Carbon Tax in a Production Network: Propagation and Sectoral Incidence

Antoine Devulder¹ Noëmie Lisack^{1,2}

¹Banque de France ²European Central Bank

January 31, 2024

This reflects the opinions of the authors and do not necessarily express the views of the Banque de France; the European Central Bank or the Eurosystem

Motivation

Growing interest for climate change and transition policies:

- In policy debate:
 - Evaluation of climate change impacts, transition costs, etc.
- ► In central banks more specifically:

Development of climate stress-tests scenarios, "greenflation"

This paper's focus:

- Transition risk (vs. physical risk)
- Economic policy shock: carbon tax based on GHG emissions
- ► Time horizon: 5 to 10 years
- Quantification of structural impact

Method:

- Sectoral level modelling
- Multiple countries

Link with climate stress-test scenarios:

- Can be coupled with micro- and macroprudential tools
- Combined to aggregate macro models, useful for calibration

Literature

Carbon price and carbon tax

- ► Shadow price of carbon (Quinet report, 2019)
- Impact of carbon tax (DNB, Hebbink *et al.*, 2018, Bundesbank's Emuse, 2022)
- ► Carbon tax and double dividend (Freire-Gonzalez & Ho, 2019)

Production networks

- Baqaee & Farhi (2019a, 2019b)
- ▶ Fiscal multiplier with multiple sectors: Bouakez et al. (2023)
- Productivity shocks in multi-country multi-sector model: Johnson (2014)

Climate stress-tests

- NGFS reports
- BoE stress-test scenario
- ▶ Numerous large scale models (Imaclim, E3ME, ...)

Our paper

- Parsimonious and transparent
- General equilibrium set-up

Results preview

Model

- Static, general equilibrium
- Sectoral production network
- Allowing for substitution
- Geographical coverage
 - France, rest of European Union, rest of the World
- Policy experiment
 - Implementation of a carbon tax
 - ► In France or the whole EU
 - Tax size: carbon price of 100 €/tCO₂-e
 - Real GDP impact in France:
 -1.2% to -1.5%
 - Upstream sectors more impacted

Model: Main Ingredients

Production:

- Sectoral production network
- Perfect competition within sector
- One representative producer in each sector in each country
- Output used for intermediate and final consumption

Households:

- One representative household per country
- Consumes a basket of goods
- Perfect risk-sharing across countries

Taxes:

- On final purchase of oil & coke by households (κ)
- On intermediate purchase of oil & coke by producers (ζ)
- On production (τ)
- All proceeds redistributed to households

Model: Production

In each sector:

- Perfect competition
- Intermediate consumptions imported from the whole world
- ► Nested CES, with substitution across:
 - Energy types
 - Other (non-energy) inputs
 - Energy, non-energy inputs and labour
- Country-sector-specific input shares

eqs

Model: Households and Market Clearing

Representative household in each country:

- Consumes a basket of goods from the whole world
- Supplies labour inelastically
- Receives tax proceeds as a lump-sum transfer based on her residence country

Perfect risk sharing:

 Households can trade internationally a complete set of Arrow-Debreu securities

Model: Households and Market Clearing

Representative household in each country:

- Consumes a basket of goods from the whole world
- Supplies labour inelastically
- Receives tax proceeds as a lump-sum transfer based on her residence country

Perfect risk sharing:

 Households can trade internationally a complete set of Arrow-Debreu securities

Market Clearing

Labour market:

- Perfect labour mobility across sectors within a country
- No cross-country labour mobility
- ▶ Wage adjusts to balance labour demand and labour supply in each country

Goods markets:

- Production used for intermediate consumption and final consumption
- Price adjusts to balance demand and supply for each good

eqs

Household side:

Final consumption tax: rate κ_{jA} specific to each country

- ► Applied to **final** consumption of oil & coke
- Reflects GHG emitted by households of that country

Household side:

Final consumption tax: rate κ_{jA} specific to each country

- Applied to final consumption of oil & coke
- Reflects GHG emitted by households of that country

Production side:

Challenge: two different types of emissions linked to production

- GHG emissions due to energy use (e.g. burning oil, coke) Can be substituted by (renewable) electricity
- GHG emissions inherent to production process (e.g. agriculture, cement) No easy substitute, would need substancial innovation

