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Introduction Motivation
Well-posedness of the MKVFBSDE in small time
MKVFBSDEs and Master Equation

Large population stochastic control

» n players: personal state of player i
dX] = b(t, X!, u?, al)dt + cd W]
(W') indep. Brownian Motion, uf = £ 37, dx;, o control of player

» Cost to minimise for player i:

)
o) = E[g(X'T,u"T) + [ e xi e

» Asymptotic description of equilibrium, hopefully “easier” to handle.

» Simplification: at the optimum symmetric feedback control i.e.
o' = ¢o(t, X{).
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MKVFBSDEs and Master Equation

Example - Mean Field Games

Lasry-Lions (06) / Huang-Caines-Malhamé (06)

» “Individual” strategies, looking for Nash-equilibrium &?
JiG.,a e amt )y > Ji . a Al attt )

» Optimisation problem for a player: given a flow of measure
(Mt)te[o,T]

]
§ = anguin Bl g (X ) + [ (0 X e X

with dX}' = b(t, X!, e, d(t, X¢))dt + odW.
» Asymptotic n — oo yields fi; = £(X) (matching problem)

» Conclusion: MFG = optimise first then pass to the limit
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Well-posedness of the MKVFBSDE in small time
MKVFBSDEs and Master Equation

Getting the FBSDE

notation: g = L(X¢).
> Direct approach: optimum described by (X, Y, Zi)e<7:

t
Xt :XO+/ b(s7XS>,u/S7§E(S7XS7ZS7/J‘5))dS+UWt7
0

T T
Yi :g(XﬂHT)‘f‘/ f(S,Xs,u5,¢(S,X5,ZS,MS))dS—/ Z;d W
t

t
(PDE: Lasry-Lions)

> Variational approach (Stochastic Pontryagin Principle)
t

Xe = Xo + / b(s, Xs, pis, (5, Xs, Ys, is))ds + o W
0

T _ T
Y: = 0kg (X, u1) —|—/ OcH(s, Xs, Ys, s, P(s, Xs, Ys, ps))ds — / ZsdWs
t t
where H(-) = b(-)y + f(-) and &() = argmin H(-, ¢)
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MKVFBSDEs and Master Equation

Example - Control of MKV

> “Cooperative” equilibrium, when the strategy of one player changes,
the strategy of all the player changes
— Impact the statistical distribution of the system p”

» Asymptotic n — oo ‘yields"

dXt = b(t, Xj_-, E(Xt), Oét)dt + O'th

and for the cost
-
J(Oé) = ]E g(XT, ﬁ(XT)) + / f(t, Xt, E(Xt), Oét)dt
0

» then optimise J(«)
» conclusion: control of MKV = pass to the limit then optimise

» Coupled FBSDE arises when using stoch. max. principle
(Carmona-Delarue) or DPP (Pham)
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MKVFBSDEs and Master Equation

Contraction approach

» Let us consider

{ dX; b(Y,)dt + odW,, Xo = ¢
dYe = ZdW,, Y7 = g(X7, L(XT))

> in a Lipschitz setting

1b(y) — b(y')] < Kly — '] ,
g(x, 1) — g(x', 1) < K (Ix — x| + Wa(u, 1)) ,

1
where Wa(u, i) = infxp xrw E[|X = X[2]2 .

» For T < ¢(K), existence and uniqueness (via contraction).
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Well-posedness of the MKVFBSDE in small time
MKVFBSDEs and Master Equation

Decoupling field

» Non MKV case:

{ dXt = b(Yt)dt+Uth, XO :§
de_— = thWt s YT = g(XT)

One can show Y; = U(t, X¢).
» PDE for U?
On one hand

1
dU(t, X;) = <8tU + b(Y)o U + 2028§XU> dt + d(mart)
Moreover dU(t, X;) = dY; = d(mart) and so

D U(t,x) + b(U(t, x))0x U(t, x) + %Uzﬁfo(t,x) —o.
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Decoupling field in the MKV case

> For e.g.

