] for deterministic
terminal time (see also [12] for a treatise on BSPDEs), and in [29] for a random terminal time.
Let us briefly outline in which directions our findings generalize some results from these papers.

• General driver f . Indeed, in the previously mentioned papers f is assumed to be a polynomial
function of y (plus possibly a particular bounded from above function of ψ in [12]). Here f is
supposed to be only bounded from above by a polynomial function w.r.t. y. The fact that we
only assume here that f is Lipschitz continuous with respect toψ but not necessarily bounded,
requires to derive new a priori estimates for the family of solutions (Y L). Moreover as in [3],
the generator can be singular in the sense that the process f 0

t = f (t, 0, 0) can explode at time
τ . We only impose an integrability condition on f 0 which is weaker than the condition in [3].
This weaker integrability condition and the occurrence of jumps imply that the convergence
of the approximating sequence (Y L)L>0 has to be handled more carefully (see in particular
the proof of Proposition 3 where technical details are postponed in the Appendix). BSDEs
where the generator possesses a singularity in the time variable were studied in [19,18] to
solve utility maximization problems with random horizon.

• General filtration F. Moreover, compared to the papers [3,28,29], we do not restrict attention
to a filtration generated by Brownian and Poisson noise. Here the filtration F satisfies only
the standard assumptions (completeness and right-continuity). Hence the additional local
martingale part M appears in the BSDE and has to be controlled when we let L go to +∞. The
quasi left-continuity condition on F will be imposed only to ensure the lower semi-continuity
of Y at time τ : lim inft→τ Yt ≥ ξ .

• Random terminal time τ . To our best knowledge, [29] is the only paper that deals with a
singular terminal condition at a random time τ . In this work, the generator f is equal to
f (y) = −y|y|

q−1 for some q > 1 and the filtration is generated by a Brownian motion.
When the terminal time is random, the derivation of the a priori estimate for the sequence Y L



2556 T. Kruse, A. Popier / Stochastic Processes and their Applications 126 (2016) 2554–2592

is more involved than in the deterministic case. For a general random time τ , we show that
the limit process Y may be infinite before time τ . For this reason, we consider the first exit
time of a continuous diffusion from a regular set and our estimate is a generalization of the
Keller–Osserman inequality.

We also note that our results can be extended to the case where the driver is additionally a
Lipschitz continuous function of a variable Z , which represents the integrand in the martingale
representation w.r.t. a Brownian motion (cf. Remark 5).

Since the seminal paper by Pardoux and Peng [25] BSDEs have proved to be a powerful tool
to solve stochastic optimal control problems (see e.g. the survey article [7] or the book [26]).
In the second part of the paper we use the notion of weak supersolutions to provide a purely
probabilistic solution of a stochastic control problem with a terminal constraint on the controlled
process. More precisely, we consider the problem of minimizing the cost functional1

J (X) = E
 τ

0


ηs |αs |

p
+ γs |Xs |

p
+


Z
λs(z)|βs(z)|

pµ(dz)


ds + ξ |Xτ |

p


(2)

over all progressively measurable processes X that satisfy the dynamics

Xs = x +

 s

0
αudu +

 s

0


Z
βu(z)π(dz, du).

Here p > 1 and the processes η, γ and λ are non negative progressively measurable. Again the
Fτ -measurable random variable ξ takes the value ∞ with positive probability. This singularity
imposes the terminal state constraint on the set of strategies. Indeed, any strategy X that does
not satisfy this terminal constraint creates infinite costs. In particular, such a strategy cannot be
optimal if there exists some strategy that creates finite costs (which will always be the case under
the assumptions that we impose). In the cases where τ is deterministic or a first exit time, we
characterize optimal strategies and the value function of this control problem with the BSDE

dYt = (p − 1)
Y q

t

η
q−1
t

dt + Θ(t, Yt , ψt )dt − γt dt +


Z
ψt (z)π(dz, dt)+ d Mt (3)

with lim inft→τ Yt ≥ ξ . Here q > 1 is the Hölder conjugate of p and Θ is a Lipschitz continuous
function (see (24) for the precise definition). We provide sufficient conditions on the coefficient
processes η, γ and λ such that Theorem 1 ensures existence of a minimal weak supersolution to
(3) and carry out a verification that is based on a penalization argument.

The analysis of optimal control problems with state constraints on the terminal value is mo-
tivated by models of optimal portfolio liquidation under stochastic price impact. The traditional
assumption that all trades can be settled without impact on market dynamics is not always appro-
priate when investors need to close large positions over short time periods. In recent years mod-
els of optimal portfolio liquidation have been widely developed, see, e.g. [1,2,8,10,15], or [22],
among many others.

Variants of the position targeting problem (2) have been studied in [3,4,31,12] or [13]. In
this framework the state process X denotes the agent’s position in the financial market. She has
two means to control her position. At each point in time t she can trade in the primary venue
at a rate αt which generates costs ηt |αt |

p incurred by the stochastic price impact parameter ηt .

1 We define 0 · ∞ := 0.
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Moreover, she can submit passive orders to a secondary venue (“dark pool”). These orders get
executed at the jump times of the Poisson random measure π and generate so called slippage
costs


Z λt (z)|βt (z)|pµ(dz). We refer to [22] for a more detailed discussion. The term γt |X t |

p

can be understood as a measure of risk associated to the open position. J (X) thus represents the
overall expected costs for closing an initial position x over the time period [0, τ ] using strategy X .

Our approach allows to incorporate some novel features into optimal liquidation models. First,
we do not impose any assumption on the filtration (except quasi-left continuity). For the financial
model, this means that the noise is not necessarily generated by a Brownian motion. Moreover,
the liquidation constraint is relaxed in the following way. Instead of enforcing the condition
Xτ = 0 a.s., that is the position has to be closed imperatively, our model is flexible enough to
allow for a specification of a set of market scenarios S ⊂ Fτ where liquidation is mandatory:
Xτ1S = 0. On the complement S c a penalization depending on the remaining position size
can be implemented. This terminal constraint is described by the Fτ -measurable non negative
random variable ξ such that S = {ξ = +∞}. Thus for a binding liquidation Xτ = 0, we
take ξ = +∞ a.s. For excepted scenarios, we can consider ξ = ∞1S with for example
S = {maxt∈[0,T ] ηt ≤ H} or S = {

 T
0 ηt dt ≤ H} for a given threshold H > 0. This means

that liquidation is only mandatory if the maximal price impact (or the average price impact) is
small enough throughout the liquidation period. If the illiquidity of the market is too high, the
trader has not obligatorily to close his position. Finally, our model allows for a random time
horizon τ . For example, one can consider price-sensitive liquidation periods where the position
has to be closed before the first time when the unaffected market price S (a diffusion) falls below
some threshold level K > 0, i.e. τ = inf{t ≥ 0|St ≤ K }.

The paper is decomposed as follows. In Section 1, we give the mathematical setting and
present the main results concerning the BSDE (1). The set of assumptions will differ in the two
cases τ deterministic (Theorem 1) and τ random (Theorem 2). We construct a supersolution of
the BSDE (1) using truncation arguments as in [28] or [3] and we prove that this solution is
minimal. As mentioned before the main difficulties are to control the sequence of solutions for
the truncated BSDE (see Propositions 2 and 6) and to prove the convergence of the approximating
sequence. In Section 2 we use the previous results to obtain a minimal supersolution for BSDE
(3) and we verify that this solution gives the value function and an optimal control for the optimal
position targeting problem (Theorem 3).

1. Minimal supersolutions for the singular BSDE

1.1. Setting and notation

We consider a filtered probability space (Ω ,F ,P,F = (Ft )t≥0). The filtration is assumed to
be complete and right continuous. Moreover, we assume that F is quasi-left continuous, which
means that for every sequence (τn) of F stopping times such that τn ↗ τ̃ for some stopping time
τ̃ we have


n∈N Fτn = Fτ̃ . We assume that (Ω ,F ,P,F = (Ft )t≥0) supports a Poisson random

measure π with intensity µ(dz)dt on the space Z ⊂ Rd
\ {0}. The measure µ is σ -finite on Z

such that
Z
(1 ∧ |z|2)µ(dz) < +∞.

By P we denote the predictable σ -field on Ω × R+. We set P = P ⊗ B(Z) where B(Z) is
the Borelian σ -field on Z . On Ω = Ω × [0, T ] × Z , a function that is P -measurable, is called
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predictable. G loc(π) is the set of P -measurable functions ψ on Ω such that for any t ≥ 0 a.s. t

0


Z
(|ψs(z)|

2
∧ |ψs(z)|)µ(dz)ds < +∞.

For any stopping time τ̃ and m > 1, the set Lm
π (0, τ̃ ) contains all processes ψ ∈ G loc(µ) such

that

E

 τ̃

0


Z

|ψs(z)|
mµ(dz)ds


< +∞.

By Lm
µ = Lm(Z, µ; Rd) we denote the set of measurable functions ψ : Z → Rd such that

∥ψ∥
m
Lm
µ

=


Z

|ψ(z)|mµ(dz) < +∞.

By M⊥ we denote the set of càdlàg local martingales orthogonal to π . If M ∈ M⊥ then
E(1M ∗π |P) = 0, where the product ∗ denotes the integral process (see II.1.5 in [17]). For any

stopping time τ̃ the set Mm(0, τ̃ ) is the subset of all martingales such that E

[M]

m/2
τ̃


< +∞.

Finally, for m > 1, Sm(0, τ̃ ) is the set of all progressively measurable càdlàg processes F such
that E


supt∈[0,τ̃ ] |Ft |

m

< +∞. The set Hm(0, τ̃ ) contains all progressively measurable càdlàg

processes F such that E
 τ̃

0 |Ft |
2dt
m/2


< +∞.

1.2. Deterministic terminal times

In this section let T > 0 and let ξ be a FT -measurable random variable. We denote by S the
set {ξ = +∞}. Since we explicitly allow ξ to take the value +∞ with positive probability, we
need to specify a weak notion of solutions to (1). We relax the usual definition of a solution to a
BSDE by only requiring that (1) holds strictly before time T .

Definition 1 (Weak Supersolution in the Case of Deterministic Terminal Times). We say that a
triple of processes (Y, ψ,M) is a supersolution to the BSDE (1) with singular terminal condition
YT = ξ if it satisfies:

1. M ∈ M⊥, ψ ∈ G loc(π) and there exists some ℓ > 1 such that for all t < T :

E


sup

s∈[0,t]
|Ys |

ℓ
+

 t

0


Z

|ψs(z)|
ℓµ(dz)ds + [M]

ℓ/2
t


< +∞;

2. Y is bounded from below by a process Ȳ ∈ S2(0, T );
3. for all 0 ≤ s ≤ t < T :

Ys = Yt +

 t

s
f (u, Yu, ψu)du −

 t

s


Z
ψu(z)π(dz, du)−

 t

s
d Mu .

4. lim inft→T Ys ≥ ξ a.s.

We say that (Y, ψ,M) is a minimal supersolution to the BSDE (1) if for any other supersolution
(Y ′, ψ ′,M ′) we have Yt ≤ Y ′

t a.s. for any t ∈ [0, T ).
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To establish existence of a minimal supersolution to BSDE (1) we impose the following
conditions on the driver f : Ω × [0, T ] × R × Rd

→ R. For notational convenience we write
f 0
t = f (t, 0, 0).

A1. The function y → f (t, y, ψ) is continuous and monotone: there exists χ ∈ R such that a.s.
and for any t ∈ [0, T ] and ψ ∈ L2

µ

( f (t, y, ψ)− f (t, y′, ψ))(y − y′) ≤ χ(y − y′)2.

A2. There exists a progressively measurable process κ = κ y,ψ,φ
: Ω × R+ × Z → R such that

f (t, y, ψ)− f (t, y, φ) ≤


Z
(ψ(z)− φ(z))κ y,ψ,φ

t (z)µ(dz)

with P ⊗ Leb ⊗ µ-a.e. for any (y, ψ, φ), −1 ≤ κ
y,ψ,φ
t (z) and |κ

y,ψ,φ
t (z)| ≤ ϑ(z) where

ϑ ∈ L2
µ.

A3. For every n > 0 it holds that sup|y|≤n | f (t, y, 0)− f 0
t | ∈ L1((0, T )× Ω).

A4. The negative parts of ξ and f 0 are square integrable: ξ−
∈ L2(Ω) and ( f 0)− ∈ L2((0, T )×

Ω).

Conditions A1–A4 will ensure existence and uniqueness of the solution for a version of BSDE
(1), where the terminal condition ξ is replaced by ξ ∧ L and the generator f by f L (see (6)) for
some L > 0. We obtain the minimal supersolution with singular terminal condition ξ by letting
L tend to ∞. To ensure that in the limit L → ∞ the solution component Y attains the value ∞

on S at time T but is finite before time T , we have to impose some further growth behavior on
f . We assume that f decreases at least polynomially in the y-variable.