⇒ Model two different taxes on the production side: Intermediate consumption tax
Production tax

Intermediate consumption tax: rate ζ_{ji} specific to each country-sector

- ▶ Reflects emission intensity due to **energy use** (*CO*₂ emissions)
- ► Applied to intermediate consumption of oil & coke only ⇒ favours substitution across inputs to pay less tax

Intermediate consumption tax: rate ζ_{ji} specific to each country-sector

- Reflects emission intensity due to **energy use** (CO_2 emissions)
- ► Applied to intermediate consumption of oil & coke only ⇒ favours substitution across inputs to pay less tax

Production tax: rate τ_i specific to each country-sector

- Reflects emission intensity inherent to sectoral production process (e.g. methan for agriculture)
- ► Applied to production, passed to both final and intermediate buyers ⇒ influences both consumers' and producers' decisions
- Tax rate fixed exogenously
 ⇒ favours substitution in downstream sectors only producer cannot reduce his own tax rate

All proceeds redistributed to the household of the taxing country

Calibration

Input & consumption shares, aggregate labour

- ► World Input Output Database (2014)
- ► Aggregated into 3 blocks: France, rest of EU, rest of the World
- ► 55 sectors per country
- Energy: 2 sectors oil/coal vs. electricity/gas/steam/air conditioning

Elasticities

From literature (Baqaee & Farhi, 2017, Atalay, 2017)

	Energy	Other	Labour, energy	Final consumption		
	types	inputs	and other inputs	goods		
Elasticity across	0.9	0.4	0.8	0.9		

Households relative risk-aversion: $\varphi=2$

Taxes

- Eurostat sectoral emissions data (2016)
- ▶ Proportional to emission intensity per € produced or per € of oil consumed
- Tax proceeds cover emissions cost, given price of tCO₂e

Tax applied to goods produced in:

- 1. France (scenario 1)
- 2. France and rest of the EU (scenario 2)

Price of the ton of CO_2 equivalent set to 100 euros \Rightarrow Total tax receipts equal to 1.5% of VA for France, 2.1% for RoEU

Tax applied to goods produced in:

- 1. France (scenario 1)
- 2. France and rest of the EU (scenario 2)

Price of the ton of CO_2 equivalent set to 100 euros \Rightarrow Total tax receipts equal to 1.5% of VA for France, 2.1% for RoEU

Oil intermediate consumption tax:

▶ Proportional to CO_2 emission intensity per \in of oil consumed

Production tax:

- ▶ Proportional to non-CO₂ emissions intensity per \in produced
- Special cases for *Basic Metals* and *Minerals (excl. metals)*:

Production tax:

- ▶ Proportional to non-CO₂ emissions intensity per \in produced
- ► Special cases for *Basic Metals* and *Minerals (excl. metals)*:

Oil final consumption tax:

- ► France: 42%
- ▶ RoEU: 28%

Aggregate Results: Real value added

% deviation from SS	France	Rest of the EU	Rest of the world	
Tax in France (sc. 1)				
Real VA	-1.21	-0.05	-0.01	
Real consumption	-0.56	0.01	0.01	
Tax in whole EU (sc. 2)				
Real VA	-1.53	-1.88	-0.13	
Real consumption	-0.64	-0.67	0.08	

- Weak transmission across countries
- Larger impact in RoEU than France in sc. 2 (nuclear energy)
- Impact via:
 - Input prices \Rightarrow substitution in downstream intermediate consumptions
 - Final goods prices \Rightarrow substitution in final consumption basket
 - Lower real wages and lower final demand

Aggregate Results: Bilateral Real Exchange Rates

% change (decrease=appreciation)	with respect to:				
In:	France	RoEU	RoW		
Tax in France (sc. 1)					
France	-	-1.14	-1.15		
RoEU	1.15	-	-0.02		
RoW	1.17	0.02	-		
Tax in whole EU (sc. 2)					
France	-	0.05	-1.45		
RoEU	-0.05	-	-1.50		
RoW	1.47	1.52	-		

Tax in France:

Relative after-tax price levels increase in France
 Slight appreciation of the France RER
 But not enough to prevent consumption decrease

Tax in whole EU:

