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Abstract

We develop an asset pricing model with rich heterogeneity in asset demand across

investors, designed to match institutional holdings. The equilibrium price vector is

uniquely determined by market clearing for each asset. We relate our model to tra-

ditional frameworks including Euler equations, mean-variance portfolio choice, factor

models, and cross-sectional regressions on characteristics. We propose two identifi-

cation strategies for the asset demand system, based on a coefficient restriction or

instrumental variables, which produce similar estimates that are different from the

least squares estimates. We apply our model to understand the role of institutions in

stock market movements, liquidity, volatility, and predictability.
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1. Introduction

We develop an asset pricing model that could answer a broad set of questions related to the

role of institutions in asset markets. For example, have asset markets become more liquid

over the last 30 years with the growing importance of institutional investors? How much of

the volatility and predictability of asset prices is explained by institutional trades? Do large

investment managers amplify volatility in bad times, and therefore, should they be regulated

as systemically important financial institutions (Office of Financial Research 2013; Haldane

2014)?

Traditional asset pricing models are not suitable for answering these types of questions

because they fail to match institutional holdings. Strong assumptions about preferences,

beliefs, and constraints in these models imply asset demand with little (if any) heterogeneity

across investors. Moreover, asset demand depends rigidly on the joint moments of asset

prices, dividends, and consumption, which are difficult to map to institutional holdings.

While the empirical asset pricing literature has used institutional holdings data, an equilib-

rium model that simultaneously matches asset demand and imposes market clearing does

not exist.

We take a different approach that is inspired by the industrial organization literature

on differentiated product demand systems (Lancaster 1966; Rosen 1974). We model the

portfolio choice of each institution as a logit function of prices, characteristics (e.g., dividends,

earnings, book equity, and book leverage), and latent demand (i.e., structural error). Our

model accommodates rich heterogeneity in asset demand across investors and is designed to

match institutional holdings. We allow the coefficients on prices and characteristics to vary

across investors, and hence, the aggregate demand elasticity to vary across assets. We show

that the equilibrium price vector is uniquely determined by market clearing, under a simple

condition that demand is downward sloping for all investors.

Our model relates to the traditional literature on asset pricing and portfolio choice.

We start with a portfolio-choice problem of strategic investors with heterogeneous beliefs

and constraints, who internalize the price impact of trades (Wilson 1979). The investor’s

first-order condition is the Euler equation that relates the intertemporal marginal rate of

substitution to asset returns (Lucas 1978). An approximate solution to the portfolio-choice

problem is essentially the mean-variance portfolio (Markowitz 1952), in which heterogeneous

beliefs and constraints lead to heterogeneous portfolios in equilibrium. The mean-variance

portfolio simplifies to our model of asset demand under a common assumption in empirical

asset pricing, which is that returns have a factor structure and that an asset’s expected

return and factor loadings depend only on its own prices and characteristics (Ross 1976;
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Fama and French 1993). Finally, a first-order approximation of our model turns out to be

a cross-sectional regression of prices on characteristics, but one in which the coefficients on

characteristics vary across assets. Thus, we explicitly connect our model, which simultane-

ously matches asset prices and institutional holdings, to traditional asset pricing frameworks.

Although our contribution is primarily methodological, we illustrate our approach on U.S.

stock market and institutional holdings data, based on Securities and Exchange Commission

Form 13F. The asset demand system cannot be estimated consistently by least squares

in the presence of price impact, which induces a positive correlation between price and

latent demand. Therefore, we propose two identification strategies, which produce similar

estimates that are different from the least squares estimates. The first strategy is based

on a restriction that the coefficients on log price and log dividends per share sum to zero,

which implies that demand is invariant to stock splits when nothing else changes. With this

coefficient restriction, the asset demand system is identified by a moment condition that

latent demand is orthogonal to characteristics, which is the standard assumption in asset

pricing in endowment economies and industrial organization.

The second strategy is instrumental variables, which builds on the insight from the lit-

erature on indexing effects that plausibly exogenous variation in residual supply identifies

demand (Harris and Gurel 1986; Shleifer 1986). Our identification is based on two assump-

tions. The first assumption is that investors have an exogenous investment universe, which

is a subset of stocks that they are allowed to hold. In practice, this investment universe is

defined by an investment mandate or other portfolio constraints, which are perhaps most

transparent in the case of index or sector funds. The second assumption is that an investor’s

portfolio choice does not depend directly on the investment universe of investors outside

their group, defined by similarity in size and investment style. These two assumptions allow

us to construct an instrument for price that isolates exogenous variation in residual supply.

Once we estimate the asset demand system, we consider four asset pricing applications.

First, it is straightforward to measure liquidity as the price impact of trades. We document

facts about the cross-sectional distribution of price impact across stocks and how that dis-

tribution has evolved over time. We find that price impact for the average institution has

declined over the last 30 years, especially for the least liquid stocks at the 90th percentile

of the distribution. This means that the cross-sectional distribution of liquidity has signif-

icantly compressed over this period. For the least liquid stocks, the price impact of a 10

percent increase in demand has declined from 0.83 percent in 1980 to 0.15 percent in 2014.

Second, we use our model to decompose the cross-sectional variance of stock returns into

supply- and demand-side effects. The supply-side effects are changes in shares outstanding,

changes in characteristics, and the dividend yield. These three effects together explain only
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9 percent of the variation in stock returns. The demand-side effects are changes in assets

under management, the coefficients on characteristics, and latent demand. Of these three

effects, latent demand is clearly the most important, explaining 76 percent of the variation in

stock returns. Thus, stock returns are mostly explained by changes in institutional demand

that are unrelated to changes in observed characteristics. These moments establish a new set

of targets for a growing literature on asset pricing models with institutional investors,1 just

as the variance decomposition of Campbell (1991) has been a useful guide for consumption-

based asset pricing.

Third, we use a similar variance decomposition to see whether larger institutions explain

a disproportionate share of the stock market volatility in 2008. We find that the largest 25

institutions, which manage about a third of the stock market, explain only 7 percent of the

variation in stock returns. Smaller institutions, which also manage about a third of the stock

market, explain 30 percent of the variation in stock returns. Direct household holdings and

non-13F institutions, which account for the remaining third of the stock market, explain 59

percent of the variation in stock returns. The largest institutions explain a relatively small

share of stock market volatility because they tend to be diversified buy-and-hold investors

that hold more liquid stocks with smaller price impact.

Fourth, we use our model to predict cross-sectional variation in stock returns. Our model

implies mean reversion in stock prices if there is mean reversion in institutional demand. We

estimate the persistence of latent demand and use the predicted demand system to estimate

expected returns for each stock. When we construct five portfolios sorted by estimated ex-

pected returns, the high expected-return portfolio contains small-cap value stocks, consistent

with the known size and value premia. The spread in annualized average returns between

the high and low expected-return portfolios is 15 percent when equal-weighted and 6 percent

when value-weighted. Thus, the high returns due to mean reversion in institutional demand

are more prominent for smaller stocks.

The remainder of the paper is organized as follows. Section 2 describes our model and

relates it to traditional asset pricing and portfolio choice. Section 3 describes the stock

market and institutional holdings data. Section 4 explains our identifying assumptions and

presents estimates of the asset demand system. Section 5 presents the empirical findings on

the role of institutions in stock market movements, liquidity, volatility, and predictability.

Section 6 discusses various extensions of our model for future research. Section 7 concludes.

Appendix A contains proofs of the results in the main text.

1See Vayanos (2004), Dasgupta, Prat, and Verardo (2011), Basak and Pavlova (2013), He and Krishna-
murthy (2013), and Vayanos and Woolley (2013).
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2. Asset Pricing Model

2.1. Financial Assets

There are N financial assets indexed by n = 1, . . . , N . Let St(n) be the number of shares

outstanding of asset n in period t. Let Pt(n) and Dt(n) be the price and dividend per

share for asset n in period t. Then Rt(n) = (Pt(n) +Dt(n))/Pt−1(n) is the gross return on

asset n in period t. Let lowercase letters denote the logarithm of the corresponding uppercase

variables. That is, st(n) = log(St(n)), pt(n) = log(Pt(n)), and rt(n) = log(Rt(n)). We denote

the N × 1 vectors corresponding to these variables in bold as st = log(St), pt = log(Pt), and

rt = log(Rt). We denote a vector of ones as 1, a vector of zeros as 0, an identity matrix as

I, and a diagonal matrix as diag(·) (e.g., diag(1) = I).

In addition to price and shares outstanding, assets are differentiated along K characteris-

tics. In the case of stocks, for example, these characteristics could include various measures

of fundamentals such as dividends, earnings, book equity, and book leverage. We denote

characteristic k of asset n in period t as xk,t(n). Following the literature on asset pricing

in endowment economies (Lucas 1978), we assume that shares outstanding, dividends, and

other characteristics are exogenous. That is, only asset prices are endogenously determined

in our model. Shares outstanding and characteristics could be endogenized in a production

economy, as we discuss in Section 6.

2.2. Asset Demand and Market Clearing

The financial assets are held by It investors in period t, indexed by i = 1, . . . , It. Each

investor allocates wealth Ai,t in period t between a subset Ni,t ⊆ {1, . . . , N} of the financial

assets, which we refer to as inside assets, and an outside asset. The outside asset represents

all wealth outside the N assets that are the objects of our study. For now, we take the

extensive margin as exogenous and model only the intensive margin within the inside assets.