A5. There exists a constant q > 1 and a positive process η such that for any y ≥ 0

f (t, y, ψ) ≤ −
p − 1

η
q−1
t

|y|
q

+ f (t, 0, ψ).

p is the Hölder conjugate of q.
A6. There exists ℓ > 1 such that E

 T
0


ηs + (T − s)p( f 0

s )
+
ℓ

ds < +∞.
A7. There exists k > max( ℓ

ℓ−1 , 2) such that


Z |ϑ(z)|kµ(dz) < +∞.

Assumptions (A). We say that Assumptions (A) are satisfied if all seven hypotheses A1–A7
hold. �

Remark 1 (On A1). We can suppose w.l.o.g. that χ = 0. Indeed if (Y, ψ,M) is a solution of (1)
then (Ȳ , ψ̄, M̄) with

Ȳt = eχ t Yt , ψ̄t = eχ tψt , d M̄t = eχ t d Mt

satisfies an analogous BSDE with terminal condition ξ̄ = eχT ξ , and generator

f̄ (t, y, ψ) =

eχ t f (t, e−χ t y, e−χ tψ)− χy


and f̄ satisfies the same assumptions with χ = 0. In the rest of this section, we will suppose
that χ = 0.

Remark 2 (On A2). The second condition A2 implies that f is Lipschitz continuous w.r.t. ψ
uniformly in ω, t and y. Indeed by Cauchy–Schwarz’s inequality

f (t, y, ψ)− f (t, y, φ) ≤


Z
(ψ(z)− φ(z))κ y,ψ,φ

t (z)µ(dz)

 ≤ ∥ϑ∥L2
µ
∥ψ − φ∥L2

µ
.
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And conversely since

f (t, y, φ)− f (t, y, ψ) ≤


Z
(φ(z)− ψ(z))κ y,φ,ψ

t (z)µ(dz),

we obtain

f (t, y, ψ)− f (t, y, φ) ≤ ∥ϑ∥L2
µ
∥ψ − φ∥L2

µ
.

Remark 3 (On A5). It follows from Condition A3 and A5 that the process 1/ηq−1 must be in
L1((0, T )× Ω)

E
 T

0

1

η
q−1
t

dt < +∞. (4)

Let us just mention that it is possible to assume only integrability w.r.t. t a.s. in A2 (see
[5, Remark 4.3]).

In this section, our main result can be summarized as follows.

Theorem 1. Under Assumptions (A) there exists a minimal supersolution (Y, ψ,M) to (1) with
singular terminal condition YT = ξ .

To prove Theorem 1 we proceed as in [3] by truncation. The complete statement and the proof
of this result is divided into Propositions 1–4. For any L ≥ 0 we consider the BSDE

dY L
t = − f L(t, Y L

t , ψ
L
t )dt +


Z
ψ L

t (z)π(dz, dt)+ d M L
t (5)

with bounded terminal condition Y L
T = ξ ∧ L and where

f L(t, y, ψ) = ( f (t, y, ψ)− f 0
t )+ f 0

t ∧ L . (6)

Proposition 1. Under Assumptions (A), there exists for every L > 0 a unique solution
(Y L , ψ L ,M L) to (5) with Y L

∈ S2(0, T ), ψ L
∈ L2

π (0, T ), M L
∈ M2(0, T ) ∩ M⊥. Moreover

there exists a process Ȳ in S2(0, T ), independent of L, such that a.s. for any t ∈ [0, T ], Ȳt ≤ Y L
t .

If ( f 0
t )

−
= ξ−

= 0, then Ȳt = 0, and Y L
t is non negative.

Proof. From assumptions A1, A2 and A4, it follows that f L is monotone w.r.t. y, Lipschitz
continuous w.r.t. ψ , and f L(t, 0, 0) = f 0

t ∧ L ∈ L2((0, T )× Ω). Moreover for every n > 0 and
|y| ≤ n:

| f L(t, y, 0)− f L(t, 0, 0)| = | f (t, y, 0)− f 0
t | ≤ sup

|y|≤n
| f (t, y, 0)− f 0

t |.

By Assumption A3, the mapping t → sup|y|≤n | f (t, y, 0) − f 0
t | is in L1((0, T ) × Ω). From

Theorem 1 in [23] it follows that there exists a unique solution (Y L , ψ L ,M L) to (5) with terminal
condition ξ ∧ L . This solution satisfies

E


sup

0≤t≤T
|Y L

t |
2
+

 T

0


Z
(ψ L

t (z))
2µ(dz)dt + [M L

]T


< +∞.
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Next, we construct the lower bound Ȳ . Let us take ζ = −ξ− and g(t, y, ψ) = ( f (t, y, ψ) −

f 0
t ) − ( f 0

t )
−. The solution (Ȳ , ψ̄, M̄) with Ȳ ∈ S2(0, T ) of the BSDE with data (ζ, g) does

not depend on L , and by comparison (Proposition 4 in [23]) we have Ȳt ≤ Y L
t a.s. for any

t ∈ [0, T ]. �

Next, we derive an upper bound for the family Y L which is independent of L .

Proposition 2. For every t ∈ [0, T ] the random variable Y L
t is bounded from above by L(1+ T )

and for t ∈ [0, T ) the following estimate holds:

Y L
t ≤

Kϑ
(T − t)p


E
 T

t


ηs + (T − s)p( f 0

s )
+

ℓ
ds

Ft

1/ℓ

(7)

where Kϑ is a constant depending only on ϑ .

Proof. Let us first consider the triple (At , Bt ,Ct ) = (L(1 + (T − t)), 0, 0). It is the solution
of the BSDE with terminal condition L and constant generator equal to L . By assumption A1,
f is monotone and hence it holds that f (t, At , Bt ) ≤ f 0

t . Thus by the definition (6) of f L

we have f L(t, At , Bt ) ≤ L . By the comparison principle (Proposition 4 in [23]) we obtain
Y L

t ≤ At ≤ L(T + 1) a.s. for any t ∈ [0, T ].
This upper bound depends on L . Next, we verify (7). We consider the driver

h(t, y, ψ) = bL
t − p

1
T − t

y + f (t, 0, ψ)

with bL
t =

ηt
(T −t)p + (( f 0

t )
+

∧ L). Let ε > 0 and denote by (Yε,L , φε,L , N ε,L) the solution

process of the BSDE on [0, T − ε] with driver h and terminal condition Yε,L
T −ε = Y L ,+

T −ε ≥ 0.
Recall that

f (t, 0, ψ) ≤


Z
ψ(z)κ0,ψ,0

t (z)µ(dz).

Hence by a comparison argument with the solution for linear BSDE (see [30, Lemma 4.1]) we
have

Yε,L
t ≤ E


Γt,T −εY

L ,+
T −ε +

 T −ε

t
Γt,sbL

s ds

Ft


where for t ≤ s ≤ T − ε

Γt,s = exp


−

 s

t

p

T − u
du


V ε,L

t,s =


T − s

T − t

p

V ε,L
t,s

and

V ε,L
t,s = 1 +

 s

t


Z

V ε,L
t,u−κ

0,φε,L ,0
u (z)π(dz, du). (8)

Hence

Yε,L
t ≤

1
(T − t)p E


ερV ε,L

t,T −εY
L ,+
T −ε +

 T −ε

t
V ε,L

t,s (T − s)pbL
s ds

Ft


.

Since bL
≥ 0 it holds that Yε,L

t ≥ 0 a.s. for every t ∈ [0, T ]. Hence from Condition A5

f L(t,Yε,L
t , φ

ε,L
t ) ≤ −

p − 1

η
q−1
t

(Yε,L
t )q + f L(t, 0, φε,Lt ).



2562 T. Kruse, A. Popier / Stochastic Processes and their Applications 126 (2016) 2554–2592

It follows that

f L(t,Yε,L
t , φ

ε,L
t ) ≤ h(t,Yε,L

t , φ
ε,L
t )−

p − 1

η
q−1
t

(Yε,L
t )q −

a p−1
t

(T − t)p +
p

T − t
Yε,L

t

≤ h(t,Yε,L
t , φ

ε,L
t ),

where we used the Young inequality: cp
+ (p − 1)yq

− pcy ≥ 0 which holds for all c, y ≥ 0.
The comparison theorem implies Y L

t ≤ Yε,L
t for all t ∈ [0, T − ε] and ε > 0.

Recall once again from Condition A7 that V ε,L
t,. belongs to Hk(0, T − ε) for k ≥ 2. From the

upper bound Y L
t ≤ At ≤ L(T + 1) and from the integrability property of V ε,L

t,. , with dominated
convergence, by letting ε ↓ 0 we obtain a.s.

E

ε pV ε,L

t,T −εY
L ,+
T −ε

Ft


−→ 0.

From Assumption A7 and by the proof of Proposition A.1 in [30], there exists a constant Kϑ
such that a.s.

E
 T −ε

t
(V ε,L

t,s )
kds

Ft


≤ Kϑ .

From Assumption A6, it follows that the process ((T − t)pbL
t , 0 ≤ t ≤ T ) belongs to Hℓ(0, T ).

Therefore by Hölder inequality we obtain

E
 T −ε

t
V ε,L

t,s (T − s)pbL
s ds

Ft


≤ KϑE

 T

t
((T − s)pbL

s )
ℓds

Ft

1/ℓ

.

Hence we can pass to the limit as ε ↓ 0

Y L
t ≤

Kϑ
(T − t)p E

 T

t
((T − s)pbL

s )
ℓds

Ft

1/ℓ

.

Assumption A6 implies by monotone convergence for L → ∞

Y L
t ≤

Kϑ
(T − t)p E

 T

t


ηs + (T − s)p( f 0

s )
+

ℓ
ds

Ft

1/ℓ

< +∞.

Thus we obtain the upper bound in (7). �

The constants Kϑ and ℓ > 1 in (7) come from the growth condition on f w.r.t. ψ and from
the lack of an estimate of ψ L independent of L . If we assume that f (t, 0, ψ) is bounded, then
we can obtain a simpler estimate.

Lemma 1. If there exists a non negative process K f
t such that a.s. for any t and ψ ,

f (t, 0, ψ) ≤ K f
t , with E

 T

0
(T − s)p K f

s ds < +∞ (9)

then

Y L
t ≤

1
(T − t)p E

 T

t


ηs + 2(T − s)p K f

s


ds

Ft


. (10)
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Proof. The proof is almost the same as for Proposition 2. Therefore, we only outline the main
modification. Note that (9) implies that f 0

t ≤ K f
t a.s. We consider the generator h given by

h(t, y, ψ) = h(t, y) =
ηt

(T − t)p + 2K f
t − p

1
T − t

y = bt − p
1

T − t
y.

Since h is linear and does not depend on ψ , we have:

Yε,L
t =

1
(T − t)p E


ε pY L ,+

T −ε +

 T −ε

t
(T − s)pbsds

Ft


.

Hence we can pass to the limit when ε goes to zero and we obtain

Y L
t ≤

1
(T − t)p E

 T

t
(T − s)pbsds

Ft


which is Inequality (10). �

Next, we show that by passing to the limit L → ∞ we obtain a supersolution of (1) with
singular terminal condition ξ .

Proposition 3. Assume that Assumptions (A) hold. Let (Y L , ψ L ,M L) be the solution of
BSDE (5) obtained in Proposition 1. Then there exists a process (Y, ψ,M) such that for every
0 ≤ t < T , Y L converges to Y in Sℓ(0, t), ψ L converges in Lℓπ ([0, t]) to ψ and M L converges
in Mℓ(0, t) to M. The limit process (Y, ψ,M) is a weak supersolution for the BSDE (1) with
singular terminal condition ξ . Moreover Y satisfies the estimate (7)

Yt ≤
Kϑ

(T − t)p E
 T

t


ηs + (T − s)p( f 0

s )
+

ℓ
ds

Ft

1/ℓ

.

Proof. The comparison result (see Proposition 4 in [23]) yields that Y L
≤ Y N if N > L .

Hence, for all t ≤ T we can define Yt as the increasing limit of Y L
t as L → ∞. Recall that by

Proposition 1, Y L is bounded from below uniformly in L by some process Ȳ ∈ S2(0, T ). Thus
Y is also bounded from below by Ȳ .

By Eq. (7) for fixed t < T the family of random variables (Y L
t , L ≥ 0) is bounded from

above:

Y L ,+
t ≤

Kϑ
(T − t)p E

 T

t


ηs + (T − s)p( f 0

s )
+

ℓ
ds

Ft

1/ℓ

.

Once again by Assumption A6, the random variable on the right hand side of the inequality above
is in Lℓ(Ω). By dominated convergence, Y L

t converges to Yt in Lℓ(Ω) for t < T .
For the convergence of (ψ L ,M L) let 0 ≤ s ≤ t < T . For L and N non negative, we putYs = Y N

s − Y L
s ,

ψs(z) = ψN
s (z)− ψ L

s (z), Ms = M N
s − M L

s .

