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Abstract. This paper considers specification testing for regression models with errors-in-

variables and proposes a test statistic comparing the distance between the parametric and

nonparametric fits based on deconvolution techniques. In contrast to the method proposed by

Hall and Ma (2007), our test allows general nonlinear regression models. Since our test employs

the smoothing approach, it complements the nonsmoothing one by Hall and Ma in terms of

local power properties. The other existing method, by Song (2008), is shown to posses trivial

power under certain alternatives. We establish the asymptotic properties of our test statistic

for the ordinary and supersmooth measurement error densities and develop a bootstrap method

to approximate the critical value. We apply the test to the specification of Engel curves in

the US. Finally, some simulation results endorse our theoretical findings: our test has advan-

tages in detecting high frequency alternatives and dominates the existing tests under certain

specifications.

1. Introduction

As is the case with most decisions, the choice to employ nonparametric techniques over para-
metric ones is not always obvious, and making the wrong decision can be costly. If we are able
to confirm that a parametric model is correctly specified, we can gain considerably by using
parametric estimators. Meanwhile, if we are not fully convinced of this, we should appeal to
nonparametric estimation. A popular solution to this problem involves comparing the distance
between some parametric and nonparametric estimators; this has been studied in detail by Härdle
and Mammen (1993). Other tests for the suitability of parametric models have been studied by
Azzalini, Bowman and Härdle (1989), Eubank and Spiegelman (1990), Horowitz and Spokoiny
(2001), and Fan and Huang (2001) among many others.

Measurement error is a problem that is rife in datasets from many disciplines. Examples from
biology, economics, geography, medicine, and physics are abundant (see, e.g., Fuller, 1987, and
Meister, 2009). Determining the validity of a parametric model becomes even more important
in the presence of measurement error because in this setting nonparametric estimators have
even slower convergence properties whilst in many cases parametric estimators retain their

√
n-

consistency. However, when the data are contaminated by measurement error, conventional
specification tests have incorrect size in general and may also suffer from low power properties.

In this paper, we propose a specification, or goodness-of-fit test, for (possibly nonlinear) re-
gression models with errors-in-variables by comparing the distance between the parametric and
nonparametric fits based on deconvolution techniques. We establish asymptotic properties of the
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test statistic and propose a bootstrap critical value. As we discuss below, in contrast to existing
methods, our test allows nonlinear regression models and possesses desirable power properties.

In the enormous literature on specification testing, relatively little attention has been given
to the issue of measurement error despite its obvious need. Papers such as Zhu, Song and Cui
(2003), Zhu and Cui (2005), and Cheng and Kukush (2004) proposed χ2 statistics based on
moment conditions of observables implied from errors-in-variables regression models. However,
as is the case without measurement error, these tests are generally inconsistent for some fixed
alternatives. Song (2008) proposed a consistent specification test for linear errors-in-variables
regression models by comparing nonparametric and model-based estimators on the conditional
mean function of the dependent variable Y given the mismeasured observable covariatesW , that
is E[Y |W ]. As we clarify at the end of Section 2, this approach may not have sensible local
power for the original hypothesis on E[Y |X], where X is a vector of error-free unobservable
covariates. Hall and Ma (2007) proposed a nonsmoothing specification test for regression models
with errors-in-variables, which is able to detect local alternatives at the

√
n-rate. We propose a

smoothing specification test that complements Hall and Ma’s (2007) test (see further discussion
below).1

Consistent specification tests can be broadly split into those that use a nonparametric estima-
tor (called smoothing tests) and those that do not (called nonsmoothing or integral-transform
tests). In contrast to Hall and Ma (2007) which adopted the nonsmoothing approach, we pro-
pose a kernel-based smoothing test for the goodness-of-fit of parametric regression models with
errors-in-variables. There are two important features of our test. First, our smoothing test is
not restricted to polynomial models and allows testing of general nonlinear regression models.
Second, analogous to the literature on conventional specification testing, our smoothing test
complements Hall and Ma’s (2007) test (if applied to polynomial models) due to its distinct
power properties. Rosenblatt (1975) explained that although local power properties of nons-
moothing tests suggest they are more powerful than smoothing tests, ‘there are other types of
local alternatives for which tests based on density estimates are more powerful’. Fan and Li
(2000) showed that in the non-measurement error case, smoothing tests are generally more pow-
erful for high frequency alternatives and nonsmoothing tests are more powerful for low frequency
alternatives. Thus, smoothing tests ‘should be viewed as complements to, rather than substi-
tutes for, [nonsmoothing tests].’ Our simulation results suggest that this phenomenon extends
to errors-in-variables models.

In contrast to the above papers and our own, Ma et al. (2011) moved away from Wald-type
tests where restricted and unrestricted estimates are compared. They proposed a local test that
is more analogous to the score test where only the model under the null hypothesis must be
estimated. They extended this idea to an omnibus test that is able to detect departures from
the null in virtually all directions using a system of different basis functions with which to test
against.

1Other papers that study specification testing under measurement error includes Butucea (2007), Holzmann and
Boysen (2006), Holzmann, Bissantz and Munk (2007), and Ma et al. (2011) (for testing probability densities),
Koul and Song (2009, 2010) (for Berkson measurement error models), and Song (2009) and Xu and Zhu (2015)
(for errors-in-variables models with validation data).
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To determine critical values for our smoothing test, we propose a bootstrap procedure. Mea-
surement error can cause difficulties in applying conventional bootstrap procedures because the
true regressor, regression error, and measurement error are all unobserved. Moreover, in order to
estimate the distributions of test statistics, deconvolution techniques are typically required which
converge at a much slower rate than

√
n. Hall and Ma (2007) discussed this issue and noted, ‘the

bootstrap is seldom used in the context of errors-in-variables’. They outline a procedure which
involves estimating the distribution of the unobservable regressor using a kernel deconvolution
estimator, and obtained bootstrap counterparts for the regression error using a wild bootstrap
method. We propose a much simpler procedure involving a perturbation of each summand of
our test statistic.

This paper is organized as follows. Section 2 describes the setup in detail and introduces
the test statistic and its motivation. Section 3 outlines the main asymptotic properties of the
test statistic and discusses how to implement the test in the case where the distribution of the
measurement error is unknown but repeated measurements on the contaminated covariates are
available. Section 4 analyses the small sample properties of the test through a Monte Carlo
experiment and Section 5 applies the test to the specification of Engel curves. All mathematical
proofs are deferred to the Appendix.

2. Setup and test statistic

Consider the nonparametric regression model

Y = m(X) + U with E[U |X] = 0,

where Y ∈ R is a response variable, X ∈ Rd is a vector of covariates, and U ∈ R is the
error term. In this paper, we focus on the situation where X is not directly observable due to
the measurement mechanism or nature of the environment. Instead a vector of variables W is
observed through

W = X + ε,

where ε ∈ Rd is a vector of measurement errors that has a known density fε and is independent
of (Y,X). The case of unknown density fε will be discussed in Section 3.1. We are interested in
specification, or goodness-of-fit, testing of a parametric functional form of the regression function
m. More precisely, for a parametric model mθ, we wish to test the hypothesis

H0 : m(x) = mθ(x) for almost every x ∈ Rd,

H1 : H0 is false,

based on the random sample {Yi,Wi}ni=1 of observables (whilst Xi is unobservable).
To test the null H0, we adapt the approach of Härdle and Mammen (1993), which compares

nonparametric and parametric regression fits, to the errors-in-variables model. As a nonpara-
metric estimator of m, we use the deconvolution kernel estimator (see, e.g., Fan and Truong,
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1993, and Meister, 2009, for a review)

m̂(x) =

∑n
i=1 YiKb(x−Wi)∑n
i=1Kb(x−Wi)

,

where

Kb(a) =
1

(2π)d

∫
e−it·aK

ft(tb)

f ft
ε (t)

dt,

is the so-called deconvolution kernel, i =
√
−1, b is a bandwidth, and K ft and f ft

ε are the
Fourier transforms of a kernel function K and the measurement error density fε, respectively.2

Throughout the paper we assume f ft
ε (t) 6= 0 for all t ∈ Rd and K ft has compact support so that

the above integral is well-defined. On the other hand, if one imposes a parametric functional
form mθ on the regression function, several methods are available to estimate θ under certain
regularity conditions. For example, based on Butucea and Taupin (2008), we can estimate the
parameter θ by the (weighted) least squares regression of Y on the implied conditional mean
function E[mθ(X)|W ]. In this paper, we do not specify the construction of the estimator θ̂ for
θ except for a mild assumption on the convergence rate (see Section 3 for details).

