Large population stochastic control: analysis and numerical solution to the master equation

J-F Chassagneux (Université Paris Diderot, LPMA) joint work with D. Crisan (Imperial College London) and F. Delarue (Université de Nice)

> MAD-Stat seminar, Toulouse, 20 October 2016

Introduction

Motivation Well-posedness of the MKVFBSDE in small time MKVFBSDEs and Master Equation

Numerical approximation for small T

Introduction

A first scheme

Convergence results

Numerical approximation for arbitrary T

The solver[]() algorithm

Review of convergence

Numerical results

Large population stochastic control

▶ *n* players: personal state of player *i*

$$\mathrm{d}X_t^i = b(t, X_t^i, \mu_t^n, \alpha_t^i) \mathrm{d}t + \sigma \mathrm{d}W_t^i$$

 (W^i) indep. Brownian Motion, $\mu_t^n = \frac{1}{n} \sum_i \delta_{X_t^i}$, α^i control of player

► Cost to minimise for player *i*:

$$J^{i}(\alpha) = \mathbb{E}\left[g(X_{T}^{i}, \mu_{T}^{n}) + \int_{0}^{T} f(t, X_{t}^{i}, \mu_{t}^{n}, \alpha_{t}^{i}) dt\right]$$

- Asymptotic description of equilibrium, hopefully "easier" to handle.
- ► Simplification: at the optimum symmetric feedback control i.e. $\alpha^i = \phi(t, X_t^i)$.

Example - Mean Field Games

Lasry-Lions (06) / Huang-Caines-Malhamé (06)

• "Individual" strategies, looking for Nash-equilibrium $\bar{\alpha}$?

$$J^{i}(\ldots,\bar{\alpha}^{i-1},\alpha^{i},\bar{\alpha}^{i-1},\ldots)\geq J^{i}(\ldots,\bar{\alpha}^{i-1},\bar{\alpha}^{i},\bar{\alpha}^{i-1},\ldots)$$

▶ Optimisation problem for a player: given a flow of measure $(\mu_t)_{t \in [0,T]}$

$$\bar{\phi} = \operatorname{argmin}_{\phi} \mathbb{E} \bigg[g(X_T^{\mu}, \mu_t) + \int_0^T f(t, X_t^{\mu}, \mu_t, \phi(t, X_t^{\mu})) dt \bigg]$$

with $dX_t^{\mu} = b(t, X_t^{\mu}, \mu_t, \phi(t, X_t))dt + \sigma dW_t$.

- Asymptotic $n o \infty$ yields $ar{\mu}_t = \mathcal{L}(X_t^{ar{\mu}})$ (matching problem)
- ► Conclusion: MFG = optimise first then pass to the limit

Getting the FBSDE

notation: $\mu_t = \mathcal{L}(X_t)$.

Direct approach: optimum described by $(X_t, Y_t, Z_t)_{t \le T}$:

$$\begin{aligned} X_t &= X_0 + \int_0^t b(s, X_s, \mu_s, \bar{\phi}(s, X_s, Z_s, \mu_s)) \mathrm{d}s + \sigma W_t, \\ Y_t &= g(X_T, \mu_T) + \int_t^T f(s, X_s, \mu_s, \bar{\phi}(s, X_s, Z_s, \mu_s)) \mathrm{d}s - \int_t^T Z_s \mathrm{d}W_s \end{aligned}$$

(PDE: Lasry-Lions)

Variational approach (Stochastic Pontryagin Principle)

$$X_{t} = X_{0} + \int_{0}^{t} b(s, X_{s}, \mu_{s}, \bar{\phi}(s, X_{s}, Y_{s}, \mu_{s})) ds + \sigma W_{t}$$

$$Y_{t} = \partial_{x} g(X_{T}, \mu_{T}) + \int_{t}^{T} \partial_{x} H(s, X_{s}, Y_{s}, \mu_{s}, \bar{\phi}(s, X_{s}, Y_{s}, \mu_{s})) ds - \int_{t}^{T} Z_{s} dW_{s}$$

where
$$H(\cdot) = b(\cdot)y + f(\cdot)$$
 and $\bar{\phi}(\cdot) = \operatorname{argmin}_{\phi} H(\cdot, \phi)$