Let us define a = ℓ∥ϑ∥
2
L2
µ
/(ℓ − 1). By Lemma 9 in the Appendix there exists a constant Kℓ

depending only on ℓ such that

E


sup

s∈[0,t]
eas

|Ys |
ℓ
+

 t

0
e2au/ℓ


Z

|ψu(z)|
2µ(dz)du

ℓ/2
+

 t

0
e2au/ℓd[M]u

ℓ/2

≤ KℓE


eat
|Yt |

ℓ
+

 t

0
eau

| f 0
u ∧ N − f 0

u ∧ L|
ℓdu


.
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Since f 0
∈ Hℓ(0, t) (see condition A6), the right-hand side converges to zero as N and L go

to +∞. Then (ψ L) is a Cauchy sequence in Lℓπ (0, t) and converges to ψ ∈ Lℓπ (0, t) for every
t < T . The same holds for the sequence (M L) in Mℓ(0, t). Moreover the previous inequality
yields that E


sup0≤s≤t |Ys |

ℓ

< +∞.

Finally, taking the limit as L goes to ∞ in (5) implies that (Y, ψ,M) satisfies (1) for every
0 ≤ s ≤ t < T . From the structure of the BSDE, we deduce that Y is càdlàg on [0, T ). In other
words Y ∈ Sℓ(0, T − ε) for any ε > 0.

Since the filtration is quasi-left continuous, we have: limt↗T Y L
t = ξ ∧ L . Indeed, in Eq. (5),

using Fubini’s theorem for conditional expectation, the only discontinuous term could be the
martingale term M L . But the assumption on the filtration shows that M L has no jump at time T
(see [20, Proposition 25.19]). Now for any L ≥ 0 we have

lim inf
t↑T

Yt ≥ lim inf
t↑T

Y L
t = ξ ∧ L ,

which gives the desired inequality lim inft↗T Yt ≥ ξ . In particular, (lim inft↗T Yt )1S = +∞.
This achieves the proof of the theorem. �

Remark 4. Under Condition (9), the estimate (10) is then also an upper bound for Y .

To finish the proof of Theorem 1 let us prove the minimality of the limit process.

Proposition 4. The solution obtained in Proposition 3 is minimal. If (Y ′, ψ ′,M ′) is another
weak supersolution of (1) with terminal condition ξ , then Y ′

t ≥ Yt a.s. for all t ∈ [0, T ].

Proof. Fix L > 0 and let (Y L , ψ L ,M L) denote the solution of (5) with terminal condition
Y L

T = ξ ∧ L . Let (Y ′, ψ ′,M ′) be a weak supersolution of (1) in the sense of Definition 1. SetYs = Y ′
s − Y L

s ,
ψs(z) = ψ ′

s(z)− ψ L
s (z), Ms = M ′

s − M L
s .

We have

f (t, Y ′
t , ψ

′
t )− f (t, Y L

t , ψ
L
t ) = −ctYt + ( f (t, Y L

t , ψ
′
t )− f (t, Y L

t , ψ
L
t ))

with

−ct =
f (t, Y ′

t , ψ
′
t )− f (t, Y L

t , ψ
′
t )Yt

1Yt ≠0.

Note that from condition A1, −ct ≤ χ = 0. For every t < T the process (Y , ψ, M) solves the
BSDE

dYs =


csYs − ( f 0

s − L)+ − ( f (s, Y L
s , ψ

′
s)− f (s, Y L

s , ψ
L
s ))


ds +


Z
ψs(z)π(dz, ds)

+ d Ms

on [0, t] with terminal condition Yt = Y ′
t − Y L

t . Moreover from A2 it holds that

f (s, Y L
s , ψ

′
s)− f (s, Y L

s , ψ
L
s ) ≥


Z
κY L ,ψ L ,ψ ′

s
ψs(z)µ(dz).

From Lemma 10 in [23] and Lemma 4.1 in [30], we have

Ys ≥ E
YtΓs,t +

 t

s
Γs,u( f 0

u − L)+du

Fs


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where Γs,t = exp

−
 t

s cudu

ζs,t with ζs,s = 1 and

dζs,t = ζs,t−


Z
κ

Y L ,ψ L ,ψ ′

t π(dz, dt).

Our assumptions ensure that ζ is non negative and belongs to Hk(0, T ). From Proposition 2 we
have Y L

t ≤ (1 + T )L and hence Yt ≥ −((Y ′
t )

−
+ (1 + T )L). Thus YΓs,. is bounded from below

by a process in Sm(0, T ) for some m > 1. We can apply Fatou’s lemma to obtain

Ys = lim inf
t↗T

E
YtΓs,t +

 t

s
Γs,u( f 0

u − L)+du

Fs


≥ E


lim inf

t↗T
(YtΓs,t )

Fs


.

The process (Γs,t , s ≤ t ≤ T ) is càdlàg and non negative. Hence a.s.

lim inf
t↗T

(YtΓs,t ) = (lim inf
t↗T

Yt )Γs,T − ≥ (ξ − ξ ∧ L)Γs,T − ≥ 0.

Finally, Y ′
s ≥ Y L

s for any s ∈ [0, T ] and L ≥ 0. Taking the limit as L goes to ∞ yields the
claim. �

Remark 5. Note that all these results can be extended immediately if we assume that the
filtration supports also a Brownian motion W and if our singular BSDE has form

dYt = f (t, Yt , Z t , ψt )dt + Z t dWt +


Z
ψt (z)π(dz, dt)+ d Mt ,

where f satisfies conditions (A) and is supposed to be Lipschitz continuous in z.

1.3. Random terminal times

In this section we consider the case where the terminal time τ is random. Again we proceed via
truncation of the terminal condition to obtain a family of solutions (Y L)L>0 to (5) with bounded
terminal condition Y L

τ = ξ ∧ L .
Assumptions A1, A2 and A5 from Section 1.2 remain in force, while assumptions A2, A4

and A6 are strengthened. The condition A7 was used to construct the a priori estimate (7) and
is unnecessary here. Moreover, we need an extra condition between the random time τ and the
growth coefficients χ in A1 and K in A2 of f . This condition is denoted by B. Next, we present
the complete list of assumptions.

A1. The function y → f (t, y, ψ) is continuous and monotone: there exists χ ∈ R such that a.s.
and for any t ∈ [0,∞) and ψ ∈ L2

µ

( f (t, y, ψ)− f (t, y′, ψ))(y − y′) ≤ χ(y − y′)2.

A2. There exists a progressively measurable process κ = κ y,ψ,φ
: Ω × R+ × Z → R such that

f (t, y, ψ)− f (t, y, φ) ≤


Z
(ψ(z)− φ(z))κ y,ψ,φ

t (z)µ(dz)

with P ⊗ Leb ⊗ µ-a.e. for any (y, ψ, φ), −1 ≤ κ
y,ψ,φ
t (z) and |κ

y,ψ,φ
t (z)| ≤ ϑ(z) where

ϑ ∈ L2
µ. As in Section 1.2 we denote by K = ∥ϑ∥L2

µ
is the Lipschitz constant of f w.r.t. ψ

(cf. Remark 2).
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Let δ∗ denote the value

δ∗ =


−∞ if 2χ < K 2,

K 2
+ 2χ if 2|χ | ≤ K 2,

χ


1 +

K
√

2χ

2

if 2χ > K 2.

(11)

B. There exists ρ > δ∗ such that

E

eρτ


< +∞.

If Condition B holds, then we put

h∗
=



0 if 2χ < −K 2,
2ρ

ρ − δ∗ + (
√
ρ − K

√
2)21ρ>2K 2

if 2|χ | ≤ K 2,

ρ
√
ρ +

√
χ −

K
√

2

×
1

√
ρ −

√
δ∗

if 2χ > K 2.

(12)

A3′. For every j > 0 and n ≥ 0, the process Ut ( j) = sup|y|≤ j | f (t, y, 0) − f 0
t | is in

L1((0, n)× Ω) and there exists m > h∗ such that E
 τ

0 |Ut ( j)|mdt < +∞.
A4′. ξ− and ( f 0)− are bounded.
A5. There exists a constant q > 1 and a positive process η such that for any y ≥ 0

f (t, y, ψ) ≤ −
p − 1

η
q−1
t

|y|
q

+ f (t, 0, ψ).

p is the Hölder conjugate of q.
A6′. η and f 0 are bounded.

Note that Hypotheses A3′ and A5 imply that

E
 τ

0

1

η
(q−1)m
s

ds < +∞. (13)

Remark 6 (On A1). For a random terminal time, we cannot assume w.l.o.g. that χ = 0 in A1.

Remark 7 (On B and A3′). If 2χ < −K 2, Condition B is satisfied for any stopping time τ
(including τ = +∞ a.s.) since one can choose ρ < 0 in this case.

Note that δ∗ and h∗ are non decreasing functions of χ and h∗ is a non increasing function of
ρ, with limρ→δ∗ h∗

= +∞ and limρ→+∞ h∗
= 1.

Assumptions (A′). We say that Conditions (A′) are satisfied if all following hypotheses hold:
A1, A2, A3′, A4′, A5, A6′ and B. �

Under the above conditions, Proposition 5 shows that the truncated BSDE (5) has a unique
solution (Y L , ψ L ,M L). The crucial difference in order to obtain a supersolution to the BSDE
with singular terminal condition to the case of a deterministic terminal time, is the derivation of
a uniform upper bound for the family of processes (Y L) (cf. Inequality (7)). Example 1 shows
that in general such an upper bound does not exist and that there exist stopping times τ such that
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the sequence (Y L
t ) converges to ∞ as L → ∞ for t < τ . Consequently one has to restrict the

class of terminal times. Here we draw inspiration from [29], where BSDEs with random terminal
time and singular terminal condition have been studied for the first time, and consider the case
where τ is given by a first exit time τ = τD of a diffusion Ξ from a set D.

More precisely, we assume that the filtration F supports a d-dimensional Brownian motion W
which is orthogonal to π and we introduce a forward process Ξ in Rd , that is a solution to the
stochastic differential equation

dΞt = b(Ξt )dt + σ(Ξt )dWt (14)

with some initial value Ξ0 ∈ Rd . The functions b : Rd
→ Rd and σ : Rd

→ Rd
× Rd satisfy a

global Lipschitz condition: there exists some K > 0 such that

∀x, y ∈ Rd
∥σ(x)− σ(y)∥ + ∥b(x)− b(y)∥ ≤ K∥x − y∥.

Under this assumption there exists a unique strong solution Ξ to (14). Let D be an open bounded
subset of Rd , whose boundary is at least of class C2 (see for example [11, Section 6.2], for the
definition of a regular boundary). From now on Ξ0 is fixed and supposed to be in D. We define
the stopping time τ as the first exit time of D, i.e.

τ = τD = inf{t ≥ 0, Ξt ∉ D}. (15)

The condition B imposes some implicit hypotheses between the generator f , the set D and
the coefficients of the SDE (14). In the next lemma, we give sufficient conditions to ensure B.
Let us denote by R the diameter of D:

R = sup{|x − y|, (x, y) ∈ D2
},

by ∥σ∥ the spectral norm of σ

∥σ∥ = sup
x∈Rd

sup
v∈Rd , |v|≤1

v.(σ (x)σ ∗(x))v,

and by ∥b∥ the sup norm of b:

∥b∥ = sup
x∈Rd

|b(x)|.

Define jd to be equal to π2/4 if d = 1 and to be equal to the first positive zero of the Bessel
function of first kind Jd/2−1 if d ≥ 2 (for d = 2, j2 ≈ 2.4048).

Lemma 2. 1. Assume that there exists ν > 0 and v ∈ Rd such that for all x ∈ Rd it holds that
b(x).v ≥ ν > 0. If δ∗ < ν2

∥σ∥
, then Condition B holds for all ρ ∈ (δ∗, ν2

∥σ∥
).

2. Assume that b = 0 (there is no drift) and σσ ∗ is uniformly elliptic, that is there exists
a constant α > 0 such that (σσ ∗)(x) ≥ αId for all x ∈ Rd . If δ∗ < 2α

R2 ( jd)2, then

Condition B holds for all ρ ∈ (δ∗, 2α
R2 ( jd)2).

Proof. Since D is bounded and not equal to a singleton it holds that 0 < R < +∞.
Assume first that there exists ν > 0 and v ∈ Rd such that for all x ∈ Rd , the scalar product

between b(x) and v is bounded from below by ν. W.l.o.g. we can assume that |v| = 1. Let
t > R/ν. On the set {τ > t}, it holds that Ξ0 and Ξs are in D. This implies on the set {τ > t},
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for any 0 ≤ s ≤ t , that

sup
0≤s≤t

(−v).


Ξs − Ξ0 −

 s

0
b(Ξu)du


≥ tν − R.

Hence from Theorem II.2.2 in [27]

P(τ > t) ≤ P


sup

0≤s≤t
(−v).


Ξs − Ξ0 −

 s

0
b(Ξu)du


≥ tν − R



≤ exp


−
(tν − R)2

∥σ∥t


.

This implies for all t > R/ν that

eρtP(τ > t) ≤ exp

ρt −

(tν − R)2

∥σ∥t


.

It follows from Tonelli’s theorem that

E(eρτ ) =


+∞

0
ρeρtP(τ > t)dt + 1 < +∞

provided that ρ < ν2

∥σ∥
.

