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Abstract

We consider a class of games with continuum of players where
equilibria can be obtained by the minimization of a certain functional
related to optimal transport as emphasized in [7]. We then use the
powerful entropic regularization technique to approximate the prob-
lem and solve it numerically in various cases. We also consider the
extension to some models with several populations of players.

Keywords: Cournot-Nash equilibria, optimal transport, entropic regu-
larization.
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1 Introduction

There is a long tradition in economics and game theory, since the seminal
works of Aumann [2], [3], of considering equilibria in games with a continuum
of players, each of whom having a negligible influence on the output of the
others. In particular, Schmeidler [18] introduced a notion of non-cooperative
equilibrium in games with a continuum of agents and, Mas-Colell [15] refor-
mulated Schmeidler’s analysis in terms of joint distributions over players’
actions and characteristics and emphasized the concept of Cournot-Nash
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equilibrium distributions. There are many examples where such concepts
are relevant such as strategic route use in road traffic or networks, social
interactions....

The problem can be described as follows: heterogeneous players each have
to choose a strategy (or a probability over strategies, i.e. mixed strategies
are allowed) so as to minimize a cost, the latter depending on the choice
of the whole population of players only through the distribution of their
strategies. In other words, on the one hand, each player, has a negligible
influence on the cost. On the other hand, the interactions between players
are of mean-field type: it does not matter who plays such and such strategy
but rather how many players chose it. There are different mean-field effects,
of different nature and which can be either repulsive (i.e. favoring dispersion
of strategies) or attractive (favoring concentration of strategies). Congestion
(the cost of a strategy is higher if it is frequently played) is a typical example
of dispersive effect. In realistic models however, there are also attractive
effects: choosing a strategy which is ”far” from the strategies played by the
other players may be risky or result in some cost.. It should then come
as no surprise that, due to such opposite effects, the analysis of equilibria
is complex in general. This explains why, in general, one cannot go much
further than proving an existence result, as for instance, following the very
elegant approach of Mas-Colell [15].

More recently, the first two authors [7] (also see [6]) emphasized the fact
that for a separable class of costs, Cournot-Nash equilibria can be obtained
by the minimization of a certain functional on the set of measures on the
space of strategies. This functional typically involves two terms: an optimal
transport cost and a more standard integral functional which may capture
both congestion and attractive effects (as in [14]). Interestingly, this kind of
minimization problem is very close to the semi-implicit Euler scheme intro-
duced in the seminal work of [13] for Wasserstein gradient flows (for which
we refer to [1]).

The variational approach of [7] is somehow more constructive and in-
formative (but less general since it requires a separable cost) than the one
relying on fixed-point arguments as in [15] but the optimal transport term
cost is delicate to handle. It is indeed costly in general to solve an op-
timal transport problem and compute an element of the subdifferential of
the optimal cost as a function of its marginals. In recent years, however it
has been realized that a powerful way to approximate optimal transport is
by adding an entropic penalization term. Doing so, the problem becomes
projecting for the Kullback-Leibler divergence a given joint measure on the
set of measures with fixed marginals, a task that can be achieved very effi-
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ciently by alternate projections (see e.g. Bauschke and Lewis [4], Dysktra
[10]) as shown by Cuturi [9]. This powerful method is intimately related to
Sinkhorn algorithm and the Iterated Proportional Fitting Procedure (IPFP),
well-known to statisticians and recently remise au goût du jour by Galichon
and Salanié [12] for the estimation of matching models (we also refer to the
recent book of Galichon [11] for a broader perspective on optimal transport
methods, with or without regularization, in economics and econometrics).
Various applications of the IPFP/Sinkhorn algorithm to optimal transport
can be found in [5]. In order to take advantage of the power of entropic regu-
larization on Wasserstein gradient flows, Peyré [16] introduced an extension
of Dykstra’s algorithm which he called Dykstra proximal splitting. It turns
out that Peyré’s algorithm, recently extended by Chizat et al. [8], is per-
fectly well-suited to the computation of Cournot-Nash equilibria as we try to
explain in the sequel of the paper and illustrate by various numerical exam-
ples. We would also like to emphasize that, in the context of Cournot-Nash
equilibrium, entropic regularization is also natural from a theoretical point,
it amounts to replace exact cost minimization by some Gibbs-like measure
or, equivalently to assume that the cost involves some random term.