In order to construct a test statistic for H0, as in Härdle and Mammen (1993), we compare the
nonparametric and parametric estimators of the regression function based on the L2-distance,

Dn = n

∫ ∣∣∣m̂(x)f̂(x)− [Kb ∗mθ̂f̂ ](x)
∣∣∣2 dx,

where | · | is the Euclidean norm, f̂(x) = 1
n

∑n
i=1Kb(x−Wi) is the deconvolution kernel density

estimator forX, Kb(x) = 1
bd
K
(
x
b

)
, and [Kb∗mθ̂f̂ ](x) =

∫
Kb(x−a)mθ̂(a)f̂(a)da is a convolution.

The convolution by the (original) kernel function Kb plays an analogous role to the smoothing
operator in Härdle and Mammen (1993). Note that the Fourier transform of a convolution is
given by the product of the Fourier transforms. Thus by Parseval’s identity, the distance Dn is
alternatively written as

Dn =
n

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

∣∣∣∣∣ 1n
n∑
i=1

Yie
it·Wi − [mθ̂f̂ ]ft(t)f ft

ε (t)

∣∣∣∣∣
2

dt.

Based on this expression, the distance Dn can be interpreted as a contrast of the nonparametric
and model-based estimators for E[Y eit·W ]. Let ζi(t) = Yie

it·Wi −
∫
eis·Wimft

θ̂
(t− s)K

ft(sb)
f ftε (s)

dsf ft
ε (t).

To define the test statistic for H0, we further decompose Dn as

Dn =
1

n

n∑
i=1

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

|ζi(t)|2dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ζi(t)ζj(t)dt

≡ Bn + Tn, (1)

where ζj(t) is the complex conjugate of ζj(t). The second term Tn plays a dominant role in the
limiting behavior of Dn and the first term Bn is considered a bias term. Therefore, we neglect

2To simplify the exposition, we concentrate on the case where all elements of X are mismeasured. If X contains
both correctly measured and mismeasured covariates (denoted by X1 and X2, respectively), then the kernel
estimator is modified as m̂(x) =

∑n
i=1 YiK1b(x1−X1i)Kb(x2−Wi)∑n
i=1K1b(x1−X1i)Kb(x2−Wi)

, whereK1b(a) =
1

bd1
K1

(
a
b

)
andK1 is a conventional

kernel function for X1, and analogous results can be established.
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Bn and employ Tn as our test statistic for H0. In the next section, we study the asymptotic
behaviour of Tn.

We close this section by a remark on an alternative testing approach. To test the null hypoth-
esis H0, one may consider testing some implication of H0 on the conditional mean E[Y |W ] of
observables, i.e., consider H ′0 : fW (w)E[Y

∣∣W = w] =
∫
mθ(w − u)fX(w − u)fε(u)du for almost

every w, and test H′0 by a conventional method, such as Härdle and Mammen (1993). This
approach was employed by Song (2008). To clarify the rationale of our testing approach based
on Tn against the conventional approach for H′0, let us consider the following local alternative
hypothesis for the regression function

mn(x) = mθ(x) + 2an cos(Anx)

(
sinx

x

)2

,

where an → 0 and An → ∞ as n → ∞. In this case, mn converges to mθ at the rate of an
under the L2-norm, and the test based on Tn will have non-trivial power for a certain rate of
an. On the other hand, local power of the test based on the implied null H′0 is determined by
the L2-norm of the convolution {(mn−mθ)fX} ∗ fε. By Parseval’s identity and the Fourier shift
formula, we have

‖{(mn −mθ)fX} ∗ fε‖2 = a2
n

∥∥∥{qft(· −An) + qft(·+An)}f ft
ε

∥∥∥2
,

where q(x) =
(

sinx
x

)2
fX(x). For example, if fε is Laplace with f ft

ε (t) = 1/(1 + t2), then we
can see that the L2-norm ‖{(mn −mθ)fX} ∗ fε‖ is of order an/A2

n. By letting An diverge at an
arbitrarily fast rate, the rate an/A2

n becomes arbitrarily fast so that any conventional test for
H′0 fails to detect deviations from this null. Therefore, as far as the researcher is concerned with
testing the functional form of the regression function m, we argue that our statistic Tn tests
directly the null hypothesis H0 and possesses desirable local power properties compared to the
conventional tests on H′0.

3. Asymptotic properties

In this section, we present asymptotic properties of the test statistic Tn defined in (1). We
first derive the limiting distribution of Tn under the null hypothesis H0. To this end, we impose
the following assumptions.

Assumption D.

(i): {Yi, Xi, εi}ni=1 are i.i.d. ε is independent of (Y,X) and has a known density fε.
(ii): f ft,mft, ∂∂θ (mft

θ ) ∈ L1(Rd) ∩ L2(Rd).
(iii): K ft(t) is compactly supported on [−1, 1]d, is symmetric around zero (i.e., K ft(t) =

K ft(−t)), and is bounded.
(iv): As n→∞, it holds that b→ 0 and nbd →∞.

Assumption D (i) is common in the literature of classical measurement error. Extensions to
the case of unknown fε will be discussed in Section 3.1. Assumption D (ii) contains boundedness
conditions on the Fourier transforms of the density f of X and the regression function m, as
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well as the derivative, with respect to θ, of the Fourier transform of mθ. Assumption D (iii)
and (iv) contain standard conditions on the kernel function K and bandwidth b, respectively. A
popular choice for the kernel function in the context of deconvolution methods is the sinc kernel
K(x) = sinx

πx whose Fourier transform is equal to K ft(t) = I{−1 ≤ t ≤ 1}.
For additional assumptions, we consider two cases characterized by bounds on the decay rate

of the tail of the characteristic function of the measurement error, f ft
ε . Let σ2(x) = E[U2|X =

x] be the conditional variance of the error term. The first case, called the ordinary smooth
measurement error case, contains the following assumptions.

Assumption O.

(i): f ft
ε (t) 6= 0 for all t ∈ Rd and there exist positive constants c, C, and α such that

c|t|−dα ≤ |f ft
ε (t)| ≤ C|t|−dα,

as |t| → ∞.
(ii):

∫
|t|−2dα|f ft(t)|2dt <∞,

∫
|t|−2dα|mft(t)|2dt <∞,

∫
|t|−2dα|[mf ]ft(t)|2dt <∞,∫

|t|−2dα|[m2f ]ft(t)|2dt <∞, and
∫
|t|−2dα|[σ2f ]ft(t)|2dt <∞.

(iii): θ̂ − θ = op(n
−1/2b−d( 1

4
−α)) under H0.

Assumption O (i) requires that the Fourier transform f ft
ε decays in some finite power. A

popular example of an ordinary smooth density is the Laplace density. Assumption O (ii) contains
boundedness conditions on the Fourier transforms of the density f of X, regression function m,
and conditional error variance σ2. Assumption O (iii) is on the convergence rate of the estimator
θ̂ for θ when the parametric model is correctly specified. Note that this assumption is satisfied
if θ̂ is

√
n-consistent for θ. When the regression model under the null hypothesis is linear (i.e.,

mθ(x) = x′θ), we can employ the methods in, for example Gleser (1981), Bickel and Ritov
(1987), or van der Vaart (1988). For nonlinear regression, we may choose the estimators by e.g.,
Taupin (2001) or Butucea and Taupin (2008) under certain regularity conditions. It is interesting
to note that in contrast to the no measurement error case as in Härdle and Mammen (1993),
the limiting distribution of the estimation error

√
n(θ̂ − θ) does not influence the first-order

asymptotic properties of the test statistic Tn. This is due to the fact that the measurement error
slows down the convergence rate of the dominant term of Tn.

For the second case, known as the supersmooth measurement error case, we concentrate on
the case of scalar X (i.e., d = 1), and impose the following assumptions.

Assumption S. Suppose d = 1.

(i): f ft
ε (t) 6= 0 for all t ∈ R and there exist positive constants Cε, µ, γ0, and γ > 1 such

that
f ft
ε (t) ∼ Cε|t|γ0e−|t|

γ/µ,

as |t| → ∞. Also, there exist constants A > 0 and β ≥ 0 such that

K ft(1− t) = Atβ + o(tβ),

as t→ 0.
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(ii): E[Y 4] <∞, E[W 4] <∞,
∫
|t|2β

∣∣ ∂
∂θm

ft
θ (t)

∣∣2 dt <∞, and
∫
|t|2β|mft(t)|2dt <∞.

(iii): θ̂ − θ = op(n
−1/2b(γ−1)/2+γβ+γ0e1/(µbγ)).

