

FUND MANAGERS' CONTRACTS AND SHORT-TERMISM

Catherine CASAMATTA and Sébastien POUGET Toulouse School of Economics (IAE and IDEI)

IDEI Conference of the Chair FDIR, may 28-29, 2009

Short-term compensation is often blamed to induce short-termism

- Short-term compensation is often blamed to induce short-termism
- Practitioners complain about the difficulty to implement LT strategies
 - "The big difficulty is that a lot of the reputational issues and environmental issues play out over a very long period of time [...] and if the market isn't looking at it you can sit there for a very long time on your high horse saying 'this company is a disaster, it shouldn't be trusted' and you can lose your investors an awful lot of money...". (SRI fund manager in Guyatt (2006)).

- Short-term compensation is often blamed to induce short-termism
- Practitioners complain about the difficulty to implement LT strategies
 - "The big difficulty is that a lot of the reputational issues and environmental issues play out over a very long period of time [...] and if the market isn't looking at it you can sit there for a very long time on your high horse saying 'this company is a disaster, it shouldn't be trusted' and you can lose your investors an awful lot of money...". (SRI fund manager in Guyatt (2006)).
- Academic view: Why isn't the market looking at it? Prices should be efficient
- Why should long-term investors care about short-term performance?

- What is the link between short-term compensation and short-termism in the context of SRI?
- What is the structure of delegation mandates between long-term investors and fund managers?
- What are the consequences for market efficiency & shorttermism?

- Consider an asset that pays off in the long term
- Model an investor who delegates asset management to a risk averse fund manager
- Actively managing a portfolio is costly and subject to moral hazard
 - Effort to gather relevant information on LT payoff
 - Difficult to say whether a manager is actively searching for information or actively doing nothing
- Study how moral hazard affects LT information acquisition
- Study the design of fund management mandates using asset prices

If you need to leave in 5 min...

• Moral hazard induces short-termism:

- With moral hazard and risk aversion, investors need efficient shortterm prices to incentivize their managers
- Efficient short-term prices arise if and only if informed trading occurs
- This cannot happen if prices are too efficient ex ante
- Ambiguity of information precision: Higher precision increases trading profits... but can increase incentive cost
 - Can deter LT information acquisition
 - Can increase fund managers' wages

Related Literature

Prices may not incorporate LT information because:

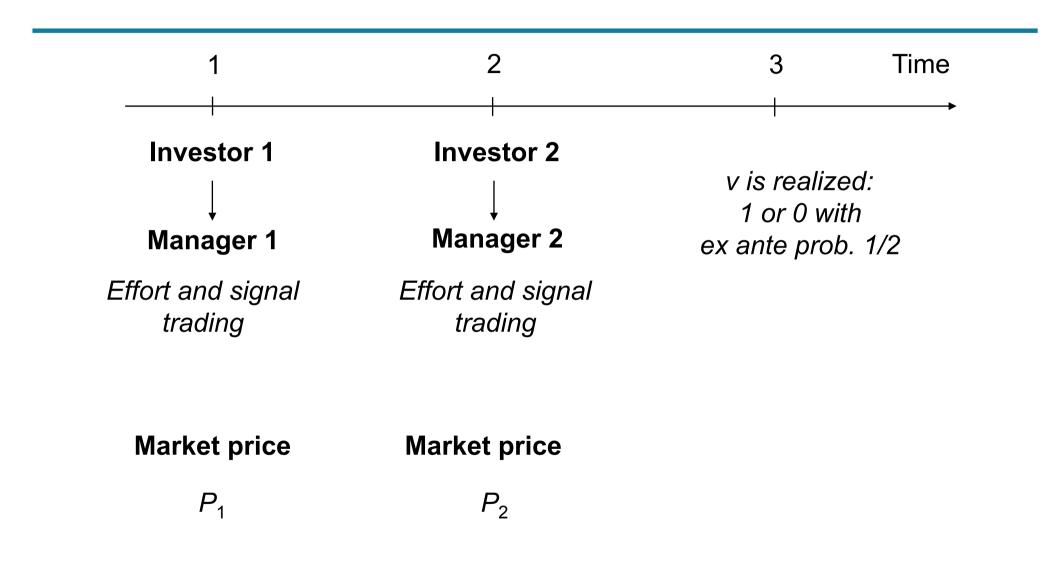
- Dow and Gorton (1994): ST traders are not sure that future prices will reveal information
- Froot, Scharfstein, and Stein (1992): ST traders herd on the same (potentially useless) information
- Shleifer and Vishny (1990): arbitrage in the long-run is more costly than in the short-run
- Holden and Subrahmanyam (1996): risk averse investors do not like to hold positions for a long time when prices are volatile
- Vives (1995): the rate of information arrival matters when traders have ST horizons
- Delegation contracts of fund managers
 - Guembel (2005): short-term mandates to better assess managers' quality
 - Gorton, He, and Huang (2009): moral hazard and mandate structure

