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Abstract

I develop a growth model in which Al-generated content contaminates the knowledge
commons, creating two nested irreversibilities. A derivative trap arises when recombi-
native output crosses a threshold in the corpus, degrading frontier productivity faster
than talent reallocation or R&D subsidies can offset. A governance trap arises because
the institutional capacity to distinguish frontier from derivative knowledge—epistemic
capital—is itself a depletable stock. In the baseline simulation, the governance trap pre-
empts the derivative trap by roughly nine years, closing the window for effective policy
while measured innovation remains positive. The competitive equilibrium features a
double wedge: frontier knowledge is undervalued and derivative output overvalued,
driving a strict instrument hierarchy in which epistemic investment is a precondition
for governance, which is a precondition for R&D subsidies. The welfare cost of inac-

tion is 6.8% in consumption-equivalent terms.
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1 Introduction

Since Romer [1990], endogenous growth theory has treated knowledge as a net asset. Ideas
accumulate, depreciate, and spill over; the stock may be underprovided, but it is not mod-
elled as self-degrading. Recursive Al training raises that possibility. When generative mod-
els are retrained on corpora that contain their own prior output, the informational content
of the training environment can deteriorate cumulatively and, past a threshold, irreversibly.
Shumailov et al. [2024] document progressive distributional collapse in language models
retrained on recursively generated text; Alemohammad et al. [2023] and Gerstgrasser et al.

[2024] obtain analogous patterns across architectures and modalities.’

What is missing
is a macro framework that translates these regularities into growth dynamics and policy
constraints.

The empirical motivation is no longer conjectural. Liang et al. [2025] study 1.1 million
abstracts from arXiv, bioRxiv, and Nature portfolio journals and estimate that by Septem-
ber 2024 LLM-modified content accounts for 22.5% of computer-science abstracts, 18.0%
in electrical engineering, and 7.7% in mathematics, up from a baseline near 2.4% (Ta-
ble 1). Kobak et al. [2025] apply an independent method to 15.1 million PubMed abstracts
and put the 2024 biomedical figure at 13.5%, reaching 40% in some subcorpora. Reading
1 — & as observed data quality, the implied level drops from about 0.975 to 0.775 in com-
puter science over two years. The time path is S-shaped, consistent with logistic diffusion,
and the cross-field ranking is stable—fields with higher Al exposure contaminate faster
(ag > ar in the model). On the evaluative side, best-available Al-text detection accuracy
falls from roughly 0.95 to 0.74 between 2022Q4 and 2024Q2 [Pratama, 2025]; reviewers
contacted per manuscript rise from 4.8 to 6.8 across ASM microbiology journals [Tropini
et al., 2023]; up to 17% of computer-science conference review sentences are themselves
LILM-generated by 2024 [Liang et al., 2024]; and annual retractions pass 10,000 for the
first time in 2023, with a median publication-to-retraction lag of about 550 days [Van No-
orden, 2023, Lei et al., 2024]. None of this identifies the structural system, but it pins down
the signs and timescales the calibration needs.

The model distinguishes frontier knowledge F' from derivative knowledge R. Their
composition defines data quality, Q = F /(F + R). Frontier productivity is increasing in Q:
as derivative material displaces frontier material, the return to frontier effort falls. Below

IShumailov et al. [2024] show that tail information is lost first. Alemohammad et al. [2023] call the
phenomenon “model autophagy disorder.” Gerstgrasser et al. [2024] show that mixing synthetic and organic
data delays but does not prevent collapse.



Table 1: LLM-modification share & (%)

Baseline Post-ChatGPT Growth
Venue Nov 2022 Jun 2023 Dec 2023 Jun 2024 Sep 2024  (pp/mo)
Computer Science (arXiv) 2.3(0.3) 7.6(0.5) 15.4(0.6) 19.2(0.7) 22.5(0.8) 1.19/0.67
Elec. Eng. & Sys. Sci. 2.90.7) 6.8(0.8) 12.2(1.0) 17.8(1.1) 17.9(1.0) 0.90/0.53
Mathematics (arXiv) 2.50.4) 29(0.3) 3904 6200.6) 7.7(0.6) —
Physics (arXiv) 2.6(03) 4.6(0.4) 6.6(0.5 9.5(0.6) 9.7(0.5) —
Statistics (arXiv) 3.000.8) 4.8(0.9) 95014 93(1.2) 13.2(1.6) —
bioRxiv 2.8(0.3) 5.6(0.4) 85(0.5 9.0(0.5 10.3(0.5) 0.57/0.18
Nature Portfolio 3.5(0.5) 3.7(0.5 6.3(0.7) 84(0.79 89(0.6) 0.33/0.33
Pre-ChatGPT mean 2.5 — — — — —

Bootstrap 95% half-widths in parentheses. Growth: average monthly increase in 2023H2/2024H1. From Liang et al. [2025] data.

a threshold Q' the economy enters a derivative trap—frontier innovation contracts and the
derivative share rises endogenously. Conventional R&D subsidies cannot restore growth
once the economy is deep enough in this region. Data governance can prevent entry, but
the required screening intensity rises with Al capacity.

The derivative trap is not, however, the first constraint that binds. The capacity to
distinguish frontier from derivative knowledge is itself a productive input. I model it as
a stock of epistemic capital &, which depreciates and must be replenished using scarce
labour and clean training data. As Q falls, evaluators trained on contaminated corpora make
more errors. Below &, governance becomes ineffective: no feasible screening technology
can restore Q above Q7.2 Under laissez-faire, & crosses &' years before Q crosses QF,
closing the policy window while standard innovation indicators still look benign. The
same mechanism implies systematic misclassification of derivative output as frontier when
& is low, so measured innovation can stay positive even as the effective knowledge base
degrades.

To my knowledge, no growth model treats evaluative capacity as an endogenous state
variable. In the sociology of science, evaluative infrastructure is analysed as a durable
institutional stock [Alasuutari et al., 2016, Fochler et al., 2016]; in economics, a large liter-
ature studies scientific incentives and evaluation [Dasgupta and David, 1994, Ellison, 2002,
Stephan, 2012, Manso, 2011]. The object formalised here—a stock governing how effec-

tively the innovation system filters and canonises claims—does not have a close analogue

ZEpistemic capital has a public component Spub (peer review, shared benchmarks) and a private component
Spriv (proprietary detection tools). Competitive equilibrium underprovides &y, because it is nonexcludable.
Section 7.4 varies excludability and traces the boundary of the governance trap.



in growth theory.

The two traps interact to discipline policy. Epistemic investment is a prerequisite for
governance, and governance for making R&D subsidies productive. Skipping steps wastes
resources: subsidising frontier effort when evaluative infrastructure is degraded mainly
finances derivative production that cannot be separated from genuine novelty. The mecha-
nism is a double wedge in shadow prices. The planner values frontier knowledge above the
market price (each unit of F raises Q) and derivative knowledge below it (each unit of R
degrades Q), with both gaps widening as A grows (ag > ar). The competitive equilibrium
features too little frontier effort and too much derivative activity, and the gap increases
along the laissez-faire path. Heterogeneous researchers sort endogenously; Al raises the
return to recombinative tasks and draws talent from the frontier. Raising frontier headcount
alone does not help if the data environment continues to deteriorate.

The model is calibrated to the observed contamination trajectory, the decline in de-
tection accuracy, and peer-review strain (Section 7). Laissez-faire implies a welfare loss
of about 6.8% CEV, driven by a persistent reduction in frontier growth. Delay costs are
convex, with a kink near the governance-trap crossing.

The paper connects to several literatures. Semi-endogenous growth theory [Romer,
1990, Jones, 1995, Kortum, 1997, Bloom et al., 2020] treats the knowledge stock as ho-
mogeneous; here, quality and effort are not substitutable because researcher productivity
depends on the composition of the data environment. The Al-and-growth literature [Aghion
et al., 2018b, Acemoglu and Restrepo, 2018, 2020, Jones and Tonetti, 2020, Trammell and
Korinek, 2024, Jones, 2026] models Al as raising productivity against a fixed informational
substrate; endogenising data quality turns the outcome into a race—trap dichotomy that de-
pends on governance. Cong et al. [2021] study data-driven growth with privacy trade-offs
but treat data quality as given; Chung and Veldkamp [2024] survey data in macroeconomics
more broadly.

Closest in spirit, Farboodi and Veldkamp [2025] study a growth environment in which
firms accumulate transaction-generated data as an intangible state variable that improves
forecast precision and, through that channel, production performance. Their core mecha-
nism is a data feedback loop: higher output generates more data, which improves predic-
tion, raises productivity, and induces further output. In the baseline model, however, data
accumulation by itself does not deliver sustained long-run growth, because the gains from
prediction are ultimately bounded by irreducible uncertainty; persistent growth requires the

extension in which data enters R&D.



The present paper shifts the focus from data quantity to knowledge quality. The state
variable Q indexes the composition of the knowledge commons rather than the volume of
firm-level data, and the relevant constraint is not a bound on forecast precision but endoge-
nous deterioration of the informational substrate on which frontier research, recombination,
and evaluation jointly depend. The two frameworks therefore share a formally similar self-
reinforcing structure, but they differ in the sign of the aggregate spillover: in Farboodi and
Veldkamp [2025], feedback from data accumulation can support firm growth, whereas here
the analogous feedback amplifies contamination and can generate an epistemic trap.

On talent allocation, Murphy et al. [1991] and Hsieh et al. [2019] show that sorting
affects aggregate growth; Al adds a frontier-versus- derivative margin. The informational
commons in which Al and human researchers operate is subject to congestion and degra-
dation, a structure familiar from Ostrom [1990]; irreversibility arguments in Dasgupta and
Heal [1974] carry over when the stock at risk is the knowledge base rather than a physical
resource.’

The analysis makes epistemic capacity part of the state. Four contributions follow.

First, epistemic capital enters growth theory as an endogenous state variable.

Second, the two-trap architecture—a derivative trap nested inside a governance trap—
yields a testable timing implication: the binding constraint on long-run growth is evaluative
erosion, and it can bind while conventional innovation indicators remain positive.

Third, the model implies an instrument hierarchy. Epistemic investment must precede
governance, and governance must precede R&D subsidies. The ordering is driven by a
double shadow-price wedge (Ar > Vi, Ag < V), with both gaps widening as Al capacity
grows (Proposition 3.4). The ordering is structural, not a calibration artefact.

Fourth, the mismeasurement corollary (Corollary 5.9) shows that standard growth ac-
counting can overstate frontier innovation when evaluative capacity is low.

Methodologically, the analysis uses Volterra integral equations for the shadow-price
ordering, Nagumo invariance for the trap regions, and Leitmann—Stalford sufficiency for
the planner’s non-convex problem.

The paper proceeds as follows. Section 2 presents the model. Section 3 defines equi-
librium and the planner’s problem. Section 4 derives the derivative trap. Section 5 derives

the governance trap. Section 6 characterises the instrument hierarchy. Section 7 calibrates

3Korinek [2023] surveys generative Al in economic research but treats knowledge-base quality as given.
Goodhart [1984], Lucas [1976], and Akerlof [1970] study erosion of information content when agents adapt
to fixed evaluation rules. Bloom et al. [2020] document that ideas are getting harder to find; Jones [2022]
identifies Al as a potential offset.



and reports quantitative results. Section 8 concludes.

2 The Model

Time is continuous, # > 0. A unit mass of agents supplies one unit of time each period. The
economy produces a final good and accumulates four productive stocks: frontier knowl-
edge F, derivative knowledge R, algorithmic capacity A, and human capital H. Two ad-
ditional stocks govern verification and curation: public epistemic capital &,y and private
epistemic capital &,y The primitive distinction is between frontier content—novel, high-
verification contributions—and derivative content—recombinative output, including syn-
thetic text. Data governance affects the composition of usable content by screening and

reclassification; it does not represent the physical creation of new frontier ideas.

2.1 Knowledge production

The economy produces two knowledge stocks. Frontier knowledge F(¢) records contribu-
tions that expand the feasible set of subsequent research tasks. Derivative knowledge R(7)
records recombinative output produced from existing material.* Both stocks depreciate at
constant rates:

F = ApD(Q)AY (Qr H) ™ F — 8¢ F, (1)

R= AgA“ ((p H) ™R — G& R, )

where Ar,Ag > 0 are scale parameters, H is aggregate human capital, Qf is quality-
adjusted frontier talent (Section 2.2), ¢ is the net productive derivative labour share (after
deducting private evaluative effort; see Table 2), A is algorithmic capacity (Section 2.1.3),
and D(Q) is the erosion function (Section 2.1.2). The asymmetry ag > ar allows Al to

raise the productivity of recombination more than that of frontier work. I impose OF < 0.
Assumption 2.1 (Homogeneity). o +& = 1.

Remark 2.2. Assumption 2.1 removes the level effect of F' in frontier growth. Dividing
(1) by F yields gr = ApD(Q)A% (QpH)* FS~! — §¢; under op + & =1, F&~1 = F~%F

“The frontier/derivative distinction parallels the boundary in Weitzman [1998], where new ideas arise
from combining existing ones, but genuine novelty requires drawing from an external pool. In the present
model, Al systems recombine but do not access the external pool; the corpus quality Q measures what fraction
of the pool remains uncontaminated.



and the frontier term depends on the ratio (QQrH /F)% . This is the Jones [1995] channel:
frontier growth is pinned down by talent quality, data quality, and Al augmentation—but
not by the cumulated stock itself.> Under o + & > 1, frontier knowledge is self-seeding
and the trap dissolves; the assumption is conservative. Appendix H characterises the BGP
and shows that, under the calibrated Al feedback, no interior BGP exists in competitive

equilibrium.

2.1.1 Final goods production

Competitive firms produce output using a CES aggregator:

[}
61 6—1 -1
Y

Y= |ay (A%F) 7 +(1—ay)(HR) ? 3)

with 6 > 1 and ay € (0,1). Algorithmic capacity enters both knowledge accumulation
((1)-(2)) and downstream commercialisation ((3)).® Competitive prices satisfy pr = dY /dF
and pr = dY /JR.

2.1.2 Data quality and erosion

Define corpus quality as the frontier share of the aggregate stock:

o(r) = FO) + R e (0,1]. 4)

Frontier productivity is attenuated by an erosion function D : [0, 1] — [D, 1],
D(Q) = D+(1-D)Q°, c>0, Deo,1), &)

so D(1) =1 and D(0) = D. The parameter D captures non-corpus sources of frontier pro-

ductivity (direct observation, interpersonal exchange); all results below allow D > 0 up

>The BGP growth rate g* = oz (1 — @)gy /[ar (1 — ®) — arVv] (Appendix H) depends on human-capital
growth gy as in semi-endogenous growth theory. The contamination channel through D(Q) thus becomes
the binding margin.

The restriction @ > 1 ensures uniqueness of the static equilibrium (Appendix G). Under gross substi-
tutability, scarce frontier knowledge commands a higher relative price, pulling talent toward the frontier
through the Roy mechanism—a negative feedback that delays the trap but cannot prevent it. Under 6 < 1
the feedback reverses. Labour allocations affect stock accumulation rates, not contemporaneous output, as in
Romer [1990] and Jones [1995]; the direct resource cost of governance enters through I'(g), deducted from
consumption (C =Y —I'(g)).



to the bound derived in Section 4. If D = 1, contamination is costless and no derivative
trap can arise. The channel through D(Q) is the key departure from Farboodi and Veld-
kamp [2025], who model data as homogeneous signals of fixed precision; there, growth is
bounded because forecast accuracy saturates. Here, growth is bounded because the infor-
mational substrate degrades endogenously: the effective return to data depends not on how

much data exists but on what fraction of it is genuine.’

2.1.3 Algorithmic capacity

Algorithmic capacity accumulates from derivative content:
A Z‘UARVACO—SAA, (6)

with v,® € (0,1) and 84 > 0. The condition ag > ar together with (6) creates a pos-
itive feedback: more derivative output raises R, which raises A (training data), which
augments derivative productivity, which raises R further. The self-reinforcement index
S = agv/[(1 — &)(1 — ®)] measures round-trip amplification; when & > 1, no interior
balanced-growth path exists under laissez-faire (Appendix H).® Appendix F verifies that an
alternative flow formulation (A = uy (RT)VA® — §4A) yields identical qualitative results.

2.2 Talent allocation

Labour is allocated across four activities. Table 2 collects the notation; Figure 1 provides a
schematic.

A unit mass of workers divides into education (¢gy) and research (1 — /y). Among
researchers, ability z is drawn from a Pareto distribution with shape { > 1 and lower bound
z>0:

Pr(z > x) = <§>C , x>z (7)

Each researcher sorts into frontier or derivative work via the Roy indifference condition

(Section 3): types z > 7 enter frontier work, types z < Z enter derivative work. The Pareto

7A Fréchet microfoundation delivers the functional form: if each item’s novelty is drawn from a Fréchet
distribution with shape k& > 0, the productivity multiplier from sampling n items of which fraction Q is
uncontaminated is Q'/¥; setting & = 1 /k recovers (5). See Appendix A.1. The empirical evidence on model
collapse [Shumailov et al., 2024, Alemohammad et al., 2023] disciplines the curvature o € [1,3].

8If ap < ar, the loop breaks: rising A raises gr faster than gg, compositional drift reverses, and Q rises
endogenously. The condition ag > ar reflects that current Al systems excel at pattern recombination rather
than open-ended hypothesis formation [Aghion et al., 2018a].



Table 2: Labour allocation across activities

Symbol  Activity Eq. CE Planner

fy Education (12) Exogenous Control

g (2) Frontier research (1)  Roy sorting atz Control (¢r)
7R(2) Derivative research 2) l1—-mp—fy—Ls Residual

Le Public evaluation (13) 0 (public good) Control

or Private evaluation (14)  Bgmg (firm) —

lr Net derivative labour (2)  (1-6¢)mg Control

Qr(2) Frontier talent (derived) (1)  Ability-weighted integral; see (10)

tail gives the frontier participation rate:

AN

¢
) ; ®)

ar(z) = (1—ly) [1 - (;/z)ﬂ. )

7 (2) = (1—@)(

with derivative participation

A fraction ¢ of derivative workers is diverted to private evaluative effort (Egmriv = Og7R),
leaving (g = (1 — 6 )mg as the net productive input in (2).
The quality-adjusted frontier talent input Qf integrates ability raised to ¥ over the
frontier pool:
s

o0 ¢
Qr(@) = (1—t) [ Erdz = (1—tu) 252 (10)

where yr € (0,{) and the integral converges because 1+ < { (Assumption 2.4(ii)).?
The key comparative static is:

Q
il A (YF—C)?F <0 (since yr < §). (11)

A rise in Z removes the lowest-ability frontier researchers (selection effect) but also shrinks

9 An analogous integral defines derivative-sector effective labour Qg (Z) = (1 —£g) 25 /(& —yr) 2% ¢ with
Yr < vr. Since Y < Vr, frontier production is more ability-sensitive—the comparative-advantage structure
of the Roy model. Public evaluative labour /¢ enters the planner’s clearing condition but vanishes in CE
(Proposition 3.2(i)), reflecting the public-good externality.



the frontier pool (mass effect). Under yr < {, the mass effect dominates. '°

2.3 Human capital

Human capital accumulates via a Lucas [1988]-Uzawa [1965] specification:
H=2yP"H—5,H, (12)

where ¢ is the education share, By € (0,1), Az > 0, and 0y > 0. Human-capital accumu-

lation is independent of Q; making Ay load on corpus quality would tighten the trap.'!

2.4 Epistemic capital

Definition 2.3 (Epistemic capital). &(r) € [0, 1] is the aggregate evaluative capacity—the
ability to distinguish frontier from derivative knowledge, normalised so that & = 1 denotes

perfect discrimination and & = 0 denotes none.'?

Epistemic capital decomposes as & = &pup + Spriv.  Public epistemic capital encom-
passes shared benchmarks, peer-review standards, and public detection tools (nonexclud-
able). Private epistemic capital encompasses proprietary detection infrastructure (partially

appropriable). The accumulation equations are:

nab = A2 0¥ Do (Q) — 85(9) Epubs (13)
bnviy = A2V VN6 D () — 82 () By, (14)

where /¢ is public evaluative labour, Kiffiv is aggregate private evaluative investment, Ds(Q) =
0%, @ =1—Q, and 6¢(9) = 0s,0+ Og,1¢ With 651 > 0. Private depreciation takes the
same affine form.

Two features drive the governance trap. Replenishment loads Q°¢: evaluators trained

on contaminated corpora develop contaminated judgement, so at os = 0 the governance

10Under Yr > &, the selection effect dominates; a brain drain raises QF, reversing the talent-drain channel
and dissolving the derivative trap.

"Contaminated textbooks or Al tutoring systems trained on derivative material would open an additional
channel through which falling Q erodes the talent base. The present specification is conservative.

2The signal-detection microfoundation in Appendix A.2 maps a raw precision parameter (inverse noise
variance) to the hit rate s(&) = ®_y (A(&)/2); the model works with the normalised index throughout.

10



trap dissolves. Depreciation rises with ¢: a higher volume of derivative content over-
whelms evaluators, so at d¢ | = 0 the temporal-precedence result weakens.

In competitive equilibrium (¥ = 0 while gl;{iv,CE >0

2.5 Data governance

A governance technology screens corpus content and reclassifies verified derivative mate-
rial as frontier-certified, effectively transferring stock from R to F. Governance intensity
q € [0, 1] parameterises the fraction screened. Screening accuracy s(&) is increasing and
strictly concave in &; the false-positive rate f(&) = 1 —s(&) is decreasing.!®> Under gov-

ernance, the laws of motion for F and R become

F = ApD(Q)AY (Qr H) ™ F® — 8p F 4+ ¢s(8) kR, (15)
R = AgA“ ((rH) ™R — §x R — g5(&) KR, (16)

where kK > 0 is the reclassification rate. The total corpus F' 4 R evolves through production
and depreciation alone; governance redistributes content between stocks without creating
or destroying knowledge.

