
 

 

 

1722 

 
 

 

“Epistemic Capital and Two-Trap Growth in the AI Era” 
 
 

Manh-Hung Nguyen 

 
 

 
February 2026 

 



Epistemic Capital and Two-Trap Growth in the AI Era*

Manh-Hung Nguyen†

19 February 2026

Abstract

I develop a growth model in which AI-generated content contaminates the knowledge

commons, creating two nested irreversibilities. A derivative trap arises when recombi-

native output crosses a threshold in the corpus, degrading frontier productivity faster

than talent reallocation or R&D subsidies can offset. A governance trap arises because

the institutional capacity to distinguish frontier from derivative knowledge–epistemic

capital–is itself a depletable stock. In the baseline simulation, the governance trap pre-

empts the derivative trap by roughly nine years, closing the window for effective policy

while measured innovation remains positive. The competitive equilibrium features a

double wedge: frontier knowledge is undervalued and derivative output overvalued,

driving a strict instrument hierarchy in which epistemic investment is a precondition

for governance, which is a precondition for R&D subsidies. The welfare cost of inac-

tion is 6.8% in consumption-equivalent terms.
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1 Introduction

Since Romer [1990], endogenous growth theory has treated knowledge as a net asset. Ideas
accumulate, depreciate, and spill over; the stock may be underprovided, but it is not mod-
elled as self-degrading. Recursive AI training raises that possibility. When generative mod-
els are retrained on corpora that contain their own prior output, the informational content
of the training environment can deteriorate cumulatively and, past a threshold, irreversibly.
Shumailov et al. [2024] document progressive distributional collapse in language models
retrained on recursively generated text; Alemohammad et al. [2023] and Gerstgrasser et al.
[2024] obtain analogous patterns across architectures and modalities.1 What is missing
is a macro framework that translates these regularities into growth dynamics and policy
constraints.

The empirical motivation is no longer conjectural. Liang et al. [2025] study 1.1 million
abstracts from arXiv, bioRxiv, and Nature portfolio journals and estimate that by Septem-
ber 2024 LLM-modified content accounts for 22.5% of computer-science abstracts, 18.0%
in electrical engineering, and 7.7% in mathematics, up from a baseline near 2.4% (Ta-
ble 1). Kobak et al. [2025] apply an independent method to 15.1 million PubMed abstracts
and put the 2024 biomedical figure at 13.5%, reaching 40% in some subcorpora. Reading
1− α̂ as observed data quality, the implied level drops from about 0.975 to 0.775 in com-
puter science over two years. The time path is S-shaped, consistent with logistic diffusion,
and the cross-field ranking is stable—fields with higher AI exposure contaminate faster
(aR > aF in the model). On the evaluative side, best-available AI-text detection accuracy
falls from roughly 0.95 to 0.74 between 2022Q4 and 2024Q2 [Pratama, 2025]; reviewers
contacted per manuscript rise from 4.8 to 6.8 across ASM microbiology journals [Tropini
et al., 2023]; up to 17% of computer-science conference review sentences are themselves
LLM-generated by 2024 [Liang et al., 2024]; and annual retractions pass 10,000 for the
first time in 2023, with a median publication-to-retraction lag of about 550 days [Van No-
orden, 2023, Lei et al., 2024]. None of this identifies the structural system, but it pins down
the signs and timescales the calibration needs.

The model distinguishes frontier knowledge F from derivative knowledge R. Their
composition defines data quality, Q ≡ F/(F +R). Frontier productivity is increasing in Q:
as derivative material displaces frontier material, the return to frontier effort falls. Below

1Shumailov et al. [2024] show that tail information is lost first. Alemohammad et al. [2023] call the
phenomenon “model autophagy disorder.” Gerstgrasser et al. [2024] show that mixing synthetic and organic
data delays but does not prevent collapse.
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Table 1: LLM-modification share α̂ (%)

Baseline Post-ChatGPT Growth

Venue Nov 2022 Jun 2023 Dec 2023 Jun 2024 Sep 2024 (pp/mo)

Computer Science (arXiv) 2.3 (0.3) 7.6 (0.5) 15.4 (0.6) 19.2 (0.7) 22.5 (0.8) 1.19 / 0.67
Elec. Eng. & Sys. Sci. 2.9 (0.7) 6.8 (0.8) 12.2 (1.0) 17.8 (1.1) 17.9 (1.0) 0.90 / 0.53
Mathematics (arXiv) 2.5 (0.4) 2.9 (0.3) 3.9 (0.4) 6.2 (0.6) 7.7 (0.6) —
Physics (arXiv) 2.6 (0.3) 4.6 (0.4) 6.6 (0.5) 9.5 (0.6) 9.7 (0.5) —
Statistics (arXiv) 3.0 (0.8) 4.8 (0.9) 9.5 (1.4) 9.3 (1.2) 13.2 (1.6) —
bioRxiv 2.8 (0.3) 5.6 (0.4) 8.5 (0.5) 9.0 (0.5) 10.3 (0.5) 0.57 / 0.18
Nature Portfolio 3.5 (0.5) 3.7 (0.5) 6.3 (0.7) 8.4 (0.7) 8.9 (0.6) 0.33 / 0.33

Pre-ChatGPT mean 2.5 — — — — —

Bootstrap 95% half-widths in parentheses. Growth: average monthly increase in 2023H2 / 2024H1. From Liang et al. [2025] data.

a threshold Q† the economy enters a derivative trap—frontier innovation contracts and the
derivative share rises endogenously. Conventional R&D subsidies cannot restore growth
once the economy is deep enough in this region. Data governance can prevent entry, but
the required screening intensity rises with AI capacity.

The derivative trap is not, however, the first constraint that binds. The capacity to
distinguish frontier from derivative knowledge is itself a productive input. I model it as
a stock of epistemic capital E , which depreciates and must be replenished using scarce
labour and clean training data. As Q falls, evaluators trained on contaminated corpora make
more errors. Below E †, governance becomes ineffective: no feasible screening technology
can restore Q above Q†.2 Under laissez-faire, E crosses E † years before Q crosses Q†,
closing the policy window while standard innovation indicators still look benign. The
same mechanism implies systematic misclassification of derivative output as frontier when
E is low, so measured innovation can stay positive even as the effective knowledge base
degrades.

To my knowledge, no growth model treats evaluative capacity as an endogenous state
variable. In the sociology of science, evaluative infrastructure is analysed as a durable
institutional stock [Alasuutari et al., 2016, Fochler et al., 2016]; in economics, a large liter-
ature studies scientific incentives and evaluation [Dasgupta and David, 1994, Ellison, 2002,
Stephan, 2012, Manso, 2011]. The object formalised here—a stock governing how effec-
tively the innovation system filters and canonises claims—does not have a close analogue

2Epistemic capital has a public component Epub (peer review, shared benchmarks) and a private component
Epriv (proprietary detection tools). Competitive equilibrium underprovides Epub because it is nonexcludable.
Section 7.4 varies excludability and traces the boundary of the governance trap.
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in growth theory.
The two traps interact to discipline policy. Epistemic investment is a prerequisite for

governance, and governance for making R&D subsidies productive. Skipping steps wastes
resources: subsidising frontier effort when evaluative infrastructure is degraded mainly
finances derivative production that cannot be separated from genuine novelty. The mecha-
nism is a double wedge in shadow prices. The planner values frontier knowledge above the
market price (each unit of F raises Q) and derivative knowledge below it (each unit of R

degrades Q), with both gaps widening as A grows (aR > aF ). The competitive equilibrium
features too little frontier effort and too much derivative activity, and the gap increases
along the laissez-faire path. Heterogeneous researchers sort endogenously; AI raises the
return to recombinative tasks and draws talent from the frontier. Raising frontier headcount
alone does not help if the data environment continues to deteriorate.

The model is calibrated to the observed contamination trajectory, the decline in de-
tection accuracy, and peer-review strain (Section 7). Laissez-faire implies a welfare loss
of about 6.8% CEV, driven by a persistent reduction in frontier growth. Delay costs are
convex, with a kink near the governance-trap crossing.

The paper connects to several literatures. Semi-endogenous growth theory [Romer,
1990, Jones, 1995, Kortum, 1997, Bloom et al., 2020] treats the knowledge stock as ho-
mogeneous; here, quality and effort are not substitutable because researcher productivity
depends on the composition of the data environment. The AI-and-growth literature [Aghion
et al., 2018b, Acemoglu and Restrepo, 2018, 2020, Jones and Tonetti, 2020, Trammell and
Korinek, 2024, Jones, 2026] models AI as raising productivity against a fixed informational
substrate; endogenising data quality turns the outcome into a race–trap dichotomy that de-
pends on governance. Cong et al. [2021] study data-driven growth with privacy trade-offs
but treat data quality as given; Chung and Veldkamp [2024] survey data in macroeconomics
more broadly.

Closest in spirit, Farboodi and Veldkamp [2025] study a growth environment in which
firms accumulate transaction-generated data as an intangible state variable that improves
forecast precision and, through that channel, production performance. Their core mecha-
nism is a data feedback loop: higher output generates more data, which improves predic-
tion, raises productivity, and induces further output. In the baseline model, however, data
accumulation by itself does not deliver sustained long-run growth, because the gains from
prediction are ultimately bounded by irreducible uncertainty; persistent growth requires the
extension in which data enters R&D.
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The present paper shifts the focus from data quantity to knowledge quality. The state
variable Q indexes the composition of the knowledge commons rather than the volume of
firm-level data, and the relevant constraint is not a bound on forecast precision but endoge-
nous deterioration of the informational substrate on which frontier research, recombination,
and evaluation jointly depend. The two frameworks therefore share a formally similar self-
reinforcing structure, but they differ in the sign of the aggregate spillover: in Farboodi and
Veldkamp [2025], feedback from data accumulation can support firm growth, whereas here
the analogous feedback amplifies contamination and can generate an epistemic trap.

