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Abstract

The Drift Burst Hypothesis postulates the existence of short-lived locally explosive trends in the price paths of

financial assets. The recent US equity and Treasury flash crashes can be viewed as two high profile manifestations

of such dynamics, but we argue that drift bursts of varying magnitude are an expected and regular occurrence in

financial markets that can arise through established mechanisms such as feedback trading. At a theoretical level,

we show how to build drift bursts into the continuous-time Itô semi-martingale model in such a way that the

fundamental arbitrage-free property is preserved. We then develop a non-parametric test statistic that allows for

the identification of drift bursts from noisy high-frequency data. We apply this methodology to a comprehensive

set of tick data and show that drift bursts form an integral part of the price dynamics across equities, fixed income,

currencies and commodities. We find that the majority of identified drift bursts are accompanied by strong price

reversals and these can therefore be regarded as “flash crashes” that span brief periods of severe market disruption

without any material longer term price impacts.
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1 Introduction

The orderly functioning of financial markets will be viewed by most regulators as their first and foremost objective.

It is therefore unsurprising that the recent flash crashes in the US equity and treasury markets are subject to intense

debate and scrutiny, not least because they raise concerns around the stability of the market and the integrity of

its design (see e.g. CFTC and SEC, 2010, 2011; US Treasury, FRB, NY FED, SEC, and CFTC, 2015, and Figure 1 for an

illustration of the events). In addition to these two dramatic events, there is growing anecdotal evidence that flash

crashes of varying magnitude are becoming more frequent across financial markets.1 The distinct price evolution

over such events – with highly directional and sustained price moves – pose two direct challenges to the academic

and financial community. Firstly, how can one formally model such dynamics? The literature on continuous-time

finance has focused extensively on the volatility and jump components of the price process, but – as we show in this

paper – they are not sufficient. Secondly, how can one identify or test for the presence of such features in the data?

This paper addresses both these challenges.

A key feature of our approach – which sets it apart from the existing literature – is that we concentrate on the

drift component µt in the canonical continuous-time Itô semimartingale decomposition for the log-price X t of a

financial asset:

dX t =µt dt +σt dWt , (1)

where σt is the volatility and Wt a Brownian motion. In a conventional setup with bounded coefficients, over a

vanishing time-interval ∆ → 0, the drift is Op (∆) and swamped by a diffusive component of order Op (
p
∆). For

this reason, much of the infill asymptotics is unaffected by the presence of a drift term and the theory therefore

invariably neglects it. Also, in many empirical applications, particularly those relying on intra-day data, the drift

term is generally small and because estimating it is hard (e.g., Merton, 1980) and adds measurement error into the

calculations, the common recommendation is to ignore it. Yet, to explain such events as those in Figure 1, it is hard

to see how the drift component can be dismissed. Our starting point is therefore the Drift Burst Hypothesis, which

postulates the existence of short-lived locally explosive trends in the price paths of financial assets. We aim to build

theoretical and empirical support for the hypothesis and to thereby contribute towards a better understanding of

financial market dynamics. We show how drift bursts can be embedded in the traditional continuous-time model

in Eq. (1) such that the basic no-arbitrage principle is not violated. A simple economic model is discussed where

1In a Financial Times article, Tett (2015) reports on a speech by the CFTC chairman (Massad, 2015) and writes: “Flash crashes affect even
commodities markets hitherto considered dull such as corn”. Shortly after the first high profile US equity flash crash, a New York Times article
by Kaufman and Levin (2011) calls for regulatory action in anticipation of further events. Subsequently, Nanex Research has been reporting
hundreds of flash crashes across all major financial markets, see http://www.nanex.net/NxResearch/. See also a Liberty Street
Economics blog of the New York Federal Reserve Bank by Schaumburg and Yang (2015) where liquidity during flash crashes is examined.
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Figure 1: The US S&P 500 equity index and treasury market flash crash.

Panel A: S&P 500 equity index. Panel B: Treasury market.
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Note. This figure draws the midquote and traded price (right axis) of the E-mini S&P 500 (in Panel A) and 10-Year Treasury Note (in Panel B) futures contracts
over the flash crash episodes of May 6, 2010 and October 15, 2014. Superimposed is the non-parametric drift burst t -statistic (left axis) proposed in this paper.

drift bursts arise endogenously under mild assumptions via – what can be interpreted as – the interaction of traders

which hold different information sets and the presence of a feedback mechanism (Cont and Wagalath, 2013, 2014).

Next, we develop a feasible non-parametric identification strategy that enables the on-line detection of drift bursts

from high-frequency data. A comprehensive empirical analysis of representative securities from the equity, fixed

income, currency, and commodity markets demonstrates that drift bursts are a stylized fact of the price process.

An exploding drift term is unconventional in the continuous-time finance literature, but there is a number of

theoretical models of price formation that provide backing for the idea. For instance, Grossman and Miller (1988)

consider a crowd of risk-averse market makers that provide immediacy in exchange for a positive expected excess

return µ= E (P1/P0−1) that satisfies:
µ

σ
=

sγ

1+M
σP0, (2)

where P0 is the initial price, P1 is the price at which the market maker trades,σ is the standard deviation of the price

move, s is the size of the order that requires execution, γ is the risk aversion of market makers, and M is the number

of market makers competing for the order. Eq. (2) illustrates that the drift can come to dominate the volatility

when liquidity demand (s ) is unusually high or the willingness or capacity of the collective market makers to absorb

order flow is impaired (i.e. increased risk aversion γ or fewer active makers M ). This prediction fits the 2010 equity
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flash crash episode in that the extreme price drop appeared to be accompanied by increased risk aversion and a

rapid decline in the number of participating market makers: CFTC and SEC (2010) writes “some market makers and

other liquidity providers widened their quote spreads, others reduced offered liquidity, and a significant number

withdrew completely from the markets”. The subsequent price reversal observed in Figure 1 is also predicted by this

model as the excess return is only temporary and the long-run price level returns to P0. In related work, Campbell,

Grossman, and Wang (1993) show that as liquidity demand increases (as measured by traded volume) the price

reaction and subsequent reversal grows in magnitude. Alternative mechanisms that can generate price dynamics

of this kind include trading frictions as in Huang and Wang (2009), forced liquidation and predatory trading as in

Brunnermeier and Pedersen (2009), or agents with tournament type preferences and an aversion to missing out

on trends as in Johnson (2016).2 While this literature provides valuable insights and hypotheses regarding price

dynamics, the testable implications often relate to confounding measures such as trading volume or return serial

correlation. Moreover, because the theory is typically cast as a two-period model, it does not easily translate into an

econometric identification strategy of the impacted sample paths. This limits the depth of the empirical work that

can be conducted in this framework.

With the drift burst hypothesis in place and the corresponding arbitrage-free Itô semimartingale price process

specified, we develop an effective identification strategy for the on-line detection of drift burst sample paths from

intraday noisy high-frequency data. The method is non-parametric and can be viewed as a type of t-test that aims

to establish whether the observed price movement is more likely generated by the drift than be the result of dif-

fusive volatility. Unsurprisingly, the test requires estimation of the local drift and volatility coefficients which is

non-trivial for at least two reasons. Firstly, from Merton (1980) we know that even when the drift term is a constant,

it cannot be estimated consistently over a bounded time-interval. Secondly, while infill asymptotics do provide con-

sistent volatility estimates, in practice microstructure effects complicate inference. Building on the work by Bandi

(2002); Kristensen (2010) for coefficient estimation and Newey and West (1987); Andrews (1991); Barndorff-Nielsen,

Hansen, Lunde, and Shephard (2008) for the robustification to microstructure noise, we formulate a non-parametric

kernel-based filtering approach that delivers estimates of the local drift and volatility on the basis of which we con-

struct the test statistic. Under the null hypothesis of no drift burst, the test is asymptotically standard normal, but

it diverges – and therefore has power under the alternative – when the drift comes to dominate over a burst. When

calculated sequentially and using potentially overlapping data, the critical values of the test are determined on the

basis of extreme value theory, similar to Lee and Mykland (2008). A simulation study confirms that the test is well

2There are also a number of practical mechanisms that can amplify, if not cause, violent price drops and surges, including margin calls
on leveraged positions (i.e. forced liquidation), dynamic hedging of short-gamma positions, stop-loss orders concentrated around specific
price levels, or technical momentum trading strategies.
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behaved and is capable of identifying drift burst episodes. Interestingly, applying the test to high frequency data

for the days of the US equity and treasury market flash crashes, displayed in Figure 1, we find that they constitute

highly significant drift bursts.

Our new mathematical framework, that introduces drift bursts via an exploding drift coefficient, provides an

essential ingredient, which is pivotal to reconcile a number of phenomena observed in financial markets. The first

is the already mentioned occurrence of flash crashes, where highly directional and sustained price movements are

reversed shortly after. While there is a substantial body of research that focuses on the May 2010 equity market flash

crash (a partial list includes Easley, de Prado, and O’Hara, 2011; Madhavan, 2012; Andersen, Bondarenko, Kyle, and

Obizhaeva, 2015; Kirilenko, Kyle, Samadi, and Tuzun, 2016), there has been no attempt thus far to move beyond

specific case-studies and analyse these events in a more systematic fashion. Our test procedure lays down a frame-

work that makes this possible. The second is that of “gradual jumps” – in Barndorff-Nielsen, Hansen, Lunde, and

Shephard (2009) terminology – where the price converges in a rapid but continuous fashion to a new level. This

relates to a puzzle put forward by Christensen, Oomen, and Podolskij (2014), who find that the total return varia-

tion that be attributed to the discontinuous jump component is an order of magnitude smaller than had previously

been reported by extensive empirical literature on the topic. In particular, they show that jumps identified using

data sampled at a five-minute frequency often vanish when viewed at the highest available tick frequency and in-

stead appear as sharp but continuous price movements. Christensen, Oomen, and Podolskij (2014) and Bajgrowicz,

Scaillet, and Treccani (2016) show that spurious detection of jumps at low frequency can be explained by an erratic

volatility process. However, because a volatility burst merely leads to wider price dispersion, it fails to reconcile the

often steady and directional price evolution over such episodes. On the basis of the results presented in this paper,

we argue that the Drift Burst Hypothesis constitutes a more intuitive and appealing mechanism that can explain the

reported over-estimation of the total jump variation.

The empirical analysis we undertake in this paper sets out to determine the prevalence of drift bursts in practice

and to characterise their basic features. To that end, we employ a comprehensive set of high quality tick data cov-

ering some of the most liquid futures contracts across the equity, fixed income, currency, and commodity markets.