Example - Control of MKV

- "Cooperative" equilibrium, when the strategy of one player changes, the strategy of all the player changes
 → Impact the statistical distribution of the system μⁿ
- ▶ Asymptotic $n \to \infty$ "yields"

$$dX_t = b(t, X_t, \mathcal{L}(X_t), \alpha_t)dt + \sigma dW_t$$

and for the cost

$$J(\alpha) = \mathbb{E}\left[g(X_T, \mathcal{L}(X_T)) + \int_0^T f(t, X_t, \mathcal{L}(X_t), \alpha_t) dt\right]$$

- ▶ then optimise $J(\alpha)$
- ► conclusion: control of MKV = pass to the limit then optimise
- Coupled FBSDE arises when using stoch. max. principle (Carmona-Delarue) or DPP (Pham)

Contraction approach

Let us consider

$$\begin{cases} dX_t = b(Y_t)dt + \sigma dW_t, X_0 = \xi \\ dY_t = Z_t dW_t, Y_T = g(X_T, \mathcal{L}(X_T)) \end{cases}$$

▶ in a Lipschitz setting

$$|b(y) - b(y')| \le K|y - y'|,$$

 $|g(x, \mu) - g(x', \mu')| \le K(|x - x'| + W_2(\mu, \mu')),$

where
$$W_2(\mu,\mu')=\inf_{X\sim\mu,X'\sim\mu'}\mathbb{E}[|X-X'|^2]^{\frac{1}{2}}$$
 .

▶ For $T \le c(K)$, existence and uniqueness (via contraction).

Decoupling field

► Non MKV case:

$$\begin{cases} dX_t = b(Y_t)dt + \sigma dW_t, X_0 = \xi \\ dY_t = Z_t dW_t, Y_T = g(X_T) \end{cases}$$

One can show $Y_t = U(t, X_t)$.

▶ PDE for U? On one hand

$$dU(t, X_t) = \left(\partial_t U + b(Y)\partial_x U + \frac{1}{2}\sigma^2 \partial_{xx}^2 U\right) dt + d(\text{mart})$$

Moreover $dU(t, X_t) = dY_t = d(mart)$ and so

$$\partial_t U(t,x) + b(U(t,x))\partial_x U(t,x) + \frac{1}{2}\sigma^2 \partial_{xx}^2 U(t,x) = 0.$$

Decoupling field in the MKV case

► For e.g.

$$\begin{cases} dX_t = b(Y_t, \mathcal{L}(X_t))dt + \sigma dW_t, X_0 = \xi \\ dY_t = Z_t dW_t, Y_T = g(X_T) \end{cases}$$

One has: $Y_t = U(t, X_t, \mathcal{L}(X_t))$ and U is defined on $[0, T] \times \mathbb{R} \times \mathcal{P}_2(\mathbb{R})$.

- ▶ U satisfies a PDE ?
 - \hookrightarrow Need a chain rule to expand U in the measure argument
 - \hookrightarrow Need some smoothness also...

Differential Calculus on $\mathcal{P}_2(\mathbb{R})$

Lions' approach:

"Lift" to
$$L^2$$
: $U(\mu) \to \mathcal{U}(\xi) := U(\mathcal{L}(\xi))$;

- ▶ U differentiable at μ if \mathcal{U} Frechet differentiable at ξ .
- ▶ Moreover, if \mathcal{U} is \mathcal{C}^1 then

$$DU(\xi) \cdot \chi = \mathbb{E}[\partial_{\mu}U(\mu)(\xi)\chi]$$
.

 $\hookrightarrow \partial_{\mu} U(\mu)(\cdot) \in L^{2}(\mathbb{R}, \mu)$ derivative of U at μ .