Assumption S (i) is adopted from Holzmann and Boysen (2006). This assumption requires
that the Fourier transform f ft

ε decays at an exponential rate. An example of the supersmooth
density satisfying this assumption is the normal density, where Cε = 1, γ0 = 0, γ = 2, and µ = 2.
However, due to the requirement γ > 1, the Cauchy density is excluded. As is clarified in the
proof of Theorem 1 (iii) below, the condition γ > 1 is imposed to make a bias term negligible.
Assumption S (i) also contains an additional condition on the kernel function. For example, the
sinc kernelK(x) = sinx

πx satisfies this assumption with A = 1 and β = 0. Similarly to the ordinary
smooth case, Assumption S (ii) contains boundedness conditions on the Fourier transforms, and
Assumption S (iii) regards the convergence rate of the estimator θ̂. Again, the

√
n-consistency

of θ̂ is sufficient.
Under these assumptions, the null distribution of Tn is obtained as follows.

Theorem 1.

(i): Suppose that Assumptions D and O hold true. Then under H0,

C
−1/2
V,b Tn

d→ N

(
0,

2

(2π)2d

)
,

where CV,b = O(b−d(1+4α)) is defined in (3) in the Appendix.
(ii): Suppose that Assumptions D and S hold true with d = 1 and ε ∼ N(0, 1). Then under

H0,

ϕ(b)Tn
d→
∞∑
k=1

λk(Z
2
k − 1),

where ϕ(b) = (2π)22β

b1+4βe1/b
2
A2Γ(1+2β)

with the gamma function Γ, {Zk} is an independent se-
quence of standard normal random variables and {λk} is defined in (13) in the Appendix.

(iii): Suppose that Assumptions D and S hold true with d = 1. Then under H0,

φ(b)Tn
d→
∞∑
k=1

λk(Z
2
k − 1),

where φ(b) = (2π)22βγ1+2βC2
ε

µ1+2βbγ−1+2γβ+2γ0e2/(µb
γ )A2Γ(1+2β)

with the gamma function Γ, {Zk} is an
independent sequence of standard normal random variables and {λk} is defined in (13)
in the Appendix.

Theorem 1 (i) says that for the ordinary smooth case, the test statistic Tn is asymptotically
normal. The normalizing term CV,b comes from the variance of the U-statistic of the leading
term in Tn. Note that the convergence rate C−1/2

V,b = O(bd( 1
2

+2α)) of the statistic Tn is slower
than the rate O(bd/2) of Härdle and Mammen’s (1993) statistic for the no measurement error
case. As the dimension d of X or the decay rate α of f ft

ε increases, the convergence rate of Tn
becomes slower.

Theorem 1 (ii) focuses on the case of normal measurement error, and shows that the test
statistic converges to the weighted sum of chi-squared random variables. The normalizing term
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ϕ(b) is characterized by the shape of the kernel function specified in Assumption S (i). For
example, if we employ the sinc kernel (i.e., A = 1 and β = 0), the normalization becomes
ϕ(b) = 2π

be1/b
2
Γ(1)

. In this supersmooth case, the non-normal limiting distribution emerges because
the leading term of the statistic Tn is characterized by the degenerate U-statistic with a fixed
kernel (see, e.g., Serfling, 1980, Theorem 5.5.2). In contrast, for the ordinary smooth case in Part
(i) of this theorem, the leading term is characterized by a U-statistic with a varying kernel so that
the central limit theorem in Hall (1984) applies. An analogous result is obtained in Holzmann
and Boysen (2006) for the integrated squared error of the deconvolution density estimator.

Theorem 1 (iii) presents the limiting null distribution of the test statistic for the case of
general supersmooth measurement errors. In this case, after normalization by φ(b), the test
statistic obeys the same limiting distribution as the normal case in Part (ii) of this theorem.
Thus, similar comments to Part (ii) apply. The normalization term φ(b) is characterized by the
shapes of the kernel function and Fourier transform f ft

ε (t) of the measurement error specified in
Assumption S (i).

Although Theorem 1 (ii) and (iii) focus on the case of scalar ε, our technical argument may be
extended to the vector case. For example, if we assume that the elements of the d-dimensional
vector ε are mutually independent, then the Fourier transform fε becomes the product of the
Fourier transforms of the marginals. We may impose Assumption S (i) for each marginal density.
To keep things simple we can choose the multivariate kernel function to be a product kernel.
With these assumptions in place, the deconvolution kernel analogously becomes a product de-
convolution kernel. The proofs of the theorem remain very similar using inner products and
terms defined as products over the d dimensions.

Theorem 1 can be applied to obtain critical values for testing the null H0 based on Tn. Alter-
natively, we can compute the critical values by bootstrap methods. A bootstrap counterpart of
Tn is given by perturbing each summand in Tn as follows

T ∗n =
1

n

∑
i 6=j

ν∗i ν
∗
j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ζi(t)ζj(t)dt, (2)

where {ν∗i }ni=1 is an i.i.d. sequence which is mean zero, unit variance, and independent of
{Yi,Wi}ni=1. The asymptotic validity of this bootstrap procedure follows by a similar argument
to Delgado, Dominguez and Lavergne (2006, Theorem 6).

In order to investigate the power properties of the test based on Tn, we consider a local
alternative hypothesis of the form

H1n : m(x) = mθ(x) + cn∆(x), for almost every x ∈ Rd

where cn → 0 and ∆(x) is a non-zero function such that the limits limn→∞∆n and limn→∞ Υn

defined in (15) and (16), respectively, in the Appendix exist. The local power properties are
obtained as follows.
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Theorem 2.

(i): Suppose that Assumptions D and O hold true. Then under H1n with cn = n−1/2b−d( 1
4

+α),

C
−1/2
V,b Tn

d→ N

(
lim
n→∞

∆n,
2

(2π)2d

)
.

(ii): Suppose that Assumptions D and S hold true with d = 1 and ε ∼ N(0, 1). Then under
H1n with cn = n−1/2b1/2+2βe1/(2b2),

ϕ(b)Tn
d→ lim
n→∞

Υn +
∞∑
k=1

λk(Z
2
k − 1).

(iii): Suppose that Assumptions D and S hold true with d = 1. Then under H1n with
cn = b(λ−1)/2+λβ+λ0e1/(µbλ),

φ(b)Tn
d→ lim
n→∞

Υn +
∞∑
k=1

λk(Z
2
k − 1),

Theorem 2 (i) says that under the ordinary smooth case, our test has non-trivial power against
local alternatives drifting with the rate of cn = n−1/2b−d( 1

4
+α). This is a nonparametric rate, and

the test based on Tn becomes less powerful as the dimension d of X or the decay rate α of f ft
ε

increases. For the no measurement error case, Härdle and Mammen’s (1993) statistic has non-
trivial power for local alternatives with the rate of n−1/2b−d/4. Therefore, the test becomes less
powerful due to the measurement error. Theorem 2 (ii) and (iii) present local power properties of
our test for the normal and general supersmooth measurement error cases, respectively. Except
for the normalizing constants, the test statistic has the same limiting distribution. Also, for
cn → 0, the bandwidth b should decay at a log rate. As an example, consider the case of
ε ∼ N(0, 1). In this case, if we choose b ∼ (log n)−1/2, then the rate for the local alternative will
be cn ∼ (log n)−1/4−β . Therefore, for the supersmooth case, the rate for the local alternative is
typically a log rate.

3.1. Case of unknown fε . In practical applications, it is sometimes unrealistic to assume
that the density of the measurement error, fε, is known to the researcher. In the literature on
nonparametric deconvolution several estimation methods for fε are available, these are typically
based on additional data (see, e.g., Section 2.6 of Meister (2009) for a review). Although the
analysis of the asymptotic properties is different, we can modify the test statistic Tn by inserting
the estimated Fourier transform of the measurement error density, f̂ ft

ε .
For example, suppose the researcher has access to repeated measurements on X in the form

of W = X + ε and W r = X + εr, where ε and εr are identically distributed and (X, ε, εr)

are mutually independent, see Delaigle, Hall and Meister (2008) for a list of examples of such
repeated measurements. If we further assume that the Fourier transform f ft

ε is real-valued (that
is the density fε is symmetric around zero), then we can employ the estimator proposed by
Delaigle, Hall and Meister (2008)

f̂ ft
ε (t) =

∣∣∣∣∣ 1n
n∑
i=1

cos{t(Wi −W r
i )}

∣∣∣∣∣
1/2

.
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Delaigle, Hall and Meister (2008) studied the asymptotic properties of the deconvolution den-
sity and regression estimators using f̂ ft

ε and found conditions to guarantee that the differences
between the estimators with known fε and those with unknown fε are asymptotically negligible.
Under similar conditions, we can expect that the asymptotic distributions of the test statistic
Tn obtained above remain unchanged when we replace f ft

ε with f̂ ft
ε . If the researcher wishes to

remove the assumption that f ft
ε is real-valued, it may be possible to employ the estimator by Li

and Vuong (1998) based on Kotlarski’s identity.

