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1 Introduction

Simultaneous bidding in multiple first-price auctions is a commonly occurring but

rarely discussed phenomenon in many real-world auction markets. In environments

where values over combinations are non-additive in the set of objects won, bidders

must account for possible combination wins at the time of bidding. This in turn sub-

stantially alters the strategic bidding problem compared to the standard first price

auction with ambiguous welfare implications depending on the importance of syner-

gies (either positive1 or negative2) among objects. As a first step toward exploring

this issue, we develop a structural model of bidding in simultaneous first-price auc-

tions and study identification and estimation in this framework. We then apply our

results to estimate cost synergies arising in Michigan Department of Transportation

(MDOT) highway procurement auctions, using the resulting estimates to quantify

efficiency losses arising from simultaneous bidding in this application.

To underscore the prevalence of simultaneous bidding in applications, note that

most widely studied first-price marketplaces in fact exhibit simultaneous bids. Con-

crete examples include markets for highway procurement in most US states (Jofret-

Bonet and Pesendorfer 2003, Krasnokutskaya 2009, Krasnokutskaya and Seim 2004,

Somaini 2013, Li and Zheng 2009, Groeger 2014, many others), snow-clearing in

Montreal (Flambard and Perrigne 2006), recycling services in Japan (Kawai 2010),

cleaning services in Sweden (Lunander and Lundberg 2012), oil and drilling rights

in the US Outer Continental Shelf (Hendricks and Porter 1984, Hendricks, Pinkse

and Porter 2003), and to a lesser extent US Forest Service timber harvesting (Lu

and Perrigne 2008, Li and Zheng 2012, Li and Zhang 2010, Athey, Levin and Siera

2011, many others). Furthermore, in many of these applications we expect bidders

to have non-additive preferences over combinations; due, for instance, to capacity ef-

fects in highway procurement (Jofret-Bonet and Pesendorfer 2003), distance between

contracts in snow clearing and waste collection, or information spillovers in Outer

Continental Shelf drilling (Hendricks and Porter 1984). In such cases strategic simul-

1These commonly arise from cost savings in procurement auctions.
2These may arise when bidders have resource and capacity constraints or when winning alter-

native items offered can meet the same need.
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taneity may substantially influence both bidder behavior and market performance.

To illustrate the policy questions arising in simultaneous multi-object auctions,

note that given a set of L heterogeneous objects for sale, bidders could in general as-

sign either positive or negative synergies to winning multiple objects. Bidder i’s pref-

erence structure could thus in principle be as complex as a complete 2L-dimensional

set of signals describing the valuations i assigns to each of the 2L possible subsets of

objects. Meanwhile, the simultaneous first-price mechanism allows bidders to submit

(at most) L individual bids on the L objects being sold. Consequently, the simulta-

neous first-price auction format is necessarily inefficient – the “message space” (stan-

dalone bids) is insufficiently rich to allow bidders to express their true preferences.

Allowing combinatorial bids might help to alleviate this “message space” problem,

but need not produce an efficient allocation (see e.g. Cantillon and Pesendorfer 2006,

Crampton at al. 2006) and could impose substantial practical costs on both bidders

and the seller (the “winner determination problem”) . Hence in evaluating the rel-

ative merit of the simultaneous first-price format it is first necessary to assess the

empirical magnitude of revenue and efficiency losses due to simultaneous bidding.

Very little is presently known about these questions, due in part to a near-total lack

of methods for analyzing preferences over combinations in simultaneous auctions.

Motivated by this gap in the literature, we develop an empirical model of bidding

in simultaneous first-price auctions when objects are heterogeneous and bidders have

non-additive preferences over combinations, to our knowledge the first such in the

literature. This model turns on a novel decomposition of bidder preferences, which

we outline briefly here. We represent the total value i assigns to a given combina-

tion as the sum of two components: the sum of the standalone valuations i assigns

to winning each object in the combination individually, plus a combination-specific

complementarity (either positive or negative) capturing the change in value i as-

signs to winning objects in combination.3 We interpret standalone valuations as

private information drawn independently across bidders conditional on observables,

but require incremental preferences over combinations to be stable in the sense that

3Note that this decomposition is without loss of generality; the key identifying restriction is the
structure we impose on complementarities.

3



complementarities are functions of observables.4 We find this framework natural in

a variety of procurement contexts – when, for instance, non-additivity in preferences

can be represented as realizations of a utility shock realized after a multiple win.

Furthermore – and crucially – our framework collapses immediately to the standard

separable model when complementarities are zero, supporting formal testing of this

hypothesis. We apply this model to data on Michigan Department of Transportation

(MDOT) highway procurement auctions and evaluate the efficiency losses due to si-

multaneous bidding in this market. In so doing, we make three main contributions

to the literature on structural analysis of auction markets.

First, we propose a structural model of simultaneous first-price auctions permit-

ting identification of non-additive preferences over combinations. Identification in

this framework rests on two key assumptions. First, as noted above, we assume

that complementarities are stable functions of observables. Second, we assume that

the marginal distributions of i’s standalone valuations are invariant either to the

characteristics of i’s rivals or to the characteristics of other objects on which i is bid-

ding. We show that optimal behavior in this environment yields an inverse bidding

system non-parametrically identified up to the unknown function describing comple-

mentarities, collapsing to the standard inverse bidding function of Guerre, Perrigne

and Vuong (2000) when complementarities are zero. Building on this inverse bidding

system, we translate the exclusion restrictions outlined above into a system of identi-

fying restrictions, with excludable variation in competition yielding non-parametric

identification and excludable variation in characteristics of other objects yielding

semiparametric identification of model primitives. These results provide a formal

basis for structural analysis of simultaneous first-price auctions with non-additive

preferences over combinations, to our knowledge the first such in the literature.

Second, building on our identification argument, we develop a three-step proce-

dure yielding empirical estimates of primitives in our structural model. First, in Step

1, we estimate the multi-variate joint distribution of bids as a function of bidder-

4Note that this structure does not restrict dependence between i’s standalone valuations for
different objects in the market. We view this flexibility as critical, as in practice we expect i’s
standalone valuations to be positively correlated.
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and auction-level characteristics. Due to the high-dimensional nature of this estima-

tion problem, we follow several prior studies (e.g. Cantillon and Pesendorfer 2006

and Athey, Levin and Siera 2011) by employing a parametric approximation to the

observed bid density in implementation of this step. Next, in Step 2, we parametrize

preferences over combinations as a function of bidder- and combination-specific co-

variates5 and estimate parameters in this function by minimization of a simulated

analog to our semiparametric identification criterion which reduces to a quadratic

minimization problem. Finally, in Step 3, we map estimates derived in Step 2 through

the inverse bidding system derived in Step 1 to obtain estimates of the distribution

of private costs rationalizing observed bidding behavior.

Finally, we apply the framework developed above to analyze simultaneous bidding

in Michigan Department of Transportation (MDOT) highway procurement markets.

We view this market as prototypical of our target application: large numbers of

projects are auctioned simultaneously (an average of 45 per letting round in our

2005-2015 sample period), more than half of bidders bid on at least two projects

simultaneously (with an average of 2.7 bids per round across all bidders in the sam-

ple), and combination and contingent bidding are explicitly forbidden. Within this

marketplace, we show that factors such as size of other projects, number of bidders in

other auctions, and the relative distance between projects have substantial reduced-

form impacts on i’s bid in auction l. This finding is expected when bidders have

non-trivial preferences over combinations, but difficult to rationalize within either

the standard separable Independent Private Values model or typical extensions of it

(e.g. affiliated values, unobserved heterogeneity, and endogenous entry). We then

apply the three-step estimation algorithm described above to recover structural esti-

mates of primitives, with results suggesting that winning multiple auctions together

leads to cost savings for moderately sized and / or homogeneous projects but cost in-

creases for large and / or heterogeneous projects: roughly 18 percent cost savings for

a two-auction combination at the 95th (best) percentile in our sample, transitioning

5In our application, combination-specific covariates might include the sum of engineer’s estimates
across projects in a combination, distance between projects in a combination, and indicators for
whether projects in a combination are of the same type, among others.
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to roughly 4 percent cost increases for a two-auction combination at the 5th (worst)

percentile. Finally, we use our estimation results to analyze the implications of the

simultaneous first-price design in the MDOT marketplace. Specifically, we assess the

degree of inefficiency in MDOT highway procurement auctions, analyze the extent of

the exposure problem,6 and explore potential gains from switching to a widely used

alternative mechanism: the combinatorial clock-proxy auction of Ausubel, Crampton

and Milgrom (2006).

Related literature While we are not aware of a structural exploration of bidding

in simultaneous first-price auctions, there is a growing empirical literature on multi-

unit auctions. Many studies in this literature analyze markets for homogenous, divisi-

ble goods like electricity and treasury bills; see e.g. Fevrier, Preget, and Visser (2004);

Chapman, McAdams, and Paarsch (2007); Kastl (2011); Hortacsu and Puller (2008);

Hortacsu and McAdams (2010) and Hortacsu (2011); Wolak (2007); and Reguant

(2014). More closely related to our paper are Cantillon and Pesendorfer (2006), Fox

and Bajari (2013), and Kim, Oliveres and Weintraub (2014). Fox and Bajari (2013)

estimate the deterministic component of bidder valuations in FCC simultaneous as-

cending spectrum auctions without package bidding. They exploit the assumption

that the allocation of licenses is pairwise stable in matches and use the maximum

score estimator for matching game to estimate the valuation function. Cantillon and

Pesendorfer (2006) analyze combinatorial first-price sealed-bid auctions for London

bus routes when bidders can submit package bids. While superficially similar to the

first-price setting we study, allowing bidders to submit combinatorial bids substan-

tially alters analysis of the bidding problem; intuitively, the “message space” (bids

over combinations) is no longer sparse relative to the type space (preferences over

combinations), leading to a fundamentally different and simpler identification prob-

lem. More recently, Kim, Oliveres and Weintraub (2014) extend the methodology

of Cantillon and Pesendorfer (2006) to large-scale combinatorial auctions used in

procurement of Chilean school meals.

6The exposure problem in auctions of multiple items involves the risk of bidders winning un-
wanted items, i.e. winning items at prices above bidders’ values for them.
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Paralleling these structural studies, there is a small reduced-form literature seek-

ing to quantify the role of preferences over combinations in multi-object auctions:

Ausubel, Cramton, McAfee and McMillan (1997) and Moreton and Spiller (1998)

measure synergy effects in FCC spectrum auctions; Lunander and Lundberg (2012)

show that firms inflate their standalone bids in combinatorial first-price auctions rel-

ative to first-price auctions but without significant differences in the procurer’s cost

of internal cleaning services in Sweden.

From a more theoretical perspective, there exist a few studies analyzing strategic

interaction in stylized models involving simultaneous first-price auctions; see for ex-

ample Szentes and Rosenthal (1996) and Ghosh (2012). Gentry, Komarova, Schiraldi

and Shin (2015) study existence and proprieties of equilibrium in a setting closely

paralleling that studied here. There is also a substantial literature analyzing prop-

erties of various combinatorial auction mechanisms: Ausbel and Milgrom (2002),

Ausbel and Cramton (2004), Cramton (1998, 2002, 2006), Krishna and Rosenthal

(1996), Klemperer (2008, 2010), Milgrom (2000a, 2000b), and Rosenthal and Wang

(1996), to mention just a few. Detailed surveys of this literature are given in de Vreis

and Vorha (2003), and Cramton et al. (2006).7

2 A model of simultaneous first-price auctions

This section introduces the model and highlights its key features which are then used

to build our identification strategy.

A set of N = {1, ..., N} risk-neutral bidders compete for (subsets of) a set L =

{1, ..., L} of objects allocated via separate but simultaneous first-price auctions. Each

bidder i is endowed with latent preferences over combinations described by a 2L × 1

7There is also a growing theoretical literature on simultaneous first-price auctions in computer
science; see Feldman et al. 2012, and Syrgkanis 2012 among others. This literature focuses primarily
on deriving bounds on the “Bayesian price of anarchy,” or fractional efficiency loss, in simultaneous
first-price auction markets. Positive results in this literature are largely restricted to settings with
negative complementarities, and even in these settings bounds tend to be wide (e.g. Feldman et al.
(2012) show that Bayesian Nash equilibrium captures at least half of total social surplus).
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vector of combinatorial valuations Yi. Combinatorial valuations Yi for bidder i are

drawn from a joint distribution FY,i satisfying the following properties:

Assumption 1 (Independent Private Values). Each bidder i draws latent combi-

natorial valuations Yi from an absolutely continuous c.d.f. FY,i with support on a

compact, convex set Yi ⊂ R2L, with FY,i common knowledge, and value draws inde-

pendent across bidders: Yi ⊥ Yj for all i, j. Y 0
i = 0.

While the distribution FY,i is common knowledge to all participants, realizations

of the latent combinatorial valuation vector Yi are ex ante unknown to i and must

be discovered through costly entry. As our main focus here is analysis of bid-stage

behavior, we abstract somewhat from entry decisions.8 Informally, however, we

interpret observed participation patterns as arising from a broader entry and bidding

game along the lines of those considered by Li and Zheng (2014) and Groeger (2014).

In this broader game, bidders first simultaneously choose subsets of auctions in which

to enter, with entry decisions informed by private entry costs drawn in a first stage.

Play then proceeds to the bidding stage, in which entrants learn their valuations for

all combinations for which they are bidding, observe the entry decisions of potential

rivals, and submit binding standalone bids in each auction they have entered. Finally,

the auctioneer assigns allocations and payments according to usual first-price auction

rules: every object l ∈ L receiving at least one bid is allocated to a high bidder in

auction l, with bidders paying their bids for each object they receive.

We proceed to consider bidding behavior taking entry decisions as given. Let

an entry set Ei ⊂ L for bidder i denote the set of auctions in which bidder i has

entered, and an entry structure E = (E1, ..., EN) describe entry sets for all bidders

i = {1, ..., N}. We aim to analyze the bidding game which arises following realization

of a particular entry structure E , taking this entry structure as given. Toward this

end, we introduce the following notation and definitions.

Actions, types, and strategies Let B` ⊂ R+ denote the set of feasible bids in

auction ` = 1, ..., L; without loss of generality, we take this to be a compact set.

