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Abstract

We provide a theory of trading through intermediaries in OTC markets. The role

of intermediaries is to sustain trade, when trade is beneficial. In our model, traders

are connected through a network. Agents observe their neighbors’actions, and can

trade with their counterparty in a given period through a path of intermediaries in

the network. However, agents can renege on their obligations. We show that trading

through a network is essential to support trade, when agents infrequently meet the

same counteparty in the market. However, intermediaries must receive fees to have

the incentive to implement trades. Concentrated intermediation, as represented by a

star network, is both a constrained effi cient and a stable structure, when agents incur

linking costs. Moreover, the center agent in a star can receive higher fees as well.
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1 Introduction

Many financial transactions take place in over-the-counter (OTC) markets where counter-

parties can choose whom they trade with. Often, markets participants develop long-lived

trading relationships. For instance, Afonso, Kovner and Schoar (2014) find evidence that

participants in the Fed Funds market frequently choose to interact with the same counter-

party over time. Moreover, in various markets a relatively small group of dealers interme-

diate persistently the majority of trades. This concentrated intermediation structure has

been documented in markets for CDS contracts (Duffi e, Scheicher and Vuillemey, 2015),

muni bonds (Li and Schürhoff, 2014), or securitized products (Hollifield, Neklyudov and

Spatt, 2014). These regularities lead to questions about the role of intermediation and its

connection to relationship trading in OTC markets.

This paper addresses these questions by proposing a theory of endogenous intermedia-

tion in OTC markets. In particular, we study the impact of trading through a network of

intermediaries on the effi ciency of trade, in an environment with limited commitment and

limited information about agents’past actions. Intermediaries in our model can alleviate

these frictions and sustain (unsecured) trade. However, intermediaries affect the division

of the surplus. We show that intermediaries must be compensated to ensure they have

the incentive to implement trades. The share of surplus that accrues to intermediaries is

endogenously determined by incentive compatibility, and depends on the network struc-

ture. Our main results state that star networks, in which one agent intermediates all

transactions, are both constrained effi cient and stable structures in large economies, even

as traders incur small linking costs.

To study relationship trading, we consider a dynamic setting in which agents trade

bilaterally. At each date half of the agents have liquidity surpluses and half have investment

opportunities. An agent with a liquidity surplus is randomly paired with an agent with an

investment opportunity at each period. The liquidity agent is endowed with one unit of

cash that may be lent to the paired investment agent to finance his investment opportunity,

whose return depends on the amount of the borrowing.

In this environment, we consider two frictions. First, we assume that there is limited

commitment, and that agents can renege on due payments at the end of the period. This
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friction captures the fact that agents in financial markets can strategically default and

benefit from it at the expense of their counterparties. For instance, in the Fed funds

market banks can delay the delivery of overnight loaned funds until the afternoon hours,

while in the repo markets agents strategically postpone both the delivery of the collateral

(failure to deliver) and repaying the loan (failure to receive).1 More generally, agents can

use the funds borrowed to engage in excessive risk taking activities that would preclude

them from repaying their debts.

Second, we consider that agents have limited access to information about other agents’

past behavior. This assumption is motivated by the fact that, while OTC markets are

opaque and information about the terms of trade is not public, financial institutions may

nevertheless have access to soft information about their long-term trading partners.2 In

particular, we consider that traders are connected through an informational network that

allows each agent to observe the repayments that his neighbors make.

In the presence of limited commitment, agents have to rely on self-enforcing contracts to

implement trades. In particular, repayments may be enforced if agents can be threatened

with exclusion from the market in case they default on their obligations. The information

observed through the network allows agents to implement such threats. For this, however,

transactions must take place through intermediaries in the network. Unless contracts are

self-enforcing, trade breaks down.3

We obtain three sets of results. The first set highlights the role of intermediaries in

sustaining trade. We start by showing that trade is not sustainable in large economies

in which no agent is linked to any other agent. At the same time, we show that a star

network can sustain trade, no matter how large the number of market participants is.

However, the center agent in the star must be compensated to ensure he has the incentive to

intermediate trades. In particular, since the center agent transfers funds between liquidity

1Bartolini, Hilton and McAndrews (2010) document settlement delays in the money market, while
Gorton and Muir (2015) present evidence of fails in repo markets.

2For instance, Du et al. (2015) show that participants in the CDS market choose their counterparties
based on their risk profile.

3A credit bureau that collects and makes credit records public can make intermediaries redundant.
However, there are significant diffi culties associated with creating such institution. Typically, financial
market participants are reluctant to disclose to regulators not only information about themselves, but
also information about their counterparties. Indeed, financial institutions see putting a counterparty into
default as a very serious step.
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and investment agents, he must receive appropriate fees to overcome the temptation to

retain the funds for himself. The fees in our model are endogenously determined by

incentive compatibility. The incentive compatibility constraint for agents who use the

intermediation service sets an upper bound for the fees the center agent receives, while

the incentive compatibility constraint for the center agent himself sets a lower bound. In

addition, by comparing different network structure we highlight the relative advantage

that network positions offer some agents over others. We find that the center agent in a

star network can receive a higher fee than any intermediary in other classes of networks

we study.

The second set of results focuses on welfare improvements that trading through a

network can bring in the presence of linking costs. When taking linking costs into account,

maximizing expected welfare involves a trade-off. On the one hand, a higher level of

investment increases welfare. On the other hand, a network that implements a high level

of investment may involve a higher linking cost. We show that the star network is a

constrained effi cient network when it can sustain a level of investment suffi ciently close to

the first-best, provided that the linking costs are not too high and that the market size is

large.

The third set of results concerns network formation and stability, when agents incur

linking costs. In particular, we investigate whether agents have an incentive to participate

in a network and identify structures that are stable when traders are allowed to change

their links. We propose a dynamic network formation game, and introduce an appropriate

stability concept. We show that a star network is stable.

Although stylized, our results are consistent with the observed features of OTC markets

we have described above. In our set-up, a star network is both stable and constrained

effi cient. This is consistent with observations about the pattern of trades in OTC markets.

For instance, Li and Schürhoff (2014) show that nearly 80% of the trades are intermediated

by only one dealer, with the remainder involving longer intermediation chains. For our

results, we concentrate on characterizing equilibria in which all trades take place without

collateral. Since we do not aim to make quantitative statements, this simplifies the analysis

without losing insights. However, while in some markets, such as the Fed Funds market,

trade is unsecured, this is not always the case. In Section 5 we discuss an extension
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of our model in which transactions are collateralized. Moreover, our insights can be

readily transferred into a more realistic but less tractable model that allows for partial

collateralization in transactions.

Related Literature

This paper relates to several strands of literature. The more relevant studies are those on

intermediation in OTC markets, trading in networks and contract enforcement.

A series of papers, starting with Duffi e, Garleanu and Pedersen (2005), has studied

trading in OTC markets. While initially these studies have been concerned with explaining

asset prices through trading frictions, several recent additions to the literature are inter-

ested in the role of intermediaries in OTC markets. Hugonnier, Lester and Weill (2014),

Neklyudov (2014) and Chang and Zhang (2015) propose models in which intermediaries

facilitate trade between counterparties that otherwise would need to wait a long time to

trade. In our model, agents also trade through intermediaries to overcome frictions that

arise from search. However, our focus is on informational frictions, as is in Glode and Opp

(2015) and Fainmesser (2014). While in the first paper the role of intermediaries is to

reduce adverse selection and restore effi cient trading, in the second one intermediaries can

informally enforce the repayment of loans by borrowers, as in our model. In these studies,

however, intermediaries are exogenously determined. In contrast, in our model, certain

agents endogenously assume the role of intermediaries to facilitate repeated interactions

between traders in the market. Di Maggio and Tahbaz-Salehi (2015) show that inter-

mediaries can alleviate moral hazard problems in the economy if trade is collateralized.

However, the intermediation capacity is bounded when there are collateral shortages. We

show that intermediaries can alleviate ineffi ciencies in OTC markets even if such a case

were to arise. In addition, we allow agents to choose how to form links and analyze which

networks are stable.

There is a growing literature that studies trading in financial networks (e.g. Colla and

Mele, 2010, Ozsoylev and Walden, 2011, Babus and Kondor, 2013, Zawadowski, 2013,

Gofman (2014), Malamud and Rostek, 2014). These papers typically model trades that

take place either sequentially or in a spot market. Either way, trading relationships are

not considered. In contrast, the role of repeated interactions is at the core of our analysis.
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The literature on contract enforcement is substantial. The general aim of this literature

is to show that repeated interactions alleviate problems that arise when there is limited

enforcement of contracts. Allen and Gale (1999) propose a model where two parties

that interact repeatedly can implement the first-best contract, even though contracts are

incomplete. Other papers depart from the assumption that the same two parties interact

with each other, and consider a large population of agents that are matched at random

to interact every period. In this case, whether contracts can be enforced or not depends

crucially on how much information is available to each agent. Greif (1993) and Tirole

(1996) propose an enforcement mechanism based on community reputation, while Klein

and Leffl er (1981) rely on costless communication between consumers to enforce that

firms supply products of high quality to the market. In this paper we also study whether

it is possible to enforce first-best contracts through repeated interactions when agents are

randomly matched to trade. However, in our model agents have access to information via

a network of bilateral relationships. We provide conditions under which agents rely on

the network to trade the effi cient contracts. In addition, we allow agents to choose how

to form these relationships and analyze which networks structures are stable.