What is different here

No exogenous short horizon

- Agents care about the short-term price for incentive reasons only
- Agents can contract with a risk neutral long-term principal
 - Not considered in the previous literature
 - Could relax limited horizon problem or risk aversion

• We study the dynamics of fund managers' compensation



• A Model

- Benchmark: No Moral Hazard
- Delegation in the Long-Run
- Conclusion

Includes investors and managers

- One initial investor is born at each date 1 and 2
- Investors:
 - cannot invest directly (time- or skill- constrained)
 - risk-neutral

• Decide whether to delegate investment to a fund manager

Fund managers

• Fund managers:

- risk-averse
- no cash

Fund managers

• Fund managers:

- risk-averse
- no cash

• Manager 1 utility function:

• Manager 2 utility function:

$$U\left(R_{1}^{1}\right)+U\left(R_{2}^{1}\right)+U\left(R_{3}^{1}\right)$$
$$U\left(R_{2}^{2}\right)+U\left(R_{3}^{2}\right)$$

• Utility of a transfer
$$R \ge 0$$
:

$$U(R) = R1_{\{R \le k\}} + \{\gamma(R-k) + k\}1_{\{R > k\}}$$

• Risk aversion: $\gamma < 1$

Managers' information

- Fund managers receive independent private signals s_t (H or L) regarding v
- Binary effort decision: effort (e) or no effort (ne)
- Effort *e* gives an informative signal at cost c:

$$\Pr_{e}(s_{t} = H/v = 1) = \Pr_{e}(s_{t} = L/v = 0) = \varphi_{t} > \frac{1}{2}$$

• For simplicity, we assume that $\varphi_1 = \varphi$ and $\varphi_2 = 1$

The financial market

• Hedgers:

- At each date *t*, a continuum is born with probability $\frac{1}{2}$
- Income 1 or 0 at date 3, perfectly negatively correlated with v
- Infinitely risk averse
- Hedgers demand $q_t^h = 1$ unit of risky asset (if they are born)
- Market makers:
 - Risk neutral
 - Compete à la Bertrand to trade the risky asset

Trading process

- Manager (if hired) and hedgers (if born) submit market orders
- If they trade, managers mimic hedgers' behavior $(q_t^m = 1)$
- Market makers observe the buy order flow $q_t = q_t^m + q_t^h$ and the sell order flow
- Market makers set prices equal to the expectation of *v* conditional on:
 - Equilibrium hiring decisions of investors
 - Equilibrium trading strategies of managers

 If managers only buy when receiving a high signal, prices reveal information only if the order flow is 2 or 0

- At date 1: At date 2:
 - $P_{1}(q_{1} = 2) = \varphi \qquad P_{2}(q_{2} = 2) = 1$ $P_{1}(q_{1} = 1) = \frac{1}{2} \qquad P_{2}(q_{2} = 1) = P_{1}$ $P_{1}(q_{1} = 0) = 1 \varphi \qquad P_{2}(q_{2} = 0) = 0$