8See Appendix D for a detailed description of this broader entry game.
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Let Li denote the number of auctions in which i participates under E . A bid bEi for

player i in subgame E is an Li × 1 vector such that bEi` ∈ B` for all ` ∈ Ei, while

a type Y Ei is a 2Li × 1 vector whose elements describe the combinatorial valuations

assigned by i to each combination which he could win at Ei (i.e. to each subset of L
contained in Ei). Let BEi = ×`∈EiB` and YEi ⊂ Yi denote i’s bid and type spaces in

subgame E , and let F EY,i denote the distribution of Y Ei on YEi ; note that F EY,i is derived

from i’s ex ante type distribution FY,i by marginalizing out elements corresponding

to combinations which are not subsets of Ei. In what follows, we omit superscripts

E wherever feasible; unless otherwise noted, all objects defined below are defined

relative to a given subgame E .

Standalone valuations and complementarities Define an outcome for bidder

i as an 1× Li vector such that for each l ∈ {1, ..., Li} the element ωil = 1 if the lth

element of Ei is allocated to i and ωil = 0 otherwise. Similarly, let the outcome matrix

Ωi for bidder i be the 2Li × Li matrix whose rows describe all outcomes possible for

i: e.g. if Li = 2, then

ΩT
i =

[
0 0 1 1

0 1 0 1

]
Let i’s standalone valuation for object l, denoted Vil, be the valuation i assigns to the

outcome “i wins object l alone”: Vil ≡ Y
{l}
i . Similarly, let i’s standalone valuation

vector, denoted Vi, be the Li × 1 vector whose elements describe i’s standalone

valuations for the Li objects in set Ei. We can now define the complementarity

vector Ki for bidder i as the difference between i’s combinatorial valuation vector Yi

and the sum of i’s standalone valuations for each combination in Ei:

Ki ≡ Yi − ΩiVi.

Intuitively, ΩiVi represents the additive portion of bidder i’s preferences over combi-

nations, while Ki represents the non-additive portion. In particular, Ki = 0 if and

only if i’s preferences are additively separable in the set of objects won.
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Marginal and combination win probabilities Let Pi(b;σ−i) be the 2L×1 vector

describing the probability distribution over combinations arising when i submits

bid bi facing rival strategies σ−i, such that each element of Pi(bi;σ−i) describes the

probability that i wins the combination associated with the corresponding element of

Yi. Let Γi(bi;σ−i) be the Li × 1 vector whose lth element Γil(bi;σ−i) is the marginal

probability that bidder i submits bid vector bi ∈ Bi against rivals who bid according

to strategies σ−i. Observe that Γi(bi;σ−i) is related to P(bi;σ−i) by

Γi(bi;σ−i) = ΩT
i Pi(bi;σ−i).

Note that if ties occur with probability zero at bil, then Γil(bi;σ−i) is simply the c.d.f.

of the maximum rival bid in auction l, evaluated at bil.

Bidder payoffs Now consider bidder i with type realization yi ∈ YEii competing

against rivals who bid according to strategy profile σ−i. Let vi and ki be the stan-

dalone valuation and complementarity vectors corresponding to type realization yi

respectively. Recalling that a bidder winning combination S submits payment ωSi bi,

we can then write bidder i’s interim payoff function as follows:

πi(bi; yi, σ−i) = (yi − Ωibi)
TPi(bi;σ−i)

= (Ωvi − Ωibi)
TPi(bi;σ−i) + kTi Pi(bi;σ−i)

= (vi − bi)TΓi(bi;σ−i) + kTi Pi(bi;σ−i), (1)

Note that if i’s preferences over combinations are additive, then ki = 0 and (1)

reduces to the standard separable form

πi(bi; vi, σ−i) =
L∑
l=1

(vil − bil)Γil(bil;σ−i).

In this case, standard first-price theory applied auction by auction will characterize

an equilibrium of the overall simultaneous first price auction game.
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Bidding equilibrium We apply results in Jackson, Simon, Swinkels and Zame

(2002) to the existence of an equilibrium in the “communication extension” of the

simultaneous first-price auction game in which bidders send “cheap talk” signals use

by the auctioneer to break ties. If ties occur with probability zero, this in turn

corresponds to a full equilibrium in distributional strategies.

Let BE = BE1 ×· · ·×BEN denote the overall bid space generated by entry structure

E . Let the outcome correspondence ΘE : BE ⇒ ∆N1 × · · · × ∆NL be such that for

every bid profile b ∈ BE , ΘE(b) is the set of all probabalistic allocation rules such

that every object l is allocated to a high bidder in auction l with probability one.

Following Jackson, Simon, Swinkels and Zame (2002), we define the communication

extension of the simultaneous first-price auction game as the game that results when

the auctioneer allows each bidder i to submit both a bid bi ∈ BEi and a signal ti ∈
T Ei ≡ YEi indicating his private type, where signals t1, ..., tN may be used to resolve

ties but are otherwise irrelevant for allocations and payoffs. Then applying Theorem

1 in Jackson, Simon, Swinkels and Zame (2002), we obtain:

Proposition 1. For every entry structure E, there exists an equilibrium with endoge-

nous tiebreaking in the communication extension of the simultaneous first-price auc-

tion game induced by E: that is, a profile of distributional strategies σE = (σE1 , ..., σ
E
N)

and a tiebreaking rule θE : T E × BE → ∆N1 × · · · ×∆NL selected from ΘE such that

bidding according to σE and truthfully communicating types is a Bayesian Nash equi-

librium of the communication extension under tiebreaking rule θE .

At least two comments on Proposition 1 are worth mentioning here. First, as

noted above, if Ki = 0 with probability one for all i, then auctions are separable

and classical theory applies. In this case any strategy profile in which bidders play

Bayesian Nash equilibria auction by auction will be a Bayesian Nash equilibrium

of the overall bidding game, and this strategy profile paired with any tiebreaking

rule will be an equilibrium with endogenous tiebreaking as defined in Proposition

1. In this sense Proposition 1 formally embeds the (very well understood) classical

model within a much more general (but far more challenging) framework permitting

arbitrary complementarities.
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Second, one could alternatively interpret the bid space as discrete, in which case

existence of pure strategy Bayesian Nash equilibria in every bidding subgame follows

immediately from results in Milgrom and Weber (1985). In our view virtually all

real-world markets are inherently discrete on some level, either explicitly due to

minimum bid increments or implicitly due to minimum currency units. In this sense

we see the continuous case as a primarily theoretical (rather than practical) concern.

As is conventional in the literature, however, we here choose to stylize discrete bid

spaces as approximately continuous.

3 Empirical framework: identification

Suppose the econometrician has access to a “typical” simultaneous first-price auc-

tion sample, interpreted as a sample of T auction rounds drawn from some stable

underlying data generating process. In each round, the auctioneer offers Lt objects

for auction to Nt bidders active in the marketplace (though as above not all bidders

need be active in all auctions). Bidders then simultaneously submit sealed bids on

the set of auctions in which they are active, with the set of bidders active in each

auction common knowledge to a ll participants.9 For each round t, we assume the

econometrician observes data on all bidders i and auctions l present in the market.

Asymptotic statements should be interpreted as applying when T →∞.

For each bidder i present at time t, let Eit be the set of auctions in which i bids at

time t, with bit the corresponding vector of i’s bids and Nit the set of bidders faced

by bidder i in Eit. For each round t, the econometrician observes Eit, bit, and a vector

of bidder-specific characteristics Zit for all bidders i active in the round; to simplify

notation, we will adopt the convention that Zit includes Eit. For future reference, let

Lit denote the cardinality of Eit, and define Zi
t ≡ (Z1t, ..., ZNit,t).

Meanwhile, on the auction side, we partition the econometrician’s information

into two sets of covariates. First, for each object l auctioned at time t, the econo-

9While we do not model entry formally here, our analysis can be readily extended to incorporate
endogenous participation along the lines of Levin and Smith (1994) and Athey, Levin and Siera
(2011)). We outline this extension in more detail below.
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metrician observes a vector of covariates Xlt; for future reference, we define X i
t ≡

(X1t, ..., XLit,t). The econometrician may also observe a vector of W i
t taken to affect

combinatorial valuations but not standalone valuations for auctions in the set Eit;
we formalize this restriction in Assumption 5 below. In a highway procurement con-

text, Xlt would include factors like project size, project location, and type of work in

project l, whereas W i
t could include distance between projects, interaction between

project sizes, and other factors assumed irrelevant for Vil after conditioning on Zi
t

and Xlt. Notice that while the sets Zi
t , X

i
t and W i

t are bidder i specific, to simplify

the notation we are going to drop the superscript i. As above, we do not explicitly

model the entry stage but rather focus on bidding behavior taking entry realizations

as given.10

3.1 Identifying assumptions

Even cursory analysis of the simultaneous first-price problem suggests a major em-

pirical obstacle: whereas in general the model could involve up to 2Lit − 1 unknown

combinatorial valuations for a given bidder, the data generating process yields only

Lit observed bids corresponding to these unobservables. To obtain a viable empirical

model for simultaneous first-price auctions, it is therefore imperative to specialize

the model before taking it to data. Obviously, whether a given specialization is

plausible will depend crucially on the problem at hand, and no one assumption is

likely to be suitable for all applications. Since our main interest here is procurement,

however, we here propose two restrictions on primitives which we find natural in

many procurement contexts. As we go on to show, these turn out to be sufficient for

non-parametric identification of primitives given data of the form above. We thereby

provide a formal basis for empirical analysis of simultaneous bidding in a wide range

of applications of practical and policy interest.

Assumption 2 (Stochastic Vi, stable Ki). For all i and t, Kit = κi(Zt,Wt, Xt), with

10While estimating the entry cost distribution is conceptually standard in this framework, it
requires solving a combinatorial optimization problem which is computational very demanding and
beyond the scope of the current paper.
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Vit is distributed according to joint c.d.f. Fi(·|Zt,Wt, Xt).

Assumption 2 says that complementarities are stable functions of bidder, auc-

tion, and combination specific observables. This assumption is motivated by our

interpretation of Ki as a pure combination effect; i.e. an incremental cost or ben-

efit derived from winning two objects together. We find this structure reasonable

for applications such as procurement contracting, where bidders are obligated to

perform all projects won.11 Note that κi(·) can also be interpreted as an expecta-

tion over a combination-specific utility shock realized after a multiple win. Also,

and importantly, Assumption 2 formally nests the hypothesis of additively separable

preferences: κi(Zt,Wt, Xt) = 0.

In addition to the restriction on primitives captured in Assumptions 2, we main-

tain two regularlity conditions on the underlying auction process:

Assumption 3. In each letting t, observed bids are generated by play of an equilib-

rium with endogenous tiebreaking in the JSSZ communication extension to the simul-

taneous first-price auction game. Furthermore, for any t, t′ such that (Zt,Wt, Xt) =

(Zt′ ,Wt′ , Xt′), the equilibrium played at t is the same as the equilibrium played at t′.

Assumption 4. For each (Zt,Wt, Xt) ∈ Z × W × X and each bidder i active in

letting t, the joint distribution of bids submitted by i is absolutely continuous.

The assumption that a single equilibrium is played is widely invoked in the liter-

ature; see, e.g., Somaini (2014) and references therein. Assumption 4 is a regularity

condition on the observed distribution of bids which we expect to hold in any equi-

librium such that bidders do not bid atoms. Note that when Ki = 0 any combination

of strategies which would represent an equilibrium auction-by-auction will also be

an equilibrium in the bidding game, and under standard regularity conditions (e.g.

Assumption 1) strategies in any such equilibrium will satisfy Assumption 4. Hence

to test the null hypothesis of additively separable preferences (Ki = 0), one need not

11In Appendix A, we extend our identification results to the case where complementarities are
affine functions of standalone valuation.
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maintain Assumption 4 as a separate hypothesis.12

The model primitives to recover are the distribution of standalone valuations

Fi(·|Zlt, Xt,Wt) and the complementarity function κi(Zt,Wt, Xt) for each bidder i.

Let Gi(·|Zt,Wt, Xt) be the c.d.f. of the joint distribution of the Lit × 1 bid vector

bi submitted by bidder i at observables (Zt,Wt, Xt); note that under Assumption 3,

Gi(·|Zt,Wt, Xt) is identified directly from observables for all i and t. Consistent with

Assumption 1, we permit arbitrary correlation between elements of Vi, but assume

vectors Vi, Vj are drawn independently across bidders. Independence of Vi, Vj implies

independence of bi, bj, so knowledge of G1, ..., GNt is sufficient to characterize the

joint distribution of all bids submitted by all bidders at time t.

Inverse Bid Function Let P−i(·|Zt,Wt, Xt) : Bi → ∆2Lit be the probability distri-

bution over outcomes facing bidder i at observables (Zt,Wt, Xt) taking rival strate-

gies as given, and Γ−i(·|Zt,Wt, Xt) ≡ ΩTP−i(·|Zt,Wt, Xt) be the Lit × 1 vector of

marginal win probabilities corresponding to P−i(·|Zt,Wt, Xt). Note that identifica-

tion of G1, ..., GNt implies identification of P−i,Γ−i for all i and (Zt,Wt, Xt). Given

any realization vi of Vi and any vector of complementarities Ki, we can therefore

write the problem facing bidder i at observables (Zt,Wt, Xt) in terms of directly

identified objects as follows:

max
b∈Bi
{(vi − b) · Γ−i(b|Zt,Wt, Xt) + P−i(b|Wt, Zt, Xt)

TKi}.

Temporarily suppose that i’s objective is differentiable at b∗ ∈ int(Bi); we show below

that under Assumption 4 this holds almost surely with respect to the measure on

Bi induced by Gi. Then by hypothesis of equilibrium play, b∗ must satisfy necessary

12As it is difficult to rule out ties a priori in the fully general simultaneous model, we also
extend our partial identification results (see Appendix C) to accommodate potential mass points
in equilibrium bids. We show that in this case primitives are partially identified, with Monte
Carlo analysis suggesting that identified sets are tight in practice. While we do not believe ties are
important in the application we consider — they are never observed in the data — this analysis
helps to underscore robustness of our results.
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first-order conditions for an interior optimum:

∇bΓ−i(b
∗|Zt,Wt, Xt)(vi − b∗) = Γ−i(b

∗|Zt,Wt, Xt)−∇bP−i(b
∗|Wt, Zt, Xt)

TKi. (2)

Let Kit denote the following (2Lit − Lit − 1)-dimensional subspace of R2Lit :

Kit = {k ∈ R2Lit : k1 = k2 = . . . = kLit+1 = 0}.