In Section 6, we discuss a potential extension of our model that endogenizes the extensive

margin.

We model investor i’s portfolio weight on asset n ∈ Ni,t in period t as

wi,t(n) =
exp{δi,t(n)}

1 +
∑

m∈Ni,t
exp{δi,t(m)} ,(1)
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where

δi,t(n) = β0,i,tpt(n) +
K∑
k=1

βk,i,txk,t(n) + εi,t(n).(2)

The structural error εi,t(n), which we refer to as latent demand, captures investor i’s demand

for unobserved (to the econometrician) characteristics of asset n. The share of wealth in the

outside asset is

wi,t(0) =
1

1 +
∑

m∈Ni,t
exp{δi,t(m)} .(3)

The logit model implies that the portfolio weights are strictly positive and sum to one (i.e.,∑N
n=0wi,t(n) = 1). Throughout the paper, we use the notational convention that wi,t(n) = 0

for any asset n /∈ {0,Ni,t}.
We complete our model with market clearing for each asset n:

Pt(n)St(n) =

It∑
i=1

Ai,twi,t(n).(4)

That is, the market value of shares outstanding must equal the wealth-weighted sum of

portfolio weights across investors. If asset demand were homogeneous, market clearing (4)

implies that all investors hold the market portfolio in equilibrium, just as in the capital

asset pricing model (Sharpe 1964; Lintner 1965). In contrast, our model accommodates

rich heterogeneity in asset demand across investors and is designed to match institutional

holdings.

In equation (2), the coefficients on price and characteristics are indexed by i, and hence,

differ across investors. In particular, investors have heterogeneous demand elasticities. To

see this, let qi,t = log(Ai,twi,t) − pt be the vector of log shares held by investor i. The

elasticity of individual demand is

−∂qi,t

∂p′
t

= I− β0,i,tdiag(wi,t)
−1Yi,t,(5)

where Yi,t = diag(wi,t)−wi,tw
′
i,t. If we define qt = log(

∑It
i=1Ai,twi,t)− pt, the elasticity of

aggregate demand is

−∂qt

∂p′
t

= I−
It∑
i=1

Ai,tβ0,i,tZ
−1
t Yi,t,(6)
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where Zt =
∑It

i=1Ai,tdiag(wi,t). Our model of aggregate demand is similar to the random

coefficients logit model (Berry, Levinsohn, and Pakes 2004), except that we have fixed coef-

ficients for each investor.

2.3. Relation to Traditional Asset Pricing and Portfolio Choice

The traditional literature on asset pricing and portfolio choice derives optimal asset de-

mand from assumptions about preferences, beliefs, and constraints. Instead, we model asset

demand directly as a function of prices and characteristics, inspired by the industrial or-

ganization literature on differentiated product demand systems. In this section, we relate

our model to the traditional literature by deriving the conditions under which the two are

equivalent.

There are It investors in period t. Each investor solves a portfolio-choice problem to

maximize expected log utility over terminal wealth.2 The investors have heterogeneous

beliefs and constraints, which lead to heterogeneous portfolios in equilibrium. Because there

are a finite number of investors, each investor strategically accounts for the impact of its

demand on the equilibrium price (Wilson 1979). We assume a market structure such that

each investor submits a demand schedule, and the Walrasian auctioneer determines the

equilibrium price through market clearing (4).

Let wi,t be an N × 1 vector of investor i’s portfolio weights in period t.3 The law of

motion for the investor’s wealth is

Ai,t+1 = Ai,t(Rt+1(0) +w′
i,t(Rt+1 −Rt+1(0)1)).(7)

The investor also faces linear portfolio constraints:

B′
i,twi,t ≥ bi,t,(8)

where Bi,t is an N × B matrix and bi,t is a B × 1 vector. For example, the investor faces

short-sale constraints if the first N columns of Bi,t constitute an identity matrix and the

first N rows of bi,t are zero.

The investor chooses wi,t in each period t to maximize expected log utility over wealth

in period T , subject to portfolio constraints (8). The Lagrangian for the portfolio-choice

2We assume log utility for expositional convenience because the multi-period portfolio-choice problem
reduces to a single-period problem in which hedging demand is absent (Samuelson 1969).

3Our notation presupposes that positions in redundant assets (with collinear payoffs) have already been
eliminated through aggregation, so that the covariance matrix of log excess returns is invertible.
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problem is

Li,t = Ei,t

[
log(Ai,T ) +

T−1∑
s=t

λ′
i,s(B

′
i,swi,s − bi,t)

]
,(9)

where Ei,t denotes investor i’s expectation in period t. For tractability, we assume that

investors have heterogenous beliefs about expected returns but use the same covariance

matrix. We denote the conditional mean and covariance of log excess returns, relative to the

outside asset, as

μi,t =Ei,t[rt+1 − rt+1(0)1],(10)

Σt =Ei,t[(rt+1 − rt+1(0)1− μi,t)(rt+1 − rt+1(0)1− μi,t)
′].(11)

Let σ2
t be an N × 1 vector of the diagonal elements of Σt. The following lemma, proved in

Appendix A, describes the solution to the portfolio-choice problem.

Lemma 1. The first-order condition for the portfolio-choice problem is the constrained

Euler equation:

Ei,t

[(
Ai,t+1

Ai,t

)−1

Rt+1

]
=1− (I− 1w′

i,t)(Bi,tλi,t(12)

−Ei,t

[(
Ai,t+1

Ai,t

)−1
∂p′

t

∂wi,t
diag(Rt+1)wi,t

])
.

An approximate solution to the portfolio-choice problem is

wi,t ≈ Σ−1
t μ̂i,t

ci,t
,(13)

where

μ̂i,t =μi,t +
σ2
t

2
+Bi,tλi,t,(14)

ci,t =1 + Ai,t

(∑
j �=i

Aj,t

cj,t

)−1

.(15)

Lemma 1 generalizes the known relation between Euler equations in asset pricing (12)

and closed-form solutions in portfolio choice (13). The right side of equation (12) simplifies to

1 when the investor is unconstrained (i.e., λi,t = 0) and is a price-taker (i.e., ∂p′
t/∂wi,t = 0).
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Under this frictionless benchmark, we can impose rational expectations to obtain

Et

[(
Ai,t+1

Ai,t

)−1

Rt+1

]
= 1.(16)

The literature on consumption-based asset pricing tests this moment condition on both

aggregate and household consumption data. The key insight is that a test of equation (16)

does not require household portfolio data at the asset level under the maintained null that

investors are unconstrained price-takers and have rational expectations (Mankiw and Zeldes

1991; Brav, Constantinides, and Geczy 2002; Vissing-Jørgensen 2002).

Equation (13) says that investors hold different portfolios because they have different

beliefs about expected returns, or they face different constraints. Equation (13) shows that

heterogeneous beliefs and constraints are not separately identified based on observed port-

folios alone. That is, the econometrician could use equation (13) to identify heterogeneous

beliefs under the null that investors are unconstrained (Sharpe 1974; Shumway, Szefler, and

Yuan 2009). Alternatively, she could use equation (13) to identify heterogeneous constraints

under the null of homogeneous beliefs. The constant ci,t > 1 in the denominator of equa-

tion (13) shows that strategic investors respond less to price than in a competitive market,

especially when they are large relative to other investors.

Following the literature on empirical asset pricing, suppose that returns have a factor

structure and that an asset’s expected return and factor loadings depend only on its own

prices and characteristics (Ross 1976; Fama and French 1993).

Assumption 1. The covariance matrix of log excess returns is Σt = ΠtΠ
′
t + πtI, where

Πt is an N ×1 vector and πt > 0 is a scalar. Expected excess returns and factor loadings are

μ̂i,t =x̂tΦi,t + φi,t,(17)

Πt =x̂tΨt,(18)

where x̂t is an N × (K +1) matrix of prices and characteristics. Φi,t and Ψt are (K +1)× 1

vectors, and φi,t is an N × 1 vector of unobserved characteristics.

Assumption 1 imposes a one-factor structure to simplify the exposition, but Appendix A

shows that our results generalize to the multi-factor case. Similarly, idiosyncratic variance

need not be constant across assets if we are willing to assume that expected returns and

factor loadings, scaled by the idiosyncratic variance, are linear in prices and characteristics.
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Proposition 1. Under Assumption 1, the optimal portfolio (13) is

wi,t = x̂tβi,t + εi,t,(19)

where

βi,t =
1

πt

(
Φi,t −Ψt

Π′
tμ̂i,t

πt +Π′
tΠt

)
,(20)

εi,t =
φi,t

πt
.(21)

Proposition 1, proved in Appendix A, shows that the mean-variance portfolio simplifies

to a linear function of prices and characteristics. The reason is that an asset’s price and

characteristics are sufficient for its factor loadings under Assumption 1, and therefore, its

contribution to the variance of the optimal portfolio. Because the term after Ψt in equation

(20) is a scalar under Assumption 1, the investor’s demand for characteristics is simply a

linear combination of the vector on expected returns Φi,t and factor loadings Ψt. That is, the

investor prefers assets with characteristics that are associated with higher expected returns or

smaller factor loadings. The demand for unobserved (to the econometrician) characteristics

in equation (19) arises from their contribution to expected returns.