4. Simulation

We evaluate the small sample performance of our test through a Monte Carlo experiment. To
begin we consider the same data generating process as Hall and Ma (2007) for ease of comparison.
We also compare our test to Song (2008). Recall that although Song’s (2008) and Hall and
Ma’s (2007) test are confined to polynomial regression models, our test allows nonlinear models.
Specifically we take the true unobservable regressor {Xi}ni=1 to be distributed as U [−3, 4] and
Yi = 1 + 1.5Xi + C cos(Xi) + Ui, where Ui ∼ N(0, 1) and C is a constant to be varied. The
contaminated regressor is given by Wi = Xi + εi. We consider two distributions for εi to be
drawn from. For the ordinary smooth case, we use the Laplace distribution with variance of 0.5.
For the supersmooth case, we use N(0, 1). We use the following kernel for our simulations (Fan,
1992)

K(x) =
48 cos(x)

πx4

(
1− 15

x2

)
− 144 sin(x)

πx5

(
2− 5

x2

)
.

We report results for a range of sample sizes, bandwidths, and nominal levels of the test. Specif-
ically, for the ordinary and supersmooth cases, we choose the bandwidths according to the rules

of thumb b = c
(

5σ4

n

)1/9
and b = c

(
2σ2

log(n)

)1/2
, respectively, where σ is the standard deviation of

the measurement error and c varies in the grid {0.01, 0.05, 0.1, 0.5, 1, 1.5} so we can analyse the
sensitivity of our test to the bandwidth. For the parametric estimator we use the polynomial
estimator of degree 2 proposed by Cheng and Schneeweiss (1998) so as to remain consistent with
the experiment conducted by Hall and Ma (2007). For the test of Song (2008) we use the same
kernel as for our test and choose bandwidths by cross-validation (there was little dependence on
the bandwidths so we report only for these cross-validated values). All results are based on 1000

Monte Carlo replications.
Table 1 takes C = 0 so as to asses the level accuracy of our test. To study the power

properties of the test, we take C = 1.5 in Table 2. The critical values for all tests are based
on 99 replications of the bootstrap procedure (results were very similar for 199 replications and
hence are not reported). The perturbation random variable ν∗ for the bootstrap is drawn from
the Rademacher distribution.

Finally, to highlight the power advantages of our test under high frequency alternatives we
consider the slightly altered data generating process Yi = 1 + 1.5Xi + cos(πδXi) +Ui, where δ is
a constant to be varied; larger values corresponding to higher frequency alternatives. All other
parameter settings remain unchanged. Results for these experiments are shown in Tables 3-5.
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The columns labeled ‘HM’ correspond to the power of the test proposed in Hall and Ma (2007)
and the columns labeled ’S’ correspond to the power of the test proposed by Song (2008).

Table 1: Y = 1 + 1.5X + U

Ordinary Smooth Bandwidth
n Level 0.01 0.05 0.1 0.5 1 1.5

50
1% 3.0% 2.6% 2.3% 3.1% 2.4% 0.6%
5% 7.6% 7.1% 6.3% 6.5% 6.4% 2.4%
10% 12.7% 11.9% 10.7% 9.8% 10.1% 5.7%

100
1% 2.2% 2.0% 2.8% 2.3% 2.2% 0.6%
5% 4.9% 5.6% 6.8% 6.3% 6.9% 3.4%
10% 11.6% 10.5% 11.9% 12.4% 11.1% 7.3%

Super Smooth

50
1% 2.1% 1.9% 1.3% 1.4% 1.9% 1.2%
5% 5.3% 5.2% 4.9% 5.4% 5.7% 4.3%
10% 11.1% 9.3% 9.6% 10.8% 10.4% 7.7%

100
1% 2.9% 2.4% 2.7% 2.0% 1.7% 1.9%
5% 6.9% 6.5% 6.0% 6.6% 5.3% 5.8%
10% 12.3% 10.7% 10.3% 10.6% 10.8% 10.5%

Table 2: Y = 1 + 1.5X + 1.5 cos(X) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

50
1% 43.2% 33.7% 26.5% 40.6% 81.8% 63.3% 71.0% 86.1%
5% 63.1% 52.7% 45.5% 61.6% 92.1% 78.3% 76.9% 92.8%
10% 73.5% 63.1% 57.8% 72.2% 94.8% 86.2% 85.3% 95.3%

100
1% 67.4% 50.1% 38.5% 66.5% 99.3% 97.6% 95.8% 88.6%
5% 84.2% 71.3% 61.4% 85.1% 99.8% 99.2% 97.1% 99.1%
10% 91.0% 80.1% 73.0% 92.3% 99.9% 99.9% 99.1% 99.9%

Super Smooth

50
1% 28.1% 22.3% 19.7% 12.2% 24.5% 36.1% 66.2% 67.2%
5% 46.6% 38.7% 33.5% 24.1% 44.5% 55.2% 72.0% 84.2%
10% 57.4% 48.4% 43.2% 34.9% 56.9% 67.3% 80.4% 88.6%

100
1% 54.0% 35.9% 23.5% 15.4% 47.2% 69.0% 94.3% 89.3%
5% 70.7% 52.5% 41.5% 28.8% 63.8% 84.6% 95.9% 94.5%
10% 78.1% 64.5% 53.9% 42.1% 73.7% 89.8% 97.7|% 97.8%
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Table 3: Y = 1 + 1.5X + cos(πX) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

100
1% 21.3% 15.9% 13.7% 12.9% 6.6% 2.4% 13.2% 8.9%
5% 40.3% 30.3% 26.5% 27.5% 17.6% 6.8% 27.5% 19.6%
10% 51.4% 45.0% 38.2% 38.0% 26.5% 13.6% 38.7% 26.8%

200
1% 35.6% 19.7% 12.7% 19.4% 11.0% 2.6% 20.3% 14.4%
5% 54.5% 37.2% 27.9% 36.2% 22.2% 8.7% 37.4% 24.4%
10% 66.4% 50.0% 39.8% 49.0% 32.2% 17.0% 50.0% 39.0%

Super Smooth

100
1% 15.3% 12.4% 7.3% 4.3% 4.0% 2.6% 4.7% 11.2%
5% 29.0% 22.3% 18.1% 11.5% 9.6% 7.1% 11.0% 17.4%
10% 38.7% 31.7% 27.3% 19.5% 17.1% 14.8% 20.3% 30.3%

200
1% 23.8% 16.7% 10.6% 4.3% 5.3% 3.0% 5.7% 14.7%
5% 40.9% 29.1% 22.0% 13.7% 11.0% 8.2% 14.2% 26.0%
10% 52.9% 38.4% 32.3% 21.3% 18.6% 12.7% 24.3% 34.9%

Table 4: Y = 1 + 1.5X + cos(2πX) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

100
1% 20.9% 16.7% 13.8% 6.9% 5.6% 1.8% 9.2% 7.3%
5% 38.7% 31.5% 28.0% 17.1% 12.5% 5.6% 20.6% 13.6%
10% 49.3% 43.2% 37.8% 25.4% 19.5% 9.9% 29.7% 23.7%

200
1% 35.9% 20.8% 15.3% 7.8% 4.8% 1.3% 9.3% 13.6%
5% 55.9% 37.4% 28.9% 18.4% 11.2% 4.6% 21.7% 23.8%
10% 66.8% 49.8% 40.4% 28.6% 17.6% 10.1% 31.4% 31.9%

Super Smooth

100
1% 16.1% 11.2% 9.1% 5.3% 4.0% 3.1% 5.2% 7.6%
5% 30.4% 22.4% 17.9% 12.6% 11.0% 7.3% 11.6% 17.3%
10% 41.3% 35.0% 26.1% 20.6% 17.4% 13.7% 19.3% 27.1%

200
1% 23.6% 13.4% 9.4% 5.1% 4.7% 3.7% 5.3% 8.9%
5% 39.4% 25.0% 20.0% 11.8% 12.0% 8.4% 13.1% 25.0%
10% 50.8% 35.8% 30.5% 20.5% 19.4% 13.9% 20.3% 32.2%
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Table 5: Y = 1 + 1.5X + cos(3πX) + U