• Example: $U(\mu) = \int \phi(x) d\mu(x)$

$$\partial_{\mu}U(\mu)(v) = \phi'(v)$$

► Order 2:

$$\partial_{\mu}^{2}U(\mu)(v,v')$$
 and $\partial_{v}\partial_{\mu}U(\mu)(v)$

Finite dimensional projection

$$u(x) = u(x_1, \ldots, x_n) := U(\mu_x^n)$$
 with $\mu_x^n = \frac{1}{n} \sum_i \delta_{x_i}$.

First order derivative

$$\partial_{x_i}u(x)=\frac{1}{n}\partial_{\mu}U(\mu_x^n)(x_i)$$

Proof. ϑ unif. distributed in $\{1, \ldots, n\}$, $h = (h_i)$ small perturbation:

$$\begin{split} u(x+h) &= U(\mathcal{L}(x_{\vartheta}+h_{\vartheta})) = U(\mathcal{L}(x_{\vartheta})) + \mathbb{E}[\partial_{\mu}U(\mathcal{L}(x_{\vartheta}))(x_{\vartheta})h_{\vartheta})] + o(|h|) \;, \\ &= U(\mathcal{L}(x_{\vartheta})) + \sum_{i} \frac{1}{n} \partial_{\mu}U(\mu_{x}^{n})(x_{i})h_{i} + o(|h|). \end{split}$$

second order derivative

$$\partial_{x_i x_j}^2 u(x) = \frac{1}{n} \partial_{\nu} \partial_{\mu} U(\mu_x^n)(x_i) \mathbf{1}_{i=j} + \frac{1}{n^2} \partial_{\mu}^2 U(\mu_x^n)(x_i, x_j)$$

Chain Rule

For a flow a measure $(\mu_t)_{t\in[0,T]}$ where $\mu_t = \mathcal{L}(X_t)$:

$$\mathrm{d}X_t = b_t \mathrm{d}t + \sigma_t \mathrm{d}W_t.$$

▶ The chain rule

$$U(\mu_T) = U(\mu_0) + \int_0^T \mathbb{E}\left[b_t \partial_\mu U(\mu_t)(X_t) + \frac{1}{2} \partial_\nu \partial_\mu U(\mu_t)(X_t) \sigma_t^2\right] dt$$

proof.

Particle system: (X^i) i.i.d. copies of X, $\mu_X^n = \frac{1}{n} \sum_i \delta_{X_t^i} \rightarrow_{n\infty} \mu_t$.

Apply Ito's formula to $u(X_t^1, \ldots, X_t^n)$ and let n goes to ∞ :

$$\begin{split} \mathrm{d}u(X_t^1,\dots,X_t^n) &= \frac{1}{n}\sum_i \partial_\mu U(\mu_{X_t}^n)(X_t^i)b_t^i\mathrm{d}t + \mathrm{dmart} \\ &+ \sum_i (\sigma_t^i)^2 \left(\frac{1}{2n}\partial_\upsilon \partial_\mu U(\mu_{X_t}^n)(X_t^i) + \frac{1}{2n^2}\partial_\mu^2 U(\mu_{X_t}^n)(X_t^i,X_t^i)\right)\mathrm{d}t \end{split}$$

Master equation - PDE for U

Consider

$$\begin{cases} dX_t = b(Y_t, \mathcal{L}(X_t))dt + dW_t, X_0 = \xi \\ dY_t = -f(Z_t)dt + Z_t dW_t, Y_T = g(X_T, \mathcal{L}(X_T)) \end{cases}$$

$$U$$
 s.t. $Y_t = U(t, X_t, \mathcal{L}(X_t))$ satisfies $U(T, x, \mu) = g(x, \mu)$ and

$$\partial_{t}U(\cdot) + b(U(\cdot), \mu)\partial_{x}U(\cdot) + \frac{1}{2}\partial_{xx}^{2}U(\cdot) + f(\partial_{x}U(\cdot))$$

$$+ \mathbb{E}\left[b(U(t, \xi, \mu), \mu)\partial_{\mu}U(t, x, \mu)(\xi) + \frac{1}{2}\partial_{\nu}\partial_{\mu}U(t, x, \mu)(\xi)\right] = 0$$

 \hookrightarrow We prove existence and uniqueness of a "classical" solution in small time to the above PDE written on $[0, T] \times \mathbb{R} \times \mathcal{P}_2(\mathbb{R})$.