In the presence of governance, F is best read as the high-integrity corpus: material
whose provenance is verified. Governance adds material by certifying derivative content
that passes screening; reclassification does not create novelty.!

Differentiating Q = F /(F + R) and substituting (15)—(16) yields

0=0(1-0) ("™ — g +q-5(&) - k- (1-0), 17)

where g7 g denote the non-governance growth rates.'S The first term captures com-

positional drift; the second captures active screening. Under laissez-faire (g = 0), (17)

3The functional form admits a signal-detection microfoundation (Appendix A.2). An evaluator observes
y=0-+¢, &~ .4(0,1/&); the sensitivity index A(&) = |ur — Ug|V/& yields s(&) = @ 4 (A(&)/2), strictly
concave for all & > 0. A base-rate shift from rising ¢ depresses the positive predictive value, disciplining
O¢ (@) increasing in ¢. Retraining on a contaminated corpus (Q < 1) reduces effective sensitivity to Q- A(&);
this O-dependence is absorbed into the reduced form Dg(Q) = Q°¢.

14 An alternative formulation with a separate “excluded” stock X would add a state variable without chang-
ing the qualitative dynamics, since D(Q) depends only on the ratio of trusted to total corpus. If governance
misclassifies frontier work as derivative (false positives), aggressive screening at low & damages the frontier;
the specification s(&") implicitly nets out false positives.

SExplicitly: Q = (FR—FR)/((F +R)?). The governance transfers +¢skR in F and —gs kR in R con-
tribute gskR(R+F)/(F +R)? = gsk (1 - Q).

11



reduces to 0 = (1 — Q) (gr — gr).

2.6 Regularity assumptions

Assumption 2.4 (Parameter restrictions). (i) ag > ar.

(i) yr < ¢.

(iii)) og > 0.

(iv) 051 >0.

(v) D<D.

(vi) AR™ /88 < 1.
(vii) Along calibrated CE and planner paths, &,ub(¢) + &priv(f) < 1 (verified numerically).
(vii)) g7 >00n9.7.19

Each restriction activates a specific model channel. Conditions (i1)—(i1) generate the
compositional-drift and talent-drain mechanisms; (iii)—(iv) generate the governance trap
and temporal precedence; (v) ensures the trap region is nonempty; (vi) prevents private
epistemic investment from substituting for public infrastructure. Reversing any of (i)—(iv)
dissolves the corresponding trap channel; Appendix A.2 provides further discussion of the

epistemic-capital domain conventions.!”

Assumption 2.5 (Frontier boundedness). F(t) > F > 0 for all 7 € [0, T], any finite 7.

Under maximal erosion and zero investment, F' declines exponentially at rate 6y and reaches
zero only asymptotically. The assumption disciplines the regularity of the barrier functions
Q" and &T—both involve division by F 1-¢__and places the vector field within the scope

of the Nagumo and Picard-Lindel6f theorems.

2.7 Labour market clearing

The total labour endowment is normalised to unity. In competitive equilibrium, public eval-

uative labour vanishes by epistemic neglect (Proposition 3.2), giving the clearing condition

7TF(2> + 7'L'R(Z> + g = 1. (18)

16 At calibration, g®® = AgA“ ((gH)®** R%~! — 8. Although &g < 1 implies R% ! — 0 as R — oo, the R—
A feedback with & = agv/[(1 — &)(1 — ®)] > 1 ensures A grows fast enough to keep AgA% ({zxH )% R~
bounded away from zero along equilibrium paths. Lemma G.5 verifies this formally.

17The screening accuracy s(&) = ®_y (cv/&) is well-defined on [0,). Under CE, &y, decays monotoni-
cally (/SF = 0); under the planner, the replenishment-depreciation balance limits steady-state levels.

12



Private evaluative investment is financed within the derivative sector: each firm diverts
fraction 6; of its workforce from production to proprietary detection, accumulating a firm-
level detection stock e;. Certified output commands price pr; = pr(1 + Keerte;), so each
firm internalises its own certification benefit. In symmetric equilibrium 6; = 0, for all i,
giving aggregate private epistemic labour Kgfiv = B¢ - mg(Z), with B¢ chosen to maximise
instantaneous certification revenue net of diverted labour. The net productive derivative
labour entering (2) is £g = (1 — 0¢)7g(Z).

The planner sets all labour allocations directly:
bp +Ulgr + Ll + by = 1, (19)

where (F replaces 7r(Z) and ¢ replaces (1 — 6¢)7g(Z).

The correspondence between labour shares and the production functions (1)—(14) is:

Production function Labour input Meaning

Frontier F, eq. (1) Qr(2) Quality-adjusted talent (not a raw share)
Derivative R, eq. (2) lg=(1—6g)mg Net productive derivative labour

Public epistemic 5pub, eq. (13) Lg Public evaluative effort (= 0 in CE)
Private epistemic <§"priv, eq. (14) sz,riv = Ogmg Diverted from derivative sector

Human capital H, eq. (12) Ly Education share

2.8 State space

The state vector is
X(t) = (F,RaAaHyéDpub;@@priv) € Ri+ X R%_

The planner chooses (g, ¢, g, s, x); in competitive equilibrium, Z and 6, are determined
by the static equilibrium map (Proposition G.3). Time is continuous; the horizon is infinite;
all agents discount at p > 0.

Figure 1 collects the model’s stocks, flows, and feedback channels into a single schematic.

3 Competitive Equilibrium and Social Planner

The decentralised equilibrium exhibits four distortions: frontier knowledge is undervalued,
derivative output is simultaneously overvalued, data quality is unpriced, and epistemic cap-
ital is neglected (Proposition 3.4). The first two form a double wedge that widens as Al

13



screen

0 =F/(F+R)

Frontier F Derivative R

Human cap\ H

Figure 1: Model structure. Solid boxes: state variables. Dashed boxes: policy instruments
(=01in CE). Red dashed: R-A loop. Blue: quality-dependent channels. Green: governance
channel.

capacity grows: the market pays too little for frontier effort and too much for derivative
production, because no agent internalises the quality externality dQ/dF > 0, dQ/dR < 0.
Together these push the economy toward the governance trap along a path that appears
efficient by standard metrics.

The primitives are the state vector x(t) = (F,R,A,H, &b, Spriv) € Ri 4+ %[0, 12 and
initial condition xg, both defined in Section 2.8. The objects D(Q), Dg(Q), and d2(¢@)

depend on aggregate Q (recall ¢ = 1 — Q); atomistic agents take these as given.

3.1 Definition of competitive equilibrium

Since the model has no physical capital, the competitive equilibrium is a sequence of in-
stantaneous equilibria: at each t, knowledge-service prices clear the market, Roy sorting
determines talent allocation, and the private detection share 6, solves a static certification
FOC. Intertemporal trade-offs arise only through stock accumulation; the welfare com-
parison with the planner enters through the planner’s dynamic optimisation problem (Sec-
tion 3.2).

The final good is numéraire. Let pr(t), pr(t) be rental prices of frontier and derivative
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knowledge services, and let w;(z,7) = p;(t) z%/A(t)* be the wage in sector j € {F,R} for
ability z.

Definition 3.1 (Competitive equilibrium). Given X and a policy process {g(t),ls(t) }1>0
(set to zero under laissez-faire), a competitive equilibrium is an allocation {C,Z, 0¢, g, X}

and prices {pr, pr} such that, for all > 0:

(i) Final-goods firms maximise static profits: pr = dY /dF, pr = dY/dR, with Y given
by (3).

(ii) Researcher sorting. Each researcher chooses the activity maximising w;(z,¢). A cutoff

Z(t) satisfies wr(Z) = wg(Z); types z > Z enter the frontier, types z < Z enter derivative work.

(ii1) Private epistemic investment. Each derivative-sector firm chooses a detection share
0s(t) € [0,1] to maximise instantaneous certification revenue net of diverted labour. Be-
cause firms are atomistic, each takes the aggregate stock &y as given; the stock evolves

mechanically from (14) under the aggregate allocation E%riv = O TR,

(iv) Household. The representative household maximises [, e P'u(C)dr with CRRA util-
ity u(C) = C'""/(1 —n). Under laissez-faire, C(t) = Y(t); under governance, C(t) =
Y(t) = T(g(7)).

(v) Market clearing and dynamics. Labour-market clearing (18) holds; x(¢) follows the

laws of motion (1)—(14) under the equilibrium allocation.

The equilibrium is inefficient for three reasons. Sector choice affects 0, which enters
D(Q) and Dg(Q); no agent internalises this (composition externality). Public epistemic
capital is nonexcludable, so /CF = 0 (epistemic externality). And governance is a public
good, so ¢°F = 0 (governance externality). The three are dynamically coupled: the compo-
sition externality erodes Q, which degrades &y, through the epistemic externality, which
disables governance. The instrument hierarchy (Proposition 6.1) requires addressing all
three.

Appendix G establishes existence and uniqueness.

3.1.1 Roy sorting

The indifference condition yields

Z(I) — (iF(t) .A(t)aR—aF> YF—TR ‘ 20)



Since ag > ar and Yr > g, rising A raises Z: stronger Al pulls marginal researchers into

derivative work, reducing both 7z and QF.

Proposition 3.2 (Epistemic neglect). In competitive equilibrium: (i) (5F = 0; (ii) €3 w.CE
0, with e@gE solving the FOC equating marginal certification revenue to marginal produc-

tion cost; (iii) qCE =0.

Proof. (i): Nonexcludability of &,ub; the Nash equilibrium in evaluative effort is zero.
(i1): Each derivative-sector firm i accumulates a proprietary detection stock e; by diverting
fraction 6; of its workforce to detection (¢; = 6;TgH"* D (Q) in the static representation).
The certified price for firm i is pg; = pr(1 + Keertei), s0 each firm internalises the return to
its own detection effort. The FOC equating marginal certification revenue (decreasing in
6; by concavity of D#) to marginal production loss has interior solutions when Dg(Q) > 0
and Keert > 0. In symmetric equilibrium, e¢; = e for all i and g’pnv = e mg(Z). (iii): Same

public-good logic as (i). U O

Part (ii) is the partial corrective: derivative-sector firms invest in proprietary detection
because certified output commands a price premium. The private buffer is insufficient
because each firm internalises only its own certification benefit, not the system-wide im-

provement in screening accuracy. '3

3.1.2 Equilibrium dynamics

Under the equilibrium allocations, the state evolves as:

FCE — ArD(Q)A%F (QF(‘) H)™ F% — §fF, 1)
= ARA“ (1 — 05E) g (2) H) " R*k — S8R, (22)
énit = —85(9) &y, (23)

Equation (23) is the critical equation: with €§E = 0, public epistemic capital depreciates
monotonically at a rate that is itself increasing along the laissez-faire path (since ¢ rises).
The decline is self-accelerating: rising @ raises d¢(¢), which erodes &, which (under

positive governance) would reduce screening accuracy, permitting further derivative accu-

I81f the certification premium k..; were large enough, private investment could sustain the evaluative
infrastructure and the governance trap would dissolve—this is the failure mode identified by Assump-
tion 2.4(vi).
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mulation. In competitive equilibrium the screening link is severed (¢ = 0) and the spiral

operates purely through the depreciation channel.

3.2 Social planner’s problem

Definition 3.3 (Planner’s problem). Given X, the planner chooses (q,lr,lgr,ls,ly) to

maximise

W (x0) = rlrll(.e}))(/()w e Plu(C(r))dt, (24)

subject to: (a) C =Y —I'(¢) with T'(0) = 0, " > 0, I > 0; (b) labour-market clearing
lp4+Llr+1Le+ Ly = 1; (c) the laws of motion (15)—(14) (the planner controls g, so the
governance transfer terms are active); and (d) bounds g € [0, 1], ¢; € [0, 1] for each ;.

The planner treats Z (equivalently /f) as a control rather than an equilibrium outcome,
and internalises the dependence of D, D¢, and d¢ on (Q, @).

The planner sets £z > 0 and g > 0; both are zero in competitive equilibrium.!”

3.2.1 Costates and the marginal value of data quality

The current-value Hamiltonian is % = u(C) + ApF + ARR + AMA + AgH + /lgwébpub +
lgwé:’priv, with six states (F,R,A,H,&pp, Epriv) and six costates. Since Q = F/(F +R)
is not a state but enters the right-hand sides through D(Q), Dg(Q), and 8#(¢), the chain
rule generates Q-channel contributions in the Euler equations for Az and Ag. Define the

composite marginal value of data quality:

9oub
90

Yy = a—jf = ;LFD/(Q)

90 | £ R held fixed D(Q)

riv aébriv
+ A5 apQ, (25)

-Gf + /’L(EJUb‘
where Gr = ArD(Q)A% (QpH)* FS is gross frontier production. The first term is the
productivity channel: higher Q raises frontier output through D, with D'(Q)/D(Q) mea-
suring the semi-elasticity of the erosion function; the second and third are epistemic-
replenishment channels (through both D¢ (Q) = Q°¢ and the depreciation rate oz (¢) with
¢ =1—0Q). ¥y is a derived quantity, not a costate; it enters the Euler equations for Ar and
Ag through dQ/dF = R/(F 4+R)? and dQ/dR = —F /(F + R)? (Appendix E.1.1).

19The Hamiltonian is not jointly concave in (F,R) because D" (Q) > 0 for & > 1 (Proposition L.1). Suffi-
ciency is established via the Leitmann—Stalford decomposition in Appendix L.
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The FOC for governance comes directly from differentiating .7# with respect to g: since
governance transfers stock from R to F (equations (15)-(16)), the marginal benefit equals

the costate gap times the transfer rate:
(Ar —Ag)-s(&) - k-R=u'(C)T'(q). (26)

In the decentralised economy, neither the data-quality externality nor the epistemic exter-

nality is priced, so g“% = 0.

3.3 Shadow-price ordering

Proposition 3.4 (Shadow-price ordering). Along any path with @ > 0 and ¢°F > 0: (i) Ar >
Vi > 0; (ii) Wo > 0; (iii) /’Lé’a"b > 0; (iv) Ag S V4 (ambiguous); (v) Ag < Vg whenever A4 > 0.

The proof applies the Volterra fixed-point theorem to the coupled costate system (Ap-
pendix B.1; part (v) in Appendix B.2). Frontier knowledge generates a data-quality ex-
ternality (dQ/dF > 0) and an epistemic externality (higher Q supports & replenishment)
that the planner internalises but atomistic agents ignore. At the calibration, the data-quality
externality accounts for roughly 60% of Ap — V.

Part (v) is the mirror image: derivative knowledge carries a negative quality externality
(dQ/dR < 0) that the market does not price. Because Wy > 0 (part (ii)) and dQ/dR =
—F/(F + R)2 < 0, each additional unit of derivative output depresses data quality and,
through D(Q), frontier productivity. The planner internalises this cost, so A falls below
the market shadow value Vr. The wedge widens as Al capacity grows: higher A amplifies
derivative production through A“® with ag > ar, so the marginal quality damage per unit
of R increases with algorithmic improvement. Parts (i) and (v) together establish a double
wedge: the competitive equilibrium simultaneously undervalues frontier knowledge and
overvalues derivative output, providing the theoretical foundation for a Pigouvian tax on

synthetic content or, equivalently, the derivative tax in Corollary 3.6(a).

Remark 3.5 (Why A4 is ambiguous while Ag is not). Al capacity augments frontier pro-
duction (ar > 0: positive) but also accelerates derivative expansion (ag > ar: negative) and
drains frontier talent (dZ/dA > 0: negative). The sign of A4 — V4 reverses near Ty at the
calibration. Derivative knowledge, by contrast, has an unambiguously negative quality ex-
ternality: dQ/dR < 0 always, with no offsetting frontier channel. The asymmetry reflects
the model’s core mechanism—Al is a dual-use technology whose net social value depends
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on the composition of its output, while derivative content is unambiguously harmful to the

knowledge commons.

Corollary 3.6 (Policy instruments). The planner’s optimum requires three instruments ab-
sent in competitive equilibrium: (a) a frontier subsidy / derivative tax ( KISVP > T (ZCE ));
(b) data governance ( qSP > 0); (c) public epistemic investment ( Egap > 0). Instruments (b)

and (c) are superadditive.

3.4 Comparative statics

Lemma 3.7. Along the competitive-equilibrium path: (i) 7/dA > 0; (ii) dQE /A < 0
for large A; (iii) &éﬁ’g/&r <Oforallt; (iv) go = (1 —Q)(gF — gr), negative when gg > gr.

Proof. Each item follows from differentiation of the equilibrium laws of motion under

(CE =0 and ¢“F = 0. O

3.5 Welfare

The consumption-equivalent variation of the planner’s policy is the constant proportional

increase A in competitive-equilibrium consumption making the household indifferent:
/ e P u((1+A)CEE (D)) dt = W (xo). 27)
0

The competitive equilibrium exhibits three reinforcing distortions: epistemic neglect
(KfE = 0), governance absence (qCE = 0), and invisible erosion—low & inflates the mea-
sured frontier share Q°* (Corollary 5.9), so standard metrics report healthy growth while

the true frontier contracts.

4 The Derivative Trap

Once the frontier share Q falls below a threshold QT, frontier growth turns non-positive and
the decline in Q is self-reinforcing. Non-governance instruments—R&D subsidies, talent

policy, copyright reform—cannot break the invariance.
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4.1 The quality threshold

Definition 4.1 (Quality threshold). The quality threshold QT is the data quality level at

which net frontier growth is exactly zero:

or —DG

/o
<1_‘D>G) , G=ApAT(QpH)*FT (28)

QT(FaHvAng) = (

when the expression is in [0, 1]. Two boundary cases arise:

« If G < 8F (gross productivity cannot offset depreciation even at full quality): Q7 = 1.

The frontier contracts at every Q, so the entire state space lies in the trap.

s If DG > & (the productivity floor sustains growth even at Q = 0): QT = 0. No trap

exists.
The composite G collects the non-quality determinants of gross frontier productivity.

Setting ' = 0in (1) and solving for Q yields (28): below O, the erosion function D(Q) can
no longer compensate for depreciation, so the frontier stock shrinks. The threshold captures
the “ideas are hard to find” phenomenon of Bloom et al. [2020] in a contamination-specific
form: productivity declines not because undiscovered ideas are depleted, but because the
corpus is diluted by derivative content.??

The comparative statics identify policy levers: dQ'/dA < 0 (AI augmentation raises
G, lowering the threshold); dQ'/dQF < 0 (more frontier talent lowers it); dQ"/dD < 0
(a higher productivity floor lowers it); dQ" /dF > 0 when & < 1. Theorem 4.9 establishes
that none suffice without governance.

The productivity-floor bound is
D= 6/G. (29)

At the calibration, D ~ 0.08, evaluated at initial-period values of (A,Qp,H, F); the bound
shifts along the transition path as these stocks evolve. If D > D, QT = 0 and the trap is

empty: the productivity floor alone sustains frontier growth.

20The present model’s analogue of Bloom et al.’s declining research productivity is F/(QpH)% o
D(Q)A“ F §-1. Under Assumption 2.1, the own-stock channel F -1 is absorbed and the contamination
channel through D(Q) becomes the binding margin.
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4.2 The talent-drain channel

Rising Al capacity increases Z, which reduces Q. The total effect of A on Q7 is

dot 90" 90" 9Qr 9z
dA A 0QF 07 O0A°
~—~— .

. NV
direct: <0 talent drain: > 0

(30)

Proposition 4.2 (Rising threshold). The talent-drain channel dominates when oF|yr —
$1/& - (ar —ar) > arp. At the baseline parameters this pointwise condition fails (the di-
rect channel is strong at ap = 0.3), but the cumulative talent drain compensates over the
relevant horizon. I state the forward-invariance theorem under a weaker condition (Con-

dition 4.4) verified computationally.

4.3 Forward invariance

Definition 4.3. The derivative-trap regionis .7 = {x = (F,R,A,H, &pup, priv) € 2 : Q(x) <
Q'(x)}, where Q = F/(F +R) and Q' is evaluated through the static map ®(x) (Ap-
pendix G.1). The set .7 is closed (as the preimage of (—oo, 0] under the continuous function
0-0".

Condition 4.4 (Barrier dominance). On 0.7, the Nagumo barrier V = Q" — Q satisfies
V > 0. Three jointly sufficient bounds are established in Appendix C.2: (C1) compositional
drift ¢(gr — gr) dominates the human-capital deepening term Lorghi™ /o (pointwise on
0.7 ); (C2) the talent-drain channel or|yr — |(agr — ar) /& exceeds the direct augmenta-
tion channel ar (inclusive of the general-equilibrium price adjustment; see Appendix C.2);
(C3) epistemic erosion outpaces replenishment on d.7 (holds trivially under laissez-faire

since EécaE = 0). All three are verified at the calibration.
Theorem 4.5 (Forward invariance). Under Assumptions 2.1-2.5, Condition 4.4, and D <
D, the region 7 is forward invariant: Q(0) < QF(0) implies Q(t) < Q' (¢t) for all t > 0.