That is, Kit contains 2Lit-dimensional vectors whose first Lit + 1 components are

equal to zero. These zero components correspond to the cases of bidder i winning at

most one object (ω = (0, . . . , 0) or ω′ω = 1).

Taking Ki ∈ Kit as given, the first order condition (2) generates for each b∗ ∈
int(Bi) an Lit × 1 system of equations in the Lit × 1 vector of unknown standalone

valuations vi. We now establish that this system may be inverted for vi at almost

every bi submitted by i. Recall that Γ−i(b|Zt,Wt, Xt) is an Lit × 1 vector whose

lth element describes the probability that bid vector b wins auction l, which under

Assumption 4 is simply the probability that the maximum rival bid in auction l is

below bl. Hence ∇bΓ−i(b|Zt,Wt, Xt) will be a diagonal matrix with (l, l)th element

given by the p.d.f. of the maximum rival bid in auction l. In equilibrium this p.d.f.

must be positive at (almost) every b∗ ∈ int(Bi), and again invoking Assumption 4

this will be (almost) every bid submitted. We therefore conclude:

Proposition 2 (Inverse Bidding Function). Let K be any vector in Kit, (Zt,Wt, Xt)

be any realization in Z ×W ×X , and maintain Assumptions 1-4. Then for almost

every bi drawn from Gi(·|Zt,Wt, Xt), there exists a unique vector ṽ ∈ RLit satisfying

the first-order system (2) at bi given (K;Zt,Wt, Xt). This ṽ can be expressed in

terms of bi via the inverse bidding function

ṽ = ξi(bi|K;Zt,Wt, Xt),
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where ξi(·|·;Z,W,X) : Bit ×Kit → RLit is defined by

ξi(b|K;Zt,Wt, Xt) ≡ b+ [∇bΓ−i(b|Zt,Wt, Xt)]
−1

×
[
Γ−i(b|Zt,Wt, Xt)−∇bP−i(b|Zt,Wt, Xt)

TK
]
, (3)

and the right-hand expression is identified up to K.

ξi(bi|K;Zt, Xt,Wt) describes the unique vector of candidate standalone valuations

at which bi could be a best response under the hypothesis K = κi(Zt,Wt, Xt). If in

fact K = κi(Zt,Wt, Xt), then the first-order system (2) describes the true equilibrium

bidding relationship and hence we must have vi = ξi(bi|K;Zt,Wt) almost surely.

Otherwise, ξi(bi|K;Zt, Xt,Wt) represents the unique candidate for vi at which bi

satisfies first order necessary conditions for a best response.13 Note that at K = 0

ξi(·) reduces to the standard inverse bidding function of Guerre, Perrigne and Vuong

(2000) defined auction-by-auction.

Now observe that Proposition 2 implies a unique identified candidate F̃i(·|K;Zt,Wt, Xt)

for the unknown c.d.f. Fi(·|Zt,Wt, Xt):

F̃i(v|K;Zlt,Wt, Xt) =

∫
Bi

1[ξi(Bi|K;Zt,Wt, Xt) ≤ v]Gi(dBi|Zt,Wt, Xt), (4)

where by construction

Fi(·|Zt,Wt, Xt) = F̃i(v|κ(Zt,Wt, Xt);Zt,Wt, Xt). (5)

Identification of the model thus reduces to identification of κi, since given κi the

distribution of standalone valuation is non-parametrically identified through (5).

We therefore turn to consider restrictions yielding identification of κi, both non-

parametrically through Z−i and semi-parametrically through W .

13Obviously, imposing sufficient conditions for bi to be a best response – by, for instance, requiring
second-order conditions to hold at ξ(bi|K;Zt, Xt,Wt) – can only improve identification.
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Non-parametric identification of κi based on variation in Z−i As a basis

for non-parametric identification of κi, we consider the following assumption:

Assumption 5. Fi(·|Zt,Wt, Xt) = Fi(·|Zit, Xt) and κi(Zt,Wt, Xt) = κi(Zit,Wt, Xt).

Assumption 5 imposes two exclusion restrictions: own primitives Fi, κi are invari-

ant to competition Z−it, and standalone valuations Vi are invariant to combination

characteristics Wt given Zit, Xt. The former is widely invoked in the non-parametric

auction literature (e.g. Haile, Hong and Shum (2003), Guerre, Perrigne and Vuong

(2009), Somaini (2014)), while the latter formalizes the exclusion restriction under-

lying the definition of Wt. Note that although our emphasis here is on identification

at the bidding stage, one can formally justify the first of these within a two-stage

entry and bidding model like that we sketch above: i.e. in which auction-level entry

decisions depend on idiosyncratic auction- or combination-specific entry costs, with

realizations of Vi discovered after entry.14

To understand how variation in Z−it identifies κi(·), consider a simple two-auction

example. Holding (Zit,Wt, Xt) fixed, define κ0 ≡ κi(Zit,Wt, Xt) as above. Starting

from some initial competition structure Z−it, let Z ′−it be the competition structure

derived from Zit by adding, for example, one additional bidder to Auction 2. Then

the marginal probability that i wins Auction 1 will be similar at Z−it and Z ′−it,

but the probability of the combination outcome “i wins both 1 and 2” will differ.

Furthermore, under Assumption 5, this change in combination win probabilities is the

only way changing Z−i matters for i’s strategy in Auction 1. Therefore to the extent

that moving from competition structure Z−it to competition structure Z ′−i matters

for i’s behavior in Auction 1, it can be only through κ0; if moving from Z−it to Z ′−it

has no effect, then we must have κ0 = 0. The number of feasible “experiments” is

limited only by the support of Z−i, with each experiment inducing a continuum of

non-linear equations in the finite vector κ0. Under weak regularity conditions this

system will have the unique (overdetermined) solution κ0 = κi(Zit,Wt, Xt). Iteration

of the argument then yields identification of κi(·) for any (Zit,Wt, Xt).

14See Appendix D for further details.
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We now formalize this intuition, dropping the subscript t when feasible. By

linearity of ξi(Bi|K;Z,W,X) in K, we have for any (Z,W,X) and any K ∈ Kit:

EBi [ξi(Bi|K;Z,W,X)|Z,W,X] = Υi(Z,W,X)−Ψi(Z,W,X) ·K, (6)

where Υi(Z,W,X) is an identified Lit × 1 vector defined by

Υi(Z,W,X) =

∫
Bi

(
Bi +∇bΓ−i(Bi|Z,W,X)−1Γ−i(Bi|Z,W,X)

)
Gi(dBi|Z,W,X)

and Ψi(Z,W,X) is an identified Lit × 2Lit matrix defined by

Ψi(Z,W,X) =

∫
Bi
∇bΓ−i(Bi|Z,W,X)−1∇bP−i(Bi|Z,W,X)T Gi(dBi|Z,W,X).

Furthermore, by equation (5) and invariance of Fi(·|Zi, X) in Z−i we must have for

any Z−i, Z
′
−i:

EBi [ξ(Bi|κ0;Zi, Z−i,W,X)|Z,W,X] = EBi [ξ(Bi|κ0;Zi, Z
′
−i,W,X)|Z ′,W,X]. (7)

Substituting (6) into (7), we thereby obtain an Li × 1 system of linear restrictions

in the 2Li × 1 vector κ0 = κ(Zi,W,X):

(Υi(Z,W,X)−Υi(Z
′,W,X))− (Ψi(Z,W,X)−Ψi(Z

′,W,X)) · κ0 = 0. (8)

For a single Z−i, Z
′
−i pair, this system will typically be rank-deficient and thus will

not uniquely determine κ0. But the underlying equality restriction must hold for

every Z−i, Z
′
−i ∈ Z−i. Pooling these restrictions, we therefore conclude:

Proposition 3. For any (Zi,W,X) ∈ Zi × W × X , suppose there exist vectors

Z−i,0, Z−i,1, ..., Z−i,J in the support of Z−i|Zi,W,X such that the JLi × 2Li matrix

MΨ ≡


Ψi(Zi, Z−i,1,W,X)−Ψi(Zi, Z−i,0,W,X)

...

Ψi(Zi, Z−i,J ,W,X)−Ψi(Zi, Z−i,0,W,X)


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has full column rank when projected onto Kit. Then κi(Zi,W,X) is identified.

Recall that the expectations criterion (7) exploits only equality of first moments

of Fi(·|Zi, Xl) across Z−i, whereas the underlying invariance restriction implied by

Assumption 5 requires equality (and, under Assumption 1, finiteness) of all moments.

The system of equations in Proposition 3 merely provides a simple and directly

verifiable sufficient condition guaranteeing that the underlying system of functional

identities has a unique solution. Note further that variation in, e.g., number of rivals

in other auctions will produce exactly the kind of variation in Ψi needed for full

column rank of MΨ: intuitively, changes in combination win probabilities relevant

for cross-auction bidding only through κ0. We thus view full column rank of MΨ as

a weak regularity condition guaranteeing identification of model primitives.

Semi-Parametric identification of κi based on variation in W In the previ-

ous paragraph, non-parametric identification is achieved under the restriction that

primitives are invariant to rival characteristics. This assumption may be violated in

cases where richer strategic interaction among players leads to stand alone valuation

to be function of rival characteristics; if, for instance, sub-contractors are bidders

in procurement auctions. In such environments, identification of complementarities

can still be achieved without necessarily relying on variation in Z−i once we add the

following assumption:

Assumption 6. κi(Zit,Wt, Xt) = C̃i(Zit,Wt, Xt, θ0i), where C̃i(Zit,Wt, Xt, θ0i) is a

known transformation of (Zit,Wt, Xt, θ0i), and θ0i ∈ Θi ⊂ Rpi.

We can then can replace Assumption 5 with the weaker assumption:

Assumption 7. Fi(·|Zt,Wt, Xt) = Fi(·|Zt, Xt).

Notice that Assumption 6 is quite natural in applications, as we will typically

wish to impose some parametric structure on κi(Zi,W,X). For simplicity, we con-

sider the case when κi(Zi,W,X) is linear in parameters – that is, κi(Zi,W,X) =

Ci(Zi,W,X)θ0i. Equation (7) reduces to the linear-in-parameters form

(Υi −Υ′i)− (ΨiCi −Ψ′iC
′
i) · θ0i = 0,
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where Υi,Ψi,Ci are identified functions of (Z,W,X) and Υ′i,Ψ
′
i,C

′
i are identified

functions of (Z,W ′, X). Thus Given an appropriate collection of J “experiments”

in which we vary W , {(Zj,Wj, Xj), (Zj,W
′
j , Xj)}Jj=1, we can thus express θ0i as the

solution to the following L2-minimization problem

min
θ∈Θi

J∑
j=1

(
Υij −Υ′ij − (ΨijCij −Ψ′ijC

′
ij) · θ

)T (
Υij −Υ′ij − (ΨijCij −Ψ′ijC

′
ij) · θ

)
,

(9)

with identification of θ0i implied by a standard rank condition on the differences

(ΨijCij − Ψ′ijC
′
ij) across j. Note that given {Υij,Υ

′
ij,Ψij,Ψ

′
ij}Jj=1, the problem of

finding θ0i reduces to intercept-free least squares of differences (Υij −Υ′ij) on differ-

ences (ΨijCij −Ψ′ijC
′
ij) across j.

Notice that if we deem appropriate for the application studied, we can combine

both set of identifying restrictions: the ones induced by the variation in Z−i and

those induced by the variation in W .

4 Application: Michigan Highway Procurement

We now turn to consider the marketplace for Michigan Department of Transportation

(MDOT) highway construction and maintenance contracts. As common in similar

procurement contexts, MDOT allocates contracts for a wide range of highway con-

struction and maintenance services via low-price sealed-bid auctions. More than half

(56 percent) of bidders submit bids on multiple contracts within any given “letting

date”. Bids are submitted to MDOT auction by auction, with combination and con-

tingent bidding explicitly forbidden by MDOT auction rules. Bidders may amend

bids up to the letting date, but once announced letting results are legally binding,

with winning bidders held liable for failure to complete contracts won (though they

may subcontract up to 60 percent of contract work). The MDOT marketplace thus

closely parallels our simultaneous first-price structure, with factors like capacity con-

straints and / or economies of scale and scope due, for example, to project location,

and project type inducing potential non-additivity in project payoffs.
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4.1 Data and descriptive statistics

MDOT provides detailed records on contracts auctioned, bids received, and letting

outcomes on its letting website (http://www.michigan.gov/mdot). Building on these

records, we observe data on (almost) all contracts auctioned by MDOT over the sam-

ple period January 2005 to March 2014.15 Our sample includes a total of 8224 auc-

tions, where for each auction the following information is observed: project descrip-

tion, project location, pre-qualification requirements, the internal MDOT engineer’s

estimate of the total cost of the project, and the list of participating firms and their

bids. Based on information in project descriptions, we apply a naive Bayes algorithm

to classify projects into five project types: bridge work, major construction, paving

(primarily hot-mix asphalt), safety (e.g. signing and signals), and miscellaneous,

leading to a final distribution of projects across types summarized in Table 1. As

evident from Table 1, roughly 80 percent of contracts are for road and bridge con-

struction and maintenance broadly defined, with the remainder split between safety

and other miscellaneous construction.

The data contains information on a total of 859 unique bidders active in the

MDOT marketplace over our sample period, which we subclassify by size and scope

of activity as follows. We define “regular” bidders to be those who have submitted

more than 100 bids in the sample period. This yields a total of 36 regular bidders in

the sample, with all remaining bidders classified as “fringe”. For the subsample of

bidders who have submitted more than 50 bids, we also collect data on number and

location of plants by firm. This data is derived from a variety of sources: OneSource

North America Business Browser, Dun and Bradstreet, Hoover’s, Yellowpages.com

and firms’ websites. Based on this information, we further classify bidders as “large”

or “small” by number of plants in Michigan, with “large” regular bidders defined as

those with at least 5 plants. We thus obtain a final classification of 8 large regular

bidders, 28 small regular bidders, and 823 fringe bidders (of which 4 large bidders)

in the MDOT marketplace.

15For a small number of contracts MDOT records are incomplete. We have originally collected
data from October 2002. In the estimation, we have discarded the first few years (from October
2002 to December 2004) so to construct the backlog variable.
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Table 1: Summary of Projects by Type

Contract Type Frequency

Bridge 13.33
Major Construction 9.64
Paving 56.33
Safety 12.25
Miscellaneous 8.45

Summary statistics Tables 2 and 3 summarize several key measures of market

structure and bidder behavior. Table 2 surveys the auction side of the marketplace.