{ dX: = b(Y:, L(X:))dt + odW;, Xo =&
dY; = ZdW:, Y7 =g(X7)

One has: Y: = U(t, X¢, L(X¢)) and U is defined on
[0, T] X R x PQ(R).

> U satisfies a PDE 7
— Need a chain rule to expand U in the measure argument
— Need some smoothness also...

J-F Chassagneux Numerical solution to the master equation



Introduction Motivation
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Differential Calculus on P,(R)

» Lions' approach:

“Lift” to L% U(u) — UE) == U(L(E));

v

U differentiable at yu if U Frechet differentiable at &.
Moreover, if U is C! then

DU(&) - x = HoU()(E)x] -
— 9,U(u)(+) € L?(R, ) derivative of U at p.
Example: U(p) = [ ¢(x)dp(x)

I U(p)(v) = ¢'(v)

v

v

Order 2:

v

85U(,u)(v, V') and  9,0,U(w)(v)
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MKVFBSDEs and Master Equation

Finite dimensional projection

u(x) = u(xa, ..., xp) i= U(ul) with p = 1 57,4,
» First order derivative

0 u(x) = ~0,U(2)(x)

Proof. ¢ unif. distributed in {1,...,n}, h = (h;) small perturbation:
u(x 4 h) = U(L(xo + hy)) = U(L(x9)) + I U(L(xs))(x0)ho)] + o([hl) ,

1 n
= U(L(xv)) + Z 7 0uU(p) i) hi + o([h).
» second order derivative

1 1
Porgu(x) =~ 000, U(u) ()i + 05 U(1) (3. )
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Chain Rule

For a flow a measure (11¢)¢c[o, 7] Where pp = L(X:):

dXt = btdt + O'tth .

» The chain rule

T 1
U(ur) = U(po) + /0 E[btauU(ut)(XtH 2(91;(9#U(ut)(xt)a?} dt
proof.

Particle system: (X') i.i.d. copies of X, uk = %Z;(ng —noo [t
Apply Ito's formula to u(X?, ..., X/) and let n goes to co:

n 1 n i i
du(X!,...,X0) = - E O U(x, )(Xe)bedt + dmart
; 1 n i 1 n iy
+ 30 (520U + 510U XD ) de
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Master equation - PDE for U

Consider

dXt - b( Yt, ﬁ(Xt))dt + th 5 X[) - g
dYt = —f(Zt)dt + thWt s YT = g(XT, ﬁ(XT))

Us.t. Y:=U(t,Xt, L(X¢)) satisfies U(T,x, 1) = g(x, ) and
BU() + BUC), WAU() + 508 UC) + FD.U())
FE| DU )00 % 10(6) + 50,0,V x,p)(0)] =0

— We prove existence and uniqueness of a “classical” solution in small
time to the above PDE written on [0, T] x R x P2(R).
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Arbitrary T - difficulties

Consider the following system of FBSDEs

dYt = _EXI’] dt + thWt and YT = —)<T7 (1)
AX; = Yidt +o(X)dW,; and Xo = x.

where T = 37” and o is a Lipschitz function.
If x # 0, there is no solution in S? x 82 x H? to the above equation.
proof Note mx(t) := HXr] and my(t) := HY7] satisfies

{ dmy(t) = —mx(t)dt and my(T)=—mx(T), )
dmx(t) = my(t)dt and mx(0) = x.

The above system has no solution for x # 0. Observe that
mx(t) = x cos(t) + psin(t), my(t) = —xsin(t) + pcos(t)
so that my(T) + mx(T) = —xv/2.
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Positive results in the “classical” case

— No MKV interaction
» o is non degenerate, coefficients are bounded (Delarue)

» Existence and uniqueness also for some singular FBSDEs
(Carmona-Delarue).