Arbitrary T - difficulties

Consider the following system of FBSDEs

$$\begin{cases}
dY_t = -\mathbb{E}[X_t] dt + Z_t dW_t \text{ and } Y_T = -X_T, \\
dX_t = Y_t dt + \sigma(X_t) dW_t \text{ and } X_0 = x.
\end{cases}$$
(1)

where $T = \frac{3\pi}{4}$ and σ is a Lipschitz function.

If $x \neq 0$, there is no solution in $S^2 \times S^2 \times \mathcal{H}^2$ to the above equation.

proof Note $m_X(t) := \mathbb{E}[X_T]$ and $m_Y(t) := \mathbb{E}[Y_T]$ satisfies

$$\begin{cases} dm_Y(t) = -m_X(t)dt \text{ and } m_Y(T) = -m_X(T), \\ dm_X(t) = m_Y(t)dt \text{ and } m_X(0) = x. \end{cases}$$
 (2)

The above system has no solution for $x \neq 0$. Observe that $m_X(t) = x \cos(t) + \mu \sin(t)$, $m_Y(t) = -x \sin(t) + \mu \cos(t)$ so that $m_Y(T) + m_X(T) = -x\sqrt{2}$.

Positive results in the "classical" case

- - $ightharpoonup \sigma$ is non degenerate, coefficients are bounded (Delarue)
 - ► Existence and uniqueness also for some singular FBSDEs (Carmona-Delarue).

In any case, need a control on the solution's gradient.

Generic method

- Recursive method by splitting the time interval
- Possible only if control of Lipschitz constant of U, obtained from the estimate

$$\mathbb{E}[|U(t,\xi,\mathcal{L}(\xi)) - U(t,\xi',\mathcal{L}(\xi'))|^2]^{\frac{1}{2}} \le \Lambda \mathbb{E}[|\xi - \xi'|^2]^{\frac{1}{2}} . \quad (3)$$

Structural condition on the coefficient allows to obtain previous estimate both in the MFG and control of MKV setting.

Objective and difficulties

▶ Goal: Numerical Approximation of $U(0, \xi, \mathcal{L}(\xi))$, U decoupling field for

$$\left\{ \begin{array}{lcl} X_t & = & \xi + \int_0^t b(Y_r, \mathbb{E}[X_r]) \mathrm{d}r + \sigma W_t, \\ Y_t & = & g(X_T) + \int_t^T f(Z_r) \mathrm{d}r - \int_t^T Z_r \mathrm{d}W_r, \end{array} \right.$$

in particular: $Y_0 = U(0, \xi, \mathcal{L}(\xi))$.

- Method: Adaptating grid method for coupled FBSDE is difficult... $Y_t = U(t, X_t, \mathcal{L}(X_t))$.
 - \hookrightarrow back to basics: we use a binomial tree and a Picard iteration scheme (Need ${\cal T}$ small!)

Dealing with the coupling

▶ Picard Iteration, $(\tilde{X}^j, \tilde{Y}^j, \tilde{Z}^j)_{0 \leq j}$:

$$\begin{cases}
\tilde{X}_t^j = \xi + \int_0^t b(\tilde{Y}_r^j, \mathbb{E}\left[\tilde{X}_r^j\right]) dr + W_t, \\
Y_t^j = g(\tilde{X}_T^{j-1}) + \int_t^T f(\tilde{Z}_r^j) dr - \int_t^T \tilde{Z}_r^j dW_r,
\end{cases} (4)$$

with
$$\tilde{X}^0 = \xi$$
 (and $\tilde{Y}^0 = \tilde{Z}^0 = 0$).