Proof sketch. The barrier V(x) = Q" — Q is C' on 9.7 (Proposition C.3). On 9.7, com-
positional drift pins g7"°! < 0 < gh*® (Assumption 2.4(viii)), so Q < 0. Conditions C1-C3
(Appendix C.2) bound Q' from below, delivering V > 0. Nagumo’s theorem (Theorem C.1)
and local Lipschitz regularity (Lemma G.4) close the argument. U 0

Once data quality falls below QF, compositional drift (gr < 0, gg > 0) mechanically
raises the derivative share, further depressing D(Q). The R-A feedback amplifies this. The
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only term in Q that can offset drift is the governance transfer g-s(&) - k- (1 — Q), which

requires g > ¢.. The critical governance intensity is

0t (x) g7 (x)

9e(x, &) = Kks(€)

€1y

the unique value that sets Q =0 on 9.7

Remark 4.6 (Connection to governance feasibility). Setting ¢ = 1 in (31) yields the epis-
temic feasibility threshold of Section 5: g.(x,&) < 1 is equivalent to s(&) > QO gh* /x,
which defines & (Definition 5.1). The derivative trap asks whether governance is strong

enough; the governance trap asks whether it is feasible at all.

4.4 The fold bifurcation

Proposition 4.7 (Fold bifurcation). Fix & > &'. There exists q.(A,&) such that: (i) for
q > qe, a stable steady state with Q%5 > Q7 exists; (ii) for ¢ < q., no such steady state
exists; (iii) at g = q., a fold bifurcation.

Proposition 4.8. dg./dA > 0: stronger Al demands stricter governance.

4.5 Non-substitutability

Theorem 4.9. Fix g < q.. Consider three classes of non-governance instruments:

(a) Frontier R&D subsidy: multiplies the gross production scale by 1+ tr, so Gr —
(1+1F)GF, 7 > 0.

(b) Talent subsidy: adds t, 7' to the frontier wage, shifting the Roy threshold to 7 (t;) <
Z(0).

(c) Copyright restriction: reduces the derivative sector’s access to training data by set-
ting A =y ((1—x)R)VA®? — §4A, x €[0,1).

No combination of (Tr, ;, X ) restores Q above QF. Forward invariance of 7 is preserved;

only g > q. breaks it.

Proof sketch. The ar > ar asymmetry disciplines the result. Any instrument that raises

A—including frontier subsidies, since A feeds on derivative output—augments Gg by factor
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A“R™9F relative to Gr. Compositional drift therefore remains negative on d.7 under any
(tr,7T,, x). Copyright restriction reduces A but does not reverse g});Od > (. The only positive
contribution to Q is the governance reclassification term, requiring ¢ > g.. Appendix C

gives the formal barrier argument. 0 U

The asymmetry ag > ar binds even for copyright reform: restricting derivative inputs

does not affect contamination already locked into Q < Q. Only governance reverses Q.

S The Governance Trap

The derivative trap can in principle be broken by governance. But governance requires
epistemic capacity, and epistemic capacity is harder to replenish as the corpus becomes
derivative-dominated. Below an epistemic threshold &', even maximal governance ef-
fort cannot prevent further compositional decline. Because & erodes faster than Q under
laissez-faire, the governance window closes before the derivative trap binds (Theorem 5.8).

Throughout this section, write & = &pyp, for the public epistemic stock that determines
screening effectiveness, and let s(&") € [0, 1] denote screening accuracy, strictly increasing
with 5(0) = 0.

5.1 The epistemic threshold

Definition 5.1 (Epistemic threshold). At Q = QF, frontier production just breaks even
(gﬂowrOd = 0) while derivative production remains active (g%rOd > 0). Setting Q > 01in (17) at
maximum governance ¢ = 1 requires s(&) - k- (1—Q") > Q7(1 — Q") -ggmd, ie. s(&) >

QTg%roCl /. The epistemic threshold is

&t = s—l(QT'Tg%M), (32)

provided the argument lies in [0, 1] (feasibility: k > QFg?°%). When the argument exceeds

unity, no governance intensity can maintain Q > Q" and the governance trap is immediate.

Since g%md and QT depend on the state, & T is a function of x.

The threshold &7 is the minimum evaluative capacity for governance to offset compo-
sitional drift. Screening removes derivative content at rate ¢ - s(&') - k; inverting s at the

required accuracy yields (32).
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Lemma 5.2. (i) 967 /dA > 0; (ii) d&T /o > 0; (iii) (@) is C' under Assumption 2.5.

Proof. Tmplicit differentiation of Definition 5.3 under smoothness of s(-) and boundedness
of F1=5, O

5.2 The absorbing property
Definition 5.3. The governance-trap region is 4 = {x: &b < &7 (@) — Epriv }-

Theorem 5.4 (Absorbing governance trap). Under Assumptions 2.4-2.5, if &€ < &SP

priv total
and o
In(§&' /A
6e > 65 = max] 0, & %mn/A) L (33)
In Omax
where Cgﬁ,in = infyynz & > 0and Othax = supyyn o QF € (0,1), then 9N T is absorbing:

once the economy enters Region 11l (Q < QT, Epy < ET ), no feasible policy restores &y
above &2

Proof sketch. Control-invariance of .7 within & (Lemma D.1, Appendix D.1) reduces the
Nagumo condition to d4 N.7. On this boundary, replenishment is bounded above by
A (Qlhax )¢, dominated by depreciation & é&niin when (33) holds. The private buffer delays
entry by roughly 2.3 years at the calibration but cannot prevent it. Appendix D.1 gives the
full argument. 0 0

The supremum QITmlX < 1 is well-defined because the interior-threshold condition O €
(0,1) holds uniformly on 0% N 7; along trap trajectories, G — oo drives QT — 0, so the
supremum is attained near initial entry (anax ~ 0.65 at calibration). The infimum éfﬁn >0
follows from s~ (Q7gP°! /i) > 0on 99 N 7.

The parameter Oy is irrelevant for the timing of governance-trap entry under laissez-
faire (where /o = 0 makes the replenishment term vanish regardless of o). It matters for
whether the trap is absorbing once entered. At ox = 0.5, immediate maximal effort can
replenish é"pub; at op > 1.0, it cannot. At the baseline calibration, 6 ~ 0.73, comfortably
below the baseline 6 = 1.5.

Remark 5.5. Forward invariance (Theorem 4.5) is conditional on g < g.: sufficiently

aggressive governance breaks it. The absorbing property removes this escape. Once

2'Here A = A2 (£9) e 4 2™ (2™ ™) s and § = min{Ss 0,65 }. Under the normalisations in the

calibration ({3 = 1, lgiv =0), these reduce to A = A(Efb and § = Os .
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bt < &7, screening accuracy s(&) falls below sy, and no feasible ¢ satisfies Q > 0.

The trap is avoidable only by prior investment in evaluative capacity.

5.3 Temporal precedence

Proposition 5.6. Let T be the first time &, falls below & T Epriv, and Ty the first time
Q < Q. Then Tg < Tp. At baseline, Tg /Ty ~ 0.63.

Proof. Under laissez-faire, &b () = &pub,0€xp(— [y 85 (@) ds), decaying at an accelerating
rate. An upper bound on T uses Os ( as a lower bound on the decay rate; a lower bound

on Ty uses the fastest possible Q-decline. The sufficient condition

In (Gt 0/ €pin) _ In(Qo/ Q)

max max

860 (ar —ar)gi™ + 085™ + Orgy

uses only exogenous parameters and is non-circular. At the calibration, the LHS is 18.2 years,
the RHS 28.7 years. Numerical integration gives Tie =~ 15.1 and T ~ 24.0; the ratio ranges
from 0.51 to 0.83 across calibration variants (Table 8); at the upper end (low J¢ ), the
governance window narrows to roughly four years, and the practical distinction between

governance preemption and simultaneous crossing becomes thin. U U

Remark 5.7. Precedence depends on endogenous acceleration. Under 0 ; = 0, the decay
rate is constant and T,z /Tp ~ 0.95—the gap nearly vanishes. With d5; > 0, the effective
rate 05 0+ Og 1 ¢(t) accelerates as contamination rises, compressing Tz from 22.9 to 15.1

years at the calibration.

5.4 The two-trap hierarchy
Theorem 5.8. Under laissez-faire, the economy traverses three regions:
I. Governable growth (Q > Q', & > &7): policy can maintain this indefinitely.
II. Governance trap (Q > Q', & < &'): governance infeasible. Entry at T.
L. Full trap (Q < QF, & < &"): forward invariant and absorbing. Entry at To.
The fourth logical region (Q < Q, & > &%) is empty under the model’s endogenous dy-

namics.
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Proof. Temporal precedence gives [—II—III. Forward invariance of .7 (Theorem 4.5) and
the absorbing property of ¢4 N .7 (Theorem 5.4, via Lemma D.1) prevent escape from III.
Region IV requires restoring & while Q < QF, blocked by the absorbing property. [0 [

The emptiness of Region IV is a model limitation. In practice, exogenous evaluative
imports—foreign benchmarks, detection technologies from jurisdictions that maintained
epistemic capital—could make Region IV accessible. This requires an open-economy ex-
tension deferred to future work.

The trajectory [—=II—III is deterministic under laissez-faire. Evaluative capacity de-
grades first because it depreciates monotonically under EgE = 0, while Q declines through
the differential gr — gr > 0, which takes time to accumulate. The governance window

AT = Ty — T measures the period during which the economy looks governable but is not.

5.5 Mismeasurement

Corollary 5.9. Define the observed frontier share as Q°” = Q + (1 — Q)e*méa. Then:
(i) Q° > Q for & < 1; (ii) the gap is increasing in @; (iii) measured frontier growth can

be positive when true growth is negative.

Proof. Parts (1)—(ii) are immediate. For (iii), differentiate:
O™ =(1-e")0-m(1-Q)e " &.

When Q < 0 but & < 0 is sufficiently negative, the second term dominates and Q°* >
0. U O

The exponent m ~ 1.2 is calibrated from signal-detection theory.”?> At the calibration,
measured growth is +2.7% when true growth is approximately —1% at Tp.

The mismeasurement is not a fixed bias but an endogenous function of &’: it widens as
the economy approaches the governance trap. Policymakers relying on measured frontier
shares observe apparent stability during [Tz, Tp|—the period when intervention is already

infeasible but metrics remain reassuring.

22 An evaluator observes y =0 +¢,& ~ .4 (0,1/&),0 € {Ur,ur}. Sensitivity is A(&) = |ur —HR|\/E, hit
rate s(&) = @ _4(A(£)/2). Corpus contamination (Q < 1) degrades sensitivity to A = QA(&), disciplining
the reduced form D¢ (Q) = Q° . The positive predictive value PPV = (1 — @)s/[(1 — @)s+ ¢ f] is decreasing
in @, microfounding d¢ (@) increasing in the derivative share.
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6 Optimal Policy

The planner internalises two externalities the competitive equilibrium ignores, producing
a double wedge in shadow prices (Proposition 3.4). Derivative output degrades frontier
productivity by lowering Q; the planner values it below the market (A < V). Evaluation
effort sustains epistemic capital, a return atomistic agents do not capture; the planner values
frontier knowledge above the market (A > Vp). Because ag > ar, both gaps widen as A
grows, making early intervention strictly better than late. The two-trap structure yields a
strict instrument hierarchy: epistemic investment before governance, governance before
R&D subsidies.

6.1 Instrument hierarchy

Three implementable instruments map directly into the objects entering the critical gover-

nance intensity g (x,&) in (31) and the epistemic threshold & in (32).

Epistemic subsidy. A subsidy 7, finances public evaluation effort /¢, raising the accu-
mulation term in (23). Its role is to keep & above the feasibility threshold & (x).

Governance mandate. The screening intensity ¢ € [0, 1] scales the reclassification flow
in the quality-share dynamics (17). Conditional on &, it is the unique policy margin that

enters Q as a direct positive term (Theorem 4.9).

Synthetic restraint. A restriction )} € [0,1) limits derivative inputs into algorithmic-

capacity accumulation: A = 14 ((1 — x)R) YA® — §4A. This lowers gfemd (x) and therefore

reduces g.(x, &), expanding the set of states in which ¢ < 1 suffices.

A frontier-talent subsidy (a wedge shifting the Roy threshold Z) complements these instru-

ments but is not required for the hierarchy results below.

Proposition 6.1. The instruments admit a strict dominance ordering:

(H1) Epistemic investment (g > 0) is a precondition for all others.

(H2) Data governance (q > q.) is a precondition for R&D subsidies and copyright reform.

(H3) R&D and talent subsidies are effective conditional on (HI)—(H2).
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(H4) Copyright reform is effective conditional on (HI)—(H3).

At le = 0, governance cannot satisfy Q > 0 (screening accuracy $(&) < Smin)- At g < qe,

R&D subsidies cannot raise Q (the compositional channel dominates).

Proof. The effective quality under governance is Qer = F /(F + (1 — g&)R). Differentia-

tion pins down two inequalities:

0Qeft _ FE&R =0 9°Qetr _ FR(F +(1—g&)R+296R) -0
99  (F+(1—g&R)Y ~  999¢ (F+(1—g&)R)’

Governance raises effective quality; the cross-partial pins down supermodularity of Qe in
(g,&). The planner’s flow payoff inherits this structure (Appendix B.4); Topkis’s theorem
selects optimal governance intensity as nondecreasing in &'.

(H1)=-(H2): Near & ~ &7, the marginal product of governance dQef;/dq is propor-
tional to & and near zero. Epistemic investment retains a positive marginal product pro-
portional to Q° (1 — &); monotone comparative statics select it as the binding margin.
(H2)=-(H3): Theorem 4.9. (H3)=-(H4): Copyright reform affects Q only through the
composition of training corpora; the shadow-value comparison in Proposition 3.4 ranks

stock instruments above flow instruments. O O

The ordering is a dependency chain, whose logic follows from the planner’s first-order
conditions. The planner’s FOC for Z equates the marginal social value of shifting a re-

searcher from derivative to frontier work:

dgr dQr 90 L pub 9 pub _ 2 28 JgR dQR

Mooy ar Tlegs A 2 90k d7

Private agents face identical production margins but ignore the data-quality shadow price
W and the epistemic shadow price ),(E;Ub—the second and third terms on the left—and
value frontier knowledge at the market price Vp < Ap (Proposition 3.4(i)). Moreover, the
market overvalues derivative output: Vg > Ag (Proposition 3.4(v)), so the right-hand side
is inflated relative to the planner’s valuation. The double wedge—understated left-hand
side, overstated right-hand side—drives the competitive Roy threshold above the social
optimum, z¢F > 7P, The FOCs for g and /¢ load Yo and ?Lgan directly; both are identically
zero in competitive equilibrium because g¢& = KgaE = 0. The wedge is entirely attributable

to unpriced externalities on Q and &pyp.
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Governance without epistemic capital operates at degraded accuracy; subsidies without
governance widen the quality gap (ag > ar); copyright restrictions do not address contami-
nation already in the corpus. Superadditivity (Corollary 3.6) pins down the joint correction
as exceeding the sum of individual corrections. At illustrative interior levels (Section 7), the

constrained optimum achieves managed decline (gr ~ —1%) rather than frontier collapse.

6.2 Talent policy

Proposition 6.2. (i) A frontier subsidy T, > 0 reduces Z, raising both g and QF. (ii) The
planner can set {p > 7p(Z) through sufficiently large subsidies: 757 ({r) = gﬁ;l/ ¢ The
selection effect is distinct from the headcount effect: restoring T to its pre-Al level recovers
only 72% of the original QF at the calibration, because the marginal researchers drawn

back by subsidies have lower ability than those who departed.

Proof. Part (1) is immediate from the Roy threshold. Part (ii) follows from the Pareto
integral in Appendix A.3. U

The gap between headcount recovery and talent recovery reflects the Pareto tail: marginal
researchers drawn back by subsidies have ability near Z, while QF integrates z'¥, weighting
high-ability types disproportionately. At the calibration (yr = 2, { = 3), full headcount

recovery restores only 72% of effective talent.”>

6.3 Convex cost of delay

Proposition 6.3. The welfare loss € () from postponing optimal policy by T years is in-
creasing and convex in T for T < Tg, with a discontinuity in the second derivative at Tg
where the governance window closes. For T > Tg, € (T) continues to grow but intervention

can no longer reverse the decline.

Proof. Let W(t) = [;"e P u(C())dt denote welfare under optimal policy restarted af-
ter delay 7. Two channels generate convexity. D”(Q) > 0 (o > 1) ensures later quality
losses impose larger marginal productivity penalties. Delay also erodes & via (23); since
dQcfr/dq =< &, the governance cost of restoring any quality target rises as & falls. The
cross-partial 92Qefr/(dgd&) > 0 compounds both channels.

When 7 exceeds TCJZ, the planner enters the absorbing region (Theorem 5.4); & can no

longer be restored above &, producing a discrete jump in the delay-cost schedule. [ [

23The composition loss is 1 — (ZCF /7o) ¢, increasing in ¥r.
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Before the crossing, delay raises the stock of derivative content that governance must
eventually clean; after it, governance becomes infeasible and the planner manages the de-
cline. Each year of delay before T¢ costs approximately 0.3% CEV; each year after, ap-
proximately 0.5% (Figure 4).

6.4 Welfare decomposition

Proposition 6.4. The CEV decomposes as A = Ajeye; + Agrowin + Ayrap. At the calibration:
A~ 6.8%, with Ajeye; = 0.9%, Agrowm =~ 4.2%, and Ayqp = 1.7%. The growth-rate compo-

nent dominates.

The growth-rate component dominates (62% of total gains): the planner sustains a
positive growth differential g%P — ggE that compounds over the infinite horizon. The trap-
aversion component (Ayap = 1.7%) captures the option value of maintaining governance
feasibility; under interior constraints it falls to 1.3%.%4

The structure—convex delay cost, invisible degradation of the governing stock, irre-
versible threshold crossing—bears a structural analogy to the tragedy of the horizon of
Carney [2015]. Two distinctions sharpen it. In climate economics the stock pollutant is
observable and the regulator’s diagnostic capacity is exogenous [Nordhaus, 2017, Stern,
2007]; here both conditions fail. &, is imperfectly observed, its decline masked by the
mismeasurement it induces, and delayed action degrades both the state to be governed and

the capacity to govern it.

7 Quantification

The qualitative results—trap existence, forward invariance, temporal precedence, instru-

ment hierarchy—hold for any parameter configuration satisfying Assumptions 2.1-2.5.

Whether the traps bind at empirically relevant horizons is a quantitative question.?

24Under CRRA, A = (#/SF /CEN/(1-1) _ 1, Ajyer: re-optimise the static allocation at CE growth rates.
Agrowth: impose the planner’s growth rates at fixed allocations. Aggp: residual A — Ajevel — Agrowtn. Welfare
integrals use adaptive Gauss—Kronrod quadrature; the CE continuation value uses trap growth rates (Propo-
sition H.13), the planner continuation uses the managed BGP. Error in A is below 107°.

2 The competitive equilibrium is an autonomous IVP integrated forward from x using Dormand—Prince
5(4) with adaptive steps (tolerances 10~!9), switching to Radau ITA under stiffness. The planner’s problem is
a 12-ODE boundary-value problem (6 states, 6 costates) solved by shooting; Appendix E details the costate
system and control computation. Levenberg—Marquardt drives the shooting residual below 10~°; three ini-
tialisations converge to the same A. Post-convergence diagnostics: transversality products e P’ 2x; decline
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7.1 Calibration

The model is calibrated to the US innovation system over 2015-2025. Table 3 reports
baseline parameters. Three parameters—o, 0, and Q(0)—lack direct empirical analogues

and require separate discussion.

Table 3: Baseline calibration

Innovation Al & algorithm Talent & output Epistemic capital

ar 0.65 Lab. share (F) ar 0.3 Al aug. (F) ¢ 3.0 Pareto tail Ne 0.50 Eval. lab. sh.
& 0.35Kn. exp. (F) ag 08 Alaug. (R) 7y 2.0 Abil. wt. (F) Oy 1.5 Qual. depend.
or 0.40 Lab. share (R) v 0.6 Train elast. Y= 1.0 Abil. wt. (R) 6@@,0 0.03 Base deprec.
&g 0.50 Kn. exp. (R) ® 0.4 Capac. elast. ay 0.55 CES wt. (F) 5(;;71 0.05 ¢-loading

o  2.0FErosionelast. py 0.5 Alscale 6 1.5 Subst. elast. lgub 0.10 Pub. prod.
D 0 Prod. floor 84 0.10 Aldeprec. ¢4 0.3 AlinY AE™0.08 Priv. prod.
Preferences Depreciation Governance Initial conditions

p 0.035 Discount rate  dp 0.02 Frontier k 0.10 Removalrate Qg 0.85 Data quality

n 2.0 CRRA coeff.  0g 0.05 Derivative  Kgere 0.15 Certif. prem. Spub,o 0.70 Public EC
By 0.50 HC exponent &y 0.02 Humancap. m 1.2 Misclass. exp. &piv,o 0.10 Private EC

Ax 0.05 Educ. prod. 5?3 0.10 Priv. EC ¢y O05HCinY Ar normalised

Sources: a, & from Bloom et al. [2020]; ar, ag from Acemoglu and Restrepo [2020]; v, &g from neural scaling laws; ¢ from Fréchet
mechanism (Appendix A.1); 6 from SDT calibration (Appendix A.2); { from Murphy et al. [1991]; Q¢ from late-2024 corpus
estimates.

Erosion exponent o. Shumailov et al. [2024] train successive generations of language
models on predecessor output and document that distributional divergence grows approxi-
mately as a power law in recursive depth. Through the Fréchet mechanism of Appendix A.1,
this pins down o = 1/k € [1,3] across architectures; Alemohammad et al. [2023] report
magnitudes of similar order. Gerstgrasser et al. [2024] show that mixing organic data de-
lays collapse, corresponding to lower effective curvature. The baseline sets ¢ = 2; the
mapping is mechanism-consistent rather than parameter-identifying, since the experimen-

tal setting differs from the model’s equilibrium corpus.

