Towards Greener Economies: Does Financial Development Mitigate CO_2 emissions ?

A. Desroziers

Introduction	
Research Question	
Litterature Review & Contribution	
Data & Empirical Strategy	
Conclusion	Green finance
Introduction	

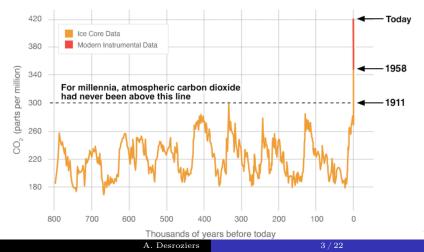
- Defining the best response to fight Climate Change is one of the most important current policy issues
- Despite the COPs, the Kyoto Protocol, Earth Summits, the Paris Agreement (2016)... GHG are still increasing

 Introduction
 Anthropogenic pollution

 Research Question
 CO₂ Emissions

 Litterature Review & Contribution
 Temperatures projections

 Stylized Fact
 Scenarios reducing emissions


 Data & Empirical Strategy
 Green Investment required

 Results
 Government green expenditure

 Conclusion
 Green finance

Anthropogenic pollution

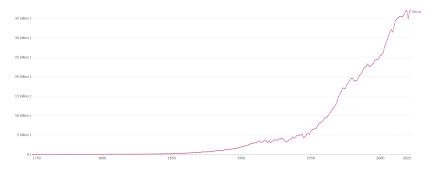
 CO_2 atmospheric concentration over 800,000 years (NOAA, 2024)

 Introduction
 Anthropogenic pollution

 Research Question
 CO2 Emissions

 Litterature Review & Contribution
 Temperatures projections

 Stylized Fact
 Scenarios reducing emissions

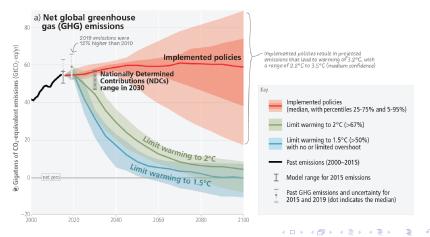

 Data & Empirical Strategy
 Green Investment required

 Results
 Government green expenditure

 Conclusion
 Green finance

Rising CO_2 emissions

Carbon emissions from 1750 to 2022 (GCP, 2024)

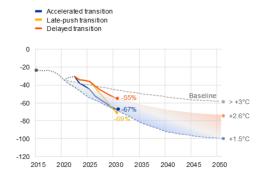

A. Desroziers

æ

Anthropogenic pollution CO_2 Emissions **Temperatures projections** Scenarios reducing emissions Green Investment required Government green expenditure Green finance

Failure to mitigate CO_2 emissions

GHG emissions projections (IPCC, 2023)


A. Desroziers

5/22

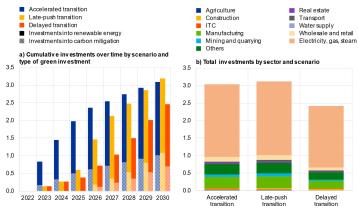
 $\begin{array}{c|c} \mathbf{Introduction} \\ \mathbf{Research} \\ \mathbf{Question} \\ \mathbf{Litterature Review} \& \operatorname{Contribution} \\ \mathbf{Stylized Fact} \\ \mathbf{Data} \& \operatorname{Empirical Strategy} \\ \mathbf{Results} \\ \mathbf{Conclusion} \end{array} \begin{array}{c} \operatorname{Anthropogenic pollution} \\ \mathcal{CO}_2 \\ \mathbf{Emissions} \\ \mathbf{Scenarios reducing emissions} \\ \mathbf{Scenarios reducing emissions} \\ \mathbf{Government green expenditure} \\ \mathbf{Green finance} \end{array}$

Scenarios reducing GHG emissions in Europe

EU GHG emission réductions in three scenarios (in %)