- ▶ Easily shown: $(\tilde{X}^j, \tilde{Y}^j, \tilde{Z}^j) \rightarrow (X, Y, Z)$
- ▶ Stopped after J iteration: output is $Y_0^J \leftrightarrow U(0, \xi, \mathcal{L}(\xi))$
- ▶ In practice, one cannot solve perfectly (4)

Discrete approximation

- ▶ A discrete time grid $\pi = \{t_0, \dots, t_n\}$ with mesh size $|\pi| := h$.
- ▶ Use a Binomial Tree for Brownian Motion: $\bar{\mathbb{P}}(\Delta W_i = \pm \sqrt{h}) = \frac{1}{2}$.
- "Classical" BTZ scheme:

$$\begin{split} \bar{X}_{t_{i+1}} &= \bar{X}_{t_i} + b(\bar{Y}_{t_i}, \bar{\mathbb{E}}[\bar{X}_{t_i}])h + \sigma\Delta\bar{W}_i, \\ \bar{Y}_{t_i} &= \bar{\mathbb{E}}_{t_i}\big[\bar{Y}_{t_{i+1}} + hf(\bar{Z}_{t_i})\big] \text{ with } \bar{Z}_{t_i} = \bar{\mathbb{E}}_{t_i}\bigg[\frac{\Delta W_i}{h}\bar{Y}_{t_{i+1}}\bigg] \end{split}$$

with
$$\bar{X}_0 = \xi$$
 and $\bar{Y}_{t_n} = g(\bar{X}_T)$.

Note: For the X-part, classical Explicit Euler scheme...

On the equidistant grid $\pi = \{0 = t_0 < ... < t_i < ... < t_n = T\}$, with h = T/n.

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s = Y_{t_{i+1}} + \int_{t_i}^{t_{i+1}} f(Z_s) ds$$
 (1)

On the equidistant grid $\pi = \{0 = t_0 < ... < t_i < ... < t_n = T\}$, with h = T/n.

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

On the equidistant grid $\pi = \{0 = t_0 < ... < t_i < ... < t_n = T\}$, with h = T/n.

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

▶ For the Y-part:

On the equidistant grid $\pi = \{0 = t_0 < ... < t_i < ... < t_n = T\}$, with h = T/n.

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

For the Y-part: Take conditional expectation,

$$Y_{t_i} \simeq \mathbb{E}_{t_i} [Y_{t_{i+1}} + hf(Z_{t_i})]$$

On the equidistant grid $\pi = \{0 = t_0 < ... < t_i < ... < t_n = T\}$, with h = T/n.

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

► For the Y-part: Take conditional expectation,

$$Y_{t_i} \simeq \mathbb{E}_{t_i} [Y_{t_{i+1}} + hf(Z_{t_i})]$$

$$\hookrightarrow \quad ar{Y}_{t_i} := ar{\mathbb{E}}_{t_i} ig[ar{Y}_{t_{i+1}} + hf(ar{Z}_{t_i}) ig]$$

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

► For the *Z*-part:

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

▶ For the Z-part: Multiply (1) by $\Delta W_i := W_{t_{i+1}} - W_{t_i}$, take conditional expectation:

$$\mathbb{E}_{t_i} \left[\int_{t_i}^{t_{i+1}} Z_s \mathrm{d}s \right] \simeq \mathbb{E}_{t_i} \left[\Delta W_i Y_{t_{i+1}} \right]$$

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

▶ For the Z-part: Multiply (1) by $\Delta W_i := W_{t_{i+1}} - W_{t_i}$, take conditional expectation:

$$hZ_{t_i} \simeq \mathbb{E}_{t_i} \left[\int_{t_i}^{t_{i+1}} Z_s \mathrm{d}s \right] \simeq \mathbb{E}_{t_i} [\Delta W_i Y_{t_{i+1}}]$$

Start with:

$$Y_{t_i} + \int_{t_i}^{t_{i+1}} Z_s dW_s \simeq Y_{t_{i+1}} + hf(Z_{t_i})$$
 (1)