In any case, need a control on the solution’s gradient.
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MKVFBSDEs and Master Equation

Generic method

» Recursive method by splitting the time interval

» Possible only if control of Lipschitz constant of U, obtained from
the estimate

E[|U(t,€, £(€)) — U(t, €, L(€))P]? < AB[le — €127 . (3)

» Structural condition on the coefficient allows to obtain previous
estimate both in the MFG and control of MKV setting.
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Numerical approximation for small T A first scheme
Convergence results

Objective and difficulties

» Goal: Numerical Approximation of U(0,&, £(£)), U decoupling field
for

{ Xt = 5"’ fot b(YnEXr])dr + UWt7
Yo = gXr)+ [T f(Z)dr — [ Zdw,,

in particular: Yo = U(0,&, L()).
» Method: Adaptating grid method for coupled FBSDE is difficult...
Yt = U(l‘.‘7 Xt7 E(Xt))

— back to basics: we use a binomial tree and a Picard iteration
scheme (Need T small!)
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Numerical approximation for small T A first scheme

Convergence results

Dealing with the coupling

>

Picard lteration, ()~<f, \N/j,zj)og
X o= ¢4 [l W’,E[ ]dr+Wt,
vio= g+ [ f(Zhar - [ Zlaw,,

with X0 = ¢ (and Y0 = 70 = 0).

» Easily shown: (X/,YJ, Z/) = (X,Y,2)
» Stopped after J iteration: output is Yg «» U(0,&, £(€))
>

In practice, one cannot solve perfectly (4)
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Discrete approximation

» A discrete time grid @ = {tp,..., t,} with mesh size |7| := h.
> Use a Binomial Tree for Brownian Motion: P(AW; = +£v/h) = 1.

» “Classical” BTZ scheme:
)_<ti+1 = )_<ti + b(?t;a I_E[)_(t,} )h + O'AV_V, s

\_/ti = I_E'ti [?tiﬂ

AW; -
h i+1

+ hf(ztl)] with Zti = I_Et,' |:’ Yt

with Xp = ¢ and Y;, = g(X71).

Note: For the X-part, classical Explicit Euler scheme...
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Convergence results

Deriving the scheme (1/2) - Y part

On the equidistant grid Tt ={0 =ty < ... < t; < ... < t, = T}, with
h=T/n.

» Start with:

tiy1 tit1
Y, + / ZAW, = Yy, + / f(Z)ds (1)
t t

i i
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Convergence results

Deriving the scheme (1/2) - Y part

On the equidistant grid Tt ={0 =ty < ... < t; < ... < t, = T}, with
h=T/n.

» Start with:

tit1
Yti +/ ZSdWS ~ Yti+1 + hf(Zt’) (1)
t

i
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Deriving the scheme (1/2) - Y part

On the equidistant grid Tt ={0 =ty < ... < t; < ... < t, = T}, with
h=T/n.

» Start with:
tit1
Yti +/ ZSdWs ~ Yti+1 + hf(Zt’) (1)
t;

» For the Y -part:
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Numerical approximation for small T A first scheme
Convergence results

Deriving the scheme (1/2) - Y part

On the equidistant grid Tt ={0 =ty < ... < t; < ... < t, = T}, with
h=T/n.

» Start with:
tit1
Yti +/ ZSdWs ~ Yti+1 + hf(Zt’) (1)
t;

» For the Y -part:
Take conditional expectation,

Yfi = Eti[YtHl + hf(Zti)]
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Numerical approximation for small T A first scheme
Convergence results

Deriving the scheme (1/2) - Y part

On the equidistant grid Tt ={0 =ty < ... < t; < ... < t, = T}, with
h=T/n.

» Start with:

tit1
Yti +/ ZSdWs ~ Yti+1 + hf(Zt’) (1)
t

i

» For the Y -part:
Take conditional expectation,

Yfi = Eti[YtHl + hf(Zti)]

— \_/f,' = I_Et,' [\_/f,url + hf(zt:)]
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Deriving the scheme (2/2) - Z part

» Start with:

tiv1
Yt,‘ +/ ZSdWS ~ Yti+1 —+ hf(Zt,) (1)
ti
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Numerical approximation for small T A first scheme
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Deriving the scheme (2/2) - Z part

» Start with:
tiv1
Yt,‘ +/ ZSdWS ~ Yti+1 —+ hf(Zt,) (1)
ti

» For the Z-part:
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Deriving the scheme (2/2) - Z part