In vector notation, the logit model of asset demand (1) is

wi,t

wi,t(0)
− 1 = exp{x̂tβi,t + εi,t} − 1 ≈ x̂tβi,t + εi,t,(22)

to a first-order approximation. Therefore, the logit model is equivalent to the mean-variance

portfolio (19) if returns have a factor structure as in Assumption 1. This means that the sub-

stitution effects implied by the logit model could be fully consistent with traditional models

of portfolio choice. In this paper, we proceed under the assumption that the logit model is

a structural model of asset demand, which could ultimately be motivated by Proposition 1.
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2.4. Existence and Uniqueness of Equilibrium

Let It(n) = {i|n ∈ Ni,t} be the set of investors that hold asset n in period t. Substituting

equations (1) and (3) into equation (4), we rewrite market clearing in logarithms as

pt(n) = log

⎛⎝ ∑
i∈It(n)

Ai,twi,t(0) exp{δi,t(n)}
⎞⎠− st(n)(23)

= log

⎛⎝ ∑
i∈It(n)

Ai,twi,t(0) exp

{
β0,i,tpt(n) +

K∑
k=1

βk,i,txk,t(n) + εi,t(n)

}⎞⎠− st(n).

Thus, we have a system of N nonlinear equations in N asset prices, whose solution is the

vector of equilibrium prices. Proposition 2, proved in Appendix A, provides an approximate

solution to this system of equations.

Proposition 2. To a first-order approximation, equilibrium prices are

pt(n) ≈
K∑
k=1

βk,t(n)xk,t(n) + θ0,t(n)− θ1,t(n)st(n) + εt(n),(24)

where

βk,t(n) =

∑
i∈It(n) Ai,twi,t(0)βk,i,t∑

i∈It(n)Ai,twi,t(0)(1− β0,i,t)
,(25)

θ0,t(n) =

∑
i∈It(n)Ai,twi,t(0) log(

∑
i∈It(n)Ai,twi,t(0))∑

i∈It(n)Ai,twi,t(0)(1− β0,i,t)
,(26)

θ1,t(n) =

∑
i∈It(n)Ai,twi,t(0)∑

i∈It(n)Ai,twi,t(0)(1− β0,i,t)
,(27)

εt(n) =

∑
i∈It(n) Ai,twi,t(0)εi,t(n)∑

i∈It(n)Ai,twi,t(0)(1− β0,i,t)
.(28)

Equation (24) presents an intuitive interpretation of asset prices in our model. Our

model is like a cross-sectional regression of prices on characteristics, but one in which the

coefficients on characteristics vary across assets. Equation (25) shows that the coefficients

vary across assets because of market segmentation; the set of active investors differs across

assets. Equation (25) also shows that the coefficient on characteristic k for asset n is a

wealth-weighted average of βk,i,t across investors that hold asset n. This means that prices

vary more with characteristics that are more important to investors.
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In the special case that all investors hold all assets (i.e., It(n) = {1, . . . , It}), the coef-

ficients on characteristics are constant across assets. Then equation (24) becomes a Fama-

MacBeth (1973) regression of prices on characteristics. To obtain a Fama-MacBeth regression

of returns on characteristics, we subtract pt−1(n) from both sides and reinterpret xk,t(n) as

lagged characteristics that are observed in period t − 1. In Section 4, we describe a gen-

eral procedure for estimating our model that remains valid, even in the presence of market

segmentation and price impact.

Equation (24) is well defined when β0,i,t < 1 for all investors. Thus, Proposition 2 provides

an informal argument for the existence and uniqueness of equilibrium under the following

assumption.

Assumption 2. The coefficient on price satisfies β0,i,t < 1 for all investors.

This assumption implies that both individual and aggregate demand are downward slop-

ing because the diagonal elements of matrices (5) and (6) are positive. To formally prove the

existence and uniqueness of equilibrium for the nonlinear model, we rewrite market clearing

(4) in logarithms and vector notation as

p = f(p) = log

(
I∑

i=1

Aiwi(p)

)
− s.(29)

In this equation and throughout the remainder of the paper, we drop time subscripts, unless

they are necessary, to simplify notation.

Proposition 3. Under Assumption 2, the continuous map f on a compact convex set

in R
N has a unique fixed point.

Proposition 3, proved in Appendix A, guarantees the existence and uniqueness of equilib-

rium. Nevertheless, we need an algorithm for finding the equilibrium price vector in practice.

Appendix B describes an efficient algorithm for finding the equilibrium in any counterfactual

experiment, which we have developed for the empirical applications in Section 5.

Of course, the use of our model for policy experiments is valid only under the null that

equation (2) is a structural relation that is policy invariant. The Lucas (1976) critique

applies under the alternative that the coefficients on price and characteristics ultimately

capture beliefs or constraints that change with policy. Furthermore, we cannot answer

welfare questions without taking an explicit stance on preferences, beliefs, and constraints.

However, this may not matter for most asset pricing applications in which price (rather than

welfare) is the primary object of interest.
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3. Stock Market and Institutional Holdings Data

3.1. Stock Prices and Characteristics

The data on stock prices, dividends, returns, and shares outstanding are from the Center for

Research in Securities Prices (CRSP) Monthly Stock Database. We restrict our sample to

ordinary common shares (i.e., share codes 10, 11, 12, and 18) that trade on NYSE, AMEX,

and Nasdaq (i.e., exchange codes 1, 2, and 3). We further restrict our sample to stocks with

non-missing price and shares outstanding. We construct a dummy for dividend paying in the

previous 12 months, then interact this dummy with log dividends per split-adjusted share

in the previous 12 months. These two characteristics enter our specification of equation

(2), which, together with log price, allow asset demand to depend on the dividend yield.

Our specification also includes a Nasdaq dummy as a simple control for industry. A full set

of industry dummies would not be identified for most institutions that hold concentrated

portfolios, as we discuss below.

Accounting data are from the Compustat North America Fundamentals Annual Database.

Following the usual procedure, we merge the CRSP data to the most recently available Com-

pustat data as of at least 6 months and no more than 24 months prior to the trading day.

The 6-month lag ensures that the accounting data were public on the trading day. We con-

struct book equity following the definition in Davis, Fama, and French (2000). We construct

profitability as the ratio of earnings to assets.4 We include log book equity, log book equity

to assets, profitability, and an S&P 500 dummy as four of the characteristics in equation (2).

Log book equity captures size. Profitability, together with log price, allows asset demand to

depend on the earnings yield.

Two important criteria guided our choice of characteristics in equation (2). First, the

characteristic must be available for most stocks because our goal is to estimate the demand

system for the entire stock market. This rules out some characteristics with limited coverage,

such as analyst earnings estimates (Hong, Lim, and Stein 2000). Second, the characteristic

must not be a direct function of shares outstanding, which rules out market equity as a

measure of size. The reason is that shares outstanding is the supply of stocks, so a regression

of quantity demanded on quantity supplied becomes a tautology. Put differently, shares

outstanding affects demand only through the price in an equilibrium model.

Following Fama and French (1992), our analysis focuses on ordinary common shares that

are not foreign or REIT (i.e., share code 10 or 11) and have non-missing characteristics and

4Earnings are income before extraordinary items, minus dividends on preferred stock (if available), plus
deferred income taxes (if available). In each period, we winsorize profitability at the 2.5th and 97.5th
percentiles to reduce the effect of large outliers.
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returns. In our terminology, these are the stocks that make up the inside assets. The outside

asset includes the complement set of stocks, which are either foreign (i.e., share code 12),

REIT (i.e., share code 18), or have missing characteristics or returns.

3.2. Institutional Stock Holdings

The data on institutional common stock holdings are from the Thomson-Reuters Institutional

Holdings Database (s34 file), which are compiled from the quarterly filings of Securities

and Exchange Commission Form 13F. All institutional investment managers that exercise

investment discretion on accounts holding Section 13(f) securities, exceeding $100 million in

total market value, must file the form. Form 13F reports only long positions and not short

positions.

We merge the institutional holdings data with the CRSP-Compustat data by CUSIP and

drop any holdings that do not match (i.e., 13(f) securities whose share codes are not 10, 11,

12, or 18). We compute the dollar holding for each asset that an institution holds as price

times shares held. Assets under management (AUM) is the sum of dollar holdings for each

institution. We compute the portfolio weights as the ratio of dollar holdings to assets under

management.

Our model requires that shares outstanding equal the sum of shares held across investors,

so that market clearing (4) holds. For each stock, we define the shares held by the household

sector as the difference between shares outstanding and the sum of shares held by 13F insti-

tutions.5 The household sector represents direct household holdings and smaller institutions

that are not required to file Form 13F. We also include as part of the household sector any

13F institution with less than $10 million in assets under management, no inside assets, or

no outside assets.

Table 1 summarizes the 13F institutions in our sample from 1980 to 2014. In the be-

ginning of the sample, there were 539 institutions that managed 35 percent of the stock

market. This number grows steadily to 2,802 institutions that managed 63 percent of the

stock market by the end of the sample. Between 2010 and 2014, the median institution

managed $328 million, while the larger institutions at the 90th percentile managed $5,554

million. Most institutions hold concentrated portfolios. Between 2010 and 2014, the median

institution held 69 stocks, while the more diversified institutions at the 90th percentile held

454 stocks.