Source : ECB (2023)

A. Desroziers


I ∃ →

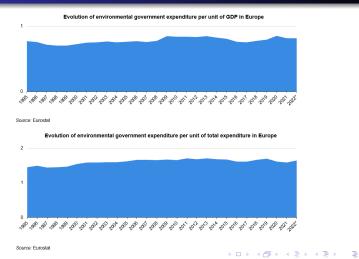
Introduction

Research Question Litterature Review & Contribution Stylized Fact Data & Empirical Strategy Results Anthropogenic pollution CO_2 Emissions Temperatures projections Scenarios reducing emissions **Green Investment required** Government green expenditure Green finance

Green investment required in Europe

(EUR trillions)

Source : ECB (2023)


A. Desroziers

7/22

-

Introduction	
Research Question	
Litterature Review & Contribution	
Data & Empirical Strategy	
	Government green expenditure
Conclusion	

Share of government environmental expenditure remains constant over time

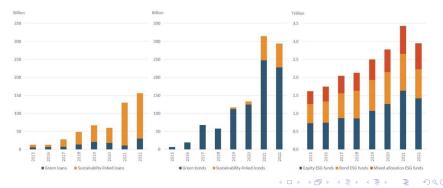
A. Desroziers 8 / 22

 Introduction
 Anthropogenic pollution

 Research Question
 CO₂ Emissions

 Litterature Review & Contribution
 Temperatures projections

 Stylized Fact
 Scenarios reducing emissions


 Data & Empirical Strategy
 Green Investment required

 Results
 Government green expenditure

 Conclusion
 Green finance

Green finance is expanding

Sustainable bank lending and sustainable capital market financing in Europe (outstanding amount in EUR billion and AUM in EUR trillion (EBA, 2023)

A. Desroziers

9/22

Research question

• Does financial development help mitigate CO_2 emissions? \rightarrow I assess the relationship between financial banking and market development and CO_2 intensities at country and industry level

Two mecanisms

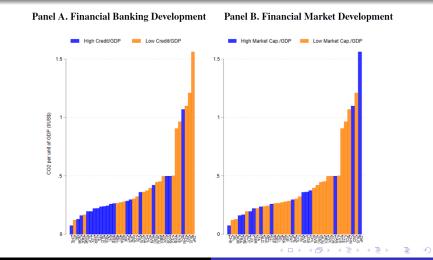
1 Financial Development \rightarrow decreasing CO_2 intensity :

- Financial Development can facilitate the adoption of greener and less energy intensive technology.
- Financial development can establish strong corporate governance and the generation of both reputational and financial benefits, to initiate sustainable projects.

2 Financial Development \rightarrow increasing CO_2 intensity :

- Financial development promotes economic growth through risk diversification and technological advancement, which subsequently raises energy consumption.
- Financial development allows both households and firms to access affordable credit and funds, enabling the purchase of energy-intensive equipment by households and the expansion of business operations with energy-intensive equipment by firms.

Introduction Research Question Litterature Review & Contribution Stylized Fact Data & Empirical Strategy Results Conclusion	Litterature review Contribution
Litterature review (1)	


- Negative effect of financial development :
 - Tamazian et al. (2009) examine BRIC countries from 1992 to 2004.
 - Shahbaz et al. (2013, 2015, 2018) provide case study analysis of France, South Africa and Malaysia.
- Positive effect of financial development :
 - Shahbaz et al. (2015, 2016) provide case study analysis of India and Pakistan.
 - Acheampong (2019) examine 46 sub-Saharan Africa countries from 2000 to 2015.

- Not significant effect of financial development :
 - Abbasi and Riaz (2016) focus on Pakistan fom 1971–2011. They find no significant effect of financial development on CO_2 emissions per capita.
 - De Haas and Popov (2022) focus on 48 countries from 1990–2015. Financial development tends to have no impact on CO_2 emissions and Financial structure (market-oriented) reduce pollution.
- Non linear effect of financial development :
 - Kim et al. (2020) focus on 86 developing and advanced countries from 1989 to 2013. Financial development and CO_2 emissions are inverted U shaped and Financial structure and CO_2 emissions U shaped.