The paper is organized as follows. The next section introduces the model set-up. In

Section 3 we describe in detail the trading protocol and analyze when unsecured trade

is implementable, as well as the effi ciency of trading through networks. We propose con-

cepts for network formation and show which networks are stable in Section 4. Section 6

concludes.

2 The Environment

Time is discrete and has an infinite horizon. A set of agents, N = {1, ..., 2n}, participate

in the market at each date t. All agents are risk-neutral, infinitely lived, and discount

the future with the discount factor β = 1/(1 + φ), where φ is the discount rate. At the

beginning of each period, uniformly at random, half of the agents are assigned a liquidity

surplus, and the other half are assigned an investment opportunity. Let Lt be the set of

agents with liquidity surpluses in period t (henceforth, liquidity agents), and It be the

set of agents with investment opportunities in period t (henceforth, investment agents).
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A liquidity agent is endowed with one unit of cash, which can be stored at no cost until

the end of the period. An investment agent has an opportunity to invest in an asset

that matures at the end of the period. The investment in the asset is scalable: if an

amount q ∈ [0, 1] is invested, the asset yields a return R(q). We assume that R is strictly

increasing, strictly concave, twice differentiable with R′(1) ≥ 1 and R(0) = 0.

To exploit the investment opportunity, an investment agent i ∈ It needs to borrow

funds from some liquidity agent ` ∈ Lt at the beginning of each period, t. Typically, in

OTC markets parties trade customized contracts. To capture this feature, we assume that

once agents have been assigned a type (liquidity or investment), liquidity and investment

agents are matched uniformly at random, and each investment agent can borrow only from

the liquidity agent he is matched with. The debt must be repaid at the end of the period.

Formally, a matchingmt is a subset of Lt×It such that for each liquidity agent ` ∈ Lt,

there is a unique investment agent i ∈ It for which the pair mt = (`, i) ∈ mt. At each

date t, a matching mt is randomly drawn from the set of all possible matches at date t.

The probability that a pair of agents (k, k′) ∈ N ×N is matched at date t is then4

Pr[
(
k, k′

)
∈mt] =

1

2(2n− 1)
.

For the remainder of the paper, we refer to a pair of agents before any uncertainty is

realized as (k, k′), and to a matched pair of liquidity and investment agents as (`, i).

In this environment, we consider two frictions. First, we assume that there is limited

commitment, and that agents can renege on obligations at the end of the period.5 Sec-

ond, we consider that agents have limited access to information about other agents’past

behavior. In particular, we consider that agents are connected through an informational

network that allows each agent to observe the unilateral actions that his neighbors take.

A network, gt, is a graph (N , E t), where N is the set of nodes, and E t ⊂ N ×N is the set

of links that exist between agents at date t. The set of agents who have a link with agent

k in the network gt, or, the set of agent k’s neighbors, is denoted by N t
k. The information

4This is because the probability that k is a liquidity agent is 1
2
. Then, conditional on being a liquidity

agent, the probability that he is matched with k′ as an investment agent is 1/(2n− 1).
5 In our environment agents do not have collateral to secure trades. We discuss collateralized trades in

Section 5.
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that agents observe is described in detail in Section 3.1.

Trade may break down in the presence of limited commitment. To counteract this

problem agents can use the information they access through the network and trade (with-

out collateral) by relying on self-enforcing contracts. In particular, agents have the option

to trade through the informational network. Given a network gt and a realization of

the matching mt, the pairs that are matched at date t may or may not be connected

by a link. If a matched pair (`, i) has a link in the network gt, they can trade directly

through their link. If a matched pair (`, i) does not have a link in the network gt, they

can trade through a path of intermediaries. A path of intermediaries between a pair

(k, k′) ∈ N × N in a network gt is a sequence of agents (j1, j2, ..., jv) such that the links

(k, j1), (j1, j2), ..., (jv, k
′) ∈ E t. We use Pt (k, k′) to denote the set of paths from k to k′ in

the network gt, and Pt(k, k′) to denote a generic path. Similarly, once the matching mt is

realized, we use Pt
(
mt
)
to denote the set of paths that can be used to intermediate trade

between a matched pair mt = (`, i), and Pt(mt) to denote a generic path. The trading

protocol is described in detail in Section 3.1. The network has, thus, both a trading and

an informational function.

Links in the network are costly. In particular, each agent, k, incurs a linking cost for

each link he has in the network that has two components: a recurrent component, cl, that

is paid every period, and an idiosyncratic component, cm, that is paid only in the periods

in which the link is used in a transaction. A link can be used in a transaction when it

connects a pair of matched agents, or when it connects agents that intermediate trade

between a matched pair. Thus, the total cost that an agent pays in any given period t

depends not only on his position in the network, but also on the realized matching mt

and the path of intermediaries used to trade. The motivation behind the structure of

the linking costs is related to the two functions that a network has. The idiosyncratic

component, cm, can be interpreted as a transaction cost, while the recurrent component,

cl, can be interpreted as a cost to access information, or informational cost.

We study when the first-best allocation can be decentralized, and characterize second-

best outcomes as well.
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3 The (Repeated) Trading Game

In this section we take the network g = (N , E) as fixed for all periods.6 We analyze the

set of financial contracts for which trade takes place, if the level of investment is q ∈ [0, 1].

The level of investment, q, is defined as the amount that each investment agent borrows

from the liquidity agent with whom he is matched, and invests in the asset.

We begin by specifying the contracts and the trading game, and define strategies and

equilibrium. We characterize the level of investment that is implementable in equilibrium.

Then, we proceed to analyze the effi ciency of financial networks.

3.1 Financial Contracts and Trading Procedure

For each investment level q, the terms of trade between a matched pair is determined by

a financial contract which has two components. The first component specifies an amount,

d ∈ [q,R(q)], that an investment agent should repay a liquidity agent with whom he is

matched in exchange for borrowing q units of funds. The second component specifies a

fee f ∈ R+ that intermediaries can receive. More precisely, if a pair (k, k′) is matched and

trade through a path P(k, k′) = (j1, j2, ..., jv), then the investment agent should repay in

total d+
∑v

s=1 f , such that an intermediary js receives f , for any s = 1, ..., v.

The financial contract, (d, f), is independent of the position of the agents in the net-

work. An agent’s position in the network is only reflected in the total payoff he expects to

receive in a given period. However, a crucial feature of our analysis is that the financial

contract depends on the network structure g. By comparing different network structure

we highlight the relative advantage that network positions offer some agents over others.

We also allow the financial contract to depend on the level of investment, q.

In the presence of limited commitment, the incentive of intermediaries to transfer the

repayments to the next agent depends on the future benefits they expect to receive from

trade. In particular, an agent with a liquidity surplus who is an intermediary may find

it optimal to keep the repayments for himself, without the expectation of receiving fees

in the future. The fees in the financial contracts have then to be adequately designed to

deter the incentives of the intermediaries to renege on their obligations, with respect to

6 In Section 4 we relax this assumption and analyze issues related to network formation and stability.
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the information obtained from the network.

The trading procedure at date t, is given as follows. First each agent is assigned a type

(liquidity or investment), and the matching mt realizes. These realizations are common

knowledge among all agents.

Then, for each matched pair mt = (`, i) ∈mt, the investment agent i proposes a path

P(mt) = (j1, j2, ..., jv) through which to trade with `. We allow the investment agent i to

propose the empty path, that is, to propose to trade directly with ` even if they don’t have

a link, and circumvent the intermediaries given by the network g. We assume that this

proposal is common knowledge to all agents. Each agent on the path then sequentially

responds with an yes or no, starting from j1 and ending with `. If all agents on the path

respond with yes, then trade takes place and the liquidity agent, `, transfers q units of

cash to the investment agent, i, through the path. Otherwise, there is no trade between

the matched pair mt along the proposed path.

If trade takes place, each agent on the path has a debt obligations to the next one

according to the financial contract, (d, f), as follows. The agent i is obligated to repay

[d+ v · f ] to j1. Further, each intermediary jv′ is supposed to receive [d+ (v − s′ + 1)]

from js′−1 and is obligated to repay [d+ (v − s′) · f ] to js′+1, with j0 = i and jv+1 = `.

After the investment realizes its payoff, each agent on the path decides whether he

repays his debt obligation. The decision depends on both the agent’s willingness to repay

and the resources that are available to him. In particular, an intermediary may not have

suffi cient resources to honor his obligations if the agents before him on the path do not

honor theirs. In what follows we assume that an agent either repays in full or repays

nothing. This assumption will simplify our notation without losing any insights.

If there is no trade, the liquidity agent retains the unit of cash and the opportunity to

invest is foregone. Intermediaries receive no fees on the path P(mt).

Next, we describe the information structure in detail. As we discussed earlier, an

agent j can observe each of his neighbors’unilateral actions, as well as information that

is common knowledge, which includes the realized types of the agents, the matching, and

the proposed paths by each investment agent. For each agent k, his unilateral actions in

the network g at date t, denoted by atk, include the following elements: (i) his responses on

the proposed trading paths that he is involved; (ii) whether he repays in full to each of his
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neighbors, if he is either an intermediary and/or an agent with an investment opportunity.

If an agent repays directly to agents other than his neighbors, his action is not observed

by his neighbors. Let atk =
(
a0k, ..., a

t
k

)
be the unilateral actions taken by agent k up to

date t, and let at0 =
(
a00, ..., a

t
0

)
be the commonly known information up to date t. Then,

the history that an agent k observes at date t is given by htk =
{
atj : (j, k) ∈ E

}
∪ {at0}.