We calculate the drift burst test statistic at five-second intervals over a multi-year sample period. This systematic

assessment provides unparalleled insights into the high resolution price dynamics of an area where hitherto any

existing analysis was based on specific case studies of high profile events (e.g. Madhavan, 2012; Kirilenko, Kyle,

Samadi, and Tuzun, 2016) or the screening of data based on ad hoc identification rules (e.g. Massad, 2015). Our

findings demonstrate that drift bursts are an integral part of the price process across all asset classes considered:

over the full sample period, we identify over one thousand significant episodes, or roughly one per week. For most of
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the drift bursts we detect, the magnitude of the price drop or surge typically ranges between 25 and 200 basis points,

with only a handful of more extreme moves between 3% and 8%. Quite remarkably, we find that the majority of drift

bursts are followed by very strong price reversion. This is consistent with the predictions of the theoretical literature

cited above and means that many of the identified episodes resemble (mini) flash crashes that are symptomatic of

liquidity shocks or market stress.

The remainder of the paper is organised as follows. Section 2 introduces the Drift Burst Hypothesis and describes

the mathematical framework. Section 3 discusses the economic mechanisms that can give rise to drift bursts. Sec-

tion 4 develops the identification strategy on the basis of noisy high-frequency data. Section 5 includes an extensive

simulation study that demonstrates the power of the test. The empirical application is found in Section 6 and Sec-

tion 7 concludes.

2 The hypothesis

Let X = (X t )t≥0 be the logarithmic price of a tradable security. X is defined on a given filtered probability space

(Ω,F , (Ft )t≥0,P), satisfying the “usual conditions” of right-continuity and P-completeness. As customary in the

literature, we assume X is an Itô diffusion as given by the dynamics in Eq. (1), where µ = (µt )t≥0 is a predictable

drift,σ= (σt )t≥0 is an adapted, càdlàg and strictly positive (almost surely) volatility, while W = (Wt )t≥0 is a standard

Brownian motion. As such, the price process features continuous sample paths and the mild regularity conditions

imposed on the driving termsµt andσt allow it to encompass a wide range of dynamic specifications. In particular,

the model is compatible with the notion of stochastic volatility, leverage, and possibly jumps in drift and volatility

(e.g., Todorov and Tauchen, 2011; Bandi and Renò, 2016). The main exclusion is that of a jump component in X ,

which is made for ease of exposition only (Theorem 4 in Section 4 shows that our framework is also robust to the

presence of jumps in price).

The log-return over time window [t −∆, t ] is defined as:

∆X t = X t −X t−∆ ≡
∫ t

t−∆
µs ds +

∫ t

t−∆
σs dWs . (3)

When µ andσ are locally bounded, it follows that

∫ t

t−∆
µs ds =Op (∆) and

∫ t

t−∆
σs dWs =Op (

p
∆). (4)

Thus, as∆→ 0, it holds that for a continuous price change over a small time-interval∆, the drift component of∆X t
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is an order of magnitude smaller than volatility, because∆�
p
∆. The basic version of our model, in which coeffi-

cients are bounded, is therefore consistent with the notion that, over short time-intervals, the main contributor to

return innovation is volatility. It is this feature that has led the literature to largely neglect the drift.

However, the drift can prevail if it is allowed to diverge in a way that:

∫ t

t−∆
µs ds =Op

�

∆γµ
�

, (5)

with 0<γµ < 1/2. A point in time whereµt explodes is referred to as the drift burst time and is denoted by tdb. Com-

paring Eq. (4) with the assumption in Eq. (5), we see that if σt is bounded in a neighborhood of tdb, the condition

0<γµ < 1/2 implies that the drift term prevails over volatility on a vanishing interval of length∆, so that∆X t is now

dominated by the drift, not the volatility. The condition γµ > 0 ensures the continuity of X .

A canonical example of a drift exhibiting a burst is:

µt =
1

|t − tdb|α
, (6)

with 1/2<α< 1. Setting γµ = 1−α, this formulation is consistent with Eq. (5).

Allowing µt to diverge is unconventional. Nevertheless, we can show that the model in Eq. (1), but with a drift

satisfying Eq. (5) for some points tdb, is still a semimartingale (e.g., Jacod and Protter, 2012).3 This is necessary

– but not sufficient – to exclude arbitrage trading from the market (e.g., Back, 1991; Delbaen and Schachermayer,

1994). To prevent arbitrage, a further condition (imposed by Girsanov’s Theorem) is necessary and sufficient for the

existence of an equivalent martingale measure (e.g., Theorem 4.1 in Karatzas and Shreve, 1998):

∫ t

t−∆

�

µs

σs

�2

ds <∞, (7)

which is known as a “structural condition.” This cannot hold if the drift explodes in the interval [t −∆, t ], but the

volatility remains bounded. It would allow for what is called a “free lunch with vanishing risk,” see, e.g., Definition

10.6 in Bjork (2003). Explosive volatility is thus a necessary condition to allow for a drift burst in a market free of

arbitrage.

3While explosive drift does not impede the semimartingale structure of X , it can on the other hand negatively affect non-parametric
estimation of volatility from high-frequency data, as unveiled by Example 3.4.2 in Jacod and Protter (2012). This is consistent with the findings
of Li, Todorov, and Tauchen (2015), who note that standard OLS estimation of their proposed jump regression is seriously affected by the
inclusion of two outliers in the sample. Incidentally, these are the equity flash crash of May 6, 2010 and the hoax tweet of April 23, 2014.
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We say there is a volatility burst, if
∫ t

t−∆
σs ds =Op

�

∆γσ
�

, (8)

with 0<γσ < 1. As above, a canonical example of a bursting volatility process is:

σt =
1

|t − tdb|β
, (9)

with 0 < β < 1/2. We restrict β to ensure that
∫ t

t−∆σ
2
s ds <∞, so that a stochastic integral can be defined. Here,

γσ = 1−β and using the Burkholder-Davies-Gundy inequality

∫ t

t−∆
σs dWs =Op

�

∆1/2−β �. (10)

In this model, µt /σt →∞ as t → ttb, for α > β . Moreover, if α− β < 1/2, absence of arbitrage follows from the

structural condition, as

∫ t

t−∆

�

µs

σs

�2

ds = Op

�

∆1−2(α−β )�. The drift coefficient prevails over the volatility coefficient

without arbitrage, for example, if α= 0.6 and β = 0.2.

The drift burst hypothesis can thus be formulated in such a way that it is compatible with absence of arbitrage,

which requires the volatility process to explode in conjunction with the drift. Empirically, it is a widely recognised

fact that volatility can spike during extreme market conditions. In fact, Kirilenko, Kyle, Samadi, and Tuzun (2016)

and Andersen, Bondarenko, Kyle, and Obizhaeva (2015) report highly elevated levels of volatility during the equity

flash crash (see also Bates, 2016). But volatility by itself is unlikely to generate rapid and sustained price trends

because of the random walk nature of the Brownian motion which tends, probabilistically, to be symmetric. With

an exploding drift term, we can generate such sample paths and – depending on the specification of µt – the drift

burst may be followed by a price that subsequently hovers around its new level (as in a gradual jump) or partially or

fully revert towards its original level (as in a flash crash). After establishing the mathematical definition of drift bursts

and assessed that they are consistent with no arbitrage, we now turn to a fundamental question: which mechanism

can generate a drift burst in a financial market?

3 A simple model featuring drift bursts

To provide some economic intuition and justification for the existence of a locally explosive drift coefficient, we

formulate a simple model where drift bursts arise endogenously. It re-enforces the point that drift bursts are a

natural and expected outcome of the interaction amongst financial intermediaries. An interesting feature of the
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model is that both the drift and the volatility are inflated during a burst, as consistent with Section 2. We build on

the setting of Cont and Wagalath (2013, 2014) with distressed selling, but in contrast to their work we focus on the

implications for the drift term. In the proposed setup, the transaction price is affected by a random shock, mean

reversion and a feedback effect. The model is initially cast in discrete-time, and – as we move to the continuous-

time limit – we show that local drift explosions can erupt under suitable conditions on the shape of the price impact

function of feedback trading.

We assume that trading takes place at discrete time points ti = i/n for i = 1, . . . , n and define∆= 1/n as the dis-

tance between two consecutive transactions. The efficient log-price X̃ t starts at X̃0 = 0 and evolves as a martingale:

X̃ ti+1
= X̃ ti

+σX̃

p
∆ε̃ti+1

, (11)

where ε̃ti
∼ i.i.d.(0, 1) represent exogenous shocks that change the value of the asset, andσX̃ > 0 controls the degree

of underlying risk in the economy. The transacted log-price X t is assumed to follow:

X ti+1
= X ti

+ σ
p
∆εti+1

︸ ︷︷ ︸

noise

+ m
�

X̃ ti
−X ti

�

∆
︸ ︷︷ ︸

mean reversion

+ f
�

X ti
+σ
p
∆εti+1

+m
�

X̃ ti
−X ti

�

∆
�

− f (X ti
)

︸ ︷︷ ︸

feedback

, (12)

where εti
∼ i.i.d.(0, 1), m is an increasing function with m (0) = 0, and f is an increasing and concave function also

with f (0) = 0. We interpret Eq. (12) as follows:

• The first term σ
p
∆εti

is the contribution of noise trading. It originates from participants that trade for ex-

ogenously motivated reasons and do not posses any signal regarding the value of the efficient price X̃ . They

are viewed as trading randomly thereby moving the transaction price with “force”σ in ways that is unrelated

to the evolution of ε̃ti
.4

• The second term m (X̃ ti
−X ti

)∆ represents the contribution of informed traders who have knowledge (possibly

via a noisy signal) of the efficient price. They buy or sell the security depending on whether the transacted

price X t is below or above the efficient price X̃ t . Their price impact is modelled by an increasing function m ,

such that m (0) = 0. This implies that there is a natural tendency for X t to revert towards X̃ t , which ensures

market efficiency is preserved in the long run.

• The last term captures the effect of feedback trading where directional price moves are re-enforced and mag-

4It is possible to allow for εti
to be correlated with ε̃ti

. This does not change the line of thought behind the main result of this section, as
the only difference is that in Eq. (13) B and W are correlated.
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nified. This is achieved by letting the function f be increasing (i.e. f ′ > 0) with f (0) = 0.5

There are various mechanisms in financial markets that can justify the presence of a feedback term in Eq. (12). The

first is the liquidity provision theory of Grossman and Miller (1988). As highlighted by Eq. (2), with material one-

sided liquidity demand (in our model this corresponds to a large value of the shock σ
p
∆εti+1

) market makers that

provide immediacy will increase their required compensation by moving X t in the same direction as the demand.