On talent allocation, Murphy et al. [1991] and Hsieh et al. [2019] show that sorting
affects aggregate growth; AI adds a frontier-versus- derivative margin. The informational
commons in which AI and human researchers operate is subject to congestion and degra-
dation, a structure familiar from Ostrom [1990]; irreversibility arguments in Dasgupta and
Heal [1974] carry over when the stock at risk is the knowledge base rather than a physical
resource.3

The analysis makes epistemic capacity part of the state. Four contributions follow.
First, epistemic capital enters growth theory as an endogenous state variable.
Second, the two-trap architecture—a derivative trap nested inside a governance trap—

yields a testable timing implication: the binding constraint on long-run growth is evaluative
erosion, and it can bind while conventional innovation indicators remain positive.

Third, the model implies an instrument hierarchy. Epistemic investment must precede
governance, and governance must precede R&D subsidies. The ordering is driven by a
double shadow-price wedge (λF > VF , λR < VR), with both gaps widening as AI capacity
grows (Proposition 3.4). The ordering is structural, not a calibration artefact.

Fourth, the mismeasurement corollary (Corollary 5.9) shows that standard growth ac-
counting can overstate frontier innovation when evaluative capacity is low.

Methodologically, the analysis uses Volterra integral equations for the shadow-price
ordering, Nagumo invariance for the trap regions, and Leitmann–Stalford sufficiency for
the planner’s non-convex problem.

The paper proceeds as follows. Section 2 presents the model. Section 3 defines equi-
librium and the planner’s problem. Section 4 derives the derivative trap. Section 5 derives
the governance trap. Section 6 characterises the instrument hierarchy. Section 7 calibrates

3Korinek [2023] surveys generative AI in economic research but treats knowledge-base quality as given.
Goodhart [1984], Lucas [1976], and Akerlof [1970] study erosion of information content when agents adapt
to fixed evaluation rules. Bloom et al. [2020] document that ideas are getting harder to find; Jones [2022]
identifies AI as a potential offset.
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and reports quantitative results. Section 8 concludes.

2 The Model

Time is continuous, t ≥ 0. A unit mass of agents supplies one unit of time each period. The
economy produces a final good and accumulates four productive stocks: frontier knowl-
edge F , derivative knowledge R, algorithmic capacity A, and human capital H. Two ad-
ditional stocks govern verification and curation: public epistemic capital Epub and private
epistemic capital Epriv. The primitive distinction is between frontier content—novel, high-
verification contributions—and derivative content—recombinative output, including syn-
thetic text. Data governance affects the composition of usable content by screening and
reclassification; it does not represent the physical creation of new frontier ideas.

2.1 Knowledge production

The economy produces two knowledge stocks. Frontier knowledge F(t) records contribu-
tions that expand the feasible set of subsequent research tasks. Derivative knowledge R(t)

records recombinative output produced from existing material.4 Both stocks depreciate at
constant rates:

Ḟ = ΛF D(Q)AaF
(
ΩF H

)αF Fξ −δF F, (1)

Ṙ = ΛR AaR
(
ℓR H

)αRRξR −δR R, (2)

where ΛF ,ΛR > 0 are scale parameters, H is aggregate human capital, ΩF is quality-
adjusted frontier talent (Section 2.2), ℓR is the net productive derivative labour share (after
deducting private evaluative effort; see Table 2), A is algorithmic capacity (Section 2.1.3),
and D(Q) is the erosion function (Section 2.1.2). The asymmetry aR > aF allows AI to
raise the productivity of recombination more than that of frontier work. I impose δF < δR.

Assumption 2.1 (Homogeneity). αF +ξ = 1.

Remark 2.2. Assumption 2.1 removes the level effect of F in frontier growth. Dividing
(1) by F yields gF = ΛFD(Q)AaF (ΩFH)αF Fξ−1 − δF ; under αF + ξ = 1, Fξ−1 = F−αF

4The frontier/derivative distinction parallels the boundary in Weitzman [1998], where new ideas arise
from combining existing ones, but genuine novelty requires drawing from an external pool. In the present
model, AI systems recombine but do not access the external pool; the corpus quality Q measures what fraction
of the pool remains uncontaminated.
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and the frontier term depends on the ratio (ΩFH/F)αF . This is the Jones [1995] channel:
frontier growth is pinned down by talent quality, data quality, and AI augmentation—but
not by the cumulated stock itself.5 Under αF + ξ > 1, frontier knowledge is self-seeding
and the trap dissolves; the assumption is conservative. Appendix H characterises the BGP
and shows that, under the calibrated AI feedback, no interior BGP exists in competitive
equilibrium.

2.1.1 Final goods production

Competitive firms produce output using a CES aggregator:

Y =
[
αY
(
AφAF

) θ−1
θ +(1−αY )

(
HφH R

) θ−1
θ

] θ

θ−1
, (3)

with θ > 1 and αY ∈ (0,1). Algorithmic capacity enters both knowledge accumulation
((1)–(2)) and downstream commercialisation ((3)).6 Competitive prices satisfy pF = ∂Y/∂F

and pR = ∂Y/∂R.

2.1.2 Data quality and erosion

Define corpus quality as the frontier share of the aggregate stock:

Q(t) ≡ F(t)
F(t)+R(t)

∈ (0,1]. (4)

Frontier productivity is attenuated by an erosion function D : [0,1]→ [D,1],

D(Q) = D+(1−D)Qσ , σ > 0, D ∈ [0,1), (5)

so D(1) = 1 and D(0) = D. The parameter D captures non-corpus sources of frontier pro-
ductivity (direct observation, interpersonal exchange); all results below allow D > 0 up

5The BGP growth rate g∗ = αF(1−ω)gH/[αF(1−ω)− aF ν ] (Appendix H) depends on human-capital
growth gH as in semi-endogenous growth theory. The contamination channel through D(Q) thus becomes
the binding margin.

6The restriction θ > 1 ensures uniqueness of the static equilibrium (Appendix G). Under gross substi-
tutability, scarce frontier knowledge commands a higher relative price, pulling talent toward the frontier
through the Roy mechanism—a negative feedback that delays the trap but cannot prevent it. Under θ < 1
the feedback reverses. Labour allocations affect stock accumulation rates, not contemporaneous output, as in
Romer [1990] and Jones [1995]; the direct resource cost of governance enters through Γ(q), deducted from
consumption (C = Y −Γ(q)).
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to the bound derived in Section 4. If D ≡ 1, contamination is costless and no derivative
trap can arise. The channel through D(Q) is the key departure from Farboodi and Veld-
kamp [2025], who model data as homogeneous signals of fixed precision; there, growth is
bounded because forecast accuracy saturates. Here, growth is bounded because the infor-
mational substrate degrades endogenously: the effective return to data depends not on how
much data exists but on what fraction of it is genuine.7

2.1.3 Algorithmic capacity

Algorithmic capacity accumulates from derivative content:

Ȧ = µA Rν Aω −δA A, (6)

with ν ,ω ∈ (0,1) and δA > 0. The condition aR > aF together with (6) creates a pos-
itive feedback: more derivative output raises R, which raises A (training data), which
augments derivative productivity, which raises R further. The self-reinforcement index
S ≡ aRν/[(1− ξR)(1−ω)] measures round-trip amplification; when S ≥ 1, no interior
balanced-growth path exists under laissez-faire (Appendix H).8 Appendix F verifies that an
alternative flow formulation (Ȧ = µA(Ṙ+)νAω −δAA) yields identical qualitative results.

2.2 Talent allocation

Labour is allocated across four activities. Table 2 collects the notation; Figure 1 provides a
schematic.

A unit mass of workers divides into education (ℓH) and research (1 − ℓH). Among
researchers, ability z is drawn from a Pareto distribution with shape ζ > 1 and lower bound
z > 0:

Pr(z > x) =
( z

x

)ζ

, x ≥ z. (7)

Each researcher sorts into frontier or derivative work via the Roy indifference condition
(Section 3): types z ≥ z̄ enter frontier work, types z < z̄ enter derivative work. The Pareto

7A Fréchet microfoundation delivers the functional form: if each item’s novelty is drawn from a Fréchet
distribution with shape k > 0, the productivity multiplier from sampling n items of which fraction Q is
uncontaminated is Q1/k; setting σ = 1/k recovers (5). See Appendix A.1. The empirical evidence on model
collapse [Shumailov et al., 2024, Alemohammad et al., 2023] disciplines the curvature σ ∈ [1,3].