5In a small number of cases, the sum of shares reported by 13F institutions exceeds shares outstanding,
which may be due to shorting or reporting errors (Lewellen 2011). In these cases, we scale down the reported
holdings of all 13F institutions to ensure that the sum equals shares outstanding.
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4. Estimating the Asset Demand System

4.1. Empirical Specification

We divide equation (1) by (3) and take the logarithm to derive our empirical specification:

log

(
wi,t(n)

wi,t(0)

)
= β0,i,tpt(n) +

K∑
k=1

βk,i,txk,t(n) + εi,t(n).(30)

We impose the coefficient restriction β0,i,t < 1 to guarantee that demand is downward sloping

and that equilibrium is unique (see Proposition 3). Equation (30) relates the cross section of

holdings to prices and characteristics for each investor i in each period t. The coefficient on

price is lower (i.e., demand is more elastic) if there is a stronger negative relation between

holdings and prices, holding characteristics constant.

We estimate equation (30) at the institution level whenever there are more than 1,000

observations in the cross section of holdings. For institutions with fewer than 1,000 obser-

vations, we must pool them with similar institutions in order to accurately estimate the

coefficients. We define similar institutions with respect to size and investment style, as

captured by average market equity and average book-to-market equity for stocks in their

portfolio. Thus, we conditionally sort institutions into groups by assets under management,

the portfolio weight on outside assets, the portfolio-weighted average of log market equity,

and the portfolio-weighted average of log book-to-market equity. We set the total number

of groups in each period to target 2,000 for the average number of observations per group.

4.2. Identifying Assumptions

The identifying assumption that is implied by the literature on asset pricing in endowment

economies (Lucas 1978) is

E[εi,t(n)|xt(n), pt(n)] = 0.(31)

That is, characteristics (i.e., dividends and their future distribution) are exogenous. Fur-

thermore, investors are assumed to be atomistic and have no price impact. Equation (30)

could be estimated by ordinary least squares under these assumptions, which describes most

of the empirical literature on household portfolio choice.

The ordinary least squares estimator for the coefficient on price converges in probability
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to

Cov(β0,i,tpt(n) + εi,t(n), pt(n))

Var(pt(n))
≈ β0,i,t +

Cov(εi,t(n), εt(n))

Var(pt(n))
,(32)

where the approximation is based on equation (24). Ordinary least squares is consistent if

an investor’s latent demand is uncorrelated with the average latent demand across investors.

This requires that the investor be atomistic so that the mechanical correlation through its

own latent demand is negligible. Moreover, the investor’s latent demand must uncorrelated

with that of other investors, which rules out any factor structure in latent demand. Because

these assumptions are unlikely to hold for institutional investors or the household sector, we

offer two alternative identification strategies based on weaker assumptions.

The first strategy is identification by coefficient restriction. We order the characteristics

so that log dividends per share is the first characteristic in equation (30)

Assumption 3. The coefficients on log price and log dividends per share satisfy the

restriction β0,i,t + β1,i,t = 0.

To understand this assumption, consider a hypothetical stock split in which price and

dividends per share are adjusted by the same multiplicative factor but nothing else changes.

That is, other characteristics, the coefficients on characteristics, and latent demand remain

the same. Assumption 3 is an economically plausible restriction that demand is invariant

to this hypothetical stock split. This assumption is not testable because actual stock splits

coincide with changes in fundamentals, beliefs, or constraints that affect demand. We think

that invariance is a necessary property for all asset demand systems, which is satisfied in

traditional asset pricing models. Therefore, we impose Assumption 3 throughout the paper.

Assumption 3 gives us an over-identifying restriction that allows us to weaken moment

condition (31) to

E[εi,t(n)|xt(n)] = 0.(33)

That is, we no longer need to assume that price is orthogonal to latent demand. Intuitively,

moment restriction (33) identifies β1,i,t, from which we also identify β0,i,t = −β1,i,t through

Assumption 3.

The second strategy is instrumental variables, which builds on the key insight from the

literature on indexing effects that plausibly exogenous variation in residual supply identifies

an investor’s demand (Harris and Gurel 1986; Shleifer 1986). Our identification is based

on two assumptions. The first assumption is that investors have an exogenous investment
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universe, which is a subset of stocks that they are allowed to hold. In practice, this invest-

ment universe is defined by an investment mandate or other portfolio constraints, which are

perhaps most transparent in the case of index or sector funds (e.g., S&P 500 or technology

funds). The second assumption is that an investor’s portfolio choice does not depend directly

on the investment universe of investors outside their group, defined above by similarity in

size and investment style. This assumption is sufficiently weak to allow for direct interaction

or benchmarking within groups.

These two assumptions allow us to construct an instrument for price as follows. Let

N̂i,t ⊇ Ni,t be investor i’s investment universe, which we empirically capture as stocks that

were ever held in the past year. Let Gi,t(n) ⊇ {i} be the set of investors in the same group

as investor i, who hold asset n in period t. We then rewrite market clearing (4) as

Pt(n)St(n) =
∑

j∈Gi,t(n)

Aj,twj,t(n) +
∑

j /∈Gi,t(n)

Aj,t

⎛⎝wj,t(n)− 1

1 +
∣∣∣N̂j,t

∣∣∣
⎞⎠(34)

+
∑

j /∈Gi,t(n)

Aj,t
1

1 +
∣∣∣N̂j,t

∣∣∣ ,
where |·| denotes the number of elements in a set. The first two terms on the right side, which

are the demand of investors in the same group and the portfolio choice of investors outside

the group, are endogenous. However, the third term, which depends only on the investment

universe of investors outside the group, is assumed to be exogenous. Thus, we construct an

instrument that isolates the part of variation in price that comes from exogenous variation

in residual supply as

p̂i,t(n) = log

⎛⎝ ∑
j /∈Gi,t(n)

Aj,t
1

1 +
∣∣∣N̂j,t

∣∣∣
⎞⎠− st(n).(35)

This instrument can be interpreted as the counterfactual price if investors outside the group

were to mechanically index to a 1/N rule within their investment universe. This instrument

allows us to weaken moment condition (31) to

E[εi,t(n)|xt(n), p̂i,t(n)] = 0.(36)

This moment condition is sufficiently weak to allow for any correlation in latent demand

across investors.

To summarize, we estimate equation (30) under two different identification strategies.
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The first strategy is identification by coefficient restriction under Assumption 3, which

amounts to generalized method of moments under moment condition (33). The second

strategy is instrumental variables, which amounts to generalized method of moments under

moment condition (36). The standard trade-off between robustness and efficiency applies.

Moment condition (33) is weaker, so it remains valid for a larger set of alternatives. However,

moment condition (36) leads to more efficient estimates when the assumptions underlying

the instrument are satisfied.

4.3. Estimated Demand System

As we discussed in Section 3, the characteristics in our specification are a dividend paying

dummy, this dummy interacted with log dividends per share, log book equity, log book equity

to assets, profitability, a Nasdaq dummy, and an S&P 500 dummy. Figure 1 summarizes the

coefficients estimated by instrumental variables under moment condition (36). We report

the cross-sectional mean of the estimated coefficients for institutions with assets above and

below the 90th percentile as well as for households.

A lower coefficient on price implies a higher demand elasticity (5). Thus, Figure 1

shows that larger institutions on average are more price elastic than smaller institutions.

Households are more price elastic than institutions on average. For both institutions and

households, the coefficient on price has declined over time, which implies a rising demand

elasticity. That is, demand curves for stocks have flattened over time, as we discuss in

Section 5.

Compared with smaller institutions, larger institutions on average prefer stocks with

higher dividends, higher book equity, and higher profitability. That is, larger institutions

tend to tilt their portfolios toward large-cap value stocks, and smaller institutions tend to tilt

toward small-cap growth stocks. Compared with larger institutions, households prefer stocks

with higher dividends, higher book equity, and lower profitability. For both institutions and

households, the coefficient on the Nasdaq dummy peaks in 2000:1, coinciding with the climax

of the dot-com bubble.

Given the estimated coefficients, we can recover estimates of latent demand in equation

(30). Figure 2 summarizes latent demand estimated by instrumental variables. We report

the cross-sectional standard deviation of latent demand for institutions with assets above

and below the 90th percentile as well as for households. A higher standard deviation of

latent demand implies more extreme portfolio weights that are tilted away from observed

characteristics. Periods of highest activity for institutions are the late 1990s and the financial

crisis. The period of highest activity for households is the financial crisis, during which the

standard deviation of latent demand peaked in 2008:2.
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In addition to instrumental variables, we have estimated the asset demand system by least

squares under moment condition (31) and by coefficient restriction under moment condition

(33).6 The upper panel of Figure 3 is a scatter plot of the coefficients on price estimated

by least squares versus instrumental variables. Most of the points are above the 45-degree

line, which implies that the least squares estimates have a positive bias. A positive bias is

consistent with the hypothesis that institutions have price impact, which induces a positive

correlation between price and latent demand in equation (30).

The lower panel of Figure 3 is a scatter plot of the coefficients on price estimated by

coefficient restriction versus instrumental variables. The points are centered along the 45-

degree line, which implies that the two identification strategies produce similar estimates.