▶ For the Z-part: Multiply (1) by $\Delta W_i := W_{t_{i+1}} - W_{t_i}$, take conditional expectation:

$$hZ_{t_i} \simeq \mathbb{E}_{t_i} \! \left[\int_{t_i}^{t_{i+1}} Z_s \mathrm{d}s \right] \simeq \mathbb{E}_{t_i} \! \left[\Delta W_i Y_{t_{i+1}} \right]$$

$$\hookrightarrow \quad \bar{Z}_{t_i} := \bar{\mathbb{E}}_{t_i} \big[h^{-1} \Delta W_i \bar{Y}_{t_{i+1}} \big] \ .$$

Convergence "analysis"

► Errors:

- 1. Due to the Picard Iteration: $\leq CT^J$
- 2. Due to the discretisation: $\leq C\sqrt{h}$

▶ To prove

- 1. Compare \tilde{Y}_t^j and $U(t, \tilde{X}_t^j, \mathcal{L}(\tilde{X}_t^j))$ \hookrightarrow use "extended" Ito formula + smoothness.
- 2. Compare \bar{Y}_{t_i} and $U(t_i, \bar{X}_{t_i}, \mathcal{L}(\bar{X}_{t_i}))$ \hookrightarrow use a "discrete" Ito formula.

Numerical result: a model with no MKV interaction

► The model:

$$\mathrm{d}X_t = \rho \cos(Y_t) \mathrm{d}t + \sigma \mathrm{d}W_t \text{ and } X_0 = x \in \mathbb{R} \;,$$

 $dY_t = Z_t \mathrm{d}W_t \text{ and } Y_T = \sin(X_T) \;.$

- ▶ The important parameter is the coupling parameter ρ that will vary in [2.5, 8.5].
- ▶ Parameters for the simulation: 25 Picard iterations, 15 time steps, $T = \sigma = 1$

Numerical result: output

Continuation method

Divide [0, T] in small intervals of size $\delta = \frac{T}{N}$.

- **▶** Continuation Method:
 - We know that $Y_0 = U(0, \xi, \mathcal{L}(\xi))$ with (X, Y, Z) solution to

$$\left\{ \begin{array}{lcl} X_t & = & \xi + \int_0^t b(Y_r, \mathbb{E}[X_r]) \mathrm{d}r + W_t, \\ Y_t & = & U(\delta, X_\delta, \mathcal{L}(X_\delta)) + \int_t^\delta f(Z_r) \mathrm{d}r - \int_t^\delta Z_r \mathrm{d}W_r, \end{array} \right.$$

Continuation method

Divide [0, T] in small intervals of size $\delta = \frac{T}{N}$.

- ▶ Continuation Method:
 - We know that $Y_0 = U(0, \xi, \mathcal{L}(\xi))$ with (X, Y, Z) solution to

$$\begin{cases} X_t = \xi + \int_0^t b(Y_r, \mathbb{E}[X_r]) dr + W_t, \\ Y_t = U(\delta, X_\delta, \mathcal{L}(X_\delta)) + \int_t^\delta f(Z_r) dr - \int_t^\delta Z_r dW_r, \end{cases}$$

- which can be approximated by Picard Iteration

$$\begin{cases} X_t^j &= \xi + \int_0^t b(Y_r^j, \mathbb{E}[X_r^j]) \mathrm{d}r + W_t, \\ Y_t^j &= U(\delta, X_\delta^{j-1}, \mathcal{L}(X_\delta^{j-1})) + \int_t^\delta f(Z_r^j) \mathrm{d}r - \int_t^\delta Z_r^j \mathrm{d}W_r, \end{cases}$$

Continuation method

Divide [0, T] in small intervals of size $\delta = \frac{T}{N}$.