In the second case, it is known (see e.g. Friedman [9, Theorem 14.10.1]) that the condition
Eeρτ < ∞ holds for all numbers ρ that are smaller than the principal eigenvalue of the
infinitesimal generator L of Ξ on the set D:

Lφ(x) =
1
2

Trace

σ(x)σ ∗(x)D2φ(x)


,

where D2φ is the Hessian matrix of φ ∈ C2(Rd). To derive a condition on α and R for
Assumption B, we consider an auxiliary problem. The set D is contained in a ball B of radius
R/2 and τB is the first exit time of Ξ from B. Clearly τ = τD ≤ τB . Hence we can consider
the operator L on the ball B. Moreover the principal eigenvalue of L is greater than the principal
eigenvalue of the operator (α/2)∆. The principal eigenvalue of the Laplace operator ∆ on the
unit ball is given by the constant ( jd)2. See [14] for details. Hence the principal eigenvalue of
(α/2)∆ on B is given by 2α

R2 ( jd)2. Consequently, B holds if

ρ <
2α

R2 ( jd)
2. �

Remark 8 (On A3′). The bound ν2

∥σ∥
respectively 2α

R2 ( jd)2 gives a minimal value for the
parameter m in A3′ (see Remark 7 and Lemma 10 in the Appendix).

Next we adapt Definition 1 to the case of a random terminal time and present the main result
of this section. To this end, we set

τε = inf{t ≥ 0, dist(Ξt ) ≤ ε}, (16)

where dist(Ξt ) denotes the distance between the position of Ξ at time t and the boundary of D.
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Definition 2 (Weak Supersolution in the Case of a Random Terminal Time). We say that a triple
of processes (Y, ψ,M) is a supersolution to the BSDE (1) with singular terminal condition
Yτ = ξ if it satisfies:

1. M ∈ M⊥, ψ ∈ G loc(π) and there exists some ℓ > 1 such that for all t ≥ 0 and ε > 0:

E


sup

s∈[0,t]
|Ys∧τε |

ℓ
+

 t∧τε

0


Z

|ψs(z)|
ℓµ(dz)ds + [M]

ℓ/2
t∧τε


< +∞;

2. Y is bounded from below by a process Ȳ ∈ S2(0, τ );
3. for all 0 ≤ s ≤ t and ε > 0:

Ys∧τε = Yt∧τε +

 t∧τε

s∧τε
f (u, Yu, ψu)du −

 t∧τε

s∧τε


Z
ψu(z)π(dz, du)−

 t∧τε

s∧τε
d Mu .

4. On the set {t ≥ τ }: Yt = ξ, ψ = M = 0 a.s. and lim inft→τ Yt ≥ ξ a.s.

We say that (Y, ψ,M) is a minimal supersolution to the BSDE (1) if for any other supersolution
(Y ′, ψ ′,M ′) we have Yt ≤ Y ′

t a.s. for any t > 0.

Theorem 2. If τ is the exit time given by (15), under Assumptions (A′) there exists a minimal
supersolution (Y, ψ,M) to (1) with singular terminal condition Yτ = ξ .

As in Section 1.2 we first consider the truncated BSDE (5).

Proposition 5. Assume that Assumptions (A′) hold. Then there exists for each L > 0 a solution
(Y L , ψ L ,M L) ∈ S2(0, τ ) × L2

π (0, τ ) × M2(0, τ ) to the BSDE (5) with terminal condition
Y L
τ = ξ ∧ L.

Proof. We check that all assumptions of Theorem 3 in [23] are satisfied. The driver f L (cf. (6))
of the BSDE (5) satisfies the monotonicity condition A1

( f L(t, y, ψ)− f L(t, y′, ψ))(y − y′) ≤ χ |y − y′
|
2

a.s. for any (t, y, y′, ψ) ∈ [0, T ] × R2
× L2

µ. Moreover, from A2, f L is Lipschitz continuous
w.r.t. ψ . By Condition A3′, f L satisfies

∀ j > 0, ∀n ∈ N, sup
|y|≤ j

(| f L(t, y, 0)− f L(t, 0, 0)|) ∈ L1(Ω × (0, n)).

Moreover |ξ ∧ L| and f L(t, 0, 0) = f 0
t ∧ L are bounded from Assumption A4′. The conditions

B and A3′ imply that there exists r > 1 such that

δ = r


χ +

K 2

2((r − 1) ∧ 1)


< ρ and

rδ

ρ − δ
< m

(see Lemma 10 in the Appendix for the proof). Hence

E
 τ

0
eδt (|ξ ∧ L|

r
+ | f L(t, 0, 0)|r )dt < +∞. (17)

Next, let ξ L
t = E[ξ ∧ L|Ft ] and let (Γ , l, N ) be given by the martingale representation of

ξ ∧ L

ξ ∧ L = E[ξ ∧ L] +


∞

0
ΓsdWs +


∞

0


Z

ls(z)π̃(dz, ds)+ Nτ .
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Since ξ ∧ L is bounded (by L for L large enough since ξ− is supposed to be bounded), the
process ξt is also bounded by L . Using Conditions A1 and A2 we obtain for some constant C
(depending on r ) which will change from line to line:

E
 τ

0
eδt | f L(t, ξt , lt )|

r dt


≤ CE

 τ

0
eδt | f (t, ξt , lt )− f 0

t |
r dt


+ CE

 τ

0
eδt | f 0

t ∧ L|
r dt

≤ CE
 τ

0
eδt∥lt∥

r
L2
µ

dt


+ CE

 τ

0
eδt |Ut (L)|

r dt


+ CE

 τ

0
eδt | f 0

t ∧ L|
r dt.

Since f 0 is bounded, using A4′ as in Inequality (17), one can show that the last term is finite. By
Hölder inequality, for any h > 1 and h̄ > 1 such that (h − 1)(h̄ − 1) = 1

E
 τ

0
eδt∥lt∥

r
L2
µ

dt


≤


E
 τ

0
eδht dt

1/h 
E
 τ

0
∥lt∥

r h̄
L2
µ

dt

1/h̄

.

But since ξ ∧ L is bounded, the process l coming from the martingale representation is in any
Lm
π (0, τ ), m > 1. Hence choosing h close enough to 1, this term is also finite. We proceed

similarly for the remaining term:

E
 τ

0
eδt |Ut (L)|

r dt


≤


E
 τ

0
eδht dt

1/h 
E
 τ

0
|Ut (L)|

r h̄dt

1/h̄

.

From Hypotheses B and A3′ we can choose h and h̄ such that δh < ρ and r h̄ ≤ m.
Hence the assumptions of Theorem 3 in [23] hold and there exists a solution (Y L , ψ L ,M L)

to the BSDE (5) with terminal condition Yτ = ξ ∧ L . More precisely for any 0 ≤ t ≤ T

Y L
t∧τ = Y L

T ∧τ +

 T ∧τ

t∧τ


f (s, Y L

s , ψ
L
s )+ (γs ∧ L)


ds

−

 T ∧τ

t∧τ


Z
ψ L

s (z)π(dz, ds)−

 T ∧τ

t∧τ
d M L

s ,

and Y L
t = ξ ∧ L on the set {t ≥ τ }. �

Observe that the proof of Proposition 5 does not use the fact that τ is a first hitting time but
works for every stopping time τ that satisfies the integrability conditions B and A3′. Moreover if
we assume

| f (t, 0, ψ)| ≤ K f , (18)

for some constant K f , then in B we need simply ρ > χ (see Remark 2 in [23]).
The next example shows that further assumptions on τ are necessary in order to ensure that

the family Y L is uniformly bounded from above. Therefore we will assume the particular form
(15) of τ in the sequel.

Example 1. Assume that f (t, y, ψ) = −|y|
2 and ξ = ∞. We assume that the filtration F

supports a stopping time τ such that E


1
τ


= ∞ and that satisfies the integrability conditions B
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and (13). This holds for example for all stopping times that have a continuous density function
f on R+ with f (0) > 0. In particular, one can take τ to be the first jump time of a Poisson
process, in which case τ is exponentially distributed. For each L > 0 let Y L denote the solution
to BSDE (5) constructed in Proposition 5. Next, we derive a lower bound for Y L . To this end let
X t = exp(−

 t
0 Y L

s ds). From Itô’s formula we obtain

dY L
t X2

t = −(Y L
t X t )

2dt + Z L
t X2

t dWt .

In particular, this implies Y L
0 = E

 τ
0 Ẋ2

s ds + L X2
τ


. Next, fix a realization ω ∈ Ω . Consider

the deterministic control problem of minimizing the functional
 τ(ω)

0 ẋ2(s)ds + Lx2(τ (ω)) over
functions x : [0, τ (ω)] → R starting in x(0) = 1 and being absolutely continuous. Using
Pontryagin’s maximum principle one can show that the trajectory x(s) =

τ(ω)−s+1/L
τ(ω)+1/L is optimal

in this deterministic problem. In particular, it follows that τ(ω)

0
ẋ2(s)ds + Lx2(τ (ω)) =

1
τ(ω)+ 1/L

≤

 τ(ω)

0
Ẋ2

s (ω)ds + L X2
τ(ω)(ω).

Taking expectations yields Y L
0 ≥ E


1

τ+1/L


and consequently we have by monotone

convergence lim infL→∞ Y L
0 ≥ E


1
τ


= ∞.

The preceding example shows that we cannot expect to obtain a finite supersolution to (1)
with singular terminal condition and random terminal time if the terminal time occurs too
suddenly. Therefore we restrict here attention to the case where τ is the first hitting time of a
diffusion. We introduce the signed distance function dist : Rd

→ R of D, which is defined by
dist(x) = infy∉D ∥x − y∥ if x ∈ D and dist(x) = − infy∈D ∥x − y∥ if x ∉ D. The next result
is a Keller–Osserman type inequality (cf. (19) and see [21,24]): Using analytical properties of
the diffusion near the boundary ∂D, allows us to bound at each time t the value of process Y L

t
against the distance of the diffusion Ξ to the boundary ∂D.

Proposition 6. If τ is the exit time given by (15), under Assumptions (A′) the solution processes
Y L constructed in Proposition 5 are bounded uniformly in L: There exists a process Ȳ ∈ S2(0, τ )
and a constant C such that:

Ȳt∧τ ≤ Y L
t∧τ ≤

C

dist(Ξt∧τ )2(p−1)
. (19)

Proof. First observe that the lower bound of Y L follows as in Proposition 1 from a comparison
theorem with a BSDE with terminal condition −ξ− and driver g(t, y, ψ) = ( f (t, y, ψ)− f 0

t )−

( f 0
t )

−.
For the upper bound, let µ > 0 and introduce the set Dµ = {x ∈ Rd , |dist(x)| ≤ µ}. Then it

follows from Lemma 14.16 in [11] that there exists a positive constantµ such that dist ∈ C2(Dµ).
Since D is bounded there exists a constant R > 0 such that 0 ≤ dist(x) ≤ R for all x ∈ D. Let
ϕ ∈ C∞(Rd , [0, 1]) with ϕ = 1 on Rd

\ Dµ and ϕ = 0 on Dµ/2. For 0 < ϵ ≤ 1 we define a
function g ∈ C2(Rd ,R+) such that g = (1 − ϕ)dist + Rϕ + ϵ on D. Since g ≥ ϵ on D, there
exists a function Φ ∈ C2(Rd ,R+) satisfying Φ = Cg−2(p−1) on D for any C > 0. Observe that
Φ is bounded from above by Cdist−2(p−1). Next we apply Itô’s formula to the process Φ(Ξt∧τ ).
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For every t < τ this yields

dΦ(Ξt ) = (p − 1)
Φq(Ξt )

η
q−1
t

dt + ∇Φ(Ξt )σ (Ξt )dWt

+


∇Φ(Ξt )b(Ξt )+

1
2

Trace(σσ ∗(Ξt )D
2Φ(Ξt ))− (p − 1)

Φq(Ξt )

η
q−1
t


dt

=


(p − 1)

Φq(Ξt )

η
q−1
t

− f 0
t


dt + ∇Φ(Ξt )σ (Ξt )dWt

+


f 0
t + ∇Φ(Ξt )b(Ξt )+

1
2

Trace(σσ ∗(Ξt )D
2Φ(Ξt ))− (p − 1)

Φq(Ξt )

η
q−1
t


dt.

On D we have

Φr
= Cq g−2q(p−1)

= Cq g−2p

∇Φ = −2(p − 1)Cg−2p+1
∇g

∂2Φ
∂xi∂x j

= −2(p − 1)(−2p + 1)Cg−2p ∂g

∂xi

∂g

∂x j
− 2(p − 1)Cg−2p+1 ∂2g

∂xi∂x j
.

For t ≤ τ let

G t = ∇Φ(Ξt )b(Ξt )+
1
2

Trace(σσ ∗(Ξt )D
2Φ(Ξt ))− (p − 1)

Φq(Ξt )

η
q−1
t

= −(p − 1)Cg−2p(Ξt )H(Ξt )

with

H(Ξt ) =
C p−1

η
q−1
t

+ 2(g∇gb)(Ξt )+ (−2p + 1)∥σ(Ξt )∇g(Ξt )∥
2

+


g Trace(σσ ∗ D2g)


(Ξt )

≥
C p−1

∥η∥
q−1
∞

+ 2(g∇gb)(Ξt )+ (−2p + 1)∥σ(Ξt )∇g(Ξt )∥
2

+


g Trace(σσ ∗ D2g)


(Ξt ),

since from condition A6′, η is bounded. Now D is a compact set. Thus the continuous functions
b and σ are bounded on D. Moreover, the functions g,∇g and D2g are bounded on D uniformly
in ϵ. Hence there exists C0 > 0 which does not depend on ϵ such that for any C ≥ C0, for every
t ≥ 0 and on D we have H(Ξt ) ≥ 1.