Since the results are similar for the two sets of estimates, we report the ones for instrumental

variables in Section 5. In particular, both sets of estimates result in similar predictive power

for the cross section of stock returns, with instrumental variables slightly outperforming

identification by coefficient restriction.

5. Asset Pricing Applications

Let x be an N ×K matrix of asset characteristics, whose (n, k)th element is xk(n). Let A

be an I × 1 vector of investors’ wealth, whose ith element is Ai. Let β be a (K + 1) × I

matrix of coefficients on price and characteristics, whose (k, i)th element is βk−1,i. Let ε be

an N × I matrix of latent demand, whose (n, i)th element is εi(n). Market clearing (29)

defines an implicit function for log price:

p = g(s,x,A, β, ε).(37)

That is, asset prices are fully determined by shares outstanding, characteristics, the wealth

distribution, the coefficients on characteristics, and latent demand.

In this section, we use equation (37) in four asset pricing applications. First, we use our

model to estimate the price impact of trades as a measure of stock market liquidity. Second,

we use our model to decompose the cross-sectional variance of stock returns into supply- and

demand-side effects. Third, we use a similar variance decomposition to see whether larger

institutions explain a disproportionate share of the stock market volatility in 2008. Finally,

we use our model to predict cross-sectional variation in stock returns.

6Estimation under moment condition (31) is by restricted least squares since we impose the coefficient
restrictions β0,i,t < 1 and β0,i,t + β1,i,t = 1.
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5.1. Stock Market Liquidity

Following Kyle (1985), a large literature estimates the price impact of trades as a liquidity

measure.7 While we recognize that there are many compelling liquidity measures in the

literature (e.g., Pástor and Stambaugh 2003), price impact is the most natural and straight-

forward measure for our model. In this section, we offer an alternative way to estimate price

impact through the asset demand system.

We define the coliquidity matrix for investor i as

∂p

∂ε′i
=

(
I−

I∑
j=1

AjZ
−1∂wj

∂p′

)−1

AiZ
−1∂wi

∂ε′i
(38)

=

(
I−

I∑
j=1

Ajβ0,jZ
−1Yj

)−1

AiZ
−1Yi.

The (n,m)th element of this matrix is the elasticity of asset price n with respect to investor

i’s demand for asset m.8 The matrix inside the inverse in equation (38) is the aggregate

demand elasticity (6). This implies larger price impact for assets that are held by less price

elastic investors (Shleifer 1986). The diagonal elements of the matrix outside the inverse are

Aiwi(n)(1− wi(n))/(
∑I

j=1Ajwj(n)). This implies larger price impact for investors that are

large relative to other investors that hold the asset.

Summing equation (38) across investors, we define the aggregate coliquidity matrix as

I∑
i=1

∂p

∂ε′i
=

(
I−

I∑
i=1

Aiβ0,iZ
−1Yi

)−1 I∑
i=1

AiZ
−1Yi.(39)

The (n,m)th element of this matrix is the elasticity of asset price n with respect to the

aggregate demand for asset m. Again, price impact is larger for assets that are held by

less price elastic investors. The diagonal elements of the matrix outside the inverse are a

holdings-weighted average of 1−wi(n) across investors. This implies larger price impact for

assets that are smaller shares of investors’ wealth.

7See Kraus and Stoll (1972), Glosten and Harris (1988), Amihud (2002), and Acharya and Pedersen
(2005). Our methodology allows price impact to differ across investors (Chan and Lakonishok 1993) and
captures cross elasticities across stocks (Pasquariello and Vega 2013).

8Kondor and Vayanos (2014) propose a similar liquidity measure, which is a monotonic transformation
of our measure: (

∂qi(n)

∂εi(n)

)−1
∂p(n)

∂εi(n)
=

(
(1− wi(n))

(
∂p(n)

∂εi(n)

)−1

− 1

)−1
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We estimate the average price impact for each stock through the diagonal elements of

matrix (38), averaged across 13F institutions. Figure 4 summarizes the cross-sectional dis-

tribution of average price impact across stocks and how that distribution has evolved over

time. Average price impact has declined over the last 30 years, especially for the least liquid

stocks at the 90th percentile of the distribution. This means that the cross-sectional distri-

bution of liquidity has significantly compressed over this period. For the least liquid stocks,

the average price impact of a 10 percent increase in demand has declined from 0.83 percent

in 1980 to 0.15 percent in 2014.

We also estimate the aggregate price impact for each stock through the diagonal elements

of matrix (39). Figure 5 summarizes the cross-sectional distribution of aggregate price impact

across stocks and how that distribution has evolved over time. Similar to average price

impact, aggregate price impact has declined over the last 30 years. For the median stock,

the aggregate price impact of a 10 percent increase in aggregate demand has declined from

19 percent in 1980 to 13 percent in 2014. Aggregate price impact is strongly countercyclical

(i.e., aggregate liquidity is procyclical), peaking in 2000:1 and 2009:1.

The literature on indexing effects estimates demand elasticities from additions or deletions

from stock market indices (see Wurgler and Zhuravskaya 2002, for a review). A recent paper

in this literature by Chang, Hong, and Liskovich (2014) estimates the demand elasticity for

stocks that move between Russell 1000 and 2000 indices, which is a larger sample of stocks

than previous studies that are based on major indices such as the S&P 500. Our estimates

in Figure 5 are consistent with an average demand elasticity of 1.46 in Chang, Hong, and

Liskovich (2014), which provides independent support for our methodology.

5.2. Variance Decomposition of Stock Returns

Following Fama and MacBeth (1973), a large literature asks to what extent characteristics

explain the cross-sectional variance of stock returns. A more recent literature asks whether

institutional trades explain the significant variation in stock returns that remains unexplained

by characteristics (Nofsinger and Sias 1999; Gompers and Metrick 2001). In this section,

we introduce a variance decomposition of stock returns that offers a precise answer to this

question.

We start with the definition of log returns:

rt+1 = pt+1 − pt + vt+1,(40)
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where vt+1 = log(1+ exp{dt+1 − pt+1}). We then decompose the change in log price as

pt+1 − pt = Δpt+1(s) + Δpt+1(x) + Δpt+1(A) + Δpt+1(β) + Δpt+1(ε),(41)

where

Δpt+1(s) =g(st+1,xt,At, βt, εt)− g(st,xt,At, βt, εt),(42)

Δpt+1(x) =g(st+1,xt+1,At, βt, εt)− g(st+1,xt,At, βt, εt),(43)

Δpt+1(A) =g(st+1,xt+1,At+1, βt, εt)− g(st+1,xt+1,At, βt, εt),(44)

Δpt+1(β) =g(st+1,xt+1,At+1, βt+1, εt)− g(st+1,xt+1,At+1, βt, εt),(45)

Δpt+1(ε) =g(st+1,xt+1,At+1, βt+1, εt+1)− g(st+1,xt+1,At+1, βt+1, εt).(46)

We compute each of these counterfactual price vectors through the algorithm described in

Appendix B. We then decompose the cross-sectional variance of log returns as

Var(rt+1) =Cov(Δpt+1(s), rt+1) + Cov(Δpt+1(x), rt+1) + Cov(vt+1, rt+1)(47)

+ Cov(Δpt+1(A), rt+1) + Cov(Δpt+1(β), rt+1) + Cov(Δpt+1(ε), rt+1).

Equation (47) says that variation in asset returns must be explained by supply- or

demand-side effects. The first three terms represent the supply-side effects due to changes

in shares outstanding, changes in characteristics, and the dividend yield. The last three

terms represent the demand-side effects due to changes in assets under management, the

coefficients on characteristics, and latent demand.

Table 2 presents the variance decomposition of annual stock returns, pooled over the

full sample. On the supply side, shares outstanding explain 1.9 percent, and characteristics

explain 6.2 percent of the variation in stock returns. Dividend yield explains only 0.4 percent,

which means that price appreciation explains most of the variation in stock returns.

On the demand side, assets under management explain 14.4 percent, and the coefficients

on characteristics explain 2.7 percent of the variation in stock returns. Latent demand is

clearly the most important, explaining 74.5 percent of the variation in stock returns. That

is, stock returns are mostly explained by changes in institutional demand that are unrelated

to changes in observed characteristics. This finding is consistent with the fact that cross-

sectional regressions of prices or returns on characteristics have low explanatory power (Fama

and French 2008; Asness, Frazzini, and Pedersen 2013).

Our variance decomposition establishes a new set of targets for a growing literature on

asset pricing models with institutional investors (see footnote 1). A common feature of these
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models is that asset prices move with the wealth distribution across heterogeneous investors

(Basak and Pavlova 2013). Characteristics such as dividends also matter for institutions

that care about their performance relative to a benchmark. Finally, latent demand matters

insofar as institutions have heterogeneous beliefs and constraints, endowment shocks, or

private signals. In future work, models with institutional investors could be quantitatively

tested against our facts about the variance of stock returns due to characteristics, the wealth

distribution, and latent demand.