- First study to examine simultaneously the effect of financial banking (Credit/GDP) and market development (Market Cap./GDP) on CO₂ intensities
- Examine financial development effect at both the country and industry level
- First study to find that financial banking development is carbon mitigating and financial market development carbon increasing

Financial development and CO_2 emissions per unit of GDP (1995-2019)

A. Desroziers

14/22

Data Empirical Strategy

Data

Country dataset

- Unbalanced dataset covering 38 OECD and BRICS countries from 1995 to 2019
- The data contains information on CO_2 emissions per US\$ of GDP, CO_2 emissions per Capita, market capitalisation per GDP, domestic credit per GDP, market capitalisation per domestic credit, industry share per GDP, renewable energy consumption share to total energy, patent per capita, trade openness per GDP, FDI per GDP.

Industry dataset

- Unbalanced dataset covers 7 industries (WIOD) from 32 OECD and BRICS countries from 2000 to 2014
- The data contains information on CO_2 emissions per US\$ of industry value added

A. Desroziers	
---------------	--

- 4 回 ト - 4 回 ト

Data Empirical Strategy

Country level

Equation (1):

$$\begin{split} \left(\frac{CO_2}{GDP}\right)_{it} &= \beta_1 \left(\frac{Credit}{GDP}\right)_{i,t} + \beta_2 \left(\frac{Market}{GDP}\right)_{i,t} + \beta_3 \left(\frac{Market}{Credit}\right)_{i,t} \\ &+ \beta_4 \left(\frac{Patent}{Capita}\right)_{i,t} + \beta_5 \left(\frac{Industry}{GDP}\right)_{i,t} + \beta_6 \left(\frac{Renewable}{Energy}\right)_{i,t} \\ &+ \beta_7 \left(\frac{Trade}{GDP}\right)_{i,t} + \beta_8 \left(\frac{FDI}{GDP}\right)_{i,t} + \alpha_i + \upsilon_t + \epsilon_{it} \end{split}$$

A. Desroziers

16/22

∃ ⊳

Data Empirical Strategy

Country level

Equation (2):

$$\begin{split} \left(\frac{CO_2}{GDP}\right)_{it} &= \beta_1 \left(\frac{Credit}{GDP}\right)_{i,t} + \beta_2 \left(\frac{Market}{GDP}\right)_{i,t} + \beta_3 \left(\frac{Market}{Credit}\right)_{i,t} \\ &+ \beta_4 \left(\frac{Patent}{Capita}\right)_{i,t} + \beta_5 \left(\frac{Patent}{Capita}\right)_{i,t} * \left(\frac{Credit}{GDP}\right)_{i,t} + \\ \beta_6 \left(\frac{Patent}{Capita}\right)_{i,t} * \left(\frac{Market}{GDP}\right)_{i,t} + \beta_7 \left(\frac{Industry}{GDP}\right)_{i,t} + \beta_8 \left(\frac{Renewable}{Energy}\right)_{i,t} \\ &+ \beta_9 \left(\frac{Trade}{GDP}\right)_{i,t} + \beta_{10} \left(\frac{FDI}{GDP}\right)_{i,t} + \alpha_i + v_t + \epsilon_{it} \end{split}$$

A. Desroziers

17/22

∃ ⊳

Data Empirical Strategy

Industry level

$$\begin{pmatrix} \frac{CO_2}{VA} \end{pmatrix}_{ijt} = \sum_{j=1}^{n=7} \beta_{1j} \left(\left(\frac{Credit}{GDP} \right)_{i,t} * dummy_j \right)$$
$$+ \sum_{j=1}^{n=7} \beta_{2j} \left(\left(\frac{Market}{GDP} \right)_{i,t} * dummy_j \right) + \beta'_2 X_{i,t} + \alpha_i + \delta_j + \upsilon_t + \gamma_{ij} + \epsilon_{ijt}$$