» Start with:
tiv1
Yt,' +/ ZSdWS ~ Yti+1 —+ hf(Zt,) (1)
ti

» For the Z-part:
Multiply (1) by AW; := W;,,, — W, take conditional expectation:

tit1
Et,. |:/ st5:| ~ ]Et,-[A VV, Yti+1]
ti
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Numerical approximation for small T A first scheme
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Deriving the scheme (2/2) - Z part

» Start with:
tiv1
Yt,' +/ ZSdWS ~ Yti+1 —+ hf(Zt,) (1)
ti

» For the Z-part:
Multiply (1) by AW; := W;,,, — W, take conditional expectation:

tit1
thi ~ Et,. |:/ st5:| ~ Et;[AVVthHl]
ti
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Numerical approximation for small T A first scheme
Convergence results

Deriving the scheme (2/2) - Z part

» Start with:
tiv1
Yt,' +/ ZSdWS ~ Yti+1 —+ hf(Zt,) (1)
ti

» For the Z-part:
Multiply (1) by AW; := W;,,, — W, take conditional expectation:

tit1
thi ~ Et,. |:/ st5:| ~ Et;[AVVthHl]
ti

— Zti = ]Eti [h_lAm?t;+1:| .
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Convergence results

Convergence “analysis”

» Errors:

1. Due to the Picard Iteration: < CT”/
2. Due to the discretisation: < Cvh

» To prove
1. Compare Y/ and U(t, X!, L(X]))
— use “extended” Ito formula + smoothness.
2. Compare Yy, and U(t;, Xy, £(Xy,))
< use a “discrete” lto formula.
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Convergence results

Numerical result: a model with no MKV interaction

» The model:

dX: = pcos(Yy)dt + odW; and Xp = x € R,
dY: = ZidW; and Y1 =sin(X7) .
» The important parameter is the coupling parameter p that will vary
in [2.5,8.5].

» Parameters for the simulation: 25 Picard iterations, 15 time steps,
T=0=1
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Numerical result: output
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The solver[]() algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Continuation method

Divide [0, T] in small intervals of size § = %
» Continuation Method:
- We know that Yy = U(0,¢&, £(§)) with (X, Y, Z) solution to

X = &+ 5 b(Y, EX])dr + W,
Yo = U8, X5, £(X5)) + [0 F(Z)dr — [ Z.aw,,
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The solver[]() algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Continuation method

Divide [0, T] in small intervals of size § = %
» Continuation Method:
- We know that Yy = U(0,¢&, £(§)) with (X, Y, Z) solution to

X = &+ [y b( Y,,EX])dr+ Wt,
Ye = U6, Xs, L(X5)) +ft dr—ft Z.dW,,
- which can be approximated by Picard lteration
X[ = &+ [y b(YL,E[X])dr + W,
Yl = v, X exEY) + [ f(Zhar - [P Ziaw,
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The solver[]() algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Continuation method

Divide [0, T] in small intervals of size § = %
» Continuation Method:
- We know that Yy = U(0,¢&, £(§)) with (X, Y, Z) solution to

X = &+ [y b( Y,,EX])dr+ Wt,
Ye = U6, Xs, L(X5)) +ft dr—ft Z.dW,,
- which can be approximated by Picard lteration
X[ = &+ [y b(YL,E[X])dr + W,
Yl = v, X exEY) + [ f(Zhar - [P Ziaw,

» Problem: U is required and this is what we want to compute...
— We use a recursive algorithm, assuming that

U(6,&, L(§)) ~ solver[1](£)
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The solver[]() algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Recursive Method

For any “level”, 0 < k< N —1

> we compute on [rk, rk+1] with re := ko

Y! solver[k + 11X/ 1) + [/ f(Z))dr — []<* Z]dW,,

(3 = oz,

> we stop at Picard Iteration J and set

solver [k1(€) := Y, .
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The solver[]() algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Recursive Method

For any “level”, 0 < k< N —1

> we compute on [rk, rk+1] with re := ko

X! £+ [ b(YEX])dr + We — W,
Y/ = solverlk+11(X/ 1) + [/** f(Z))dr — []** Z]dW,,

> we stop at Picard Iteration J and set

solver [k1(€) := Y, .