- ▶ Continuation Method:
 - We know that $Y_0 = U(0, \xi, \mathcal{L}(\xi))$ with (X, Y, Z) solution to

$$\begin{cases} X_t = \xi + \int_0^t b(Y_r, \mathbb{E}[X_r]) dr + W_t, \\ Y_t = U(\delta, X_\delta, \mathcal{L}(X_\delta)) + \int_t^\delta f(Z_r) dr - \int_t^\delta Z_r dW_r, \end{cases}$$

- which can be approximated by Picard Iteration

$$\begin{cases} X_t^j &= \xi + \int_0^t b(Y_r^j, \mathbb{E}[X_r^j]) \mathrm{d}r + W_t, \\ Y_t^j &= U(\delta, X_\delta^{j-1}, \mathcal{L}(X_\delta^{j-1})) + \int_t^\delta f(Z_r^j) \mathrm{d}r - \int_t^\delta Z_r^j \mathrm{d}W_r, \end{cases}$$

- ▶ Problem: *U* is required and this is what we want to compute...

$$U(\delta, \xi, \mathcal{L}(\xi)) \simeq \mathtt{solver}[1](\xi)$$

Recursive Method

For any "level", $0 \le k < N-1$

• we compute on $[r_k, r_{k+1}]$ with $r_k := k\delta$

$$\begin{cases} X_t^j &= \xi + \int_{r_k}^t b(Y_r^j, \mathbb{E}[X_r^j]) \mathrm{d}r + W_t - W_{r_k}, \\ Y_t^j &= \mathsf{solver}[k+1](X_{r_{k+1}}^{j-1}) + \int_t^{r_{k+1}} f(Z_r^j) \mathrm{d}r - \int_t^{r_{k+1}} Z_r^j \mathrm{d}W_r, \end{cases}$$

▶ we stop at Picard Iteration *J* and set

$$\operatorname{solver}[k](\xi) := Y_{r_k}^J$$
.

Recursive Method

For any "level", $0 \le k < N-1$

• we compute on $[r_k, r_{k+1}]$ with $r_k := k\delta$

$$\begin{cases} X_t^j = \xi + \int_{r_k}^t b(Y_r^j, \mathbb{E}[X_r^j]) dr + W_t - W_{r_k}, \\ Y_t^j = \text{solver}[k+1](X_{r_{k+1}}^{j-1}) + \int_t^{r_{k+1}} f(Z_r^j) dr - \int_t^{r_{k+1}} Z_r^j dW_r, \end{cases}$$

▶ we stop at Picard Iteration *J* and set

$$solver[k](\xi) := Y_{r_k}^J$$
.

At Level N-1, we have

• solver [N-1] $(\xi) := Y_{r_{N-1}}^J$ where, for $j \leq J$,

$$\begin{cases} X_t^j = \xi + \int_{r_{N-1}}^t b(Y_r^j, \mathbb{E}[X_r^j]) dr + W_t - W_{r_{N-1}}, \\ Y_t^j = g(X_T^{j-1}) + \int_t^T f(Z_r^j) dr - \int_t^T Z_r^j dW_r, \end{cases}$$

▶ In particular, solver [N] (·) = $g(\cdot)$, No error...

Full algorithm

▶ One cannot solve the following BSDE perfectly on $[r_k, r_{k+1}]$:

$$\begin{cases} X_t = \xi + \int_{r_k}^t b(Y_r, \mathbb{E}[X_r]) dr + W_t - W_{r_k}, \\ Y_t = \chi + \int_t^{r_{k+1}} f(Z_r) dr - \int_t^{r_{k+1}} Z_r dW_r, \end{cases}$$

▶ the solution is approximated by $(\bar{X}_t, \bar{Y}_t, \bar{Z}_t)_{t \in \pi^k}$ on a subgrid π^k with $|\pi^k| = h$ via a generic solver:

$$(ar{X}_t,ar{Y}_t)_{t\in\pi^k}:=\overline{\mathtt{solver}}[k]\,(\xi,\chi)$$

Full algorithm

▶ One cannot solve the following BSDE perfectly on $[r_k, r_{k+1}]$:

$$\begin{cases} X_t = \xi + \int_{r_k}^t b(Y_r, \mathbb{E}[X_r]) dr + W_t - W_{r_k}, \\ Y_t = \chi + \int_t^{r_{k+1}} f(Z_r) dr - \int_t^{r_{k+1}} Z_r dW_r, \end{cases}$$