The first key feature emerging from this table is, not surprisingly, the large number

of contracts auctioned simultaneously in the market: a mean of 45 per letting date,

with a maximum of 133 on a single letting date (note that smaller “supplements”

lettings are occasionally held two or three weeks after the main letting in a given

month). On average about five bids are received per contract, which is small rela-

tive to the average number of bidders (approximately 84) active in any period. For

each contract, MDOT prepares an internal “Engineer’s Estimate” of expected pro-

curement cost released to bidders before bidding; as evident from the dispersion in

this measure, projects in the marketplace vary substantially in size and complexity.

The statistic “Money Left on the Table” measures the percent difference between

lowest and second-lowest bids; on average this is 7.4 percent or roughly $112,000 per

contract, suggesting the presence of substantial uncertainty in the marketplace.

Table 3 re-frames the auction-level participation variables in Table 2 to provide a

clearer picture of bidder behavior in the MDOT marketplace. Again, the key pattern

emerging from Table 3 is the prevalence of simultaneous bidding in MDOT auctions,

with the average bidder competing in roughly 2.7 auctions per round and large and

regular bidders competing in substantially more. The variable “backlog” provides a

bidder-specific measure of capacity utilization. As usual in the literature, we define

backlog for bidder i at date t as the sum of work remaining among projects l won

by i up to t, where work remaining on project l at date t is defined as total project

size (measured by the engineer’s estimate) times the proportion of scheduled project
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Table 2: Auction Level Summary Statistics

Mean St. Dev. Min Max

Auctions per Round 45.19 35.67 1 133
Total Bids per Round 228.1 180.9 1 669
Distinct Bidders per Round 83.97 57.06 1 207
Number of Bidders per Auction 5.048 3.186 1 28
Large Regular Bidders per Auction 0.398 0.672 0 3
Regular Bidders per Auction 1.500 1.362 0 7
Fringe Bidders per Auction 3.149 2.926 0 23
Engineer’s Estimate (in thousands) 1,514 4,689 4.412 165,313
Project Duration (in days) 175.8 205.1 2 1,838
Money Left on the Table 0.0744 0.0966 0 3.016

Table 3: Bidder Level Summary Statistics

Mean St. Dev. Min Max
Bids by Round 2.716 2.785 1 33
Bids by Round if Large 6.65 6.27 1.000 33.000
Bids by Round if Regular 5.96 4.58 1.00 33.00
Backlog (in millions) 5.792 19.01 0 275.5

days remaining at date t. Note that number of bids submitted in any given auction

is small relative to the number of bidders in the marketplace, with even large bidders

competing in less than fifteen percent of total auctions on average.

As a graphical perspective on the scope of simultaneous bidding in the MDOT

marketplace, Figure 1 plots the distribution of the number of bids by round submitted

by all bidders in the sample. As evident from Figure 1, more than 55 percent of

bidders in our sample submit multiple bids in the same round. Despite this, it is

relatively uncommon for a typical bidder to compete in a large number of auctions;

almost 90 percent of bidders in our sample bid in 6 or fewer auctions and only 2

percent bid in more than 10. Not surprisingly, the outliers are almost exclusively

large regular bidders.
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Figure 1: Distribution of Simultaneous Bids Submitted
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4.2 Reduced-form regressions

To document the potential implications of simultaneous bidding on bidder behavior

and auction outcomes, we next explore a series of reduced-form regressions. The

unit of analysis in these regressions is a bidder-auction-round combination, with the

dependent variable log of bid submitted by bidder i in auction l in letting t. We

regress log bids on a vector of regressors intended to capture effects of own-auction

and cross-auction characteristics on i’s bid in auction l at time t.

Regression specification As usual, we control for a number of auction-level char-

acteristics which we expect to be key direct determinants of i’s bid in auction l: the

size of auction l, proxied by the MDOT engineer’s estimate of expected project cost,

the level of competition i faces in auction l, and the distance between project l and
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i’s base of operations.16 To explore potential cross-auction interaction in the MDOT

marketplace, we seek a set of covariates relevant for bidding in auction l only through

κ: i.e. factors shifting combination payoffs but irrelevant for standalone valuations

after conditioning on characteristics of auction l.

To control for cross-auction competition which may shift combination win prob-

abilities, we consider the number of rivals across all auctions played by bidder i. The

effects of cross-auction competition on i’s bids in auction l are theoretically ambigu-

ous, depending both on the sign of κ and on strategic responses by rival bidders. A

priori, however, if objects are substitutes, we expect greater competition in auction

k to increase marginal returns to winning auction l.

To capture the presence of potential budget constraints or dis-economies of scale,

we consider the (log of) the engineer’s estimate across all auctions in which i is

competing and we also consider the amount of overlapping time there is among

projects from the starting day to the completion day of each product assuming a

uniform workload over time. Insofar as marginal costs are increasing in capacity

utilization, we expect the coefficients on these variables to be positive.

In principle, complementarities arising between similar projects may differ from

those arising between different projects. To account for this possibility, we consider

a concentration index for projects of the same type in which bidder i participates. A

negative sign is interpreted as a relative complementarity between similar projects.

Finally, as an additional proxy for potential economy of scale/substitutabilities

among projects, we compute the (log of) distance between the current project and

the other projects in which i bids normalized by the total distance between each of

these projects and the closest plant owned by bidder i. The further away projects

are from each other, the less economies of scale there are (keeping everything else

constant). We expect this variable to have a positive sign.

Regression results Table 4 reports OLS estimates for our baseline regression

specifications: logs bids by bidder, round, and auction on the own- and cross-auction

16We construct for each bidder-project pair the minimum straight-line distance (in miles) between
any of i’s plants and the centroid of the county in which project l is located.
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characteristics defined above. All regression specifications include a full set of bidder

type, project type, and letting date indicators, with standard errors clustered at the

bidder-round level to allow for correlation within bidder i’s bids.

Estimated effects of own-auction characteristics correspond closely both to our

priors and to findings elsewhere in the literature. As expected, bids are increasing

almost one for one in project size, with the coefficient on log engineer’s estimate

exceeding 0.97 in all specifications. Similarly, the negative coefficient on number of

rivals suggests that competition increases bidder aggressiveness, with one additional

competitor associated with a 5 percent decrease in average bids. Finally, the coeffi-

cient on log distance to project suggests that a one percent increase in i’s distance

from the project leads to about a 2 percent increase in i’s bid on average.

More importantly, estimated cross-auction effects are also highly significant, with

magnitudes stable across specifications and signs broadly consistent with our prior

expectations. In particular, the positive coefficient on log of engineer’s estimates

across auctions suggests that competing in larger auctions leads to a substantial

decrease in aggressiveness by bidder i in auction l, with the negative coefficient on

same-type projects suggesting that this effect is ameliorated slightly when the two

projects are of the same type. Similarly, the coefficient on total number of rivals

in auctions partecipated by i suggests that facing more competition across auction

leads bidder i to bid more aggressively in auction l. Finally, the positive sign on log

distance among projects indicates that increasing distance to other projects reduces

the synergies among them, which corroborates the hypothesis that simultaneous

bidding induces strategic spillovers.

4.3 Structural estimation

Building on the identification results, we now turn to consider structural estimation

of the complementarity vector κ(·). In principle, the results in Section 3.1 support

fully non-parametric estimation. In practice, of course, the dimensionality of the

problem renders this infeasible. We therefore implement estimation of κ(·) in two

steps. First, following Athey, Levin and Siera (2011) and Cantillon and Pesendorfer
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Table 4: OLS Estimates of Cross-Auction Effects

y = ln(bid) 1 2

Log engineer’s estimate 0.971*** 0.9764***
(0.0011) (0.0011)

Log number of rivals -0.0502*** -0.0402***
(0.0032) (0.003)

Log distance to project 0.0213** 0.0136***
(0.0011) (0.001)

Log days to the project start 0.0039*** 0.0039***
(0.0009) (0.0009)

Standardize backlog 0.0029** 0.0033***
(0.001) (0.0011)

Big bidder - 0.0026
- (0.0044)

Log number of big rivals faced 0.0048*** 0.0049
(0.0024) (0.0022)

Regular Bidder - -0.0042
- (0.0026)

Log number of regular rivals faced 0.0257*** 0.0304***
(0.0031) (0.0028)

Multiple bids dummy -0.1011*** -0.185***
(0.0228) (0.022)

Log sum engineer’s estimate across played auctions 0.0064*** 0.012***
(0.0016) (0.0015)

Log sum number of rivals across played auctions -0.0152*** -0.0114***
(0.0025) (0.0023)

Log distance across played projects 0.0029*** 0.0041***
(0.0013) (0.0013)

Fraction overlapping time across projects 0.0172*** 0.0133***
(0.0037) (0.004)

Same-type-auctions concentration index -0.0107*** -0.0273***
(0.0051) (0.0053)

Constant 0.5643*** 0.4329***
(0.0187) (0.0188)

Year FE, Month FE, Auction type FE YES YES
Bidder type FE NO YES
Bidder ID FE YES NO
R-squared 98.16 97.93

Unit of analysis is bidder-auction-round, with standard errors clustered by bidder within each round. There are 40624
observations. Variables log of engineer’s estimate, log of number of rivals in the auction and log of distance to the county
centroid measure size, strength of competition, and distance to project l respectively. Remaining variables proxy for
cross-auction characteristics: total number of rivals, sum engineer’s estimate, distance to auctions scaled by distance to
project l in which i is competing and number of overlapping days among projects scaled by the total number of days
to completion. 28



(2006) among others, we estimate a parametric approximation to the equilibrium

distribution Gi of bids submitted by each bidder i appearing in bidder i’s problem.

Second, we translate these estimates through the first-order condition (2) to obtain

a minimum-distance criterion paralleling Equation (7).

Specification for Gi Building on our reduced-form analysis, we model i’s bid in

auction l as depending on the following observables: i’s type, characteristics Xilt

influencing i’s standalone valuation for contract l, characteristics Wilt relevant for

i’s preferences over combinations involving auction l, competition in auction l, and

competition in other auctions in which i bids. In particular, for bidder i facing

market structure (Zt,Wt, Xt), we estimate the following first-step model:

ln(bit) ∼ MVN(·|µ(Zt,Wt, Xt),Σ(Zt,Wt, Xt)).

As typical in applications, we take µ(·) to be a linear function of observables:

µilt = βDµ
ilt,

where Dµ
ilt is a subset of (Zt,Wt, Xt) which includes the following elements: log engi-

neer’s estimate for project l, log number of rivals in auction l, log sum of engineer’s

estimates across other projects in Eit, log number of rivals in Eit, an indicator for

submitting multiple bids, and a constant term.

We specify the variance terms σ2
l (Zt,Wt, Xt) of Σ(Zt,Wt, Xt) as

σ2
l (Zt,Wt, Xt) = exp(αDσ

ilt),

and the correlation terms ρkl(Zt,Wt, Xt) as

ρkl(Zt,Wt, Xt) =
exp(γDρkl

it − 1)

exp(γDρkl
it + 1)

where Dσ
ilt and Dρkl

it are known transformations of (Zt,Wt, Xt). In our baseline spec-

ification, Dσ
ilt includes log engineer’s estimate in auction l, log number of rivals in
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auction l, log sum of engineer’s estimate across auctions in Eit, and log number of

rivals across auctions in Eit. Meanwhile, Dρkl
it includes the product of log engineer’s

estimates for pair kl, the product of number of rivals in pair kl, and indicators for

projects of the same type and projects in the same county.

Specification for κ We adopt the following simple linear specification for κ(·):

κω(Z,W,X) = θ1
0 + θ2

0 · Zi + θ3
0 ·W, (10)

Estimation algorithm Having specified κ to be linear in parameters θ0, we im-

plement estimation of θ0 based on L2-type criterion (9) derived in Section 3.1. If all

Γj, Γ′j, Ψj, Ψ′j, Cj, C′j in the criterion (9) were known or their consistent estimators

were available, we could immediately obtain an estimate θ̂ for θ0 by least squares

based on (9). In implementing this procedure, however, we must first resolve several

practical issues. We address these as follows.

First consider the set of counterfactuals {(Zi,j, Z−i,j,Wj, Xj), (Zi,j, Z
′
−i,j,W

′
j , Xj)}Jj=1

at which to evaluate the criterion (9). In principle, any choice of such that “regres-

sors” ΨjCj − Ψ′jC
′
j in (9) satisfy a standard rank condition will be sufficient to

construct an estimator for θ0. In practice, however, we expect selections approxi-

mating the empirical distribution of (Z,W,X) to improve estimation performance.

For the set of baseline points {(Zj,Wj, Xj)}Jj=1 in the criterion (9), we fix bidder i

and construct a counterfactual pair (Z ′j,W
′
j , X

′
j) as follows. First, we randomly draw

one auction, qi ∈ Ei. For this auction, we then draw counterfactual realizations of the

number of rivals, type, distance among project, time overlap and log engineer’s esti-

mate from their empirical distributions among projects of the same type as Auction

qi, holding all other characteristics fixed. We therefore consider Mj counterfactual

points
(
Z

(mj)
j ,W

(mj)
j , X

(mj)
j

)
, mj = 1, . . . ,Mj, that have the properties described

above and repeat for all bidders i. The simplest case is when Mj = 1, j = 1, . . . , J .

Specifically shifting from (Zj,Wj, Xj) to
(
Z

(mj)
j ,W

(mj)
j , X

(mj)
j

)
, we make sure that

Xli,j = X
mj
li,j

for all li 6= qi ∈ Ei but Xqi,j and X
mj
qi,j

can be different. This guaran-

tees that we move Wlt for all auctions li 6= qi without changing Xlt (as described in
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Section 3.1).

We then simulate (Υj,Ψj) and (Υ
(mj)
j ,Ψ

(mj)
j ) for each mj = 1, . . . , J . For a given

realization (Z,W,X), we accomplish this in three steps. First, we draw a size-R ran-

dom sample of bid vectors {bri}Rr=1 from the joint distribution Ĝi(·|Z,W,X) implied

by our first-step estimates for Gi.
17 Next, for each realization bri of Bi, we compute

corresponding realizations for Γi(b
r
i |Z,W,X), ∇Γi(b

r
i |Z,W,X), and ∇Pi(bri |Z,W,X)

based on our first-step estimates for Ĝ1(·|Z,W,X), . . . , ĜNt(·|Z,W,X) (approximat-

ing gradients with finite differences). Finally, we approximate Ψ and Υ by averaging

appropriate products of these functions across draws {bri}Rr=1:

Υ̂i =
1

R

R∑
r=1

bri +∇Γi(b
r
i |Z,W,X)−1 Γi(b

r
i |Z,W,X);

Ψ̂i =
1

R

R∑
r=1

∇Γi(b
r
i |Z,W,X)−1∇Pi(bri |Z,W,X)T .