Epistemic quality-dependence 6. Direct micro-level identification is not currently fea-

sible. The calibration targets an annualised decline in &y, of approximately 4% under

monotonically; the present-value Hamiltonian e’ .5#" drifts below 5 x 10~7; control FOCs are re-verified
at 100 random time points. Trap-crossing times are located by dense-output bisection, stable to 10~ years.
A collocation method (N = 5,000, refined near 7z and Tp) and a detrended value-function computation 30*
Chebyshev nodes) reproduce the shooting aggregates within 0.1 pp on CEV and 0.3 years on trap-crossing
times.
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laissez-faire at the initial state, which pins o, = 1.5. Section 7.2 disciplines this value fur-
ther by matching the observed decline in Al-detection accuracy [Pratama, 2025] and peer-

review degradation [Tropini et al., 2023], yielding an admissible range o, € [1.2,1.8].2°

Initial data quality Q(0). The baseline sets Q(0) = 0.85, i.e. ¢(0) = 0.15, at the cal-
ibration origin of late 2024. The model’s ¢ encompasses all non-frontier content in the
training corpus, not only text generated by LLLMs: non-reproducible studies, p-hacked re-
sults, low-quality preprints, and duplicated material all reduce effective data quality. Ta-
ble 1 places the LLM-generated or LLM-substantially-modified share at 10-25% of recent
submissions by late 2024 [Liang et al., 2025, Kobak et al., 2025]; adding the pre-existing
non-reproducibility rate of approximately 5-10% estimated in replication studies yields
an effective @(0) in the range 0.15-0.30. The baseline Q(0) = 0.85 sits at the conserva-
tive end.?” Lower Q(0) shifts both trap crossings earlier and compresses the governance

window.

7.2 Moment matching

The three parameters most consequential for the trap dynamics—the erosion elasticity o,
the evaluative quality-dependence G, and the base epistemic depreciation d¢ p—lack di-
rect micro-level identification. This subsection disciplines each by matching the model to
observable proxies from the empirical literature cited in Section 1. The exercise targets
qualitative features and orders of magnitude rather than optimising a criterion function, but

it narrows the admissible parameter space substantially.

Target moments. Table 4 lists five empirical moments, their data sources, and the pa-

rameters each moment pins down.

Erosion elasticity . The monthly panel of 315 venue-month observations (Table 1)
disciplines o through the curvature of the contamination path, not merely its endpoint.

The observed trajectory is S-shaped: rapid initial growth (approximately 1 pp/month in

26Under laissez-faire €§E = 0 renders the replenishment term zero, so 6 does not affect laissez-faire
dynamics. The parameter binds for the absorbing property (through Z#(0,)) and for marginal returns to
epistemic investment under the planner.

27For a simulation origin of November 2022 (the ChatGPT release), the appropriate initial condition would
be Q(0) = 0.90-0.95, reflecting near-zero LLM contamination but pre-existing non-reproducibility. The
qualitative results are robust: the ordering Ts; < Tg < Ty is preserved throughout Q(0) € [0.70,0.95].

32



Table 4: Moment-matching targets

Empirical moment Value Model object Pins
LLM-modified share, CS,

Sept. 2024 22.5% o(t=2) O, ag
LLM-modified share,

biomed, 2024 >13.5% o(t=2) ag (cross-field)
Detection accuracy

decline, 2023-24 ~20 pp Als(&)-Dg(Q)]  ©s

Reviewers contacted
per manuscript,

2016 — 2022 4.8 =68 1/&u(t) 05,0
Retraction—publication
lag (median) ~550days 1/[s(&)-Dg(Q)] Joint

computer science during Apr—Dec 2023) followed by deceleration (approximately 0.5—
0.9 pp/month during 2024). In the model’s reduced form, ¢ = @(1 — @)D(Q)~!: the
(1 — @) logistic term governs intensive-margin saturation, while D(Q) = Q° governs the
erosion feedback. Higher ¢ produces a sharper initial acceleration and earlier inflection,
because the erosion penalty declines faster as Q falls. Matching the inflection timing—the
transition from the steep phase to the decelerating phase, which occurs in early-to-mid 2024
for computer science—pins ¢ € [1.5,2.5]. Values below 1 produce a uniformly decelerat-
ing path (inconsistent with the steep 2023 takeoff); values above 3 produce an inflection
too early (inconsistent with continued growth through mid-2024). The baseline o = 2 addi-
tionally matches the Fréchet shape parameter k = 1 /6 = 0.5 reported in the model-collapse

experiments of Shumailov et al. [2024].

Evaluative quality-dependence . Effective screening accuracy s(&’) - Dg(Q) declines
as both & and Q fall, with 6, governing the elasticity with respect to corpus quality.
Pratama [2025] document that detection tools calibrated on GPT-3.5 output show sub-
stantially degraded performance on GPT-4 and later-model output, with effective accuracy
dropping by approximately 20 percentage points within 18 months. A 20 pp decline in
s(+) over two years, starting from sp ~ 0.80 and with Q falling from 0.85 to 0.75, pins
og € [1.2,1.8]. The baseline 6 = 1.5 matches the midpoint. At oz < 0.5, the model
predicts negligible screening decline despite substantial contamination—inconsistent with

the data. At og > 2.5, the governance trap arrives implausibly fast (T < 8 years).
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Epistemic depreciation 55 . The 1.4-fold increase in reviewers contacted per manuscript
between 2016 and 2022 [Tropini et al., 2023] implies that each reviewer’s effective eval-
uative contribution has declined, consistent with @é’pub < 0 even before Al contamination
was widespread. Interpreting the reviewer-search data as 1/&,,p(#) rising at approximately
5.9% per year—(6.8/4.8) 1/6 _1~0.059—and noting that 8 ; ¢ was small pre-2022, pins
0s,0 € [0.02,0.04]. The baseline d¢ o = 0.03 sits at the midpoint.

Joint identification: retraction lag. The median publication-to-retraction lag of approx-
imately 550 days for randomly generated content [Lei et al., 2024] provides a joint check—
though one the model matches only in order of magnitude. In the model, the expected
detection time for derivative content is 1/[s(&) - Dg(Q) - k]. At baseline (s-Dg ~ 0.68,
Kk = 0.10), this gives approximately 14.7 years, an order of magnitude larger than the em-
pirical 1.5 years. The discrepancy reflects selection: the retraction data conditions on de-
tected fraud, which selects the most blatant cases—randomly generated text with obvious
statistical anomalies. The model’s detection time is the unconditional expectation across
all derivative content, including sophisticated Al-generated material that evades detection
indefinitely. The correct interpretation is that the empirical retraction lag lower-bounds de-
tection time for the marginal case and is therefore consistent with, but does not tightly pin,
the baseline parameter vector. The baseline calibration (6 =2, 64 = 1.5, 35 o = 0.03) sits
in the interior of the empirically admissible region for the first four targets; the retraction

lag provides a directional rather than quantitative check.

7.3 Results

The governance window is short. Roughly nine years separate the epistemic-trap cross-
ing (Tx = 15.1) from the derivative-trap crossing (Tp = 24.0). Figure 2 plots the laissez-
faire and constrained-optimal trajectories in (Q,&)-space; Figure 3 shows time paths for
data quality, public epistemic capital, and frontier growth (with the mismeasurement gap
shaded). Feasible interior policies achieve managed decline but not trap aversion. The
largest marginal welfare gain comes from the least conventional instrument: public epis-
temic investment.

Table 5 reports the headline findings.

The “Interior” column constrains instruments to empirically observed ranges (g < 0.4,

le <0.05, 7, <0.1pr). At these levels the economy remains in Region I by a narrow
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Table 5: Headline results

Laissez-faire Constrained optimal ~ Units

Interior Full

Te 15.1 oo oo years
1p 24.0 oo o0 years
Ts/Tp 0.63 — — ratio
giR 3.4 ~1.0 +0.8 %lyr
g5k +4.1 +1.5 +0.6 Polyr
QLR 0.08 0.31 0.62 index
&R 0.02 0.18 0.55 index
CEV (A) — +4.2 +6.8 %
Alevel — 0.6 0.9 %
Agrowth — 2.3 4.2 %
Avrap — 1.3 1.7 %
D%rap - — 8.3 % of Yo

margin (Q“® = 0.31 against Q" ~ 0.25); a moderate adverse shock to A or ¢ could push it
across. Full deployment sustains positive frontier growth and data quality above threshold.

Table 6 isolates each instrument’s contribution.

Table 6: Policy comparison

Policy package gkR OfR é’]ﬁlﬁ CEV
Laissez-faire —3.4% 0.08 0.02 —
Governance only —2.1% 025 002 +1.8%
Epistemic + governance —1.2% 0.30 0.17 +43.9%
Full (interior) —-1.0% 0.31 0.18 +4.2%

Full (full deployment) +0.8% 0.62 0.55 +6.8%

Governance alone raises Q™* from 0.08 to 0.25 but leaves Spup at 0.02, pinning screen-
ing accuracy s(&’) ~ 0.54—barely above the random baseline. Epistemic investment raises
s(&) to approximately 0.76, pushing Q“F to 0.30. The joint gain of 3.9% CEV exceeds
the sum of individual gains (1.8% + 1.5% = 3.3%),?® confirming the superadditivity of

Corollary 3.6. Figure 5 decomposes the marginal CEV contributions by instrument.

2The 1.5% figure is the CEV from epistemic investment alone (/¢ > 0, ¢ = 0). It does not appear in
Table 6 because the policy is dominated; the number is used here only to verify superadditivity.
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7.4 Sensitivity

Tables 7 and 8 report sensitivity to key parameters and confirm temporal precedence across

calibration variants.?’

Table 7: Sensitivity analysis

Parameter Value Tg¢ Tp AT  Absorbing?

Erosion elasticity ©

1.0 187 293 10.6 Yes

20 151 240 8.9 Yes

3.0 128 205 7.7 Yes
Al differential ag — ap

0.3 194 308 114 Yes

0.5 15.1 240 8.9 Yes

09 112 186 74 Yes

Al augmentation ag
06 176 28.1 10.5 Yes

0.8 151 240 8.9 Yes
1.2 118 166 438 Yes
Os
0.5 151 240 8.9 No
1.5 151 240 8.9 Yes
25 151 240 89 Yes
Productivity floor D
0 15.1 240 89 Yes
0.03 15.1 252 10.1 Yes
0.05 15.1 268 11.7 Yes
0.08 151 oo N/A
Pareto tail
25 139 221 82 Yes
3.0 151 240 8.9 Yes
40 170 264 94 Yes

The invariance of AT to o is mechanical: /¢ = 0 under laissez-faire zeroes the replen-
ishment term regardless. A positive productivity floor delays Tp without affecting T; at
D = 0.08 =~ D the derivative trap dissolves but the governance trap persists. Stronger Al
closes the window rapidly: the governance window is most sensitive to Al augmentation

(ag) and the differential ag — ar.

2Table 10 in the appendix documents truncation-horizon robustness: reported quantities are unchanged
when T is extended from 150 to 300 years (maximum absolute difference below 10~7).
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Table 8: Temporal precedence across calibration variants

Parameter ~ Value Ty Tp Tg/Tp Holds?

Baseline — 151 24.0 0.63 Yes
c=1.0 187 293 0.64 Yes
c=3.0 12.8 205 0.62 Yes
ar =0.6 17.6  28.1 0.63 Yes
ag=1.2 11.8 16.6 0.71 Yes
=25 13.9 221 0.63 Yes
=40 170 264 0.64 Yes
D =0.03 151 252  0.60 Yes
D =0.05 151 268 0.56 Yes
050 =0.02 198 24.0 0.83 Yes
0s0=0.04 123 240 0.51 Yes

Temporal precedence (T < Tp), the instrument hierarchy, and the two-trap structure
hold across the full parameter space (Figure 6). The absorbing property fails only at
og = 0.5, where evaluator quality is nearly independent of corpus quality. The most con-
sequential uncertainty is ag — ar: if future architectures narrow this gap, the R—A feedback

weakens and the trap may not bind at empirically relevant horizons.*°

8 Conclusion

Epistemic capital is a depletable stock. Its depletion preempts the derivative trap: the
governance window closes roughly nine years before conventional metrics signal trouble
(Theorem 5.8). Measured frontier growth stays positive throughout (Corollary 5.9).

The instrument hierarchy (Proposition 6.1) imposes a strict ordering: epistemic invest-
ment before governance, governance before R&D subsidies. The largest marginal welfare
gain (+2.1 pp CEV) comes from adding epistemic investment to governance. The ordering
reflects a double wedge: the competitive equilibrium undervalues frontier knowledge and
overvalues derivative output (Proposition 3.4(1),(v)), with both gaps widening as A grows.

Laissez-faire welfare loss is about 6.8% CEV, concentrated in the long-run growth rate
(Proposition 6.4). Delay costs are convex, with a kink at the governance-trap crossing

(Proposition 6.3).

30The linear specification §¢(¢@) = Os0+ 019 is a first-order approximation. Convex depreciation
(threshold effects in ¢) could compress T substantially; the linear form may overstate the governance win-
dow. Estimating ¢(+) is a priority for empirical follow-up.
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Phase diagram of the two—trap hierarchy
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Figure 2: Phase diagram in (Q, &yup)-space. Green: both stocks above threshold. Light
red: governance trap (& < &7). Dark red: both traps active. Solid: laissez-faire from
(Qo,80) = (0.85,0.70). Dash-dot: constrained optimum.
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Figure 3: Time paths: laissez-faire (solid) vs. constrained optimum (dashed). (a) Q(¢); line
at 0'. (b) Spub(t); line at & 7. (c) Frontier growth gr(¢); shaded area is the mismeasurement
gap (Corollary 5.9).

38



Convex cost of policy delay
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Figure 4: Welfare cost of delay (CEV, %). Dashed line: governance-trap crossing 7; kink
reflects loss of governance feasibility (Proposition 6.3).

Instrument hierarchy: marginal CEV contributions
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Figure 5: Marginal CEV by instrument, cumulative waterfall. Instruments added in the
order of Proposition 6.1.
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Sensitivity of governance windodT

Baseling = 8.9 yr

Al augmentation a_R_|
(0.6/0.8/1.2)

Al differential a_R - a_F _|
(0.3/0.5/0.9)

Erosion elasticity sigma |
(1.0/2.0/3.0)

Productivity floor Dbar _|
(0/0.03/0.05)

Pareto tail zeta_|
(25/3.0/4.0)

Epistemic sigma_E
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Figure 6: Sensitivity of governance window AT = Ty — Tz (years) to one-at-a-time param-
eter variation. Most sensitive to ag — ar and ©. See Table 7.

Several limitations apply. The closed-economy assumption prevents evaluative imports
and is the most binding simplification. Derivative content is treated homogeneously. Al
capability evolves by reduced form, not strategic developer choice. The new parameters
(0, m, og) rest on limited evidence, though qualitative results survive across the plausible
range.

Three extensions are natural: an open-economy model with cross-border data flows;
empirical identification of D(Q) and 3 (¢) using differential AT adoption across fields;
and a dynamic game between Al developers, platforms, and a governance authority.

The derivative trap is ultimately a problem of institutional capacity—a scarce resource
that erodes endogenously and must be maintained through deliberate investment. The win-

dow for that investment is shorter than standard metrics suggest.
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Appendix

Throughout, || - || denotes the Euclidean norm on R” and the induced operator norm on

matrices. Each external mathematical result is stated where it first binds.3!

A Microfoundations

A.1 Fréchet microfoundation for D(Q)

The erosion function D(Q) is pinned down by a contaminated extreme-value argument.
The key external result characterises the distribution of maxima drawn from heavy-tailed
populations—here applied to the maximum-novelty draw from a research corpus of mixed

provenance.

Theorem A.1 (Fisher-Tippett—-Gnedenko). If {X;} are i.i.d. with distribution F in the max-
imum domain of attraction of the Fréchet law ®y(x) = exp(—x~%), x > 0, o > 0, then
the sample maximum M, suitably normalised, converges in distribution to Py, and the

characteristic scale of M,, grows as nl/a 32

Fréchet microfoundation of the erosion function. Index novelty by x > 0. Clean draws are
Fréchet: ®(x) = exp(—x~¥), k > 0. Contamination induces a mixture: a fraction Q € [0,1]
of the corpus preserves the full Fréchet tail while the complement 1 — Q consists of Al-
generated material whose novelty distribution has compact support on [0, x]. The derivative
component is drawn from ®g satisfying ®g(x) = 1 for all x > X, X < oo; the shape of ®g
below x is immaterial for the tail argument. The binding restriction is that Al-generated

content cannot produce unbounded novelty. A single draw has CDF

Defr(x) = QP(x) + (1 - Q) Pr(x).

A research project samples n independent items and retains the maximum M,, = max{xy, ...

31The classical references are: Teschl [2012, Theorem 2.2] (Picard—Lindel5f); Fleming and Rishel [1975,
Theorem 2.3.5] and Gripenberg et al. [1990, Chapter 9] (Volterra contraction); Nagumo [1942] (forward
invariance); Topkis [1998, Theorem 2.8.1] (monotone comparative statics); de Haan and Ferreira [2006, The-
orem 1.1.3] (extreme-value theory); Kuznetsov [2004, Theorem 3.4.1] (fold bifurcation); Leitmann and Stal-
ford [1971] (augmented-Hamiltonian sufficiency); Acemoglu [2009, Chapter 7] (infinite-horizon optimality
conditions).

32de Haan and Ferreira [2006, Theorem 1.1.3]. Contamination reduces the effective sample to nQ clean
draws, yielding a productivity multiplier 0'/* = Q° with ¢ = 1/a.
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For x exceeding ¥, the derivative component contributes ®g(x) = 1, so
Pr(M, <x) = [Q®(x)+ (1-0)]" = [1-0(1 —@(x))]".
Since 1 —®(x) ~ x~* for large x, the Poisson approximation (1 — p)" ~ e~"? delivers
Pr(M, < x) ~exp(—nQx*)  forx>> &. (A.1)

The right-hand side is Fréchet with effective sample size nQ. Theorem A.1 disciplines the
characteristic scale: under nQ clean draws, the scale grows as (nQ)l/ k. Relative to the

17k the productivity multiplier is Q'/*. Setting ¢ = 1/k pins

uncontaminated benchmark n
down the corpus-dependent component of frontier research productivity as Q°.
The approximation (A.1) is exact in the max-stability limit n — oo with nQ — oo; for
finite n a bias of order O(n~'x~2¥) from the excluded derivative draws is absorbed into Af.
Non-corpus channels—direct observation, experimentation, tacit knowledge, interper-
sonal exchange—provide a residual discovery capacity independent of corpus quality. The
reduced form

D(Q)=D+(1-D)Q°  De€[0,1), (A.2)

preserves D(1) = 1 and delivers D(0) = D > 0. The floor binds the absorbing property of

the derivative-trap region: evaluating (1) at Q =0,
gF}Q:O = AFQAQF (.Q.FH>aF Féi1 — 5F~

Compactness of the admissible state space .2~ and continuity of the production term sup-
ply a finite upper envelope ¥r = sup o {Ar A% (QrH)% F&~1} € (0,00), 50 gr|g=0 < 0
throughout 2~ whenever

Under (A.3) the floor cannot sustain frontier growth at full contamination; the derivative-
trap region remains nonempty.

Differentiation of (A.2) delivers D'(Q) = (1-D)c Q° ! >0and D" (Q) = (1-D) 6(c —
1) Q° —2—strictly convex for ¢ > 1, strictly concave for 6 < 1. The comparative static
dD/dD = 1—Q° > 0 confirms the floor is most consequential at low quality levels.

The 1.1.d. extreme-value approximation is standard: sampling without replacement from

a large corpus of size N with clean share Q is approximated by i.i.d. sampling from the
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mixture, exact as N — oo with n/N — 0. Order statistics converge to the i.i.d. Fréchet limit;
see de Haan and Ferreira [2006, Theorem 1.5.3]. O

A.2 Signal-detection microfoundation for s(&’), f(&), and Ds(Q)
Derivation of the signal-detection model. An evaluator observes a scalar signal
y=0+¢,

where the latent type is 6 € {ur,ur} (frontier or derivative) and € ~ .47(0,1/&). Epis-
temic capital & governs signal precision. Define the signal-to-noise index

A(&) = |ur — 1RV E, (A.4)

which coincides with the sensitivity index in Green and Swets [1966]. Under equal priors

and symmetric loss, the likelihood-ratio test is equivalent to a threshold rule
> L(ur+ur) < classify as frontier.

Conditional on frontier type, y ~ A (Ur,1/&), so the true-positive (hit) rate is

A&
5(6) = ey > Slur -+ ) | 0 =) = . (250 (A5)
where @ _y- denotes the standard normal CDF. Conditional on derivative type, y ~ A (ug,1/&),
so the false-positive rate is

F(8) =Prly > Yur +pr) | 0 = px) = 1— @ (@):H@. (A6)

Let ¢ = |ur — ug|/2 > 0. Then s(&) = ®_y (c\/&) is strictly increasing for & > 0. More-
over, s is strictly concave on (0,):

c(*&+1)

s//(g) = _(pJV<C\/E> 4£3/2

<0,

where ¢ 4 is the standard normal density. Diminishing returns to screening precision fol-

low.
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A shift in the base rate induced by a higher derivative share

reduces the positive predictive value,

(1-9)s(&)
(1-9)s(&)+o f(&)

Since 5(&) > f(&) for & > 0, it follows that IPPV /d @ < 0. This motivates a specification

in which the effective depreciation or fragility of epistemic capital, d5(¢), is increasing

PPV(p, &) =

in the derivative share: a more contaminated corpus worsens the evaluative environment
holding precision fixed.

Quality feedback arises when evaluators are (re)trained on the prevailing corpus. Let
Q € (0,1] denote corpus quality. If a fraction 1 — Q of items labelled “frontier” are in fact
derivative, then the effective frontier mean in the training labels is

fr(Q) = Qur + (1 — Q) Ur.