8If aR ≤ aF , the loop breaks: rising A raises gF faster than gR, compositional drift reverses, and Q rises
endogenously. The condition aR > aF reflects that current AI systems excel at pattern recombination rather
than open-ended hypothesis formation [Aghion et al., 2018a].
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Table 2: Labour allocation across activities

Symbol Activity Eq. CE Planner

ℓH Education (12) Exogenous Control
πF(z̄) Frontier research (1) Roy sorting at z̄ Control (ℓF )
πR(z̄) Derivative research (2) 1−πF−ℓH−ℓE Residual
ℓE Public evaluation (13) 0 (public good) Control
ℓ

priv
E Private evaluation (14) θE πR (firm) —
ℓR Net derivative labour (2) (1−θE )πR Control
ΩF(z̄) Frontier talent (derived) (1) Ability-weighted integral; see (10)

tail gives the frontier participation rate:

πF(z̄) = (1− ℓH)

(
z
z̄

)ζ

, (8)

with derivative participation

πR(z̄) = (1− ℓH)
[
1−
(
z/z̄
)ζ
]
. (9)

A fraction θE of derivative workers is diverted to private evaluative effort (ℓpriv
E = θE πR),

leaving ℓR = (1−θE )πR as the net productive input in (2).
The quality-adjusted frontier talent input ΩF integrates ability raised to γF over the

frontier pool:

ΩF(z̄) ≡ (1− ℓH)
∫

∞

z̄
zγF

ζ zζ

zζ+1
dz = (1− ℓH)

ζ zζ

ζ − γF
z̄γF−ζ , (10)

where γF ∈ (0,ζ ) and the integral converges because γF < ζ (Assumption 2.4(ii)).9

The key comparative static is:

∂ΩF

∂ z̄
= (γF −ζ )

ΩF

z̄
< 0 (since γF < ζ ). (11)

A rise in z̄ removes the lowest-ability frontier researchers (selection effect) but also shrinks

9An analogous integral defines derivative-sector effective labour ΩR(z̄)= (1−ℓH)ζ zζ/(ζ −γR) z̄γR−ζ with
γR < γF . Since γR < γF , frontier production is more ability-sensitive—the comparative-advantage structure
of the Roy model. Public evaluative labour ℓE enters the planner’s clearing condition but vanishes in CE
(Proposition 3.2(i)), reflecting the public-good externality.
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the frontier pool (mass effect). Under γF < ζ , the mass effect dominates.10

2.3 Human capital

Human capital accumulates via a Lucas [1988]–Uzawa [1965] specification:

Ḣ = λH ℓ
βH
H H −δH H, (12)

where ℓH is the education share, βH ∈ (0,1), λH > 0, and δH > 0. Human-capital accumu-
lation is independent of Q; making λH load on corpus quality would tighten the trap.11

2.4 Epistemic capital

Definition 2.3 (Epistemic capital). E (t) ∈ [0,1] is the aggregate evaluative capacity—the
ability to distinguish frontier from derivative knowledge, normalised so that E = 1 denotes
perfect discrimination and E = 0 denotes none.12

Epistemic capital decomposes as E = Epub + Epriv. Public epistemic capital encom-
passes shared benchmarks, peer-review standards, and public detection tools (nonexclud-
able). Private epistemic capital encompasses proprietary detection infrastructure (partially
appropriable). The accumulation equations are:

Ėpub = λ
pub
E ℓηE

E DE (Q)−δE (ϕ)Epub, (13)

Ėpriv = λ
priv
E ℓ

priv,ηE
E DE (Q)−δ

priv
E (ϕ)Epriv, (14)

where ℓE is public evaluative labour, ℓpriv
E is aggregate private evaluative investment, DE (Q)=

QσE , ϕ ≡ 1−Q, and δE (ϕ) = δE ,0 + δE ,1ϕ with δE ,1 > 0. Private depreciation takes the
same affine form.

Two features drive the governance trap. Replenishment loads QσE : evaluators trained
on contaminated corpora develop contaminated judgement, so at σE = 0 the governance

10Under γF > ζ , the selection effect dominates; a brain drain raises ΩF , reversing the talent-drain channel
and dissolving the derivative trap.

11Contaminated textbooks or AI tutoring systems trained on derivative material would open an additional
channel through which falling Q erodes the talent base. The present specification is conservative.

12The signal-detection microfoundation in Appendix A.2 maps a raw precision parameter (inverse noise
variance) to the hit rate s(E ) = ΦN (∆(E )/2); the model works with the normalised index throughout.

10



trap dissolves. Depreciation rises with ϕ: a higher volume of derivative content over-
whelms evaluators, so at δE ,1 = 0 the temporal-precedence result weakens.

In competitive equilibrium ℓCE
E = 0 while ℓ

priv,CE
E > 0.

2.5 Data governance

A governance technology screens corpus content and reclassifies verified derivative mate-
rial as frontier-certified, effectively transferring stock from R to F . Governance intensity
q ∈ [0,1] parameterises the fraction screened. Screening accuracy s(E ) is increasing and
strictly concave in E ; the false-positive rate f (E ) = 1− s(E ) is decreasing.13 Under gov-
ernance, the laws of motion for F and R become

Ḟ = ΛF D(Q)AaF
(
ΩF H

)αF Fξ −δF F +qs(E )κ R, (15)

Ṙ = ΛR AaR
(
ℓR H

)αRRξR −δR R−qs(E )κ R, (16)

where κ > 0 is the reclassification rate. The total corpus F +R evolves through production
and depreciation alone; governance redistributes content between stocks without creating
or destroying knowledge.

In the presence of governance, F is best read as the high-integrity corpus: material
whose provenance is verified. Governance adds material by certifying derivative content
that passes screening; reclassification does not create novelty.14

Differentiating Q ≡ F/(F +R) and substituting (15)–(16) yields

Q̇ = Q(1−Q)(gprod
F −gprod

R )+q · s(E ) ·κ · (1−Q), (17)

where gprod
F ,gprod

R denote the non-governance growth rates.15 The first term captures com-
positional drift; the second captures active screening. Under laissez-faire (q = 0), (17)

13The functional form admits a signal-detection microfoundation (Appendix A.2). An evaluator observes
y = θ + ε , ε ∼ N (0,1/E ); the sensitivity index ∆(E ) = |µF −µR|

√
E yields s(E ) = ΦN

(
∆(E )/2

)
, strictly

concave for all E > 0. A base-rate shift from rising ϕ depresses the positive predictive value, disciplining
δE (ϕ) increasing in ϕ . Retraining on a contaminated corpus (Q < 1) reduces effective sensitivity to Q ·∆(E );
this Q-dependence is absorbed into the reduced form DE (Q) = QσE .

14An alternative formulation with a separate “excluded” stock X would add a state variable without chang-
ing the qualitative dynamics, since D(Q) depends only on the ratio of trusted to total corpus. If governance
misclassifies frontier work as derivative (false positives), aggressive screening at low E damages the frontier;
the specification s(E ) implicitly nets out false positives.

15Explicitly: Q̇ = (Ḟ R−F Ṙ)/((F +R)2). The governance transfers +qsκ R in Ḟ and −qsκ R in Ṙ con-
tribute qsκ R(R+F)/(F +R)2 = qsκ (1−Q).
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reduces to Q̇ = Q(1−Q)(gF −gR).

2.6 Regularity assumptions

Assumption 2.4 (Parameter restrictions). (i) aR > aF .
(ii) γF < ζ .

(iii) σE > 0.
(iv) δE ,1 > 0.
(v) D < D̄.

(vi) λ
priv
E /δ

priv
E ,0 < 1.

(vii) Along calibrated CE and planner paths, Epub(t)+Epriv(t)< 1 (verified numerically).
(viii) gprod

R > 0 on ∂T .16

Each restriction activates a specific model channel. Conditions (i)–(ii) generate the
compositional-drift and talent-drain mechanisms; (iii)–(iv) generate the governance trap
and temporal precedence; (v) ensures the trap region is nonempty; (vi) prevents private
epistemic investment from substituting for public infrastructure. Reversing any of (i)–(iv)
dissolves the corresponding trap channel; Appendix A.2 provides further discussion of the
epistemic-capital domain conventions.17

Assumption 2.5 (Frontier boundedness). F(t)≥ F > 0 for all t ∈ [0,T ], any finite T .

Under maximal erosion and zero investment, F declines exponentially at rate δF and reaches
zero only asymptotically. The assumption disciplines the regularity of the barrier functions
Q† and E †—both involve division by F1−ξ —and places the vector field within the scope
of the Nagumo and Picard–Lindelöf theorems.

2.7 Labour market clearing

The total labour endowment is normalised to unity. In competitive equilibrium, public eval-
uative labour vanishes by epistemic neglect (Proposition 3.2), giving the clearing condition

πF(z̄) + πR(z̄) + ℓH = 1. (18)

16At calibration, gprod
R = ΛRAaR(ℓRH)αR RξR−1−δR. Although ξR < 1 implies RξR−1 → 0 as R → ∞, the R–

A feedback with S= aRν/[(1−ξR)(1−ω)]> 1 ensures A grows fast enough to keep ΛRAaR(ℓRH)αRRξR−1

bounded away from zero along equilibrium paths. Lemma G.5 verifies this formally.
17The screening accuracy s(E ) = ΦN (c

√
E ) is well-defined on [0,∞). Under CE, Epub decays monotoni-

cally (ℓCE
E = 0); under the planner, the replenishment-depreciation balance limits steady-state levels.
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Private evaluative investment is financed within the derivative sector: each firm diverts
fraction θi of its workforce from production to proprietary detection, accumulating a firm-
level detection stock ei. Certified output commands price p̃R,i = pR(1+ κcertei), so each
firm internalises its own certification benefit. In symmetric equilibrium θi = θE for all i,
giving aggregate private epistemic labour ℓpriv

E = θE ·πR(z̄), with θE chosen to maximise
instantaneous certification revenue net of diverted labour. The net productive derivative
labour entering (2) is ℓR = (1−θE )πR(z̄).