The paper is organized as follows. In section 2, we recall the concept
of Cournot-Nash equilibria, its variational counterpart and the entropic reg-
ularization of the latter. In Section 3, we describe the proximal splitting
algorithm and the semi-implicit approach. In section 4, we present various
numerical results both in dimension one and two and emphasize the influence
of the transport cost on the structure of equilibria. Section 5 extends the
previous analysis to some models with several populations for which we also
present numerical results.

2 Cournot-Nash and entropic Cournot-Nash

equilibria

We will restrict ourselves here to the following finite Cournot-Nash setting.
Not only this will simplify the exposition and enable us to give a simple
and self-contained exposition of the variational approach but this will also
be consistent with our numerical scheme which anyway considers a finite
number of agents’ types and a finite number of strategies. We refer to [7]
for the analysis of the continuum case. We consider a population of players,
each of whom is characterized by a type which takes values in the type
set X := {xi}i∈I where I is finite. The frequencies of the players’ type
in the population is given by a probability µ := {µi}i∈I with µi ≥ 0 and
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∑N
i=1 µi = 1. Each agent has to choose a strategy y from the strategy

set Y := {yj}j∈J with J finite. The unknown of the problem is a matrix
γ := {γij}i∈I, j∈J where γij is the probability that a player of type xi chooses
strategy yj, there is an obvious feasibility constraint on this matrix, obviously
it should have nonnegative entries and its first marginal should match the
given distribution of players µ i.e.:∑

j∈J

γij = µi, ∀i ∈ I. (2.1)

The matrix γ induces a probability ν = Λ2(γ) = {νj}j∈J on the set of
strategies given by its second marginal :

νj :=
∑
i∈I

γij, ∀j ∈ J. (2.2)

Agents of type xi who play strategy yj incur a cost that not only depends
on xi and yj but also on the whole probability ν := {νj}j∈J on the strategy
space induced by the behavior of the whole population of players, and we
denote this cost by Ψij[ν]. An equilibrium is then a probability matrix γ
which is feasible and which is consistent with the cost minimizing behavior
of players, which is summarized in the next definition:

Definition 2.1. A Cournot-Nash equilibrium is a matrix γ = {γij}i∈I, j∈J ∈
RI×J

+ which satisfies the feasibility constraint (2.1) and such that, defining
the strategy marginal ν = Λ2(γ) by (2.2), one has

γij > 0⇒ Ψij[ν] = min
k∈J

Ψik[ν].

Provided Ψij depends continuously on ν, the existence of an equilibrium
can easily be proven by Kakutanis’ fixed-point theorem, but not much more
can be said, at this level of generality. If one further specifies the form of
the cost, as we shall do now, following [7], one may obtain equilibria by
minimizing a certain cost functional.

2.1 A variational approach to Cournot-Nash equilibria

We now suppose that the cost Ψij[ν] takes the following separable form

Ψij[ν] := cij + fj(νj) +
∑
k∈J

φkjνk

where c := {cij}i∈I, j∈J ∈ RI×J , each function fj is nondecreasing and con-
tinuous, the matrix φ := {φkj} ∈ RJ×J is symmetric, i.e. φkj = φjk,
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A possible interpretation of this model is the following: the players rep-
resent a population of doctors, their type x represent their region of origin
and their y strategy represent the location where they chose to dwell, the
total cost of xi-type doctors is the sum of

• a transport cost cij = c(xi, yj),

• a congestion cost fj(νj): if location yj is very crowded i.e. if νj is large,
the doctors settling at yj will see their benefit decrease,

• an interaction cost with the rest of the population of doctors, one can
think that φkj is an increasing function of some distance between yk
and yj so that

∑
k∈J φkjνk represents the average distance to the rest

of the population.