The implied separation between training-label means is fir (Q) — ug = Q(Ur — Ug), so the

effective sensitivity index becomes
AQ.6) = QA(#). (A7)

Because (A.5) is monotone in the sensitivity index, detection performance decreases mono-
tonically in Q. The reduced form Ds(Q) = Q% imposes this monotonicity and concavity
while remaining parsimonious. In the Gaussian SDT benchmark, performance measures
proportional to the sensitivity index correspond to og = 1. The calibration selects o to
match the implied annualised decline in detection accuracy over the relevant range of Q.
Finally, the reduced-form misclassification function used in the main text can be chosen
to match f (&) on the calibration domain. For example, ¢ (&) = (1 — &)™ provides a smooth
approximation to (A.6), and the calibration selects m to minimise approximation error on

the relevant set. U
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A.3 Roy-model derivation

Derivation of equations (20)—(10). Ability z is Pareto: Pr(z > x) = (z /x)‘:, x>z>0,8>
1. Frontier work pays wr(z) = prz'f A%F; derivative work pays wg(z) = prz®R A“r with
Yr > Yr- The wage ratio wr /wg = (ppA“F [ prA“R) 2V~ is strictly increasing in ability, so
single-crossing selects an interior threshold. Indifference wr(zZ) = wg(Z) pins

. (pRAaR )1/(7F7R).

A8
DA (A.8)

Higher-ability agents sort into frontier work; lower-ability agents into derivative produc-
tion.

The frontier participation rate is 7z (Z) = (z/Z)°. Conditional average effective skill
among frontier workers integrates directly under the Pareto tail:

Zr(Z) =E[" |z>7] = ",

C—r

converging when { > yr (Assumption 2.4(ii)). Quality-adjusted frontier talent is

¢
Qe(d) =20 mr(0) = 55, (A9)

The exponent yr — § < 0 disciplines the sign: Qp is strictly decreasing in Z, so the mass
effect dominates selection. A rightward shift in the Roy threshold—more agents choosing
derivative work—reduces the quality-adjusted frontier labour force.

The Al-augmentation comparative static at fixed prices:

dlnz
dlnA

ar —ar
prpr VF TR

When ag > ar, improvements in algorithmic capacity raise Z, draining talent from the

frontier. Combining with (A.9):

dll’l.QF
dInA

ar —ar
= (YF - C) <0,
PFAPR YE— R

which isolates the talent-drain channel.
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In general equilibrium, pr/pr responds to A through the CES aggregator (G.2):

dinz 1
dInA Y — Yk

dln(PR/PF)] .

[(aR —ar)+—

The induced price response is derived in Appendix H.2. The sign of the total GE effect
remains negative under the maintained parameter restrictions (ag — ar dominates the price
feedback when 6 > 1 and the frontier output share is bounded away from zero; verified at
the calibration of Table 3), but the magnitude differs from the PE expression. The BGP
analysis (Appendix H) uses the full GE derivative throughout. U

B Equilibrium Proofs

This appendix proves the shadow-price ordering results used in the main text (Proposi-
tion 3.4). The argument expresses the planner—competitive gaps in the relevant costate
variables as the unique bounded solution to an infinite-horizon Volterra integral equation
of the second kind. Positivity follows from a cooperative kernel structure and a strictly

positive forcing term induced by the data-quality externality.

B.1 Shadow-price ordering

The objective is to sign the planner—competitive gaps in the shadow values of frontier
knowledge and public epistemic capital. The classical Volterra existence result is stated
first for reference. That theorem is formulated on a finite horizon and does not address
the tail control required on an infinite horizon with transversality at infinity. The proof

therefore uses a weighted contraction condition for the infinite-horizon operator.

Theorem B.1 (Finite-horizon Volterra equation). Let T > tg. Let f : [ty,T]| — R" be
bounded and measurable, and let K : {(t,s) : 190 < s <t < T} — R"*" be measurable and
bounded. Then the Volterra integral equation of the second kind

x(t) = f(t)+ tK(t,s)x(s) ds, t € [to,T],

fo

admits a unique bounded measurable solution on [ty,T]. If, in addition, f(t) > 0 and
K(t,s) > 0 entrywise, then x(t) > 0 entrywise for all t € [ty, T].
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Remark B.2 (Scope). A standard proof uses Picard iteration on the triangular domain
to <s <t <T. If sup, <,<,<7 [|K(t,5)|| <M, then the m-fold Volterra operator satisfies
| T || < [M(T —t9)]"™/m!, so the Neumann series converges and uniqueness follows; see
Gripenberg et al. [1990, Chapter 9]. The wedge system below is posed on [f,0) and is
pinned down by transversality conditions at infinity. On an unbounded horizon, the finite-
horizon argument does not control the tail of the integral operator. The analysis therefore
imposes a discounted weighted summability condition and establishes a contraction di-

rectly in a weighted sup norm.

Assumption B.3 (Weighted Volterra summability). There exist weights wg, wo,we > 0

and a constant k € (0, 1) such that, along the planner allocation,

1 (o)
sup max — / Kii(t,s)|w;ds < Kk, (B.1)
1210 1€{F, Q.6 Wi je{;évg} 1 = v

where K(z,s) is the kernel defined in (B.7).

Theorem B.4 (Weighted infinite-horizon Volterra contraction). Let 2} be the space of
bounded measurable maps A : [ty,) — R>. For w = (Wr,wo,we) € RiJr, define

Ai(t
|All,, =sup max A )’
tZl’O le{F7Q7£)} Wl

For bounded measurable ® : [ty,>) — R3, consider the Volterra equation
A(t) = B(1) + / K(t,5)A(s)ds. (B.2)
t

Under Assumption B.3, (B.2) admits a unique bounded solution A* € Z},. Moreover, the
Picard iteration A"V = & + T A" converges to A* in || - ||, from every bounded initial

guess, where

(TA)(t) = / K(t,s)A(s)ds.
t
If ® > 0 and K;j(t,s) > 0 entrywise, then A* > 0.

Proof. For any A € 2, and each i € {F,Q,&},

(T Y [ IKy(es)lIass)lds < (A1 Y [ 1K) wyds.
J J
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Dividing by w;, taking max;, and then sup,, yields

|74l < <supmax—z JRLC s>|w,ds> 4]l < KAl

1>t

Hence .7 is a contraction on the complete metric space (25, || - ||w). Banach’s fixed-point
theorem implies existence and uniqueness of a bounded fixed point A* = & + .7 A* and
geometric convergence of Picard iterates.?>

If & > 0 and K > 0 entrywise, then .7 is order-preserving, so Picard iterates initialised
at any nonnegative bounded element remain nonnegative; the limit A* is therefore nonneg-

ative. [l

Lemma B.5 (Competitive frontier shadow value). Along the competitive equilibrium path,
the shadow value Vg of frontier knowledge satisfies Vr(t) > 0 for all t > to.

Proof. In current value, Vr solves

. G G
Ve =(p+6r) Ve —u' (C)Yr _é?FVF = ur(t)Ve —u' (C)Yr, Ur(t) =p + 6F —5%-

Backward variation of constants, together with the transversality condition for Vg, gives

Vi(r) = /[ ) exp(~ /t r(7)d) i (C(5)) Y (s) ds. (B.3)

Since u/(C) > 0 and Yr = dY /dF > 0 almost everywhere, the integrand in (B.3) is strictly

positive on a set of positive measure, so Vg (¢) > 0 for all 7. O

Proposition B.6 (Shadow-price ordering in the frontier and epistemic channels). Define

the wedge vector

A(t) = (Ar (1), Po(0), A2°M) ", Ar() = Ar(t) = Ve (1),

where Vr is the competitive shadow value of F and Ar the planner costate. Under Assump-

tion B.3, the unique bounded solution of the wedge system satisfies

Wo(t) >0, Ap(t) >0, t > 1,

3The contraction estimate in (B.1) yields the explicit bound [|[A®) — A*[],, < k*||A©) — A*|,, for any
bounded initial guess AO) ¢ Zp. On a finite horizon, Picard iteration is also standard, but convergence
follows from factorial decay of iterates, ||7"|| < [M(T —19)]™/m!, rather than from a contraction constant;
see Gripenberg et al. [1990, Chapter 9].
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and

lgfb (t) >0 whenever q > 0 on a set of positive measure.
This establishes parts (i)—(iii) of Proposition 3.4.
Proof. The planner’s current-value Hamiltonian is

H = u(C) + A F + AgR + MpA + Ay H + A2y + 227 Gy

The data-quality index Q = F /(F + R) is algebraic and enters the state dynamics through
D(Q), Dg(Q), and 6¢(¢) with ¢ = 1 — Q. Define the composite marginal value of quality

— oA _ D/(Q) pubaébpub priv aébpriv
Yo= 00 |FRfixed Ar D(Q) Gr + A 0 A 20
The derivatives of Q satisfy
J0 R 0 F
oF ~F+RE- " R FiRE "V

Competitive agents take (Q,&pup) as exogenous aggregates, so Vo = V@ﬂpub = 0. Sub-
tracting the competitive shadow equation for Vg from the planner costate equation for Ag

yields a linear equation in the frontier wedge:

R

—Ap + pr (1)AF =
where F is defined in Lemma B.5. The quantity Wy is linear in (lp,lgoub,lgiv) along
a fixed state-control trajectory, and each primitive costate ODE is linear in the costates
along that trajectory. Differentiating ¥, substituting the planner costate equations, and
then substituting A = V¢ + Ar yields a linear system in (Ar, ¥, /’L{Efb) with forcing terms
driven by V and the decoupled costate /'Lgfiv. The transversality conditions for the primitive
costates imply e P’Ap(t) — 0, e P"Wp(r) — 0, and e*p%gfb(t) — 0.

Backward variation of constants applied to the linear wedge system yields the Volterra

representation _
Alr) = D(t) + / K(t,5)A(s) ds, (B.5)
t
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with forcing ®(1) = (0,Pp(t),0) ",

Dy(1) = /t e PN Vi (5) D (Q(s)) ARA () (Qr(s)H(5))% F(s)E ds, (B.6)

and kernel
‘ 0 Kro(s) Kre(s)
K(t,s) =e /DI Kop(s) 0 o |, (B.7)
0 KgQ(S) 0

where 1 (7) = diag(ur, Uo, Ue) and each diagonal entry satisfies u;(7) > p along the plan-

ner allocation. The nonzero kernel entries are

R
Kro(s) = ( >0,  Kor(s) =D'(Q) ArA“ (QrH)% F* >0,

F +R)?

k)= () (7)o =0

For the sign of Kr ¢, note that along the planner allocation dQ/dF > 0 and

>0

o
KgQ(S>—qS(éD)KF+R_ ,

9épub

90 = Aiﬁub ggf Og Qcéa—l + 5g’71 gpub >0,

so Krs > 0 with equality only if ¢ = 0. By Lemma B.5 and D'(Q) > 0, the forcing (B.6)
satisfies ¢ () > 0 for all r > 1.

Assumption B.3 and Theorem B.4 yield a unique bounded solution to (B.5) with A > 0.
Since ®p > 0, one has Wy(t) > Pp(r) > 0. Substituting ¥ > 0 into the linear equation

(B.4) and applying backward variation of constants gives

Ar(t) = /t wexp(— /t ' r(c)de) %\PQ@MDO.

If ¢ > 0 on a set of positive measure, then Kgp is strictly positive on a set of positive

measure, SO
AP (1) > / Kso(t,5) o(s)ds > 0.
t
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B.2 Derivative-knowledge and algorithmic-capital wedges

Write
ARE)LR—VR, AAEAA—VA.

Lemma B.7 (Derivative-knowledge wedge). If ¢°F > 0 and A4 > 0 along the planner al-
location, then Ag(t) < O for all t > ty. This establishes part (v) of Proposition 3.4.

Proof. Subtract the competitive Euler equation for Vi from the planner costate equation for

Ar. The resulting linear equation is

. R
AR:aR(t)AR—I—bR(Z‘), aR(t)Ep—f—BR—gRl—e,

with forcing
F(t)
br(t) = —Yo(t) ——-—=.
R IR0
By Proposition B.6, Wp(r) > 0 for all r > #p, and F,R > 0 along the planner alloca-
tion, so br(t) < 0. Backward variation of constants, together with the terminal condition
e Joar(DATAL (1) = 0, yields

Ar(t) = —/tooexp<— /[SaR(‘L')dT> Ibr(s)| ds < 0.
0

Proposition B.8 (Algorithmic-capital wedge). The sign of As(t) = Aa(t) — Va(2) is gener-

ically ambiguous. In particular,

() s 1
Ay (t) = / e ﬂA(T)dTm [a)giross (S) vy (S) _i_aFg%ross (S) Ap (S) —l—aRg%OSS(S) AR(S)] ds,
t s
where the first two terms in brackets are nonnegative, while the third is strictly negative
under Lemma B.7. The sign of Ay depends on which force dominates. This completes

part (iv) of Proposition 3.4.

Proof. Subtract the competitive shadow equation for V4 from the planner costate equation
for A4 and integrate backward using the transversality condition for the algorithmic-capital
shadow value. The stated representation follows. The sign decomposition follows from
V4 > 0, Proposition B.6 (Ar > 0), and Lemma B.7 (Ag < 0). O
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B.3 Economic interpretation and numerical verification

Remark B.9 (Weights and discounting). Assumption B.3 imposes a small-gain restric-
tion on the discounted cross-channel feedback embedded in the kernel (B.7). The weights
(Wr,wp,we) normalise the three wedge components (AF,‘PQ,}Lgaub) to comparable mag-
nitudes and units, so the contraction property depends on economically meaningful ampli-
fication rather than arbitrary scaling. Discounting enters through the diagonal propagation
factor e~ J?S”(T)df, with u; > p along the planner allocation, which controls the infinite-
horizon tail. The weights discipline heterogeneity across channels; the discounting disci-

plines horizon length.

Remark B.10 (Discrete verification of the weighted bound). Let tp =t < --- < ty be
a grid with steps Aty =1, —t;. For each component i € {F,(Q,&}, define the discrete

approximation of the weighted row-sum bound at time #; by

R 1 N—1 ‘
Kl'(l‘k) =— Z Z |K,'j(l‘k,l‘g){ijtg, K(tk,l‘g) given by (B.7).
Wi je(F0.6) =k

The implied contraction coefficient is

K max  max Ki(t).
ke{l,..,N}ie{F,0,&}

Assumption B.3 holds numerically if ¥ < 1 and the grid is sufficiently fine. In the baseline
calibration, the computed value satisfies ¥ ~ 0.51. The assumption and A4 > 0 are verified

along the computed planner allocation at every parameterisation in Table 7.

Remark B.11 (Choice of weights). A numerically stable choice is to set (wr,wg,wg) to
the componentwise sup norms of the corresponding wedge objects along the computed
planner path (or to economically meaningful normalisations that render each component
O(1)). The reported K should be insensitive to moderate rescalings of w when the contrac-
tion margin is nontrivial. Replication code for the discrete verification is available in the

supplementary archive.

B.4 Policy instruments

The first-order conditions for the planner’s labour allocation and governance instruments

are stated in Section 6; this appendix provides the superadditivity argument.
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Talent allocation. At 7, the planner’s left-hand side strictly exceeds the CE counter-
part: A > Vg (Part (i), ¥p > O (Part (ii)), and lgan > 0 when g > 0 (Part (ii1)). The
right-hand side is weakly smaller since Ag < Vg (Lemma B.7). The planner selects a lower

threshold 75 < Z°F, inducing a larger quality-adjusted frontier workforce QIS:P > QIQE .

Governance and epistemic investment. The planner’s FOCs for g and /¢ load W¢ and
AP _poth identically zero in competitive equilibrium. The market sets g = 0 and £SF =
0; the planner deploys strictly positive levels whenever marginal governance and epistemic
costs are finite. The wedge is entirely attributable to the unpriced externalities on Q and

(gpub .

Superadditivity. Define
3(6(5)7 Q) = A’FD(Qeff(Zéoa Q)) AFAaF (QFH)aFFéil .

The cross-partial is

9’B
dledq

2
= A APA (QpH)* FE! DY gngSf; 0" aa%:f a;g;ff |

Both terms in brackets are nonneg: D' > 0; dQett/dq > 0 and 9 Qegr/dLe > 0; the cross-
partial 9?Q.fr/(9Lsdq) > 0 because raising £ accumulates & and thereby increases screen-
ing effectiveness. For 6 > 1, D” > 0 renders the second term strictly positive. The flow
payoff B is therefore supermodular in (¢#,q) and has increasing differences—the condi-
tions of Topkis’s theorem. Applied to B, the theorem disciplines the joint correction: the
welfare gain from simultaneously deploying governance and epistemic investment exceeds

the sum of their separate contributions.

C Derivative Trap Proofs

The forward-invariance arguments below rest on Nagumo’s theorem, which characterises
when a closed set is positively invariant under a flow—here applied to the sublevel sets
defined by the quality and epistemic thresholds. The bifurcation analysis uses the fold
(saddle-node) theorem, which identifies the critical parameter value at which two equilibria

coalesce and vanish.
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Theorem C.1 (Nagumo, nonautonomous). Let € (t) C R”" be a family of closed sets de-
pending continuously on t in the Hausdorff metric, and let f be continuous and locally Lip-
schitz in the state. The set € = {(x,7) : X € €(1)} is forward invariant under (x, ) = (f,1)
if the augmented velocity lies in the contingent cone at every boundary point. When
C(t) = {x:V(x,t) <0} withV € C' and (V,V,0,V) # 0 on {V = 0}, the condition re-
ducestoV <0on {V =0}.3*

Theorem C.2 (Fold (saddle-node) bifurcation). Consider x = f(x, ) with f(xo, o) =0,
fr(x0,0) =0, fx(x0, o) # O, and fy(xo, o) # 0. A smooth curve of equilibria passes
through (xo, lo) with a quadratic turning point: two equilibria exist on one side of Uy and

none on the other>>

C.1 The quality threshold Q°

Proposition C.3 (Properties of Q7). Under Assumptions 2.1-2.5 and D < D, the threshold
Q' defined in (28) satisfies Q" € (0,1) throughout any trajectory with G > 8p /(1 — D), is
C! in the state, and has comparative statics Q" /dA <0, 207 J/OH <0, 007 J/OF > 0.

Derivation of Definition 4.1 and Proposition 4.2. Divide (1) by F > 0:
gr = Ar D(Q) A" (QpH)™ F*~! — 5p.

Denote the gross production term G = ApAYF (QpH)* F £-1. then gr > O requires D(Q) >
8r/G. Under the baseline D = 0, substituting D(Q) = Q° and inverting: Q > QF =
(8r/G)"/°. The threshold Q pins down the lowest data quality consistent with non-
negative frontier growth at given factor endowments.

The chain rule delivers the comparative statics:

00" Q' dG

dx oG ox’
Hence dQ7/dA < 0 (A augments frontier production), Q" /dH < 0 (H augments it through
labour), and dQ7/dF = (1 —&)Q"/(cF) > 0 since & < 1 (frontier production exhibits di-

minishing returns in own stock). Any primitive that reduces Qr—in particular, an increase

in Z through the talent-drain channel—raises Q' by depressing G.

34Nagumo [1942]; nonautonomous extension via time-augmentation: Blanchard et al. [2012, Theo-
rem 4.7.1]. All barrier functions in this paper have d,V = 0, so the autonomous specialisation applies.
3SKuznetsov [2004, Theorem 3.4.1].
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Along an equilibrium path with ag > ar, the induced increase in the derivative share ¢
depresses Q faster than the direct channel lowers O whenever the condition (30) is met.
Improvements in algorithmic capacity therefore move the system toward the threshold even
as they relax it pointwise—a paradox resolved by the general-equilibrium talent realloca-
tion. 0

C.2 Forward invariance

Proof of Theorem 4.5. Define the barrier function
V(X) EQT<X>_Q(X>7 X= (F7R7A7Haéapub7(g)priv)7

where Q(x) = F/(F + R) and Q(x) is the threshold in Proposition C.3. The trap region
T ={x:V(x) >0},ie. 0 < 07, is a closed (time-independent) subset of the state space.
By the autonomous version of Nagumo’s theorem (Theorem C.1 with d;V = 0, superlevel-
set form), 7 is forward invariant provided V = V4V -f(x) > 0 on 0.7 = {V = 0}, where f

is the vector field governing the state dynamics.

Regularity.  Assumption 2.5 supplies F(¢t) > F > 0, which keeps F -1 bounded above
and ensures Q' is well-defined and C! in the state variables. The composition Q — D(Q)
is smooth on (0, 1], so the vector field f is locally Lipschitz on compact subsets of 2~
(Lemma G.4). These regularity conditions place the problem within the scope of Theo-

rem C.1.

Barrier drift on d.7. On the boundary, Q = Q' and

V="A+—Qp+—F+—--H-0Q. (C.1)

=5

The signs are disciplined by the comparative statics of Q': the direct-augmentation channel
Cloli /0A < 0, A > 0) lowers Q' the human-capital channel (9Q" /OH < 0, H > 0 under
interior /) lowers it; the talent-reallocation channel (9Q"/dQF < 0, Qr < 0 when the
Roy margin shifts against the frontier) raises it. By definition of QF, gr < 0 on 9.7,
while derivative activity persists with gg > 0 (Lemma G.5), hence gr — gr > 0. (Here and
throughout this proof, g; = J/J denotes the net growth rate including all channels; under

the competitive equilibrium g€ = 0, this coincides with gErOd defined in Appendix H.1.)
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The quality law of motion (17) then delivers

—0=0(1-0)(gr—gr) =00 (gr—8r) >0 ond7,

which provides the dominant positive contribution to V.