We ultimately obtain the simulated L2-type criterion

∑
i

∑
li 6=qi

J∑
j=1

Mj∑
mj=1

(
Υ̂i,li,j − Υ̂

(mj)
i,li,j
−
(

Ψ̂i,li,jCij − Ψ̂
(mj)
i,li,j

C
(mj)
ij

)
· θ
)2

.

While Section 3 emphasizes first moments as sufficient for identification, in the ac-

tual estimation, we also match the empirical quantiles of the empirical distributions

of stand-alone valuations. In principle and in practice, matching also on quantiles

conveys further information about the shape of the distribution, thereby improving

precision of the estimates. This in turns results in solving a fixed point algorithm

as the empirical quantiles are function of the parameter estimates. We solve this

by iteration. We start from the parameters obtained using only the criterion above,

and we then turn to a richer criterion where we seek to minimize the difference in

the empirical quantiles.18 The empirical quantiles are based on the initial estimates,

which in turns yields a new set of estimates and new quantiles. The procedure is

17In practice we set R to 500, with larger samples having very little effect on results.
18In the estimation we match the 25th, 50th and 75th percentiles
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then repeated until convergence. In each iteration, the criterion to minimize reduces

to a linear least-squares estimator (OLS), which we implement via the robust regres-

sion method to deal with a skewed distribution and outliers as well as non-constant

variance in the errors. Standard error are boot-strapped.

4.4 Estimation results

This subsection reports results from applying the structural estimation procedure in

Section 4.3 to the sample of bidders competing in two MDOT auctions simultane-

ously. We first report results from our first-step estimation of bid distributions Gi

for all bidders, then discuss estimates of κ(·) for the two-bidder sample derived from

these through the algorithm outlined above.

Estimates of Gi Table 5 reports results from first-step maximum likelihood esti-

mation of i’s bid distribution Gi based on the log-normal approximation described

in Section 4.3.

The first panel of Table 5 reports estimates β̂ for parameters β affecting mean

parameters µ(·). Not surprisingly, these are qualitatively similar to those in our

reduced-form specifications 4. In the next two panels of Table 5, we present esti-

mates for parameters in the variance-covariance matrix Σ(Z,W,X). Variance pa-

rameters (Panel 2) suggest that bidders facing more competition and competing in

larger auctions submit less dispersed bids; while we have no strong priors on these

effects, the direction seems natural. More interestingly, covariance parameters sug-

gest several broad patterns in bidding across auctions. First, not surprisingly, bidder

i bids relatively more similarly in similar auctions: i.e. in the same county and of

the same type. Second, competing in larger projects tends to decrease correlation in

i’s bids. In other words, bidders competing in two large projects tend to compete

in one relatively more aggressively than the other. We interpret this as consistent

with the presence of increasing costs to multiple wins. Finally, stronger competition

within the pair tends to decrease correlation in bids. Since more competition obliges

bidder i to compete more aggressively, and thereby decrease mark-ups conditional
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on winning, we again interpret this as consistent with substitution between projects.

Estimates of κ Building on the first-step estimates in Table 5, we now apply the

two-step algorithm outlined in Section 4.3 to obtain estimates of the structural pa-

rameters θ0 appearing in κ(·). For the moment in constructing our L2-type criterion

(9), we focus on bidders competing in two auctions. As κ(·) depends primarily on

characteristics such as total size, overlap, and distance between projects in the final

combination, the estimates scale naturally to any other combination sizes with a

significant reduction in the estimation time.

Table 6 reports estimates θ̂ derived from this procedure. Results suggest that

κ(W ) is characterized by a positive intercept, with projects of similar types having

larger intercepts on average. Big and regular bidders have on average higher syn-

ergies. As sum of engineer’s estimates (in thousands) and/or the backlog (in thou-

sands) increase, however, projects become more and more substitute, with larger

time overlaps, greater heterogeneity, and greater distance among projects amplifying

these effects. At the median two-auction combination in our sample, these point

estimates imply that a joint win would generate cost savings equal to approximately

1.8 percent of combination size, which is relatively small. However, this point esti-

mate masks substantial heterogeneity in the data: a joint win implies cost savings

equal to approximately 18 percent of combination size at the 95th (best) quantile of

combinations, transitioning to a cost increase of approximately 4 percent at the 5th

(worst) quantile.

Taken together, these numbers highlight both the potential importance of com-

binatorial preferences and the fact that these may differ qualitatively across both

auctions and bidders. While declining complementarities between larger projects is

natural and consistent with prior findings in the literature (e.g. Jofre-Bonet and

Pesendorder (2003)), the changing sign of κ(·) is both novel and of considerable eco-

nomic interest. We view this pattern as consistent with an underlying U-shaped cost

curve, with average completion costs falling until firm resources are fully employed

and rising substantially thereafter.
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Table 5: First-Step MLE Estimates of Gi

Mean µl β̂ MLE SEs 95% CI

Constant 0.3872 0.0155 0.3568 0.4176
Log engineer’s estimate 0.9808 0.0009 0.979 0.9826

Log rivals in auction -0.0426 0.0027 -0.0479 -0.0373
Multiple bids dummy -0.1439 0.0205 -0.1841 -0.1037

Log sum engineer’s (across l) 0.0083 0.0014 0.0056 0.011
Log sum rivals (across l) -0.0061 0.0021 -0.0102 -0.002

log of days to the start 0.0032 0.0008 0.0016 0.0048
Standardize backlog 0.0036 0.001 0.0016 0.0056

Same-type-auctions index -0.0224 0.005 -0.0322 -0.0126
Fraction overlapping time 0.0177 0.0035 0.0108 0.0246

Log number of big rivals faced 0.0057 0.0022 0.0014 0.01
Log number of regular rivals faced 0.024 0.0024 0.0193 0.0287

Big bidder 0.01 0.0044 0.0014 0.0186
Regular bidder -0.0051 0.0025 -0.01 -0.0002

Log distance to project 0.0152 0.0009 0.0134 0.017
Log distance across played projects 0.0056 0.0012 0.0032 0.008

Bidder Type FE YES - - -
Auction Type FE YES - - -

Year FE YES - - -
Month FE YES - - -

Variance σl α̂ MLE SEs 95% CI

Constant 0.1046 0.0742 -0.0408 0.25
Multiple bids dummy -0.2034 0.019 -0.2406 -0.1662

Log engineer’s estimate -0.2651 0.0054 -0.2757 -0.2545

Covariance ρkl γ̂ MLE SEs 95% CI

Constant 0.2067 0.023 0.1616 0.2518
Same county projects 0.2206 0.0275 0.1667 0.2745

Same type projects 0.1257 0.0188 0.0889 0.1625
Fraction overlapping time -0.0288 0.0203 -0.0686 0.011

34



Table 6: Estimates of θ0, Two-Auction Subsample

θ̂ SE

Constant 57.4474 8.9459
Same-type-auctions index 60.6405 10.1404

Fraction overlapping time across projects -42.723 5.4036
Distance across played projects in KM -1.9347 0.7926

Big Bidder 74.7563 24.8928
Regular Bidder 64.6683 9.8214

Sum engineer’s estimate + Backlog in ’000 -0.0062 0.0012
Bidder Type FE YES -

Units are in thousands of dollars, positive κ means lower cost.

5 Counterfactuals

While the simultaneous first-price auction is clearly inefficient when bidders have

combinatorial preferences, little is known empirically about the magnitude of these

inefficiencies in practice. Furthermore, little is known (either theoretically or empir-

ically) about the revenue properties of the simultaneous first-price auction relative

to other feasible multi-object mechanisms such as the Vickery-Clarke-Groves (VCG)

mechanism, the combinatorial proxy auction (Ausubel and Milgrom 2002), or the

clock-proxy auction (Ausubel, Crampton and Milgrom 2006). Given that implemen-

tation of such combinatorial mechanisms involves substantial practical costs (even

solving the allocation problem once is NP-hard), determining the magnitude of their

potential revenue and efficiency effects is crucial in evaluating whether policymakers

might want to switch. If efficiency gains or small and / or revenue effects are am-

biguous, an optimal policymaker may prefer the simplicity and transparency of the

simultaneous first-price auction to better-performant but more complex combinato-

rial mechanisms. Conversely, if large efficiency and / or revenue gains are feasible,

incurring greater combinatorial implementation costs may be worthwhile.

In this section, we compare revenue and efficiency outcomes of the simultane-

ous low-bid first-price auction with those of two other mechanisms: a descending

combinatorial VCG mechanism and a descending combinatorial proxy auction a la

35



Ausubel and Milgrom (2002). As is well known, the VCG mechanism induces truth-

ful reporting (hence efficiency) as an equilibrium, but is vulnerable to collusion and

– particularly in settings with complementarities – can exhibit very poor revenue

performance. The Ausbel-Milgrom proxy auction is widely seen to mitigate the po-

tential revenue disadvantages of the VCG auction, while still achieving efficiency so

long as bidders report their true preferences to the proxy agent.

Descending proxy auction Adapted to our procurement setting, the descending

proxy auction operates as follows. First, each bidder i reports to its proxy agent a

(2Li − 1)× 1 vector describing costs of completion for each possible combination of

the Li products on which i has undertaken cost discovery. Second, proxies compete

on behalf of bidders in a virtual descending package auction, bidding according to

the following rule: in each bidding round, submit the allowable package bid that,

if accepted, would maximize the bidder’s profit given its reported costs. After each

bidding round, a provisional winning allocation is determined by minimizing procurer

costs over existing bids, and bidding proceeds to the next round. If no new bids are

submitted in a round, the auction ends.

Consistent with most prior work on proxy auctions, we restrict attention to the

case where bidders truthfully report costs. This guarantees that the final allocation

is efficient and in the core of the corresponding exchange game. Note, however, that

it is uncertain whether truthful reporting is an equilibrium in general.19 Insofar as

false reports distort final allocations, our results may overstate gains from the proxy

auction. Nevertheless, we see truthful revelation as a useful and practical benchmark

for comparison with the simultaneous first-price auction.

Computation of final outcomes in the Ausubel-Milgrom proxy auction is known

to be extremely challenging, requiring one to solve a NP-hard winner determination

problem for every bidding round. Since the proxy auction obtains (approximate) ef-

ficiency only with a small bid increment, and the number of bidding rounds required

for convergence increases substantially as the bid increment decreases, naive appli-

cation of the Ausubel-Milgrom algorithm can be extremely costly computationally.

19See related discussion in, e.g., Ausubel and Milgrom (2002).
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We therefore focus instead on two variants of the Ausubel-Milgrom auction iden-

tified by Sandholm (2006) as having good computational properties: the safe-start

proxy auction, in which starting bids for each bidder are determined by the VCG

payment rule, and the increment scaling proxy auction, in which the bid increment

automatically scales down as the auction proceeds. In both variants we target a

final-iteration bid increment of $1000, which is quite small as bids are typically in

hundreds of thousands to millions of dollars. These algorithms need not generate

the same revenue as the naive proxy auction, but retain its desirable efficiency and

revenue properties. See Sandholm (2006) for detailed discussion of these algorithms.

Counterfactual implementation In implementing our counterfactuals, we first

restrict attention to the sub-sample of auctions such that all bidders in each auction

participate in no more than six auctions. Given the combinatorial nature of the

problem this dramatically simplifies the computational burden without changing

substantially the representativeness of the bidder-types in the sample as 91.84%

of bidders submit 6 or fewer bids. We partion this sub-sample into 432 “virtual

lettings” defined such that each bidder in letting t bids only in letting t. Of these

virtual lettings, there are 7 with more than 30 bidders; as our counterfactuals require

repeatedly solving for optimal allocations and the time needed to do so grows more

than exponentially in the number of auctions and bidders, we drop these 7 virtual

lettings from the sample. We thus end up with a final counterfactual sample of 425

virtual lettings, of which 154 (our primary interest) involve at least two auctions.

Given this sample, we implement our counterfactual comparisons as follows.

First, for each bidder i and letting t in the counterfactual sample, we draw a sample

of bids {brti }Rr=1 from the corresponding bid distribution Ĝi(·) estimated in Step 1

of our structural analysis. Second, for each bid vector brti drawn for each bidder i,

we recover the corresponding standalone valuation vector vrti implied by the inverse

bid function (2), taking as given the estimates κ̂i(·) for κi(·) obtained in Step 2 of

our structural analysis. For each letting t in the counterfactual sample and each

replication r ∈ {1, ..., R}, we then proceed in three steps.

First, we simulate the allocation artFPA and procurement cost Crt
FPA arising under

37



Table 7: Counterfactual simulation results, multi-auction lettings

(a) Average project completion costs (total per letting)

Expected project completion costs, simultaneous FPA 2, 641, 101
Expected project completion costs, combinatorial VCG 2, 491, 567

(b) Average payments by MDOT to bidders (total per letting)

Expected MDOT payments, simultaneous FPA 3, 404, 234
Expected MDOT payments, combinatorial VCG 3, 405, 602
Expected MDOT payments, incremental scaling proxy 3, 392, 307

Averages based on R = 200 replications of simulation procedure in text.

the simulatenous first-price auction format given bid realizations {brti }Ni=1 for each

bidder in the sample; i.e. awarding each auction to the bidder submitting the lowest

standalone bid. Then, taking estimated complementarities {κ̂i(·)}Ni=1 and estimated

valuations {vrti }Ni=1 as given, we simulate total social costs of project complection

SrtFPA corresponding to allocation artFPA.

Second, we simulate the allocation artV CG and social cost SrtV CG induced by the

dominant strategy equilibrium of the VCG mechanism given valuation draws {vrti }Ni=1

and estimated complementarities {κ̂i(·)}Ni=1. We then compute the corresponding

total procurement cost Crt
V CG by summing VCG payments for each bidder.

Third, assuming truthful reporting of types by bidders, we simulate proxy auc-

tion procurement costs Crt
PROXY based on the safe-start and incremental scaling al-

gorithms described above. In both variants, we target a final iteration bid increment

of $1000, which is quite small relative to typical bids. While in principle efficiency in

proxy auctions obtains only when the bid increment approaches zero, in practice we

find that our $1000 bid increment captures virtually all social gains – departures from

VCG allocations were rare and efficiency losses in the event of departures were small,

for an overall increase in social costs on the order of a thousandth of one percent.