Ordinary Smooth Bandwidth
HM S

n Level 0.01 0.05 0.1 0.5 1 1.5

100
1% 22.8% 17.0% 11.8% 7.9% 5.4% 1.8% 9.4% 7.3%
5% 39.3% 32.6% 28.2% 17.7% 12.9% 5.9% 20.8% 19.0%
10% 50.6% 46.1% 38.1% 27.2% 19.8% 10.4% 31.8% 27.1%

200
1% 36.4% 20.1% 14.0% 8.1% 4.2% 1.9% 9.9% 7.9%
5% 54.1% 36.3% 29.2% 19.4% 10.7% 5.0% 21.8% 21.8%
10% 67.1% 48.9% 40.0% 27.6% 18.0% 10.3% 32.0% 27.7%

Super Smooth

100
1% 17.4% 10.9% 7.5% 4.7% 4.6% 3.3% 5.6% 8.5%
5% 31.4% 22.8% 19.6% 12.8% 10.1% 9.1% 12.0% 17.4%
10% 42.0% 33.2% 28.3% 20.8% 16.9% 14.3% 21.0% 26.1%

200
1% 21.5% 15.6% 9.3% 5.5% 4.6% 2.9% 4.8% 14.0%
5% 39.1% 29.0% 21.6% 12.3% 11.6% 8.1% 14.1% 22.5%
10% 50.9% 37.5% 30.2% 21.1% 17.9% 13.7% 22.6% 27.8%

The results are encouraging and seem to be consistent with the theory. Table 1 indicates that
our test tracks the nominal level relatively closely. There does appear to be some dependence on
the bandwidth; smaller bandwidths tending to lead to an over-rejection and larger bandwidths
leading to an under-rejection of the null hypothesis.

Table 2 gives a direct comparison to the tests proposed in Hall and Ma (2007) and Song
(2008). As we expected, in this low frequency alternative setting, our test is generally slightly
less powerful than the other tests. Having said this, in the ordinary smooth case for several
choices of bandwidth our test does display the highest power. Hall and Ma’s (2007) test is able
to detect local alternatives at the

√
n-rate for both ordinary and supersmooth measurement

error distributions, and the test of Song (2008) is able to detect local alternatives at the rate√
nbd/2 in both cases. However, our test achieves a slower polynomial rate in the ordinary smooth

case and only a log(n)-rate in the super smooth case. Thus it is not surprising to see our test
underperform when faced with Gaussian measurement error. However, the test is still able to
enjoy considerable power in this case especially for larger sample sizes.

On the other hand, as mentioned earlier, we suspect that our test is better suited to detecting
high frequency alternatives than Hall and Ma (2007). This is confirmed in Tables 3-5. We find
that for smaller bandwidths our test is more powerful across the range of δ. Unfortunately,
the power of our test shows considerable variation across the bandwidth choices. For smaller
bandwidths the power is generally much higher. This is intuitive and is explained in Fan and Li
(2000). Nonsmoothing tests can be thought of as smoothing tests but with a fixed bandwidth.
Thus it is the asymptotically vanishing nature of the bandwidth in smoothing tests that allows for
the superior detection of high frequency alternatives. When smaller bandwidths are employed,
the test is better able to pick up on these rapid changes.
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As discussed at the end of Section 2, the test of Song (2008) will have poor power properties
for some high frequency alternatives due to testing the hypothesis based on E[Y |W ] rather than
E[Y |X]. This fact is also reflected in the Monte Carlo simulations where the power falls as we
move to higher frequency alternatives and is inferior to the test we propose. Interestingly the
test of Song (2008) appears to dominate the test of Hall and Ma (2007) for the supersmooth case
but not for the ordinary smooth case.

We can learn from these simulations that for reasonably small samples with supersmooth
measurement error, perhaps the tests proposed by Hall and Ma (2007) or Song (2008) would be
a wiser choice if one suspects deviations from the null of a low frequency type, otherwise our test
appears to be superior. However, we suggest that to avoid any risk of very low power the test
proposed in this paper may be the best option.

In order to account for the dependence of our test on the bandwidth we may look to employ
the ideas of Horowitz and Spokoiny (2001) to construct a test that is adaptive to the smoothness
of the regression function. In order to do this we could construct a test statistic of the form

TA,n = max
bn∈Bn

Tn

where Bn is a finite set of bandwidths. To obtain valid critical values we can use a bootstrap pro-
cedure similar to the one proposed in Section 3. Specifically we construct a bootstrap counterpart
as

T ∗A,n = max
bn∈Bn

T ∗n

where T ∗n is defined in (2). It is beyond the scope of this paper to determine the asymptotic
properties of such a test but this could prove to be a fruitful area for future research.

5. Empirical Example

We apply our test to the specification of Engel curves for food, clothing and transport. An
Engel curve describes the relationship between an individual’s purchases of a particular good and
their total resources and hence provides an estimate of a good’s income elasticity. Much work has
been carried out on the estimation of Engel curves and in particular the correct functional form
which has been shown to significantly affect estimates of income elasticity (see for example Leser,
1963). Hausmann, Newey and Powell (1995) highlighted the problem that measurement error
plays in the estimation of Engel curves. To the best of our knowledge no previous work has tested
the parametric specification of Engel curves whilst accounting for the inherent measurement error
in the data.

We concentrate on the Working-Leser specification put forward by Leser (1963)

Ygi = a0 + a1

(
Xi log(Xi)

)
+ a2Xi + Ui

where Ygi is the expenditure on good g of consumer i and Xi is the true total expenditure
of consumer i. It is commonly believed that the measurement error in total expenditure is
multiplicative, hence we take X̃i = log(Xi) as our true regressor and adjust the specification
accordingly, as in Schennach (2004). We use data from the Consumer Expenditure Survey
where we take the third quarter of 2014 as our sample, giving 4312 observations. To account
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for the measurement error we make use of repeated measurements of X. Specifically, we use
total expenditure from the current quarter as one measurement and total expenditure from
the previous quarter as the other. To estimate the parametric form we employ the estimator
proposed by Schennach (2004). For the nonparametric estimator we use Delaigle, Hall and
Meister (2008) and select the bandwidth using the cross-validation approach also proposed in
that paper. To analyse the sensitivity of our test to the choice of bandwidth we report results
for various bandwidths around the cross-validated choice b ≈ 0.15. We use the same kernel and
bootstrap procedure as implemented in the Monte Carlo simulations.

Table 6 reports the p-value for our specification test on food, clothing and transport for a
range of bandwidths.

Table 6: Engel curve p-values

Good
Bandwidth

0.05 0.10 0.15 0.25 0.35 0.5

Food 0.00 0.00 0.00 0.00 0.00 0.07

Clothing 0.00 0.00 0.00 0.00 0.00 0.10

Transport 0.00 0.00 0.00 0.00 0.00 0.00

We can see that the test is fairly robust to the choice of bandwidth. The parametric specifi-
cation is rejected for all bandwidths apart from 0.5 where we fail to reject the null hypothesis at
the 5% level for food and at the 10% level for clothing. Interestingly Härdle and Mammen (1993)
obtained similar findings in the case of transport but tended to fail to reject the Working-Leser
specification for food. Thus, it appears that accounting for measurement error is indeed very
important to draw the correct conclusions and must not simply be ignored.
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Appendix A. Mathematical Appendix

Hereafter, f(b) ∼ g(b) means f(b)/g(b)→ 1 as b→ 0.

A.1. Proof of Theorem 1.

A.1.1. Proof of (i). First, we define the normalization term CV,b and characterize its asymptotic
order. Let

ξi(t) = Yie
it·Wi −

∫
eis·Wimft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t),

Hi,j =

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ξj(t)dt.