The variational approach of [7] relies on optimal transport, and we shall
give a self-contained and simple presentation in the present discrete setting.
Firstly it is useful to introduce the marginal maps:

γ ∈ RI×J 7→ Λ1(γ) = α ∈ RI , αi :=
∑
j∈J

γij,

and
γ ∈ RI×J 7→ Λ2(γ) = ν ∈ RJ , νj :=

∑
i∈I

γij,

as well as
Cµ := {γ = {γij}i∈I, j∈J ∈ RI×J

+ : Λ1(γ) = µ}
which is the set of probabilities on X × Y having µ as first marginal (recall
that µ is fixed). For ν = {νj}j∈J ∈ RJ

+ such that
∑

j∈J νj = 1, let us also
define

Cν := {γ = {γij}i∈I, j∈J ∈ RI×J
+ : Λ2(γ) = ν}

as the set of probabilities on X × Y having ν as second marginal. Let us
then also define the set of transport plans between µ and ν as

Π(µ, ν) := Cµ ∩ Cν . (2.3)

Given ν a probability on Y , let us define

MK(ν) := inf
γ∈Π(µ,ν)

{
c · γ :=

∑
i,j∈I×J

cijγij

}
(2.4)

that is the value of the optimal transport problem between µ and ν for the
cost c. Setting

P(Y ) := {ν ∈ RJ
+ :

∑
j∈J

νj = 1}
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consider the optimization problem

inf
ν∈P(Y )

MK(ν) + E(ν) (2.5)

where the energy E is given by

E(ν) :=
∑
j∈J

Fj(νj) +
1

2

∑
k,j∈J×J

φkjνkνj (2.6)

and Fj is a primitive of the congestion function fj:

Fj(t) :=

∫ t

0

fj(s)ds.

We then have

Theorem 2.2. Let ν solve (2.5) and γ ∈ Π(µ, ν) be such that c ·γ = MK(ν),
then γ is a Cournot-Nash equilibrium. This implies in particular that there
exists Cournot-Nash equilibria.

Proof. We have to prove that whenever γij > 0 one has

cij + fj(νj) +
∑
k∈j

φkjνk = ui (2.7)

with
ui := min

j∈J
{cij + fj(νj) +

∑
k∈j

φkjνk}.

First observe that E is of class C1 and by construction

∂E

∂νj
= fj(νj) +

∑
k∈j

φkjνk. (2.8)

To treat the transport term, MK, we shall recall the classical Kantorovich
duality (see [19], [17]) as follows. Firstly for v ∈ RJ let us define

K(v) := −
∑
i∈I

min
j∈J

(cij − vj)µi

note that K is a convex and Lipschitz function whose conjugate, thanks to
Kantorovich duality, can be expressed as

K∗(ν) = MK(ν) :=

{
MK(ν) if ν ∈ P(Y ),

+∞ otherwise.
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Since ν minimizes MK + E, one has 0 ∈ ∂MK(ν) + ∇E(ν), setting v :=
−∇E(ν), this can be rewritten as ν ∈ ∂MK

∗
(v) = ∂K(v) and since MK(ν) =

c · γ this gives

MK(ν) = c · γ =
∑
j∈J

vjνj +
∑
i∈I

min
j∈J

(cij − vj)µi

=
∑
j∈J

vjνj +
∑
i∈I

uiµi =
∑

i,j∈I×J

(ui + vj)γij.

which, since ui + vj ≤ cij implies that whenever γij > 0, one has cij− vj = ui
which is exactly (2.7). This clearly implies the existence of Cournot-Nash
equilibria since P(Y ) is compact and both MK and E are continuous.

Note that if E is convex then the optimality condition 0 ∈ ∂MK(ν) +
∇E(ν) is necessary and sufficient and there is actually an equivalence between
being an equilibrium and being a minimizer in this case.

2.2 Entropic regularization

Solving (2.5) in practice (even if E is convex) might be difficult because of
the transport cost term MK for which it is expensive to compute a subgra-
dient. There is however a simple regularization of MK which is much more
convenient to handle: the entropic regularization (see [5, 9, 12]). Given a
regularization parameter ε > 0, let us define for every ν ∈ P(Y ):

MKε(ν) := inf
γ∈Π(µ,ν)

{
c · γ + ε

∑
i,j∈I×J

γij(ln(γij)− 1)
}
.

We then consider the regularization of (2.5)

inf
ν∈P(Y )

MKε(ν) + E(ν) (2.9)

where E is again given by (2.6). Thanks to the entropic regularization term,
(2.9) is a smooth minimization problem which consists in minimizing with
respect to γ and ν the objective

c · γ + ε
∑

i,j∈I×J

γij(ln(γij)− 1) + E(ν)

subject to γij ≥ 0 (but because of the entropy, these nonnegativity constraints
are not binding) and the linear marginal constraints γ ∈ Π(µ, ν). The first-
order optimality conditions give the following Gibbs form for γij:

γij = ai exp
(
− 1

ε
(cij + fj(νj) +

∑
k∈J

φkjνk)
)