Again by Assumption A6′, the process f 0 is bounded from above. Hence for some C large
enough:

−Gt = G t + f 0
t = −(p − 1)Cg−2p(Ξt )H(Ξt )+ f 0

t ≤ −(p − 1)Cg−2p(Ξt )+ ∥ f 0
∥∞

≤ 0.
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Now the constant C is fixed. The process Φ(Ξ ) satisfies

Φ(Ξt∧τ ) = Φ(ΞT ∧τ )+

 T ∧τ

t∧τ


−(p − 1)

Φq(Ξs)

η
q−1
s

+ f 0
s


ds

+

 T ∧τ

t∧τ
Gsds −

 T ∧τ

t∧τ
∇Φ(Ξs)σ (Ξs)dWs

for all 0 ≤ t ≤ T , with Gs ≥ 0. Let us denote by Z the martingale

Z t =

 t

0
∇Φ(Ξs)σ (Ξs)dWs .

The triple (Φ(Ξ ), 0, Z) is solution of the BSDE with the generator:

v(t, y, ψ) = −(p − 1)
y|y|

q−1

η
q−1
t

+ f 0
s + f (t, 0, ψ)+ Gt

and terminal condition Φ(ΞT ∧τ ) =
C

ϵ2(p−1) on {T ≥ τ }. Condition A5 on f implies that

f L(t,Φ(Ξt ), 0) ≤ v(t,Φ(Ξt ), 0).

Moreover we choose ϵ small enough such that L ≤ C/ε(p−1)/2. Hence Y L ,+
T ∧τ ≤ Φ(ΞT ∧τ )

on {T ≥ τ }. The comparison principle (cf. Remark 3 in [23]) leads to: for any t ≥ 0,
Y L ,+

t∧τ ≤ Φ(Ξt∧τ ) and by construction Φ(Ξt∧τ ) ≤ Cdist−2(p−1)(Ξt∧τ ). This achieves the
proof. �

Now as in Section 1.2, we can define a process Y as the limit of the increasing sequence Y L to
obtain the minimal supersolution of (1). The next proposition completes the proof of Theorem 2.

Proposition 7. Suppose that τ is given by (15) and that Assumptions (A′) are in force and let
(Y L , ψ L ,M L) denote the solution of BSDE (5) obtained in Proposition 5. Then there exists
a process (Y, ψ,M) such that Y L

t converges a.s. to Yt , ψ L converges in L2
π (0, τϵ) to ψ and

M L converges in M2(0, τε) to M for any ε > 0. The limit process (Y, ψ,M) is the minimal
supersolution for the BSDE (1) with terminal condition ξ .

Proof. We proceed as in the proof of Proposition 3. We outline the main steps. First observe
that Y L

t converges a.s. to a limit process Y by a comparison principle (cf. Remark 3 in [23]).
Recall the definition of the stopping times τε, ε > 0, τε = inf{t ≥ 0, dist(Γt ) ≤ ε}. We
have dist(Γt∧τε ) ≥ ε for ε small enough. Moreover τε converges to τ when ε goes to zero.
Using this sequence of times τε, the whole sequence (Y L , ψ L ,M L) converges to (Y, ψ,M) on
S2(0, τε) × L2

µ(0, τε) × M2(0, τε) for all ε > 0. The main argument is that by Proposition 6
on the interval (0, τε), the process Y L is uniformly bounded by C/ε2(p−1). Moreover (Y, ψ,M)
satisfies for any ε > 0 and any 0 ≤ t ≤ T

Yt∧τε = YT ∧τε +

 T ∧τε

t∧τε
f (s, Ys, ψs)ds −

 T ∧τε

t∧τε


Z
ψs(z)π(dz, ds)−

 T ∧τε

t∧τε
d Ms .

Since the filtration is supposed be to left-continuous, we have a.s. limt→τ Y L
t = ξ ∧ L . Therefore

we obtain the following behavior of Y at the terminal time lim inft→τ Yt ≥ ξ . The minimality of
the solution follows by the same arguments as in Proposition 4. �
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2. Optimal position targeting

2.1. Problem formulation

Let us now describe the stochastic control problem. We assume that the setting from Sec-
tion 1.1 is given. Moreover, we suppose that the measure µ is finite. As in Section 1 we fix
some p > 1 and denote by q = 1/(1 − 1/p) its Hölder conjugate. Let τ be a F stopping time.
For any t ∈ R+ and x ∈ R, we denote by A(t, x) the set of progressively measurable processes
(Xs)s≥0 that satisfy the dynamics

Xs = x +

 s∨t

t
αudu +

 s∨t

t


Z
βu(z)π(dz, du) (20)

for any s ≥ 0 and for some α ∈ L1(t,∞) a.s. and β ∈ G loc(π). Observe that for all X ∈ A(t, x)
it holds that Xs = x for all s ≤ t . We consider the stochastic control problem to minimize the
functional2

J (t, X) = E
 τ

t∧τ


ηs |αs |

p
+ γs |Xs |

p
+


Z
λs(z)|βs(z)|

pµ(dz)


ds + ξ |Xτ |

p
Ft


(21)

over all X ∈ A(t, x). The random variable ξ is supposed to be non negative and may take the
value ∞ with positive probability. Observe that if for x > 0 there exists X ∈ A(t, x) such that
J (t, X) < ∞, then τ > t a.s. and X satisfies almost surely that

Xτ1ξ=∞ = 0. (22)

This way we impose implicitly a terminal state constraint on the set of admissible controls. For
future reference we define the set S by S = {ξ = +∞}. The coefficient processes (ηt )t≥0,
(γt )t≥0 and (λt )t≥0 are non negative progressively measurable càdlàg processes. The process λ
is P -measurable with values in [0,+∞].

We introduce the random field v that represents for each initial condition (t, x) the minimal
value of J

v(t, x) = essinf
X∈A(t,x)

J (t, X). (23)

Theorem 3 summarizes the main results of this section. It shows that the value function v and
optimal controls of the control problem (23) are characterized by the BSDE

dYt = (p − 1)
Y q

t

η
q−1
t

dt + Θ(t, Yt , ψt )dt − γt dt +


Z
ψt (z)π(dz, dt)+ d Mt (3)

with singular terminal condition ξ , where the function Θ is given by

Θ(t, y, ψ) =


Z
(y + ψ(z))


1 −

λt (z)
(y + ψ(z))q−1 + λt (z)q−1

p−1


1y+ψ(z)≥0 µ(dz).

(24)

2 We use the convention that 0 · ∞ := 0.
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Again we distinguish two cases. In the first case we assume that τ is deterministic and impose
some integrability assumptions on the coefficient processes (ηt )t≥0 and (γt )t≥0.

Assumption (C1). The stopping time τ is a.s. equal to a deterministic constant T > 0. The
process η is positive, the process γ is non negative, such that for some ℓ > 1

E
 T

0
(ηt + (T − t)pγt )

ℓdt


< ∞ and E

 T

0

1

η
q−1
t

dt


< ∞. �

In the second case we assume that τ is given by (15) as the first hitting time of a diffusion. We
need to impose some stronger boundedness conditions on η and γ compared to (C1).

Assumption (C2). We have τ = τD and there exists ρ > µ(Z) such that Eeρτ < ∞. The
processes η and γ are bounded from above, η is positive and satisfies the integrability conditions

E

 n

0

1

η
q−1
t

dt


+ E

 τ

0

1

η
m(q−1)
t

dt


< ∞ (25)

for all n ∈ N and for some m satisfying:

m >
2ρ

ρ − µ(Z)+ (
√
ρ −

√
2µ(Z))1ρ>2µ(Z)

.

The process γ is non negative. �

Lemma 2 gives sufficient conditions on the coefficients of the forward SDE (14) such that
Eeρτ < ∞ holds.

Theorem 3. Let Assumptions (C1) or (C2) hold. Then there exists a minimal supersolution
(Y, ψ,M) to (3) with singular terminal condition Yτ = ξ . Set Ys = ξ for all s ≥ τ . For all
(t, x) ∈ R+ × R it holds P-a.s. that v(t, x) = Yt x p. Moreover, for every (t, x) ∈ R+ × R the
process X satisfying the linear dynamics

Xs = x −

 s∨t

t


Yu

ηu

q−1

Xudu −

 s∨t

t
Xu−


Z
ζu(z)π(dz, du),

with

ζu(z) =
(Yu− + ψu(z))q−1

(Yu− + ψu(z))q−1 + λu(z)q−1


belongs to A(t, x), satisfies the terminal state constraint (22) if t < τ and is optimal in (23).

The optimal process X∗ is given explicitly by

X∗
s = x exp


−

 s∨t

t


Yu

ηu

q−1

du


exp

 s∨t

t


Z

ln (1 − ζu(z)) π(dz, du)


. (26)

To prove Theorem 3 we first conclude from Theorem 1 or 2 that there exists a minimal
supersolution to (3). We then consider a variant of the minimization problem (23), where we
penalize any non zero terminal state by (ξ ∧ L)|Xτ |p and thus omit the constraint Xτ1S = 0 on
the set of admissible controls. We show that optimal controls for this unconstrained minimization
problem admit a representation in terms of the solutions Y L of a truncated version of (3). We then
use this result to derive an optimal control for (23).
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2.2. Existence of a minimal supersolution

Observe that BSDE (3) is a special case of (1) with generator f given by

f (t, y, ψ) = −(p − 1)
y|y|

q−1

η
q−1
t

− Θ(t, y, ψ)+ γt .

Recall that in this section µ is supposed to be a finite measure, thus Θ (given by (24)) is well-
defined. Here we have that f 0

t = f (t, 0, 0) = γt . For simplicity we denote by ϖ the function

ϖ(t, y, φ) = (y + φ)


1 −

λt (z)
(y + φ)q−1 + λt (z)q−1

p−1


1y+φ≥0

such that

Θ(t, y, ψ) =


Z
ϖ(t, y, ψ(z))µ(dz).

The next result is a consequence of Theorems 1 and 2.

Corollary 1. Under Assumptions (C1) or (C2), the singular BSDE (3) has a minimal non
negative weak supersolution (Y, ψ,M).

Proof. We have to prove that f satisfies Conditions (A) (respectively (A′)) if (C1) (respectively
(C2)) holds. A simple computation proves that for a fixed (t, ψ) ∈ [0, T ] × L2

µ and z ∈ Z , the
function y → ϖ(t, y, ψ(z)) is non decreasing and of class C1 on R with a derivative bounded
by 1

∂ϖ

∂y
(t, y, ψ(z)) =


1 −

λt (z)q
(y + ψ(z))q−1 + λt (z)q−1

p


1y+ψ(z)≥0.

Since η > 0, the condition A1 is satisfied with χ = 0.
From the same argument the function ϖ is Lipschitz continuous w.r.t. ψ(z) and hence we

obtain

|Θ(t, y, ψ)− Θ(t, y, ψ ′)| ≤


Z

|ψ(z)− ψ ′(z)|µ(dz) ≤ µ(Z)1/2∥ψ − ψ ′
∥L2

µ
.

Moreover for any (t, y, ψ,ψ ′) ∈ [0, T ] × R × (L2
µ)

2 we have

f (t, y, ψ)− f (t, y, ψ ′) = −Θ(t, y, ψ)+ Θ(t, y, ψ ′)

=


Z
(ϖ(t, y, ψ ′(z))−ϖ(t, y, ψ(z)))µ(dz)

=


Z
(ψ(z)− ψ ′(z))κ y,ψ,ψ ′

t (z)µ(dz)

where

κ
y,ψ,ψ ′

t (z) = −
ϖ(t, y, ψ(z))−ϖ(t, y, ψ ′(z))

ψ(z)− ψ ′(z)
1ψ(z)≠ψ ′(z).

Since ϖ is non decreasing in ψ with derivative bounded from above by 1, we obtain −1 ≤

κ
y,ψ,ψ ′

t ≤ 0. Thus Conditions A2 and A7 hold for any k ≥ 1. We can even note that (9) (cf.
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Lemma 1 and Remark 4) is true with K f
t = 0. For every r > 0 and |y| ≤ r we have

| f (t, y, 0)− f 0
t | = (p − 1)

|y|
q

η
q−1
t

+ |Θ(t, y, 0)| ≤ (p − 1)
|r |

q

η
q−1
t

+ µ(Z)|r | =: Ut (r).

By Assumption (C1), the mapping t → Ut (r) is in L1((0, T ) × Ω) and Condition A3 holds.
Condition A4 holds since γ and ξ are non negative. Finally since Θ ≥ 0, Condition A5 is
satisfied and A6 holds if Assumption (C1) is assumed.