Then CV,b is defined as

CV,b = E[H2
1,2] (3)

=

∫ ∫
|K ft(t1b)|2

|f ft
ε (t1)|2

|K ft(t2b)|2

|f ft
ε (t2)|2

∣∣∣∣ {[m2f ]ft(t1 + t2) + [σ2f ]ft(t1 + t2)
}
f ft
ε (t1 + t2)

+

∫ ∫
f ft
W (s1 + s2)mft(t1 − s1)mft(t2 − s2)

K ft(s1b)

f ft
ε (s1)

K ft(s2b)

f ft
ε (s2)

ds1ds2f
ft
ε (t1)f ft

ε (t2)

−
∫

[mf ]ft(t2 + s1)f ft
ε (t2 + s1)mft(t1 − s1)

K ft(s1b)

f ft
ε (s1)

ds1f
ft
ε (t1)

−
∫

[mf ]ft(t1 + s1)f ft
ε (t1 + s1)mft(t2 − s1)

K ft(s1b)

f ft
ε (s1)

ds1f
ft
ε (t2)

∣∣∣∣2dt1dt2.
To find the order of CV,b, we consider the square of each of these four terms and all of their cross
products. For example,∫ ∫

|K ft(t1b)|2

|f ft
ε (t1)|2

|K ft(t2b)|2

|f ft
ε (t2)|2

∣∣∣{[m2f ]ft(t1 + t2) + [σ2f ]ft(t1 + t2)
}
f ft
ε (t1 + t2)

∣∣∣2 dt1dt2
∼ b−2d−4dα

∫ ∫
|K ft(a1)|2|K ft(a2)|2|a1|2dα|a2|2dα|(a1 + a2)/b|−2dα

∣∣∣[(m2 + σ2)f ]ft((a1 + a2)/b)
∣∣∣2 da1da2

∼ b−d−4dα

∫
|a|−2dα

∣∣∣[(m2 + σ2)f ]ft(a)
∣∣∣2 da∫ |K ft(a2)|4|a2|4dαda2

= O(b−d(1+4α)), (4)

where the first wave relation follows from the change of variables (a1, a2) = (t1b, t2b) and As-
sumption O (i), the second wave relation follows from the change of variables a = (a1 + a2)/b,
and the equality follows from Assumption D (iii) and O (ii). Since all other squared and cross
terms can be bounded in the same manner, we obtain CV,b = O(b−d(1+4α)).

Second, we show that the estimation error of θ is negligible for the limiting distribution of Tn.
Decompose ζi(t) = ξi(t) + ρi(t), where

ρi(t) =

∫
eis·Wi{mft

θ (t− s)−mft
θ̂

(t− s)}K
ft(sb)

f ft
ε (s)

dsf ft
ε (t).
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Then the test statistic Tn is written as

Tn =
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ξj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ρi(t)ρj(t)dt

+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ρi(t)ξj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ρj(t)dt

≡ T̃n +R1n +R2n +R3n.

By an expansion around θ̂ = θ and Assumption O (iii), the term R1n satisfies

R1n = op(b
−d/2−2α)

∣∣∣∣∣∣ 1

n2

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ρ1i(t)ρ1j(t)dt

∣∣∣∣∣∣ , (5)

where ρ1i(t) =
∫
eis·Wi

∂mft
θ (t−s)
∂θ

Kft(sb)
f ftε (s)

dsf ft
ε (t). By the Cauchy-Schwarz inequality and Assump-

tion D (ii),

E

[∫
|K ft(tb)|2

|f ft
ε (t)|2

ρ1i(t)ρ1j(t)dt

]
=

∫
|K ft(tb)|2

∣∣∣∣∫ f ft(s)
∂

∂θ

(
mft
θ (t− s)

)
K ft(sb)ds

∣∣∣∣2 dt
= O(1). (6)

Also, by applying the same argument to (4) under Assumption O (ii), we have

E

[(∫
|K ft(tb)|2

|f ft
ε (t)|2

ρ1i(t)ρ1j(t)dt

)2
]

= O(b−d(1+4α)). (7)

Combining (5)-(7) and CV,b = O(b−d(1+4α)), we obtain C−1/2
V,b R1n = op(1). In the same manner

we can show C
−1/2
V,b R2n = op(1) and C−1/2

V,b R3n = op(1) under Assumption O (ii)-(iii) and thus

C
−1/2
V,b Tn = C

−1/2
V,b T̃n + op(1).

Second, we derive the limiting distribution of C−1/2
V,b T̃n. Note that T̃n is written as T̃n =

1
n

∑
i 6=j

1
(2π)d

Hi,j and is a U-statistic with zero mean (because E[Y exp(it ·W )] = [mθf ]ft(t)f ft
ε (t)

under H0). To prove the asymptotic normality of T̃n, we apply the central limit theorem in Hall
(1984, Theorem 1). To this end, it is enough to show

E[H4
1,2]

n(E[H2
1,2])2

→ 0, and
E[G2

1,2]

(E[H2
1,2])2

→ 0, (8)

where Gi,j = E[H1,iH1,j |Y1,W1]. Recall that CV,b = E[H2
1,2] defined in (3) satisfies CV,b =

O(b−d−4α). By a similar argument to bound E[H2
1,2] in (4), we can show

E[H4
1,2] = E

[∫
· · ·
∫ 4∏

k=1

|K ft(tkb)|2

|f ft
ε (tk)|2

ξ1(tk)ξ2(tk)dt1 · · · dt4

]
= O(b−3d(1+8α)).
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For E[G2
1,2], we can equivalently look at

E[H1,3H1,4H2,3H2,4]

=

∫
· · ·
∫ 4∏

k=1

|K ft(tkb)|2

|f ft
ε (tk)|2

ξ1(t1)ξ3(t1)ξ1(t2)ξ4(t2)ξ2(t3)ξ3(t3)ξ2(t4)ξ4(t4)dt1 · · · dt4

= O(b−d(1+8α)).

These results combined with Assumption D (iv) guarantee the conditions in (8). Thus, Hall
(1984, Theorem 1) implies

C
−1/2
V,b T̃n

d→ N

(
0,

2

(2π)2d

)
,

and the conclusion follows.

A.1.2. Proof of (ii). A similar argument to the proof of Part (i) guarantees ϕ(b)Tn = ϕ(b)T̃n +

op(1). Thus we hereafter derive the limiting distribution of T̃n. Decompose T̃n = T̄n + r1n +

r2n + r3n, where

T̄n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

Yie
itWiYjeitWjdt, (9)

r1n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

(∫
eisWimft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)(∫
eisWjmft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)
dt,

r2n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

Yie
itWi

(∫
eisWjmft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)
dt,

r3n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2

|f ft
ε (t)|2

(∫
eisWimft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t)

)
YjeitWjdt.

First, we derive the limiting distribution of T̄n. Observe that

T̄n =
1

n

∑
i 6=j

1

2π

∫
|K ft(tb)|2et2YiYj{cos(tWi) cos(tWj) + sin(tWi) sin(tWj)}dt

=
1

nb

∑
i 6=j

1

2π

∫
|K ft(t)|2e(t/b)2YiYj

{
cos

(
tWi

b

)
cos

(
tWj

b

)
+ sin

(
tWi

b

)
sin

(
tWj

b

)}
dt

=

(
1

b

1

2π

∫
|K ft(t)|2e(t/b)2dt

)
1

n

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+Op(b

2+4βe1/b2)

≡
(

1

b

1

2π

∫
|K ft(t)|2e(t/b)2dt

)
T̃n +Op(b

2+4βe1/b2), (10)

where the first equality follows from f ft
ε (t) = e−t

2/2 and eitWi = cos(tWi) + i sin(tWi), the second
equality follows from a change of variables, and the third equality follows from Holzmann and
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Boysen (2006, Theorem 1) based on Assumption S (ii). Note that

T̃n =
1

n

∑
i 6=j

YiYj

 {
cos
(
Xi
b

)
cos
(
εi
b

)
− sin

(
Xi
b

)
sin
(
εi
b

)}{
cos
(
Xj
b

)
cos
( εj
b

)
− sin

(
Xj
b

)
sin
( εj
b

)}
+
{

sin
(
Xi
b

)
cos
(
εi
b

)
+ cos

(
Xi
b

)
sin
(
εi
b

)}{
sin
(
Xj
b

)
cos
( εj
b

)
+ cos

(
Xj
b

)
sin
( εj
b

)}
 .

(11)
From van Es and Uh (2005, proof of Lemma 6), it holds

(
Xi
b mod 2π

)
d→ V X

i ∼ U [0, 2π] and(
εi
b mod 2π

) d→ V ε
i ∼ U [0, 2π] as b→ 0 for each i, where V ε

i is independent from (Yi, V
X
i ). Thus

by applying Holzmann and Boysen (2006, Lemma 1), T̃n has the same limiting distribution with
T̃ Vn = 1

n

∑
i 6=j h(Qi, Qj), where Qi = (Yi, V

X
i , V ε

i ) and

h(Qi, Qj) = YiYj

 {
cos(V X

i ) cos(V ε
i )− sin(V X

i ) sin(V ε
i )
}{

cos(V X
j ) cos(V ε

j )− sin(V X
j ) sin(V ε

j )
}

+
{

sin(V X
i ) cos(V ε

i ) + cos(V X
i ) sin(V ε

i )
}{

sin(V X
j ) cos(V ε

j ) + cos(V X
j ) sin(V ε

j )
}  .