We thus do not report separate efficiency measures for our proxy implementations.

Counterfactual results Table 7 summarizes results of this counterfactual com-

parison based on R = 200 simulation replications, focusing on the subsample of
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virtual lettings involving at least two auctions. Reported results are averages of

counterfactual quantities across both simulation draws r and lettings t, with the

latter taken only across multi-auction lettings. For purposes of these simulations,

we set MDOT’s effective reserve price for each project equal to twice the MDOT

engineer’s estimate of costs; other plausible values lead to very similar results.

Two striking patterns emerge from Table 7. First, as expected, the simultaneous

first-price mechanism involves nontrivial efficiency losses, generating expected social

costs of 2.64 million per letting versus 2.49 million per letting for the (socially effi-

cient) combinatorial VCG mechanism. Yet in percentage terms gains from the VCG

mechanism are relatively small: roughly 5.7 percent social cost savings relative to

total completion costs under the simultaeous first-price mechanism.

Second, and even more striking, expected payments by MDOT to bidders are

extremely similar across all three mechanisms considered. Payments under the incre-

mental scaling proxy are marginally lower and payments under the VCG mechanism

are marginally higher than simulated payments under the simultaneous first-price

auction. But differences in both cases are extremely small, amounting to less than

one percent of total MDOT payments under the baseline first-price mechanism. We

emphasize that this is not a prediction of the theory; with different parameters, one

can easily obtain substantial differences in revenue.

Taken together, we view these findings as strong suggestive evidence that the

simultaneous first-price mechanism in fact performs remarkably well in the MDOT

procurement setting. If MDOT’s objective is to minimize its expected payments, it

can (for all practical purposes) do no better by switching to a combinatorial mecha-

nism. If its objective is to minimize social costs, moderately larger gains are possible,

but these are still quite modest relative to total social expenditure.

Note that this analysis is only partial in that we effectively hold entry behavior

fixed across mechanisms. This is entirely for computational reasons; even if we were

to estimate distributions of entry costs, solving for equilibrium entry responses would

be an immense computational challenge. We instead discuss briefly how we might

expect results to change. By construction, social savings not captured by MDOT

must accrue as profit to bidders, and in equilibrium this should translate into greater
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entry. This in turn might generate slightly larger revenue effects than we estimate

here. In contrast, since since new entrants are by definition marginal, we expect true

efficiency gains to be similar (probably slightly smaller) than those we report above.

6 Conclusion

Motivated by an institutional framework common in procurement applications, we

develop and estimate a structural model of bidding in simultaneous first-price auc-

tions, to our knowledge the first such in the literature. Non-parametric and semi-

parametric identification of the model is achieved under standard exclusion restric-

tions. Finally, we apply this framework to data on Michigan Department of Trans-

portation highway construction and maintenance auctions. While for the median

bidder in our estimation sample estimated complementarities are approximately zero,

this masks substantial heterogeneity in the sample. Our estimates suggest that win-

ning a two-auction combination generates cost effects ranging from roughly 4 per-

cent cost increases (relative to combination size) at the 5th percentile to roughly 18

percent cost savings (relative to combination size) at the 95th percentile, with com-

bination costs increasing in joint size of, scheduling overlap between, and distance

between projects in the combination. Building on these observations, we compare

performance of the simultaneous first-price mechanism with performance of two truly

combinatorial alternatives: the Vickery-Clarke-Groves mechanism, and a descending

proxy auction a la Ausubel and Milgrom (2002). Despite the presence of substantial

complementarities (both positive and negative) in the data, we find that these alter-

native mechanisms generate relatively modest gains: roughly 5.7 percent savings in

social costs of project completion, with very little change in MDOT’s expected costs.

We view this as strong suggestive evidence that simultaneous first-price auctions can

perform relatively well even in environments with economically important comple-

mentarities. While more research on this is needed, this observation may partially

rationalize the widespread popularity of simultaneous first-price auctions in practice.
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Appendix A: Complementarities depending on V

In this appendix, we explore prospects for generalizing our non-parametric identification
results to the case where complementarities are additively separable and/or affine functions
of standalone valuations. Such a case could arise if, for instance, winning two auctions
together increases i’s valuation for one or both objects by a fixed percentage.

Notation and definitions Let el denote the L-dimensional lth unit vector. We say
complementarities are additively separable in v if for each ω that contains at least two
non-zero components (that is, ωTω ≥ 2), the complementarity function is a function of the
vector of standalone valuations v = (v1, v2, . . . , vL)T such that

Kω(v) =
∑

l:ωT el=1

φl(vl) + K̄ω (11)

for some functions φl, l = 1, . . . , L. If each function φl(·) is linear in its argument vl, then
we obtain the special case of complementarities affine in v:

Kω(v) =
∑

l:ωT el=1

δlvl + K̄ω, if ωTω ≥ 2. (12)

As usual, if ω contains at most one component equal to one (that is, ωTω ≤ 1), then we
set Kω(v) ≡ 0.

An important special case of (12) is when all δl are identical and K̄ω = 0 for any ω.
This case describes the situation of a constant relative complementarity – that is, when
Kω(v) is a constant ratio of the additive valuation.

Now assume that complementarities are affine in v, and define an L × 1 vector δ and
an L× L matrix D(δ) as follows:

δ ≡ (δ1, δ2, . . . , δL)T

D(δ) ≡ diag(δ1, δ2, . . . , δL).

Let A denote the 2L × 2L matrix such that its (2L − L − 1) × (2L − L − 1) submatrix
(aij)i,j=L+2,...,2L coincides with the identity matrix of size 2L − L − 1, with all the other
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elements of A are 0. We then have

K(v) = AΩD(δ)v + K̄,

where K̄ denotes the 2L× 1 vector of constant components K̄ω in the functions of comple-
mentarities. Clearly, the first L + 1 elements in K̄ are zero since they correspond to the
cases of ω such that ωTω ≤ 1.

Non-parametric identification Our next step is to generalize the non-parametric
identification result above to the case when complementarities are affine functions of stan-
dalone valuations. Namely, for a given subset ω containing at least two elements,

Kω = Kω(vi, Zi,W,X) =
∑

l:ωT el=1

δl(Zi,W,X)vi,l + K̄ω(Zi,W,X).

When ωTω ≤ 1, the complementarity is set to 0. As can be seen, the functional form
of complementarities does not depend on Z−i. As we show below, under weak conditions
there is enough variation in Z−i |Zi,W,X to determine the linear (in vi,l) part of comple-
mentarities as well as the constant part.

Define the Li × 1 vector δ(Zi,W,X) as

δ(Zi,W,X) = (δ1(Zi,W,X), δ2(Zi,W,X), . . . , δLi(Zi,W,X))T ,

and the D(δ(Zi,W,X)) as the Li × Li matrix

D(δ(Zi,W,X)) = diag(δ1(Zi,W,X), δ2(Zi,W,X), . . . , δLi(Zi,W,X)).

Then
K(vi, Zi, X) = AiΩiD(δ(Zi,W,X))vi + K̄(Zi,W,X),

where K̄(Zi,W,X) denotes the 2Li × 1 vector of constant components in the complemen-
tarities (obviously, K̄(Zi,W,X) ∈ Ki). Matrix Ai denotes the 2Li × 2Li matrix such that
its (2Li − Li − 1)× (2Li − Li − 1) submatrix (aij)i,j=Li+2,...,2Li coincides with the identity

matrix of size 2Li − Li − 1, and all the other elements of Ai are 0. Clearly, the rank of
matrix AiΩi is equal to Li.

Using the first-order condition and taking into account the form of K(vi, Zi,W,X),
obtain

vi = bi + [∇bΓ−i(bi|Z,W,X)]−1 Γ−i(bi|Z,W,X)

− [∇bΓ−i(bi|Z,W,X)]−1∇bP−i(bi|Z,W,X)T
[
AiΩiD(δ(Zi,W,X))vi + K̄(Zi,W,X)

]
,
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where, as before, Z = (Zi, Z−i). Denote

Π(bi, δ, Z,W,X) = ILi + [∇bΓ−i(bi|Z,W,X)]−1∇bP−i(bi|Z,W,X)TAiΩiD(δ).

For given Zi, Z−i, W and X, define ∆(Zi, Z−i,W,X) as the set of δ ∈ <Li such that

Π(bi, δ, Z,W,X) is non-singular for almost all bi.

E.g., ∆(Zi, Z−i,W,X) 3 0. If δ = δ(Zi,W,X) ∈ ∆(Zi, Z−i,W,X), then

vi = Π(bi, δ(Zi,W,X), Z,W,X)−1bi

+ Π(bi, δ(Zi,W,X), Z,W,X)−1 [∇bΓ−i(bi|Z,W,X)]−1 Γ−i(bi|Z,W,X)

−Π(bi, δ(Zi,W,X), Z,W,X)−1 [∇bΓ−i(bi|Z,W,X)]−1∇bP−i(bi|Z,W,X)T K̄(Zi,W,X).

Assuming that δ =∈ ∆(Zi, Z−i,W,X), let us denote

D1(δ, Zi, Z−i,W,X) = EBi
[
Π(Bi, δ, Z,W,X)−1Bi

∣∣Z,W,X]
+ EBi

[
Π(Bi, δ, Z,W,X)−1 [∇bΓ−i(Bi|Z,W,X)]−1 Γ−i(Bi|Z,W,X)

∣∣Z,W,X] ,
D2(δ, Zi, Z−i,W,X) = EBi

[
Π(Bi, δ, Z,W,X)−1 [∇bΓ−i(Bi|Z,W,X)]−1∇bP−i(Bi|Z,W,X)T

∣∣Z,W,X] ,
Keeping Zi,W,X fixed, let us draw another value Z ′−i from the support of Z−i|Zi,W,X,

and denote Z ′ = (Zi, Z
′
−i). Due to the assumptions made on the distribution of the

standalone valuations, E[Vi|Z,W,X] = E[Vi|Z ′,W,X]. Therefore, for δ = δ(Zi,W,X) ∈
∆(Zi, Z−i,W,X) ∩∆(Zi, Z

′
−i,W,X),

D1(δ(Zi,W,X), Zi, Z
′
−i,W,X)−D1(δ(Zi,W,X), Zi, Z−i,W,X) =(

D2(δ(Zi,W,X), Zi, Z
′
−i,W,X)−D2(δ(Zi,W,X), Zi, Z−i,W,X)

)
K̄(Zi,W,X).

For fixed Zi,W,X, this system has 2Li − 1 unknowns (Li in δ(Zi,W,X) and 2Li − Li − 1
in K̄(Zi,W,X)) and Li equations. This gives us the following result.

Proposition 4. Suppose that for (Zi,W,X) ∈ Zi × W × X , there exist J + 1 ≥ (2Li −
1)/Li + 1 vectors Z−i,0, Z−i,1, ..., Z−i,J in the support of Z−i|Zi,W,X such that there is a

unique δ ∈
⋂J
j=0 ∆(Zi, Z−i,j ,W,X) and a unique κ ∈ Ki that solve the system of J · Li

equations

D1(δ, Zi, Z−i,j ,W,X)−D1(δ, Zi, Z−i,0,W,X) =

(D2(δ, Zi, Z−i,j ,W,X)−D2(δ, Zi, Z−i,0,W,X))κ, j = 1, . . . , J.
(13)

Then the values of δ(Zi,W,X) and K̄(Zi,W,X) are identified, and thus, the complemen-

47



tarity function is identified for these values of Zi, W , X.

System (13) is non-linear in δ. However, for each fixed δ ∈
⋂J
j=0 ∆(Zi, Z−i,j ,W,X), this

system is linear in κ. Proposition 4 implies that in the case of identification it is not possible
to have a situation when for different δ1 and δ2, where δ1, δ2 ∈

⋂J
j=0 ∆(Zi, Z−i,j ,W,X),

system (13) has solutions κ1 ∈ Ki and κ2 ∈ Ki, respectively. Thus, in this sense the
question of identification of δ(Zi,W,X) and K̄(Zi,W,X) comes down to the question of
existence of solutions to systems of linear equations: (13) can have a solution κ for one
δ only, and for that δ it has to be unique. Using the Kronecker-Capelli theorem, which
gives the necessary and sufficient conditions for the existence of a solution to a system of
linear equations, and also the necessary and sufficient conditions for the uniqueness of such
a solution, we formulate the identification result in the Proposition 5 below.

Before we proceed to Proposition 5, let Ei denote the 2Li × (2Li −Li − 1) matrix such
that its (2Li − Li − 1)× (2Li − Li − 1) submatrix (ẽij)i=Li+2,...,2Li , j=1,...,2Li−li−1 coincides

with the identity matrix of size 2Li − Li − 1, and all its other elements (that is, all the
elements in the first Li + 1 rows) are equal to zero. For every κ ∈ Ki there is a unique

κ̌ ∈ R2Li−Li−1 such that
κ = Eiκ̌.

Obviously, this κ̌ is formed by the last 2Li − Li − 1 values in κ. System (13) can be
equivalently written as

D1(δ, Zi, Z−i,j ,W,X)−D1(δ, Zi, Z−i,0,W,X) =

((D2(δ, Zi, Z−i,j ,W,X)−D2(δ, Zi, Z−i,0,W,X))Ei) κ̌, j = 1, . . . , J,
(14)

with κ̌ ∈ R2Li−Li−1. For a fixed δ, system (13) is linear in κ, has the J · Li × 2Li matrix
of coefficients, and imposes restrictions on the solution κ by requiring that κ ∈ Ki. Its
equivalent representation (14) is linear in κ̌ for a fixed δ, has the J · Li × (2Li − Li − 1)

matrix of coefficients, and does not impose any restrictions on the solution κ̌ ∈ R2Li−Li−1.
This allows us to apply the Kronecker-Capelli theorem to system (14) in a straightforward
way.

Proposition 5. Suppose that for (Zi,W,X) ∈ Zi × W × X , there exist J + 1 ≥ (2Li −
1)/Li + 1 vectors Z−i,0, Z−i,1, ..., Z−i,J in the support of Z−i|Zi,W,X such that there is a

unique δ ∈
⋂J
j=0 ∆(Zi, Z−i,j ,W,X) that satisfies the following two conditions:

1. First,

rank ([M1(δ, Zi,W,X) |M2(δ, Zi,W,X)]) = rank (M2(δ, Zi,W,X)) , (15)
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where M2(δ, Zi,W,X) denotes the J · Li × (2Li − Li − 1) matrix

M2(δ, Zi,W,X) ≡

 (D2(δ, Zi, Z−i,1,W,X)−D2(δ, Zi, Z−i,0,W,X))Ei
...