Because an agent may be involved in multiple trading paths, we need to specify a timing

for their responses and repayments. For each proposed trading path P = (j1, j2, ..., jv)

between a matched pair m = (i, `), agents in position j1 respond simultaneously first,

then agents in position j2, etc. Similarly, for repayment decisions, investment agents

decide first simultaneously, and then agents in position j1, depending on the resources

repaid by investment agents, and then agents in position j2, etc.

Next we introduce strategies and the equilibrium concept. First we define strategies.

For each agent k, his strategy in period t, denoted by stk, has three components:

• st,1k maps the history ht−1k he observes, the realization of agents’type, and the match-

ing mt to a proposed path, if he is an investment agent;

• st,2k maps the history ht−1k he observes, the commonly known information at0, and the

responses of his neighbors before him on the paths that involve him to his responses,

if he is a liquidity agent and/or an intermediary;

• st,3k maps the history ht−1k he observes, the commonly known information at0, and

the repayments of his neighbors before him on the paths that involve him to his

repayment decisions on all trading paths he is involved, if he is an investment agent

and/or an intermediary. Note that his repayment decision is constrained by repay-

ment decisions of agents before him on the trading paths.

We use Perfect Bayesian Equilibrium (PBE) as the solution concept. We restrict

attention to equilibria that satisfy the following properties.

(A1) No default. Every agent consents to trade according to the contract (d, f) and

there is no default in equilibrium plays.

(A2) Shortest path. The shortest paths in the network g are always proposed in equilib-

rium. When there are multiple shortest path between a matched pair, they are proposed
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with equal probabilities in equilibrium.

(A3) Stationary equilibrium allocation. The level of investment, q, is constant across

realized matches and across periods.

Definition 1 A PBE equilibrium satisfying (A1)-(A3) is called a simple equilibrium.

Condition (A1) is a symmetry requirement, as it rules out the possibility that only

a subset of agents trade. Similar considerations motivate condition (A3). Condition

(A2) requires that the equilibrium trading paths are the shortest ones. This assumption

simplifies our analysis, since in general networks multiple paths may be used to trade, but

only the shortest one minimizes the expected transaction cost, cm.

3.2 Implementation and Constrained Effi ciency

In this section we characterize contracts that can be implemented in equilibrium and

analyze their welfare properties. We conclude the sections by with some observations

about the compensation that intermediaries receive.

3.2.1 Contract implementation

We start by exploring the role of networks in supporting trade in equilibrium. We first de-

scribe how the gains from trade depend on the level of investment q. We then characterize

the investment level, q, that is implementable in a given network g. Focusing on the level

of investment, q, provides a rich metric to differentiate across those network structures in

which trade can be sustained.

Definition 2 A level of investment, q, is implementable in a network g if it is supported

in a simple equilibrium for some associated financial contract (d, f).

Abstracting from linking and transaction costs, trade is always beneficial. In particular,

when all matched pairs trade and the level of investment is q, then the average surplus

generated at each date is

∆ (q) = R (q)− q. (1)

Since the return R (·) is strictly concave and increasing, the condition R′(1) ≥ 1 ensures

that ∆ (·) is increasing in q ∈ [0, 1] with ∆ (q) > 0 for all q ∈ (0, 1]. The gains from
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trade are maximized when q = 1. This implies that q = 1 represents the first-best level of

investment.

Although trade generates a positive surplus, it is not necessarily the case that it can

be supported in equilibrium. Even in the least restrictive case of complete information,

when all histories are publicly observable, trade can be supported in equilibrium for an

investment level q if and only if7

φq ≤ 1

2
∆ (q) . (2)

The intuition is simple. Agents weigh the long-term benefit from participating in the

market against the one time gain of retaining all the return of the asset and paying 0. In

particular, when an investment agent decides whether to repay at the end of the period,

he takes into consideration he will be excluded from the market at all future dates as an

investment agent, if he defaults on his obligations.

When there is incomplete information, condition (2) is no longer suffi cient. In this

case, the frequency with which an agent trades with a counterparty affects his incentives

to default on his obligations. As we show below, networks may implement an investment

level q for which there are positive gains from trade, particularly when the number of

market participants grows large.

To understand the role of networks in supporting trade, we first explore the empty

network benchmark. In an empty network, no agent is linked to any other agent. In

this case, once the agents’ type has been assigned and the matching has been realized,

an investment agent can only propose to trade directly (i.e. the empty path) with the

liquidity agent he has been matched with. The liquidity agent can then respond either

yes or no. No agent intermediates trades. Aside from the information that is common

knowledge, each agent observes only the action of his counterparty at a given date t. Note

that this trading procedure is a special case of the trading procedure described in Section

3.1. The following lemma characterizes the level of investment that is implementable in

the empty network.

7We do not provide a proof for this statement, as the result is standard.
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Lemma 1 Let agents trade in an empty network.

(i) A level of investment, q, is implementable if

φq ≤ 1

2(2n− 1)
∆ (q) . (3)

(ii) For any level of investment q > 0, there exists n̄ such that q is not implementable

for all n ≥ n̄.

The lemma shows that the level of investment that is implementable when no informa-

tion (other than agents’own past trades) is observable depends on how large the economy

is. This is because the market size affects how likely it is that two counterparties who

trade at date t, meet again in a given future period. When n grows large, the probability

of meeting the same agent in future periods is small. Thus, if an agent defaults on his

current obligation but repays in future trades with other counterparties, the threat that

he will not trade when he meets his date-t counterparty again is not binding as n grows

large. Hence, he cannot overcome his temptation to default. As a result, when the market

size increases, no level of investment is implementable in an empty network, even though

there may be positive gains from trade.8

In a stark contrast with the empty network is the level of investment implementable

in a star network, which we characterize next. A network is a star if there exists an agent

kC such that

E = {(kC , j) : j ∈ N , j 6= k}.

We refer to agent kC in a star network the center agent. All other agents in the star

network are periphery agents. A star network with 2n agents is denoted g∗n. Figure 1(a)

illustrates a star network.

When analyzing implementation in networks, such as the star or more general struc-

tures, linking costs also affect agents’incentives to make repayments. In particular, the

8Lemma 1 also implies that the trading procedure we consider, in which each matched pair trades
through the network, is without loss of generality. Recall that, in a network, an agent’s repayment to
agents other than his neighbors is not observed by his neighbors. In particular, we cannot implement
unsecured trades in which an investment agent repays directly to the liquidty agent he is matched with
and who is not his neighbor, when n is suffi ciently large.
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Figure 1: This figure illustrates two types of networks with the same number of agents.
Panel (a) shows a star network. Panel (b) illustrates an inter-linked star network.

transaction cost, cm, is consequential, since an agent incurs it for each of his links that is

used to trade in a given period. In contrast, the agent incurs the informational cost, cl, for

each of his links every period, and hence it does not affect his repayment decision. While

only transaction costs play a role in implementation, both costs influence significantly

welfare and the stability of networks, as discussed later.

To characterize equilibria in networks for the remainder of the paper, we restrict our

attention to financial contracts with the property that d ≥ q+ cm. We use this restriction

for simplicity, as it ensures that the liquidity agent is willing to lend to the investment

agent through the network, provided that he believes that his counterparties will repay

their debts. No insights are lost if we relax the assumption.

The next proposition characterizes the levels of investment that can be implemented

under a star network.

Proposition 1 Let agents trade in a star network g∗n. Then, a level of investment, q, is

implementable if

φ(q + cm) + 2cm ≤
1

1/2 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
. (4)

Proposition 1 provides a suffi cient condition for a star network to implement a given

level of investment q, that is independent of the number of market participants. Thus,

even as n grows large, agents can still trade as long as the level of investment q satisfies

(4).
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We obtain condition (4) by ensuring that both center and periphery agents have the

incentive to repay their obligations. Consider first the incentives of a periphery agent.

On the one hand, the largest amount that a periphery agent can retain if he reneges on

his obligations is (d+ f). On the other hand, the expected discounted future benefit of

trading in the star network relative to no trade is at least β
1−β

[
1
2∆(q)− 1

2f − cm
]
. Indeed,

the first term, 12∆(q), reflects the gains from trading weighted by the probability that the

agent is assigned the investment role. The second term, 12f , reflects the expected fee that

an agent must pay to the center agent, when he is an investment agent matched with

another periphery agent. The third term reflects the transaction cost. Thus, if

−(d+ f) +
β

1− β

[
1

2
∆(q)− 1

2
f − cm

]
≥ 0,

or

f ≤ 1

1/2 + φ

[
−φd+

1

2
∆(q)− cm

]
, (5)

then a periphery agent has incentive to make repayments.

Next, consider the incentive of the center agent. On the one hand, the largest amount

that the center agent can retain if he reneges on his obligations is nd. On the other hand,

the expected discounted future benefit from trading and intermediating relative to not

trading in the star network is β
1−β

[
1
2∆(q) + (n− 1) f − (2n− 1) cm

]
. As before, the first

term, 12∆(q), reflects the relative gains from trading weighted by the probability that the

agent is an investment agent. In addition, every period he receives an amount (n− 1)f in

fees, while his total transaction cost is (2n−1)cm. Thus, the center agent has an incentive

to make repayments if

−nd+
β

1− β

[
1

2
∆(q) + (n− 1) f − (2n− 1) cm

]
≥ 0,

which holds when

f ≥ φd+ 2cm, (6)

since −φd+ 1
2∆(q)− cm ≥ 0 from (5). Setting d = q+ cm, condition (4) ensures that there

exists a fee f that satisfies the two inequalities (5) and (6).
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The condition for implementation of an investment level, q, in a star network is compa-

rable to the complete information case. Indeed, if we take f = 0 and cm = 0 in inequality

(5) we obtain condition (2) as when there is complete information. However, condition

(6) reflects a crucial distinction that arises because of the asymmetry in the information

that center and periphery agents can access in a star network. While the center agent has

information about all other agents in the economy, a periphery agent has information only

about the center. Thus, the center agent has the incentive to repay only when he expects

to receive a positive fee. In fact, condition (6) is a lower bound and condition (5) is an

upper bound for the fee that the center agent must receive, in the limit as the number of

market participants grows large.