Stable RER between France and RoEU

Aggregate Results: Real Bilateral Trade

% change	_	To:	D 14/	
Exports From:	France	RoEU	RoW	lotal
Tax in France (sc. 1)				
France	-	-1.21	-0.98	-1.10
RoEU	-1.63	-	-0.02	-0.24
RoW	-3.37	-0.10	-	-0.49
Total	-2.31	-0.27	-0.12	-0.43
Tax in whole EU (sc. 2)				
France	-	-2.89	-1.27	-2.12
RoEU	-3.31	-	-1.35	-1.61
RoW	-3.89	-3.60	-	-3.63
Total	-3.56	-3.50	-1.34	-2.44

Tax in France:

- ► Exports consistent with RER movements: RER appreciation in $Fr \Rightarrow Fr$ exports \downarrow
- Fr wages $\downarrow +$ financial transfers \Rightarrow Fr final demand $\downarrow +$ home bias \Rightarrow Fr imports \downarrow
- Recessive effect on total trade

Sectoral Results: Real After-tax Prices

- Higher tax on RoEU Electricity
- ▶ Little transmission: similar prices in France when RoEU implements tax

Sectoral Results: Price Competitiveness

- French agricultural and manufacture products more expensive than RoEU and RoW ones
- Less true for services
- Price competitiveness w.r.t. RoEU restored when tax also implemented in RoEU

Sectoral Results: Real VA

- Related to price changes
- V. large impact on *Coke, oil* because of additional intermediate and final consumption tax
- Impact transmitted to upstream sectors even in RoW: Mining

Recessionary impact

Sectoral contributions to decrease in real value added (%), tax in whole EU

Devulder & Lisack (BdF)

GHG Emissions

Sectoral contributions to decrease in GHG emissions (%), tax in whole EU

The role of the production network: sectors

Aggregating all non-energy sectors:

- ► A 3-sectors multi-country model
- ▶ In each country: Oil, Electricity, the rest of the economy

	Full	model	Simplified model		
% change	France	Rest of EU	France	Rest of EU	
Real value added	-1.53	-1.88	-1.65	-2.04	
GHG emissions	-36.1	-41.3	-23.0	-38.5	

Qualitatively similar but overall more pessimistic:

- ▶ about 8% larger value added decline,
- ► 7% smaller emissions drop
- Less leeway to adjust inputs and consumption choices, less precise pricing of polluting activities

The role of the production network: countries

Disaggregating the Rest of EU into more separate countries:

Progressively separating individual countries from the Rest of EU block

% change	FRA	DEU	ITA	ESP	GBR	NLD	POL	PRT	RoEU	RoW	EU\FRA
Baseline	-1.53	-	-	-	-	-	-	-	-1.88	-0.13	-1.88
+ 4 countries	-1.53	-1.81	-1.78	-1.74	-1.45	-	-	-	-2.12	-0.13	-1.84
+ 7 countries	-1.52	-1.77	-1.76	-1.74	-1.43	-2.22	-4.15	-2.24	-1.75	-0.13	-1.81

Results similar to the Baseline:

- impact on French value added unchanged
- ▶ EU excl. France marginally better
- Countries using more polluting energy sources or with heavy industry fare worse (Poland, Germany, Netherland)

Downstreamness and tax propagation

Downstreamness index from Antràs & Chor (2013)

Figure: Uniform tax rate τ in whole EU

Figure: Complete carbon tax scenario

spillovers more negative in upstream sectors:

corr(Downstreamness, Spillovers (% Q)) =0.93

somewhat blurred with heterogeneous tax rates (complete carbon tax scenario):

► corr(Downstreamness, Spillovers (% Q)) =0.42

Robustness

Calibration

Varying elasticities on the production side: more

- Substitution across energy types
- Substitution across non-energy intermediate inputs
- Substitution across energy, other inputs and labour
- \Rightarrow Substitution across energies is key, otherwise fairly robust

Varying household preferences parameters: more

- Substitution across final consumption goods
- Relative risk aversion
- \Rightarrow Fairly robust

Varying the tax level: more

Carbon price

 \Rightarrow Close to linear

Financial Markets

Importance of perfect risk sharing

Extensions

Armington trade aggregator to be able to specify trade elasticities

Results broadly similar

Using Exiobase data

- Higher sectoral granularity
- Energy sectors separating gas and electricity types (per source of energy)