Sufficient conditions with explicit bounds. ~ Three conditions jointly ensure V > 0on 0.7 .

Each is derived by bounding the relevant term in (C.1) using infima and suprema on 9.7 .

Condition C.4 (C1: compositional drift dominates human-capital deepening). For all X €

207,
o 9(x) (gr(x) —gr(x)) > u(x)or gu(x), (C2)

where = 8¢ /(8 — DG) > 1.5 A sufficient scalar specialisation (easier to verify) is
O @ infy 7n ;. (gr — gF) > Qpgy™ with @ =infe > 0, gg™* = AHEQH — Oy, and 7 any

compact forward-invariant subset containing the equilibrium trajectory.’’

Derivation. Log-differentiating QF = W(G)'/° gives 07 /0" = —(u/05)G/G (see (C.4)
below). The H-channel contributes —(u/0)Q"argy to QF, which is bounded below by
—(u/o)argh® after dividing through by QF > 0. The Q term contributes —Q = Q"¢ (gr —
gr). Factoring Q" from both sides, the bracket ¢(gg — gr) — (1/0)argy > 0 holds under
(C.2).

Condition C.5 (C2: talent-drain offsets direct augmentation). oF - (§ — yr)/(Yr — ) -
(aR — aF) > ar.
Derivation. The A-channel contributes (0Q' /0A)A = —(ar/0)(Q' JA)gaA = —(ar/c)Q" ga

(lowering QT, which is harmful for the bound). The Qf-channel depends on gz, which from
the Roy cutoff (20) and CES price ratio (G.2) satisfies

aR —ar)8A +&r _
g:= (ar YFF—)Y: , & =5 (Pugn — daga) + 5 (gF —gr)- (C.3)

On d.7 under the CE (gr =0, gr > 0), the term —gg /0 in g, reflects the general-equilibrium
price adjustment: rapid derivative growth depresses pg/pr, partially offsetting the productivity-

3The interior-threshold condition Q7 € (0,1) requires DG < &F, so f is finite on 9.7. At the baseline
calibration D =0and u = 1.

37 An earlier version stated 6 in place of 6. The 62 bound is strictly stronger (hence conservative): the
Q' factor cancels from both the H-channel of Q' and the drift term —(, so only ¢ (not ) appears in the
sharp bound.
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asymmetry driver (ag —ar)ga. Define c = ar (v — &) /(yr — ¥8) < 0. The net A+talent+price

contribution to G/G is

arga+ Orgo, = lar +c(ar—ar)] ga + cgr.

[ J/

<0 u;aer Cc2

C2 ensures the first bracket is negative (the talent-drain from the productivity asymmetry

exceeds direct augmentation). The residual ¢ - g, captures the GE price adjustment.3?

Condition C.6 (C3: epistemic erosion dominates replenishment on d.7). 5¢(@) > N Egg - (Q")%s.
Under laissez-faire, {CF = 0 and this holds trivially.

Log-differentiating O = ¥(G)'/® with ¥(G) = (6 —DG)/((1 — D)G) gives

) u_gF—QG_

"
of o

G
L= 1 C4
G ; (C4)
where G/G = apga + 0rgn + arga, + (& — 1)gp. On 0.7 under the CE, gr = 0.
Under C1-C3, each negative contribution to V is bounded above in absolute value by

the corresponding positive contribution. Factoring Q > 0 from all channels and combining
with —0 = Q"9 (gr — gr):

V>0 [0(gr —gr) — (1/0)orgn — (1/0)(arga+ arga,)] >0,

where the final inequality uses C1 (compositional drift dominates human-capital deepen-
ing) and C2 (the A+talent channel is beneficial, so the last group is nonpositive). Nagumo’s

condition is satisfied and .7 is forward invariant. [l

Remark C.7. When C2 fails pointwise—i.e. the GE price correction (equation (C.3))
makes the combined A+talent+price channel positive at some parameter values (cf. Ta-
ble 9)—forward invariance is verified using the full boundary drift V rather than the point-

wise inequalities. The numerical exercises implement this check directly.

Table 9 reports the integral margins across calibration variants.

382 as stated bounds only the A-channel at fixed prices. The full condition including the GE price cor-
rection is ar + c[(ag —ar) — (0 — 1)9a/6] < 0, which is slightly stronger. At calibration this holds with
a comfortable margin. When C2 fails pointwise, forward invariance is verified numerically using the full
boundary drift (Remark C.7).
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Table 9: Talent-drain dominance: parameter verification

Parameter Value o % ar  Margin M
Baseline — — 0.65 1/3 030 +0.087
ar = 0.20 0.65 1/3 0.20 +0.017
ar = 0.40 0.65 1/3 040 —-0.183*
=25 0.65 1/5 030 —-0.170*
£=4.0 0.65 1/2 0.30 +0.025

Note: M > 0: pointwise condition holds. *M < 0: integral condition verified numerically.

When both pointwise and integral conditions fail (not observed at the calibration but
possible at, e.g., ap = 0.5 or { < 2.3), .7 is no longer forward invariant. The economy then
converges to a low-growth steady state with Q stabilised below QT rather than collapsing

to zero. The governance trap still binds in such configurations.

C.3 Fold bifurcation and non-substitutability

Proof of Proposition 4.7. Consider the (¢, &) subsystem with governance intensity g treated
as a parameter. The ¢ = 0 locus is defined by gr(¢,A) = gr(®, Qeit(@,q,8),A). The
derivative share @ enters gg with a positive coefficient (more derivative activity raises
derivative growth, given Al augmentation) and gr with a negative coefficient (through
Qetf), so the nullcline slopes downward in (¢, &) space. At low ¢, screening is ineffec-
tive and no interior intersection with the & = 0 locus exists; at high ¢, two intersections
appear. Theorem C.2 (fold bifurcation) identifies the critical parameter value g, at the tan-
gency. Genericity of the fold follows from the transversality condition 3%¢/(d¢@ dq) # 0,
which holds because dQefr/dg > 0 ensures a nondegenerate unfolding. O

Proof of Proposition 4.8. Since ag > ap, raising A augments gg more than g at any (¢, q),

shifting the tangency condition. By the implicit function theorem,

99c __Pa

A~ &,
The terms ®4 and @, have opposite signs. Therefore, dg./dA > 0, so g, increases in A.
Governance must intensify to keep pace with algorithmic improvement. U
Proof of Theorem 4.9. Fix g < g, and consider the modified vector field f’(x; TF, Tz, X ). The

claimis V > 0 on 0.7 under any admissible (7, T;, X ), so forward invariance is preserved.
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Step 1: compositional drift remains negative. On 0.7, Q = Q' and g%md < 0. A fron-
tier subsidy replaces G by (14 7¢)Gp, giving modified frontier growth g = (1 +
1) ArD(QV)A (QrH)* F&~' — 8. At Q = QT this equals 77(8p — DG)/(1 — D) after
substituting D(Q")G = &, s0 g7 = 1 6; DG~ - [G— 8¢ /D]/(1— D). When DG < &
(the relevant regime), g‘;“’d can be made positive for sufficiently large 7. However, the sub-
sidy simultaneously raises A through increased output: A = usRYA® — §4A is unchanged
directly, but the induced growth in A feeds back via A“® with ag > ar.

Step 2: derivative response dominates. Any increase in A augments Gg by factor AR 9F
relative to Gr. The modified derivative growth satisfies gfemd — gf;md > (ag —ar)ga +
(terms bounded below by C1-C3) > 0 on d.7. A talent subsidy 7, shifts Z downward,
raising Qr and hence Gr, but the same asymmetry applies: g = 1 — 7 falls, but A9
amplifies the derivative sector more. Copyright ¥ € [0, 1) reduces A by factor (1 — y)" but

does not reverse ggmd > 0 (Lemma G.5), since R%*~! remains positive and A > 0.

Step 3: governance term is too weak. The governance reclassification contributes g - s(&’) -
k- (1—0) to Q. At g < g, this is bounded above by g.-s(&)- k- (1— Q") < Q7 (1—Q")gh™
(the definition of g.). Hence the positive governance contribution is strictly less than the

negative compositional drift, and Q < 0 on 0.7 .

Step 4: barrier conclusion. Since Q < 0 on 0.7 and Q7 is controlled by C1-C3 (whose
verification is unchanged because non-governance instruments do not affect the H, A, or
Qr channels of QO adversely enough to violate the conditions), V = Q0" —Q >0 on 9.7.
Nagumo’s theorem gives forward invariance of .7 under the modified vector field. U

C.4 Acceleration and diminishing returns

Acceleration by endogenous AL. Let Q4(7) denote quality under endogenous A, and
Obase () the counterfactual with A frozen at A(0). Endogenous algorithmic improvement
raises derivative output through AR, s0 R4 > Rpase Whenever A(¢) > A(0). The comparison
©a(t) > Ppase (1) follows, and monotonicity of (17) in @ gives Q4 () < Opase(?): endogenous

Al accelerates the approach to the derivative trap.
Diminishing returns. Under o7 +& = 1 — € with € > 0, dQ} /de = OlInF /o >0 for

F > 1. Diminishing returns in frontier production raise Q", tightening the trap by narrowing

the feasibility margin.
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D Governance Trap Proofs

D.1 Absorbing property

Lemma D.1 (Control-invariance of .7 on 4). For any admissible policy (q,ls) with q €
(0,1, if x€9GNIT (i.e. En < & and Q = Q), then Q < 0. Hence trajectories in ¢ N7

cannot exit .7 under any admissible control.

Proof. From (17) at Q = Q' (where g = 0):
Olygr = (1-0)[-0' ™+ q-s(60) - K],
By Definition 5.1, s(&7) = QngrOd /x. Since s is increasing and &y < &7 on Z:
q-5(&ot) kK < 1 -s(é"T) K= QTg%rOd.

Hence the bracket is < 0, giving Q < 0, with equality only when ¢ = 1 and & = &'. For
Q< QF: g%md < 0, making the drift term more negative, so Q < 0 a fortiori. O

Remark D.2 (Economic content). Lemma D.1 formalises the definition of &' inside the
governance trap, epistemic capacity is by definition insufficient for screening to offset com-

positional drift. No policy can push Q above Q' because (&) is too low.

Proof of Theorem 5.4. Reduction to 04 N.7. By Lemma D.1, .7 is control-invariant
within &: for any admissible (g, /s ), trajectories starting in ¢ N.7 (Region III) remain in
7. They can only potentially exit & through 0% N.7 (since they cannot exit .7), so the
Nagumo condition need only be verified on 94 N.7.%°

Ond9N.T: &y=¢&" and Q < QF. Grant the planner maximum feasible intervention:
le =12 and g = 1.

Step 1: the requirement & is nondecreasing on 94 N.7. By the chain rule,

. o&t . 9&T
T__ Ay
&' = aAA+ a(pgo

3The complementary part of d%—the Region II locus where Q > Q' and & = &—is reached before
the derivative trap closes (temporal precedence, Proposition 5.6). Absorption on this locus is not needed for
the two-trap hierarchy (Theorem 5.8); see Remark D.3 below.
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Both contributions are nonnegative on ¥ N.7: A > 0 and d&7/dA > 0 (Lemma 5.2(i)),
reflecting that more powerful Al demands more epistemic capacity. By Lemma D.1, Q <0
under any admissible policy on ¢ N 7, hence ¢ = —Q > 0; combined with & /dp >0
(Lemma 5.2(ii)), the @-channel is nonnegative. Hence &' >0 on d%¥ N .7.

Step 2: upper bound on epistemic replenishment. On 0¥ N.7, Q < Q" and Q% is in-
creasing in Q (since o > 0), so Q% < (Q)%. Even under the strongest feasible response,

the net epistemic drift satisfies

gpubbgmg < )Lif)du}) (gr@gaX)ng (QT)O-g - 5@@,0 gpuba

dropping the nonpositive term —d,s 1 ¢ &pup and used 05 (¢Q) > 8¢ . This is the critical step

where restriction to .7 is used: Q < Q' < 1 ensures (QT)%” is a valid upper bound.*°

Step 3: replenishment-to-erosion ratio. On d¥'N.7, &y + Epriv = & 7. so

Vo=&"—bio > 0—[A(0")% —56T =867 -2 (0",

using & >0 from Step 1, where 4 = A2 (¢max)ne 4 AP (P 1s and § = min{8e g, 5}2“8’}

Define the replenishment-to-erosion ratio

A(Qh)

(D.1)
Then Vi > 0 on 0% N.7 whenever Z < 1.

To obtain a uniform (state-independent) threshold G, the worst case is bounded: min-
imise &' and maximise Q' over ¢ N .7. Define

& = inf & >0, o= sup Q" €(0,1).
min 854&7 Qmax agﬂr} Q ( )

Positivity of é"rj}in follows from Q' gﬁr()d /k>00n0d¥9N.7 (Lemma G.5) and s~ ! increasing

with s71(0) = 0. The bound Olax < 1 holds because the interior-threshold condition Q7 €

(0,1) applies uniformly on d% N .7; along trap trajectories, G — oo (via the R—A feedback)

drives Q7 — 0, so the supremum is attained near initial entry (anaX ~ (.65 at calibration).

400n 99 \ .7 (Region 1), Q > Q" and Q < 1 would be needed, giving the trivial bound Q% < 1. The
replenishment-to-erosion ratio could then exceed unity, and absorption may fail—economically correct, since
high data quality aids retraining.
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Since Q;fnax < 1, the map o¢ — (anax)c(g’ is strictly decreasing. The intermediate value
theorem delivers a unique threshold 6, > 0 with Z(65) = 1 (at the worst-case point),
given in closed form by

_ (&7 Y—InA
6 = max\ 0, mm,( . (D.2)
In Omax

The max{0,---} handles the case where depreciation dominates replenishment even at
o = 0; then the trap is absorbing for all o > 0.

Under the normalisations in the main text (/2 = 1, /”Lgiv =0,0 =g, and (E’rzm ~ 1
at the boundary normalisation), (D.2) reduces to the displayed expression (33). At the
calibration, G2 ~ 0.73.

Step 4: Nagumo conclusion. For 65 > 65, Z < 1, s0 Vg > 0 on 04 N.7. The barrier
Vi(x) = &T(x) — &or(x) is C' with no explicit time dependence; the autonomous Nagumo
condition (Theorem C.1) applies. Since .7 is control-invariant within ¢4 (Lemma D.1),
trajectories originating in ¢ N .7 remain in .7 and can only potentially exit ¢ through 04N
7. The Nagumo condition blocks this exit, so ¢ N .7 is forward invariant (absorbing):

once the economy enters Region ITI, no admissible policy restores & > &7 O

Remark D.3 (Governance trap in Region IT). On 0% \ .7 (Region II: Q > Q7, &t = &),
the absorbing property need not hold, and this is economically appropriate. In Region II,
data quality has not yet collapsed, so aggressive evaluator retraining (with high Q°¢) could
in principle replenish & faster than it erodes. The governance trap is “soft” in Region II:
a social planner with sufficient resources could escape by investing heavily in epistemic
infrastructure while Q is still high. The trap becomes “hard” (absorbing) only after the
system crosses into Region III, where both Q < O (limiting retraining effectiveness) and
control-invariance of .7 (Lemma D.1) jointly close the escape route. The two-trap hierar-

chy (Theorem 5.8) relies only on absorption in Region III.

E Computational Methods

The replication package provides code and parameter files for all numerical exercises re-

ported in the paper.
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E.1 Planner transition

The planner chooses controls u = (g, {r,lg,ls, ) subjectto . £;=1andC=Y —I'(q) >

0. Eliminating ¢ leaves four free controls, determined pointwise from the Hamiltonian

sP_ 25;1/5

FOCs. The planner’s choice of ¢ pins down the Roy cutoff 7 and hence the

quality-weighted talent input Q(z°") that enters Gr below (see Appendix A.3).

E.1.1 State—costate system

The necessary conditions comprise six state laws (equations (6)—(10) in the main text) and

six current-value costate equations. Define the gross production terms

Gr = Ar D(Q) A% (QpH)% F®,
Gr = AR A% ((xH)% R,

so that F = Gr — 8pF +gskR and R = Gg — 6gR — g s K R. The costates satisfy:

Ar = (p+8p)Ar — ' (C) pr — Ar & GpJF —¥oR/(F +R)?, (E.1)
Ar = (p+8r)Ar — ! (C) pr — ARERGR/R+¥ F /(F +R)*
— A UaVRYTIA® + (Ag — AF) g5k, (E.2)
A= (p+84)As — ' (C)IY /IA — Arar Gr /A — Agagr Gr/A
—Ap OUsARVAC (E.3)
Aty = (p+81) Ay —u'(C) Y JOH — Ap 0p Gp /H — Ag 0 Gr/H
— Dt D 51 (E.4)
A" = (p+85(9)) 25" — (A — Ar) g5 (6) KR, (ES)
AN = (p+82™ () AE™ — 1 (C) Keen PR R (E.6)

where Ay is the human-capital accumulation productivity parameter (not the costate; con-
text disambiguates), dY /dA and dY /dH are the CES marginal products from (3), and the
last equation uses the certification-premium channel: in symmetric equilibrium, aggregate
private epistemic capital raises the average certified price to pr = pr(1 + Keertpriv) (aggre-
gating the firm-level premia pg; = pr(1+ Keerte;) from Proposition 3.2), so d prR /9 &priy =
Keert PR R. When the model omits the certification channel, the last term reduces to zero and

63



AL decays atrate p + 85

Derivation note.  Since Q = F /(F +R) is algebraic, all Q-dependence in the Hamiltonian
generates chain-rule terms in Ar and A via 0Q/dF =R/(F +R)? and dQ/0R = —F /(F +
R)z. These are collected in W, which absorbs all Q-channels: the productivity channel
Ar[D'(Q)/D(Q)]|GF, the epistemic replenishment channel through Dg(Q) = Q°, and the
depreciation channel through ¢ (@) with ¢ =1 — Q. No separate ¢ terms appear in Ar
or XR; that channel is already inside W¥y.

Throughout, G;/x denotes the gross production elasticity: £ Gr/F = dGr/dF (since
Gr = ApDAYF (QpH)* F £ gives dGg/dF = EGfp/F). The distinction between gross
Gr/F and net F/F matters: the depreciation —&F in F is absorbed into the (p + &)
coefficient and must not appear again in the production term. The computational code uses
automatic differentiation of the full right-hand side to construct the Jacobian; the displayed
system is included for analytical transparency.

The full system is 12-dimensional.

E.1.2 Control computation

Controls are computed at each evaluation of the vector field. Governance satisfies the

interior condition

i/ (C)T'(q) = (Ar — Ag)s(&) kR

Strict convexity I"” > 0 pins down at most one interior solution, computed by bisection
on [0,1] at tolerance 10~!2; the corner ¢ = 1 binds when the right-hand side exceeds
u'(C)T'(1).

Labour allocations satisfy equalisation of marginal Hamiltonian value. Since labour en-
ters the model only through the accumulation equations F, R, &, H and not through current
output ¥ (which depends on stocks F,R,A, H), the Hamiltonian FOC for /; involves only
the costate channel A;dx;/d!;, with no direct utility term u'(C) dY /d¢;:

oF OR

or on pub
A lr Ax dlr A

9pub —2 &_H
e oy

The implied 3 x 3 system in (¢r,%#,{p) is solved by Newton’s method with analytic Jaco-
bian. Corner solutions arise when interior Newton iterates produce a negative allocation;
these are detected by checking ¢; < € with € = 1078, When a corner binds, the corre-

sponding control is set to zero and removed from the active set, reducing the system dimen-
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sion. Feasibility of the remaining allocations is maintained by projecting onto the simplex
{¢; >0:Y¢; =1—{y} after each Newton step. The binding set is re-evaluated at each
time point; transitions between interior and corner regimes are smooth at the calibration

(no chattering is observed).

E.1.3 Boundary conditions and shooting

The problem is a two-point BVP: initial states x(0) are given; transversality conditions

}Lmeiptlj(t))cj(l‘) =0 (E.7)
pin down A. The infinite horizon is approximated by truncation at T with terminal costates
anchored to the managed BGP (Appendix H). On the BGP, each costate satisfies lj =
(p —g})A; —u'(C*)dY*/dx; (plus cross terms that vanish at the balanced allocation), so
the stationary costate is
W/(C*) (3Y* /%))

p—g;+nec

Ai(T) = , (E.8)
where gjf is the BGP growth rate of stock j and 7 is the CRRA parameter (so i’ /u' =
—ngc). The denominator is positive under the standard transversality restriction p > 1 g+
(1—n)gj, verified at the calibration.

The shooting residual r(1g) = A (T; A¢) — '™ is driven to zero by Levenberg—Marquardt.
The Jacobian dr/dA¢ is computed by forward sensitivity analysis: the 12 x 6 matrix
S(t) = d(x,A)/dAg satisfies S = J(¢)S with J the 12 x 12 Jacobian of the full system
(computed analytically). The sensitivity ODE is integrated jointly with the 12 state-costate
equations (84 coupled equations in total).

Stopping criteria: ||r|| < 107% (primary); relative change in Ao below 1078 (sec-
ondary). Three initialisations are used: (i) a scale-normalised guess from (E.8) evaluated
att = 0; (ii) a backward sweep from T along the CE state path; (iii) random perturbations

around (ii). The reported solution is invariant across convergent starts.
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Table 10: Truncation-horizon sensitivity

T Te T gi*  CEV Irll  [22(T)—2(0)|

75  15.08 2397 +081% 6.83% 3.1x107° 1.2x107*
100 15.10 24.01 +0.80% 6.81% 4.7x107° 2.8x1077
150 15.10 24.02 +0.80% 6.80% 8.3x1077 4.9x1077
200 15.10 24.02 +0.80% 6.80% 2.1x1077 6.1x1078
300 15.10 24.02 +40.80% 6.80% 5.4x10°8 8.7x107?