• A Model

• Benchmark: No Moral Hazard

• Delegation in the Long-Run

• Conclusion

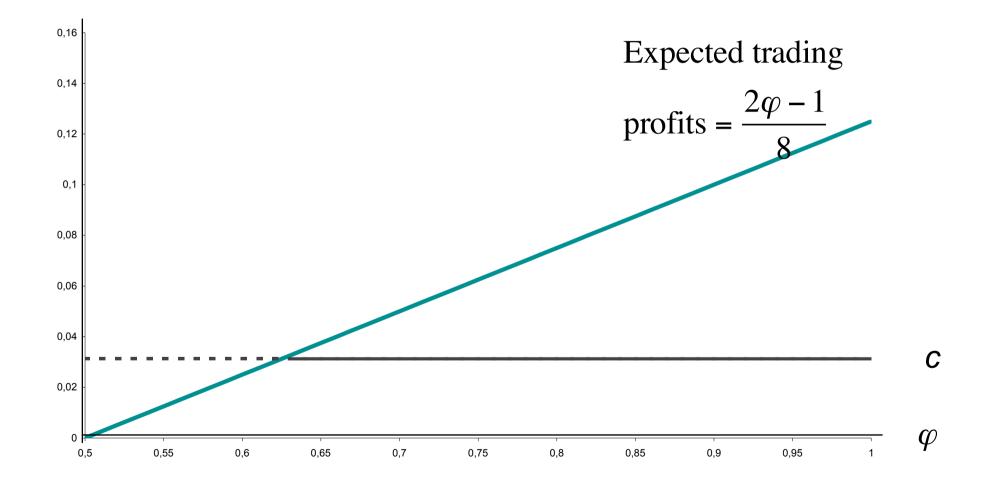
Investor *t*'s profit

• Investor *t*'s expected trading profit is:

$$\underbrace{\Pr_{e}\left(s_{t}=H\right) \times \Pr_{e}\left(P_{t}=P_{t-1} \middle| s_{t}=H\right) \times \left[\Pr_{e}\left(v=1 \middle| s_{t}=H\right) - P_{t-1}\right]}_{e}$$

Manager buys Not spotted by MM

Expected profit

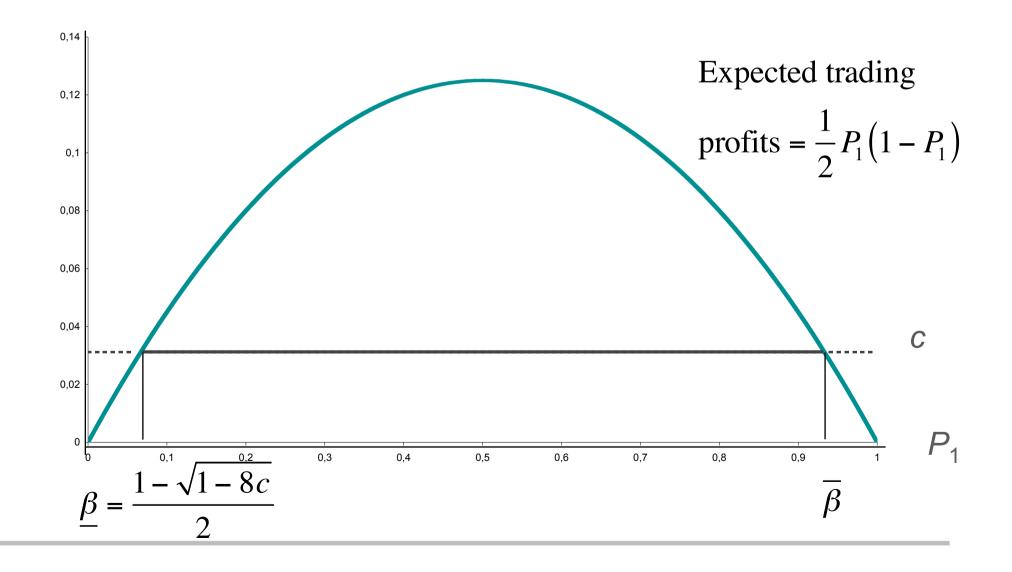

$$= P_{t-1} \frac{1}{2} [\varphi_t - P_{t-1}]$$

• Manager's expected wage is c (assuming that k > c/3)

Benchmark: no moral hazard

Investor 1's decision

Benchmark: no moral hazard


Investor 1's decision

Benchmark: no moral hazard

Investor 2's decision

- Investor 1's profit always increases with information precision φ and does not depend on investor 2's decision
- Investor 2's decision does depend on investor 1's decision through market efficiency (in line with Grossman and Stiglitz, 1980): lower expected profit when φ is higher

• A Model

- Benchmark: No Moral Hazard
- Delegation in the Long-Run
- Conclusion

• Effort of manager 1 is not observed

- When designing the contract at date 1, investor 1 anticipates the equilibrium behavior of all agents (at dates 1 and 2) and the level of price P₂
- Contract: $R_{1}^{1}(q_{m}), R_{2}^{1}(q_{m}, P_{1}, P_{2}), R_{3}^{1}(q_{m}, P_{1}, P_{2}, v)$