So for instance, with significant selling pressure, market makers will revise their quotes down and as the pressure

persists they will do so more aggressively as their risk exposure builds up or the number of market makers dimin-

ishes. This can make the transaction price drop below the efficient price and at some stage, informed traders will

enter the market and drive the price back towards its fundamental level. As already noted in the introduction, this

prediction is consistent with the CFTC and SEC (2010, 2011) report, where it was noticed that during the equity mar-

ket flash crash, several participants reduced liquidity provision or withdrew entirely from the market in the midst of

the turmoil. Subsequently, the market recovered back to its previous levels.

The literature on price formation is also abundant with models which imply feedback. Cont and Wagalath (2013,

2014) note that fire sales – i.e., the sudden deleveraging of large financial portfolios – can be self-reinforcing, leading

to a downward spiral in asset prices. Gennotte and Leland (1990) develop a rational expectations model, inspired

by the portfolio insurance strategies that were accused of exacerbating the 1987 stock market crash, where hedgers

sell in a falling market to prevent further losses, thus creating a snowball effect that increases the initial price drop.

Danielsson, Shin, and Zigrand (2012) note that feedback is present, when derivatives on the asset are traded, and

option traders with short positions (i.e., negative “gamma”) follow delta-hedging strategies to rehedge their risk.

Barlevy and Veronesi (2003) show that market crashes can occur irrespective of strong fundamentals, if uninformed

traders sell rationally at low prices in an attempt to extract information about the true value of the asset. In the

model of forced liquidation and predatory trading by Brunnermeier and Pedersen (2005), strategic traders know

that other market participants are in distress (e.g., due to margin calls, stop-loss orders, etc.). The informed trader

is then inclined to sell the asset upfront, because he anticipates an opportunity to buy it back at better levels later on.

Morris and Shin (2004) study a game-theoretic setup (inspired by bank run models), in which mutually reinforcing

selling of short-term traders against a downward sloping demand curve from long-term traders can also result in

market crashes.

The following result can be used to show that the inclusion of a feedback term as in by Eq. (12) is capable of

generating drift bursts in the continuous-time limit of X t , provided that f is sufficiently concave.

5While we assume that both m and f are time-homogenous, in practice they can depend on different state variables of the market (e.g.,
volatility or liquidity).
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Theorem 1 Assume that E
�

ε4
ti

�

<∞ and f is three times differentiable, bounded and with bounded derivatives.

Then, as∆→ 0, the dynamics in Eqs. (11) – (12) converge weakly to the processes:

dX̃ t =σX̃ dBt ,

dX t =
�

�

1+ f ′(X t )
�

m
�

X̃ t −X t

�

+
σ2

2
f ′′(X t )

�

dt +σ
�

1+ f ′(X t )
�

dWt ,

(13)

where B and W are independent standard Brownian motions.

Proof See Appendix A. �

The theorem shows that, while X̃ t has no drift and constant volatility, in X t both these coefficients are random.

As f ′ > 0, feedback trading is to first-order enhancing the speed of mean-reversion and helping X t converge to X̃ t .

This is because informed trading push in the direction of X̃ t via m
�

X̃ t −X t

�

, and this partly determines the feedback

contribution as well. In addition, because f too is a function of noise trading, σ
p
∆εti

, the Brownian shocks in X t

are magnified, inducing higher volatility.

The main aspect of Theorem 1 is that an additional second-order effect – proportional to f ′′ – appears in the

drift term. This implies that the drift-to-volatility ratio of X t is

µt

σt
=

m
�

X̃ t −X t

�

σ
+
σ

2

f ′′(X t )
1+ f ′(X t )

. (14)

While the contribution of informed trading is typically bounded, the second term can diverge. As consistent with

Section 2, the model can therefore exhibit explosions in bothµt andσt in the domain of X t via f ′, whileµt /σt →∞

is a possibility via f ′′. In Figure 2, we illustrate a sample path of an implementation of the model, which as predicted

exhibits a drift burst in the form of a flash crash.6

Although stylized, the model captures many features of the price dynamics of interest in this paper. It supports

the notion that drift can prevail locally over volatility. As we show, this can be achieved as the limit of a discrete-time

process in a setting with asymmetric information, where a subset of market participants feedback on prices. As

documented above, there is both theoretical and empirical support for feedback effects in financial markets. If the

6Alternatively, we can impose a drift-to-volatility ratio by solving the ODE in Eq. (14) by setting 0.5σ f ′′(x )/[1+ f ′(x )] = g (x ), where g (x )
models the drift-to-volatility ratio. The boundary conditions are f (0) = f ′(0) = 0, and if we further require g (0) = 0, then f ′′(0) = 0 and the
feedback is negligible in a neighborhood of zero (up to third-order terms in the deviation). The solution to this ODE is analytic for a broad
variety of functions. For instance, setting σ = 1, in the polynomial case with g (x ) = c x α, c > 0,α > 0, we have that f ′(x ) = e 2c x 1+α − 1 and
f ′′(x ) = 2c x αe 2c x 1+α

. This also illustrates that we do not need g (x ) to diverge to generate arbitrarily large drift-to-volatility ratio and still get
an analytical solution.
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Figure 2: A simulated sample path of the feedback model in Eq. (13).
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Note. We simulate a model with feedback trading and mean reversion. We set σX̃ = σ = 0.4 per annum and f (x ) = 5x 5, x ≤ 0. Also, m (x ) = x 7, so mean
reversion is small (relative to the drift induced by feedback), if the deviation from the reference point X t = 0 is small, but it prevails as the deviation gets larger.
This ensures the stationarity of the process and the efficiency of the market, in the sense that the unconditional expected value of X t is equal to that of X̃ t .

feedback is strong enough, it leads to a drift burst. It also shows that the mathematical continuous-time definition

of the drift burst hypothesis provided in Section 2 is natural. Moreover, as consistent with our empirical results in

Section 6, because informed trading eventually dominates the feedback for large deviations between X̃ t and X t , the

model generates reversals, as also exhibited in Figure 1 above and illustrated here in Figure 2.

4 Identification

We here develop a non-parametric in-fill asymptotic theory that can be applied to detect drift bursts in practice. It

exploits the message of Eq. (5), namely if there is a drift burst in X at time tdb, log-returns in the vicinity of tdb are

mostly caused by drift and not volatility. We therefore propose a t -statistic, which compares the ratio of estimates

of µt and σt over time. Later in this section, we prove that our “signal-to-noise” measure uncovers drift bursts in

X , if they are present.

We assume X is observed at (potentially irregular) times 0 = t0 < t1 < . . . < tn = T , with T fixed. The associated

11



discretely sampled log-return on [ti−1, ti ] is:

∆X i ,n = X ti
−X ti−1

, for i = 1, . . . , n .

We borrow from – and extend – existing work within non-parametric kernel-based estimation of the coefficients

of diffusion processes to estimate µt and σt (e.g., Bandi, 2002; Kristensen, 2010). As usual in that branch of the

literature, we require a kernel K and a bandwidth hn . K is assumed to fulfill some weak regularity conditions,

which are succinctly listed in Assumption 3 in Appendix A. While most of these are standard and not restrictive, we

should point out that we limit attention to the class of so-called left-sided kernels that are backward-looking in time.

This avoids inducing a look-ahead bias and allows our t -statistic to be computed in real-time. The bandwidth hn is

a sequence of positive real numbers, such that hn → 0 and nhn →∞, as n→∞.

We define:

µ̂n
t =

1

hn

n
∑

i=1

K
�

ti−1− t

hn

�

∆X i ,n , for t ∈ (0, T ]. (15)

In absence of a drift burst, it follows that:

p

hn

�

µ̂n
t −µt

� d→N
�

0, K2σ
2
t

�

, (16)

where K2 =
∫ 0

−∞K 2(x )dx .

As shown by Eq. (16), µ̂n
t is unbiased but inconsistent, because its variance explodes as hn → 0. This appears

to rule out detection of drift bursts via µ̂n
t . On the other hand, if we rescale the left-hand side of Eq. (16) with a

consistent estimator of σt – and a constant related to K – it appears the right-hand side has a standard normal

distribution. It is this key idea that facilitates the construction of a t -statistic that can identify drift bursts, as we

prove in Theorem 2 – 3.

To estimateσt , we set:

σ̂n
t =

�

1

hn

n
∑

i=1

K
�

ti−1− t

hn

�

�

∆X i ,n

�2
�1/2

, for t ∈ (0, T ]. (17)

Theorem 2 (The null) Assume that X is a continuous semimartingale as defined by Eq. (1), and that Assumption 1

– 3 in Appendix A hold true for the stochastic coefficients µt andσt . For every fixed t ∈ (0, T ], we define:

T n
t =

√

√hn

K2

µ̂n
t

σ̂n
t

. (18)
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As n→∞, such that hn → 0 and nhn →∞, it holds that

T n
t

d→N (0, 1). (19)

Proof See Appendix A. �

This shows that in absence of a drift burst, the t -statistic has a limiting standard normal distribution.7 Thus,

although it is not possible to consistently estimateµt , we can exploit its asymptotic distribution to form an unbiased

test of the drift burst hypothesis.

T n
t has an intuitive interpretation in terms of the log-return over a time-interval hn . It is approximately the ratio

of the part of that log-return due to drift over that due to volatility (this is exact, if K is the indicator function). A large

value of the t -statistic thus signals that the realized log-return is mostly induced by drift. As explained above, while a

prevailing drift over a time-interval∆ violates absence of arbitrage, it is still perfectly possible (and confirmed by our

empirical application) that the drift contribution can prevail over a longer time-interval hn (recall that hn/∆→∞).

The bandwidth hn therefore represents, if the t -statistic is large, a time-interval in which the log-return is mostly

composed by drift.

To prove that the t -statistic in Eq. (18) is also consistent under the alternative, we assume that both µt and σt

explode at a given rate as in Eq. (6) and (9), but with the drift diverging faster. In this setting, as the next theorem

shows, T n
t goes to infinity.

Theorem 3 (Drift burst alternative) Assume that X is a continuous semimartingale of the form:

dX t =

�

µt +
1

|t − tdb|α

�

dt +

�

σt +
1

|t − tdb|β

�

dWt , (20)

with 0 < β < 1/2 and β < α < 1, and that Assumption 1 – 3 in Appendix A hold true for the stochastic coefficients µt

andσt . Then, as n→∞, such that hn → 0 and nhn →∞, it holds that

T n
tdb

p
→∞. (21)

Proof See Appendix A. �
7While this statement appears to follow trivially from Eq. (16) – i.e., via application of Slutsky’s Theorem – this is not true. In general, we

can only use Eq. (16) to deduce Eq. (19), if σt is a constant. In our paper, where σt is a random variable, the definition of convergence in
distribution does not support such a conclusion. We therefore prove in Appendix A that the convergence in Eq. (16) is in law stably, which
is a stronger form of convergence that helps to recover this feature (the concept is explained in, e.g., Jacod and Protter, 2012). Moreover, we
allow for leverage effects. In both these directions, Theorem 2 extends Kristensen (2010).
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As noted in Section 2, inference is not compromised by the presence of a jump process in X . Theorem 4 ver-

ifies this formally. In it, we study a departure from the null that – in addition to the drift and diffusive volatility

components in Eq. (1) – has a jump term. It implies that jumps are immaterial for drift burst detection.