A similar computation shows that under (C2), Conditions A4′ and A6′ hold. We have here
χ = 0 and K 2

= µ(Z), thus δ∗ = µ(Z) (see Eq. (11)) and therefore the assumption ρ > µ(Z)
implies Condition B. Moreover from (25), the process Ut (r) is in L1((0, n)× Ω) for any n ∈ N
and satisfies E

 τ
0 |Ut (r)|mdt < +∞, with m > h∗ (see Eq. (12)). Hence Corollary 1 is a direct

consequence of Theorem 1 or 2. Moreover, by Proposition 1 (respectively Proposition 5) there
exists a solution (Y L , ψ L ,M L) of the truncated BSDE

dY L
t = (p − 1)

(Y L
t )

1+q

η
q
t

dt + Θ(t, Y L
t , ψ

L
t )dt − (γt ∧ L)dt +


Z
ψ L

t (z)π(dz, dt)

+ d M L
t (27)

with terminal condition Y L
τ = ξ ∧ L . The process (Y, ψ,M) is the limit as L goes to +∞ of

(Y L , ψ L ,M L) and is the minimal (super-)solution of the BSDE (3). �

2.3. Penalization

For L > 0 and (t, x) ∈ R+ × R we consider the unconstrained minimization problem:

vL(t, x) = essinf
X∈A(t,x)

J L(t, X)

= essinf
X∈A(t,x)

E
 τ

t∧τ


ηs |αs |

p
+ (γs ∧ L)|Xs |

p
+


Z
λs(z)|βs(z)|

pµ(dz)


ds

+ (ξ ∧ L)|Xτ |
p
Ft


. (28)

Proposition 8. Let Assumption (C1) or (C2) hold and let (Y L , ψ L ,M L) be the solution
to (27) with terminal condition Yτ = ξ ∧ L. Let Ys = L ∧ ξ for all s ≥ τ . Then for all
(t, x) ∈ R+ × R the process X L satisfying the linear dynamics

X L
s = x −

 s∨t

t


Y L

r

ηr

q−1

X L
r dr −

 s∨t

t
X L

r−


Z
ζ L

r (z)π(dz, dr),

with

ζ L
r (z) =

(Y L
r− + ψr (z))q−1

(Y L
r− + ψ L

r (z))q−1 + λr (z)q−1


is optimal in (28). Moreover, we have vL(t, x) = Y L
t |x |

p.

To prove Proposition 8 we will make use of the two following auxiliary results. The first
lemma shows that in the case x ≥ 0 we can without loss of generality restrict attention to
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monotone strategies.3 To this end we introduce the set D(t, x), the subset of A(t, x) containing
only processes X that have non increasing sample paths (i.e. αt ≤ 0 and βt (z) ≤ 0), and that
remain non negative.

Lemma 3. Let x ≥ 0. Every control X ∈ A(t, x) can be modified to a control X ∈ D(t, x) such
that J L(t, X) ≥ J L(t, X). In particular, vL(t, x) = essinfX∈D(t,x) J L(t, X).

Proof. For s ≥ 0 we consider the solution of the following SDE

Xs = x −

 s∨t

t
α−

u du −

 s∨t

t


Z
βs(z)

−π(dz, ds),

where x− denotes the negative part of x . This process is non increasing and satisfies Xs ≤ Xs .
Then we define

X s = Xs ∨ 0 = (Xs)
+.

By Tanaka’s formula we have

X s = x −

 s∨t

t
1Xu>0α

−
u du −

 s∨t

t


Z

1Xu−>0(βu(z)
−

∧ (Xu−)+)π(dz, ds).

We define

αs = −1Xs>0α
−
s ,

βs(z) = −1Xs−>0(βs(z)
−

∧ (Xs−)+).

Then X belongs to D(t, x). Moreover we have

|αs | ≤ |αs |, |βs(z)| ≤ |βs(z)|, 0 ≤ X s ≤ |Xs |

which implies that J L(t, X) ≥ J L(t, X). �

The second lemma provides the dynamics of two auxiliary processes.

Lemma 4. Let Assumptions (C1) or (C2) hold and let (Y L , ψ L ,M L) be the solution of (27).
Let X L

∈ A(t, x) be the strategy from Proposition 8. Then we have for t ≤ s ≤ τ that

d

ηs |α

L
s |

p−1


= (X L
s−)

p−1d M L
s − (γs ∧ L)|X L

s |
p−1ds −


Z
φs(z)π(dz, ds),

with φs(z) = Y L
s− |X L

s− |
p−1

− λs(z)|βL
s (z)|

p−1. Moreover, we have for t ≤ s ≤ τ

d(Y L
s (X

L
s )

p) = −


ηs |α

L
s |

p
+ γ L

s (X
L
s )

p
+


Z
λs(z)|β

L
s (z)|

pµ(dz)


ds

+ (X L
s−)

pd M L
s + (X L

s−)
p


Z
(Y L

s− + ψ L
s (z))


1 − ζ L

s (z)
p

− 1
π(dz, ds).

3 It is straightforward to show that v(t, x) = v(t,−x) for all (t, x) ∈ R+ × R+. Therefore, we restrict attention to the
case x ≥ 0 in the sequel.
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Proof. To simplify notation we set γ L
s = γs ∧ L . Recall that X L and Y L satisfy the following

dynamics for t ≤ s ≤ τ

d X L
s = −

(Y L
s )

q−1

η
q−1
s

X L
s ds −


Z

X L
s−ζ

L
s (z)π(dz, ds),

dY L
s =


(p − 1)

(Y L
s )

q

η
q−1
s

+ ϑ(s, Y L
s , ψ

L
s )− γ L

s


ds +


Z
ψ L

s (z)π(dz, ds)+ d M L
s .

For t ≤ s ≤ τ let

θs = ηs |α
L
s |

p−1
+

 s

t
γ L

u |X L
u |

p−1du = Y L
s |X L

s |
p−1

+

 s

t
γ L

u |X L
u |

p−1du.

Applying the integration by parts formula to θ results in

dθs = (X L
s−)

p−1dY L
s + Y L

s−d((X L
s )

p−1)+ d[Y L , (X L)p−1
]s + γ L

s |X L
s |

p−1ds

= (X L
s−)

p−1dY L
s + Y L

s−(X L
s−)

p−1


−(p − 1)

(Y L
s )

q−1

η
q−1
s


ds

+ Y L
s−(X L

s−)
p−1


Z


1 − ζ L

s (z)
p−1

− 1

µ(dz)ds

+ Y L
s−(X L

s−)
p−1


Z


1 − ζ L

s (z)
p−1

− 1
π(dz, ds)

+ (X L
s−)

p−1


Z
ψ L

s (z)


1 − ζ L

s (z)
p−1

− 1

π(dz, ds)+ pγ L

s |X L
s |

p−1ds

= (X L
t−)

p−1Θ(s, Y L
s , ψ

L
s )ds

+ (X L
s−)

p−1


Z
(Y L

s− + ψ L
s (z))


1 − ζ L

s (z)
p−1

− 1

µ(dz)ds(X L

s−)
p−1d M L

s

+ (X L
s−)

p−1


Z
(Y L

s− + ψ L
s (z))


1 − ζ L

s (z)
p−1

− 1
π(dz, ds)

= (X L
s−)

p−1d M L
s + (X L

s−)
p−1


Z
(Y L

s− + ψ L
s (z))


1 − ζ L

s (z)
p−1

− 1
π(dz, ds)

from the definition of ζ L and Θ (see Eq. (24)). Moreover we have

(Y L
s− + ψ L

s (z))


1 − ζ L

s (z)
p−1

− 1


= λs(z)ζ
L
s (z)

p−1
− (Y L

s− + ψ L
s (z)),

which yields the first claim.
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For the second equation we apply the integration by parts formula to the process Y L(X L)p to
obtain

d(Y L
s (X

L
s )

p) = (X L
s−)

pdY L
s + Y L

s−d((X L
s )

p)+ d[Y L , (X L)p
]s

= −


ηs(X

L
s )

p (Y
L
s )

q

η
q
s

+ γ L
s (X

L
s )

p


ds + (X L
s−)

pd M L
s

+ (X L
s−)

pΘ(s, Y L
s , ψ

L
s )ds

+ (X L
s−)

p


Z
(Y L

s− + ψ L
s (z))


1 − ζ L

s (z)
p

− 1

µ(dz)ds

+ (X L
s−)

p


Z
(Y L

s− + ψ L
s (z))


1 − ζ L

s (z)
p

− 1
π(dz, ds).

But note that

|αL
s |

p
=

 (Y L
s )

q−1

η
q−1
s

X L
s


p

=
(Y L

s )
q

η
q
s
(X L

s )
p,

and from the very definition (24) of Θ

Θ(s, Y L
s , ψ

L
s )+


Z
(Y L

s + ψ L
s (z))


1 − ζ L

s (z)
p

− 1

µ(dz)

=


Z
(Y L

s + ψ L
s (z))


λs(z)q−1

(Y L
s− + ψ L

s (z))q−1 + λs(z)q−1
p

−
λs(z)

|Y L
s + ψ L

s (z)|q−1 + λs(z)q−1
p−1


µ(dz)

= −


Z
(Y L

s + ψ L
s (z))

λs(z)
(Y L

s− + ψ L
s (z))q−1 + λs(z)q−1

p


Y L

s + ψ L
s (z)

q−1

µ(dz)

= −


Z
λs(z)|ζs(z)|

pµ(dz). �

We close this section with the proof of Proposition 8.

Proof of Proposition 8. We omit the superscript L in the sequel. Let (t, x) ∈ R+ × R+. Take
another process X in D(t, x). Use the convexity of the function y → |y|

p and αs ≤ 0 to obtain τ

t∧τ


ηs(|αs |

p
− |αs |

p)


ds ≤ −p
 τ

t∧τ
ηs |αs |

p−1 (αs − αs) ds

= −p
 τ

t∧τ
ηs |αs |

p−1(d Xs − d X s)+ p
 τ

t∧τ


Z
ηs |αs |

p−1 βs(z)− βs(z)

π(dz, ds)

= I 1
t + I 2

t . (29)

By integration by parts on the first integral and using Lemma 4 and boundedness of X and X
(see Lemma 3), we obtain
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EFt I 1
t = −pEFt


ητ |ατ |

p−1(Xτ − X τ )


+ pEFt

 τ

t∧τ
(Xs − X s)d


ηs |αs |

p−1


− pEFt

 τ

t∧τ


Z


βs(z)− βs(z)


φs(z)π(dz, ds)


= −pEFt


Yτ X p−1

τ (Xτ − X τ )


− pEFt

 τ

t∧τ
(γs ∧ L)|X L

s |
p−1(Xs − X s)ds


− pEFt

 τ

t∧τ


Z


βs(z)− βs(z)


φs(z)µ(dz)ds


where φ is defined as in Lemma 4. Using again convexity of y → |y|

p yields

EFt I 1
t ≤ −EFt


(ξ ∧ L)(X p

τ − X
p
τ )


− EFt

 τ

t∧τ
(γs ∧ L)(X p

s − X
p
s )ds


− pEFt

 τ

t∧τ


Z


βs(z)− βs(z)


φs(z)µ(dz)ds


. (30)

Moreover we have

EFt I 2
t = pEFt

 τ

t∧τ


Z
ηs |αs |

p−1 βs(z)− βs(z)

µ(dz)ds. (31)

Now, using (29)–(31) we obtain

J (t, X)− J (t, X) ≤ EFt

 τ

t∧τ


Z

p

βs(z)− βs(z)

 
φs(z)− ηs |αs |

p−1

µ(dz)ds


+ EFt

 τ

t∧τ


Z
λs(z)


|βs(z)|

p
− |βs(z)|

pµ(dz)ds


.

Now recall that ηs |αs |
p−1

= Y L
s |X L

s |
p−1. From the definition of φs and from convexity of

x → |x |
p we obtain:

J (t, X)− J (t, X)

≤ EFt

 τ

t∧τ


Z

pY L
s


βs(z)− βs(z)

 
|X L

s− |
p−1

− |X L
s |

p−1

µ(dz)ds


and therefore J (t, X)− J (t, X) ≤ 0.

It remains to verify the identity vL(t, x) = Y L
t |x |

p. But from Lemma 4 we deduce that

Y L
t |x |

p
= EFt

 τ

t∧τ


ηu |αL

u |
p

+ γ L
u (X

L
u )

p
+


Z
λu(z)|β

L
u (z)|

pµ(dz)


du

+ EFt (Y L
τ |X L

τ |
p)

= J (t, X) = vL(t, x). �

2.4. Solving the constrained problem

This section is devoted to the proof of Theorem 3. For the convenience of the reader we restate
the result here.
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Theorem 4. Let Assumptions (C1) or (C2) hold and let (Y, ψ,M) be the minimal solution
to (3) with singular terminal condition Yτ = ξ from Corollary 1 and let Ys = ξ for all s ≥ τ .
Then v(t, x) = Yt |x |

p for all (t, x) ∈ R+ × R. Moreover the control given by Eq. (26)

X∗
s = x exp


−

 s∨t

t


Yu

ηu

q−1

du


exp

 s∨t

t


Z

ln (1 − ζu(z)) π(dz, du)


with

ζt (z) =
(Yt− + ψt (z))q−1

(Yt− + ψt (z))q−1 + λt (z)q−1


belongs to A(t, x), satisfies the terminal state constraint (22) if t < τ and is optimal in (23).