• Incentive to buy after observing a high signal: IC_H^1

- After a high signal, buying should translate into a higher expected utility than doing nothing
- Incentive to do nothing after observing a low signal: IC_L^1
- Incentive to exert effort: IC_e^1
 - Exerting effort and trading appropriately should translate into a higher expected utility than exerting no effort

Price efficiency

- In order to design a contract, investor 1 has to anticipate the level of efficiency of P_2 (that depends on P_1)
 - If investor 2 proposes a contract to her manager (when P_1 is between $\overline{\beta}$ and β), price P_2 reveals *v* with probability $\frac{1}{2}$
 - otherwise, investor 2 does not propose a contract to her manager and $P_2=P_1$ (P_2 does not convey information)
- The fact that investor 2 proposes or not a contract to her manager affects the expected wage given to manager 1

Investor 1's objective

 Investor 1 proposes the contract that maximizes her expected profit:

$$\frac{2\varphi - 1}{8} - \left(E_e\left[R_1^1(q_1^m)\right] + E_e\left[R_2^1(q_1^m, P_1, P_2)\right] + E_e\left[R_3^1(q_1^m, P_1, P_2, v)\right]\right)$$

Expected trading profit

Expected compensation of the manager

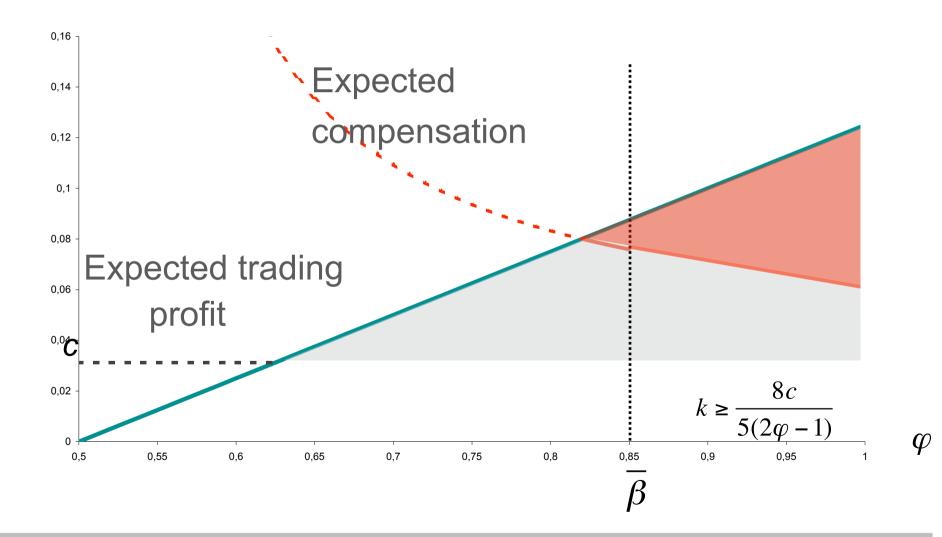
Contract at date 1

• The optimal contract offered by investor 1 is such that:

$$\begin{split} & \underset{P_{1},P_{2}}{\text{E}} \left\{ U \left[R_{2}^{1} \left(q_{1}^{m} = 1, P_{1}, P_{2} = 1 \right) \right] + U \left[R_{3}^{1} \left(q_{1}^{m} = 1, P_{1}, P_{2}, v = 1 \right) \right] \right\} = \frac{\varphi c}{2\varphi - 1} \\ & \underset{P_{1},P_{2}}{\text{E}} \left\{ U \left[R_{2}^{1} \left(q_{1}^{m} = 0, P_{1}, P_{2} = 0 \right) \right] + U \left[R_{3}^{1} \left(q_{1}^{m} = 0, P_{1}, P_{2}, v = 0 \right) \right] \right\} = \frac{\varphi c}{2\varphi - 1} \\ \bullet \text{ Manager 1 earns a rent equal to } \frac{c}{2\varphi - 1} \end{split}$$