Conclusion

Evaluate the medium-run impact of a carbon tax with some key ingredients:

- Sectoral production network
- Multiple countries

 \Rightarrow Aggregate impact on real value added: -1.5% for France, -1.9% for the RoEU Caveats:

- No technological innovation
- ► No infra-sectoral heterogeneity in taxation

Further uses:

 Inserted in BdF/ACPR's framework for climate scenarios for pilot exercises in 2021 and 2023 (cf. Allen et al., 2020 and Allen et al., 2023)

Conclusion

Evaluate the medium-run impact of a carbon tax with some key ingredients:

- Sectoral production network
- Multiple countries

 \Rightarrow Aggregate impact on real value added: -1.5% for France, -1.9% for the RoEU Caveats:

- No technological innovation
- ► No infra-sectoral heterogeneity in taxation

Further uses:

 Inserted in BdF/ACPR's framework for climate scenarios for pilot exercises in 2021 and 2023 (cf. Allen et al., 2020 and Allen et al., 2023)

Thank you!

Appendix

Appendix: Production

Representative producer's program in each sector *i*:

$$\max_{L_i, Z_{ij}} \pi_i = P_i (1 - \tau_i) Q_i - w L_i - \sum_{j=1}^N P_j (1 + \zeta_{ji}) Z_{ji}$$
where: $Q_i = \left(\mu_i^{\frac{1}{\theta}} L_i^{\frac{\theta-1}{\theta}} + \alpha_{Ei}^{\frac{1}{\theta}} E_i^{\frac{\theta-1}{\theta}} + \alpha_{Ii}^{\frac{1}{\theta}} I_i^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}}$

$$E_i = \left(\sum_{j=1}^{N_E} \left(\frac{\alpha_{ji}}{\alpha_{Ei}} \right)^{\frac{1}{\sigma}} Z_{ji}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}}$$

$$I_i = \left(\sum_{j=N_E+1}^N \left(\frac{\alpha_{ji}}{\alpha_{Ii}} \right)^{\frac{1}{\epsilon}} Z_{ji}^{\frac{\epsilon-1}{\epsilon}} \right)^{\frac{\epsilon}{\epsilon-1}}$$

Parameters defined such that: $\alpha_{Ei} = \sum_{j=1}^{N_E} \alpha_{ji};$ $\alpha_{Ii} = \sum_{j=N_E+1}^{N} \alpha_{ji};$ $\alpha_{Ei} + \alpha_{Ii} + \mu_i = 1;$

Appendix: Producers' FOC

$$\begin{split} \text{FOC in sector } i:& \frac{L_i}{Q_i} = \mu_i \left(\frac{P_i(1-\tau_i)}{w}\right)^{\theta} \\ & \frac{E_i}{Q_i} = \alpha_{Ei} \left(\frac{P_i(1-\tau_i)}{P_{Ei}}\right)^{\theta} \\ & \frac{I_i}{Q_i} = \alpha_{Ii} \left(\frac{P_i(1-\tau_i)}{P_{Ii}}\right)^{\theta} \\ & \frac{Z_{ji}}{E_i} = \frac{\alpha_{ji}}{\alpha_{Ei}} \left(\frac{P_{Ei}}{P_j(1+\zeta_{ji})}\right)^{\sigma} \forall j \leq N_E \\ & \frac{Z_{ji}}{I_i} = \frac{\alpha_{ji}}{\alpha_{Ii}} \left(\frac{P_{Ii}}{P_j(1+\zeta_{ji})}\right)^{\epsilon} \forall j \geq N_E + 1 \\ \end{split}$$

$$\begin{aligned} \text{Price index definitions: } P_{Ei} = \left(\sum_{j=1}^{N_E} \frac{\alpha_{ji}}{\alpha_{Ei}} (P_j(1+\zeta_{ji}))^{1-\sigma}\right)^{\frac{1}{1-\sigma}} \\ P_{Ii} = \left(\sum_{j=N_E+1}^{N} \frac{\alpha_{ji}}{\alpha_{Ii}} (P_j(1+\zeta_{ji}))^{1-\epsilon}\right)^{\frac{1}{1-\epsilon}} \\ P_i(1-\tau_i) = \left(\mu_i w^{1-\theta} + \alpha_{Ei} P_{Ei}^{1-\theta} + \alpha_{Ii} P_{Ii}^{1-\theta}\right)^{\frac{1}{1-\theta}} \end{aligned}$$