(D2(δ, Zi, Z−i,J ,W,X)−D2(δ, Zi, Z−i,0,W,X))Ei

 ,
and M1(δ, Zi,W,X) denotes the J · Li × 1 vector

M1(δ, Zi,W,X) ≡

 D1(δ, Zi, Z−i,1,W,X)−D1(δ, Zi, Z−i,0,W,X)
...

D1(δ, Zi, Z−i,J ,W,X)−D1(δ, Zi, Z−i,0,W,X)

 .
2. Moreover, this δ is such that M2(δ, Zi,W,X) has full column rank:

rank (M2(δ, Zi,W,X)) = 2Li − Li − 1. (16)

Then the values of δ(Zi,W,X) and K̄(Zi,W,X) are identified, and thus, the complemen-
tarity function is identified for these values of Zi, W , X.

Condition (15) requires that in system (14), the rank of the matrix of coefficients
M2(δ, Zi,W,X) is equal to the rank of the augmented matrix [M1(δ, Zi,W,X) |M2(δ, Zi,W,X)]
for one δ only. The Kronecker-Capelli theorem guarantees then that (14) has a solution κ̌
for that δ only. Condition (16) then guarantees this κ̌ is determined uniquely, and, thus,
κ = Eiκ̌ is determined uniquely.

Note that all the identification conditions in Proposition 5 are formulated in terms of δ.
The closed form for δ(Zi,W,X) cannot be found but in practice one can find δ(Zi,W,X)
and K̄(Zi,W,X) by solving, e.g., the following optimization problem:

min
δ∈

⋂J
j=0 ∆(Zi,Z−i,j ,W,X), κ̌∈R2Li−Li−1

Q(δ, κ̌, Zi,W,X),

where

Q(δ, κ̌, Zi,W,X) ≡ (M1(δ, Zi,W,X)−M2(δ, Zi,W,X)κ̌)T (M1(δ, Zi,W,X)−M2(δ, Zi,W,X)κ̌) .

Appendix B: Proofs

Proof of Proposition 2. The proof of Proposition 2 rests on two key claims. First, the
first-order system (2) must be well-defined for almost every bi submitted by i, i.e. almost
everywhere with respect to the measure induced by Gi(·|Z,W,X). Second, at almost every
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bi at which first order conditions hold, the first-order system (2) must be invertible. We
establish each claim in turn.

First show that the first order system (2) is well-defined for almost every bi submitted
by i. Recall that we can write bidder i’s objective as

π(vi, b|K;Z,W,X) = (Ωvi +K − Ωb)TP−i(b|Z,W,X).

where vi and K are given at the time of maximization. Note that the system (2) necessarily
holds at any best respose where π(vi, ·|K;Z,W,X) is differentiable and that Assumption
3 implies that each observed bi is a best response. Hence the system (2) will be well
defined for almost every bi submitted by i if and only if π(vi, ·|K;Z,W,X) is differentiable
almost everywhere with respect to the measure on Bi induced by Gi(·|Z,W,X). But under
Assumption 4 Gi(·|Z,W,X) is absolutely continuous. To establish the claim, it is thus
sufficient to prove differentiability of π(vi, ·|K;Z,W,X) a.e. with respect to the Lebesgue
measure on Bi.

Clearly (Ωvi +K −Ωb) is differentiable in b for any vi,K ∈ RLit ×K. Thus differentia-
bility of π(vi, ·|K;Z,W,X) at b is equivalent to differentiability of P−i(·|Z,W,X) at b. Let
B−i be the Li × 1 random vector describing maximum rival bids in the set of auctions in
which i participates. Again applying Assumption 4 to rule out ties, the probability i wins
combination ω at bid b is

Pω(b|Z,W,X) = Pr({∩{l:ωl=1}0 ≤ B−i,l ≤ bi,l} ∩ {∩{l:ωl=0}bi,l ≤ B−i,l <∞}).

For each ω ∈ Ωi, let bω be the (
∑
ω) × 1 sub-vector of b describing i’s bids for objects in

ω, Bω
−i be the (

∑
ω) × 1 sub-vector of B−i describing maximum rival bids for objects in

ω, and Gω−i(b
ω|Z,W,X) be the equilibrium joint c.d.f. of Bω

−i at (Z,W,X). Applying the
formula for a rectangular probability and simplifying, we can then represent P−i(·|Z,W,X)
in the form

Pω−i(b|Z,W,X) =
∑
ω′∈Ω

aωω′G
ω′
−i(b

ω′ |Z,W,X),

where each aωω′ is a known scalar (determined by ω, ω′) taking values in {−1, 0, 1}. But
by absolute continuity each c.d.f. Gω−i(·|Z,W,X) is differentiable a.e. (Lebesgue) in its

support, and interpreted as a function from Bi to RLi , each bω
′
is continuously differentiable

in b. Thus interpreted as a function from Bi to R, each Gω
′
−i(b

ω′ |Z,W,X) is differentiable on

a set of full Lebesgue measure in B−i. The set of points in Bi at which all Gω
′
−i(b

ω′ |Z,W,X)

are differentiable is the intersection of points in Bi at which each Gω
′
−i(b

ω′ |Z,W,X) is
differentiable, i.e. the intersection of a finite collection of sets of full Lebesgue measure in
Bi. But from above differentiability of Gω

′
−i(b|Z,W,X) for all ω′ implies differentiability of

Pω−i(b|Z,W,X). Hence Pω−i(·|Z,W,X) is differentiable on a set of full Lebesgue measure
in Bi. This in turn implies differentiability of π(vi, ·|K;Z,W,X) a.e. with respect to the
measure on Bi induced by Gi(·|Z,W,X), as was to be shown.
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We next establish that the first-order system (2) must yield a unique solution ṽ for
almost every bi submitted by i. Let B̃i be the set of points in Bi at which π(·, ·|K;W,Z,X)
is differentiable in b; from above, B̃i is a subset of full Lebesgue measure in Bi. Choosing
any b ∈ B̃i and rearranging (2) yields

∇bΓ−i(b|Z,W,X)ṽ = ∇bΓ−i(b|Z,W,X)b+ Γ−i(b|Z,W,X)−∇bP−i(b|W,Z,X)TKi.

Hence uniqueness of ṽ is equivalent to invertibility of the Li×Li matrix∇bΓ−i(b|Z,W,X).
Recall that Γ−i(b|Z,W,X) is an Li × 1 vector whose lth element describes the probability
that bid vector b wins auction l. Note that b ∈ B̃i rules out ties at b. Thus for b ∈ B̃i the
lth element of Γ−i(b|Z,W,X) is the marginal c.d.f. Gl−i(b|Z,W,X) of B−i,l, from which
it follows that ∇bΓ−i(b|Z,W,X) is a diagonal matrix whose l, lth element is the marginal
p.d.f. gl−i(b|Z,W,X) of B−i,l. Hence ∇bΓ−i(b|Z,W,X) will be invertible at b if and only if
gl−i(b|Z,W,X) > 0 for all l.

But by hypothesis each submitted bid bi is a best response to rival play at (Z,W,X)
for some (v,K). Suppose that there exists an ε > 0 such that gl−i(·|Z,W,X) = 0 on
(bil − ε, bi]. Then player i could infintesimally reduce bil without affecting either Γ−i
or P−i, a profitable deviation for any (v,K). Hence we must have gl−i(·|Z,W,X) > 0
almost everywhere (Lebesgue) in the support of Bi. By Assumption 4, this in turn implies
gl−i(·|Z,W,X) > 0 for almost every bi submitted by i. Since l was arbitrary, we must have
∇bΓ−i(bi|Z,W,X) invertible for almost every bid bi submitted by i. Hence for almost every
bi submitted by i there will exist a unique ṽ satisfying (2) at bi, given by

ṽ = bi +∇bΓ−i(bi|Z,W,X)−1Γ−i(bi|Z,W,X)

+∇bΓ−i(bi|Z,W,X)−1∇bP−i(bi|W,Z,X)TK.

The RHS of this expression is identified up to K, establishing the claim.

Appendix C: Partial identification with general Gi

The point identification result for the complementarity function κi(Zi,W,X) and the con-
ditional distribution of Vi|Zi,W,X relied on the equations in the first order conditions
obtained from bidder’s optimization of the payoff function. To derive those equations we
employed the absolute continuity of bid distribution functions Gi. That, in particular,
eliminated the possibility of bidders playing atoms in the equilibrium. In this appendix,
we want to illustrate an approach to the identification question when no continuity re-
strictions are imposed on Gi. Our identification method is based on using inequalities for
bidder’s best responses and employing the exclusion restrictions in Assumption 5 to obtain
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bounds on the complementarity function and the distributions of standalone valuations.
Throughout our analysis here we continue to impose Assumptions 1-5.

Let us fix (Zi,W,X) ∈ Zi ×W × X . As before, Fi(·|Zi,W,X) denotes the L-variate
distribution of the vector of standalone valuations Vi of the bidder conditional on Zi,W,X.
As Fac(Rp) we denote the set of all absolutely continuous cumulative distribution functions
on Rp.

Observable are the distribution functions Gi(b|Z,W,X), where Z = (Zi, Z−i), of the
bids in the equilibrium played by the bidders for any Z−i ∈ Z−i|Z,W,X, i = 1, . . . , N .

The identification set is defined as the set

Hi(Zi,W,X) = {(Fi(·|Zi,W,X), κi(Zi,W,X)) : Conditions (C1), (C2), (C3) satisfied} .

When writing the identification set in this form, we already make us of the exclusion
restrictions in Assumption 5. The conditions in the definition of Hi(Zi,W,X) are the
following:

(C1) Fi(·|Zi,W,X) ∈ Fac(RLi), and the support of Fi(·|Zi,W,X) is a compact, convex
set in RLi (consistent with Assumption 1).

(C2) κi(Zi,W,X) ∈ Ki.

(C3) For each Z−i ∈ Z−i|Zi,W,X, bidder’s behavior is consistent with the maximization
of the payoff function

π(vi, b;Z,W,X) = vTi Γ−i(b|Z,W,X)−bTΓ−i(b|Z,W,X)+P−i(b|Z,W,X)Tκi(Zi,W,X)

with respect to b ∈ Bi. That is, for each Z−i ∈ Z−i|Zi, X,W , every bidder i’s bid
vector bi observed in the equilibrium satisfies the inequality

vTi Γ−i(bi|Z−i)− bTi Γ−i(bi|Z−i) + P−i(bi|Z−i)Tκ(Zi,W,X) ≥
vTi Γ−i(b|Z−i)− bTΓ−i(b|Z−i) + P−i(b|Z−i)Tκ(Zi,W,X)

∀ b ∈ Bi, (17)

where for notational simplicity we wrote Γ−i(·|Z−i) and P−i(bi|Z−i) instead of Γ−i(bi|Z,W,X)
and P−i(bi|Z,W,X) respectively, thus omitting fixed (Zi,W,X) from the notation.

Let Hi,κ(Zi,W,X) stand for the projection of the identification set onto the second
component – on the set of κi(Zi,W,X). Let Hi,F (Zi,W,X) stand for the projection
of the identification set onto the first component – on the set of Fi(·|Zi,W,X); and let
Hi,Fl(Zi,W,X) stand for the projection of Hi,F (Zi,W,X) onto the marginal distribution
of Vil conditional on Zi,W,X – that is, on the set of univariate distribution functions
Fil(·|Zi,W,X). Even though it is very difficult to obtain a closed form description of the
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sets Hi,F (Zi,W,X) and Hi,κ(Zi,W,X), it is possible to give closed form characterizations
of their supersets. These supersets are given in Proposition 6 below.

First, we introduce some notations. Let ∆+
ε,l[f(u)] and ∆−ε,l[f(u)] denote differences in

the values of f(·) associated with adding ε and −ε to the lthe component of u respectively:

∆+
ε,l[f(u)] = f(u+ εel)− f(u),

∆−ε,l[f(u)] = f(u− εel)− f(u),

where el denotes the Li-dimensional lth unit vector.
Suppose there exist known scalars v ≥ 0 and v̄ < ∞ such that v ≤ vil ≤ v̄ for any

l; note that these could be strictly outside the support of Vil. For each bi ∈ Bi, define
I−ε,l(bi|Z−i), I

+
ε,l(bi|Z−i) as follows:

I−ε,l(bi|Z−i) =

{
v if ∆−ε,l[Γ−i(bi|Z−i)] = 0,

∆−ε,l[b
T
i Γ−i(bi|Z−i)]

∆−ε,l[Γ−i,l(bi|Z−i)]
else

}
;

I+
ε,l(bi|Z−i) =

{
v̄ if ∆+

ε,l[Γ−i(bi|Z−i)] = 0,
∆+
ε,l[b

T
i Γ−i(bi|Z−i)]

∆+
ε,l[Γ−i,l(bi|Z−i)]

else

}
.

Also, for each bi ∈ Bi, define the following S−ε,l(bi|Z−i) and S+
ε,l(bi|Z−i):

S−ε,l(bi|Z−i) =

{
0 if ∆−ε,l[Γ−i(bi|Z−i)] = 0,

∆−ε,l[P−i(bi|Z−i)]
∆−ε,l[Γ−i,l(bi|Z−i)]

else

}
;

S+
ε,l(bi|Z−i) =

{
0 if ∆+

ε,l[Γ−i(bi|Z−i)] = 0,
∆+
ε,l[P−i(bi|Z−i)]

∆+
ε,l[Γ−i,l(bi|Z−i)]

else

}
.

For any K ∈ Ki, let F̃−il (·|K;Z−i) denote the c.d.f. of

sup
ε>0

(
I−ε,l(bi|Z−i)− S

−
ε,l(bi|Z−i)

TK
)
,

and let F̃+
il (·|K;Z−i) denote the c.d.f. of

inf
ε>0

(
I+
ε,l(bi|Z−i)− S

+
ε,l(bi|Z−i)

TK
)

.
Hereafter we assume that ties are broken independently across auctions.
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Proposition 6. a) A superset of Hi,κ(Zi,W,X) can be found in the following way:

H(1)
i,κ (Zi,W,X) =

L⋂
l=1

K̃i,l,

where K̃i,l is defined as

K̃i,l = {K ∈ Ki
∣∣ F̃+

il (·|K;Z−i) ≤ F̃−il (·|K;Z ′−i) ∀Z−i, Z ′−i ∈ Z−i|Zi,W,X}.

b) A superset of Hi,Fl(Zi,W,X) can be found as the set of univariate functions Fil(·) ∈
Fac(R) such that for any η ∈ R,

Fil(η) ∈
⋂

κ0∈H(1)
i,κ(Zi,W,X)

⋂
Z−i,Z′−i∈Z−i|Zi,W,X

[F̃+
il (η|κ0;Z−i), F̃

−
il (η|κ0;Z ′−i)]}.