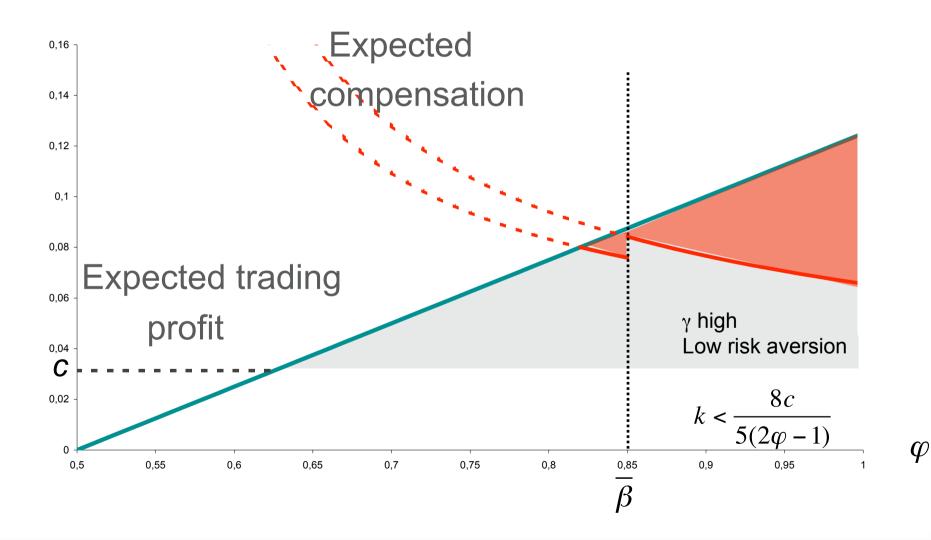
• The optimal contract compensates the fund manager when the ST and/or the LT portfolio performance is positive

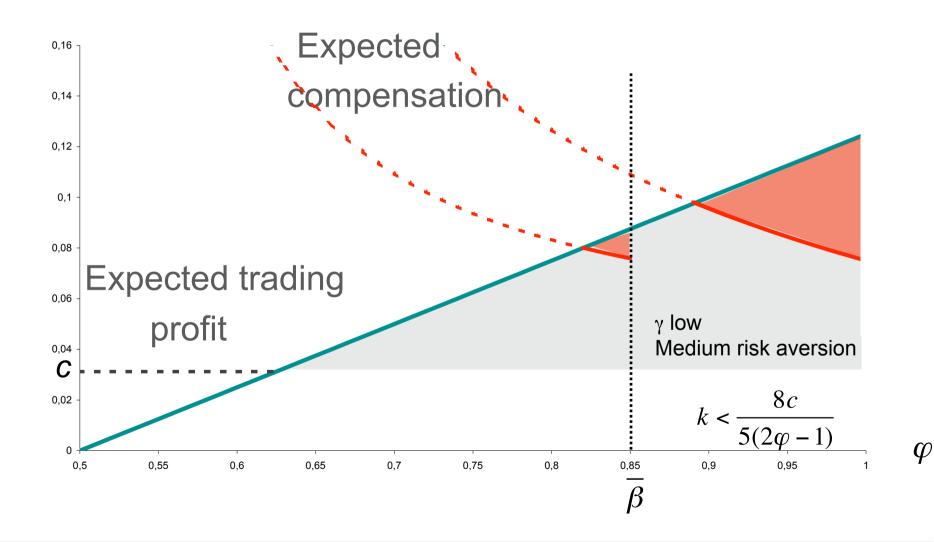
 When risk aversion is high (k low), it is necessary to reward the manager both in the LT and in the ST


Intuition:

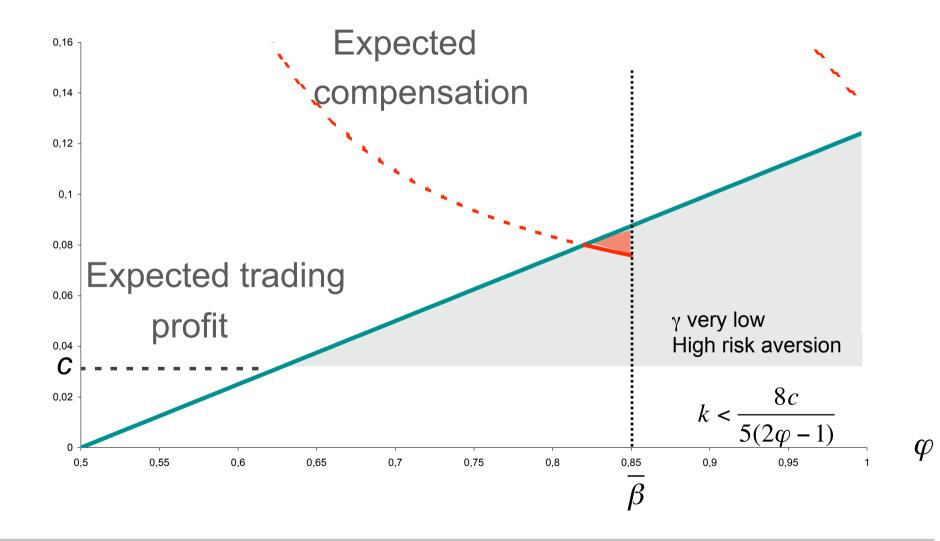
- A large bonus needs to be paid to incentivize the fund manager
- Because of risk aversion, paying the entire bonus at one period is costly
- Smoothing the bonus between t=3 and t=2 mitigates the impact of risk aversion