Observe that Cov (h(Q1, Q2), h(Q1, Q3)) = 0 because E[cos(V ε
i )] = 0. Therefore, by applying

the limit theorem for degenerate U-statistics with a fixed kernel h (Serfling, 1980, Theorem 5.5.2),
we obtain

T̃ Vn
d→
∞∑
k=1

λk(Z
2
k − 1), (12)

where {Zk} is an independent sequence of standard normal random variables and {λk} are the
eigenvalues of the integral operator

(Λg)(Q1) = λg(Q1). (13)

where (Λg)(Q1) = E[h(Q1, Q2)g(Q2)|Q1]. Also, van Es and Uh (2005, Lemma 5) gives

1

2π

∫
|K ft(t)|2e(t/b)2dt ∼ b

ϕ(b)
, (14)

where Γ(·) is the gamma function. Combining (10)-(14),

ϕ(b)T̄n
d→
∞∑
k=1

λi(Z
2
i − 1).

Next, we show that r1n is negligible. Observe that

r1n =
1

nb3

∑
i 6=j

1

2π

∫
|K ft(t)|2

(∫
eisWi/bmft

(
t− s
b

)
K ft(s)

f ft
ε (s/b)

ds

)(∫
eisWj/bmft

(
t− s
b

)
K ft(s)

f ft
ε (s/b)

ds

)
dt

=
1

nb3

∑
i 6=j

1

2π

∫
|K ft(t)|2



{∫
cos
(
s1Wi
b

)
mft

(
t−s1
b

) Kft(s1)
f ftε (s1/b)

ds1

}
×
{∫

cos
(
s2Wj

b

)
mft

(
s2−t
b

) Kft(s2)
f ftε (−s2/b)

ds2

}
+
{∫

sin
(
s1Wi
b

)
mft

(
t−s1
b

) Kft(s1)
f ftε (s1/b)

ds1

}
×
{∫

sin
(
s2Wj

b

)
mft

(
s2−t
b

) Kft(s2)
f ftε (−s2/b)

ds2

}

 dt

=

(
1

2π

∫ ∫ ∫
|K ft(t)|2K ft(s1)K ft(s2)

f ft
ε (s1/b)f ft

ε (−s2/b)
mft

(
t− s1

b

)
mft

(
s2 − t
b

)
ds1ds2dt

)
× 1

nb3

∑
i 6=j

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+Op(b

2+4βe1/b2),
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where the first equality follows from a change of variables, the second equality follows from a
direct calculation using eisWi = cos(sWi) + i sin(sWi), the third equality follows from Holzmann
and Boysen (2006, Theorem 1) based on Assumption S (ii). By a similar argument to show (12),
it holds

1

n

∑
i 6=j

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
= Op(1).

Also, we obtain

1

2π

∫ ∫ ∫
|K ft(t)|2K ft(s1)K ft(s2)

f ft
ε (s1/b)f ft

ε (−s2/b)
mft

(
t− s1

b

)
mft

(
s2 − t
b

)
ds1ds2dt

=
b4e1/b2

2π

∫ ∫ ∫  |K ft(t)|2K ft(1− b2v1)K ft(1− b2v2)

×e
(1−b2v1)

2−1

2b2 e
(1−b2v2)

2−1

2b2 mft
(
t−1+b2v1

b

)
mft

(
1−b2v2−t

b

)  dv1dv2dt

∼ A2b4+4βe1/b2

2π

(∫
|K ft(t)|2mft

(
t− 1

b

)
mft

(
1− t
b

)
dt

)(∫
vβ1 e
−v1dv1

)(∫
vβ2 e
−v2dv2

)
∼ A2Γ(β + 1)2b5+6βe1/b2

2π

∫
|t|2β|mft(t)|2dt

= O(b5+6βe1/b2),

where the first equality follows from changes of variables s1 = 1 − b2v1 and s2 = 1 − b2v2, the
wave relations follow from Assumption S (i), and the last equality follows from Assumption S
(ii). Combining these results,

ϕ(b)r1n = Op(b
1+2β),

and thus r1n is negligible. Similar arguments imply that the terms r2n and r3n are also asymp-
totically negligible. Therefore, the conclusion follows.

A.1.3. Proof of (iii). The proof for the general supersmooth case follows the same steps as in the
proof of Part (ii) for the normal case. As the proof is similar, we omit the most part. Hereafter
we show why the condition γ > 1 is imposed in this case. The dominant term T̄n defined in (9)
satisfies

T̄n ∼
1

nb

∑
i 6=j

1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ YiYj

{
cos

(
tWi

b

)
cos

(
tWj

b

)
+ sin

(
tWi

b

)
sin

(
tWj

b

)}
dt.

We now show that

Dcos ≡
1

nb

∑
i 6=j

1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ YiYj

{
cos

(
tWi

b

)
cos

(
tWj

b

)}
dt

−

(
1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ dt

)
1

nb

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)}
is asymptotically negligible, as well as the correspondingly defined Dsin. We have seen that each
term is zero mean. Following the proof of Holzmann and Boysen (2006, Theorem 1), we obtain∣∣∣∣cos

(
tWi

b

)
cos

(
tWj

b

)
− cos

(
Wi

b

)
cos

(
Wj

b

)∣∣∣∣ ≤ (1− t)(|Wi|+ |Wk|)
b

.
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Thus, similar arguments to van Es and Uh (2005, Lemmas 1 and 5) using Assumption S (ii)
imply

Var(Dcos) ≤ O(n−2b4γ0−4)

(∫
(1− t)|K ft(t)|2 |t|−2γ0 e

2|t|γ
µbγ dt

)2∑
i 6=j

E
[
|Yi|2|Yj |2(|Wi|+ |Wk|)2

]
= O

(
b4γ0−4

(
bγ(2+2β)e

2
µbγ

)2
)
,

and we obtain Dcos = Op

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
. The same argument applies to Dsin. Note that

T̄n =

(
1

b

1

2πC2
ε

∫
|K ft(t)|2

∣∣∣∣ tb
∣∣∣∣−2γ0

e
2|t|γ
µbγ dt

)
1

n

∑
i 6=j

YiYj

{
cos

(
Wi

b

)
cos

(
Wj

b

)
+ sin

(
Wi

b

)
sin

(
Wj

b

)}
+O

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
=

A2µ1+2βbγ−1+2γβ+2γ0e
2
µbγ Γ(2β + 1)

(2λ)1+2βπC2
ε

T̃n +O
(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
≡ T̃n

φ(b)
+O

(
b2(γ−1)+2γβ+2γ0e

2
µbγ

)
,

where the second equality follows from the definition of T̃n in (11) and a modification of van Es
and Uh (2005, Lemma 5). Therefore, we obtain

φ(b)Tn = T̃n +O(bγ−1).

The limiting distribution of T̃n is obtained in the proof of Part (ii). The remainder term becomes
negligible if we impose γ > 1.

A.2. Proof of Theorem 2.

A.2.1. Proof of (i). By a similar argument to the proof of Theorem 1 (i), the estimation error
θ̂ − θ is negligible for the asymptotic properties of Tn and thus it is written as

Tn =
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ξj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ηi(t)ηj(t)dt

+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ξi(t)ηj(t)dt+
1

n

∑
i 6=j

1

(2π)d

∫
|K ft(tb)|2

|f ft
ε (t)|2

ηi(t)ξj(t)dt+ op(C
1/2
V,b )

≡ T̃n +R∗1n +R∗2n +R∗3n + op(C
1/2
V,b ),

where

ηi(t) =

∫
eis·Wi{mft(t− s)−mft

θ (t− s)}K
ft(sb)

f ft
ε (s)

dsf ft
ε (t)

= cn

∫
eis·Wi∆ft(t− s)K

ft(sb)

f ft
ε (s)

dsf ft
ε (t),
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under H1n. By Theorem 1 (i), it holds C−1/2
V,b T̃n

d→ N
(

0, 2
(2π)2d

)
. For R∗1n, observe that

E[C
−1/2
V,b R∗1n] =

(n− 1)c2
n

(2π)dC
1/2
V,b

∫ ∫ ∫
|K ft(tb)|2K ft(s1b)K

ft(s2b)∆
ft(t− s1)∆ft(s2 − t)f ft(s1)f ft(−s2)ds1ds2dt

≡ ∆n. (15)

By the definition of cn, CV,b = O(b−d(1+4α)) (obtained in the proof of Theorem 1 (i)), and
Assumption D (ii), it holds E[C

−1/2
V,b R∗1n] = O(1) and the limit of ∆n exists. Also, a similar

argument to (4) yields

E[R∗21n] = c4
n

∫
· · ·
∫
|K ft(t1b)|2|K ft(t2b)|2K ft(s1b)K

ft(s2b)K
ft(s3b)K

ft(s4b)

f ft
ε (s1)f ft

ε (−s2)f ft
ε (s3)f ft

ε (−s4)
f ft
W (s1 + s3)f ft

W (−s2 − s4)

×∆ft(t1 − s1)∆ft(s2 − t1)∆ft(t2 − s3)∆ft(s4 − t2)ds1 · · · ds4dt1dt2

= O(b−d(1+4α)).