The planner sets all labour allocations directly:

ℓF + ℓR + ℓE + ℓH = 1, (19)

where ℓF replaces πF(z̄) and ℓR replaces (1−θE )πR(z̄).
The correspondence between labour shares and the production functions (1)–(14) is:

Production function Labour input Meaning

Frontier Ḟ , eq. (1) ΩF(z̄) Quality-adjusted talent (not a raw share)

Derivative Ṙ, eq. (2) ℓR = (1−θE )πR Net productive derivative labour

Public epistemic Ėpub, eq. (13) ℓE Public evaluative effort (= 0 in CE)

Private epistemic Ėpriv, eq. (14) ℓ
priv
E = θE πR Diverted from derivative sector

Human capital Ḣ, eq. (12) ℓH Education share

2.8 State space

The state vector is
x(t) = (F,R,A,H,Epub,Epriv) ∈ R4

++×R2
+.

The planner chooses (q, ℓF , ℓR, ℓE , ℓH); in competitive equilibrium, z̄ and θE are determined
by the static equilibrium map (Proposition G.3). Time is continuous; the horizon is infinite;
all agents discount at ρ > 0.

Figure 1 collects the model’s stocks, flows, and feedback channels into a single schematic.

3 Competitive Equilibrium and Social Planner

The decentralised equilibrium exhibits four distortions: frontier knowledge is undervalued,
derivative output is simultaneously overvalued, data quality is unpriced, and epistemic cap-
ital is neglected (Proposition 3.4). The first two form a double wedge that widens as AI
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Frontier F Derivative R

AI capacity AHuman cap. H

Epub Epriv

Q = F/(F+R)Gov. q

ℓE

Output Y

ΩF H

AaF

ℓRH

AaR Rν

D(Q)
DE (Q)

screen

s(E )

θE πR

R–A loop

Figure 1: Model structure. Solid boxes: state variables. Dashed boxes: policy instruments
(= 0 in CE). Red dashed: R–A loop. Blue: quality-dependent channels. Green: governance
channel.

capacity grows: the market pays too little for frontier effort and too much for derivative
production, because no agent internalises the quality externality ∂Q/∂F > 0, ∂Q/∂R < 0.
Together these push the economy toward the governance trap along a path that appears
efficient by standard metrics.

The primitives are the state vector x(t) = (F,R,A,H,Epub,Epriv) ∈ R4
++ × [0,1]2 and

initial condition x0, both defined in Section 2.8. The objects D(Q), DE (Q), and δE (ϕ)

depend on aggregate Q (recall ϕ = 1−Q); atomistic agents take these as given.

3.1 Definition of competitive equilibrium

Since the model has no physical capital, the competitive equilibrium is a sequence of in-

stantaneous equilibria: at each t, knowledge-service prices clear the market, Roy sorting
determines talent allocation, and the private detection share θE solves a static certification
FOC. Intertemporal trade-offs arise only through stock accumulation; the welfare com-
parison with the planner enters through the planner’s dynamic optimisation problem (Sec-
tion 3.2).

The final good is numéraire. Let pF(t), pR(t) be rental prices of frontier and derivative
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knowledge services, and let w j(z, t) = p j(t)zγ jA(t)a j be the wage in sector j ∈ {F,R} for
ability z.

Definition 3.1 (Competitive equilibrium). Given x0 and a policy process {q(t), ℓE (t)}t≥0

(set to zero under laissez-faire), a competitive equilibrium is an allocation {C, z̄,θE , ℓH ,x}
and prices {pF , pR} such that, for all t ≥ 0:

(i) Final-goods firms maximise static profits: pF = ∂Y/∂F , pR = ∂Y/∂R, with Y given
by (3).

(ii) Researcher sorting. Each researcher chooses the activity maximising w j(z, t). A cutoff
z̄(t) satisfies wF(z̄) = wR(z̄); types z ≥ z̄ enter the frontier, types z < z̄ enter derivative work.

(iii) Private epistemic investment. Each derivative-sector firm chooses a detection share
θE (t) ∈ [0,1] to maximise instantaneous certification revenue net of diverted labour. Be-
cause firms are atomistic, each takes the aggregate stock Epriv as given; the stock evolves
mechanically from (14) under the aggregate allocation ℓ

priv
E = θE πR.

(iv) Household. The representative household maximises
∫

∞

0 e−ρtu(C)dt with CRRA util-
ity u(C) = C1−η/(1 − η). Under laissez-faire, C(t) = Y (t); under governance, C(t) =

Y (t)−Γ(q(t)).

(v) Market clearing and dynamics. Labour-market clearing (18) holds; x(t) follows the
laws of motion (1)–(14) under the equilibrium allocation.

The equilibrium is inefficient for three reasons. Sector choice affects Q, which enters
D(Q) and DE (Q); no agent internalises this (composition externality). Public epistemic
capital is nonexcludable, so ℓCE

E = 0 (epistemic externality). And governance is a public
good, so qCE = 0 (governance externality). The three are dynamically coupled: the compo-
sition externality erodes Q, which degrades Epub through the epistemic externality, which
disables governance. The instrument hierarchy (Proposition 6.1) requires addressing all
three.

Appendix G establishes existence and uniqueness.

3.1.1 Roy sorting

The indifference condition yields

z̄(t) =
(

pR(t)
pF(t)

·A(t)aR−aF

) 1
γF−γR

. (20)
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Since aR > aF and γF > γR, rising A raises z̄: stronger AI pulls marginal researchers into
derivative work, reducing both πF and ΩF .

Proposition 3.2 (Epistemic neglect). In competitive equilibrium: (i) ℓCE
E = 0; (ii) ℓpriv,CE

E >

0, with θCE
E solving the FOC equating marginal certification revenue to marginal produc-

tion cost; (iii) qCE = 0.

Proof. (i): Nonexcludability of Epub; the Nash equilibrium in evaluative effort is zero.
(ii): Each derivative-sector firm i accumulates a proprietary detection stock ei by diverting
fraction θi of its workforce to detection (ei = θiπRHηE DE (Q) in the static representation).
The certified price for firm i is p̃R,i = pR(1+κcertei), so each firm internalises the return to
its own detection effort. The FOC equating marginal certification revenue (decreasing in
θi by concavity of DE ) to marginal production loss has interior solutions when DE (Q)> 0
and κcert > 0. In symmetric equilibrium, ei = e for all i and Epriv = e ·πR(z̄). (iii): Same
public-good logic as (i). □ □

Part (ii) is the partial corrective: derivative-sector firms invest in proprietary detection
because certified output commands a price premium. The private buffer is insufficient
because each firm internalises only its own certification benefit, not the system-wide im-
provement in screening accuracy.18

3.1.2 Equilibrium dynamics

Under the equilibrium allocations, the state evolves as:

ḞCE = ΛF D(Q)AaF
(
ΩF(z̄)H

)αF Fξ −δFF, (21)

ṘCE = ΛR AaR
(
(1−θ

CE
E )πR(z̄)H

)αRRξR −δRR, (22)

Ė CE
pub =−δE (ϕ)E

CE
pub . (23)

Equation (23) is the critical equation: with ℓCE
E = 0, public epistemic capital depreciates

monotonically at a rate that is itself increasing along the laissez-faire path (since ϕ rises).
The decline is self-accelerating: rising ϕ raises δE (ϕ), which erodes E , which (under
positive governance) would reduce screening accuracy, permitting further derivative accu-

18If the certification premium κcert were large enough, private investment could sustain the evaluative
infrastructure and the governance trap would dissolve—this is the failure mode identified by Assump-
tion 2.4(vi).
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mulation. In competitive equilibrium the screening link is severed (qCE = 0) and the spiral
operates purely through the depreciation channel.

3.2 Social planner’s problem

Definition 3.3 (Planner’s problem). Given x0, the planner chooses (q, ℓF , ℓR, ℓE , ℓH) to
maximise

W (x0) = max
u(·)

∫
∞

0
e−ρt u

(
C(t)

)
dt, (24)

subject to: (a) C = Y −Γ(q) with Γ(0) = 0, Γ′ > 0, Γ′′ > 0; (b) labour-market clearing
ℓF + ℓR + ℓE + ℓH = 1; (c) the laws of motion (15)–(14) (the planner controls q, so the
governance transfer terms are active); and (d) bounds q ∈ [0,1], ℓ j ∈ [0,1] for each j.

The planner treats z̄ (equivalently ℓF ) as a control rather than an equilibrium outcome,
and internalises the dependence of D, DE , and δE on (Q,ϕ).

The planner sets ℓE > 0 and q > 0; both are zero in competitive equilibrium.19

3.2.1 Costates and the marginal value of data quality

The current-value Hamiltonian is H = u(C) + λF Ḟ + λRṘ + λAȦ + λHḢ + λ
pub
E Ėpub +

λ
priv
E Ėpriv, with six states (F,R,A,H,Epub,Epriv) and six costates. Since Q = F/(F +R)

is not a state but enters the right-hand sides through D(Q), DE (Q), and δE (ϕ), the chain
rule generates Q-channel contributions in the Euler equations for λF and λR. Define the
composite marginal value of data quality:

ΨQ ≡ ∂H

∂Q

∣∣∣∣
F,R held fixed

= λF · D′(Q)

D(Q)
·GF + λ

pub
E ·

∂ Ėpub

∂Q
+ λ

priv
E ·

∂ Ėpriv

∂Q
, (25)

where GF ≡ ΛFD(Q)AaF (ΩFH)αF Fξ is gross frontier production. The first term is the
productivity channel: higher Q raises frontier output through D, with D′(Q)/D(Q) mea-
suring the semi-elasticity of the erosion function; the second and third are epistemic-
replenishment channels (through both DE (Q) = QσE and the depreciation rate δE (ϕ) with
ϕ = 1−Q). ΨQ is a derived quantity, not a costate; it enters the Euler equations for λF and
λR through ∂Q/∂F = R/(F +R)2 and ∂Q/∂R =−F/(F +R)2 (Appendix E.1.1).