(2.10)
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for some ai > 0 which has to fulfill the first marginal constraint i.e.

ai =
µi∑

j∈J exp
(
− 1

ε
(cij + fj(νj) +

∑
k∈J φkjνk)

) .
Note that these conditions can also be interpreted as a regularized form of a
Cournot-Nash equilibrium since they mean that the conditional probabilities
on the set of strategies given the players type {γij

µi
}j∈J are proportional to

exp(−Ψij(ν)

ε
) where Ψij[ν] = cij+fj(νj)+

∑
k∈J φkjνk is the total cost incurred

by players xi when choosing strategy yj. Another equilibrium interpretation
(which is customary in economics and econometrics in the framework of
discrete choice models) is to consider that the total cost actually contains
a random component that is of the form εXij where the Xij are i.i.d. logistic
random variables (see [11]).

Of course, again when E is convex, since MKε is strictly convex, there
is a unique minimizer and the first-order optimality condition for (2.9) is
necessary and sufficient so that there is again equivalence between being a
minimizer and a (regularized) Cournot-Nash equilibrium.

3 A proximal splitting algorithm

To solve (2.9), we shall use a proximal splitting scheme using the Kullback-
Leibler divergence that was recently introduced by Peyré [16] in the context
of entropic regularization of Wasserstein gradient flows and extended recently
by Chizat et al. [8]. First, let us observe that (2.9) can be rewritten as a
special instance of a Bregman proximal problem. To see this, let us first
rewrite

c · γ + ε
∑

i,j∈I×J

γij(ln(γij)− 1) = ε
∑

i,j∈I×J

γij(ln
( γij

e−
cij
ε

)
− 1)

which is the same as εKL(γ|γ) where γij = e−
cij
ε and KL is the Kullback-

Leibler divergence

KL(γ|θ) :=
∑

i,j∈I×J

γij

(
ln
(γij
θij

)
− 1
)
, γ ∈ RI×J

+ , θ ∈ RI×J
+ .

Note that KL is the Bregman divergence associated to the entropy. Solving
(2.9) then amounts to the proximal problem

proxKL
G (γ) = argminγ∈RI×J

+

{
KL(γ|γ) +G(γ)

}
(3.1)
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with

G(γ) := χ{Λ1(γ)=µ} +
1

ε
E(Λ2(γ)).

Computing directly proxKL
G (γ) may be an involved task, but the idea of

Peyré’s splitting algorithm is to express G as a sum of more elementary
functionals:

G :=
L∑
l=1

Gl

each of whom being simple in the sense that computing proxKL
Gl

can be done
easily (ideally in close form). The algorithm proposed by Peyré generalizes
Dykstras’ algorithm for KL projections on the intersection of convex sets
and can be described as follows. First extend the sequence of functions
G1, · · · , GL by periodicity:

Gl+nL = Gl, l = {1, · · · , L}, n ∈ N

initialize the algorithm by setting the following values for the I × J matrices

γ(0) = γ, z(0) = z(−1) = · · · = z(−L+1) = e, eij = 1, (i, j) ∈ I × J,

and then iteratively define for n ≥ 1

γ(n) = proxKL
Gn

(
γn−1 � z(n−L)

)
(3.2)

and
z(n) = z(n−1) �

(
γ(n−1) � γ(n)

)
(3.3)

where � and � stand for entry-wise multiplication/division operations:

(γ � θ)ij = γijθij, (γ � θ)ij =
γij
θij
.

We refer to [16] and [8] for the convergence of this algorithm under suitable
assumptions (convexity of the functions Gl and a certain qualification condi-
tion), the idea being that at the level of the dual problem, which is smooth,
this algorithm amounts to perform an alternate block minimization.

3.1 A class of convex problems

Note that the congestion term
∑

j∈J Fj(νj) is convex because fj is nonde-
creasing, but the quadratic interaction energy ν 7→

∑
j,k∈J×J φkjνkνj is in

general not convex. However, using Cauchy-Schwarz inequality, it satisfies∑
j,k∈J×J

φkjνkνj ≥ −
( ∑
j,k∈J×J

φ2
kj

)∑
j∈J

ν2
j
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so that if Fj is 1-strongly convex:

Fj(t) =
1

2
t2 +Hj(t)

with Hj convex and ∑
j,k∈J×J

φ2
kj < 1, (3.4)

then E is convex as the sum E = E2 + E3 of the convex quadratic term

E2(ν) :=
1

2

∑
j∈J

ν2
j +

1

2

∑
k,j∈J×J

φkjνkνj

and the remaining convex congestion term

E3(ν) :=
∑
j∈J

Hj(νj).