At Level N — 1, we have

> solver[N —11(£) ;=Y. _ where, for j < J,

'N—1
X o= &+ [r  b(YLEX])dr+ W — W,
Yi = g+ [T f(Z)dr - [ Zidw,,

> In particular, solver [N1(-) = g(-), No error...
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Numerical approximation for arbitrary T Numerical results

Full algorithm

> One cannot solve the following BSDE perfectly on [rk, ri+1]:

X, = §+fri b(Y,, E[X.])dr + W, — W,,,
Y X+ [ (Z)dr — [ ZAW,,

> the solution is approximated by (X, Yz, Z:),c.« on a subgrid 7% with |7*| = h
via a generic solver:

(Xe, Yt)enk := solver [k](€,x)
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Full algorithm

> One cannot solve the following BSDE perfectly on [rk, ri+1]:

X, = §+fri b(Y,, E[X.])dr + W, — W,,,
Y X+ [ (Z)dr — [ ZAW,,

> the solution is approximated by (X, Yz, Z:),c.« on a subgrid 7% with |7*| = h
via a generic solver:

(Xe, Yt)enk := solver [k](€,x)

> A level k, to compute solver [k] (£):
1. initialisation at X>% = ¢ and Y2* =0 for t €
2. forj<J
2.1 compute \_/,J;(’fl = solver[k + 1] ()_(fkj’k).

2.2 compute (Y7, X/*K) = solver[k1 (¢, YiF)

Mk+1
v J.k
3. return Y 7.
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Review of convergence
Numerical approximation for arbitrary T Numerical results

Definition of solver[] (,)

In practice, we use the classical BTZ scheme e.g. for level k:
)_<ti+1 = )_<1_-,. + b( \_/ti)I_E[)_(t,'] )h + U()_(tI)AV_V, 5
AW;

?ti = I_Eti [VtHl + hf(zti)] with Zti = ]Eti {hl ?ti+1:|

with X, = ¢ and \_/,k+1 =1.
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The solver[] () algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Errors and convergence

» At each level, local error comes from

1. Stopping the Picard Iteration
2. Discretising the BSDE.

» Global error: Propagation of local error through the levels?
1. When no error is made on solver[](,): err < C§/71.

2. When ¢ error made: err < C(6771 + N().

» Result:
err < C(6771 +Vh)
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The solver[] () algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Safety check: A linear model

» The model:

AX; = —pH Y], dt + cdW, , Xo = x,
dY, = —aYsds + Z.dW, and Y7 = X7.

» The coupling parameter is fixed.

» We study the convergence of the discretisation error for both
method

1. Picard lteration (25 iterations)
2. solver[] () with two levels (5 Picard iterations each)
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The solver[] () algorithm
Review of convergence

Numerical approximation for arbitrary T Numerical results

Numerical result for the linear model

Error (log scale)

-35

-45

55

Y0 exp_eul (MKVFBSDE)

® ' ' ' salver +
Lin. fit sol, sl =-0.96

picard *

L Lin. fit pic, sl =-0.97 1
E3
L3
L * 4
*,
*,

L * 4

*
0.5 1 15 2 25 3

Mumber of timesieps (log scale)
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Re\new uf convergence
Numerical approximation for arbitrary T Numerical results

Non-linear example with MKV interaction

» The model

dXt = _thdt+ th—, XO =X,
dY; = atan(X;])dt + Z;dW; and Y7 = G'(X7) := atan(X7)

» coming from Pontryagin principle applied to MFG
Tr1
inf ]E[G(Xta) + / <2a§ + Xf‘atan(E{Xf‘])) dt]
@ 0 P

> numerics

1. Picard lterations (25) - in blue
2. solver[]1(,) with two levels (5 iterations per level) - in black
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The sol [10 algorithm
Review of convergence
Numerical approximation for arbitrary T Numerical results

Coupling

J-F Chassagneux Numerical sol

ion to the master equation
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