19The Hamiltonian is not jointly concave in (F,R) because D′′(Q) > 0 for σ > 1 (Proposition I.1). Suffi-
ciency is established via the Leitmann–Stalford decomposition in Appendix I.

17



The FOC for governance comes directly from differentiating H with respect to q: since
governance transfers stock from R to F (equations (15)–(16)), the marginal benefit equals
the costate gap times the transfer rate:

(λF −λR) · s(E ) ·κ ·R = u′(C)Γ
′(q). (26)

In the decentralised economy, neither the data-quality externality nor the epistemic exter-
nality is priced, so qCE = 0.

3.3 Shadow-price ordering

Proposition 3.4 (Shadow-price ordering). Along any path with ϕ > 0 and qSP > 0: (i) λF >

VF > 0; (ii) ΨQ > 0; (iii) λ
pub
E > 0; (iv) λA ≶VA (ambiguous); (v) λR <VR whenever λA ≥ 0.

The proof applies the Volterra fixed-point theorem to the coupled costate system (Ap-
pendix B.1; part (v) in Appendix B.2). Frontier knowledge generates a data-quality ex-
ternality (∂Q/∂F > 0) and an epistemic externality (higher Q supports E replenishment)
that the planner internalises but atomistic agents ignore. At the calibration, the data-quality
externality accounts for roughly 60% of λF −VF .

Part (v) is the mirror image: derivative knowledge carries a negative quality externality
(∂Q/∂R < 0) that the market does not price. Because ΨQ > 0 (part (ii)) and ∂Q/∂R =

−F/(F +R)2 < 0, each additional unit of derivative output depresses data quality and,
through D(Q), frontier productivity. The planner internalises this cost, so λR falls below
the market shadow value VR. The wedge widens as AI capacity grows: higher A amplifies
derivative production through AaR with aR > aF , so the marginal quality damage per unit
of R increases with algorithmic improvement. Parts (i) and (v) together establish a double

wedge: the competitive equilibrium simultaneously undervalues frontier knowledge and
overvalues derivative output, providing the theoretical foundation for a Pigouvian tax on
synthetic content or, equivalently, the derivative tax in Corollary 3.6(a).

Remark 3.5 (Why λA is ambiguous while λR is not). AI capacity augments frontier pro-
duction (aF > 0: positive) but also accelerates derivative expansion (aR > aF : negative) and
drains frontier talent (∂ z̄/∂A > 0: negative). The sign of λA −VA reverses near TE at the
calibration. Derivative knowledge, by contrast, has an unambiguously negative quality ex-
ternality: ∂Q/∂R < 0 always, with no offsetting frontier channel. The asymmetry reflects
the model’s core mechanism—AI is a dual-use technology whose net social value depends
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on the composition of its output, while derivative content is unambiguously harmful to the
knowledge commons.

Corollary 3.6 (Policy instruments). The planner’s optimum requires three instruments ab-

sent in competitive equilibrium: (a) a frontier subsidy / derivative tax (ℓSP
F > πF(z̄CE));

(b) data governance (qSP > 0); (c) public epistemic investment (ℓSP
E > 0). Instruments (b)

and (c) are superadditive.

3.4 Comparative statics

Lemma 3.7. Along the competitive-equilibrium path: (i) ∂ z̄/∂A > 0; (ii) ∂QCE/∂A < 0
for large A; (iii) ∂E CE

pub/∂ t < 0 for all t; (iv) gQ = (1−Q)(gF −gR), negative when gR > gF .

Proof. Each item follows from differentiation of the equilibrium laws of motion under
ℓCE
E = 0 and qCE = 0. □

3.5 Welfare

The consumption-equivalent variation of the planner’s policy is the constant proportional
increase ∆ in competitive-equilibrium consumption making the household indifferent:∫

∞

0
e−ρt u

(
(1+∆)CCE(t)

)
dt = W (x0). (27)

The competitive equilibrium exhibits three reinforcing distortions: epistemic neglect
(ℓCE

E = 0), governance absence (qCE = 0), and invisible erosion—low E inflates the mea-
sured frontier share Qobs (Corollary 5.9), so standard metrics report healthy growth while
the true frontier contracts.

4 The Derivative Trap

Once the frontier share Q falls below a threshold Q†, frontier growth turns non-positive and
the decline in Q is self-reinforcing. Non-governance instruments—R&D subsidies, talent
policy, copyright reform—cannot break the invariance.
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4.1 The quality threshold

Definition 4.1 (Quality threshold). The quality threshold Q† is the data quality level at
which net frontier growth is exactly zero:

Q†(F,H,A,ΩF) ≡
(

δF −DG
(1−D)G

)1/σ

, G ≡ ΛF AaF (ΩFH)αF Fξ−1, (28)

when the expression is in [0,1]. Two boundary cases arise:

• If G ≤ δF (gross productivity cannot offset depreciation even at full quality): Q† = 1.
The frontier contracts at every Q, so the entire state space lies in the trap.

• If DG ≥ δF (the productivity floor sustains growth even at Q = 0): Q† = 0. No trap
exists.

The composite G collects the non-quality determinants of gross frontier productivity.

Setting Ḟ = 0 in (1) and solving for Q yields (28): below Q†, the erosion function D(Q) can
no longer compensate for depreciation, so the frontier stock shrinks. The threshold captures
the “ideas are hard to find” phenomenon of Bloom et al. [2020] in a contamination-specific
form: productivity declines not because undiscovered ideas are depleted, but because the
corpus is diluted by derivative content.20

The comparative statics identify policy levers: ∂Q†/∂A < 0 (AI augmentation raises
G, lowering the threshold); ∂Q†/∂ΩF < 0 (more frontier talent lowers it); ∂Q†/∂D < 0
(a higher productivity floor lowers it); ∂Q†/∂F > 0 when ξ < 1. Theorem 4.9 establishes
that none suffice without governance.

The productivity-floor bound is

D̄ ≡ δF /G. (29)

At the calibration, D̄ ≈ 0.08, evaluated at initial-period values of (A,ΩF ,H,F); the bound
shifts along the transition path as these stocks evolve. If D ≥ D̄, Q† = 0 and the trap is
empty: the productivity floor alone sustains frontier growth.

20The present model’s analogue of Bloom et al.’s declining research productivity is Ḟ/(ΩF H)αF ∝

D(Q)AaF Fξ−1. Under Assumption 2.1, the own-stock channel Fξ−1 is absorbed and the contamination
channel through D(Q) becomes the binding margin.
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4.2 The talent-drain channel

Rising AI capacity increases z̄, which reduces ΩF . The total effect of A on Q† is

dQ†

dA
=

∂Q†

∂A︸︷︷︸
direct: < 0

+
∂Q†

∂ΩF
· ∂ΩF

∂ z̄
· ∂ z̄

∂A︸ ︷︷ ︸
talent drain: > 0

. (30)

Proposition 4.2 (Rising threshold). The talent-drain channel dominates when αF |γF −
ζ |/ζ · (aR − aF) > aF . At the baseline parameters this pointwise condition fails (the di-

rect channel is strong at aF = 0.3), but the cumulative talent drain compensates over the

relevant horizon. I state the forward-invariance theorem under a weaker condition (Con-

dition 4.4) verified computationally.

4.3 Forward invariance

Definition 4.3. The derivative-trap region is T ≡{x≡ (F,R,A,H,Epub,Epriv)∈X : Q(x)≤
Q†(x)}, where Q = F/(F + R) and Q† is evaluated through the static map Φ(x) (Ap-
pendix G.1). The set T is closed (as the preimage of (−∞,0] under the continuous function
Q−Q†).

Condition 4.4 (Barrier dominance). On ∂T , the Nagumo barrier V ≡ Q† −Q satisfies

V̇ ≥ 0. Three jointly sufficient bounds are established in Appendix C.2: (C1) compositional

drift ϕ(gR − gF) dominates the human-capital deepening term µαFgmax
H /σ (pointwise on

∂T ); (C2) the talent-drain channel αF |γF −ζ |(aR −aF)/ζ exceeds the direct augmenta-

tion channel aF (inclusive of the general-equilibrium price adjustment; see Appendix C.2);

(C3) epistemic erosion outpaces replenishment on ∂T (holds trivially under laissez-faire

since ℓCE
E = 0). All three are verified at the calibration.

Theorem 4.5 (Forward invariance). Under Assumptions 2.1–2.5, Condition 4.4, and D <

D̄, the region T is forward invariant: Q(0)≤ Q†(0) implies Q(t)≤ Q†(t) for all t > 0.

Proof sketch. The barrier V (x) ≡ Q† −Q is C1 on ∂T (Proposition C.3). On ∂T , com-
positional drift pins gprod

F ≤ 0 < gprod
R (Assumption 2.4(viii)), so Q̇ < 0. Conditions C1–C3

(Appendix C.2) bound Q̇† from below, delivering V̇ ≥ 0. Nagumo’s theorem (Theorem C.1)
and local Lipschitz regularity (Lemma G.4) close the argument. □ □

Once data quality falls below Q†, compositional drift (gF < 0, gR > 0) mechanically
raises the derivative share, further depressing D(Q). The R–A feedback amplifies this. The

21



only term in Q̇ that can offset drift is the governance transfer q · s(E ) ·κ · (1−Q), which
requires q > qc. The critical governance intensity is

qc(x,E ) ≡
Q†(x)gprod

R (x)
κ s(E )

, (31)

the unique value that sets Q̇ = 0 on ∂T .

Remark 4.6 (Connection to governance feasibility). Setting q = 1 in (31) yields the epis-
temic feasibility threshold of Section 5: qc(x,E ) ≤ 1 is equivalent to s(E ) ≥ Q† gprod

R /κ ,
which defines E † (Definition 5.1). The derivative trap asks whether governance is strong

enough; the governance trap asks whether it is feasible at all.