Implication: ST compensation can be necessary to induce LT information acquisition


Risk aversion and short-termism



Risk aversion and short-termism



Risk aversion and short-termism

1) Cost of information acquisition compared to trading profit

2) Agency rent due to moral hazard

3) Feedback effect of future fund managers' decisions

 \Rightarrow 1) and 2) decrease with φ

 \Rightarrow 3) Increases with ϕ

- Non monotonic relation between LT information acquisition and information precision:
 - Prediction: more LT information for very innovative or very mature industries

- Non monotonic relation between managers' expected wages and information precision:
 - Wages should not necessarily decrease with information precision

Impact of moral hazard

Moral hazard and information acquisition

- MH reduces LT information and increases ST information
- Prediction: less LT information when less proprietary trading

- Moral hazard and price efficiency
 - MH reduces price efficiency at dates 1 and 2
 - Prediction: less price efficiency when less proprietary trading

Feedback effect more likely when markets are illiquid

- More short-termism when investors anticipate illiquidity in the future
- More long-term information into price in developed markets compared to emerging, illiquid markets

- Study how a long-term investor can provide incentives to a risk averse fund manager
- Short-termism arises in equilibrium because of:
 - Moral hazard
 - Negative externality across investors over time through market efficiency
- Implications concerning: timing of information acquisition, fund managers' wages, and price efficiency according to the market structure
- Next step is social welfare: cost of short-termism?

Risk aversion and expected compensation

• Assume that the fund manager is not very risk-averse

$$k \geq \frac{8c}{5(2\varphi-1)}$$

• The expected compensation is:

$$E(R) = \frac{2\varphi c}{2\varphi - 1} \ \forall \varphi$$

Risk aversion and expected compensation

• If the fund manager is more risk averse

$$k < \frac{8c}{5(2\varphi-1)}$$

• The expected compensation is:

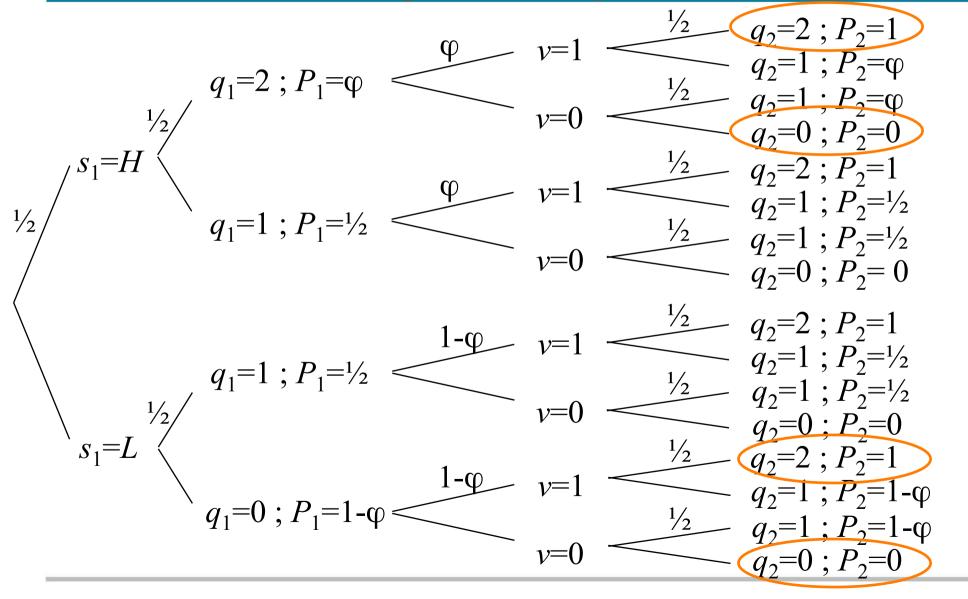
$$\text{if } \varphi \leq \overline{\beta} \begin{cases} E(R) = \frac{2\varphi c}{2\varphi - 1} \text{ if } k \geq \frac{8c}{6(2\varphi - 1)} \\ \\ E(R) = \frac{1}{\gamma} \left(\frac{2\varphi c}{2\varphi - 1} - \frac{\varphi}{4} 6k(1 - \gamma) \right) \text{ if } k < \frac{8c}{6(2\varphi - 1)} \end{cases}$$