Theorem 4 (Jump alternative) Assume that X is a jump-diffusion semimartingale of the form:

dX t =µt dt +σt dWt +dJt , (22)

where dJt J
= J is a random variable expressing a jump size at time t = t J , while dJt = 0 otherwise. We also require

that Assumption 1 – 3 in Appendix A hold true for the stochastic coefficients µt and σt . Then, as n →∞, such that

hn → 0 and nhn →∞, it holds that

T n
t J

p
→
√

√K (0)
K2
· sign(J ). (23)

Proof See Appendix A. �

It is not difficult to select a kernel that can discriminate the occurrence of a jump from that of a drift explosion.

In particular, the left-sided exponential kernel adopted in this paper has

√

√K (0)
K2

= 1, so that |T n
t J
|

p
→ 1. Thus, our

proposed t -statistic is—asymptotically—small under the null (standard normally distributed) and under the jump

alternative (equal to one in absolute value), while it is arbitrarily large under the drift burst alternative.

4.1 Robustness to microstructure noise

In practice, we cannot measure the true, efficient log-price from transaction or quotation data, as it is disrupted

by multiple layers of “noise” or “friction” (e.g., Black, 1986; Stoll, 2000). The notion of a minimum tick size, for

example, implies that price increments are discrete, which contradicts the Gaussian semimartingale description

of price formation presented in Eq. (1). A limitation of our analysis above is that it lacks robustness against such

market imperfections that operate at the tick level. In this section, we therefore show how to modify our test for drift

bursts, so it is resistant to such features of the market microstructure.

To incorporate noise, we assume that:

Yti
= X ti

+εti
, for i = 0, 1, . . . , n , (24)

where (εti
)ni=0 is an error term with E (εti

) = 0. The difficulty brought by noise is that in order to do inference about

drift bursts in X , we are forced to work with the contaminated high-frequency record of Y .
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The observed, noisy log-return is:

∆Yi ,n =∆X i ,n +∆εi ,n , (25)

where we further require E
�

(∆εti
)4
�

<∞ and, with a slight abuse of notation, we redefine

µ̂n
t =

1

hn

n
∑

i=1

K
�

ti−1− t

hn

�

∆Yi ,n . (26)

The additive noise model is standard in the literature. As ε has mean zero, the estimator in Eq. (26) is in expecta-

tion equal to the one in Eq. (15). The core of the problem is that microstructure noise creates serial correlation in

∆Yi ,n and therefore affects the variance of µ̂n
t . As microstructure effects are typically perceived to be transitory, it is

commonly assumed the noise is covariance stationary, so that it eventually dies out. Still, a large strand of literature

suggests the noise process is complicated in practice. In empirical work, it has been noticed that serial dependence

in returns often extends beyond the first lag (e.g., Aït-Sahalia, Mykland, and Zhang, 2011), implying the noise is au-

tocorrelated.8 Also, the variance of the noise is probably time-varying, as it tends to follow a pronounced U-shaped

intraday profile (e.g., Bandi and Russell, 2006; Oomen, 2006; Kalnina and Linton, 2008). Morever, a large part of mar-

ket microstructure theory – based on asymmetric information and strategic trading – suggests noise contributes to

price discovery, as it reveals private information about fundamentals, see, for instance, Glosten and Milgrom (1985);

Kyle (1985); Stoll (1989); Easley and O’Hara (1992), or Diebold and Strasser (2013). This means noise is, potentially,

endogenous (i.e., ε and X are dependent). Last, in practice the properties of the noise change a lot, depending on

how you sample the data and whether the analysis is done with trade or quote data (e.g., Hansen and Lunde, 2006).

In the noisy setting, we prove formally in Theorem 5 in Appendix A that the leading term in the (diverging)

variance of the drift estimator is sourced from the noise. This implies that the t -statistic suggested in Eq. (18)

continues to work, provided we update the estimator for σt to handle these additional complications. In small

samples, however, the actual variance to be estimated is a mixture of the continuous variation part and that due

to market microstructure noise (with the latter dominating asymptotically), so we advice using a robust estimator,

which handles both. In doing so, we avoid imposing overly strict and unrealistic assumptions on ε by using an

estimator that adapts naturally to the market environment, thereby keeping with the non-parametric approach of

our investigation. That is, following the huge literature on heteroscedasticity and autocorrelation consistent (HAC)

8For example, assume that ε is independent of X (i.e., exogenous) and i.i.d. with E (ε2
ti
) = ω2. Then, conditional on σ, var(∆Yi ,n ) =

∫ ti

ti−1
σ2

s ds +2ω2, cov(∆Yi ,n ,∆Yi−1,n ) =−ω2, and higher-order autocovariances are zero. While this suffices to capture some of the leading ef-

fects of bid-ask bounce on transaction data, such as spurious return variation and negative first-order autocorrelation (e.g., Niederhoffer and
Osborne, 1966; Roll, 1984; French and Roll, 1986), the independent i.i.d. noise model is not well-suited for our analysis at the tick frequency,
as we argue below.
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covariance matrix estimation (e.g., Newey and West, 1987; Andrews, 1991), we propose to set:

Σ̂n
t =

L
∑

l=−L

wn (l )γ̂(l ), (27)

where

γ̂(l ) =
n
∑

i=|l |+1

K
�

ti−1− t

hn

�

∆Yi ,n ·K
� ti−|l |−1− t

hn

�

∆Yi−|l |,n , (28)

and wn (l ) =w (l /n ) is a kernel.9

In the above, γ̂(l ) is the realized l th order autocovariance of
�

K
� ti−1−t

hn

�

∆Yi ,n

�n

i=1
, while the lag length L deter-

mines the number of these to include in the computation of Σ̂n
t . L grows with n , so that L →∞, n/L →∞ and

hn/L→ 0, as n→∞.

Throughout the paper, we set:

w (x ) =















1−6x 2+6|x |3, for 0≤ |x | ≤ 1/2,

2(1− |x |)3, for 1/2< |x | ≤ 1,

0, otherwise.

(29)

The function in Eq. (29) is the Parzen kernel. It has some profound advantages in our framework. Firstly, with the

Parzen kernel Σ̂n
t is ensured to be positive (with probability one), so we can always compute the t -statistic. This is

not true for a general weight function. Secondly, the efficiency of the Parzen kernel is near-optimal, e.g., Andrews

(1991); Barndorff-Nielsen, Hansen, Lunde, and Shephard (2009). The slight loss of efficiency brings the distinct

merit that Σ̂n
t can be computed on the back of the first L lags of the autocovariance function, while more efficient

weight functions typically require all n lags. In the high-frequency framework, where n is often large, the latter can

be prohibitively slow to compute. In contrast, L is typically small compared to n in practice, rendering our choice

of w much less time-consuming.

The robust t -statistic is then computed as:

T n
t =

√

√hn

K2

µ̂n
t

Æ

Σ̂n
t

. (30)

In Theorem 6 presented in Appendix A, we prove the consistency of Σ̂n
t under the null of bounded coefficients and

9In high-frequency estimation of volatility, the estimator in Eq. (27) based on (∆Yi ,n )ni=1 is called a realized kernel. We refer to Barndorff-
Nielsen, Hansen, Lunde, and Shephard (2008, 2009) for more details, while noting that we follow their recommendations to compute Σ̂n

t (e.g.,
they also advocate working with the Parzen kernel).
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standard mixing conditions on ε, as in Newey and West (1987). This implies the convergence of the modified T n
t

statistic in Eq. (30) to a standard normal distribution also in the presence of microstructure noise.

5 Simulation study

In this section, we adopt a Monte Carlo approach to further explore the t -statistic proposed in Eq. (18) as a tool

to uncover drift bursts in X . The overall goal is to investigate the size and power properties of our test and figure

out how “small” drift bursts we are able to detect with it under the alternative, amid also an exploding volatility

coefficient.

We simulate a driftless Heston (1993)-type stochastic volatility (SV) model:

dX t =σt dWt ,

dσ2
t = κ

�

θ −σ2
t

�

dt +ξσt dBt , t ∈ [0, 1],
(31)

where W and B are correlated standard Brownian motions with E (dWt dBt ) =ρdt . Thus, the drift-to-volatility ratio

of the efficient log-price is µt /σt = 0.

We configure the variance process to match key features of real financial high-frequency data. As consis-

tent with prior work (e.g., Aït-Sahalia and Kimmel, 2007), we assume the annualized parameters of the model are

(κ,θ ,ξ,ρ) = (5, 0.0225, 0.4,−0.5). We note θ implies an unconditional standard deviation of log-returns of 15%

p.a., which aligns with what we observe across assets in our empirical study (see Figure 5). A total of 1, 000 repe-

titions is generated via an Euler discretization. In each simulation,σ2
t is initiated at random from its stationary law

σ2
t ∼ Gamma(2κθξ−2, 2κξ−2). The sample size is n = 23, 400, which is representative of the liquidity in the futures

contracts analyzed in Section 6 (see Table 2). It corresponds to second-by-second sampling in a 6.5 hours trading

session.

The noisy log-price is:

Yi/n = X i/n +εi/n , i = 0, 1, . . . , n , (32)

where εi/n ∼ N
�

0,ω2
i/n

�

is the noise component. We set ωi/n = γ
σi/np

n
, so the noise is both conditionally het-

eroscedastic, serially dependent (via σ), and positively related to the riskiness of the efficient log-price (e.g., Bandi

and Russell, 2006; Oomen, 2006; Kalnina and Linton, 2008). γ is a scalar that controls the strength of the noise-to-

volatility ratio. In this paper, we assume that γ = 0.5, which amounts to medium contamination, e.g., Christensen,

Oomen, and Podolskij (2014).
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µ̂n
t and Σ̂n

t are constructed from (∆Yi ,n )ni=1 based on Eq. (26) and (27) with a left-sided exponential kernel K (x ) =

exp(−|x |), for x ≤ 0. An automatic lag length algorithm selects a data-driven choice of autocovariances na c in the

computation of Σ̂n
t (see, e.g., Newey and West, 1994; Barndorff-Nielsen, Hansen, Lunde, and Shephard, 2009).10

The bandwidth for µ̂n
t is varied in hn = (120, 300, 600) seconds. We use a slightly larger bandwidth of 5hn for Σ̂n

t to

capture the persistence in volatility and more accurately estimate the microstructure-induced return variation. We

then compute T n
t at ti ∈ (0, 1], for i = 1, . . . , m , where m is the total number of tests. In our simulations, we record a

new value of T n
t at every 60th transaction update, so that more than 340 tests are run in each sample.11 As expected,

this leads to a multiple comparison problem, which needs to be accommodated. Noting our test is two-sided, we

propose to compute in each Monte Carlo replication:

T ∗m = max
i=1,...,m

|T n
ti
|. (33)

As T n
ti

d→ N (0, 1), it follows that a normalized version of T ∗m has a limiting Gumbel distribution, as m →∞ (e.g.,

David, 1970; Lee and Mykland, 2008). However, in our setting the choice of K and hn , coupled with the frequency

of the testing times, implies that T n
t is highly autocorrelated, so the asymptotic extreme value theory is overly con-

servative in finite samples. As explained in Appendix B, we therefore adopt a simulation-based approach, which

accounts for this dependency, to evaluate the critical values for T ∗m .