Appendix: Households' program

s.t.
$$\begin{aligned} \max_{\{C_{Ajt}\},\{b_{A}(\omega_{t+1})\}} E_{t} \sum_{\tau=1}^{\infty} \beta^{\tau} \frac{C_{At+\tau}^{1-\varphi}}{1-\varphi} \\ & (1) \\ & (1) \end{aligned}$$

$$w_{At}L_{At} + T_{At} + b_A(\omega_t) = P_{At}C_{At} + \int q(\omega_{t+1})b_A(\omega_{t+1})d\omega_{t+1}$$
 (3)

where
$$P_A = \left(\sum_{k=1}^N \gamma_{kA} \left[P_k(1+\kappa_{kA})\right]^{1-\rho}\right)^{\frac{1}{1-\rho}}$$

Appendix: Households' FOC

Consumption ratios in country A:

$$\forall j \in \{1, \dots, N\}:$$
$$\frac{C_{jA}}{C_A} = \gamma_{jA} \left(\frac{P_j(1+\kappa_{jA})}{P_A}\right)^{-\rho}$$

Risk-sharing condition:

$$\forall B \in \mathcal{C} \setminus A, \qquad \frac{C_B}{C_A} = \nu_{AB} \left(\frac{P_A}{P_B}\right)^{\frac{1}{\varphi}}$$

where $\{\nu_{AB}\}_{B\in\mathcal{C}}$: relative aggregate consumption sizes across countries in the initial steady state.

hack

Appendix: Market Clearing Conditions

Labour market:

- Perfect labour mobility across sectors within a country
- No cross-country labour mobility
- ▶ Wage adjusts to balance labour demand and labour supply in each country

$$\forall A \in \mathcal{C}, \qquad L_A = \sum_{j \in \mathcal{S}_A} L_j$$

Goods markets:

- Production used for intermediate consumption and final consumption
- Price adjusts to balance demand and supply for each good

$$\forall i \in \{1, \dots, N\}, \qquad Q_i = \sum_{j=1}^N Z_{ij} + \sum_{A \in \mathcal{C}} C_{iA}$$

Appendix: Taxes Calibration

Rates proportional to emission intensity per \in produced or per \in of oil consumed Tax proceeds cover emissions cost, given price of tCO₂e

Easy for final consumption tax:

$$\sum_{i=1}^{N} \kappa_{iA} P_i C_{iA} = P_{\mathsf{CO}_2} G H G_A^H$$

implies

$$\kappa_{iA} = \begin{cases} 0 \text{ if } i \notin \text{oil refining} \\ \kappa_A = \frac{P_{\text{CO}_2}GHG_A^H}{\sum_{i \in \text{oil}} P_i C_{iA}} \text{ if } i \in \text{oil refining} \end{cases}$$

Appendix: Taxes Calibration

Issue for production side:

Distinguish between emissions due to energy use and to production process

Approximate solution:

Separate between CO_2 and non- CO_2 GHG:

- $\blacktriangleright \ GHG_i = CO_{2i} + \widetilde{GHG}_i$
- Works for most sectors (agriculture, sewerage)
- Exceptions for cement, steel \Rightarrow all GHG attributed to production process (impose $CO_{2i} = 0$)

Production tax

$$\tau_i Q_i P_i = P_{\mathsf{CO}_2} \widetilde{GHG}_i \quad \Rightarrow \quad \tau_i = P_{\mathsf{CO}_2} \frac{\widetilde{GHG}_i}{Q_i P_i}$$

Intermediate consumption tax

$$\zeta_{ji} = \begin{cases} 0 \text{ if } j \notin \text{oil refining} \\ \zeta_i = \frac{P_{CO_2}CO_{2i}}{\sum_{j \in oil} P_j Z_{ji}} \text{ if } j \in \text{oil refining} \end{cases}$$

Appendix: Financial Transfers & Trade Balance

Households' budget contraint and consumption:

- Budget constraint relaxed in taxed countries
- Consumption increases less than labour income and tax transfers in taxed countries
- Consumption increases more in non-taxed countries (between 0.03 and 0.2 ppt more)
- Due to risk-sharing: non-taxed countries receive a financial transfer from taxed countries