Therefore, Var(C
−1/2
V,b R∗1n) → 0 and we obtain C−1/2

V,b R∗1n
p→ limn→∞∆n. Finally, using similar

arguments combined with E[ξi(t)] = 0, we can show that C−1/2
V,b R∗2n

p→ 0 and C
−1/2
V,b R∗3n

p→ 0.
Combining these results, the conclusion follows.

A.2.2. Proof of (ii). Similarly to the proof of Part (i), we can decompose

Tn = T̃n +R∗1n +R∗2n +R∗3n + op(ϕ(b)−1).

Theorem 1 (ii) implies the limiting distribution of ϕ(b)T̃n. For R∗1n, note that

E[ϕ(b)R∗1n] = ϕ(b)(n− 1)c2
n

∫ ∫ ∫
|K ft(tb)|2K ft(s1b)K

ft(s2b)

×∆ft(t− s1)∆ft(s2 − t)f ft(s1)f ft(−s2)ds1ds2dt

≡ Υn, (16)

and the limit of Υn exists from the definition of cn. Also, by similar treatment to r1n in the proof
of Theorem 1 (ii), we can show Var(ϕ(b)R∗1n)→ 0 and thus ϕ(b)R∗1n → limn→∞ Υn. Using similar
arguments combined with E[ξ1i(t)] = 0, we can again show that R∗2n and R∗3n are asymptotically
negligible. Therefore, the conclusion follows.

A.2.3. Proof of (iii). The proof is identical to that of Part (ii) with ϕ(b) replaced by φ(b) and

setting cn = b(λ−1)/2+λβ+λ0e
1

µbλ .

22



References

[1] Azzalini, A., Bowman, A. W. and W. Härdle (1989) On the use of nonparametric regression for model

checking, Biometrika, 76, 1-11.

[2] Bickel, P. J. and A. J. C. Ritov (1987) Efficient estimation in the errors-in-variables model, Annals of

Statistics, 15, 513-540.

[3] Butucea, C. (2007) Goodness-of-fit testing an quadratic functional estimation from indirect observations,

Annals of Statistics, 35, 1907-1930.

[4] Butucea, C. and M.-L. Taupin (2008) NewM-estimators in semi-parametric regression with errors in variables,

Annales de l’Institut Henri Poincaré-Probabilités et Statistiques, 44, 393-421.

[5] Carroll, R. J., Spiegelman, C. H., Lan, K. K. G., Bailey, K. T. and R. D. Abbott (1984) On errors-in-variables

for binary regression models, Biometrika, 71, 19-25.

[6] Cheng, C.-L. and A. G. Kukush (2004) A goodness-of-fit test for a polynomial errors-in-variables model,

Ukrainian Mathematical Journal, 56.4 641-661.

[7] Cheng, C.-L. and H. Schneeweiss (1998) Polynomial regression with errors in the variables, Journal of the

Royal Statistical Society: Series B, 60, 189–199.

[8] Delaigle, A., Hall, P. and A. Meister (2008) On deconvolution with repeated measurements, Annals of

Statistics, 36, 665-685.

[9] Delgado, M. A., Dominguez, M. A. and P. Lavergne (2006) Consistent tests of conditional moment restric-

tions, Annales D’Economie et de Statistique, 81, 33-67.

[10] Eubank, R. L. and C. H. Spiegelman (1990) Testing the goodness of fit of a linear model via nonparametric

regression techniques, Journal of the American Statistical Association, 85, 387-392.

[11] Fan, J. (1992) Deconvolution with Supersmooth Distributions, Canadian Journal of Statistics, 20, 155-169.

[12] Fan, J. and L. S. Huang (2001) Goodness-of-fit tests for parametric regression models, Journal of the American

Statistical Association, 96, 640-652.

[13] Fan, Y. and Q. Li (2000) Consistent model specification tests: Kernel-based versus Bierens’ ICM tests,

Econometric Theory, 16, 1016-1041.

[14] Fan, J. and Y. K. Truong (1993) Nonparametric regression with errors in variables, Annals of Statistics, 4,

1900-1925.

[15] Fuller, W. A. (1987) Measurement Error Models, Wiley.

[16] Gleser, L. J. (1981) Estimation in a multivariate “errors in variables” regression model: large sample results,

Annals of Statistics, 9, 24-44.

[17] Hall, P. (1984) Central limit theorem for integrated square error of multivariate nonparametric density

estimators, Journal of Multivariate Analysis, 14, 1-16.

[18] Hall, P. and Y. Ma (2007) Testing the suitability of polynomial models in error-in-variables problems, Annals

of Statistics, 35, 2620–2638.

[19] Härdle, W. and E. Mammen (1993) Comparing nonparametric versus parametric regression fits, Annals of

Statistics, 21, 1926-1947.

[20] Hausman, J., Newey, W. and J. Powell (1995) Nonlinear Errors in Variables. Estimation of Some Engel

Curves, Journal of Econometrics, 65, 205–233.

[21] Holzmann, H., Bissantz, N. and A. Munk (2007) Density testing in a contaminated sample, Journal of

multivariate analysis, 98, 57-75.

[22] Holzmann, H. and L. Boysen (2006) Integrated square error asymptotics for supersmooth deconvolution,

Scandinavian Journal of Statistics, 33, 849-860.

[23] Horowitz, J. L. and V. G. Spokoiny (2001) An adaptive, rate optimal test of a parametric mean-regression

model against a nonparametric alternative. Econometrica, 69, 599-631.

[24] Koul, H. L. and W.-X. Song (2009) Minimum distance regression model checking with Berkson measurement

errors, Annals of Statistics, 37, 132-156.

23



[25] Koul, H. L. and W.-X. Song (2010) Model checking in partial linear regression models with Berkson mea-

surement errors, Statistica Sinica, 20, 1551-1579.

[26] Leser, C. (1963) Forms of Engel Functions, Econometrica, 31, 694–703.

[27] Li, T. and Q. Vuong (1998) Nonparametric estimation of the measurement error model using multiple indi-

cators, Journal of Multivariate Analysis, 65, 139-165.

[28] Ma, Y., Hart, J. D., Janicki, R. and R. J. Carroll (2011) Local and omnibus goodness-of-fit tests in classical

measurement error models, Journal of the Royal Statistical Society: Series B, 73, 81–98

[29] Meister, A. (2009) Deconvolution Problems in Nonparametric Statistics, Springer.

[30] Rosenblatt, M. (1975) A quadratic measure of deviation of two-dimensional density estimates and a test of

independence, Annals of Statistics, 1-14.

[31] Serfling, R. J. (1980) Approximation Theorems of Mathematical Statistics, Wiley.

[32] Schennach, S. (2004) Estimation of nonlinear models with measurement error, Econometrica 72, 33–75.

[33] Song, W.-X. (2008) Model checking in errors-in-variables regression, Journal of Multivariate Analysis, 99,

2406-2443.

[34] Song, W.-X. (2009) Lack-of-fit testing in errors-in-variables regression model with validation data, Statistics

& Probability Letters, 79, 765-773.

[35] Taupin, M.-L. (2001) Semi-parametric estimation in the nonlinear structural errors-in-variables model, Annals

of Statistics, 29, 66-93.

[36] van der Vaart, A. W. (1988) Estimating a real parameter in a class of semiparametric models, Annals of

Statistics, 16, 1450-1474.

[37] van Es, A. J. and H.-W. Uh (2005) Asymptotic normality for kernel type deconvolution estimators, Scandi-

navian Journal of Statistics, 32, 467-483.

[38] Xu, W.-L. and L.-X. Zhu (2015) Nonparametric check for partial linear errors-in-covariables models with

validation data, Annals of Institute of Statistical Mathematics, 67, 793-815.

[39] Zhu, L.-X. and H.-J. Cui (2005) Testing the adequacy for a general linear errors-in-variables model, Statistica

Sinica, 15, 1049-1068.

[40] Zhu, L.-X. Song, W.-X. and H.-J. Cui (2003) Testing lack-of-fit for a polynomial errors-in-variables model,

Acta Mathematicae Applicatae Sinica, 19, 353-362.

Department of Economics, London School of Economics, Houghton Street, London, WC2A

2AE, UK.

E-mail address: t.otsu@lse.ac.uk

Department of Economics, London School of Economics, Houghton Street, London, WC2A

2AE, UK.

E-mail address: l.n.taylor@lse.ac.uk

24