In this setting one can write (2.9) as

inf
γ∈RI×J

+

{
KL(γ|γ) +G1(γ) +G2(γ) +G3(γ)

}
where

G1(γ) = χ{Λ1(γ)=µ} =

{
0 if Λ1(γ) = µ

+∞ otherwise

and

G2 =
1

ε
E2 ◦ Λ2, G3 =

1

ε
E3 ◦ Λ2.

To implement the proximal splitting scheme (3.2)-(3.3) in this case, one has
to be able to compute the three proximal maps proxKL

Gl
with l = 1, 2, 3. The

proximal map of G1 corresponds to the fixed marginal constraint Λ1(γ) = µ,
it is well-known and it is given in closed form as:(

proxKL
G1

(θ)
)
ij

=
µiθij∑
k∈J θik

.

Given θ ∈ RI×J
+ , γ := proxKL

G2
(θ) is of the form

γij = θij exp
(
−
νj +

∑
k∈J φkjνk

ε

)
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where ν denotes the second marginal of γ, so that summing over i, ν is
obtained by solving the system:

νj =
(∑

i∈I

θij

)
exp

(
−
νj +

∑
k∈J φkjνk

ε

)
which, when (3.4) holds, can be solved in practice in a few Newton’s steps.
The computation of γ := proxKL

G3
(θ) is simpler, setting hj := H ′j the first-order

equation first leads to

γij = θij exp
(
− hj(νj)

ε

)
and the νj’s are obtained by solving

νj =
(∑

i∈I

θij

)
exp

(
− hj(νj)

ε

)
(3.5)

which is a separable system of monotone equations, which we shall again
solve by Newton’s method.

3.2 A semi-implicit scheme for more general noncon-
vex cases

We now go back to the general case where E is not necessarily convex because
of the interaction term given by the symmetric matrix φkj. Even though
there is no theoretical convergence guarantee (but if the following scheme
converges, it converges to an equilibrium), the semi-implicit scheme which we
now describe gives good results in practice. The idea is simple and consists in
replacing the nonconvex interaction term by its linearization. More precisely,
we will approximate our initial problem (2.9):

inf
ν∈P(Y )

MKε(ν) + E(ν) (3.6)

where E is the sum of the convex congestion cost and the nonconvex quadratic
interaction cost, by a succession of convex problems, starting from ν0 ∈ P(Y ),
iteratively solve for n ≥ 1

ν(n+1) = argminν∈P(Y ) MKε(ν) + E(n)(ν) (3.7)

where in E(n) we have linearized the interaction term:

E(n)(ν) =
∑
j∈J

Fj(νj) +
∑
j∈J

V
(n)
j νj, V

(n)
j :=

∑
k∈J

φkjν
(n)
k .
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Of course, we can solve (3.7) by the Dykstra proximal-splitting scheme de-
scribed in the previous paragraph. More precisely, the linear term can be
absorbed by the KL term so that we only have two proximal steps: one
corresponding to the (explicit) projection fixed marginal constraint and one
corresponding to the congestion cost (corresponding to (3.5) using fj instead
of hj).

4 Numerical results

We now present some numerical results in dimension d = 1 and d = 2. As we
have pointed out in section 2.2, the strength of the entropic regularization,
and consequently of the Dykstra’s algorithm, lies in the fact that we can treat
optimal transportation problems with any transport cost, in particular both
concave and convex cost functions can be considered. Thus, if we consider the
cost cij = |xi− yj|p with p > 0 (convex cost if p > 1 and concave otherwise),
one can analyze how the shape of the unknown marginal ν changes by varying
the exponent p. Before showing the results, we want to focus on an other
aspect of the entropic regularization, namely diffusion. Indeed, once we add
the entropic term to the optimal transport term, then this regularization
spreads the support of the plan γ and defines a strongly convex problem with
a unique solution. So it is interesting to see how the support of the optimal γ
varies by decreasing the parameter ε. Let us consider the standard quadratic
cost cij = |xi − yj|2 and the following energy E(ν)

E(ν) =
∑
j∈J

ν8
j +

1

2

∑
k,j∈J×J

φkjνkνj +
∑
|yj − 9|4, (4.1)

where φkj = 10−4|yk−yj|2 and the third term is a confinement potential. We
notice that there is no need to compute a proximal step for the potential,
indeed it can be absorbed by the KL term. We know that in this case the
optimal γ (for instance see [7]) is a pure Cournot-Nash equilibrium, which
actually means that γ has the form γT = (id, T )#µ where T is the optimal
map. In Figure 1 we plot the support of the optimal γ and its marginal
ν for different values of ε. As expected the support of the regularized γ
concentrates on the graph of T as ε decreases.