Let us denote this superset as H(1)
i,Fl

(Zi,W,X).
c) A superset of Hi,F (Zi,W,X) can be found as the set of Li-variate functions Fi(·) ∈

Fac(RLi) such that each lth marginal distribution function generated by Fi(·) belongs to

H(1)
i,Fl

(Zi,W,X), l = 1, . . . , Li.
Moreover, for any η = (η1, . . . , ηLi),

Fi(η) ≤ min
l=1,...,Li

inf
κ0∈H(1)

i,κ(Zi,W,X)

inf
Z−i∈Z−i|Zi,W,X

F̃+
il (ηl|κ0;Z−i),

Fi(η) ≥ max


Li∑
l=1

sup
κ0∈H(1)

i,κ(Zi,W,X)

sup
Z−i∈Z−i|Zi,W,X

F̃−il (ηl|κ0;Z−i)− Li + 1, 0

 .

Proof. Let ∆δ[f(u)] = (f(u + δ) − f(u)) denote changes in f(u) induced by adding the
vector δ to the vector u. For notational simplicity, let κi(Zi,W,X) = κ0. Then we can
equivalently restate (17) as follows:

vTi ∆δ[Γ−i(bi|Z−i)] − ∆δ[b
T
i Γ−i(bi|Z−i)] + ∆δ[P−i(bi|Z−i)T ]κ0 ≤ 0 ∀ δ ∈ Bi − bi, (18)

where the difference Bi − bi is understood as the Minkowski difference.
System (18) is linear in vi and κ0. The set of solutions of (vi, κ0) to this system can

be shown to be convex. Its intersection with [v, v]L × Ki is convex as well. In a special
case when Bi consists of a finite number of points, the set of solutions is a convex (closed)

polyhedron in <2L−1.
Any subsystem of a finite number of inequalities from system (18) can easily be resolved

to give an upper bound (a lower bound) on the lth component vil in terms of the minimum
(maximum) of some linear functions with of κ0 with known coefficients. That could be
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used to get bounds on the distribution functions of standalone valuations in terms of κ0.
However, the formulas for the bounds on each component obtained from a finite system of
linear inequalities are quite complicated. An easier way to obtain bounds on each vil is to
consider only those alternative bids b that differ from bi in the lth coordinate.

Since the ties are broken independently across auctions at bi, then a change in the lth
component of bi affects only the lth component of Γ−i. Noting that Γ−i,l is monotone in
bil and rearranging, we thus must have for any ε such that bi − εel ∈ Bi and bi + εel ∈ Bi

∆−ε,l[b
T
i Γ−i(bi|Z−i)]

∆−ε,l[Γ−i,l(bi|Z−i)]
−

∆−ε,l[P−i(bi|Z−i)
T ]

∆−ε,l[Γ−i,l(bi|Z−i)]
κ0 ≤ vil

≤
∆+
ε,l[b

T
i Γ−i(bi|Z−i)]

∆+
ε,l[Γ−i,l(bi|Z−i)]

−
∆+
ε,l[P−i(bi|Z−i)

T ]

∆+
ε,l[Γ−i,l(bi|Z−i)]

κ0. (19)

If for a given ε, we have that bi − εel /∈ Bi or bi + εel /∈ Bi, then at least one of
∆−ε,l[Γ−i,l(bi|Z−i)] and ∆+

ε,l[Γ−i,l(bi|Z−i)] is equal to 0, and then in order to bound vil we
can use our prior knowledge that vil ∈ [v, v].

Using our notations above, we can say that for any bi in the support of Gi:

I−ε,l(bi|Z−i)− S
−
ε,l(bi|Z−i)

Tκ0 ≤ vil ≤ I+
ε,l(bi|Z−i)− S

+
ε,l(bi|Z−i)

Tκ0,

and hence,

sup
ε>0

(
I−ε,l(bi|Z−i)− S

−
ε,l(bi|Z−i)

Tκ0

)
≤ vil ≤ inf

ε>0

(
I+
ε,l(bi|Z−i)− S

+
ε,l(bi|Z−i)

Tκ0

)
. (20)

Then by the inequalities in (20), we must have for any Z−i ∈ Z−i|Zi,W,X:

F̃+
il (·|κ0;Z−i) ≤ Fil(·) ≤ F̃−il (·|κ0;Z−i). (21)

Pooling information across Z−i, it follows that we can have K = κ0 only if

F̃+
il (·|K;Z−i) ≤ F̃−il (·|K;Z ′−i) ∀Z−i, Z ′−i ∈ Z−i|Zi,W,X. (22)

This gives part a) of this theorem. Part b) immediately follows from (21). Part c) fol-
lows from (21) and the well known result on sharp Frechet-Hoeffding bounds for joint
distributions.

The next proposition provides an expectations version of the partial identification ar-
gument. Even though the supersets it gives are larger than those in Proposition 6, com-
putationally they are easier to obtain. Before formulating this proposition, let us define
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Li × 1 vectors Ψ−ε (Z−i), Ψ+
ε (Z−i) and Li × 2Li matrices χ−ε (Z−i), χ

+
ε (Z−i) as follows:

Ψ−ε (Z−i) ≡
[
E[I−ε,l(Bi|Z−i)|Z−i]

]Li
l=1

Ψ+
ε (Z−i) ≡

[
E[I+

ε,l(Bi|Z−i)|Z−i]
]Li
l=1

χ−ε (Z−i) ≡
[
E[S−ε,l(Bi|Z−i)|Z−i]

T
]Li
l=1

χ+
ε (Z−i) ≡

[
E[S+

ε,l(Bi|Z−i)|Z−i]
T
]Li
l=1
.

Proposition 7. A superset of Hi,κ(Zi,W,X) can be found in the following way:

H(2)
i,κ (Zi,W,X) =

⋂
ε>0

K̂εi ,

where K̂εi is defined as

K̂εi ≡
{
K ∈ Ki

∣∣∣ (Ψ−ε (Z−i)−Ψ+
ε (Z ′−i)

)
−
(
χ−ε (Z−i)− χ+

ε (Z ′−i)
)
K ≤ 0 for all Z−i, Z

′
−i ∈ Z−i|Zi,W,X

}
.

Results analogous to parts b) and c) in Proposition 7 hold as well with H(2)
i,κ (Zi,W,X)

replacing H(1)
i,κ (Zi,W,X).

Proof. Taking expectations of (20) across bil, we obtain

E[I−ε,l(Bi|Z−i)|Z−i]− E[S−ε,l(Bi|Z−i)|Z−i]κ0 ≤ E[Vil|Z−i]
≡ E[Vil] ≤ E[I+

ε,l(Bi|Z−i)|Z−i]− E[S+
ε,l(Bi|Z−i)|Z−i]κ0. (23)

Then pooling restrictions of the form (23) across Z−i, Z
′
−i and l, we obtain

Ψ−ε (Z−i)− χ−ε (Z−i)κ0 ≤ Ψ+
ε (Z ′−i)− χ+

ε (Z ′−i)κ0 ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X. (24)

Set H(2)
i,κ (Zi,W,X) is larger than H(1)

i,κ (Zi,W,X) because first-order stochastic domi-
nance implies inequalities for expectations.

Note two features of H(2)
i,κ (Zi,W,X). First, it can be represented as the intersection of

a set of half-spaces in Ki, where half-spaces are bounded by hyperplanes involving slope
vectors (χ−ε,l(Z−i)− χ

+
ε,l(Z

′
−i)) and intercepts (Ψ−ε,l(Z−i)−Ψ+

ε,l(Z
′
−i)), and the intersection

is taken over collections of (Z−i, Z
′
−i, ε, l).

Second, if Gi is absolutely continuous, then H(2)
i,κ (Zi,W,X) is a singleton, and as we

show below, the analysis of H(2)
i,κ (Zi,W,X) essentially becomes our identification strategy
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in the case of point identification. Indeed, bidder i’s objective function is differentiable at
almost every observed bi. Hence as ε→ 0 we will have for all l

lim
ε→0

∆−ε,lbiΓ−i(bi|Z−i)
∆−ε,lΓ−i,l(bi|Z−i)

= lim
ε→0

∆−ε,lbiΓ−i(bi|Z−i)/ε
∆−ε,lΓ−i,l(bi|Z−i)/ε

=
∂(biΓ−i(bi|Z−i))/∂bil
dΓ−i,l(bi|Z−i))/dbil

,

and therefore Ψ−ε (·)→ Ψ(·). Analogously, it is straightforward to show that Ψ+
ε (·)→ Ψ(·),

χ−ε → χ(·), and χ+
ε → χ(·). Hence the restriction (24) implies

Ψ(Z−i)− χ(Z−i)κ0 ≤ Ψ(Z ′−i)− χ(Z ′−i)κ0 ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X.

Noting that Z−i, Z
′
−i are interchangeable, we thus have for any Z−i, Z

′
−i ∈ Z−i|Zi,W,X:

Ψ(Z−i)− χ(Z−i)κ0 ≤ Ψ(Z ′−i)− χ(Z ′−i)κ0

Ψ(Z ′−i)− χ(Z ′−i)κ0 ≤ Ψ(Z−i)− χ(Z−i)κ0,

or equivalently

Ψ(Z−i)− χ(Z−i)κ0 = Ψ(Z ′−i)− χ(Z ′−i)κ0 ∀ Z−i, Z ′−i ∈ Z−i|Zi,W,X.

But this is exactly the identification restriction invoked in Proposition 3 in the current
paper. Thus we can strictly generalize our existing identification results (which depend on
differentiability a.e.) to partial identification for arbitrary Gi.

Appendix D: Entry

In this Appendix, we formally embed the bidding model we describe above within a two-
stage entry-plus-bidding model paralleling those considered by Li and Zhang (2015) and
Groeger (2014) among others. This discovery process proceeds as follows.

At the beginning of the game, each bidder i is endowed by nature with a combinatorial
valuation vector Yi drawn by nature from FY,i. However, realizations of Yi are ex ante
unknown to i and can be discovered by i only through costly entry. Specifically, at the
beginning of Stage 1, each bidder i observes a 2L × 1 vector of private combinatorial entry
costs Ci, with element CSi of Ci describing the total cost i must incur to enter auctions for
the set of objects S ∈ S. This cost vector Ci is drawn from a joint distribution satisfying
the following properties:

Assumption 8 (Private Entry Costs). For each bidder i, Ci is drawn independently of
combinatorial preferences Yi from cost distribution FC,i with support on a compact, con-

vex set Ci ⊂ R2L, with Ci private information, FC,i common knowledge, and cost draws
independent across bidders: Ci ⊥ Cj for all i, j.
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Having observed Ci, bidder i chooses a set of auctions S ∈ S to enter, pays the cor-
responding entry cost CSi , and proceeds to Stage 2. Next, at the beginning of Stage 2,
Bidder i observes the realizations of her combinatorial valuations Y S′

i for all combinations
feasible at Ei; that is, for each S′ ∈ S such that S′ ⊂ S. Lastly, bidder i submits a single
bid bil for each object l in the entry set S. Conditional on any entry realization E , the
bidding subgame proceeds exactly as described in the main text.

Following Milgrom and Weber (1985), define a distributional entry strategy for player i
as a measure ξi over Ci×S whose marginal over Ci is FC,i, with ξ = (ξ1, ..., ξN ) a profile of
distributional entry strategies. Recall that for each entry structure E potentially resulting
from Stage 1, there exists at least one equilibrium with endogenous tiebreaking in the
corresponding Stage 2 bidding subgame; furthermore, since entry costs are sunk at the
time of bidding, these equilibria do not depend on the particular Stage 1 entry strategies
giving rise to E . For each possible entry structure E , fix a single post-entry equilibrium with
endogenous tiebreaking, and let Π(E) = (Π1(E), ...,ΠN (E)) denote expected ex ante profits
for each bidder in this equilibrium. We seek to characterize an equilibrium in distributional
strategies taking these continuation payoffs as given.

Toward this end, consider player i with combinatorial entry cost vector Ci choosing a
set of auctions Ei ⊂ L to enter in Stage 1. Let

Ξ(S, ξ−i) = E[Πi(S, E−i)|ξ−i]

be i’s expected net profit from entering auction combination S ∈ S given rival entry
strategies ξ−i (where the expectation is taken over rival entry sets E−i). We can then write
bidder i’s Stage 1 problem as:

max
S∈S

Ξ(S, ξ−i)− CSi .

The Stage 1 action set for each bidder is the finite set S, and bidders’ private entry costs
are independent. Hence by Proposition 1 of Milgrom and Weber (1985) there exists an
equilibrium in distributional strategies in the Stage 1 entry game with continuation payoffs
described by Π(·). Furthermore, by construction, these continuation payoffs arise from play
of equilibria with endogenous tiebreaking in every post-entry bidding subgame. Hence there
exists an equilibrium with endogenous tiebreaking in the simultaneous first price auction
game with costly bidder entry.

Note that the only property of the entry cost distributions FC,1, ..., FC,N we have re-
quired thus far is independence – in particular, an equilibrium in distributional strategies
exists even when Ci is deterministic. If to this we add the restriction that FC,i is atomless
on Ci for each i, then Proposition 4 of Milgrom and Weber (1985) implies existence of a
equilibrium with endogenous tiebreaking in which bidders play pure entry strategies.

Now consider the set of cost vectors Ci at which bidder i chooses to enter set S ∈ S;
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denote this set CSi . As usual, this set is simply the affine cone

CSi = {Ci ∈ R2L : CSi − CS
′

i ≤ Ξ(S, ξ−i)− Ξ(S′, ξ−i) ∀S′ ∈ S},

which is nonempty for each S. If Ci has full support on R2L , bidder i will thus enter
each auction set S ∈ S with positive probability. In other words, equilibrium behavior
will involve variation in participation by bidder i which is effectively exogenous from the
perspective of rival bidders. This is precisely the form of variation we exploit in our
identification argument.
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