3.2.2 Welfare and effi ciency

Next we turn to the welfare properties of networks, taking the linking costs into account.

Our aim is to characterize constrained effi cient networks. We begin with our welfare

criterion. Given a network g, and an investment level q, the expected aggregate welfare

when trades take place is given by

W (g, q) =

∞∑
t=0

βtn
{
R(q)− q + 1− 4ηgcl − 2(υg + 1)cm

}
(7)

where ηg represents the average number of links, and υg represents the average number of

intermediaries between pairs of agents in g, respectively.

As it is evident from (7), the direct effect of a network structure, g, on welfare can be

summarized by only two variables, ηg and υg. Given the network g, the total informational

cost per period is |E| · (2cl) = (2n) · ηg · (2cl). The total transaction cost depends on the

realization of the matching. However, in expectation, in any given period, it only depends

on the average number of intermediaries, and hence the total expected transaction cost is

n · (υg + 1) · (2cm). Next, we define constrained effi ciency.

Definition 3 A network g and an investment level q is a constrained effi cient arrangement

if it maximizes W (g, q) over the space of connected networks and investment levels such

that q is implementable in g.
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Maximizing expected social welfare involves a trade-off. On the one hand, the welfare

function (7) is increasing in the level of investment, q. On the other hand, there may be

high linking costs associated with a network that implements a higher q. For instance,

while it is possible to implement the first-best level of investment in the complete network,

the linking costs become infinitely large as the number of market participants grows.

A good candidate for a constrained effi cient arrangement is a network that can im-

plement high levels of investment at low linking costs, such as the star network. Indeed,

let q∗ be the largest investment level that can be implemented asymptotically in the star

network, that is,

q∗ = arg max ∆ (q)

s.t. φ(q + cm) + 2cm ≤
1

1/2 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
.

We have the following result.

Proposition 2 Suppose the first best level of investment is implementable in a star net-

work g∗n, or q
∗ = 1. Then (g∗n, q

∗) is the unique constrained effi cient arrangement for

suffi ciently large n.

The intuition is as follows. From Proposition 1, we know that a star network can

implement the first-best investment level when (4) holds for q = 1. Thus, we only need

to show that the star network minimizes the linking costs relative to all other connected

networks. The key trade-off then is between the transaction and informational costs,

and we prove that it never pays off to decrease the transaction costs while increasing

informational costs for large n’s, independently of cm and cl. The class of networks that

have the lowest informational costs is the class of minimally connected networks. In a

minimally connected network there exists a unique path between any pair of agents. A

star networks is clearly a member of this class. Lastly, we show that transaction costs are

minimized in the star among all minimally connected networks for suffi ciently large n.

When the first-best is not implementable in a star network (q∗ < 1), the trade-off

between the level of investment and linking costs that the welfare function (7) embeds is

even more pronounced. In particular, the gains from trade in a connected network must

be suffi ciently high to compensate for the linking costs that agents incur each period. We
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analyze the resolution of this trade-off asymptotically. For this purpose, we first introduce

the following definition.

Definition 4 Let {gn}n be a sequence of networks. Then, a level of investment, q, is

asymptotically implementable in {gn}n if there exists n̄ such that q is implementable

in gn for all n ≥ n̄. The sequence {gn}n and the investment level q is an asymptotically

constrained effi cient arrangement if for any sequence of connected networks {g′n}n and

any q′ asymptotically implementable under {g′n}n, we have that W (gn, q) ≥ W (g′n, q
′) for

all large n.

Under asymptotic implementability, a level of investment is implementable only if it is

implementable in a sequence of networks in suffi ciently large economies. The next result

shows that a star network can be asymptotically constrained effi cient even when the first

best level of investment is not implementable.

Proposition 3 There exists a threshold q̂ < 1 such the star network, g∗n, and the level of

investment, q∗, is an asymptotically constrained effi cient arrangement whenever q∗ ≥ q̂.

Proposition 3 extends the result in Proposition 2 to the case when the star network

cannot implement the first best level of investment.

Before we lay out the intuition for this result, we need to introduce a class of networks

as follows. In Lemma A.1 in the Appendix we show that there exist η̄ > 1 and ῡ > 1

such that for any sequence of networks {gn} in which ηgn ≤ η̄ and υgn ≤ ῡ for all n, if a

level of investment, q, is asymptotically implementable in {gn}, then it is asymptotically

implementable in star networks as well. We refer to a network g with ηg ≤ η̄ and υg ≤ ῡ,

as a small network. Given this result, the threshold q̂ is determined as the minimum q

such that

W (1, 1, q) ≥ max{W (1, ῡ, 1),W (η̄, 1, 1)}, (8)

where W
(
ηg, υg, q

)
is the welfare in a network g with average number of links, ηg, and

with average number of intermediaries, υg, when the investment level is q.

When q∗ < 1, the trade-off between the level of investment that is implementable and

linking costs for networks outside the class of small networks is resolved in favor of the
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star network, as long as q∗ ≥ q̂. Indeed, condition (8) ensures that the potential increase

in the implementable investment level is offset by the increase in linking costs for any

network that is not small, relative to the star. Thus, we just need to prove that the

star network is the constrained effi cient one among the small networks. For this, we use

Lemma A.1 which shows that an investment level higher than q∗ is not implementable in

networks in which linking costs are bounded by η̄ and ῡ.9 Hence, the star network can

(asymptotically) implement the highest investment level among all small networks. Then,

using similar arguments as for Proposition 2, we show that the star network is also the

most effi cient one in terms of linking costs among all small networks for suffi ciently large

n.

Note that according to Definition 3, a constrained effi cient network maximizes welfare

relative to all other connected networks. Thus, the results described in Proposition 2 and

3 do not require any condition for the value of the linking costs, cm and cl. Of course,

the implementability requirement places an upper bound on the transaction cost, cm.

However, as either informational or transaction costs rise, then the empty network may

yield higher welfare even when no trade takes place.

3.2.3 Intermediary fees

Another interesting implication that arises in our setup is related to the fees that the inter-

mediaries receive. In particular, the following result illustrates how the network structure

favors some intermediaries with respect to the fees they receive.

Corollary 1 Let fmaxg (q) be the maximum fee an intermediary can receive in a network g,

for a given implementable investment level q. Then, for any sequence {gn}n of minimally

connected networks or small networks,

fmaxg∗n
(q) ≥ fmaxgn (q)

for all asymptotically implementable investment levels q in {gn}n and for all n suffi ciently

large.
9Since in a "small" network the average number of links and the average number of intermediaries are

bounded by η̄ and ῡ, respectively, then aggregate informational cost is at most 4nη̄cl, while the aggregate
transaction cost is at most 2n (ῡ + 1) cm.
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Corollary 1 shows that the center agent in a star network can receive a higher fee than

any intermediary in a minimally connected or small network. While the result holds when

the same level of investment is asymptotically implemented in the star network as in a

minimally connected or small network, an additional mechanism strengthens this finding.

By Lemma A.1, the level of investment that is asymptotically implementable in a star

network is at least as high as in a small network (we show a similar result for minimally

connected networks in Babus and Hu, 2015). This implies that the surplus generated by

trading, as defined in (1), is at least as large in a star network. Since the fee represents a

division of the surplus between the center the periphery agents, a larger surplus makes it

feasible for center agent to receive higher fees.

Corollary 1 focuses on asymptotically implementable investment levels. For exactly

implementable investment levels, the maximum fee each of the two intermediaries in an

inter-linked star, represented in Figure 1(b), can receive is strictly smaller than the max-

imum fee the center agent in a star can receive. This is because a periphery agent in an

inter-linked star needs to pay fees to two intermediaries in any period with probability

half, when he has an investment opportunity. Thus, ensuring he has incentives to repay

places a tighter constraint on the fees that each intermediary receives. We can generalize

this argument and show that the analogous result holds for any interlinked stars with a

finite number of centers.10

4 Network Stability

We have demonstrated that the star network is the constrained effi cient arrangement. In

this section we investigate whether agents have incentives to participate in such a network

when traders are allowed to change their links. For this purpose, we first introduce the

network formation game, and then propose a stability concept.

We consider the following network-formation game. At date 0, fix a network g. At the

beginning of each even period t = 0, 2, ..., one agent k, selected at random, is allowed to

sever one or more of his links. At the beginning of each odd period t = 1, 3, ...., one pair

of agents (k, k′), selected at random, are given the opportunity to form a link, if they do

10For a formal argument in a related model, see Babus and Hu (2015).
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not have one. If both agents agree, the link is formed. At each period t, agents’linking

decisions result in a new network gt.