E.2 Truncation-horizon robustness

F Algorithmic Capacity Robustness

The main text uses a stock formulation for algorithmic capacity ((6)). An alternative flow
formulation delivers the same qualitative predictions.

Stock formulation (baseline):
A = [lARvAw — 5AA.
Flow formulation (alternative):

A= (RT)VA® — §4A, R = max{R,0}.

Table 11: Stock vs. flow formulation

Stock Flow Difference

Ty (years) 143 15.1 +0.8
Tp (years) 227 24.0 +1.3
AT (years) 8.4 8.9 +0.5
gk (%lyr) 38 34 +0.4
CEV (%) 7.4 6.8 —0.6

Under the flow formulation, (R™)" collapses immediately when R < 0, attenuating the
Al improvement channel and delaying trap crossings modestly. Forward invariance, the

absorbing property, temporal precedence, and the instrument ordering are unchanged.

Remark F.1 (Data deletion). Under the stock formulation, accumulated R contributes to Al

improvement even after governance curtails new derivative output. Permitting data deletion
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from training corpora introduces an effective stock Reff = R — fé d(s)ds, which weakens
the persistence of the Al-capacity channel. Under the flow formulation, governance that

reduces RT immediately attenuates A, so the incremental value of deletion is smaller.

G Existence and Uniqueness of Competitive Equilibrium

The competitive equilibrium characterised in Section 3.1 exists, is unique, and generates
a well-defined trajectory on [0,0). The global-extension step rests on Picard-Lindel6f,
which guarantees local existence and uniqueness for ODEs with locally Lipschitz right-
hand sides and characterises when solutions extend to all time—here applied to the reduced

five-dimensional dynamics after the static equilibrium map eliminates the control variables.

Theorem G.1 (Picard-Lindelof and maximal extension). Let U C R" be open and f: U —
R”" locally Lipschitz.

(a) For every xo € U there exists Ty > 0 and a unique C' solution on [0, Tp).
(b) The solution extends uniquely to a maximal interval [0,T*), T* € (0,00].

(c) If T* < oo, the trajectory eventually leaves every compact subset of U; equivalently,

a trajectory remaining in a compact subset on every finite interval forces T* = oo *!

Maintain Assumptions 2.1-2.5 and 2.4 throughout. Fix the education share ¢y € (0,1);

Remark G.9 extends the argument to endogenous /.

G.1 The static equilibrium map

Define the admissible state space
2 = {(F3R7A7Hagpub7<g}priv) S RiJr X R%r}

Given x € 27, the static equilibrium is a triple (Z, 6, ) satisfying profit maximisation, Roy
sorting, optimal private epistemic investment, and labour-market clearing. The construction

is sequential and each step yields a unique, smooth outcome.

4Teschl [2012, Theorems 2.2, 2.13, Corollary 2.16].
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Step 1: Prices. The CES aggregator (3) with 8 > 1 delivers competitive prices as marginal

products:

1/6 1/6

pr(x) = oy A% (Y /(A% F)) pr(X) = (1— o) H% (Y /(H%R)) (G.1)
Both are C* on .2 and strictly positive, since 8 > 1 ensures that each composite receives

a positive share of output. The ratio

1—oy H¢H

o I o o) @2)

r(X) = pr/pr =

is C* and strictly positive on Z".

Step 2: Roy threshold.

Lemma G.2 (Single-crossing). For each x € 2", the Roy sorting problem has a unique

equilibrium: either an interior cutoff 7 > z or the corner g = Q.

Proof. The wage ratio wr(z)/wgr(z) = (pr/pr)AYF ~*RZ¥F~1 is strictly increasing in z be-
cause Yr > Yr (Assumption 2.4(1)). The single-crossing property is inherited from the
monotone-likelihood-ratio structure of the Pareto distribution: higher-ability agents have a
comparative advantage in frontier work, and the advantage is strict. Hence there is at most
one cutoff. If wr(z) > wg(z), all researchers prefer the frontier and g = 0. Otherwise a
unique Z > z solves wr(Z) = wg(2).

Existence of the interior cutoff when wr (z) < wg(z) follows from the intermediate value
theorem: as z — oo, the wage ratio wr /wg — o, so the continuous function z — wr(z) —

wg(z) changes sign exactly once. Uniqueness follows from strict monotonicity. ([l

The cutoff map is
7(x) = max{z, (r(x) A% e )l/(r=m (G.3)

which is continuous on 2" and C* on the open set {Z > z}.

Step 3: Talent allocation. Given Z(x), the Pareto distribution pins down all labour-

market aggregates:

4
= (1—Lly)(z/2)5, QF=(1 —@)f_—gﬁzﬁ—g, g =(1—tu)(1—(2/2)°).
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Since yr < £ (Assumption 2.4(ii)), the exponent yr — § < 0 and all three maps are C* in Z,

hence C* in x by composition.

Step 4: Private epistemic investment. Each derivative-sector firm i accumulates a pro-
prietary detection stock e; by diverting fraction 6; of its labour force to detection. The
certified price for firm i is pgr; = pr(1 + Keertei), SO each firm internalises the return to its
own detection effort. The FOC equates marginal certification revenue (strictly decreasing
in 6; by concavity of the detection technology) to marginal cost (strictly increasing in 6;
by convexity of the labour reallocation). The two curves cross exactly once, delivering a
unique interior solution 6; € (0,1). In symmetric equilibrium 6; = 6F (x) for all i, and ag-
gregate private epistemic capital is &,y = € - Tr(Z) where e is the common per-firm stock.
The implicit function theorem—applicable because the Jacobian of the FOC with respect

to O is nonzero at the root—gives C! dependence on x.

Combining. Define ®: 2" — (z,00) x (0,1), ®(x) = (Z(x), 05F (x)).

Proposition G.3 (Static equilibrium). For each x € 2", ®(x) exists, is unique, and is C' in

X.

Proof. Existence and uniqueness of Z: Lemma G.2. Existence and uniqueness of GgE : the
strictly decreasing marginal revenue and strictly increasing marginal cost cross exactly once
on (0, 1)—a standard fixed-point argument on a compact interval. Smoothness: Z is C* in
x on the interior (composition of C* functions); 8F is C! in x by the implicit function
theorem applied to the FOC, whose partial derivative with respect to O¢ is strictly negative

(second-order sufficiency). The composition @ = (Z, GgE ) is therefore C! on 2. O
G.2 Reduced-form dynamics
Substituting ®(x) into the laws of motion yields the reduced-form ODE

x = f(x), (G.4)

where f: 2" — RO,

Lemma G.4 (Lipschitz regularity). For every compact % C Z with inf , min{F,R} > 0,
there exists L(X) < oo such that ||f(x) —£(y)|| < L(¥)||x—y|| for all x,y € % .
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Proof. By Proposition G.3, Z(-) and 65£(-) are C! on 27, hence Lipschitz on any compact
subset (by the mean value theorem on a convex compact set, or more generally by com-
pactness and continuity of the derivative). The remaining ingredients are: power functions
F&, RS, A%, A® RV—all C* on Ry ; the ratio Q = F/(F + R), which is C* away from
F = R = 0; the erosion function D(Q), which is C' on (0, 1] and Lipschitz on .#" since Q
is bounded away from zero there; affine depreciation rates; and the talent maps, C* in Z.
Each component of f is a composition and product of C! functions on 2", hence is itself

C'. A C! function on a compact set is Lipschitz, which completes the argument. U

Lemma G.5 (Positive derivative growth on 0.7). Under Assumptions 2.1-2.5 with & =
arv/[(1 = Sr)(1 — )] > 1, there exists g, > 0 such that gfemd > g, on 0.7 along any

competitive-equilibrium or planner trajectory.

Proof. Write g%md = ARA“R((xH)®R%~! _ §p Along the R-A feedback loop, A/A ~
UARVA®1 50 A ~ RY/(1=9) on average. Substituting, A%*R%~! ~ RarV/(1-0)+&—1 _
RSU=8r)+er—1 — R(G=1)(1-6k)  Since & > 1 and & < 1, the exponent (& —1)(1—&g) >0,
so the product A%RSk~!1 — oo as R — co. Combining with (¢zxH)* bounded below (since
¢ > 0and H grows) and O finite, g%md is bounded below by a positive constant on compact

invariant sets, hence on 0.7 . O

G.3 Existence, uniqueness, and global extension

Theorem G.6 (Competitive equilibrium). Under Assumptions 2.1-2.5 and 2.4, for every
Xg € X with strictly positive stocks:

(i) There exists a unique maximal C' solution x: [0,T*) — %", T* € (0, 9.
(ii) All stocks remain strictly positive and epistemic capital remains in [0,1] on [0,T*).
(iii) If the knowledge stocks remain bounded on every finite interval, then T* = oo

(iv) The competitive equilibrium is the unique path along which all agents optimise and

markets clear at every instant.

Proof.

Part (i). The state space 2" = Ri X Ri is not open (the boundary & = 0 is included),
so Picard-Lindelof (Theorem G.1) cannot be applied directly on 2. Define the open su-

perset U = R% | x (—€,)? for some € > 0. The vector field f extends continuously to U
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(the production and depreciation terms are smooth in Ri + and polynomial in &,up, Epriv)
and is locally Lipschitz on compact subsets of U by the argument of Lemma G.4. Theo-
rem G.1(a)—(b) applied on U delivers a unique maximal solution x : [0,7*) — U, where
T* € (0,00] is the supremum of the existence interval (Theorem G.1(b)). Part (ii) below
establishes that the solution remains in the smaller set 27, so the distinction between U and

Z is immaterial for the equilibrium trajectory.

Part (ii): positivity and boundedness. For each knowledge stock J € {F,R,A}, the law
of motion has the form J = G;(x)J¢ — §;J with G; > 0 and e¢; < 1. AtJ = 0 the depre-
ciation term vanishes and the production term is nonnegative, so J > 0. More precisely,
J > —8;J everywhere, giving the comparison bound J(¢) > J(0)e~%" > 0. Strict positivity
is preserved.

Human capital satisfies H/H = lyﬁgH — dy, a constant coefficient ODE, so H(t) =
H(0)exp{(AgtP" — 84)t} > 0.

Public epistemic capital: under Eng =0, é"pub = —05(9)Epup < 0, 50 Epyp is non-
increasing, stays in [0, 1], and &b (1) = pub(0) exp{— [§ 8 (@(s))ds} > 0.

Private epistemic capital: by comparison with the autonomous equation X = lgfiv —
Ségr’g/x, Spriv (1) < max{&priv(0), képariv / 5?78/} < 1 by Assumption 2.4(vi). Hence &y stays
in [0,1).

Part (iii): global extension. Suppose F, R, A remain bounded on every [0,7] C [0,T%).
Part (ii) confines H to exponential growth and both epistemic capitals to [0, 1]. The trajec-
tory therefore remains in a compact subset of 2" on each [0,7]. The blow-up alternative
(Theorem G.1(c)) stipulates that if 7% < oo, the solution must eventually leave every com-

pact subset of 2"; boundedness precludes this, so 7% = oo,

Part (iv): uniqueness of the equilibrium path. Proposition G.3 shows ®(x) is unique at
each state, which pins down the vector field f uniquely. Part (i) then gives a unique trajec-
tory for any initial condition. Since the static equilibrium determines all prices, allocations,

and labour-market outcomes at each instant, the full equilibrium path is unique. 0

Remark G.7 (Global existence at the calibration). Part (iii) is verified numerically: the
ODE solution extends to 7" = 300 years under all parameterisations in Table 7, with all
stocks bounded and residuals below 10~7. The calibration has ag + &g > 1 (increasing
returns in Al-augmented derivative production), which prevents a purely analytical global-
existence proof based on sublinear comparison. A sufficient analytical conditionis @+ Vv <

1 and ag + &g < 1; the calibration relaxes the latter for the derivative sector.
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Remark G.8 (Gross substitutability and uniqueness). The assumption 8 > 1 (gross sub-
stitutability between frontier and derivative composites) simplifies uniqueness but is not
required for existence. Under 0 > 1, pr/pr is decreasing in Q: an increase in frontier
knowledge depresses its relative price and raises Z, generating negative feedback that pre-
vents multiplicity of the static map. When 6 < 1 the feedback reverses sign and multiple
static equilibria could in principle arise, though this does not occur at the calibration. The
negative feedback under gross substitutability is the economic primitive that disciplines

uniqueness.

Remark G.9 (Endogenous /). When households optimise over ¢y, the equilibrium adds
an Euler equation for uy. The augmented vector field remains locally Lipschitz and the a
priori bounds carry over. Saddle-path uniqueness follows by the stable-manifold selection

argument.

H Balanced Growth Path

H.1 Definition and endogenous stationarity of O
Write gy = J/J. Fix £y and set gy = AHEEIH — Oy

Definition H.1 (Balanced growth path). A balanced growth path (BGP) is a trajectory
along which the growth rates (gr, gr,g4) are constant, the education-driven rate gy is con-

stant, and all labour allocations (¢f, /g, s, ) are time-invariant.

The definition does not assume stationarity of Q, Z, or any intensive margin; these are

derived as necessary consequences.

Proposition H.2 (Endogenous stationarity of data quality). On any BGP with Q(0) € (0,1)

and constant growth rates and controls, Q is time-invariant.

Proof. The law of motion of Q = F/(F + R), derived from the governance-augmented

production equations, gives

0=0(1-0)(gr™ — g +¢s(&) k(1 -0Q), (H.1)

where ggrOd = Gy/J — &y is the non-governance growth rate. Consider the laissez-faire case
g = 0. The functional form D(Q) = D+ (1 — D)Q° enters the frontier growth rate through
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gl — ArD(Q)A% (QrH)* FE~! — 8. Under ar + & = 1 (Assumption 2.1), dividing
(1) by F and using Qp = Qp(2):

¢r + 87 = ArD(Q) A (Qp (2)H)™

The right-hand side depends on the state through Q, A, Z, and H. On a BGP, gF is constant
by definition. Since A grows at constant rate g4 and H at gy, the product A“" H% grows
at constant rate apgs + argy. Constancy of gr + Of then requires the remaining factor
D(Q) Qr(2)* to grow at rate —(apga + rgH).

Now examine z. From (A.8), Z o< (prA% /(prA® )1/ (¥r=W)  The price ratio pg/pr
depends on F', R, A, H through (G.2). On a BGP, F and R grow at rates gr and gg respec-
tively. If gr # gr and Q(0) € (0,1), then Q(t) = F(t)/(F(t) + R(t)) drifts monotonically
over time: Q rises if gr > gg and falls if gr < gg. But D(Q) enters the production func-
tion with exponent ¢ # 0, so a drifting Q induces a time-varying component in gz through
D/D = o(1 —D)Q°'Q/D(Q). Unless Q = 0, gr cannot remain constant—a contradic-
tion. (One might conjecture that a compensating drift in Qg (Z) could offset D(Q); Propo-
sition H.3 below rules this out by showing that z—and hence Qr—must itself be stationary
on any BGP.)

It remains to verify that Q = 0 is consistent with the definition. Setting ¢ =0 and Q =0
in (H.1) requires either Q € {0,1} (boundary) or gr = gg. Since Q(0) € (0,1) and the
dynamics are continuous, the interior condition gr = gg must hold. Denote this common
rate g = gr — gr.

Under policy (g > 0), set Q = 0in (H.1). If gr # gg, the governance term ¢s(&) k(1 —
Q) must exactly offset Q(1 — Q)(gr — gr) at every instant. Since g and & are constant on
a BGP and Q would otherwise drift (by the argument above), Q must be constant for the
offset to hold at a single Q value rather than tracking a moving target. Hence Q is stationary

under policy as well. U

Two further consequences follow. Under laissez-faire, é"’pub = —05(@)Epup With £ =0
forces &b | 0 monotonically; any laissez-faire BGP is therefore asymptotic with éap*ub =0.

Under the laissez-faire BGP, Q stationary and Q € (0,1) require gr = gr = g (Proposi-
tion H.2).
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H.2 Stationarity of the Roy threshold

Proposition H.3 (Endogenous stationarity of z). On a laissez-faire BGP with Q constant
and gr = gr = &, the sorting threshold 7 is time-invariant if and only if
(1—6)¢4

aR_aF+T]gA:

1-0)oy
% 2. (H.2)
When the condition fails, no BGP with constant QF exists.

Proof. From (G.3), 7 o< (r- A%~ )1/(¥*=%) The price ratio r = pr/pr evolves as

; _ (8 ; D [OrigH — 9agal +

8F — &R
0

(differentiating the log of (G.2)). When gr = gg, the last term vanishes and the log-
derivative of Z is
(6—1)¢a

anct (wn—ar = =5 )]

_ 1 [(9_1)¢H
YF— R 0

IS [NIFA D

Setting 7 = 0 delivers (H.2). Since Qp o< 7F —¢ and mp < 775, stationarity of Z is both

necessary and sufficient for stationarity of all talent-allocation margins. 0

H.3 Growth-rate restrictions
Maintain Assumption 2.1 (aF +& = 1).
Lemma H.4 (Al accumulation). On any BGP with R,A > 0, g4 = Vgr/(1 — o).

Proof. From (6), g4 + 64 = uaRYA®~!. Take logs and differentiate: constancy of g4 re-
quires Vgr + (@ — 1)g4 = 0. Solving pins down g4. O

Lemma H.5 (Frontier stationarity). On a laissez-faire BGP with Q € (0,1) stationary and

Qr constant,

_op(l-w)gy
g= ar(1— @) —arv’ ar(l— ) #arv. (H.3)

Proof. Divide (1) by F under oy + & = 1. Stationarity of Q fixes D(Q); stationarity of Qp
removes that margin. The gross production term then grows at rate args + Qrgp. Setting
gr = g constant and substituting g4 = vg/(1 — @) (Lemma H.4 with gg = g) gives the

result after collecting terms. U
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Lemma H.6 (Derivative stationarity). On a laissez-faire BGP with g constant,

- ar(l— ) gn
T 0—&)(1—w)—agv’

(1 —éR)(l—O)) %aRV. (H4)

Proof. The argument parallels Lemma H.5. Divide (2) by R. Stationarity of 7z and Z
(hence Qpg) removes the talent margin. The gross production term grows at rate arga +
orgr — (1 —Eg)g. Setting this to zero and substituting Lemma H.4 with gg = g yields the

stated expression. 0

H.4 The self-reinforcement index
Definition H.7 (Al self-reinforcement). The self-reinforcement index is

arVv

(1—&)(1—-0)

The R-A feedback is strong when G > 1 and weak when G < 1.

S

(SR)

The index measures round-trip amplification: ag captures how much Al augments
derivative production, v how much derivative output trains new Al, and the denomina-
tor collects diminishing returns from own-stock concavity (1 — &g) and Al self-knowledge
(1—®). When & > 1, the denominator of (H.4) is nonpositive and no finite positive growth

rate balances the derivative sector.

Proposition H.8 (No interior laissez-faire BGP). If gy > 0 and G > 1, no laissez-faire
BGP exists with Q* € (0,1) and g > 0.

Proof. Under G > 1, the denominator of (H.4) is nonpositive; gg > 0 forces g < 0. Con-
sider g < 0: both F and R shrink, but the derivative-sector gross production term grows
at rate arga + orgy — (1 —Er)g = agvg/(1 — @) + orgry — (1 — Eg)g. Under & > 1, the
coefficient on g is agv/(1 — @) — (1 — Eg) > 0; combined with oggy > 0, the gross produc-
tion growth rate is strictly positive even as R declines. Hence gg increases over time and
no constant gg is compatible—contradicting the BGP definition. The g = 0 case similarly

fails because oggy > 0 drives gr above zero. U

At the calibration: agv = 0.48, (1 —&g)(1 — w) = 0.30, & = 1.6—firmly in the strong-

feedback regime.
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Proposition H.9 (Knife-edge). A laissez-faire interior BGP requires simultaneously: (i) © <
1; (ii) compatibility of (H.3) and (H.4); (iii) the sorting-stationarity condition (H.2). All

three fail at the baseline calibration.

H.5 Existence when G < 1

When the Al feedback is weak, both growth-rate equations yield positive finite values.
Generically g5 # gk, but the level of Q adjusts frontier productivity through D(Q) and
creates a fixed-point equation.

Define W(Q) =g (Q) — gk > where g (Q) = ArD(Q)A (QpH)* and g™
is independent of Q. Since D’ > 0, W is strictly increasing and continuous.

Proposition H.10. Suppose G < 1, gy > 0, and D < D. An interior BGP with Q* € (0,1)
exists if and only if g5 (0) < g5 < g3 (1). The BGP quality Q* is unique.

Proof. The condition W(0) < 0 < W(1) is the stated sandwich. Strict monotonicity of
¥ (inherited from D’ > 0) and continuity deliver a unique root by the intermediate value

theorem. O

H.6 BGP growth rates

When an interior BGP exists:

* aF(l_w)gH

= H.5
op(l —@)—apv’ H5)
* OFVEH
— H.6
AT (- @) —apv’ (H.6)
8y = Po(9aga+87) + (1 — o) (Pugn +g°), (H.7)
where @y is the frontier composite’s output share at the BGP. Epistemic capital: p*ub =0

in CE (monotone decay); under the planner, Eif > ( sustains @ﬂpﬁlb > 0.

At the calibration, the managed BGP (planner with ¢ > 0, /¢ > 0) yields: g* ~ 1.86 gp;
with gi ~ 1%, frontier growth is roughly 1.9%. Output growth gy ~ 2.3%.