Proof. Let (t, x) ∈ R+ × R+. If τ = T is deterministic, we set τε = T − ε for ε > 0. In the
case where τ = τD is given by (15), the stopping time τε is defined as in (16).

Observe that Y and Y L satisfy the same dynamics before time τε. Hence, the results from
Lemma 4 remain to hold true if Y L and X L are replaced by Y and X∗. In particular, it follows
that the process

θs = Ys |X
∗
s |

p−1
− Yt∧τε |X

∗
t∧τε |

p−1
+

 s

t∧τε
γu |X∗

u |
p−1du, s ≥ t ∧ τε, ε > 0,

is a non negative local martingale on the stochastic interval [t∧τε, τ [ for any ε > 0. Consequently
it is a non negative supermartingale and thus converges almost surely in R as s goes to τ (see
Chapter V.3 in [16] or Appendix in [6]). Hence

0 ≤ X∗
s =


θs − p

 s
t∧τε

γu |X∗
u |

p−1du

pYs∧τ

q−1

≤


θs

pYs

q−1

.

Since Y satisfies the terminal condition lim infs↗τ Ys1S = ∞ we have a.s. on the set {t < τ }∩S :

0 ≤ X∗
s ≤


θs

pYs

q−1

→ 0

when s goes τ . It follows that X satisfies (22) if t < τ .
Appealing once more to Lemma 4 we observe that for t ≤ s < τ

d(Ys(X
∗
s )

p) = −

ηs |α

∗
s |

p
+ γs(X

∗
s )

p ds −


Z
λs(z)|β

∗
s (z)|

pµ(dz)ds

+ (X∗

s−)
pd Ms + (X∗

s−)
p


Z
(Ys− + ψt (z))


(1 − ζs(z))

p
− 1

π(dz, ds).

Since |X∗
t | ≤ x we deduce for all ε > 0

Yt |x |
p

= 1{t<τ }EFt

 τε∨t

t


ηu |α∗

u |
p

+ γu(X
∗
u)

p
+


Z
λu(z)|β

∗
u (z)|

pµ(dz)


du

+ Yτε∨t |Xτε∨t |
p


+ 1{t≥τ }ξ |x |
p

≥ 1{t<τ }EFt

 τε∨t

t


ηu |α∗

u |
p

+ γu(X
∗
u)

p
+


Z
λu(z)|β

∗
u (z)|

pµ(dz)


du

+ 1{ξ<∞}Yτε∨t |Xτε∨t |
p


+ 1{t≥τ } J (t, X∗).
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Appealing to monotone convergence theorem yields

lim
ε→0

1{t<τ }EFt

 τε∨t

t


ηu |α∗

u |
p

+ γu(X
∗
u)

p
+


Z
λu(z)|β

∗
u (z)|

pµ(dz)


du


= 1{t<τ }EFt

 τ

t


ηu |α∗

u |
p

+ γu(X
∗
u)

p
+


Z
λu(z)|β

∗
u (z)|

pµ(dz)


du


.

Since we have lim infε→0 Yτε ≥ ξ and by Fatou’s lemma, we obtain4

lim inf
ε→0

1{t<τ }EFt

1{ξ<∞}Yτε∨t |Xτε∨t |

p
≥ 1{t<τ }EFt


lim inf
ε→0

1{ξ<∞}Yτε∨t |Xτε∨t |
p


≥ 1{t<τ }EFt

1{ξ<∞}ξ |Xτ |

p
= 1{t<τ }EFt


ξ |Xτ |

p .
Altogether we obtain that Yt |x |

p
≥ J (t, X∗). Next, note that for every X ∈ A(t, x) we have

J (t, X) ≥ J L(t, X). This implies v(t, x) ≥ vL(t, x) for every L > 0. By Proposition 8 we have
Y L

t |x |
p

= vL(t, x). Minimality of Y implies

Yt |x |
p

= lim
L↗∞

Y L
t |x |

p
= lim

L↗∞
vL(t, x) ≤ v(t, x).

Consequently we obtain

Yt |x |
p

≥ J (t, X∗) ≥ v(t, x) ≥ Yt |x |
p

and thus optimality of X∗. �
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Appendix

Some details concerning the proof of Proposition 3

In this section we give the details for the proof of Proposition 3. The constant ℓ is defined in
Condition A6. Let us begin with two results contained in [23]. For ζ ∈ Lℓ(Ω), let (Y, ψ,M) ∈

Sℓ(0, T )× Lℓπ (0, T )× Mℓ(0, T ) be the classical solution of the BSDE:

Yt = ζ +

 T

t
g(u, Yu, ψu)du −

 T

t


Z
ψu−(z)π(dz, du)−

 T

t
d Mu

where the generator g satisfies Conditions A1, A2 and A3 and g0
t = g(t, 0, 0) is in Hℓ(0, T ).

Again the existence and the uniqueness of (Y, ψ,M) comes from Theorem 2 in [23]. Recall that
ν(x) = |x |

−1x1x≠0. The first result is the Itô formula.

4 Recall that 0 · ∞ := 0.
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Lemma 5 (Corollary 1 and Remark 1 in [23]). Let c(ℓ) =
ℓ((ℓ−1)∧1)

2 and 0 ≤ s ≤ t ≤ T , then
it holds that

|Ys |
ℓ

≤ |Yt |
ℓ
+ ℓ

 t

s
|Yu |

ℓ−1ν(Yu)g(u, Yu, ψu)du − c(ℓ)
 t

s
|Yu |

ℓ−21Yu≠0d[M]
c
u

− ℓ

 t

s
|Yu− |

ℓ−1ν(Yu−)d Mu − ℓ

 t

s
|Yu− |

ℓ−1ν(Yu−)


Z
ψs(z)π(dz, du)

−

 t

s


Z


|Yu− + ψu(z)|

ℓ
− |Yu− |

ℓ
− ℓ|Yu− |

ℓ−1ν(Yu−)ψu(z)

π(dz, du)

−


s<u≤t


|Yu− +1Mu |

ℓ
− |Yu− |

ℓ
− ℓ|Yu− |

ℓ−1ν(Yu−)1Mu


.

Moreover
 t

0 1Yu=0d[M]
c
u = 0.

The second result is the following.

Lemma 6 (Lemma 9 in [23]). If ℓ < 2, the non decreasing processes involving the jumps of Y
control the quadratic variations:

0<u≤t


|Yu− +1Mu |

ℓ
− |Yu− |

ℓ
− ℓ|Yu− |

ℓ−1ν(Yu−)1Mu


≥ c(ℓ)


0<u≤t

|1Mu |
2

|Yu− |

2
∨ |Yu− +1Mu |

2
ℓ/2−1

1|Yu− |∨|Yu−+1Mu |≠0

and  t

0


Z


|Yu− + ψu(z)|

ℓ
− |Yu− |

ℓ
− ℓ|Yu− |

ℓ−1ν(Yu−)ψu(z)

π(dz, du)

≥ c(ℓ)
 t

0


Z

|ψu(z)|
2

|Yu− |

2
∨ |Yu− + ψu(z)|

2
ℓ/2−1

1|Yu− |∨|Yu−+ψu(z)|≠0π(dz, du).

The main step in the proof of Proposition 3 is the convergence of the solution (Y L , ψ L ,M L)

of the BSDE (5) with terminal condition ξ L
= ξ ∧ L . In order to carry out this step, we need

suitable a priori estimates for the difference Y L
− Y N . We proceed as in Proposition 3 in [23].

These are established in Lemma 9. Let 0 ≤ s ≤ t < T . For L and N non negative, we putYs = Y N
s − Y L

s ,
ψs(z) = ψN

s (z)− ψ L
s (z), Ms = M N

s − M L
s .

W.l.o.g. we may assume that ℓ ≤ 2 and we choose a = ℓ∥ϑ∥
2
L2
µ
/(ℓ− 1). Then Itô’s formula (see

Lemma 5) implies

eas
|Ys |

ℓ
≤ eat

|Yt |
ℓ
−

 t

s
aeau

|Yu |
ℓdu

+ ℓ

 t

s
eau

|Yu |
ℓ−1ν(Yu)( f N (u, Y N

u , ψ
N
u )− f L(u, Y L

u , ψ
L
u ))du

− ℓ

 t

s
eau

|Yu− |
ℓ−1ν(Yu−)d Mu − ℓ

 t

s
eau

|Yu− |
ℓ−1ν(Yu−)


Z
ψ(z)π(dz, du)

−

 t

s
eau


Z


|Yu− + ψu(z)|

ℓ
− |Yu− |

ℓ
− ℓ|Yu− |

ℓ−1ν(Yu−)ψu(z)

π(dz, du)
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−


0<s≤t

eau

|Yu− +1Mu |

ℓ
− |Yu− |

ℓ
− ℓ|Yu− |

ℓ−1ν(Yu−)1Mu


− c(ℓ)

 t

s
eau

|Yu |
ℓ−21Yu≠0d[M]

c
u . (32)

Here ν(x) = |x |
−1x1x≠0 and c(ℓ) = ℓ(ℓ−1)/2. For the term containing the generators we have

|Yu |
ℓ−1ν(Yu)( f N (u, Y N

u , ψ
N
u )− f L(u, Y L

u , ψ
L
u ))

≤ |Yu |
ℓ−1ν(Yu)( f N (u, Y N

u , ψ
N
u )− f L(u, Y N

u , ψ
N
u ))

+ |Yu |
ℓ−1ν(Yu)( f L(u, Y N

u , ψ
N
u )− f L(u, Y L

u , ψ
L
u ))

≤ |Yu |
ℓ−1ν(Yu)( f 0

u ∧ N − f 0
u ∧ L)

+ |Yu |
ℓ−1ν(Yu)( f L(u, Y N

u , ψ
N
u )− f L(u, Y N

u , ψ
L
u ))

≤ |Yu |
ℓ−1

| f 0
u ∧ N − f 0

u ∧ L| + |Yu |
ℓ−1


Z
ψu(z)κ

Y N ,ψN ,ψ L

u (z)µ(dz)


≤ |Yu |

ℓ−1
| f 0

u ∧ N − f 0
u ∧ L| + ∥ϑ∥L2

µ
|Yu |

ℓ−1
∥ψu∥L2

µ

where we used monotonicity A1 of f L w.r.t. y (with χ = 0) and the condition A2 of f L w.r.t.
ψ . Then by Young’s inequality

ℓ∥ϑ∥L2
µ
|Yu |

ℓ−1
∥ψu∥L2

µ
≤

ℓ

(ℓ− 1)
∥ϑ∥

2
L2
µ
|Yu |

ℓ
+

c(ℓ)

2
|Yu |

ℓ−2
∥ψu∥

2
L2
µ
.

We define

X = eat
|Yt |

ℓ
+ ℓ

 t

0
eau

|Yu |
ℓ−1

| f 0
u ∧ N − f 0

u ∧ L|du.

From Lemma 6 we obtain for every s ∈ [0, t]:

eas
|Ys |

ℓ
+ c(ℓ)


s<u≤t

eau
|1Mu |

2

|Yu− |

2
∨ |Yu− +1Mu |

2
ℓ/2−1

1
|Yu− |∨|Yu−+1Mu |≠0

+ c(ℓ)
 t

s
eau


Z

|ψu(z)|
2

|Yu− |

2
∨ |Yu−

+ ψu(z)|
2
ℓ/2−1

1
|Yu− |∨|Yu−+ψu(z)|≠0π(dz, du)

+ c(ℓ)
 t

s
eau

|Yu |
ℓ−21Yu≠0d[M]

c
u −

c(ℓ)

2

 t

s
|Yu |

ℓ−2
∥ψu∥

2
L2
µ

du

≤ X − ℓ

 t

s
eau

|Yu− |
ℓ−1ν(Yu−)d Mu − ℓ

 t

s
eau

|Yu− |
ℓ−1ν(Yu−)


Z
ψu(z)π(dz, du).

(33)

Indeed from the choice of a, the terms

ℓ∥ϑ∥
2
L2
µ

ℓ− 1

 t

s
eau

|Yu |
ℓdu = a

 t

s
eau

|Yu |
ℓdu

cancel each other.
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Lemma 9 is a consequence of the following two lemmas.

Lemma 7. There exists a constant Cℓ depending only on ℓ such that for any 0 < t < T

E


sup

s∈[0,t]
eas

|Ys |
ℓ


≤ CℓE(X). (34)

Proof. Indeed we take τk as a fundamental sequence of stopping times for the local martingale .

0
eau

|Yu− |
ℓ−1ν(Yu−)


d Mu +


Z
ψu(z)π(dz, du)


and τ̂k as a localization time

τ̂k = inf


t ≥ 0,
 t

0


Z

eau
|ψu(z)|

2

|Yu− |

2
∨ |Yu |

2
ℓ/2−1

1
|Yu− |∨|Yu |≠0π(dz, du) ≥ k


.