After agents make their linking decisions, their types (liquidity or investment) are as-

signed, and the matching realizes. In the new network gt, an agent only observes each

of his current neighbors’unilateral actions, as well as information that is common knowl-

edge. Then, the agents trade according to the trading procedure described in Section

3.1. Consistent with the previous section, we allow the financial contract and the level

of investment to depend on the network structure. In particular, we consider a function

C(gt) that assigns to a network gt a contract, (dgt , fgt), and an investment level qgt , that

specify the terms of trade. The function C (·) allows agents to evaluate their continuation

payoff for each linking decision they can take at date t, given the distribution of networks

that may arise at each future date τ , and given the actions that other agents are expected

to take in the trading game in each possible network gτ .

We say that the function C (·) is tight if qgt is the highest level of investment that is

implementable in gt, provided the set of implementable investment levels is non-empty.

Given a tight function C (·), a trading strategy profile is tight w.r.t. C (·) if agents in

any connected component of the network gt accept to trade among themselves, in each

period t when qgt is implementable in gt, and after any possible partial history of the

network-formation game (both on and off equilibrium paths).

Definition 5 A network g is stable under [q, (d, f)] if there exist a tight function, with

C(g) = [q, (d, f)], and a Nash equilibrium in the network-formation game such that no

agent severs a link and no pair of agents forms new links, and agents use a tight trading

strategy profile.

The notion of stability that we propose here is consistent with the welfare analysis we

have developed in Section 3.2. In particular, it allows us to check whether constrained

effi cient networks are also stable. Moreover, focusing on a function that selects the highest

implementable level of investment for a given network, we are able to conceptualize the

value of a link in a dynamic setting. Indeed, as agents change links, they are still able to

extract the maximum surplus in the new network. This implies that the relative benefit an

agent obtains by maintaining a link represents a lower bound for the value of the respective
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link.11

This notion of stability allows us to narrow down the set of stable networks in a

meaningful way. For instance, suppose we relax the requirement that agents use a tight

trading strategy. Instead, consider that agents refuse to trade with other agents that have

changed their links. Facing a severe punishment, agents may be deterred from severing or

forming new links. We conjecture that, in this case, most networks that can implement

positive levels of investment are stable. The requirement to use a tight strategy rules out

this type of unreasonable punishments.

We proceed to show that the star networks are stable. Let q∗n be the level of investment

such that

q∗n = arg max ∆ (q)

s.t. min

{
1

n− 1

[
nφ(q + cm)− 1

2
∆(q) + 2ncm

]
, 0

}
≤ 1

n−1
2n−1 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
.

(9)

In the proof of Proposition 1 we provide in the appendix, we show that (9) is the necessary

and suffi cient condition for a level of investment q to be implementable in star network

with 2n agents. Thus, q∗n is the highest investment level that can be implemented in a

star network, for each n. Further, let fmaxg∗n
and fming∗n

to denote right-hand side and the

left-hand side of condition (9) evaluated at q∗n, respectively. Hence, f
max
g∗n

and fming∗n
are the

upper and lower bounds for the fee that the centre agent in a star with 2n agents receives.

Note that fmaxg∗n
> fming∗n

only if q∗n = 1. We have the following result.

Proposition 4 Suppose that 0 < cl ≤ 1
2φ(q∗n + cm). Then, g∗n is stable under [q, (d, f)] =

[q∗n, (q
∗
n + cm, f

∗
n)] for any f∗n ∈ [fminn , fmaxn ], provided that n is suffi ciently large.

Proposition 4 shows that a star network is stable, if the informational cost, cl, is small

and the economy size, 2n, is large. It is indeed expected that if cl is high, then agents are

better off by not trading, and, hence, the resulting equilibrium in the network formation

11Our notion of stability is closely related to the pairwise stability concept introduced by Jackson and
Wolinski (1996). While pairwise stability is a static concept, ours is a dynamic notion based on noncoop-
erative game reasoning. In particular, the random selection of an agent to sever his links ensures that a
stable network according to our definition is also individually rational given the linking choices of others.
Similarly, the random selection of a pair of agents to form new links ensures that our stability is robust to
a size-two group defection.
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game will leave the network an empty one. Similarly, if n is small, agents can enforce

contracts and trade in the empty network, saving on linking costs.

The intuition for the stability result is as follows. To see whether a star network is

stable, we need to study agents’incentives to sever or form links. In particular, there are

two main cases we need to consider. First, we need to show that the center agent has

no incentive to delete any link. Second, we need to show that no periphery agent has an

incentive to form a new link with another periphery agent.

We start with the center agent, kC . We illustrate how he evaluates his continuation

payoff when he makes a linking decision, given the notion of stability we proposed in

Definition 5. Suppose that at the beginning of an even date t, the center agent, kC , is

given the opportunity to sever one or more of his links. If he severs links with a set KC of

his neighbors, the new network is gt− = g∗n − {(kC , k′) : k′ ∈ KC}. As usual in equilibrium

analysis, he considers that all other agents respect their equilibrium linking strategy at

future dates. We construct equilibrium linking strategies with the property that agents

do not sever or form new links after any partial history. This implies that the center

agent expects that gτ = gt− for any τ > t. Further, he understands that the function

C (·) selects the highest level of investment, qgt− , that is implementable in g
t
−, that qgt− is

implemented and trade takes place forever after. Otherwise, if he maintains all his links,

the new network is gt = g∗n, and he reasons in the same way to evaluate his continuation

payoff. For the star network to be stable he must find it beneficial to maintain all his

links. We show that this is the case by proving that the marginal value of a link for the

center is bounded away from zero. Indeed, we find that the highest level of investment in

the new network gt− can only be lower than q
∗
n. In consequence, there exists a function

C (·) that allocates a fee, f , to agent kC in the new network gt−, which ensures a positive

lower bound for the marginal value of a link. This implies that the centre has no incentive

to sever any link provided that cl is small.

Next, we discuss the case of periphery agents. When a periphery agent, k, considers

whether to form a link with another periphery agent, k′, he evaluates his continuation

payoff following a similar reasoning process as described above. If, at an odd period t,

the agents consent to form a link, the new network is gt+ = g∗n + {(k, k′)}. Otherwise,

the new network is gt = g∗n. In the network g
t
+, both agents k and k

′ are able to trade
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directly through their link, without paying a fee to the center agent in those periods when

they are matched to trade. However, as n grows large, the probability of avoiding the fee

diminishes, which makes the link too expensive to maintain. Thus, the new network gt+

would be more attractive than g∗n only if the fee paid to agent kC is lower. We show that

there exists a function C (·) that allocates a fee, f , to agent kC in the new network gt+

which is higher than, or arbitrarily close to f∗n, as n goes infinity. This ensures that two

periphery agents do not have an incentive to form a new link.

We conclude this section with a remark about our notion of stability. A stronger notion

of stability that departs from Definition 5 may also seem natural. Under Definition 5, a

tight function can assign any fee, f , to intermediaries in a network g such that the level of

investment q is implementable in g. In contrast, we can consider that a network is stable

only if agents maintain their links for all fees (subject to implementability) that can be

assigned in the current network, as well as in networks that arise on the continuation paths

that follow deviations. Under this stronger notion, the star network may not be stable

when the inequality (4) is slack. Indeed, there may exist a function C (·) which assigns

fees to intermediaries in the network resulting from a deviation, in a way that favors the

agents who just deviated. For instance, suppose that the center agent deletes one or more

of his links. Consider a function C (·) that assigns to the center agent a higher fee than

in the original star network. At the same time, the function C (·) can assign a lower fee

to the center agent when two periphery agents form a link. For the star network to be

stable under this stronger notion, the center agent must not find it beneficial to delete

links, which implies that the fee he receives in the original network has to be suffi ciently

high. Similarly, the periphery agents must not find it beneficial to form a link between

themselves, which implies that the fee they pay to the center agent in the original network

has to be suffi ciently low. Since a fee that meets both requirement may not exist, the

star network may not be stable. A similar line of reasoning can be used to argue that

an interlinked star is not stable either. In fact, this stronger notion of stability is a very

demanding property, and we expect that many networks do not satisfy it. Nevertheless,

the proof of Proposition 4 suggests that the star is stable under this stronger notion when

condition (4) holds with equality, as this narrows the set of fees a function C (·) can assign.

25



5 Discussions

5.1 Other Trading Frictions

In our framework each agent has either cash or an opportunity to invest every period.

Moreover, all agents are matched and it is feasible for all pairs to realize the gains from

trade at each date. One can extend our framework and allow for additional frictions in the

matching and trading process. For instance, we can assume that each investment agent

has the opportunity to invest only with probability p at each date. Our framework is the

special case where p = 1. The case p = 1/2n is equivalent to assuming that only a pair of

agents trade at any given period.

We conjecture that most of our results go through if this type of trading frictions are

not too severe. For example, we conjecture that the star is still a constrained effi cient

arrangement if p is suffi ciently close to 1, even as n grows large.

However, a suffi ciently high trading frequency is crucial for our results. Indeed, if the

probability, p, of arrival of the investment opportunity is too small, then no investment

level q > 0 is implementable under any network. The logic is as follows. Suppose that,

by contradiction, we can implement a contract (d, f) in a network g, when the investment

level is q. Then, consider the incentives to repay of an investment agent who is selected

in a given period to receive the investment opportunity. On the one hand, the agent

can retain at least d if he reneges on his obligations. On the other hand, the expected

discounted future benefit of trading relative to not trading is at most p
2φ∆(q). Then, an

investment agent has the incentive to make repayments only if

−d+
p

2φ
∆ (q) ≥ 0.

For any q > 0 and d ≥ q, this condition is violated if p is suffi ciently low.