We create drift and volatility bursts with the parametric model:

µdb
t = c1

sign(t − tdb)
|t − tdb|α

, σdb
t = c2

θ

|t − tdb|β
, for t ∈ [0.475, 0.525], (34)

with tdb = 0.5. Here, the asset experiences a short-lived flash crash at tdb, as consistent with our empirical finding

that most of the identified drift bursts are followed by a partial or full recovery.12 The window [0.475, 0.525] can be

interpreted as making the duration of the drift burst last about 20 minutes. The parametersα andβ are varied across

a broad interval in order to gauge their impact on the size and power of our t -statistic. We examine all combinations

of α = (0.55, 0.65, 0.75) and β = (0.1, 0.2, 0.3, 0.4).13 These values are selected to yield bursts of comparable size to

what we observe in the real data. In particular, fixing the tuning parameters at c1 = 3 and c2 = 0.15, our choices of α

10In our numerical experiments, the average value of na c is 9.3, while its interquartile range is 7 – 12.
11The process is started after a full volatility bandwidth of trading time has elapsed to allow for a sufficient number of observations in the

construction of T n
t .

12In order to ensure that the log-price also reverts during a pure volatility burst, we recenter the log-return series associated with σdb
t

in each simulation, so that
∫ T

0
σdb

t dWt = 0. This has almost no impact on the outcome of the t -statistic, but it makes the price processes
comparable across settings.

13Note that as α−β > 1/2 for some of these combinations, the model is not always devoid of arbitrage.
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Figure 3: Illustration of simulation with a drift burst.
Panel A: Drift coefficient. Panel B: Log-return of asset.
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Note. This figure plots a drift burst in our simulated price process. In Panel A, the drift coefficient is shown against time, while Panel B is the evolution of the
log-price with a burst in: (i) nothing, (ii) volatility, and (iii) drift and volatility. The latter are based on Eq. (34) with c1 = 3, c2 = 0.15, α= 0.75 and β = 0.4.

induce a cumulative return
∫ tdb

0
µdb

t dt of about−0.5% (with opposite sign after the crash) forα= 0.55 to slightly less

than −1.5% for α = 0.75. β produces a 25% (β = 0.1) to more than 100% (β = 0.4) increase in the average standard

deviation of log-returns in the drift burst window relative to its unconditional level across simulations. A drift burst

is thus accompanied by often extremely elevated volatility, making it challenging to detect the signal. Figure 3 plots

the drift burst function and an illustrative simulation based on the setting with α= 0.75 and β = 0.4.

Figure 4 reports Q-Q plots of the distribution of T n
t under the null hypothesis of no drift burst. In Panel A, we

show the results from the pure Heston (1993)-type SV model. As readily seen, the Gaussian curve is an accurate

description of the sampling variation of T n
t in this setup, although the t -statistic starts to be slightly thin-tailed a

few standard deviations out with hn = 120. In Panel B, the outcome of the process featuring no drift burst but a

large volatility burst (β = 0.4) is plotted.14 While the volatility burst does put some mass further into the tails of

the distribution of T n
t this is hardly noticeable, and the normal continues to be a good approximation also in this

setting.

This is further corroborated by Table 1, where we compute the propensity of T ∗m to reject the null hypothesis for

the three significance levels c = 5%, 1%, 0.5%. There are several interesting findings. Look first at the columns with

µdb
t ≡ 0, which report the results in absence of a drift burst (i.e., size). We note that without a volatility burst (β = 0.0),

14As expected, the results for other values of β fall in-between those of Panel A and B and are therefore not reported.
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Figure 4: Q–Q plot of T n
t without drift burst.

Panel A: no burst. Panel B: volatility burst (β = 0.4).
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Note. We present a Q-Q plot of T n
t under the null hypothesis of no drift burst. Panel A is from the pure Heston (1993)-type SV model with no burst in neither

drift nor volatility, while Panel B adds a volatility burst using the parametric model in Eq. (34) with c2 = 0.15 and β = 0.4.

the test is conservative compared to the nominal level if hn is small, as also reflected in Figure 4. As β increases, T ∗m

is mildly inflated yielding a tiny size distortion, but this effect is benign and only present for the largest β and hn .

Otherwise, the test is roughly unbiased. This is critical, as it suggests our t -statistic is adaptive and highly robust to

even substantial shifts in spot variance, so that we do not falsely pick up an explosion in volatility as a significant

drift burst. Turn next to the alternative with a drift burst (i.e., power). As expected, the power is increasing in α,

holding β fixed, while it is decreasing in β , holding α fixed. In general, the test has decent power and is capable

of identifying a true explosion in the drift coefficient, except those causing a minuscule cumulative log-return and

that are coupled with a large volatility burst. It is worth noting that, while the test has excellent ability to discover

the largest drift bursts, which from a practical point of view are arguably also the most important, it is intriguing

that we can uncover many of the smaller ones as well. At last, higher values of hn improve the rejection rate under

the alternative, but the marginal gain of going from hn = 300 to hn = 600 is negligible. This suggests – on the one

hand – that hn should not be too narrow, as it erodes the power, while – on the other – it should neither be too wide,

as this creates a small size distortion. In the empirical analysis, we settle for a 5-minute bandwidth.
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Table 1: Size and power of drift burst t -statistic T ∗m .

Pr(T ∗m > q0.950) Pr(T ∗m > q0.990) Pr(T ∗m > q0.995)
vb (size) db (power) vb (size) db (power) vb (size) db (power)
µdb

t ≡ 0 α= 0.55 0.65 0.75 µdb
t ≡ 0 α= 0.55 0.65 0.75 µdb

t ≡ 0 α= 0.55 0.65 0.75
Panel A: hn = 120
β = 0.0∗ 0.5 49.5 89.8 100.0 0.3 36.2 79.2 98.7 0.1 30.0 73.7 96.2

0.1 0.5 30.4 80.4 99.4 0.3 17.1 65.1 96.1 0.1 12.7 57.6 92.7
0.2 0.6 20.3 71.8 98.8 0.3 9.1 53.9 93.2 0.1 6.4 44.5 87.3
0.3 0.6 10.9 52.0 94.8 0.3 2.9 30.5 83.4 0.1 1.8 22.3 72.2
0.4 0.9 5.2 26.6 80.2 0.3 1.2 10.6 52.9 0.1 0.8 6.6 40.6

Panel B: hn = 300
β = 0.0∗ 3.4 58.1 92.4 99.9 0.7 46.8 87.2 99.6 0.4 42.3 84.2 99.3

0.1 2.8 46.0 87.9 99.7 0.6 33.6 80.0 99.2 0.3 29.4 75.0 98.7
0.2 2.9 40.3 84.5 99.6 0.6 25.8 73.5 98.8 0.4 21.0 69.2 97.9
0.3 3.4 29.3 74.4 99.2 0.6 15.4 60.3 97.2 0.5 11.8 54.2 94.8
0.4 4.1 20.2 53.6 94.8 1.2 9.1 37.1 88.1 0.7 6.6 30.1 82.5

Panel C: hn = 600
β = 0.0∗ 4.7 54.0 89.8 99.8 0.9 41.2 82.0 99.4 0.5 37.4 79.4 98.7

0.1 4.3 45.4 85.9 99.7 0.7 35.1 76.5 98.7 0.4 30.7 73.8 97.9
0.2 4.4 42.0 83.0 99.6 0.7 30.0 73.4 98.4 0.3 24.9 69.9 97.1
0.3 4.9 34.7 75.5 99.1 0.9 21.9 66.1 96.6 0.5 17.2 60.1 95.2
0.4 6.6 25.2 60.0 96.4 1.9 14.6 46.3 92.3 1.2 11.9 39.9 89.2

Note. Pr(T ∗m > q1−c ) is the rejection rate (in percent, across Monte Carlo replications) of the drift burst t -statistic T ∗m defined in Eq. (33), where q1−c is a
simulated (1− c )-level quantile from the finite sample extreme value distribution of T ∗m under the null of no drift burst, as explained in Appendix B. α is the
explosion rate of the drift burst (db), while β is the explosion rate of the volatility burst (vb). *β = 0.0 represents the pure Heston (1993)-type SV model with
no volatility burst. hn is the bandwidth of µ̂n

t (measured as effective sample size), while the bandwidth of Σ̂n
t is 5hn .

6 Drift bursts in financial markets

We now apply the drift burst test developed above to a large set of intra-day tick data, covering a broad range of fi-

nancial assets. The aim here is to establish whether drift bursts are an empirical phenomena and – if so – to illustrate

some of their basic properties. The analysis also provides an opportunity to examine whether some of the predic-

tions made in theoretical work about liquidity provision, particularly by Huang and Wang (2009), are supported by

the data.