In Section 3.2, we have pointed out that a semi-implicit approach can be
applied in order to treat an energy E which is not convex. We want, now, to
compare the performances of the implicit and the semi-implicit approach in
terms of CPU time and number of iterations when ε varies. By looking at
Figure 2, we notice the number of iterations, as well as the CPU time, of the
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ε = 0.05 ε = 0.1 ε = 0.5 ε = 10

ε = 0.05 ε = 0.1 ε = 0.5 ε = 10

Figure 1: Top: The initial distribution µ (blue solid line) and the solution
ν (red solid line) for ε ∈ {0.05, 0.1, , 0.5, 10}. Bottom: The support of γ for
ε ∈ {0.05, 0.1, , 0.5, 10}.

semi-implicit approach are smaller than the ones for the implicit approach.
This is quite obvious as in the semi-implicit scheme, the interaction term can
be absorbed by the KL term so that one has to compute only two proximal
steps instead of three.

4.1 Dimension one

Let us first consider the one-dimensional case. One of the main advantages
of the scheme we have proposed is that we can consider any kind of cost func-
tion. Thus, take cij = |xi−yj|p and the energy E given by (4.1), then we want
to visualize the optimal ν as p ∈ (0,M ] with M large. For the simulations in
Figure 3, we have used a N = 500 grid points discretization of [0, 16] and we
have treated the interaction term with a semi-implicit approach. Then, we
have chosen the smallest ε possible for each cost function tested. As one can
notice for p ≤ 1 the optimal ν has a connected support whereas for p > 1,
the support of ν is closer to the one of µ. Finally, we obtain an optimal ν
which tends to be concentrated near y = 9 due to the external potential,
except for large p where the optimal transport term becomes dominant so
that the second marginal ν tends to be close to the initial distribution µ.

Let us now consider an energy E given by

E(ν) =
∑
j∈J

ln(νj) +
∑

k,j∈J×J

φkjνkνj +
∑
j∈J

(yj − 5)3 (4.2)
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iterations CPU time in seconds

Figure 2: Left: the number of iterations for the semi-implicit (blue) and for
the implicit (red). Right: CPU time for the semi-implicit (blue) and for the
implicit (red).

where φkj is a cubic interaction φkj = 10−4|xi−yj|3. The simulations are pre-
sented in Figures 4 and 5 for different initial distribution: a uniform density
on [0, 1] and the sum of two translated Gaussians, respectively. For both the
numerical experiments we have used N = 500 grid points discretization of
[0, 10] and treated the interaction term with a semi-implicit approach. One
can observe, as in the previous case, that the structure of the optimal ν
becomes close to the one of the initial ditribution as p increases.

4.2 Dimension two

For the 2d case, we always take c(x, y) = ‖x− y‖p, a congestion of the form
Fj(νj) = ν8

j , quadratic interactions φkj = 10−4‖yk − yj‖2 and a potential
vj = ‖yj − 3‖4. The simulations in Figure 6 are obtained by using a N ×N ,
with N = 80, discretization of [0, 5]2 and by treating the interaction term
with a semi-implicit approach. As in the 1−dimensional case, we notice the
same effect on the support of ν when we make p vary.