5.2 Collateralized Trades

In our model, trade can only take place through unsecured transactions. We can extend

the model and incorporate collateralized trades. One way to allow for collateralized trades

is to endow an investment agent with a riskless asset that cannot be used to finance the
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investment project but may be used as collateral. As before, the role of the informational

network is to facilitate unsecured trade, if there are positive gains from trading without

collateral relative to trading against collateral. One potential reason why unsecured trade

is welfare improving is that collateral could be ineffi ciently liquidated by the liquidity

agent, when trade is secured.

Babus and Hu (2015) explore this extension with an explicit formulation of gains from

unsecured trade relative to secured trade, and show that our results hold. One virtue of

this extension is that, depending on the economic fundamentals, the effi cient arrangement

is either unsecured trade in the star network or secured trade without an informational

network (i.e. secured trade in the empty network). In particular, the star network is

effi cient when the limited commitment issue is not too severe.

6 Conclusion

Our results demonstrate that intermediation can be welfare-improving when OTC trades

take place through networks if the market size is large. In our model, networks can provide

adequate monitoring to sustain unsecured trade, provided financial contracts are designed

to respect traders’incentives. In particular, we show that intermediaries must receive fees

to ensure they have the incentive to sustain trade. We characterize an upper and lower

bound for the fees intermediaries receive in various networks. We also show that the fee

to the intermediary in the star network is the highest relative to how intermediaries in

various other networks can be compensated. The way compensation of intermediaries is

determined in our model may provide an explanation for the rents intermediaries receive

in OTC markets.

Our analysis of the constrained effi cient arrangement highlights a trade-off between the

cost of maintaining and using a network, and the investment level that is implementable

in a network. We provide conditions under which the star is the constrained effi cient

arrangement among all possible arrangements. We obtain this result when the market

size is large, and when the star can implement a level of investment that is close to the

first-best level. Finally, we show that the star network is a stable structure as well.
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A Appendix

Proof of Lemma 1

(i) First we prove suffi ciency. Set d = q. We construct a strategy profile and show that it

is a simple equilibrium, as follows. For each possible match m = (`, i), we summarize the

observed history of the match at the end of period t (which is observable to the match)

with a state sm,t ∈ {G,B}. We use mr to denote the match with the same pair of agents

but with their roles reversed, i.e., mr = (i, `). The state is such that sm,t = smr,t for all t,

and it evolves as follows: sm,0 = smr,0 = G; sm,t+1 = G if sm,t = G and if either one of

the following two conditions holds: (a) neither m or mr realizes at period t+ 1, (b) either

m or mr is realized, and the agent assigned to the investment role repays his debt if the

unsecured trade is accepted; sm,t+1 = B otherwise. Note that for any match m = (`, i) at

period t, the pair’s actions have no effect on states sm′,t with m′ having agents other than

the pair.

For any realized match m = (`, i) at period t, the strategy for the pair only depends

on sm,t−1 as follows: ` accepts the proposed trade from i if sm,t−1 = G and rejects it

otherwise; i repays his debt if sm,t−1 = G and does not repay otherwise.

Now we show that this strategy profile is sequentially rational. Consider a realized

match m = (`, i) at period t. Because state B is self-absorbing, if sm,t−1 = B, i has no

incentive to repay his debt and hence it is optimal for ` to reject the trade. Now, suppose

that sm,t−1 = G. By the equilibrium strategy of i, he will repay if his trade is accepted.

Moreover, accepting or rejecting the trade has no impact on future states of the match.

Thus, the current-period payoff for ` to accept the proposed trade is (d + (1 − q)) while

the current-period payoff to reject the trade is 1; since d = q, the two payoffs are the

same. Hence, it is optimal for agent ` to accept the proposed trade. Finally, assuming

that the proposed trade from i was accepted by `, by repaying the debt, i’s expected

continuation equilibrium payoff is (assuming that the number of other agents j 6= ` for
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which s(i,j),t−1 = B is k ≤ 2n− 2)

−d+
β

1− β

{
k

2n− 1
0.5 +

2n− k − 1

2n− 1
[0.5(R(q)− d) + 0.5(d+ 1− q)]

}
= −q +

1

φ

{
0.5[R(q)− q] + 0.5− 0.5k

2n− 1
[R(q)− q]

}
;

in contrast, by not repaying the debt, i’s equilibrium strategy implies that his expected

continuation payoff is given by

β

1− β

{
k + 1

2n− 1
0.5 +

2n− 2− k
2n− 1

[0.5(R(q)− d) + 0.5(d+ 1− q)]
}

=
1

φ

{
0.5[R(q)− q] + 0.5− 0.5(k + 1)

2n− 1
[R(q)− q]

}
.

Recalling that ∆(q) = R(q)− q, by (3), it is optimal for him to repay his debt.

(ii) Now we show that, for any given q > 0, it is not implementable for large n’s. Here we

assume that β > 1
2 ; the other case can be proved in a similar fashion. Let N be so large

that if K = log2(2N − 1)− 1, then

βK

2β − 1
+

βK

1− β <
q

∆(q)
. (A.1)

Suppose, by contradiction, that q is implementable with 2n ≥ 2N agents. Now, at period

zero, consider an agent with the investment role at the end of period 0 and is supposed to

repay his promise, d ≥ q.

Consider the deviation to default now and, in all future period, behave as a non-

defector. The worst scenario for this deviation would be that his current trading partner

defects in all future periods, and all who are defected also defect. Thus, at period t, the

probability of meeting a defector is at most

pt ≡
min{2t−1, 2n− 1}

2n− 1
.

Hence, the expected continuation payoff is at least
∑∞

t=1 β
t(1−pt)∆(q), and, for the agent
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to prefer the equilibrium action than this deviation, it must be the case that

−d+
∞∑
t=1

βt∆(q) ≥
∞∑
t=1

βt(1− pt)∆(q),

that is,

d ≤
∞∑
t=1

βtpt∆(q). (A.2)

Now, for any n ≥ N (recall that N is defined by (A.1)) and for k = log2(2n− 1)− 1, we

have

∞∑
t=1

βtpt ≤
(2n− 1)βk − 1

(2n− 1)(2β − 1)
+

βk

1− β

≤ βK

2β − 1
+

βK

1− β <
q

∆(q)
≤ d

∆(q)
,

a contradiction to (A.2). �

Proof of Proposition 1

We claim that q is implementable under star if and only if (9) holds. Note that (4) implies

(9) for any n > 0: first,

1
1
2 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]
≤ 1

n−1
2n−1 + φ

[
−φ(q + cm) +

1

2
∆(q)− cm

]

since 1
2 + φ ≥ n−1

2n−1 + φ for any n; second,

nφ(q + cm)− 1

2
∆(q) + (2n− 1)cm ≤ (n− 1) [φ(q + cm) + 2cm]

since −φ(q + cm) + 1
2∆(q)− cm ≥ 0.

First we prove necessity of (9). Let kC be the center agent. Suppose that (d, f) with

d ≥ q + cm implements q under the star. Consider a periphery agent assigned to the

investment role, deciding whether to repay his debt, f + d. We consider two choices: (a)

repay the debt and follow the equilibrium strategies; (b) do not repay and receive no trade

in all following periods. By (A1), the choice (a) has to be better than the choice (b), and
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hence we have

−(d+ f) +
β

1− β

{
1

2

(
(R(q)− q + 1)− 2n− 2

2n− 1
f

)
− cm

}
≥ β

1− β
1

2
, (A.3)

that is,

f ≤ 1
n−1
2n−1 + φ

[
−φd+

1

2
∆(q)− cm

]
. (A.4)

Now consider the center agent, kC , assigned to the investment role and who is at the

moment deciding whether to repay his debt, nd. Again, we consider two choices: (a)

repay all the debts and follow the equilibrium strategies; (b) do not repay (to any debt)

and receive trade in all following periods. By (A1), the choice (a) has to be better than

the choice (b), and hence we have

−nd+
β

1− β

{
1

2
[R(q)− q + 1] + (n− 1)f − 2ncm

}
≥ β

1− β
1

2
,

that is,

f ≥ 1

n− 1

[
nφd− 1

2
∆(q) + 2ncm

]
. (A.5)

Combining (A.4) and (A.5) and the fact that d ≥ q + cm, we obtain (9).

Now we prove suffi ciency. Suppose that (9) holds. First we specify the financial

contracts as follows: let d = q + cm and let f ≥ 0 satisfy

1

n− 1

[
nφd− 1

2
∆(q) + 2ncm

]
≤ f ≤ 1

n−1
2n−1 + φ

[
−φd+

1

2
∆(q)− cm

]
.

Given the contracts, the liquidity agent is indifferent between no trade and the proposed

trades, assuming that the investment agent will repay the trades. We construct equilibrium

strategies as follows. Each periphery agent can be one of the two states, G or B. At date

0, all agents are in state G. A periphery agent stays in state G if and only if he repays

his debts to kC when assigned to the investment role in all previous periods; otherwise,

he enters state B. An agent who enters state B stays there forever. The state of these

agents is only observable to the center agent, kC . Note that if a periphery agent proposes

to trade directly then this choice does not affect his state and a periphery agent’s action

in liquidity role does not affect his state. Similarly, the center agent, kC , can also be in
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of the two states, G or B. He stays in state G if and only if he repays his debts in all

previous periods; otherwise, he enters state B. His state is then observable to all agents.