if
$$\varphi > \overline{\beta}$$
, $E(R) = \frac{1}{\gamma} \left(\frac{2\varphi c}{2\varphi - 1} - \frac{\varphi}{4} 5k(1 - \gamma) \right)$

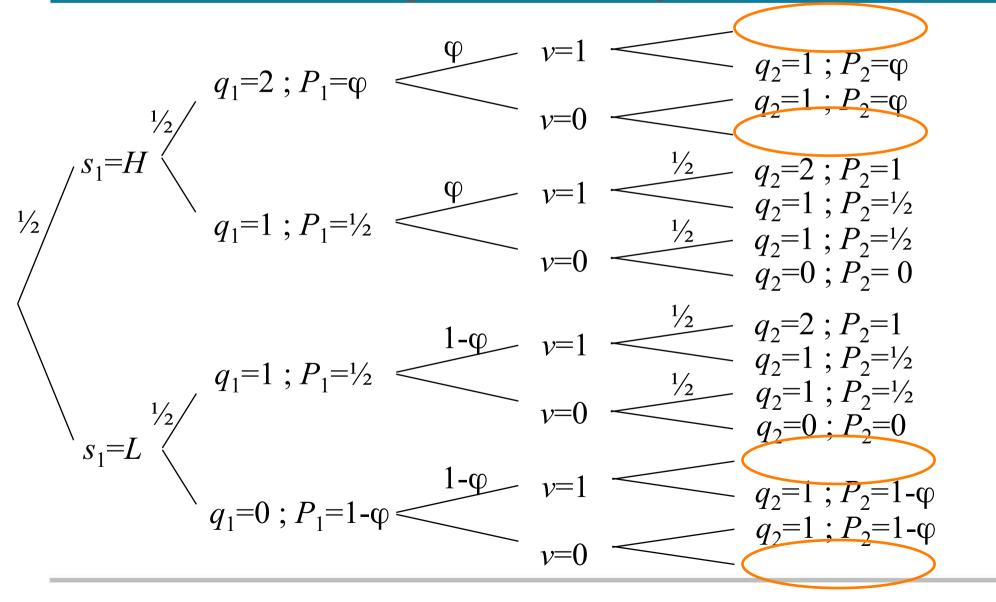
• Incentive to buy after observing a high signal: IC_H^1

$$E_e\left(\sum_{t=1}^3 U\left[R_t^1\left(q_m^1=1\right)\right]\middle|s_1=H\right) \ge E_e\left(\sum_{t=1}^3 U\left[R_t^1\left(q_m^1=0\right)\right]\middle|s_1=H\right)$$

• Incentive to exert effort: IC_e^1


$$\Pr_{e}\left(s_{1}=H\right)E_{e}\left(\sum_{t=1}^{3}U\left[R_{t}^{1}\left(q_{m}^{1}=1\right)\right]\right)+\Pr_{e}\left(s_{1}=L\right)E_{e}\left(\sum_{t=1}^{3}U\left[R_{t}^{1}\left(q_{m}^{1}=0\right)\right]\right)-c \ge \max_{q_{m}^{1}}E_{ne}\left(\sum_{t=1}^{3}U\left[R_{t}^{1}\left(q_{m}^{1}\right)\right]\right)$$

Delegation in the long-run


Outcomes when manager 2 is always offered a contract: $\varphi \leq \beta$

Delegation in the long-run

Outcomes when manager 2 is not always offered a contract: $\varphi > \beta$