H.7 Stability of the interior BGP

Proposition H.11 (Saddle-path stability). Suppose G < 1 and an interior BGP exists.
The BGP is saddle-path stable in the detrended state space X = (Q,A = A/F% for =
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H/Fl/aFa C’g;m'v)-

Proof. Detrend each stock by the appropriate power of F' to obtain a stationary system
% = f(%) with rest point &*. The Jacobian J* = Df(%*) is computed by linearising the
detrended laws of motion at the BGP.

The eigenstructure of J* is governed by three channels:

(a) Data-quality feedback (Q equation). The Q-row of J* has a diagonal entry dQ/dQ|* =
(1—0%)[dgr/0Q — dgr/dQ] +level terms. Since dgr/dQ = oD'(Q*)/D(Q*) > 0 and
dgr/d0 = 0 (derivative growth does not depend on corpus quality), the diagonal entry
is negative: higher Q raises frontier growth relative to derivative growth, depressing Q
through the compositional channel. This negative feedback generates a stable eigenvalue.

(b) Al-accumulation feedback (A equation). The detrended A equation inherits concav-
ity from @ < 1: the diagonal entry of J* is (@ — 1)g}; /A* < 0, contributing a second stable
eigenvalue.

(¢) Jump variables. The remaining eigenvalue(s) associated with forward-looking con-
trols (private epistemic investment, education allocation under endogenous fg) carry pos-
itive real parts. The number of unstable eigenvalues equals the number of jump variables,

delivering the saddle-path structure.

Multiplicity of steady states. Under S < 1, strict monotonicity of ¥(Q) (Proposition H.10)
rules out multiple interior rest points in the detrended system: the unique root Q* is the only
candidate, and the detrending is a smooth bijection on .Z". Under & > 1, no interior rest
point exists (Proposition H.8); the only attractors are the boundary configurations described
in Proposition H.13. Hence, conditional on the feedback regime, the detrended system has

a unique rest point (interior or boundary) and no additional steady states. 0

Remark H.12 (Calibration verification). At the baseline calibration, the eigenvalues of the
4-dimensional detrended system are {—0.047, —0.023, +0.031, +0.058}: two stable, two

unstable, confirming the saddle-path structure of Proposition H.11.

H.8 Asymptotic dynamics when G > 1

Under strong self-reinforcement, no interior BGP exists and the laissez-faire economy con-

verges to a degenerate configuration.
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Proposition H.13 (Trap asymptotics). Suppose G > 1 and D = 0. Along the laissez-
faire path: (i) Q(t) — 0; (ii) gr(t) — —OF, (iii) gr(t) and ga(t) increase without bound;
(iV) (’?puba Cg)priv — 0.

Proof. (i) Forward invariance (Theorem 4.5) ensures that once Q < QJ’, the trajectory re-
mains in the trap region and Q is non-increasing. Being bounded below by zero, Q con-
verges. Suppose limQ = Q > 0. Then D(Q) > 0, and frontier production retains a positive
floor. But under G > 1, the derivative production term grows without bound (as established
in the proof of Proposition H.8), driving ¢ — 1 and Q below O—a contradiction.

(i) D(Q) — D(0) = 0 implies F — — 8 F: frontier knowledge decays at its depreciation
rate.

(iii) The derivative gross production term A% (7grH)® RS~ accelerates through the R—
A loop; & > 1 ensures effective round-trip returns exceed unity, so the feedback does not
attenuate.

(iv) &pup decays exponentially under K%E = 0. For &,yy: the retraining technology
De(Q) = Q% — 0 as Q — 0, while depreciation stays bounded below by 523 > 0.

0

When D > 0, the frontier retains productive capacity at Q = 0 and the CES price mech-
anism provides a restoring force: as Q — 0, pr/pr — oo, which pulls 7 — z and g — 1.
Whether Q stabilises depends on the race between price-mediated talent reallocation and
derivative self-reinforcement. Numerically: D = 0.03 gives Q — 0.04; D = 0.05 gives
Q — 0.11; at D = D ~ 0.08 the trap dissolves.

H.9 Policy BGP
Under governance, Q = 0 no longer requires gr = gg.
Lemma H.14. Along any path with Q(t) = Q* and & (t) = &*, Q = 0 is equivalent to

g*
8R—8F = quQ—(*) (H.8)

Proof. Set Q = Q(1 —Q)(gr —gr) +¢5(&) k(1 — Q) = 0 and divide by O(1 — Q): gr —
gr+qs(&)x/Q = 0. Rearranging gives (H.8). 0O

Equation (H.8) is the missing degree of freedom: governance absorbs the growth-

rate differential that laissez-faire cannot accommodate. The screening intensity g selects
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the Q* at which the frontier can sustain positive growth despite derivative-sector self-

reinforcement.

Proposition H.15 (Managed BGP). Suppose o (1 — ®) > apVv and gg > 0. There exist
¢F > 0 and Egap > 0 implementing a BGP with growth rate g* given by (H.5), Q57 > O,
and &5F > &7

Proof. The frontier production block pins gr = g* under any fixed ¢ and Q%" satisfying
D(Q5F) > 0. The derivative block yields gz(Q5F) at any allocation. Lemma H.14 then
determines ¢3" to absorb gg — g*. The right-hand side of (H.8) is continuous in g on [0, 1],
ranging from 0 at ¢ = 0 to ks(&*)/Q* at ¢ = 1. For &* sufficiently large (which £5 > 0
guarantees), the upper bound exceeds gg — ¢* and the intermediate value theorem delivers
g’ € (0,1].

Epistemic investment Eif is chosen to sustain &7 via é'apub = 0: the replenishment term
must offset depreciation. The planner’s FOC for /¢ has interior solutions when ¥y > 0
(Proposition 3.4(i1)), since the shadow price of data quality makes epistemic investment

socially productive. ([l

I Sufficiency Conditions

The planner’s problem (24) is non-concave: the quality ratio Q = F'/(F + R) enters both the
flow payoff and the laws of motion through D(Q) and D (Q), destroying joint concavity
of the Hamiltonian in (F,R). Neither Mangasarian’s condition (joint concavity of 7 in
(x,u); Acemoglu, 2009, Theorem 7.11) nor Arrow’s condition (concavity of the maximised
Hamiltonian in x; Acemoglu, 2009, Theorem 7.14) holds, because D”(Q) > 0 for o > 1
(Proposition I.1).

The non-concavity is structurally the same as in epidemiological growth models where
an infection share enters nonlinearly in both constraints and objective. Goenka et al. [2014]
face non-convex constraints and a non-concave Hamiltonian from SIS dynamics; Goenka
et al. [2024] add disease-induced mortality and endogenous discounting. In each case,
the Leitmann—Stalford decomposition [Leitmann and Stalford, 1971] provides the route to
sufficiency. The present model replaces the epidemiological state (i) with the knowledge-
quality state (Q), but the algebraic structure—a ratio of two stocks entering multiplicatively

in production—is the same.
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Sufficiency follows from the augmented-Hamiltonian argument in Goenka et al. [2014],
Nguyen and Nguyen-Van [2016], Goenka et al. [2024]. The boundary term is controlled by
a generalised transversality condition in the pathwise form of Cartigny and Michel [2003],

verified via costate-sign arguments and a decay lemma for sign-ambiguous costates.

Non-concavity of the Hamiltonian

Proposition 1.1 (Failure of concavity in (F,R)). For ¢ > 1 and Ar > 0, the restriction of
J€(-,u,A) to the (F,R) block is not concave on any neighbourhood with F,R > 0.

Proof. Gross frontier production is Gg = ApD(Q) A“F (QrH)* F €. The term ArGp con-
tributes to 02.# /dF? the component

A A% (QpH) % FE D'(Q) ((FTRR)Z)Z'

With D(Q) =D+ (1—-D)Q° and 6 > 1, D"(Q) > 0 on (0, 1), so this contribution is strictly
positive whenever Ap > 0 and F,R > 0. Diminishing-returns curvature in F g (& < 1) does

not generically dominate; the (F,R) Hessian block is indefinite. O O

Existence and endogenous state bounds

Lemma 1.2 (Endogenous state bounds). Under Assumptions 2.1-2.5, any admissible path

satisfies:
(1) Epub, Epriv € [0,1] and Q € [0,1];
(i) H(t) < Hoe®H" with gy = Ay — O
(iii) R(t) < R(t) and A(t) < A(t), where (R,A) solves the comparison system
R = ARA™® (HyeSH" )™ RSk A= pu,RYVA®,

sublinearity (Eg, ® € (0,1)) excludes finite-time blowup, and the comparison solu-
tions satisfy R,A = O(e8%") with g pinned by the BGP system (Appendix H);

(iv) F(t) = O(e8F") for a finite gF;

(v) the discounted objective [y e P'u(C)dt is well-defined and finite.
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Proof. (i) Nonneg production and positive depreciation pin &pup, Spriy 10 [0,1];Q=F/(F+
R) €[0,1] is algebraic. (ii) From (12) with £ < 1: H < (A — 8y)H; Gronwall. (iii) Drop-
ping depreciation, governance, and using /g < 1, D(Q) < 1 yields R < ARA“RH R RER: simi-
larly A < uyRYA®. The comparison system dominates (R,A) componentwise. Sublinearity
in own stock excludes blowup (Osgood); exponential rates from Appendix H. (iv) Given
(ii)—(iii): F < ApA“ (HopeS1")*% F& 4+ kR(t) — 8y F. Sublinearity (¢ < 1) plus linear depre-
ciation; Gronwall. (v) CRRA with n > 1: u(C) < 0; discounted integral bounded above by
zero, below by [;"e P u(C)dt > —co. O O

Proposition 1.3 (Existence). The planner’s problem admits an optimal solution.

Proof. The control set is compact. By Lemma 1.2, the state dynamics are continuous in
(x,u), satisfy a linear growth bound, and the payoff is bounded above. Hence a maximizing
sequence exists.

Although the velocity correspondence f(x,%/) is generally non-convex, the existence
argument follows the weak-compactness approach used in Goenka et al. [2014] for non-
concave dynamic problems. Specifically, from any maximizing sequence, the controls and
induced state derivatives admit a subsequence that converges weakly in &(L! (e P"),L*),
while the corresponding state paths converge pointwise (after extraction) by the growth
bound and equicontinuity.

Pointwise convergence is sufficient to pass to the limit in the state equations wherever
strong convergence is available. For the weakly convergent components, Mazur’s lemma
provides convex combinations that converge strongly (hence pointwise a.e.). Feasibility of
the limit path then follows from continuity of the dynamics. Jensen’s inequality is used to
remove the convex-combination coefficients and recover an admissible limit control with-
out lowering the objective, relying on the required concavity in the control arguments. The
argument is a direct adaptation of the existence proofs in Romer [1986] and Goenka et al.
[2014], under the present assumptions (bounded controls, linear-growth dynamics, and an

integrable upper bound for utility). Therefore, the claim follows. U

Costate signs

Three costates are strictly positive along any interior planner path; the remaining three may

change sign.

Lemma 1.4 (Positivity of the frontier shadow value). Along any interior planner path with
C(t) >0and Yp(t) =dY /dF >0a.e., Ap(t) >0 forallt > 0.
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Proof. Proposition 3.4(i) decomposes A = Vg + Ap, where V is the competitive shadow
value and Ap = Ap — V the planner—private wedge.

VF > 0. By the integral representation in Proposition 3.4(i),

Vi(t) = /t “exp(- /, Sum)dr) W (C(s)) Y (s) ds (L1)

with up = p + 6 — EGp/F. Since u/(C) > 0 and Yr > 0 a.e., the integrand is strictly
positive and Vg (t) > 0.

Ar > 0. Proposition 3.4(iv) shows that the wedge vector A = (Ar, ¥y, lgoUb)T satisfies
the cooperative Volterra system (Theorem B.4), with forcing ® = (0, Py, 0)" and K > 0.
Along an interior path @ > 0 a.e. (Vg > 0 and D'(Q) > 0). The off-diagonal entry Krp =
R/(F +R)? > 0 transmits quality value into the F-channel. At the first Picard iterate:

AV (1) = /t " Krolt,s) ®o(s)ds > 0.

Cooperativity preserves A" > AW for all n; the contraction condition (Assumption B.3)
delivers uniform convergence.
Ar =Vp+Ap > 0. OJ ]

Lemma L.5 (Costate signs from interior FOCs). Along an interior planner path with (g > 0
and Lg > 0: (a) Ay > 0; (b) A" > 0.

Proof. The interior FOC (Appendix E.1.2) equalises marginal costate-value products:

IF . OH

9pub
e

1.2)

(a) dF /0l > 0and dH /dly = ZHBHZQHAH > 0. Lemma 1.4 gives Ax > 0; dividing by
the positive marginal product of £z pins Agz > 0. (b) 8£pub /Il =g égf - Dg(Q) > 0 for
Q > 0. The same argument gives lgaub > 0. UJ 0

No sign claim is made for Ag, A4, or Agw. The costate Ag can be negative when

quality-erosion costs outweigh the direct marginal product of derivative content; A4 is sign-
ambiguous because Al augments both frontier and derivative production. This parallels the
sign ambiguity of the costate on infectives in Goenka et al. [2024], where sufficiency still

obtains because the generalised TVC is verified directly rather than through costate signs.
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Generalised transversality conditions

Write (1) = e P A;(t) for the present-value costate of stock j. The standard transversality
conditions are
tli_glo e PIA;(1)x}(r) =0, j € {F,R,AH,Epub, Epriv }- (1.3)

These hold at the solution x* but provide no information about deviations along an arbitrary

feasible path. Sufficiency requires the pathwise form of Cartigny and Michel [2003]:

limsup e ") A;(r) (x5(z) —xj(z)) < 0 (1.4)

{—roo j

for any feasible x(-) from x¢. In the concave case, Acemoglu [2009, Theorem 7.14] as-
sumes (I.4) together with Arrow sufficiency. When concavity fails, the condition must be
verified directly—the approach here and in Goenka et al. [2014], Nguyen and Nguyen-Van
[2016], Goenka et al. [2024].

Two primitives deliver (I.4) for all six states. For signed costates (F,H, &pyp): nonnega-
tivity of both the costate and the state gives e P’ A;(x} —x;) < e P'A;x; — 0 by the standard
TVC, and the nonneg product pins the liminf, so limsup < 0. (In Goenka et al., 2024 the
corresponding step uses A; > 0 from the consumption FOC; here the Volterra decompo-
sition and interior FOCs sign three costates.) For unsigned costates (R, A, é"priv): present-
value costate decay {; — 0 combined with bounded deviation growth |x} —x;| = O(e8/")
drives the product to zero. The bounded state &y € [0, 1] is handled as in Goenka et al.

[2024]; the unbounded states R and A require the growth-rate comparison in Lemma [.2.

Lemma 1.6 (Decay of present-value costates). Along the optimal path, ;(t) — 0ast — oo
for every state j.

Proof. Signed costates (F,H,&,,,). Lemmas 1.4 and 1.5 give A; > 0. The standard TVC
u jx}k. — 0 together with xj bounded away from zero (F' > F > 0 by Assumption 2.5; H >
Hope %! > 0; Spub > 0 when £ > 0) forces pj — 0.

Unsigned costates (R,A, &pyiy). The present-value costate satisfies ftj = —e P07 /dx;.
The forcing is integrable: bounded by products of discounted marginal utilities and polyno-
mially growing states (Lemma 1.2), with the transversality restriction p > ngg+(1—1) g
(verified at the calibration, Appendix H) ensuring convergence [Michel, 1982]. Hence u;

has a finite limit.
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For &y € [0, 1]: the standard TVC and é;*riv bounded away from zero force the limit to
zero. For R: the effective own-discount up = p + (1 — Eg)0r — Ergr + ¢ s* K > p (sublin-
earity term (1 — Eg)8g > 0, governance term nonneg); the standard TVC with R* bounded
away from zero pins ug — 0. For A: u; = p+ (1 — @)04 — wg} > p; the argument parallels
R. 0

Proposition 1.7 (Generalised TVCs and Michel condition). Condition (1.4) holds for every
feasible x(-) from xo. The Michel condition limy_,. e P' 7 (t) = 0 is also satisfied.

Proof. Sign-based: j € {F,H,6pup}. Aj>0andx;>0givee P'A;(x]—x;) <e PAx; —
0 by (1.3); liminfe P’ Ajx; > 0 pins limsup < 0.

Decay-based: j € {R,A,&yriv}. Lemma L6 gives ij — 0. Any two admissible paths
satisfy |xj —X j| <C jeg/" (Lemma 1.2 bounds growth; Gronwall bounds the deviation; for
Spriv € [0, 1] the deviation is uniformly bounded). The present-value costate decays at rate
Wi >p,so ;| < C'e "' eventually. The excess rate Wi —g; > Odrives || [x; —x;[ — 0.

Summing over j:

limsup e P (A (1), x*(t) —x(r)) <O0. (L5)

{—roo

Michel condition. The system is autonomous: along optimal paths <" = p ", so
JOPY(t) = e PLoV (1) is constant. The standard TVCs and Lemma 1.6 give e P*(1,X*) —
0; discounting gives e P'u(C*) — 0. Hence #°P¥ = 0 [Michel, 1982]; see Acemoglu [2009,

Theorem 7.12] for a textbook derivation. ]

Sufficiency via the Leitmann-Stalford decomposition

The augmented Hamiltonian is
A (x,u,1) = A (x,0,) + (4, x). (16)

Since (A,x*) is independent of wu, the maximum principle selects u* as a maximiser of
J(x*,-, ). The Euler equations give Vy. 7 =0.

(x*,u*)

Lemma L.8 (Control-wise maximality). Given x*, JZ (x*,u*, 1) > S (x*,u, ) for all ad-

missible u.

Proof. At x = x* the augmented Hamiltonian separates into control channels. Consump-
tion. Concavity of u: u(C*) —u(C) > u/(C*)(C* - C) = /(C*)[I'(q) — '(g*)] at fixed x*.
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Governance. The intensity g enters F' and R linearly through 4-gskR. Convexity of I and
the FOC (26) (u'T"(¢*) = (Ar — Ag)skR*) combine to a nonneg difference. Labour. The
shares ({r,lg,¢y) enter through concave accumulation functions (By,ne € (0,1)); the
FOC (I.2) equalises marginal costate-value products; concavity delivers a global maximum
in the labour block. The argument exploits separability of the Hamiltonian in controls and
concavity in each control block—the same structure used in Goenka et al. [2024] for the

lockdown—consumption decomposition. U U

Proposition 1.9 (Augmented-Hamiltonian inequality). Along (x*,u*), for any feasible (x,u),
H(x*u* A) > A (x,u,A) ae. int. (L.7)

Proof. Following Leitmann and Stalford [1971] and its infinite-horizon extensions in Goenka
et al. [2014, 2024], freeze Q at its optimal-path value Q*(¢). The frozen-Q Hamiltonian

H(x,0,2:0%) =u(Y —T(q)) + Ar[ArD(Q") A% (QpH)* F® — 8¢ F +qskR + ¥ 2y Aj)

treats D(Q*) as a known function of time. Freezing Q eliminates the source of non-
concavity (Proposition I.1): the CES aggregator is jointly concave in (F,R,A,H); each
accumulation function is concave in its argument (&, &g, @ € (0,1)). Hence 7 is jointly
concave in (x,u). The decomposition parallels Goenka et al. [2024], where freezing the
infection share at i* recovers a concave core; here Q = F'/(F + R) plays the role of i, and
D(Q) the role of the contact rate.

The augmented frozen-Q Hamiltonian JZ. = 7. + <i,x) inherits joint concavity (the

augmentation is linear). Arrow sufficiency gives
(X055 0F) > A(x,w;0"). (L8)
The perturbation &2 = 77 — . collects all Q-dependent terms:

| 2| < |Ar| Gr [D(Q) — D(Q")|+]AL"°| As D (Q) — D (QF) | +|AE™ 8 185 () — 85 (7).

(1.9)

uniformly bounded: Q € [0,1], D and D¢ are Lipschitz on [0, 1], and all remaining factors
are capped by Lemmas 1.2 and 1.6. Along the optimal path &#* = 0 (since Q = Q¥).

Combining (I.8) with the perturbation: the concave-core difference is > 0; the per-

turbation difference equals 0 — Z(x,u, 1), bounded by (1.9). Integrating over [0, ) with
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discount e~ P': the nonneg concave-core integral absorbs the (bounded, discounted) pertur-
bation integral, delivering the integrated augmented inequality and, by density of evaluation

times, the pointwise inequality (1.7). 0 U

Remark I.10. Proposition 1.9 is weaker than concavity of the maximised Hamiltonian

M(x,A) (Arrow’s condition) and weaker than joint concavity of .7 (Mangasarian).

Theorem L.11 (Sufficiency). Let (x*,u*) be an interior path satisfying the necessary con-
ditions: the labour-allocation FOC (Appendix E.1.2), the governance FOC (26), and the
costate system (E.1)—(E.6), together with the standard TVCs (1.3). Then (x*,u*) is optimal

among all feasible paths from Xo.

Proof. Proposition 1.9 gives #* — . + (A,x* —x) > 0. Substituting .7 = u(C) + (A, %)
and applying the product rule (A,X* —x) + (4, x* —x) = %(l,x* —X):

u(C*) —u(C) +%<A, X" —x)>0.

Multiply by e~ P, integrate on [0, 7], use x*(0) = x(0):
/OT e P [u(C*) —u(C)]dt > —e PT(A(T),x*(T) —x(T)).

Taking T — oo and applying the generalised TVC (L.5): [y" e P [u(C*) —u(C)]dt > 0. O
Corollary 1.12. The planner allocation characterised in Section 3.2 is globally optimal.

Proof. Proposition 1.3 delivers existence. The candidate path satisfies the necessary condi-
tions and (I.3); Theorem 1.11 selects it. ] ]
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