The strategy of a periphery agent j assigned to the liquidity role in state G is as

follows: if kC is in state G and if j is in state G, then he accepts any trade through kC ;

otherwise, he rejects. Moreover, he never accepts if asked to trade directly. A periphery

agent j assigned to the liquidity role in state B never accepts trades. The strategy of a

periphery agent j in investment role is as follows: if both himself and kC are in state G,

then he propose to trade through kC and repay his debt; otherwise, he proposes to trade

directly and, if his trade is accepted, he does not repay anything. Finally, the strategy of

kC is as follows: if he is in state B, then he never repays anything; otherwise, he accepts

trades from a match m = (`, i) if and only if both ` and i are in state G and rejects it

otherwise, and he repays all debts if and only if it is feasible and the number of periphery

agents in state G who repays at the current period, denoted by K1, and the number of

loans kC has, denoted by K2 (including his own), satisfy

−K2d+
β

1− β

{
K1

2(2n− 1)
[R(q)− q + 1 + (K1 − 1)f ] +

2n− 1−K1

2(2n− 1)

}
≥ β

2(1− β)
.

(A.6)

Note that when there are still K1 periphery agents in state G, the expected fees for each

such agent is (K1 − 1)f/2(2n − 1) and since any such fee is paid to kC , the expected fee

revenue is K1(K1 − 1)f/2(2n − 1). Moreover, only with those agents kC can expect to

have trades.

We also need to construct equilibrium beliefs. As agent kC has complete information,

his belief is the actual history. For an periphery agent j, his belief is such that if kC is

in state G, then he believes that all other agents are also in state G. Note that once kC

enters state B, a periphery agent’s belief does not matter to his equilibrium strategy any

more.

To show that these strategies form a simple equilibrium, first notice that (A1)-(A3)

are satisfied. Moreover, the agents’beliefs are consistent with equilibrium strategies. In

particular, when a proposed trade is rejected with kC in state G, it is believed to be a

mistake and agents are all in state G and will continue to accept trades and repay from

next period on. We use the one-shot-deviation principle to verify sequential rationality.
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By (A.4) and (A.5) and the previous discussion no agent has incentive to deviate along

the equilibrium path. On the off-equilibrium path, the history is summarized by the

configuration of states. For a periphery agent assigned to the liquidity role, because kC

will not accept any trade from an investment agent in state B, he is indifferent between

accepting a unsecured trade with kC and having no trade so long as kC is in state G and

it is optimal to reject any other trade (note that a periphery investment agent will not

repay any debt incurred through direct trading). For a periphery agent in investment role,

as their state only depends on whether they repay kC , their incentive is determined by

(A.4). Note that as they believe all other agents are in state G, the continuation payoff is

given by the left side of (A.3). Finally, for kC , (A.6) determines whether he has incentive

to remain in state G or not. �

Proof of Proposition 2

First note that under the star network, g∗n, with 2n agents, ηg∗n = 1 − 1/2n and νg∗n =

1 − 1/n. Since q∗ = 1 and hence the first-best level of investment is implementable, the

average welfare is given by

W ∗ =
1

2

{
[R(1)− 1] + 1− 4

(
1− 1

2n

)
cl − 2

(
1− 1

n

)
cm

}
.

Since the star network already implements the first-best level of investment, it remains to

show that it minimizes linking costs (both recurrent and idiosyncratic) among all connected

networks.

First it is easy to verify that the idiosyncratic costs are minimized under star among

all minimally connected networks.

Next, we show that for any connected network gn with 2n agents,

νgn + 1 ≥ 2− 2

2n− 1
ηgn .

To see this, note that for each agent j, any agent who is directed connected to him has
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distance 1 but every other agent has distance at least 2, and hence

νgn + 1 ≥
∑

j∈N {deg(j) + 2[2n− 1− deg(j)]}
2n(2n− 1)

=
4n(2n− 1)− 2(2n)ηgn

2n(2n− 1)

= 2− 2

2n− 1
ηgn ,

where deg(j) is the degree of agent j.

Thus, the network costs of gn per capita, denoted by Cn, satisfies

Cn = 4υgncl + 2ηgncm ≥ 4υgncl + 2

[
2− 2

2n− 1
ηgn

]
cm.

Now, let C∗n = 4(1− 1
2n)cl − 2(2− 1/n)cm be the corresponding cost for the star network,

we have

Cn − C∗n ≥ S(ηgn , n) ≡ 4

{[
ηgn −

(
1− 1

2n

)]
cl +

(
1

2n
− 1

2n− 1
ηgn

)
cm

}
.

Now, for each n, S1(ηgn , n) = 4{cl − 1
2n−1cm}. Then, for all n > N2, S1(ηgn , n) > 0 and

hence is strictly increasing in ηgn . Since we are only concerned with networks other than

the minimally connected one, we may assume that ηgn ≥ 1. Now, for all n > N2,

S(ηgn , n) ≥ S(1, n) ≡ 4

{
1

2n
cl +

(
1

2n
− 1

2n− 1

)
cm

}
> 0.

This implies that Cn − C∗n > 0. �

Before we prove Proposition 3, we give a lemma.

Lemma A.1 Let {gn}n be a sequence of networks. There exist η̄ > 1 and ῡ > 1 such

that, if ηgn ≤ η̄ and υgn ≤ ῡ for all n, then the level of investment q is asymptotically

implementable only if (4) holds.

Proof Here we choose η = 1.05 and ν = 1.05. Let

Λ̃n = (2n− 1)
2− ν

6η
− 1. (A.7)
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For n ≥ 100, Λ̃n ≥ 0.3n. Let g be a given network with 2n agents with ηg ≤ η and νg ≤ ν

under which q is implementable with financial contract (d, f), d ≥ q + cm. We show that,

for n ≥ 100,

φd− 1

0.15n
∆(q) + 2cm ≤ f ≤

−φd+ 1
2∆(q)− cm

n−1
2n−1 + φ

. (A.8)

By taking n to infinity in the above inequality and replacing d with q+ cm, we obtain (4).

To show the first inequality in (A.8), we find an agent whose incentive is similar to

that of the center agent in the star network. We first need a claim about existence of an

agent j with large degrees.

Claim 1. Let Λ be the maximum degree in g. Then,

Λ ≥ (2n− 1)
2− νg

6ηg
− 1. (A.9)

Proof. Let δj be the degree of agent j. Then,

2n(2n− 1)(νg + 1) ≥ 3×

∑
j∈N

2n− 1− δj −
∑

j′ linked to j

δj′


≥ 3× {2n[2n− 1]− 2|E(gn)| − 2|E(gn)|Λ}

≥ 3× (2n)× [2n− 1− 2ηg(1 + Λ)].

Then, (A.9) follows directly by rearranging terms. �

Since ηg ≤ η and νg ≤ ν, (A.9) also implies that Λ ≥ Λ̃n. Hence, we can find an agent

j who has degree at least Λ̃n ≥ 0.3n. Now, consider, S, the set of j’s neighbors. Since

by deleting all the links between agents in S the network is still connected (through j), it

follows that the number of those links has to be at most

2nη − (2n− 1) = 2n(η − 1) + 1 ≤ 0.1n+ 1.

Thus, there are at least 0.15n agents in the set S who has no link with any other agent

in S. Thus, let K be the maximum number of intermediated trades for agent j and, by

(A2), we have K ≥ 0.15n. Note that the expected number of fees for j is less than K. To
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ensure that a simple equilibrium exists, considering j’s incentive, it must be the case that

−Kd+
β

1− β

[
1

2
∆(q) +Kf − 2Kcm

]
≥ 0. (A.10)

Since K ≥ 0.15n, (A.10) implies the first inequality in (A.8).

Now we show the second inequality in (A.8). Since |E(gn)| = 2nηg ≤ 2nη = 2.1n and

hence the sum of all agents’degrees is less than 4.2n, and since there exists one agent

with degree at least 0.3n, there exists an agent with degree less than (4.2− 0.3)/2 = 1.95.

Hence, there exists some agent with only one link. Since he has only one link, he cannot

serve as an intermediary but has to go through an intermediary as an investment agent

with probability at least n−1
2n−1 . Thus, for it to be optimal to repay his largest possible

debt, d+ f , when assigned to the investment role, it must be the case that

−(d+ f) +
β

1− β

[
1

2
∆(q)− cm −

n− 1

2n− 1
f

]
≥ 0. (A.11)

By rearranging terms, (A.11) implies the second inequality in (A.8). �

Proof of Proposition 3

Let {gn} be a sequence of networks and let q∗ be defined in the main text. Consider two

cases. First, suppose that ηgn ≤ η and νgn ≤ ν infinitely often. Then, by Lemma A.1 (ii),

q ≤ q∗. Since, by the arguments in Proposition 2, the star minimizes the linking costs

among all connected networks for large n’s, the candidate arrangement dominates that

sequence. Next, suppose that ηgn > η or νgn > ν for all suffi ciently large n. Since q∗ ≥ q̂

and hence W (1, 1, q∗) ≥ max{W (η, 1, 1),W (1, ν, 1)}, q∗ and the star network performs

better for large n’s. �

Proof of Corollary 1

By Lemma A.1, if investment level q is asymptotically implementable in a sequence of

small networks, {gn}, then (4) holds for q, and, by Proposition 1, it is also implementable
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in {g∗n}. Moreover, by the proof of Lemma A.1 (the second inequality in (A.8)),

fmaxgn (q) ≤
−φ(q + cm) + 1

2∆(q)− cm
n−1
2n−1 + φ

,

and, by the the proof of Proposition 1 (the second inequality in (9)),

fmaxg∗n
(q) =

−φ(q + cm) + 1
2∆(q)− cm

n−1
2n−1 + φ

.