6.1 Data

We have available a comprehensive set of tick data – trades and quotes with milli-second timestamps – for futures

contracts traded on the Chicago Mercantile Exchange (CME). For each of the main assets classes, we select the

most actively traded futures contract, namely the E-mini S&P500 futures (ES) for equities, the 10-Year Treasury Note
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Table 2: CME futures data summary statistics

volume # quote inside sub-sample retained
code name # days # contracts notional updates spread by volume by quotes
ES E-mini S&P500 1650 1,865,404 $143.0bn 28,950 1.66bps 97.5% 92.4%
ZN 10-Year T-Note 1139 1,118,867 $111.9bn 6,359 1.22bps 95.1% 90.1%
6E Euro FX 1139 221,465 $34.5bn 49,485 0.77bps 93.4% 88.4%
GC Gold 1143 148,685 $20.9bn 55,049 1.03bps 89.4% 85.4%
CL Crude oil 1142 241,131 $17,3bn 74,973 1.58bps 96.0% 92.3%
ZC Corn 1130 112,281 $2.8bn 5,409 5.52bps 86.5% 69.8%

Note. This table reports for each futures contract, the number of days in the sample, the average daily volume by number of contracts and by notional traded,
the average daily number of top-of-book quote updates, and the average daily median spread in basis points calculated from 09:00 – 10:00 Chicago time. The
sample period is Jan 2012 – Jun 2016 for all contracts, except for ES where the sample starts in Jan 2010. In the empirical analysis, we restrict attention to the
most active trading hours from 01:00 – 15:15 Chicago time for all contracts, except for ZC where the interval is restricted to 08:30 – 13:20 Chicago time. The
fraction of volume and quote updates retained after removing the most illiquid parts of the day is reported in the last two columns.

futures (ZN) for rates, the Euro FX futures (6E) for currencies, the Gold futures (GC) for precious metals, the Crude oil

futures (CL) for energy, and the Corn (ZC) futures for agricultural commodities. The sample period is January 2012

– June 2016 for all futures, except for the S&P500 futures where we backdate the sample to January 2010 in order to

capture the widely documented May 2010 flash crash. The contracts selected are amongst the most liquid financial

instruments in the world. To illustrate, the average daily notional volume traded in just a single E-mini S&P500

futures contract on the CME is comparable to the trading volume of the entire US cash equity market covering over

5000 stocks traded across more than ten different exchanges.15 While the CME is open nearly all day, we restrict

attention to the European and US trading sessions: from 01:00 – 15:15 Chicago time or 07:00 – 21:15 London time.

The only exception here is Corn, where we use data from 08:30 – 13:20 Chicago time. Outside of these hours, trading

is minimal in this contract. Table 2 provides some summary statistics of the data.

6.2 Drift burst identification

The implementation of the drift burst test is done as follows. Using the quote data, we construct for each futures

contract a simple mid-price as the average of the best bid and offer price available at any point in time, and then only

select those observations where the mid-price changes. Because we operate on the finest granularity tick data, it is

inevitable that market microstructure effects are present and if left unaccounted for these can produce substantial

biases and a reduction of power in our drift burst test statistic. As discussed above, the local drift estimation proceeds

as usual but the estimation of the local price volatility requires a HAC-type adjustment. We use the Parzen kernel

with a bandwidth of L = 10. Figure 5 provides an illustration of the pronounced microstructure-induced serial

15See https://batstrading.com/market_summary/ for daily US equity market volume statistics.
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Table 3: Drift burst test summary statistics

empirical distribution # of identified drift bursts
code name σ σq kurtosis |T |> 4.0 >4.5 >5.0 >5.5 >6.0
ES E-mini S&P500 1.01 1.01 3.2 376 140 48 21 9
ZN 10-Year T-Note 1.11 1.06 2.7 82 34 18 6 2
6E Euro FX 0.96 0.97 3.8 788 356 162 75 34
GC Gold 0.92 0.95 4.0 834 332 139 58 20
CL Crude oil 0.96 0.99 3.9 874 356 152 59 29
ZC Corn 1.08 1.08 3.3 106 41 14 5 1

Note. This table reports for each futures contract, the standard deviation and kurtosis of the empirical drift burst test values. The test is calculated at five
second intervals across the full sample period, provided that there was a mid-quote update over that interval. The standard deviation is calculated in the usual
way (“σ”) and by rescaling the 5/95-percentile of the empirical distribution by that of a standard normal (“σq ”). The number of drift bursts identified for
critical values ranging between 4 and 6 is also reported. The number of false positives that we expect, which can be computed using the techniques described
in Appendix B, is virtually zero.

correlation present in the mid-quote returns. The alternating pattern is due to the way we sample the returns here.

Overlaid in this chart are two measures of realized volatility as in Eq. (27) with one that sets wn (·) = 1 and the other

uses the Parzen kernel. From here it is clear that with a bandwidth of L = 10 the realized variance estimator is

largely free of any microstructure biases and that the Parzen kernel has the added advantage that it is guaranteed

to produce positive variance estimates. This feature is particularly important when the test is applied to relatively

small samples over illiquid parts of the trading day, or to futures contracts where the minimum price increment –

and hence the microstructure noise – is relatively large (e.g. ZN).

Because our primary interest lies in identifying any short-lived intra-day drift bursts, we set the bandwidth of

the drift estimator to five minutes. To estimate the local spot volatility process, however, we use a longer bandwidth

of 25 minutes. This is in recognition that to obtain reliable volatility estimates a reasonable number of data points

is required (in contrast to the drift estimator which only obtains marginal efficiency gains from using more data

points). Also, because the volatility estimator appears in the denominator of the test statistic, the impact of any

measurement error can severely distort the properties of the test. And finally, while volatility is known to vary over

time, an extensive literature suggests the process is relatively persistent which enables one to use a local window

around the point of interest to make inference on the spot volatility. The simulation experiments above support this

choice. To keep computations manageable, we calculate the drift burst test on a regular grid at five-second intervals

and then only sample those points that are preceded by a mid-quote change.

Table 3 provides some summary statistics for the calculated drift burst test values over the full sample. Judging by

the estimates of the standard deviation and kurtosis, the test appears to be well behaved and in line with the theory

which suggests that, asymptotically, the test will have a standard normal distribution under the null hypothesis of
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no drift bursts. This is quite remarkable considering that the test here is calculated over short intra-day intervals and

across a wide range of asset classes, liquidity conditions, diurnal patterns, and microstructure effects. Concentrating

on the tails of the distribution, we identify a large number of significant drift bursts in the data. To account for the

rolling calculation of the test statistic and to avoid double counting of significant events, we allow for at most one

drift burst to be established at the point where the test statistic attains its local extremum and exceeds a set critical

value over any five-minute window. For instance, at a critical value of 4.5, we identify 140 drift bursts in the E-mini

S&P500 futures, with the number of expected false positives (computed using extreme value theory as described in

Appendix B) being practically zero. That is about one every two weeks. Drift bursts are even more frequent in the

Euro FX, Gold, and Oil contracts but much less frequent in the Treasury and Corn futures. Figure 6 provides some

examples of significant drift bursts identified by the test. Observing the price evolution over these episodes, it is

clear that neither price jumps or bursts in volatility are driving the dynamics. The drift burst hypothesis provides a

plausible alternative to model the data.

6.3 Some stylised facts of drift bursts

We now investigate in some more detail the price dynamics over a drift burst episode. In particular, we study whether

the very strong mean reversion observed over the high profile May 2010 S&P500 flash crash and the October 2014

Treasuries flash crash is more broadly associated with a drift burst. For this purpose, we define the start of a drift

burst at the latest point in time (prior to the peak) where the test statistic is less than one in absolute value. The

time-interval from start to peak then forms a natural frequency at which to sample the price process post peak. Let

{t j } j denote the set of time points where a drift burst peak is identified. Let τ j denote the time-interval from start

to peak, which is our definition of the duration of the drift burst event. Then define:

Dt j
= X t j

−X t j−τ j
and Rt j ,k = X t j+kτ j

−X t j
. (35)

Dt j
is the logarithmic return during the j−th drift burst event. Rt j ,k is the logarithmic post-drift burst return im-

mediately after the j−th event, over a time interval kτ j , so that we standardize time measurement to the duration

of the drift burst event. Figure 7 provides a graphical illustration of the behavior of Dt j
and Rt j ,k with k = 3, pooled

over all the considered markets. The figure shows that drift bursts can be associated with both positive and negative

returns. Most importantly, it clearly indicates that most of drift bursts (75%, in this specific case) are reversals, so

that the percentage of “gradual jumps” is small.

To evaluate the magnitude of the reversals more formally, and to evaluate whether drift bursts can be associated
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Figure 6: Drift Burst Examples

Panel A : Euro-Dollar (May 2, 2016) Panel B : Gold (Mar 26, 2015)
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Note. This Figure draws, for some identified drift bursts, the sample path of the mid-quote and traded price (right axis) together with the test statistic
(left axis) over a 30-minute window that includes the peak of the drift burst.

with short term, high-frequency, return predictability, we run the following backward-forward regressions:

Rt j ,k =α+βDt j
+ ε j (36)

When β < 0, then a drift burst tends to be followed by a (partial) retracement of the price. In general, a value of β
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Figure 7: Drift burst reversals
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Note. This Figure draws on the horizontal axis the percentage price move from the start to the peak of a drift burst (as
defined Dt j in Eq. 35) against the subsequent price move (as defined by Rt j ,k in Eq. 35) on the vertical axis. The horizon
is set to k = 3.

significantly different from zero would indicate short term predictability conditional on the drift burst event.

Panel A of Table 4 reports the regression results for each futures contract separately and when all are pooled to-

gether for different values of the forward looking horizon post the drift burst peak. Strong mean reversion is evident

and this is consistent across all asset classes and horizons. Estimates of the β coefficients are negative and highly

significant (even for assets with relatively small number of observations) whereas the intercept is insignificantly

different from zero (not reported). The regression R 2 indicates there is a substantial amount of predictive power

here. We also report the fraction of reversals (measured by counting the relative occurrence when Dt j
and Rt j ,k have

opposite sign) which rarely drops below 60%.

To check the robustness of these results, we remove the most significant decile of drift bursts episodes and rerun

the regression with results reported in Panel B. As expected, the regression R 2 drops, but the same qualitative finding

remains overly evident in the data with significant levels of mean reversion and frequent reversals. The critical value
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is set to 4.5 here but qualitatively similar results are obtained for larger more conservative values.

These results are in keeping with the interpretation of reversals as returns earned by market makers from liquid-

ity provisions. Also Nagel (2012) notices that returns on short-term reversals can be interpreted as liquidity signa-

tures, identifying high levels of VIX as a symptom of reduced liquidity supply. In particular, the model of Huang and

Wang (2009), which can be seen as a development of the model of Grossman and Miller (1988), formulates a series of

theoretical predictions about the strength of the reversal and volume/volatility during the episode, predicting that

the reversal should be stronger with high volume and high volatility. We are able to test this prediction condition-

ally on the detection of drift burst events. Table 5 shows the estimates of the regression in Eq. (36) (with k = 3) after

conditioning on i) the traded volume during the drift burst event (above median/below median);16 ii) the volatility

at the peak, measured with Σ̂t as defined in Eq. (27) (above median/below median). Results are broadly consistent

with the theory in Huang and Wang (2009): predictability of the reversals (as measured by a negative value of the

estimate of β ) is stronger with higher volume and higher volatility. For instance, the strength of reversion is nearly

twice as strong for high volume/volatility episodes compared to lower volume/volatility ones. Also the predictabil-

ity is much stronger in those scenarios with R 2 at around 50% in the “high” regimes while it doesn’t exceed 35%

across any of the lower regimes. Results are robust to the removal of the largest most extreme drift bursts. For ZN

and ZC the results are weaker, which is unsurprising given the relative small number of observations available here.