5.3. Stock Market Volatility in 2008

In the aftermath of the financial crisis, various regulators have expressed concerns that large

investment managers could amplify volatility in bad times (Office of Financial Research 2013;

Haldane 2014). The underlying intuition is that even small shocks could translate to large

price movements through the sheer size of their balance sheets. Going against this intuition,

however, is the fact that large institutions tend to be diversified buy-and-hold investors that

prefer more liquid stocks. We use our model to better understand the relative contributions

of various institutions and households in explaining the stock market volatility in 2008.

We modify the variance decomposition (47) as

Var(rt+1) =Cov(Δpt+1(s) + Δpt+1(x) + vt+1, rt+1)(48)

+
It∑
i=1

Cov(Δpt+1(Ai) + Δpt+1(βi) + Δpt+1(εi), rt+1).

The first term is the total supply-side effect due to changes in shares outstanding, changes

in characteristics, and the dividend yield. The second term is the sum of the demand-

side effects across investors due to changes in assets under management, the coefficients on

characteristics, and latent demand. In our implementation of the variance decomposition,

we first order the largest 25 institutions by their assets under management at the end of

2007, then smaller institutions, then households.

Table 3 presents the variance decomposition of stock returns in 2008. The supply-side

effects explain only 4.6 percent of the variation in stock returns, which means that the

demand-side effects explain the remainder of the variance. Barclays Bank (now part of

Blackrock) is the largest institution in our sample. Barclays managed $699 billion at the end

of 2007, and its assets fell by 41 percent in 2008. During this period, its contribution to the

variance of stock returns was 1.0 percent. Summing across the largest 25 institutions, their

overall contribution to the variance of stock returns was 7.0 percent. Smaller institutions

explain 29.8 percent, and households explain 58.6 percent of the variation in stock returns.
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The three groups of investors each managed about a third of the stock market, and their

assets fell by nearly identical shares in 2008. However, the relative contribution of the largest

25 institutions to stock market volatility was much smaller than the smaller institutions and

households.

The reason for this finding is that the largest institutions tend to be diversified buy-

and-hold investors that prefer more liquid stocks with smaller price impact. Equation (24)

makes this intuition precise. Holding shares outstanding and characteristics constant, any

movement in stock prices must be explained by changes in equation (28). The numerator

of equation (28) is a wealth-weighted average of latent demand. As shown in Figure 2,

the standard deviation of latent demand remained relatively low in 2008 for the largest

institutions, in contrast to households. The denominator of equation (28) is the aggregate

demand elasticity, which is higher for the more liquid stocks held by the largest institutions.

5.4. Predictability of Stock Returns

To a first-order approximation, the conditional expectation of log returns (40) is

Et[rt+1] ≈ g(Et[st+1],Et[xt+1],Et[At+1],Et[βt+1],Et[εt+1])− pt.(49)

This equation says that asset returns are predictable if any of its determinants are pre-

dictable. Based on the importance of latent demand in Table 2, we isolate mean reversion

in latent demand as a potential source of predictability in stock returns.

We start with the assumption that all determinants of stock returns, except for latent

demand, are random walks. We then model the dynamics of latent demand from period t

to t + 1 as

εi,t+1(n) = ρ1,i,tεi,t(n) + ρ2,i,tε−i,t(n) + νi,t+1(n),(50)

where

ε−i,t(n) =

∑
j∈It(n)\{i} Aj,twj,t(0)εj,t(n)∑

j∈It(n)\{i} Aj,twj,t(0)
(51)

is a wealth-weighted average of latent demand across investors, excluding investor i. The

coefficient ρ1,i,t in equation (50) captures mean reversion in latent demand. The coefficient

ρ2,i,t captures either momentum (i.e., ρ2,i,t > 0) or contrarian (i.e., ρ2,i,t < 0) strategies with

respect to aggregate demand.

In June of each year, we estimate equation (50) through an ordinary least squares re-
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gression of latent demand on lagged latent demand and aggregate demand in June of the

previous year. We estimate the regression at the institution level whenever there are more

than 1,000 observations. Otherwise, we pool the institutions by the groups described in Sec-

tion 4, defined by similarity in size and investment style. Figure 6 summarizes the estimated

coefficients by reporting their cross-sectional mean for institutions with assets above and

below the 90th percentile as well as for households. Latent demand is quite persistent with

an annual autoregressive coefficient around 0.7.

We use the predicted values from regression (50) as estimates of expected latent demand.

We then substitute expected latent demand in equation (49) and compute the counterfactual

price vector through the algorithm described in Appendix B. We then sort stocks into five

portfolios in December, based on the estimated expected returns in June. The 6-month lag

ensures that the 13F filing in June was public on the trading day. We track the portfolio

returns from 1982 to 2014, rebalancing once a year in December.

Table 4 summarizes the characteristics of the five portfolios sorted by estimated expected

returns. The first row reports the median expected return within each portfolio, which varies

from −15 percent for the low expected-return portfolio to 32 percent for the high expected-

return portfolio. The high expected-return portfolio contains stocks with lower market equity

and higher book-to-market equity. This means that our model identifies small-cap value

stocks as having high expected returns, consistent with the known size and value premia.

Panel A of Table 5 reports annualized average excess returns, relative to the 1-month

T-bill, on the equal-weighted portfolios. In the full sample, the high minus low portfolio has

an average excess return of 14.70 percent with a standard error of 2.18 percent. When we

split the sample in half, the average excess return on the high minus low portfolio is 19.58

percent in the first half and 10.10 percent in the second half.

To better understand these portfolios, Panel B of Table 5 reports betas and alpha with

respect to the Fama-French (1993) three-factor model. The three factors are excess market

returns, small minus big (SMB) portfolio returns, and high minus low (HML) book-to-market

portfolio returns. Both SMB and HML beta are positive for the high minus low portfolio,

consistent with the portfolio characteristics in Table 4. However, the high minus low portfolio

has an annualized alpha of 14.88 percent with respect to the Fama-French three-factor model,

which is statistically significant.

Panel A of Table 6 reports annualized average excess returns on the value-weighted

portfolios. In the full sample, the high minus low portfolio has an average excess return of

6.02 percent with a standard error of 2.29 percent. When we split the sample in half, the

average excess return on the high minus low portfolio is 6.02 percent in the first half and

6.03 percent in the second half. Overall, these returns are lower than those for the equal-
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weighed portfolios in Table 5, which implies that the high returns due to mean reversion

in institutional demand are more prominent for smaller stocks. As reported in Panel B,

the high minus low portfolio has an annualized alpha of 2.67 percent with respect to the

Fama-French three-factor model, which is statistically insignificant.

6. Extensions of the Model

In this section, we discuss potential extensions of our model that are beyond the scope of

this paper, which we leave for future research.

6.1. Endogenizing Supply and the Wealth Distribution

We have assumed that shares outstanding and asset characteristics are exogenous. How-

ever, we could endogenize the supply side of our model, just as asset pricing in endowment

economies has been extended to production economies.9 Once we endogenize capital struc-

ture and investment decisions, we could answer a broad set of questions at the intersection of

asset pricing and corporate finance. For example, how do the portfolio decisions of institu-

tions affect real investment at the business-cycle frequency and growth at lower frequencies?

We have also assumed that the wealth distribution is exogenous, or more primitively,

that net capital flows between investors are exogenous. By modeling how households allocate

wealth across institutions (Hortaçsu and Syverson 2004; Shin 2014), we could answer a broad

set of questions related to systemic risk. For example, which types of institutions exacerbate

fire-sale dynamics, and could capital regulation prevent them?

6.2. Endogenizing the Extensive Margin

We have assumed that the set of assets that an investor holds is exogenous because the

logit model (1) requires that the portfolio weights be strictly positive. We could allow the

portfolio weights to be zero, and thereby endogenize the extensive margin, by modifying

equation (1) as

wi,t(n) =
αi,t(exp{δi,t(n)} − 1)

1 +
∑

m∈ ̂Ni,t
αi,t(exp{δi,t(m)} − 1)

,(52)

9Recent efforts to incorporate institutional investors in production economies include Gertler and Karadi
(2011), Brunnermeier and Sannikov (2014), Adrian and Boyarchenko (2013), and Coimbra and Rey (2015).
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where αi,t > 0 and

δi,t(n) = max

{
β0,i,tpt(n) +

K∑
k=1

βk,i,txk,t(n) + εi,t(n), 0

}
.(53)

A key feature of this model is that the set N̂i,t of assets that the investor could hold includes

assets that are not held because wi,t(n) = 0 when δi,t(n) = 0.

Equation (52) implies an estimation equation

log

(
1 +

wi,t(n)

αi,twi,t(0)

)
= max

{
β0,i,tpt(n) +

K∑
k=1

βk,i,txk,t(n) + εi,t(n), 0

}
,(54)

which is a Tobit model with an additional parameter αi,t. We could identify this model

through a normality assumption on εi,t(n).

We see two technical issues with this approach. The first issue is that the proof of

Proposition 3 (i.e., uniqueness of equilibrium) no longer applies because asset demand (52)

is not continuously differentiable in price. The second issue is how to empirically model the

set of assets that the investor could hold. A simple rule that could work well in practice is

to include any asset that the investor has held in the past year.

6.3. Relaxing the Assumption of Factor Structure in Returns

The derivation of the logit model in Proposition 1 required the assumption of factor structure

in returns. If returns do not have a factor structure, a simple modification of our model is

wi,t

wi,t(0)
= Σ−1

t exp{x̂tβi,t + εi,t}.(55)

This model is equivalent to the mean-variance portfolio (13) if

μ̂i,t = wi,t(0) exp{x̂tβi,t + εi,t}.(56)

That is, expected returns are exponential-linear in prices and characteristics.