Thus, fmaxgn (q) ≤ fmaxg∗n
(q).

For minimally connected networks, Babus and Hu (2015) prove a similar result to

Lemma A.1 regarding asymptotic implementability (Proposition 4 (i) there) and a similar

result regarding the intermediation fees (Corollary 1 there) in a related setting. The proofs

there can be readily modified to fit our current setting. �

Proof of Proposition 4

We consider the following strategies and show they constitute a Nash equilibrium and use

a tight trading strategy profile. First, agents never sever existing links or form new links

in equilibrium. After any deviation, they also never sever existing links or form new links

in equilibrium. In the trading game, all connected agents accept unsecured trades from

other connected agents as long as the set of implementable investment levels under gt at

period t is non-empty (and conduct secured trades otherwise), both on and off equilibrium

paths.

First we show that the center agent has no incentive to delete any link. We begin

with a claim about the implementable investment levels in networks where the center has

deleted some of his links.

Claim 1. Let gK be the resulting network by deleting K links from the star. If the set of

implementable investment levels is non-empty in gK , then, the highest level implementable

under gK , denoted by qK , satisfies qK ≤ q∗n for n large.

Proof. First we give necessary conditions for implementability. Fix some candidate in-
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vestment level and contract, [q, (d, f)]. Consider the incentive of a connected periphery:

−(d+ f) +
β

1− β

{
2n−K − 1

2(2n− 1)
∆(q)− 2n−K − 2

2(2n− 1)
f − 2n−K − 1

2n− 1
cm

}
≥ 0.

This implies that

G(f,K) ≡ −
{
φ+

2n−K − 2

2(2n− 1)

}
f − φd+

2n−K − 1

2(2n− 1)
[∆(q)− 2cm] ≥ 0,

and that the upper bound for f given q is given by the implicit function f = g(K) such

that G(g(K),K) = 0. Now, for K ≤ 2n− 2,

Gf = −
[
φ+

2n−K − 2

2(2n− 1)

]
≤ 0

and

GK =
1

2(2n− 1)
f − 1

2(2n− 1)
[∆(q)− 2cm].

Since g′(K) = −Gf/GK , to show that g′(K) ≤ 0, it suffi ces to show that GK ≤ 0, that is,

g(K) ≤ ∆(q)− 2cm, which in turn is equivalent to

−φd+
2n−K − 1

2(2n− 1)
[∆(q)− 2cm] ≤

[
φ+

2n− 2−K
2(2n− 1)

]
[∆(q)− 2cm].

Rearranging the terms and taking d = q + cm, it suffi ces to show that

−φ(q + cm) +
1

2(2n− 1)
[∆(q)− 2cm] ≤ φ[∆(q)− 2cm].

Note that if −φ(q + cm) + 1/2[∆(q) − 2cm] < 0, then the proposed trade is not imple-

mentable. Let q be the lowest q for which −φ(q + cm) + 1/2[∆(q)− 2cm] ≥ 0. Given that

q ≥ q, we may replace the right-side with zero and the above inequality holds if

2(2n− 1)φ(q + cm)− [∆(q)− 2cm] ≥ 0,

which holds for large n and q ≥ q.
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Now, consider the incentive for the center agent. We have

−2n−K
2

d+
β(2n− 1−K)

(1− β)(2n− 1)

{
∆(q)

2
+

2n− 2−K
2

f − (2n− 1−K)cm

}
≥ 0.

This implies that

H(f,K) ≡ (2n− 2−K)f + ∆(q)− (2n−K)(2n− 1)

(2n− 1−K)
φd− 2(2n− 1−K)cm ≥ 0.

The lower bound for f given q is then given by the implicit function f = h(K) such that

H(h(K),K) = 0, and h′(K) = −HK/Hf . Now,

Hf = 2n− 2−K ≥ 0

and

HK = −f − −(2n− 1)(2n− 1−K) + (2n−K)(2n− 1)

(2n− 1−K)2
φd+ 2cm.

Note that h′(K) ≥ 0 if HK ≤ 0, which holds if

h(K) ≥ − 2n− 1

(2n− 1−K)2
φd+ 2cm.

This holds if

−∆(q) +
(2n−K)(2n− 1)

2n− 1−K φ(q + cm) + 2cm ≥ 0.

Again, we have this inequality if q ≥ q and n large.

Combining these incentives, we have

−∆(q) + (2n−K)(2n−1)
(2n−1−K) φd+ 2(2n− 1−K)cm

2n− 2−K ≤
−φd+ 2n−K−1

2(2n−1) [∆(q)− 2cm]

φ+ 2n−K−2
2(2n−1)

. (A.12)

By taking derivatives with respective to K, we have verified that the left-hand side is

increasing in K while the right-hand side is decreasing in K. Thus, qK , defined as the

maximizer to maxq ∆(q) subject to (A.12) with d = q+ cm, must satisfy qK ≤ q0 = q∗n. �

Now, for each K where the set of investment levels is non-empty under gK , let C(gK) =

[qK , (qK + cm, fK)], where fK corresponds to the left-hand side of (A.12) with q = qK .
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When qK is not implementable, we have agents receive no trade and the center receives

no fee.

Then, under the contract q = q∗n, d = q∗n + cm and f = f∗n ≥ fminn , the benefit per

period by deleting K links (relative to the star network) is less than

{
2n− 1−K
2(2n− 1)

∆(qK) +
(2n− 1−K)(2n− 2−K)

2(2n− 1)
fK −

(2n− 1−K)2

2n− 1
cm

}
−

{
1

2
∆(q∗n) + (n− 1)fminn − (2n− 1)cm

}
+Kcl

=
2n−K

2
φ(qK + cm)− nφ(q∗n + cm) +Kcl.

Now, by Claim 1, qK ≤ q∗n; hence,

2n−K
2

φ(qK + cm)− nφ(q∗n + cm) +Kcl ≤ K
[
−φ

2
(q∗n + cm) + cl

]
≤ 0,

provided that cl ≤ 1
2φ(q∗n + cm). This shows that the center agent does not want to sever

any link.

Next, we show that when a pair of two leaf agents are chosen in the linking stage,

they have no incentive to form a link. Let g′ denote the network by having exactly two

periphery agents forming a new link between them.

Claim 2. Let g′ be the network by having exactly two periphery agents forming a new

link between them, and let q′ be the highest level of investment implementable under g′.

(a) Suppose that (4) holds for q = 1 with strict inequality. Then, for n large, q′ = 1 and

there is a corresponding fee f ′ ≥ f∗n.

(b) Suppose that (4) does not hold for q = 1 with strict inequality. Then, for any fee f ′

corresponding to q′, both |f ′ − f∗n| and |q′ − q∗n| converge to zero as n goes to infinity.

Proof. Fix a candidate contract, [q, (d, f)] with d = q + cm. Consider the center agent.

His incentive requires

−nd+
β

1− β

{
1

2
∆(q) + (2n− 3)

2n− 2

2(2n− 1)
f + 2

2n− 3

2(2n− 1)
f − cm −

n(2n− 3)

2n− 1
cm

}
≥ 0.
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This implies that

f ≥
φnd− 1

2∆(q) + cm + n(2n−3)
2n−1 cm

n(2n−3)
2n−1

.

Consider the two periphery agents who are linked. Their incentives require

−(d+ f) +
β

1− β

{
1

2
∆(q)− 2n− 3

2(2n− 1)
f − cm

}
≥ 0,

and hence

f ≤
−φ(q + cm) + 1

2∆(q′)− cm
φ+ 2n−3

2(2n−1)
.

Thus, [q, (d, f)] is implementable if and only if

φn(q + cm)− 1
2∆(q) + cm + n(2n−3)

2n−1 cm
n(2n−3)
2n−1

≤
−φ(q + cm) + 1

2∆(q′)− cm
φ+ 2n−3

2(2n−1)
. (A.13)

(a) Note that by taking n to infinity, (A.13) coincides with (4). Hence, if (4) holds for

q = 1 with a strict inequality, (A.13) holds for q = 1 for large n. Thus, q′ = 1 for large n.

However, note that
−φ(q + cm) + 1

2∆(q)− cm
φ+ 2n−3

2(2n−1)
≥ fmaxn

for q = 1, and hence we can pick a fee f ′ ≥ fmaxn .

(b) If (4) fails for q = 1 with a strict inequality, then (A.13) fails for q = 1 for large

n. Then, for large n, both constraints are binding for the second-best allocations. Since

the two conditions, (A.13) and (9), coincide at the limit, the convergence follows. Now,

suppose that (4) holds for q = 1 with an equality. Then both fmaxn and fminn converge to

the same limit as f ′. �

Now, the benefit of forming this new link per period is then less than

−cl +
1

2
|∆(q∗n)−∆(q′)|+ 1

2(2n− 1)
f +

2n− 2

2(2n− 1)
|f∗n − f ′| ≡ −cl + T (n).

However, Claim 2 implies that we can choose f ′ such that T (n)→ 0 as n goes to infinity.

Finally, since the contract is given by q = q∗n, d = q∗n + cm and f = f∗n, and since
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f∗n ≤ fmaxg∗n
, we have

−φ(q∗n + cm) +
1

2
∆(q∗n)− cm ≥

(
n− 1

2n− 1
+ φ

)
f∗n.

Thus, for a leaf agent to sever a link and to receive no trade, since cl ≤ 1/2φ(q∗n + cm),

the gain per period is less than

−
[

1

2
∆(q∗n)− cm −

n− 1

2n− 1
f∗n − cl

]
≤ 0.

�
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