Stronger predictability associated with high volatility is also consistent with Nagel (2012). As such, the findings pre-

sented here provide empirical support for the validity and applicability of the above mentioned theories of liquidity

provision.

7 Conclusion

We develop mathematical and statistical methods for the modelling and detection of short-term explosive trends –

or drift bursts – in financial time series. We show that drift bursts can be modelled using the standard technology of

continuos-time finance without invalidating the basic no-arbitrage property. Applying the proposed methodology

to a comprehensive set of tick data, we provide unprecedented insights into these potentially disruptive but poorly

understood events. We show that the majority of drift bursts are followed by strong price reversals, and can hence

16We use a normalised gross trading volume measure defined as follows. We take the gross trading volume in notional value over the drift
burst period, and after dividing it by the number of 5-seconds interval during the period, we normalize by the average trading rate at that
time of the day. This procedure allows to depurate for time-of-the-day effects. Results with simple gross trading volume are qualitatively
very similar.
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Table 5: Conditional reversal regressions
high volume low volume high volatility low volatility

sym # β R 2 %R # β R 2 %R # β R 2 %R # β R 2 %R
Panel A: all drift bursts (critical value = 4.5)
ES 70 −0.64

(−17.46)
81.5% 78.6% 70 −0.15

(−2.98)
11.4% 71.4% 70 −0.59

(−14.75)
75.9% 75.7% 70 −0.10

(−1.59)
3.5% 74.3%

ZN 17 −0.38
(−3.73)

46.5% 64.7% 17 −0.35
(−9.17)

84.0% 94.1% 17 −0.38
(−3.94)

49.2% 76.5% 17 −0.31
(−5.54)

65.7% 82.4%

6E 178 −0.24
(−14.37)

53.9% 82.0% 178 −0.15
(−7.59)

24.5% 71.9% 178 −0.22
(−12.04)

45.0% 80.3% 178 −0.17
(−9.28)

32.7% 73.6%

GC 166 −0.25
(−10.18)

38.6% 81.9% 166 −0.18
(−8.94)

32.6% 82.5% 166 −0.22
(−9.08)

33.3% 82.5% 166 −0.21
(−10.99)

42.3% 81.9%

CL 178 −0.29
(−17.56)

63.5% 89.3% 178 −0.18
(−10.66)

39.1% 77.5% 178 −0.26
(−15.37)

57.2% 87.6% 178 −0.14
(−8.66)

29.8% 79.2%

ZC 20 −0.21
(−5.82)

64.0% 90.0% 21 −0.08
(−2.55)

24.5% 81.0% 20 −0.15
(−4.15)

47.5% 85.0% 21 −0.27
(−7.05)

71.3% 85.7%

ALL 629 −0.32
(−29.21)

57.6% 83.1% 630 −0.18
(−18.27)

34.7% 77.5% 629 −0.27
(−24.98)

49.8% 83.3% 630 −0.17
(−14.86)

26.0% 77.3%

Panel B: all drift bursts after removing largest decile
ES 63 −0.26

(−9.81)
60.8% 77.8% 63 −0.11

(−2.01)
6.1% 71.4% 63 −0.24

(−8.50)
53.8% 76.2% 63 −0.08

(−1.02)
1.6% 73.0%

ZN 15 −0.01
(−0.10)

0.1% 53.3% 16 −0.36
(−9.38)

85.4% 100.0% 15 −0.15
(−2.12)

24.3% 73.3% 16 −0.32
(−5.81)

69.3% 81.3%

6E 160 −0.24
(−13.60)

53.8% 80.0% 160 −0.11
(−5.68)

16.9% 71.3% 160 −0.22
(−11.09)

43.6% 78.1% 160 −0.16
(−8.01)

28.8% 73.1%

GC 149 −0.22
(−8.37)

32.1% 81.9% 150 −0.18
(−7.87)

29.4% 80.7% 149 −0.20
(−7.64)

28.3% 80.5% 150 −0.20
(−10.00)

40.1% 82.0%

CL 160 −0.27
(−15.53)

60.3% 88.8% 160 −0.17
(−9.68)

37.1% 76.9% 160 −0.24
(−13.45)

53.2% 86.9% 160 −0.14
(−8.65)

32.0% 78.8%

ZC 18 −0.21
(−5.49)

64.0% 83.3% 19 −0.10
(−2.90)

31.8% 89.5% 18 −0.16
(−4.11)

49.8% 88.9% 19 −0.28
(−7.08)

73.6% 84.2%

ALL 566 −0.25
(−25.64)

53.8% 81.8% 567 −0.17
(−16.77)

33.2% 77.4% 566 −0.21
(−22.18)

46.5% 82.9% 567 −0.17
(−12.78)

22.4% 76.4%

Note. This table reports for each security and after conditioning on high/low volume and high/low volatility, the number of identified drift bursts (#) using
a critical value of 4.5, the estimated slope coefficient β of Eq. (36), the associated regression R 2, and the probability of reversion (%R ) calculated as the
fraction of drift bursts where the price direction after the test statistic peaks is opposite in sign compared to that in the run-up. In these regressions, k = 3.
To confirm robustness of the results, Panel B removes the decile of strongest drift bursts as measured by the absolute value of the test statistic.

be viewed as flash crashes. Rather than being rare events, we find drift bursts and flash crashes are quite common

across all major asset classes. As such they form a stylised feature of financial market dynamics. Our results provide

support for a number of theoretical prediction made in the market microstructure literature on price formation in

markets with trading frictions. Taken together, our methodology and empirical results contribute towards a better

understanding of the microstructure dynamics of financial markets and, as such, may help to inform the regulatory

policy agenda.
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A Mathematical Appendix

Proof of Theorem 1. Under the Assumptions, using Taylor expansion we can write

E
�

X ti+1
−X ti

| X ti

�

=
�

m
�

X̃ ti
−X ti

�

+ f ′(X ti
)m

�

X̃ ti
−X ti

�

+
σ2

2
f ′′(X ti

)
�

∆+op (1),

and

E
�

�

X ti+1
−X ti

�2 | X ti

�

= f ′(X ti
)m

�

X̃ ti
−X ti

�

σ2∆+op (∆).

Then, the result follows along the lines of the proof of Theorem 4.1 in Cont and Wagalath (2013).

Assumption 1 (The model under the null) The underlying (logarithmic) price is assumed to follow the dynamics in Eq. (1),

where the coefficients µt ,σt are bounded adapted processes with càdlàg paths, and σt is a.s. strictly positive. Further, given a

fixed point t ∈ [0, T ], let Bε(t ) = [t − ε, t + ε], with fixed ε > 0, and assume that there exist Γ > 0, a sequence of stopping times

τm ↑∞ and constants C (m )t such that for all m, for (ω, s ) ∈Ω×Bε(t )∩ [0,τm (ω)[, and u ∈ Bε(t ),

Eu∧s [|µu −µs |2+ |σu −σs |2]≤C (m )t |u − s |Γ , (37)

where Et [·] denotes E[·|Ft ]. The initial value X0 is measurable with respect toF0; γ is a constant such that 1/2<γ< 1.

Assumption 2 (The trading times) The process X t is observed n +1 times at deterministic instants 0= t0 < t1 < . . .< tn = T , not

necessarily equally spaced and with T fixed. We set ∆i ,n = ti − ti−1 and ∆n =
T
n and assume maxi=1,...,n{∆i ,n} = O (∆n ). The

quadratic variation of time up to a given t ≤ T is defined as H (t ) = limn→∞Hn (t ), where

Hn (t ) =
1

∆n

∑

ti≤t

�

∆i ,n

�2
. (38)

Assuming that the above limit exists, we require that H is Lebesgue-almost surely differentiable in [0, T ], with H ′ such that for

some K ≥ 0 (not depending on i )
�

�

�H ′(ti )−
∆i

∆n

�

�

�≤ K∆i . (39)

Assumption 3 (The kernel) The kernel K (·) is a positive real function defined on the negative real values (left-sided kernel) sat-

isfying the following assumptions:

(K0) K (x ) = 0 for x > 0.

(K1) the kernel is bounded, differentiable with bounded first derivative;

(K2)
∫ 0

−∞K (x )d x = 1; K2 =
∫ 0

−∞K 2(x )d x <∞;

(K3) for every positive sequence gn →∞,
∫ −gn

−∞ K (x )d x ≤C g −βn for some β > 0 and C > 0 (fast vanishing tails);
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(K4) mK (α) =
∫ 0

−∞K (x )|x |αd x <∞, for all α≥−γ.

Lemma 1 (discretization error) Under Assumptions 1 and 3, as n→∞ and hn → 0, we have for every t ∈]0, T [,

An =
1

hn

n
∑
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K
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ti−1− t

hn
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∫ ti
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∫ T
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1
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and the same applies replacing µt withσt .

Proof Write:
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Using the mean value theorem and the boundedness of K ′(·) and the drift process, for each interval there exists ξi−1 such that
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The proof for the term Bn is similar.

Lemma 2 (localization error) Under Assumptions 1 and 3, as n→∞ and hn → 0, we have for every t ∈]0, T [,

Bn =
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1

hn
K
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hn
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�
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, (42)

and the same applies replacing µt with g t orσt .

Proof Notice that, by the properties of the kernel,
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,

so that we can write
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where we used the property (K 3). Now, by Jensen inequality and property (37):
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so that for the first term, using property (K4), we have:
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which concludes the proof.

Proof of Theorem 2. Write:
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Using the results in Mancini, Mattiussi, and Renò (2015) we haveÒσ2
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Write Gn =
∑n

i=1 ui ,n . To prove stable convergence of Gn toMN (0, Vt ), we use Theorem IX.7.28 in Jacod and Shiryaev (2003),
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wich states the following sufficient conditions:
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t orthogonal to Wt . Condition (43) is immediate. From Itô’s lemma:
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Now the first term converges to K2σ
2
t − , as in Mancini, Mattiussi, and Renò (2015). The second term is negligible since, given
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=O
�

∆n

hn

�

.

Finally, for condition (46), when Z =W we have, using Cauchy-Schwartz inequality,

Ei−1

�

∆i W
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�

≤
Ç
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�

(∆i W )2
�

√
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�2




≤
p

∆n

√

√

√

Ei−1

�

∫ ti

ti−1

σ2
s d s

�

≤C
p

∆n

which implies
n
∑

i=1

Ei−1

�

ui ,n∆Wi

�

≤C
p

hn
1

hn

n
∑

i=1

K
�

ti−1− t

hn

�

∆n → 0.