▶ the solution is approximated by $(\bar{X}_t, \bar{Y}_t, \bar{Z}_t)_{t \in \pi^k}$ on a subgrid π^k with $|\pi^k| = h$ via a generic solver:

$$(\bar{X}_t, \bar{Y}_t)_{t \in \pi^k} := \overline{\mathtt{solver}}[k](\xi, \chi)$$

- ▶ A level k, to compute solver [k] (ξ):
 - 1. initialisation at $\bar{X}_t^{0,k}=\xi$ and $\bar{Y}_t^{0,k}=0$ for $t\in\pi_k$
 - 2. for $j \leq J$
 - 2.1 compute $\bar{Y}_{r_{k+1}}^{j,k} = \text{solver}[k+1](\bar{X}_{r_{k+1}}^{j-1,k})$.
 - 2.2 compute $(\bar{Y}^{j,k}, \bar{X}^{j,k}) = \overline{\text{solver}}[k](\xi, \bar{Y}^{j,k}_{r_{k+1}})$
 - 3. return $\bar{Y}_{r_{k+1}}^{J,k}$.

Definition of solver[](,)

In practice, we use the classical BTZ scheme e.g. for level k:

$$\begin{split} \bar{X}_{t_{i+1}} &= \bar{X}_{t_i} + b(\bar{Y}_{t_i}, \bar{\mathbb{E}}[\bar{X}_{t_i}])h + \sigma(\bar{X}_{t_i})\Delta\bar{W}_i\,, \\ \bar{Y}_{t_i} &= \bar{\mathbb{E}}_{t_i}\big[\bar{Y}_{t_{i+1}} + hf(\bar{Z}_{t_i})\big] \;\; \text{with} \; \bar{Z}_{t_i} = \bar{\mathbb{E}}_{t_i}\bigg[\frac{\Delta W_i}{h}\bar{Y}_{t_{i+1}}\bigg] \end{split}$$

with
$$ar{X}_{r_k} = \xi$$
 and $ar{Y}_{r_{k+1}} = \eta$.

Errors and convergence

- At each level, local error comes from
 - 1. Stopping the Picard Iteration
 - 2. Discretising the BSDE.
- ► Global error: Propagation of local error through the levels?
 - 1. When no error is made on $\overline{\text{solver}}[](,)$: $\text{err} \leq C\delta^{J-1}$.
 - 2. When ζ error made: $\operatorname{err} \leq C(\delta^{J-1} + N\zeta)$.
- ► Result:

$$\operatorname{err} \leq C(\delta^{J-1} + \sqrt{h})$$

Safety check: A linear model

▶ The model:

$$dX_t = -\rho \mathbb{E}[Y]_t dt + \sigma dW_t, X_0 = X,$$

$$dY_t = -aY_s ds + Z_s dW_s \text{ and } Y_T = X_T.$$

- The coupling parameter is fixed.
- We study the convergence of the discretisation error for both method
 - 1. Picard Iteration (25 iterations)
 - 2. solver[]() with two levels (5 Picard iterations each)

Numerical result for the linear model

Non-linear example with MKV interaction

▶ The model

$$\begin{split} \mathrm{d}X_t &= -\rho Y_t \mathrm{d}t + \mathrm{d}W_t \,,\, X_0 = x \,,\\ \mathrm{d}Y_t &= \mathrm{atan}(\mathbb{E}[X_t]) \mathrm{d}t + Z_t \mathrm{d}W_t \text{ and } Y_T = G'(X_T) := \mathrm{atan}(X_T) \end{split}$$

coming from Pontryagin principle applied to MFG

$$\inf_{\alpha} \mathbb{E} \left[G(X_t^{\alpha}) + \int_0^T \left(\frac{1}{2\rho} \alpha_t^2 + X_t^{\alpha} \operatorname{atan}(\mathbb{E}[X_t^{\alpha}]) \right) dt \right]$$

with
$$\mathrm{d}X_t^\alpha = \alpha_t \mathrm{d}t + \mathrm{d}W_t$$
.

- numerics
 - 1. Picard Iterations (25) in blue
 - 2. solver[](,) with two levels (5 iterations per level) in black

Output