4.4 The fold bifurcation

Proposition 4.7 (Fold bifurcation). Fix E > E †. There exists qc(A,E ) such that: (i) for

q > qc, a stable steady state with QSS > Q† exists; (ii) for q < qc, no such steady state

exists; (iii) at q = qc, a fold bifurcation.

Proposition 4.8. dqc/dA > 0: stronger AI demands stricter governance.

4.5 Non-substitutability

Theorem 4.9. Fix q < qc. Consider three classes of non-governance instruments:

(a) Frontier R&D subsidy: multiplies the gross production scale by 1+ τF , so GF →
(1+ τF)GF , τF ≥ 0.

(b) Talent subsidy: adds τz zγF to the frontier wage, shifting the Roy threshold to z̄′(τz)<

z̄(0).

(c) Copyright restriction: reduces the derivative sector’s access to training data by set-

ting Ȧ = µA ((1−χ)R)νAω −δAA, χ ∈ [0,1).

No combination of (τF ,τz,χ) restores Q above Q†. Forward invariance of T is preserved;

only q > qc breaks it.

Proof sketch. The aR > aF asymmetry disciplines the result. Any instrument that raises
A—including frontier subsidies, since A feeds on derivative output—augments GR by factor
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AaR−aF relative to GF . Compositional drift therefore remains negative on ∂T under any
(τF ,τz,χ). Copyright restriction reduces Ȧ but does not reverse gprod

R > 0. The only positive
contribution to Q̇ is the governance reclassification term, requiring q > qc. Appendix C
gives the formal barrier argument. □ □

The asymmetry aR > aF binds even for copyright reform: restricting derivative inputs
does not affect contamination already locked into Q < Q†. Only governance reverses Q̇.

5 The Governance Trap

The derivative trap can in principle be broken by governance. But governance requires
epistemic capacity, and epistemic capacity is harder to replenish as the corpus becomes
derivative-dominated. Below an epistemic threshold E †, even maximal governance ef-
fort cannot prevent further compositional decline. Because E erodes faster than Q under
laissez-faire, the governance window closes before the derivative trap binds (Theorem 5.8).

Throughout this section, write E ≡ Epub for the public epistemic stock that determines
screening effectiveness, and let s(E ) ∈ [0,1] denote screening accuracy, strictly increasing
with s(0) = 0.

5.1 The epistemic threshold

Definition 5.1 (Epistemic threshold). At Q = Q†, frontier production just breaks even
(gprod

F = 0) while derivative production remains active (gprod
R > 0). Setting Q̇ ≥ 0 in (17) at

maximum governance q = 1 requires s(E ) ·κ · (1−Q†) ≥ Q†(1−Q†) · gprod
R , i.e. s(E ) ≥

Q†gprod
R /κ . The epistemic threshold is

E † ≡ s−1
(Q† ·gprod

R
κ

)
, (32)

provided the argument lies in [0,1] (feasibility: κ > Q†gprod
R ). When the argument exceeds

unity, no governance intensity can maintain Q ≥ Q† and the governance trap is immediate.
Since gprod

R and Q† depend on the state, E † is a function of x.

The threshold E † is the minimum evaluative capacity for governance to offset compo-
sitional drift. Screening removes derivative content at rate q · s(E ) · κ; inverting s at the
required accuracy yields (32).

23



Lemma 5.2. (i) ∂E †/∂A > 0; (ii) ∂E †/∂ϕ > 0; (iii) E †(ϕ) is C1 under Assumption 2.5.

Proof. Implicit differentiation of Definition 5.3 under smoothness of s(·) and boundedness
of F1−ξ . □

5.2 The absorbing property

Definition 5.3. The governance-trap region is G ≡ {x : Epub < E †(ϕ)−Epriv}.

Theorem 5.4 (Absorbing governance trap). Under Assumptions 2.4–2.5, if E CE
priv < E SP

total

and

σE > σ̄E ≡ max

{
0,

ln(δ E †
min/λ )

lnQ†
max

}
, (33)

where E †
min ≡ inf∂G∩T E † > 0 and Q†

max ≡ sup∂G∩T Q† ∈ (0,1), then G ∩T is absorbing:

once the economy enters Region III (Q ≤ Q†, Etot < E †), no feasible policy restores Etot

above E †.21

Proof sketch. Control-invariance of T within G (Lemma D.1, Appendix D.1) reduces the
Nagumo condition to ∂G ∩T . On this boundary, replenishment is bounded above by
λ (Q†

max)
σE , dominated by depreciation δ E †

min when (33) holds. The private buffer delays
entry by roughly 2.3 years at the calibration but cannot prevent it. Appendix D.1 gives the
full argument. □ □

The supremum Q†
max < 1 is well-defined because the interior-threshold condition Q† ∈

(0,1) holds uniformly on ∂G ∩T ; along trap trajectories, G → ∞ drives Q† → 0, so the
supremum is attained near initial entry (Q†

max ≈ 0.65 at calibration). The infimum E †
min > 0

follows from s−1(Q†gprod
R /κ)> 0 on ∂G ∩T .

The parameter σE is irrelevant for the timing of governance-trap entry under laissez-
faire (where ℓE = 0 makes the replenishment term vanish regardless of σE ). It matters for
whether the trap is absorbing once entered. At σE = 0.5, immediate maximal effort can
replenish Epub; at σE ≥ 1.0, it cannot. At the baseline calibration, σ̄E ≈ 0.73, comfortably
below the baseline σE = 1.5.

Remark 5.5. Forward invariance (Theorem 4.5) is conditional on q < qc: sufficiently
aggressive governance breaks it. The absorbing property removes this escape. Once

21Here λ ≡ λ
pub
E (ℓmax

E )ηE +λ
priv
E (ℓ

priv,max
E )ηE and δ ≡ min{δE ,0,δ

priv
E ,0 }. Under the normalisations in the

calibration (ℓmax
E = 1, λ

priv
E = 0), these reduce to λ = λ

pub
E and δ = δE ,0.
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Etot < E †, screening accuracy s(E ) falls below smin, and no feasible q satisfies Q̇ ≥ 0.
The trap is avoidable only by prior investment in evaluative capacity.

5.3 Temporal precedence

Proposition 5.6. Let TE be the first time Epub falls below E † −Epriv, and TQ the first time

Q < Q†. Then TE < TQ. At baseline, TE /TQ ≈ 0.63.

Proof. Under laissez-faire, Epub(t)= Epub,0 exp(−
∫ t

0 δE (ϕ)ds), decaying at an accelerating
rate. An upper bound on TE uses δE ,0 as a lower bound on the decay rate; a lower bound
on TQ uses the fastest possible Q-decline. The sufficient condition

ln(Epub,0/E
†
min)

δE ,0
<

ln(Q0/Q†
max)

(aR −aF)gmax
A +σgmax

Q +αRgmax
H

uses only exogenous parameters and is non-circular. At the calibration, the LHS is 18.2 years,
the RHS 28.7 years. Numerical integration gives TE ≈ 15.1 and TQ ≈ 24.0; the ratio ranges
from 0.51 to 0.83 across calibration variants (Table 8); at the upper end (low δE ,0), the
governance window narrows to roughly four years, and the practical distinction between
governance preemption and simultaneous crossing becomes thin. □ □

Remark 5.7. Precedence depends on endogenous acceleration. Under δE ,1 = 0, the decay
rate is constant and TE /TQ ≈ 0.95—the gap nearly vanishes. With δE ,1 > 0, the effective
rate δE ,0 +δE ,1ϕ(t) accelerates as contamination rises, compressing TE from 22.9 to 15.1
years at the calibration.

5.4 The two-trap hierarchy

Theorem 5.8. Under laissez-faire, the economy traverses three regions:

I. Governable growth (Q > Q†, E > E †): policy can maintain this indefinitely.

II. Governance trap (Q > Q†, E < E †): governance infeasible. Entry at TE .

III. Full trap (Q < Q†, E < E †): forward invariant and absorbing. Entry at TQ.

The fourth logical region (Q < Q†, E > E †) is empty under the model’s endogenous dy-

namics.
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Proof. Temporal precedence gives I→II→III. Forward invariance of T (Theorem 4.5) and
the absorbing property of G ∩T (Theorem 5.4, via Lemma D.1) prevent escape from III.
Region IV requires restoring E while Q < Q†, blocked by the absorbing property. □ □

The emptiness of Region IV is a model limitation. In practice, exogenous evaluative
imports—foreign benchmarks, detection technologies from jurisdictions that maintained
epistemic capital—could make Region IV accessible. This requires an open-economy ex-
tension deferred to future work.

The trajectory I→II→III is deterministic under laissez-faire. Evaluative capacity de-
grades first because it depreciates monotonically under ℓCE

E = 0, while Q declines through
the differential gR − gF > 0, which takes time to accumulate. The governance window
∆T = TQ −TE measures the period during which the economy looks governable but is not.

5.5 Mismeasurement

Corollary 5.9. Define the observed frontier share as Qobs = Q + (1 − Q)e−mE . Then:

(i) Qobs > Q for E < 1; (ii) the gap is increasing in ϕ; (iii) measured frontier growth can

be positive when true growth is negative.

Proof. Parts (i)–(ii) are immediate. For (iii), differentiate:

Q̇obs = (1− e−mE ) Q̇−m(1−Q)e−mE Ė .