We set τ = τk ∧ τ̂k ∧ t . Now we have:

E
 τ

0
eau


U

|ψs(u)|
2

|Ys− |

2
∨ |Ys− + ψs(u)|

2
p/2−1

1
|Ys− |∨|Ys−+ψs (u)|≠0π(du, ds)

= E
 τ

0
eau


U

|ψs(u)|
2

|Ys− |

2
∨ |Ys |

2
p/2−1

1
|Ys− |∨|Ys |≠0π(du, ds)

= E
 τ

0
eau


U

|ψs(u)|
2
|Ys |

p−21Ys≠0µ(du)ds = E
 τ

0
eau

∥ψs∥
2
L2
µ
|Ys |

p−21Ys≠0ds.

From this equality and taking the expectation in (33) we deduce that

c(ℓ)E


0<u≤τ

eau
|1Mu |

2

|Yu− |

2
∨ |Yu− +1Mu |

2
ℓ/2−1

1
|Yu− |∨|Yu−+1Mu |≠0

+ c(ℓ)E
 τ

0
eau

|Yu |
ℓ−21Yu≠0d[M]

c
u +

c(ℓ)

2
E
 τ

0
eau

|Yu |
ℓ−2

∥ψu∥
2
L2
µ

du

+
c(ℓ)

2
E
 τ

0
eau


Z

|ψu(z)|
2

|Yu− |

2
∨ |Yu−

+ ψu(z)|
2
ℓ/2−1

1
|Yu− |∨|Yu−+ψu(z)|≠0π(dz, du)

≤ 2E(X) (35)

and we can allow τ to be equal to t in this last inequality. Then using the Burkholder–Davis–
Gundy inequality in (33) we obtain that:

E


sup

0≤s≤t
eas

|Ys |
ℓ


≤ E(X)+ kℓE


[MY

]
1/2
t + [πY

]
1/2
t


with

MY
s +πY

s = ℓ

 s

0
eau

|Yu− |
ℓ−1ν(Yu−)d Mu

+ ℓ

 s

0
eau

|Yu− |
ℓ−1ν(Yu−)


Z
ψu(z)π(dz, du).
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Since ℓ > 1, the bracket of the first martingale is controlled by:

kℓE

[MY

]
1/2
t


≤ kℓE

 t

0
e2au


|Yu− |

2
∨ |Yu− +1Mu |

2
ℓ−1

1
|Yu− |∨|Yu−+1Mu |≠0d[M]u

1/2


≤
1
4

E


sup

0≤u≤t
eau

|Yu |
ℓ


+ k2

ℓE
 T

0
eau

|Yu− |
ℓ−21

|Yu− |≠0d[M]
c
u



+ k2
ℓE

 
0<s≤T

eau

|Yu− |

2
∨ |Yu− +1Mu |

2
ℓ/2−1

1
|Yu− |∨|Yu−+1Mu |≠0|1

Mu |
2



and for the second

kℓE

[πY

]
1/2
t


≤ kℓE

 sup
0≤u≤t


eau

|Yu |
ℓ
 1

2  t

0
eau

|Yu |
ℓ−21Yu≠0


Z

|ψu(z)|
2π(dz, ds)

 1
2


≤

1
4

E


sup

0≤u≤t
eau

|Yu |
ℓ


+ k2

pE
 t

0
eau

|Yu |
ℓ−2

∥ψu∥
2
L2
µ

1Yu≠0du


.

Hence Inequality (34) is proved. �

We apply again Young’s inequality to obtain that

CℓE(X) ≤ CℓE


eat
|Yt |

ℓ


+
1
2

E


sup

s∈[0,t]
eas

|Ys |
ℓ


+ C̄ℓE

 t

0
eau

| f 0
u ∧ N − f 0

u ∧ L|
ℓdu

(36)

and we can conclude that

E


sup

s∈[0,t]
eas

|Ys |
ℓ


≤ ĈℓE


eat

|Yt |
ℓ


+ ĈℓE
 t

0
eau

| f 0
u ∧ N − f 0

u ∧ L|
ℓdu. (37)

Next, we derive a similar inequality for ψ L and M L .

Lemma 8. There exists a constant Cℓ such that for any 0 < t < T

E

 t

0
e2as/ℓd[M]s

ℓ/2
+

 t

0
e2as/ℓ


Z

|ψs(z)|
2µ(dz)ds

ℓ/2
≤ CℓE(X).

Proof. From Lemma 5, it holds a.s. t

0
1Ys=0d[M]

c
s = 0.
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Hence

E

 t

0
e2as/ℓd[M]

c
s

ℓ/2
= E

 t

0
e2as/ℓ1Ys≠0d[M]

c
s

ℓ/2

≤ E

 sup
0≤u≤t

eau
|Yu |

ℓ

(2−ℓ)/2  t

0
eas

Ys
ℓ−2

1Ys≠0d[M]
c
s

ℓ/2
≤

2 − ℓ

2
E


sup

0≤u≤t
eau

|Yu |
ℓ


+
ℓ

2
E
 t

0
eas

Ys
ℓ−2

1Ys≠0d[M]
c
s

where we have used Hölder’s and Young’s inequality with 2−ℓ
2 +

ℓ
2 = 1. With Inequality (35) we

deduce:

E

 t

0
e2as/ℓd[M]

c
s

ℓ/2
≤ C pE(X).

For the pure-jump part of [M], let ε > 0 and consider the function uε(y) = (|y|
2
+ ε2)1/2. Then

E

 
0<s≤t

e2as/ℓ
|1Ms |

2

ℓ/2 ≤ E

 sup
0≤s≤t

eas/ℓuε(Ys)

ℓ(2−ℓ)/2

×

 
0<s≤t

eas uε(|Ys− | ∨ |Ys− +1Ms |)
ℓ−2

|1Ms |
2

ℓ/2
≤

E

 sup
0≤s≤t

eas/ℓuε(Ys)

ℓ
(2−ℓ)/2

×


E

 
0<s≤t

eas uε(|Ys− | ∨ |Ys− +1Ms |)
ℓ−2

|1Ms |
2

ℓ/2

≤
2 − ℓ

2
E


sup

0≤s≤t
easuε(Ys)

ℓ



+
ℓ

2
E

 
0<s≤t

eas uε(|Ys− | ∨ |Ys− +1Ms |)
ℓ−2

|1Ms |
2


.

Let ε go to zero with Inequality (35)

E

 
0<s≤t

e2as/ℓ
|1Ms |

2

ℓ/2 ≤
2 − ℓ

2
E


sup

0≤s≤t
eas

|Ys |
ℓ



+
ℓ

2
E

 
0<s≤t

eas 
|Ys− | ∨ |Ys− +1Ms |

ℓ−2
1
|Ys− |∨|Ys−+1Ms |≠0|1

Ms |
2


≤ CℓE(X).
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The same argument shows that

E

 t

0
e2as/ℓ


Z

|ψs(z)|
2µ(dz)ds

ℓ/2
≤ CℓE(X). �

Combining estimates of Lemmas 7 and 8 with Inequalities (36) and (37) we obtain the desired
result:

Lemma 9. There exists a constant Kℓ such that for any 0 < t < T

E


sup

s∈[0,t]
eas

|Ys |
ℓ
+

 t

0
e2as/ℓ


Z

|ψu(z)|
2µ(dz)du

ℓ/2
+

 t

0
e2as/ℓd[M]s

ℓ/2

≤ KℓE


eat
|Yt |

ℓ


+ KℓE
 t

0
eau

| f 0
u ∧ N − f 0

u ∧ L|
ℓdu


where Kℓ depends only on ℓ.

Some details concerning the conditions B and A3′

Recall that δ∗ and h∗ are defined by the formulas (11) and (12).

Lemma 10. If ρ > δ∗ and m > h∗, then there exists r > 1 such that

r


χ +

K 2

2((r − 1) ∧ 1)


< ρ and

rδ

ρ − δ
< m.

Proof. Let us define the function δ : (1,∞) → R,

δ(r) = r


χ +

K 2

2((r − 1) ∧ 1)


.

We show that δ∗ is the minimal value of δ. We first assume that K ≠ 0. Then limr→1 δ(r) =

+∞.

• Case 1: χ < −K 2/2. δ is decreasing and tends to −∞ as r tends to +∞. Thus δ∗ = −∞.
• Case 2: χ = −K 2/2. δ is a non increasing function with δ(r) > 0 for any r < 2 = r∗ and
δ(r) = 0 for any r ≥ 2 = r∗. Hence δ∗ = 0.

• Case 3: χ > −K 2/2. The function δ tends to +∞ when r tends to +∞ and has a strict
minimum at r∗

∈ [1, 2]:

r∗
= 1 +


1
−

K 2
2 <χ≤

K 2
2

+
K

√
2χ

1
χ> K 2

2


.

Moreover the minimum δ∗ = δ(r∗) > 0 is given by:

δ∗ =


2

χ +

K 2

2


= K 2

+ 2χ if − K 2 < 2χ ≤ K 2,

χ


1 +

K
√

2χ

2

= χ(r∗)2 if 2χ > K 2.

Gathering together the above results implies that δ∗ defined in Eq. (11) is the minimal value of δ.
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Therefore if ρ > δ∗ (Condition (B)), there exists an open interval (R1, R2) such that for any
r ∈ (R1, R2), ρ > δ(r) ≥ δ∗. In Case 1, we have 1 < R1 and R2 = +∞; in Case 2, 1 < R1 < 2
and R2 = +∞, and in Case 3, 1 < R1 < r∗ < R2 < +∞. Let us define on (R1, R2) the function

h(r) =
ρr

ρ − δ(r)
.

• Case 1: here R2 = +∞, δ∗ = −∞. The optimal choice of ρ is ρ < 0 (see Remark 7). Then
for any r ∈ (R1,+∞), h(r) ≤ 0 < m.

In the other cases we will prove that the minimum value of h on (R1, R2) is h∗. Hence if m > h∗

(Condition A3′), there exists a value r ∈ (R1, R2) such that m > h(r) ≥ h∗ and since ρ > δ(r)
on this interval, the lemma is proved.

Note that limr→R1 h(r) = +∞ and ρ > 0 since δ∗ ≥ 0. The derivative of h (expect for
r = 2) is equal to

h′(r) =
ρ

(ρ − δ(r))2

ρ − δ(r)+ rδ′(r)


.

For r > 2, h′(r) = ρ2/(ρ − δ(r))2 > 0. For 1 < r < 2, we have

h′(r) =
ρ

(ρ − δ(r))2


ρ −

K 2

2
r2

(r − 1)2


=

ρ

(ρ − δ(r))2


√
ρ −

Kr
√

2(r − 1)


√
ρ +

Kr
√

2(r − 1)


.

Therefore for some rĎ ∈ (1, 2), h′(rĎ) = 0 if and only if:
√

2ρ
K

=
rĎ

rĎ − 1
⇔ ρ > 2K 2 and rĎ = 1 +

K
√

2ρ − K
∈ (1, 2).

From the convexity of δ if rĎ exists, then R1 < rĎ < R2 and

h(rĎ) = −
ρ

δ′(rĎ)
=

2ρ

(
√

2ρ − K )2 − 2χ
.

• Case 2: here χ + K 2/2 = 0, R2 = +∞. If ρ ≤ 2K 2 the minimal value of h is attained at
r = 2, with h∗

= 2. If ρ > 2K 2, then

h∗
= h(rĎ) =

2ρ

(
√

2ρ − K )2 − 2χ
=

2ρ

(
√

2ρ − K )2 + K 2
=

2ρ

ρ + (
√
ρ − K

√
2)2

.

• Case 3: here ρ > δ∗ > 0 and 1 < R1 < R2 < +∞.
a. χ < K 2/2: then R2 > 2. If δ∗ = K 2

+ 2χ < ρ < 2K 2, then

h∗
= h(2) =

2ρ

ρ − (K 2 + 2χ)
.

Else if ρ > 2K 2 then

h∗
= h(rĎ) =

2ρ

(
√

2ρ − K )2 − 2χ
=

2ρ

(
√

2ρ − K )2 + K 2 − (K 2 + 2χ)

=
2ρ

ρ + (
√
ρ − K

√
2)2 − (K 2 + 2χ)

.
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Finally

h∗
=

2ρ

ρ − (K 2 + 2χ)+ (
√
ρ − K

√
2)21ρ>2K 2

.

b. χ ≥ K 2/2. Then δ∗ ≥ 2K 2. Hence ρ > 2K 2. Thus the minimum of h is attained at h(rĎ):

h∗
= h(rĎ) =

2ρ

(
√

2ρ − K )2 − 2χ
=

ρ
√
ρ −

√
χ −

K
√

2

 
√
ρ +

√
χ −

K
√

2


=

ρ
√
ρ +

√
χ −

K
√

2

×
1

√
ρ −


√
χ +

K
√

2

 .
Let us now summarize the results. h∗ is given by (see also Eq. (12)):

h∗
=



0 if 2χ < −K 2,
2ρ

ρ − δ∗ + (
√
ρ − K

√
2)21ρ>2K 2

if 2|χ | ≤ K 2,

ρ
√
ρ +

√
χ −

K
√

2

×
1

√
ρ −

√
δ∗

if 2χ > K 2.

Note for K = 0 that the formula (11) still holds and for χ = 0, h∗
= 1 and for χ > 0,

h∗
= ρ/(ρ − χ). �
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