• $X_{i,t}$ is a vector of k observed time-varying exogenous characteristics of country i:

- share of renewable energy to total energy use
- share of industry value added per unit of GDP
- ratio of trade openness per unit of GDP
- logarithm of the total number of patent filed by resident and non-resident per capita
- Time invariant FE : α_i , δ_j and γ_{ij}
- Time variant FE : v_t

Country level Industry level

Conclusion

	(1)	(2)	(3)	(4)
	CO2/GDP	CO2/Capita	CO2/GDP	CO2/Capita
Credit	-0.00062***	-0.00059***	-0.00476***	-0.00331***
	(-3.265)	(-3.362)	(-6.801)	(-4.414)
Market	0.00032***	0.00057***	0.00112*	0.00060
	(2.594)	(4.606)	(1.686)	(0.805)
Structure	-0.00019	-0.00016	0.00008	0.00001
	(-1.250)	(-1.047)	(0.514)	(0.075)
Patent	0.02492***	0.04131***	0.05632***	0.06276***
	(2.976)	(5.067)	(6.091)	(5.857)
Credit*Patent			-0.00056*** (-5.892)	-0.00036*** (-3.676)
Market*Patent			0.00009 (1.207)	0.00000 (0.049)
Industry	0.00442***	0.00740***	0.00494***	0.00745***
	(2.618)	(4.389)	(3.117)	(4.589)
Renewable	-0.01360***	-0.01487***	-0.01296***	-0.01419***
	(-9.064)	(-9.687)	(-8.357)	(-9.063)
Trade	-0.00223***	-0.00221***	-0.00216***	-0.00211***
	(-5.770)	(-5.907)	(-5.583)	(-5.547)
FDI	0.00005 (0.239)	0.00025 (1.082)	-0.00001 (-0.040)	0.00021 (0.944)
GDP		0.75044*** (19.306)		0.77826*** (19.369)
Observations	681	681	681	681

A. Desroziers

æ

Country level Industry level

Conclusion

	CO2/VA		
Agriculture*Market	0.0009 (1.371)	Agriculture*Credit	-0.0025 (-1.257)
Construction*Market	-0.0008 (-1.013)	Construction*Credit	-0.0045*** (-3.629)
Electricity*Market	0.0006 (0.898)	Electricity*Credit	0.0004 (0.382)
Manufacture*Market	0.0010 (1.242)	Manufacture*Credit	0.0044** (2.273)
Mining*Market	0.0003 (0.733)	Mining*Credit	-0.0012* (-1.838)
Service*Market	-0.0001 (-0.281)	Service*Credit	-0.0021** (-2.553)
Transport*Market	-0.0005 (-0.938)	Transport*Credit	-0.0030** (-2.312)
	Renewable	-0.0084*** (-2.749)	
	Industry	-0.0033 (-0.578)	
	Trade	-0.0007 (-0.774)	
	Patent	0.0057 (0.334)	
		Observations	2725

A. Desroziers

< □ < < □ < < □ < < □ < < □
 20 / 22

æ

Conclusion

- Asymmetric effect of financial development on pollution at the country level
 - Financial banking development reduce CO_2 intensity
 - Financial market development increase CO_2 intensity
- Industry level results suggests
 - Financial banking is carbon mitigating in construction, mining, service, and transport industries and carbon intensive in manufacturing industry
 - Financial market development exhibit no significant effect

 \rightarrow Future environmental policy should reconsider the substantial greening impact of banks and reassess the role of financial markets

Research Question	
Litterature Review & Contribution	
Stylized Fact	
Data & Empirical Strategy	
Conclusion	

Thank you for your attention