When Q̇ < 0 but Ė < 0 is sufficiently negative, the second term dominates and Q̇obs >

0. □ □

The exponent m ≈ 1.2 is calibrated from signal-detection theory.22 At the calibration,
measured growth is +2.7% when true growth is approximately −1% at TQ.

The mismeasurement is not a fixed bias but an endogenous function of E : it widens as
the economy approaches the governance trap. Policymakers relying on measured frontier
shares observe apparent stability during [TE ,TQ]—the period when intervention is already
infeasible but metrics remain reassuring.

22An evaluator observes y = θ +ε , ε ∼N (0,1/E ), θ ∈ {µF ,µR}. Sensitivity is ∆(E ) = |µF −µR|
√

E , hit
rate s(E ) = ΦN

(
∆(E )/2

)
. Corpus contamination (Q < 1) degrades sensitivity to ∆̃ = Q∆(E ), disciplining

the reduced form DE (Q) = QσE . The positive predictive value PPV = (1−ϕ)s/[(1−ϕ)s+ϕ f ] is decreasing
in ϕ , microfounding δE (ϕ) increasing in the derivative share.
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6 Optimal Policy

The planner internalises two externalities the competitive equilibrium ignores, producing
a double wedge in shadow prices (Proposition 3.4). Derivative output degrades frontier
productivity by lowering Q; the planner values it below the market (λR < VR). Evaluation
effort sustains epistemic capital, a return atomistic agents do not capture; the planner values
frontier knowledge above the market (λF > VF ). Because aR > aF , both gaps widen as A

grows, making early intervention strictly better than late. The two-trap structure yields a
strict instrument hierarchy: epistemic investment before governance, governance before
R&D subsidies.

6.1 Instrument hierarchy

Three implementable instruments map directly into the objects entering the critical gover-
nance intensity qc(x,E ) in (31) and the epistemic threshold E † in (32).

Epistemic subsidy. A subsidy τℓ finances public evaluation effort ℓE , raising the accu-
mulation term in (23). Its role is to keep E above the feasibility threshold E †(x).

Governance mandate. The screening intensity q ∈ [0,1] scales the reclassification flow
in the quality-share dynamics (17). Conditional on E , it is the unique policy margin that
enters Q̇ as a direct positive term (Theorem 4.9).

Synthetic restraint. A restriction χ ∈ [0,1) limits derivative inputs into algorithmic-
capacity accumulation: Ȧ = µA

(
(1− χ)R

)νAω − δAA. This lowers gprod
R (x) and therefore

reduces qc(x,E ), expanding the set of states in which q ≤ 1 suffices.

A frontier-talent subsidy (a wedge shifting the Roy threshold z̄) complements these instru-
ments but is not required for the hierarchy results below.

Proposition 6.1. The instruments admit a strict dominance ordering:

(H1) Epistemic investment (ℓE > 0) is a precondition for all others.

(H2) Data governance (q > qc) is a precondition for R&D subsidies and copyright reform.

(H3) R&D and talent subsidies are effective conditional on (H1)–(H2).
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(H4) Copyright reform is effective conditional on (H1)–(H3).

At ℓE = 0, governance cannot satisfy Q̇ ≥ 0 (screening accuracy s(E ) ≤ smin). At q < qc,

R&D subsidies cannot raise Q (the compositional channel dominates).

Proof. The effective quality under governance is Qeff = F/
(
F +(1−qE )R

)
. Differentia-

tion pins down two inequalities:

∂Qeff

∂q
=

FE R(
F +(1−qE )R

)2 > 0,
∂ 2Qeff

∂q∂E
=

FR
(
F +(1−qE )R+2qE R

)(
F +(1−qE )R

)3 > 0.

Governance raises effective quality; the cross-partial pins down supermodularity of Qeff in
(q,E ). The planner’s flow payoff inherits this structure (Appendix B.4); Topkis’s theorem
selects optimal governance intensity as nondecreasing in E .

(H1)⇒(H2): Near E ≈ E †, the marginal product of governance ∂Qeff/∂q is propor-
tional to E and near zero. Epistemic investment retains a positive marginal product pro-
portional to QσE (1− E ); monotone comparative statics select it as the binding margin.
(H2)⇒(H3): Theorem 4.9. (H3)⇒(H4): Copyright reform affects Q only through the
composition of training corpora; the shadow-value comparison in Proposition 3.4 ranks
stock instruments above flow instruments. □ □

The ordering is a dependency chain, whose logic follows from the planner’s first-order
conditions. The planner’s FOC for z̄ equates the marginal social value of shifting a re-
searcher from derivative to frontier work:

λF
∂gF

∂ΩF

dΩF

dz̄
+ΨQ

∂ Q̇
∂ z̄

+λ
pub
E

∂ Ėpub

∂ z̄
= λR

∂gR

∂ΩR

dΩR

dz̄
.

Private agents face identical production margins but ignore the data-quality shadow price
ΨQ and the epistemic shadow price λ

pub
E —the second and third terms on the left—and

value frontier knowledge at the market price VF < λF (Proposition 3.4(i)). Moreover, the
market overvalues derivative output: VR > λR (Proposition 3.4(v)), so the right-hand side
is inflated relative to the planner’s valuation. The double wedge—understated left-hand
side, overstated right-hand side—drives the competitive Roy threshold above the social
optimum, z̄CE > z̄SP. The FOCs for q and ℓE load ΨQ and λ

pub
E directly; both are identically

zero in competitive equilibrium because qCE = ℓCE
E = 0. The wedge is entirely attributable

to unpriced externalities on Q and Epub.
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Governance without epistemic capital operates at degraded accuracy; subsidies without
governance widen the quality gap (aR > aF ); copyright restrictions do not address contami-
nation already in the corpus. Superadditivity (Corollary 3.6) pins down the joint correction
as exceeding the sum of individual corrections. At illustrative interior levels (Section 7), the
constrained optimum achieves managed decline (gF ≈−1%) rather than frontier collapse.

6.2 Talent policy

Proposition 6.2. (i) A frontier subsidy τz > 0 reduces z̄, raising both πF and ΩF . (ii) The

planner can set ℓF > πF(z̄) through sufficiently large subsidies: z̄SP(ℓF) = zℓ−1/ζ

F . The

selection effect is distinct from the headcount effect: restoring πF to its pre-AI level recovers

only 72% of the original ΩF at the calibration, because the marginal researchers drawn

back by subsidies have lower ability than those who departed.

Proof. Part (i) is immediate from the Roy threshold. Part (ii) follows from the Pareto
integral in Appendix A.3. □

The gap between headcount recovery and talent recovery reflects the Pareto tail: marginal
researchers drawn back by subsidies have ability near z̄, while ΩF integrates zγF , weighting
high-ability types disproportionately. At the calibration (γF = 2, ζ = 3), full headcount
recovery restores only 72% of effective talent.23

6.3 Convex cost of delay

Proposition 6.3. The welfare loss C (τ) from postponing optimal policy by τ years is in-

creasing and convex in τ for τ < TE , with a discontinuity in the second derivative at TE

where the governance window closes. For τ > TE , C (τ) continues to grow but intervention

can no longer reverse the decline.

Proof. Let W (τ) =
∫

∞

0 e−ρt u(Cτ(t))dt denote welfare under optimal policy restarted af-
ter delay τ . Two channels generate convexity. D′′(Q) > 0 (σ > 1) ensures later quality
losses impose larger marginal productivity penalties. Delay also erodes E via (23); since
∂Qeff/∂q ∝ E , the governance cost of restoring any quality target rises as E falls. The
cross-partial ∂ 2Qeff/(∂q∂E )> 0 compounds both channels.

When τ exceeds T †
G , the planner enters the absorbing region (Theorem 5.4); E can no

longer be restored above E †, producing a discrete jump in the delay-cost schedule. □ □

23The composition loss is 1− (z̄CE/z̄0)
γF−ζ , increasing in γF .
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Before the crossing, delay raises the stock of derivative content that governance must
eventually clean; after it, governance becomes infeasible and the planner manages the de-
cline. Each year of delay before TE costs approximately 0.3% CEV; each year after, ap-
proximately 0.5% (Figure 4).

6.4 Welfare decomposition

Proposition 6.4. The CEV decomposes as ∆ = ∆level +∆growth +∆trap. At the calibration:

∆ ≈ 6.8%, with ∆level ≈ 0.9%, ∆growth ≈ 4.2%, and ∆trap ≈ 1.7%. The growth-rate compo-

nent dominates.

The growth-rate component dominates (62% of total gains): the planner sustains a
positive growth differential gSP

F −gCE
F that compounds over the infinite horizon. The trap-

aversion component (∆trap = 1.7%) captures the option value of maintaining governance
feasibility; under interior constraints it falls to 1.3%.24

The structure—convex delay cost, invisible degradation of the governing stock, irre-
versible threshold crossing—bears a structural analogy to the tragedy of the horizon of
Carney [2015]. Two distinctions sharpen it. In climate economics the stock pollutant is
observable and the regulator’s diagnostic capacity is exogenous [Nordhaus, 2017, Stern,
2007]; here both conditions fail. Epub is imperfectly observed, its decline masked by the
mismeasurement it induces, and delayed action degrades both the state to be governed and
the capacity to govern it.

7 Quantification

The qualitative results—trap existence, forward invariance, temporal precedence, instru-
ment hierarchy—hold for any parameter configuration satisfying Assumptions 2.1–2.5.
Whether the traps bind at empirically relevant horizons is a quantitative question.25

24Under CRRA, ∆ = (W SP/W CE)1/(1−η)−1. ∆level: re-optimise the static allocation at CE growth rates.
∆growth: impose the planner’s growth rates at fixed allocations. ∆trap: residual ∆−∆level −∆growth. Welfare
integrals use adaptive Gauss–Kronrod quadrature; the CE continuation value uses trap growth rates (Propo-
sition H.13), the planner continuation uses the managed BGP. Error in ∆ is below 10−6.