5 Extension to several populations

5.1 A class of two-populations models

We end the paper by briefly explaining how our approach can easily be
extended to the case of several populations of players. For the sake of sim-
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p = 0.1 p = 1 p = 2

p = 3 p = 4 p = 8

p = 16 p = 32 p = 64

Figure 3: The initial distribution µ, a sum of two translated Gaus-
sian, (blue solid line) and the solution ν (red solid line) for p ∈
{0.1, 1, 2, 3, 4, 8, 16, 32, 64}.
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p = 0.1 p = 1 p = 2

p = 3 p = 4 p = 8

p = 16 p = 32 p = 64

Figure 4: The initial distribution µ, a uniform density on [0, 1], (blue solid
line) and the solution ν (red solid line) for p ∈ {0.1, 1, 2, 3, 4, 8, 16, 32, 64}.
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p = 0.1 p = 1 p = 2

p = 3 p = 4 p = 8

p = 16 p = 32 p = 64

Figure 5: The initial distribution µ, a sum of two translated Gaus-
sians, (blue solid line) and the solution ν (red solid line) for p ∈
{0.1, 1, 2, 3, 4, 8, 16, 32, 64}.
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surface plot of µ support of µ surface plot of ν for p = 0.5 support of ν for p = 0.5

surface plot of ν for p = 1 support of ν for p = 1 surface plot of ν for p = 2 support of ν for p = 2

surface plot of ν for p = 4 support of ν for p = 4

Figure 6: The initial distribution µ, a sum of two translated Gaussian, and
the solution ν for different values of p.
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plicity, we take the two-populations case and assume that these two pop-
ulations interact through a congestion term. More precisely, we are given
two finite type spaces X1 = {x1

i }i∈I1 and X2 = {x2
i }i∈I2 , a common strat-

egy space Y = {yj}j∈J , given distributions of the players types µ1 ∈ P(X1),
µ2 ∈ P(X2), two transport cost matrices c1 ∈ RI1×J , c2 ∈ RI2×J , and consider
the minimization problem:

inf
(ν1,ν2)∈P(Y )×P(Y )

{
MK1

ε1
(ν1)+MK2

ε2
(ν2)+E1(ν1)+E2(ν2)+F (ν1+ν2)

}
(5.1)

where for l = 1, 2, εl > 0 is a regularization (or noise) parameter, MKl
εl

(νl)
represents the regularized transport cost:

MKl
εl

(νl) := inf
γ∈Π(µl,νl)

{
cl · γ + εl

∑
i,j∈Il×J

γij(ln(γij)− 1)
}
,

El(ν
l) represents an individual cost for population k, for instance, an inter-

action cost:
El(ν

l) :=
∑

j,k∈J×J

φlkjν
l
jν
l
k

and F is a total congestion cost

F (ν1 + ν2) :=
∑
j∈J

Fj(ν
1
j + ν2

j )

where Fj is convex.

Remark 5.1. The proximal step related to F can be computed as in (3.5) by
taking νj = ν1

j + ν2
j .

5.2 Numerical Results

For the two populations case, we take the following energies El

El(ν
l) =

∑
j∈J

(νlj)
8 +

∑
k,j∈J×J

φlkjν
l
jν
l
k +

∑
j∈J

|yj − 10|4,

where φlkj = 10−4|yk − yj|2 and the total congestion Fj is given by

Fj(ν
1
j + ν2

j ) = (ν1
j + ν2

j )4.

As usual, we consider cost functions of the form cij = |xi−yj|p and we want to
analyze the support of νl as p varies. For the simulations in Figure 7 we have
used N = 500 grid points discretization of [0, 16] and treated the interaction
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term with a semi-implicit approach. As we can notice in Figure 7 there is
a competition between the confinement potential and the total congestion:
the two populations tend to concentrated near y = 10 by the potential, but
the effect of the congestion term makes it costly. This becomes clear if we
compare (for instance, the case with p = 2) ν1 with the optimal one in
Figure 3; even if the energies are the same, the effect of congestion makes
the support of the optimal solutions quite different.

p = 0.5 p = 1

p = 1.5 p = 2

Figure 7: The initial distributions µ1 and µ2 (blue solid line and blue dotted
line) and the solutions ν1 and ν2 (red solid line and red dotted line) for
different values of p.

Thus, let us now consider the following case: let El be as above and p = 2,
then we take the total congestion given by

Fj(ν
1
j + ν2

j ) = (ν1
j + ν2

j )r

and we compute the optimal νl for different values of r. In Figure 8 we can
see that the congestion term becomes more dominant as r increases so that

20



r = 4 r = 8 r = 32

Figure 8: The initial distributions µ1 and µ2 (blue solid line and blue dotted
line) and the solutions ν1 and ν2 (red solid line and red dotted line) for
different values of r.

the two populations try to be as far as possible, despite the effect of the
confinement potential which is minimal at y = 10.
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