Of course, it is an empirical question whether equation (55) would work better in practice.

A potential problem with this approach is that the covariance matrix is notoriously difficult

to estimate. A relatively robust way to estimate the covariance matrix is to impose a factor

structure in returns, in which case we are back to the logit model through Proposition 1.

Brandt, Santa-Clara, and Valkanov (2009) propose a similar approach to avoid estimating

the covariance matrix, which is to directly model portfolio weights as a function of prices
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and characteristics.

7. Conclusion

Traditional asset pricing models make assumptions that are not suitable for institutional

investors. First, strong assumptions about preferences, beliefs, and constraints imply asset

demand with little heterogeneity across investors. Second, these models assume that in-

vestors are atomistic and have no price impact. A more recent literature allows for some

heterogeneity in asset demand by modeling institutional investors explicitly (see footnote 1).

However, it has not been clear how to operationalize these models to take full advantage

of institutional holdings data. Our contribution is to develop an asset pricing model with

rich heterogeneity in asset demand that matches institutional holdings. We offer two identi-

fication strategies, based on a coefficient restriction or instrumental variables, which remain

valid in the presence of price impact. They produce similar estimates that are different from

the least squares estimates.

Our model could answer a broad set of questions related to the role of institutions in asset

markets, which are difficult to answer with reduced-form regressions or event studies. For

example, how do large-scale asset purchases affect asset prices through substitution effects

in institutional holdings? How would regulatory reform of banks and insurance companies

affect asset prices and real investment? How does the secular shift from defined-benefit to

defined-contribution plans affect asset prices, as capital moves from pension funds to mutual

funds and insurance companies? We hope to address some of these questions in future work.
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Table 1

Summary of 13F Institutions

Assets under
management Number of

Percent ($ million) stocks held

Number of of market 90th 90th
Period institutions held Median percentile Median percentile

1980–1984 539 35 339 2,678 121 395
1985–1989 769 41 405 3,636 122 464
1990–1994 965 46 409 4,643 111 534
1995–1999 1,298 51 473 6,759 108 597
2000–2004 1,776 57 376 6,146 92 547
2005–2009 2,414 65 337 5,491 76 477
2010–2014 2,802 63 328 5,554 69 454

This table reports the time-series mean of each summary statistic within the given period, based on the
quarterly 13F filings. The sample period is quarterly from 1980:1 to 2014:4.

Table 2

Variance Decomposition of Stock Returns

Percent of
variance

Supply:
Shares outstanding 1.9

(0.1)
Stock characteristics 6.2

(0.2)
Dividend yield 0.4

(0.0)
Demand:

Assets under management 14.4
(0.2)

Coefficients on characteristics 2.7
(0.1)

Latent demand 74.5
(0.3)

Observations 142,783

The cross-sectional variance of annual stock returns is decomposed into supply- and demand-side effects.
Heteroskedasticity-robust standard errors are reported in parentheses. The sample period is annual from
1981:2 to 2014:2.
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Table 3

Variance Decomposition of Stock Returns in 2008

Change
AUM AUM in AUM Percent of

ranking Institution ($ billion) (percent) variance

Supply: Shares outstanding, stock
characteristics & dividend yield 4.6 (0.7)

1 Barclays Bank 699 -41 1.0 (0.0)
2 Fidelity Management & Research 577 -63 0.8 (0.1)
3 State Street Corporation 547 -37 0.5 (0.0)
4 Vanguard Group 486 -41 0.8 (0.0)
5 AXA Financial 309 -70 0.3 (0.0)
6 Capital World Investors 309 -44 0.1 (0.0)
7 Wellington Management Company 272 -51 0.4 (0.1)
8 Capital Research Global Investors 270 -53 0.2 (0.1)
9 T. Rowe Price Associates 233 -44 0.2 (0.0)
10 Goldman Sachs & Company 182 -59 0.3 (0.0)
11 Northern Trust Corporation 180 -46 0.2 (0.0)
12 Bank of America Corporation 159 -50 0.2 (0.0)
13 J.P. Morgan Chase & Company 153 -51 0.2 (0.0)
14 Deutsche Bank Aktiengesellschaft 136 -86 0.1 (0.0)
15 Franklin Resources 135 -60 0.2 (0.0)
16 College Retire Equities 135 -55 0.2 (0.0)
17 Janus Capital Management 134 -53 0.2 (0.0)
18 MSDW & Company 133 45 0.4 (0.0)
19 Amvescap London 110 -42 0.2 (0.0)
20 Dodge & Cox 93 -65 0.0 (0.0)
21 UBS Global Asset Management 90 -63 0.1 (0.0)
22 Davis Selected Advisers 87 -54 0.0 (0.0)
23 Neuberger Berman 86 -73 0.1 (0.0)
24 Blackrock Investment Management 86 -69 0.1 (0.0)
25 Oppenheimer Funds 83 -64 0.2 (0.0)

Subtotal: Largest 25 institutions 5,684 -47 7.0

Smaller institutions 6,483 -53 29.8 (1.8)
Households 6,322 -47 58.6 (2.0)
Total 18,489 -49 100.0

The cross-sectional variance of annual stock returns in 2008 is decomposed into supply- and demand-side
effects. This table reports the total demand-side effect for each institution due to changes in assets under
management, the coefficients on characteristics, and latent demand. The largest 25 institutions are ranked by
assets under management in 2007:4. Heteroskedasticity-robust standard errors are reported in parentheses.
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Table 4

Characteristics of Portfolios Sorted by Expected Returns

Portfolios sorted by expected returns

Characteristic Low 2 3 4 High

Expected return -0.15 -0.02 0.07 0.17 0.32
Log market equity 6.07 5.98 5.24 4.20 2.83
Book-to-market equity 0.26 0.49 0.67 0.87 1.30
Book equity to assets 0.51 0.50 0.48 0.47 0.49
Profitability 0.28 0.29 0.27 0.26 0.29
Number of stocks 909 912 910 908 868

Stocks are sorted into five portfolios in December of each year, based on their estimated expected returns in
the preceding June. This table reports the time-series mean of the median characteristic for each portfolio.
The sample period is monthly from January 1982 to December 2014.

Table 5

Equal-Weighted Portfolios Sorted by Expected Returns

Portfolios sorted by expected returns High

Low 2 3 4 High −Low

Panel A: Average excess returns (percent)
1982–2014 3.87 9.13 10.64 11.90 18.57 14.70

(3.77) (3.28) (3.16) (3.21) (3.77) (2.18)
1982–1997 0.03 8.39 10.76 12.56 19.60 19.58

(4.70) (4.13) (4.03) (4.20) (4.61) (2.70)
1998–2014 7.49 9.82 10.53 11.28 17.59 10.10

(5.84) (5.05) (4.83) (4.83) (5.91) (3.36)
Panel B: Fama-French three-factor betas and alpha
Market beta 1.13 1.04 0.97 0.90 0.86 -0.27

(0.03) (0.02) (0.02) (0.03) (0.05) (0.04)
SMB beta 0.72 0.65 0.73 0.84 1.02 0.30

(0.06) (0.06) (0.06) (0.06) (0.10) (0.07)
HML beta -0.03 0.21 0.32 0.36 0.40 0.43

(0.05) (0.04) (0.04) (0.06) (0.11) (0.09)
Alpha (percent) -6.13 -0.99 0.57 2.14 8.75 14.88

(1.11) (0.89) (0.94) (1.29) (2.27) (1.93)

This table reports the properties of equal-weighted portfolios sorted by estimated expected returns. Aver-
age excess returns, relative to the 1-month T-bill, and the Fama-French three-factor alpha are annualized.
Heteroskedasticity-robust standard errors are reported in parentheses. The sample period is monthly from
January 1982 to December 2014.
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Table 6

Value-Weighted Portfolios Sorted by Expected Returns

Portfolios sorted by expected returns High

Low 2 3 4 High −Low

Panel A: Average excess returns (percent)
1982–2014 7.66 8.88 9.23 11.27 13.68 6.02

(2.85) (2.59) (2.62) (2.79) (3.37) (2.29)
1982–1997 9.64 11.25 12.13 14.01 15.66 6.02

(3.93) (3.58) (3.43) (3.97) (4.53) (3.17)
1998–2014 5.79 6.65 6.51 8.68 11.82 6.03

(4.11) (3.73) (3.93) (3.92) (4.96) (3.31)
Panel B: Fama-French three-factor betas and alpha
Market beta 1.01 0.97 0.98 0.97 1.00 -0.01

(0.01) (0.01) (0.01) (0.02) (0.04) (0.05)
SMB beta -0.12 -0.06 0.06 0.31 0.67 0.79

(0.02) (0.02) (0.02) (0.04) (0.06) (0.06)
HML beta -0.20 0.10 0.27 0.49 0.45 0.65

(0.02) (0.03) (0.03) (0.03) (0.06) (0.07)
Alpha (percent) 0.32 0.71 0.17 1.15 2.98 2.67

(0.49) (0.56) (0.61) (1.00) (1.62) (1.79)