Trade balance mirrors this:

- Taxed countries import less than they export
- Non-taxed countries import more than they export
- Balanced by financial transfers

hack

Robustness: Substitution Across Energy Types

Robustness: Substitution Across Intermediate Inputs

Robustness: Substitution Across Labour, Intermediate Inputs and Energy

Robustness: Substitution Across Final Consumption Goods

Robustness: Relative Risk Aversion

Robustness: Carbon Price

Appendix: Production with Armington aggregator

Representative producer's program in each sector i in each country B:

$$\begin{split} \max_{L_{Bi}, Z_{Cij}} \pi_{Bi} &= P_{Bi}(1 - \pi_{Bi})Q_{Bi} - w_{B}L_{Bi} - \sum_{C} \sum_{j=1} P_{Cj}(1 + \zeta_{BCji})Z_{BCji} \\ \text{where:} \quad Q_{Bi} &= A_{Bi} \left(\mu_{Bi}^{\frac{1}{\theta}} L_{Bi}^{\frac{\theta-1}{\theta}} + \alpha_{Bi}^{\frac{1}{\theta}} E_{Bi}^{\frac{\theta-1}{\theta}} + \alpha_{BIi}^{\frac{1}{\theta}} I_{Bi}^{\frac{\theta-1}{\theta}} \right)^{\frac{\theta}{\theta-1}} \\ E_{Bi} &= \left(\sum_{j=1}^{N_{E}} \left(\frac{\alpha_{Bji}}{\alpha_{BEi}} \right)^{\frac{1}{\sigma}} Z_{Bji}^{\frac{\sigma-1}{\sigma}} \right)^{\frac{\sigma}{\sigma-1}} \\ I_{Bi} &= \left(\sum_{j=N_{E}+1}^{N} \left(\frac{\alpha_{Bji}}{\alpha_{Bji}} \right)^{\frac{1}{e}} Z_{Bji}^{\frac{e-1}{\sigma}} \right)^{\frac{e}{e-1}} \\ Z_{Bji} &= \left(\left(\left(\frac{\alpha_{BBji}}{\alpha_{Bji}} \right)^{\frac{1}{\theta}} Z_{BBji}^{\frac{\etaE-1}{\etaE}} + \left(\frac{\alpha_{BMji}}{\alpha_{Bji}} \right)^{\frac{1}{\etaE}} \left(\sum_{C \neq B} \left(\frac{\alpha_{BCji}}{\alpha_{BMji}} \right)^{\frac{1}{\xi_{E}}} Z_{BCji}^{\frac{\xi_{E}(\eta_{E}-1)}{(\xi_{E}-1)\eta_{E}}} \right) \right)^{\frac{\eta_{E}}{\eta_{E}-1}} \\ \forall j \in \{1, \dots, N_{E}\} \\ Z_{Bji} &= \left(\left(\left(\frac{\alpha_{BBji}}{\alpha_{Bji}} \right)^{\frac{1}{\eta_{I}}} Z_{BBji}^{\frac{\eta_{I}-1}{\eta_{I}}} + \left(\frac{\alpha_{BMji}}{\alpha_{Bji}} \right)^{\frac{1}{\eta_{I}}} \left(\sum_{C \neq B} \left(\frac{\alpha_{BCji}}{\alpha_{BMji}} \right)^{\frac{1}{\xi_{I}}} Z_{BCji}^{\frac{\xi_{I}(\eta_{I}-1)}{(\xi_{I}-1)\eta_{I}}} \right) \right)^{\frac{\eta_{I}}{\eta_{I}-1}} , \\ \forall j \in \{N_{E}+1, \dots, N\} \end{split}$$

Devulder & Lisack (BdF)

Appendix: Production with Armington aggregator

 α

Parameters defined such that:

$$BM_{ji} = \sum_{C \neq B} \alpha_{BCji}$$

$$\alpha_{Bji} = \alpha_{BMji} + \alpha_{BBji}$$

$$\alpha_{Ei} = \sum_{j=1}^{N_E} \alpha_{ji}$$

$$\alpha_{Ii} = \sum_{j=N_E+1}^{N} \alpha_{ji}$$

$$1 = \alpha_{Ei} + \alpha_{Ii} + \mu_i$$