When instead Z =W ′, orthogonality implies that W ′
∫

σs d Ws is also a martingale, so that

Ei−1

�

∆i W ′
∫ ti

ti−1

σs d Ws

�

= 0.

We thus proved that Gn converges, stably in law, toMN (0, K2σ
2
t − ), which implies ÒTn (t )⇒N (0, 1).

Proof of Theorem 3 Without loss of generality, we can set T = td b = 1. Then we have:

T̂ n
t =

√

√hn

K2

1
hn

∑n
i=1 K

�

ti−1−t
hn

�

∆X i ,n

�
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where

∆X i ,n =

∫ i

i−1

µs d s +

∫ i

i−1

σs d Ws

︸ ︷︷ ︸

â∆X i ,n
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∫ i
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1

(1− s )α
d s
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(1− s )β
d Ws
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.

Write:

T̂ n
t =

√

√hn

K2

1
hn

∑n
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�
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�

�

â∆X i ,n +Di ,n +Si ,n

�

�

1
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.

From Theorem 2, we have 1
hn

∑n
i=1 K

�

ti−1−t
hn

�

â∆X i ,n = Op (1/
p

hn ). For the second term in the denominator, using the same
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derivation of Lemma 1, we have
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For the third term in the numerator, we have, 1
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i=1 K
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= 0, and

1
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and, using Burkholder-Davies-Gundy and Jensen inequalities,
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These result, invoking again Theorem IX.7.28 in Jacod and Shiryaev (2003), imply that 1
hn

∑n
i=1 K

�

ti−1−1
hn

�

Si ,n =Op (h
−β
n ), so that,

since α>β , the numerator is Op (h−αn ). Similarly, the leading term in the denominator is:

1

hn

n
∑

i=1

K
�

ti−1− t

hn

�

D 2
i ,n =Op (∆n h−2α

n ),

where we used a reasoning similar to that leading to Lemma 1, second part. We can thus conclude that T̂ n
t (1) =Op (

p

nhn )→∞.

Proof of Theorem 4 Without loss of generality, we can set T = t J = 1. Write

â∆X i ,n =

∫ i

i−1

µs d s +

∫ i

i−1

σs d Ws .

Then we have, using Theorem 2:
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Theorem 5 (The drift estimator with market microstructure noise) Assume that X is a continuous semimartingale as defined

by Eq. (1), and that Assumption 1 – 3 in Appendix A hold true for the stochastic coefficients µt and σt . Define Yi ,n = X i ,n +εi ,n ,

and, for every fixed t ∈ (0, T ], with a slight abuse of notation, µ̂n
t as in Eq. (26). Assume E (∆εti

) = 0, E ((∆εti
)2) = V∆ε <∞ and

E ((∆εti
)4)<∞. As n→∞, such that hn → 0 and nhn →∞, it holds that

p

∆n hn µ̂
n
t

d→N (0, K2V∆ε). (47)

Proof Using Theorem 2, write:
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It is straightforward that
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hn

∑n
i=1 K

�

ti−1−t
hn
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Ei−1[∆εi ,n ] = 0. Now write:
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Finally,
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2 1
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K 4
�
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hn

�

Ei−1[(∆εi ,n )
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n→∞
0.

This proves that
p

∆n hn M ε
n

d−→N (0, 2(Vε−ACε)K2), so that M ε
n is the dominating term, and this concludes the proof.

Theorem 6 (The null with market microstructure noise) Assume that X is a continuous semimartingale as defined by Eq. (1),

and that Assumption 1 – 3 in Appendix A hold true for the stochastic coefficientsµt andσt . Define Yi ,n = X i ,n+εi ,n , and, for every

fixed t ∈ (0, T ], with a slight abuse of notation, µ̂n
t as in Eq. (26), and Σ̂n

t as in Eq. (27). Assume E (∆εti
) = 0, E (∆εti

) = V∆ε <∞

and E ((∆εti
)4)<∞. Define γ j =C o v (∆εti

,∆εti−| j |), Zi | j | =∆εti
∆εti−| j | −γ j and assume that

1.
∑∞

j=−∞γ j <∞;

2. E (|Zi | j ||r )<C1 for all i , j for some r > 2 and a given constant C1;

3. Zi | j | is mixing withφ(`) of size −r /(r −1) or α(`) of size −2r /(r −2).

As n→∞, such that hn → 0 and nhn →∞, it holds that∆n Σ̂
n
t

p
→ K2V∆ε, which implies T n

t =
Ç

hn
K2

µ̂n
tp
Σ̂n

t

d→N (0, 1).

Proof Follows from Theorem 5 and Theorem 2 in Newey and West (1987).

37



B Critical value of drift burst t -statistic

In the main text, we propose to detect drift bursts by calculating our t -statistic T n
t progressively during the time-interval (0, T ].

This leads to a multiple testing problem, which can cause severe size distortions, if the quantile function of the standard normal

distribution is used to determine the significance of the individual T n
t , as asserted by the asymptotic theory in Theorem 2.

To control the family-wise error rate, we borrow from extreme value theory by evaluating a standardized version of the daily

maximum of the absolute value of our drift burst t -statistic.

In absence of a drift burst in X , recall that for t ∈ (0, T ]:

T n
t

d→N (0, 1), (48)

as n→∞, hn → 0, such that nhn →∞.17

Now, assume that we compute T n
t at a set of time points ti ∈ (0, T ], for i = 1, . . . , m . The value of the t -statistic at time ti is

T n
ti

. Then, we set:

T ∗m =max
ti

|T n
ti
|, i = 1, . . . , m . (49)

It follows that, as m→∞,

(T ∗m − bm )am
d→ ξ, (50)

where

am =
p

2 ln(m ), bm = am −
1

2

ln(π ln(m ))
am

, (51)

and the CDF of ξ is the Gumbel, i.e. P (ξ≤ x ) = exp(−exp(−x )).18

While the convergence in Eq. (50) is known to hold, when the sequence
�

T n
ti

�m

i=1
is i.i.d. Gaussian, it also remains true for

the absolute value of covariance-stationary normal random variables (Berman, 1964; Pakshirajan and Hebbar, 1977), because

weak serial dependence does not alter the distribution of the maximum term, asymptotically.19 On the other hand, persistence

induces to large discrepancies in finite samples (e.g., Arellano-Valle and Genton, 2008). The route we follow to find drift bursts

with frequent sampling of our t -statistic leads
�

T n
ti

�m

i=1
to be constructed from overlapping data, the extent of which depends

on the interplay between the sampling frequency n , the grid points
�

ti

�m

i=1
, the kernel K , and the bandwidth hn . In particular, in

our implementation T n
ti

typically exhibits a strong serial correlation, so that m tends to severely overstate the effective number

of “independent” copies in a given sample. This implies our test is too conservative, when evaluated against the Gumbel

distribution.

17Note that Theorem 2 precludes market frictions, while the corresponding result is also verified in the presence of microstructure noise
in Appendix A above.

18David (1970) is a classic reference to the necessary extreme value theory behind this statement. Bajgrowicz, Scaillet, and Treccani (2016);
Lee and Mykland (2008) exploit these ideas in the high-frequency framework to devise an unbiased jump-detection test, while in a related
context Andersen, Bollerslev, and Dobrev (2007) propose a Bonferroni correction. The latter was another viable tool to avoid systematic
overrejection of the null hypothesis in this paper.

19In particular, sufficient conditions for this to hold is that either a) limi→∞ρi log(i ) = 0 or that
∑∞

i=1ρ
2
i <∞, where ρi is the i th-order

autocorrelation coefficient.
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Figure 8: Autocorrelation function and critical value of t -statistic.
Panel A: ACF Panel B: Critical value
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Note. In Panel A, we plot the ACF of T n
ti

from the simulation section (averaged across Monte Carlo replica) and the empirical application (averaged
across asset markets and over time). The associated dashed curve is that implied by maximum likelihood estimation of the AR(1) approximation in
Eq. (52) based on the whole sequence (T n

ti
)mi=1 in our sample. The t -statistic is constructed as advocated in the main text. In Panel B, we plot the

finite sample quantile found via simulation of the AR(1) model in Eq. (52) by inputting the estimated autoregressive coefficient. This figure is based
on m = 2, 500 and shows the effect of varying the autocorrelation coefficient ρ and confidence level 1−α.

It turns out that with the left-sided exponential kernel advocated in this paper, the autocorrelation function (ACF) of T n
ti

decays – to a very good approximation – as that of a covariance-stationary AR(1) process with positive autoregressive coefficient

(see Panel A in Figure 8):

Zi =ρZi−1+εi , i = 1, . . . , m , (52)

where |ρ|< 1 and εi
i.i.d.∼ N

�

0,
1

1−ρ2

�

. In this model, Zi ∼N (0, 1) as consistent with the limit distribution of T n
ti

, while the ACF

is cor(Zi , Z j ) =ρ|i− j |.

To account for dependence in T n
ti

and get better size and power properties of our test, we simulate the above AR(1) model.

We input a value of ρ that is found by conditional maximum likelihood estimation of Eq. (52) from each individual series of

t -statistics (i.e. OLS of Eq. (52) based on
�

T n
ti

�m

i=1
). We then generate a total of 100,000,000 Monte Carlo replica of the resulting

process with a burn-in time of 10,000 observations, which are discarded. In each simulation, we record the extreme value Z ∗m

based on
�

Zi

�m

i=1
. We tabulate the quantile function of the raw and normalized Z ∗m series from Eq. (49) – (50) across the entire

universe of simulations and use this table to draw inference.20

In Figure 8, we provide an illustration of this approach. In Panel A, we show the ACF of our t -statistic for the stochastic

volatility model considered in Section 5 and the empirical high-frequency data analyzed in Section 6. We also plot the curve

20To speed this up for practical work, we prepared in advance a file with the quantile function of the raw and normalized Z ∗m based on
the above setup for several choices of m , ρ and selected levels of significance α. This file, along with an interpolation routine to find critical
values for other m and ρ, can be retrieved from the authors at request.
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fitted using the above AR(1) approximation. The estimated ACF is close to the observed one, although there is a slight attenu-

ation bias. In Panel B, we report the simulated critical value, as a function of ρ and αwith m fixed. These are compared to the

ones from the Gumbel distribution. We note a pronounced gap between the finite sample and associated asymptotic quantile,

which starts to grow noticeably wider in the region, whereρ exceeds about 0.7 – 0.8. Apart from that, the extreme value theory

offers a decent description of the finite sample distribution for low confidence levels, if the degree of autocorrelation is small,

while it gets materially worse, as we go farther into the tails. The latter is explained in part by the fact that even if the underly-

ing sample is uncorrelated, and hence independent in our setting, convergence in law of the maximum term to the Gumbel is

known to be exceedingly slow for Gaussian processes (e.g., Hall, 1979).
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