This table reports the properties of value-weighted portfolios sorted by estimated expected returns. Aver-
age excess returns, relative to the 1-month T-bill, and the Fama-French three-factor alpha are annualized.
Heteroskedasticity-robust standard errors are reported in parentheses. The sample period is monthly from
January 1982 to December 2014.
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Figure 1. Coefficients on price and characteristics. The logit model of asset demand is
estimated by instrumental variables for each institution at each date. This figure reports the
cross-sectional mean of the estimated coefficients on price and characteristics for institutions
with assets above and below the 90th percentile as well as for households. The quarterly
sample period is from 1980:1 to 2014:4.
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Figure 1 (continued). Coefficients on price and characteristics.
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Figure 2. Standard deviation of latent demand. The logit model of asset demand is estimated
by instrumental variables for each institution at each date. This figure reports the cross-
sectional standard deviation of latent demand for institutions with assets above and below
the 90th percentile as well as for households. The quarterly sample period is from 1980:1 to
2014:4.
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Figure 3. Comparison of coefficients on price. The upper panel is a scatter plot of coeffi-
cients on price estimated by least squares under moment condition (31) versus instrumental
variables under moment condition (36). The lower panel is a scatter plot of coefficients on
price estimated by coefficient restriction under moment condition (33) versus instrumental
variables. The annual sample period is from 1980:2 to 2014:2.
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Figure 4. Variation in average price impact across stocks. Average price impact for each stock
is estimated through the diagonal elements of matrix (38), averaged across 13F institutions.
This figure reports the cross-sectional distribution of average price impact across stocks. The
quarterly sample period is from 1980:1 to 2014:4.
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Figure 5. Variation in aggregate price impact across stocks. Aggregate price impact for each
stock is estimated through the diagonal elements of matrix (39). This figure reports the
cross-sectional distribution of aggregate price impact across stocks. The quarterly sample
period is from 1980:1 to 2014:4.
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Figure 6. Dynamics of latent demand. An ordinary least squares regression of latent demand
on lagged latent demand and lagged aggregate demand is estimated for each institution
in June of each year. This figure reports the cross-sectional mean of the coefficients for
institutions with assets above and below the 90th percentile as well as for households. The
annual sample period is from 1981:2 to 2014:2.
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Appendix A. Proofs

Proof of Lemma 1. We rewrite expected log utility over wealth in period T as

Ei,t[log(Ai,T )] = log(Ai,t) +

T−1∑
s=t

Ei,t

[
log

(
Ai,s+1

Ai,s

)]
(A1)

= log(Ai,t) +
T−1∑
s=t

Ei,t[log(Rs+1(0) +w′
i,s(Rs+1 −Rs+1(0)1))].

Then the first-order condition for the Lagrangian (9) is

∂Li,t

∂wi,t
= Ei,t

[(
Ai,t+1

Ai,t

)−1(
Rt+1 −Rt+1(0)1− ∂p′

t

∂wi,t
diag(Rt+1)wi,t

)]
+Bi,tλi,t = 0.(A2)

Multiplying this equation by 1w′
i,t and rearranging, we have

Ei,t

[(
Ai,t+1

Ai,t

)−1

Rt+1(0)1

]
=1 + 1w′

i,t(Bi,tλi,t(A3)

−Ei,t

[(
Ai,t+1

Ai,t

)−1
∂p′

t

∂wi,t

diag(Rt+1)wi,t

])
.

Equation (12) follows from adding equations (A2) and (A3).

We approximate equation (A1) as

Ei,t[log(Ai,T )] ≈ log(Ai,t) +

T−1∑
s=t

Ei,t

[
rs+1(0) +w′

i,s

(
μi,s +

σ2
s

2

)
− 1

2
w′

i,sΣswi,s

]
,(A4)

which follows from Campbell and Viceira (2002, equation 2.23):

log

(
Ai,t+1

Ai,t

)
≈ rt+1(0) +w′

i,t

(
rt+1 − rt+1(0)1+

σ2
t

2

)
− 1

2
w′

i,tΣtwi,t.(A5)

Then the first-order condition for the Lagrangian (9) is

∂Li,t

∂wi,t
= μi,t +

σ2
t

2
− ∂p′

t

∂wi,t
wi,t − Σtwi,t +Bi,tλi,t = 0,(A6)

where we use the definition μi,t = Ei,t[log(Pt+1+Dt+1)]−pt. Rearranging this equation, the
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optimal portfolio is

wi,t =

(
Σt +

∂p′
t

∂wi,t

)−1

μ̂i,t.(A7)

Totally differentiating market clearing (29) with respect to wi,t, we have

∂p′
t

∂wi,t
=diag

(
It∑
j=1

Aj,twj,t

)−1(
Ai,tI+

∑
j �=i

Aj,t

∂w′
j,t

∂pt

∂p′
t

∂wi,t

)
(A8)

=Ai,t

⎛⎝I− diag

(
It∑
j=1

Aj,twj,t

)−1∑
j �=i

Aj,t

∂w′
j,t

∂pt

⎞⎠−1

diag

(
It∑
j=1

Aj,twj,t

)−1

.

We now verify that investor i’s optimal demand schedule is equation (13) when all other

investors j �= i submit the demand schedule (13). Since ∂w′
j,t/∂pt = −Σ−1

t /cj,t, we have

∂p′
t

∂wi,t
=Ai,t

⎛⎝I+ diag

(
It∑
j=1

Aj,twj,t

)−1∑
j �=i

Aj,t

cj,t
Σ−1

t

⎞⎠−1

diag

(
It∑
j=1

Aj,twj,t

)−1

(A9)

≈Ai,t

(∑
j �=i

Aj,t

cj,t

)−1

Σt,

which follows from the approximation (I+A)−1 ≈ A−1 when the eigenvalues of A are large.

Equation (13) follows from substituting equation (A9) in equation (A7). QED

Proof of Proposition 1. In this proof, we generalize Assumption 1 to the case in which

Ψt is a (K + 1)× F matrix of factor loadings. Under Assumption 1, we have

Σ−1
t μ̂i,t =(ΠtΠ

′
t + πtI)

−1μ̂i,t(A10)

=
1

πt
(I− Πt(πtI+Π′

tΠt)
−1Π′

t)μ̂i,t

=
1

πt
(x̂tΦi,t + φi,t − x̂tΨt(πtI+Π′

tΠt)
−1Π′

tμ̂i,t)

=x̂tβi,t + εi,t,

where the second line follows from the Woodbury matrix identity and

βi,t =
1

πt
(Φi,t −Ψt(πtI+Π′

tΠt)
−1Π′

tμ̂i,t).(A11)
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Proof of Proposition 2. To a first-order approximation around δi,t(n) ≈ 0 for all investors,

equation (23) is

pt(n) ≈ log

⎛⎝ ∑
i∈It(n)

Ai,twi,t(0)

⎞⎠+

∑
i∈It(n) Ai,twi,t(0)δi,t(n)∑

i∈It(n) Ai,twi,t(0)
− st(n).(A12)

Equation (24) follows from out substituting out δi,t(n) through equation (2) and rearrang-

ing. QED

Proof of Proposition 3. Because f is a continuous function mapping a compact convex

set in R
N to itself, the Brouwer fixed point theorem implies the existence of an equilibrium

that satisfies equation (29). Under Assumption 2, we verify the sufficient conditions for

uniqueness in the Brouwer fixed point theorem (Kellogg 1976). The function f is continuously

differentiable because wi(p) is continuously differentiable. Moreover, one is not an eigenvalue

of ∂f/∂p′ if

det

(
I− ∂f

∂p′

)
= det(Z−1) det

(
Z−

I∑
i=1

Ai
∂wi

∂p′

)
> 0.(A13)

Note that det(Z−1) > 0 because Z−1 is positive definite. Let B− = {i|β0,i ≤ 0} be the set of

investors for whom the coefficient on price is negative, and let B+ = {i|0 < β0,i < 1} be the

complement set of investors. Because

Z−
I∑

i=1

Ai
∂wi

∂p′ =
∑
i∈B−

Aidiag(wi)−
∑
i∈B−

Aiβ0,iYi(A14)

+
∑
i∈B+

Ai(1− β0,i)diag(wi) +
∑
i∈B+

Aiβ0,iwiw
′
i

is a sum of positive definite matrices, its determinant is positive. QED

Appendix B. Algorithm for Finding the Equilibrium

This appendix describes an efficient algorithm for finding the equilibrium in any counterfac-

tual experiment. Starting with any price vector pj , the Newton’s method would update the

price vector through

pj+1 = pj +

(
I− ∂f(pj)

∂p′

)−1

(f(pj)− pj).(B1)
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For our application, this method would be computationally slow because the Jacobian has

a large dimension. Therefore, we approximate the Jacobian with only its diagonal elements:

∂f(pj)

∂p′ ≈diag

(
min

{
∂f(pj)

∂p(n)
, 0

})
(B2)

=diag

(
min

{∑I
i=1Aiβ0,iwi(n,pj)(1− wi(n,pj))∑I

i=1Aiwi(n,pj)
, 0

})
,

where the minimum ensures that the elements are bounded away from one. In the empirical

applications of this paper, we have found that this algorithm is fast and reliable, converging

in no more than 20 steps in most cases.
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