25The competitive equilibrium is an autonomous IVP integrated forward from x0 using Dormand–Prince
5(4) with adaptive steps (tolerances 10−10), switching to Radau IIA under stiffness. The planner’s problem is
a 12-ODE boundary-value problem (6 states, 6 costates) solved by shooting; Appendix E details the costate
system and control computation. Levenberg–Marquardt drives the shooting residual below 10−6; three ini-
tialisations converge to the same λ 0. Post-convergence diagnostics: transversality products e−ρtλ jx j decline
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7.1 Calibration

The model is calibrated to the US innovation system over 2015–2025. Table 3 reports
baseline parameters. Three parameters—σ , σE , and Q(0)—lack direct empirical analogues
and require separate discussion.

Table 3: Baseline calibration

Innovation AI & algorithm Talent & output Epistemic capital

αF 0.65 Lab. share (F) aF 0.3 AI aug. (F) ζ 3.0 Pareto tail ηE 0.50 Eval. lab. sh.
ξ 0.35 Kn. exp. (F) aR 0.8 AI aug. (R) γF 2.0 Abil. wt. (F) σE 1.5 Qual. depend.

αR 0.40 Lab. share (R) ν 0.6 Train elast. γR 1.0 Abil. wt. (R) δE ,0 0.03 Base deprec.
ξR 0.50 Kn. exp. (R) ω 0.4 Capac. elast. αY 0.55 CES wt. (F) δE ,1 0.05 ϕ-loading
σ 2.0 Erosion elast. µA 0.5 AI scale θ 1.5 Subst. elast. λ

pub
E 0.10 Pub. prod.

D 0 Prod. floor δA 0.10 AI deprec. φA 0.3 AI in Y λ
priv
E 0.08 Priv. prod.

Preferences Depreciation Governance Initial conditions

ρ 0.035 Discount rate δF 0.02 Frontier κ 0.10 Removal rate Q0 0.85 Data quality
η 2.0 CRRA coeff. δR 0.05 Derivative κcert 0.15 Certif. prem. Epub,0 0.70 Public EC
βH 0.50 HC exponent δH 0.02 Human cap. m 1.2 Misclass. exp. Epriv,0 0.10 Private EC
λH 0.05 Educ. prod. δ

priv
E ,0 0.10 Priv. EC φH 0.5 HC in Y ΛF normalised

Sources: αF , ξ from Bloom et al. [2020]; aF , aR from Acemoglu and Restrepo [2020]; ν , ξR from neural scaling laws; σ from Fréchet
mechanism (Appendix A.1); σE from SDT calibration (Appendix A.2); ζ from Murphy et al. [1991]; Q0 from late-2024 corpus
estimates.

Erosion exponent σ . Shumailov et al. [2024] train successive generations of language
models on predecessor output and document that distributional divergence grows approxi-
mately as a power law in recursive depth. Through the Fréchet mechanism of Appendix A.1,
this pins down σ = 1/k ∈ [1,3] across architectures; Alemohammad et al. [2023] report
magnitudes of similar order. Gerstgrasser et al. [2024] show that mixing organic data de-
lays collapse, corresponding to lower effective curvature. The baseline sets σ = 2; the
mapping is mechanism-consistent rather than parameter-identifying, since the experimen-
tal setting differs from the model’s equilibrium corpus.

Epistemic quality-dependence σE . Direct micro-level identification is not currently fea-
sible. The calibration targets an annualised decline in Epub of approximately 4% under

monotonically; the present-value Hamiltonian e−ρtH cv drifts below 5×10−7; control FOCs are re-verified
at 100 random time points. Trap-crossing times are located by dense-output bisection, stable to 10−4 years.
A collocation method (N = 5,000, refined near TE and TQ) and a detrended value-function computation (304

Chebyshev nodes) reproduce the shooting aggregates within 0.1 pp on CEV and 0.3 years on trap-crossing
times.
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laissez-faire at the initial state, which pins σE = 1.5. Section 7.2 disciplines this value fur-
ther by matching the observed decline in AI-detection accuracy [Pratama, 2025] and peer-
review degradation [Tropini et al., 2023], yielding an admissible range σE ∈ [1.2,1.8].26

Initial data quality Q(0). The baseline sets Q(0) = 0.85, i.e. ϕ(0) = 0.15, at the cal-
ibration origin of late 2024. The model’s ϕ encompasses all non-frontier content in the
training corpus, not only text generated by LLMs: non-reproducible studies, p-hacked re-
sults, low-quality preprints, and duplicated material all reduce effective data quality. Ta-
ble 1 places the LLM-generated or LLM-substantially-modified share at 10–25% of recent
submissions by late 2024 [Liang et al., 2025, Kobak et al., 2025]; adding the pre-existing
non-reproducibility rate of approximately 5–10% estimated in replication studies yields
an effective ϕ(0) in the range 0.15–0.30. The baseline Q(0) = 0.85 sits at the conserva-
tive end.27 Lower Q(0) shifts both trap crossings earlier and compresses the governance
window.

7.2 Moment matching

The three parameters most consequential for the trap dynamics—the erosion elasticity σ ,
the evaluative quality-dependence σE , and the base epistemic depreciation δE ,0—lack di-
rect micro-level identification. This subsection disciplines each by matching the model to
observable proxies from the empirical literature cited in Section 1. The exercise targets
qualitative features and orders of magnitude rather than optimising a criterion function, but
it narrows the admissible parameter space substantially.

Target moments. Table 4 lists five empirical moments, their data sources, and the pa-
rameters each moment pins down.

Erosion elasticity σ . The monthly panel of 315 venue–month observations (Table 1)
disciplines σ through the curvature of the contamination path, not merely its endpoint.
The observed trajectory is S-shaped: rapid initial growth (approximately 1 pp/month in

26Under laissez-faire ℓCE
E = 0 renders the replenishment term zero, so σE does not affect laissez-faire

dynamics. The parameter binds for the absorbing property (through R(σE )) and for marginal returns to
epistemic investment under the planner.

27For a simulation origin of November 2022 (the ChatGPT release), the appropriate initial condition would
be Q(0) ≈ 0.90–0.95, reflecting near-zero LLM contamination but pre-existing non-reproducibility. The
qualitative results are robust: the ordering T †

G < TE < TQ is preserved throughout Q(0) ∈ [0.70,0.95].
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Table 4: Moment-matching targets

Empirical moment Value Model object Pins

LLM-modified share, CS,
Sept. 2024 22.5% ϕ(t=2) σ , aR

LLM-modified share,
biomed, 2024 ≥13.5% ϕ(t=2) aR (cross-field)

Detection accuracy
decline, 2023–24 ∼20 pp ∆[s(E ) ·DE (Q)] σE

Reviewers contacted
per manuscript,
2016 → 2022 4.8 → 6.8 1/Epub(t) δE ,0

Retraction–publication
lag (median) ∼550 days 1/[s(E ) ·DE (Q)] Joint

computer science during Apr–Dec 2023) followed by deceleration (approximately 0.5–
0.9 pp/month during 2024). In the model’s reduced form, ϕ̇ ∝ ϕ(1 − ϕ)D(Q)−1: the
ϕ(1−ϕ) logistic term governs intensive-margin saturation, while D(Q) = Qσ governs the
erosion feedback. Higher σ produces a sharper initial acceleration and earlier inflection,
because the erosion penalty declines faster as Q falls. Matching the inflection timing—the
transition from the steep phase to the decelerating phase, which occurs in early-to-mid 2024
for computer science—pins σ ∈ [1.5,2.5]. Values below 1 produce a uniformly decelerat-
ing path (inconsistent with the steep 2023 takeoff); values above 3 produce an inflection
too early (inconsistent with continued growth through mid-2024). The baseline σ = 2 addi-
tionally matches the Fréchet shape parameter k = 1/σ = 0.5 reported in the model-collapse
experiments of Shumailov et al. [2024].

Evaluative quality-dependence σE . Effective screening accuracy s(E ) ·DE (Q) declines
as both E and Q fall, with σE governing the elasticity with respect to corpus quality.
Pratama [2025] document that detection tools calibrated on GPT-3.5 output show sub-
stantially degraded performance on GPT-4 and later-model output, with effective accuracy
dropping by approximately 20 percentage points within 18 months. A 20 pp decline in
s(·) over two years, starting from s0 ≈ 0.80 and with Q falling from 0.85 to 0.75, pins
σE ∈ [1.2,1.8]. The baseline σE = 1.5 matches the midpoint. At σE < 0.5, the model
predicts negligible screening decline despite substantial contamination—inconsistent with
the data. At σE > 2.5, the governance trap arrives implausibly fast (TE < 8 years).
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Epistemic depreciation δE ,0. The 1.4-fold increase in reviewers contacted per manuscript
between 2016 and 2022 [Tropini et al., 2023] implies that each reviewer’s effective eval-
uative contribution has declined, consistent with Ėpub < 0 even before AI contamination
was widespread. Interpreting the reviewer-search data as 1/Epub(t) rising at approximately
5.9% per year—(6.8/4.8)1/6−1 ≈ 0.059—and noting that δE ,1ϕ was small pre-2022, pins
δE ,0 ∈ [0.02,0.04]. The baseline δE ,0 = 0.03 sits at the midpoint.

Joint identification: retraction lag. The median publication-to-retraction lag of approx-
imately 550 days for randomly generated content [Lei et al., 2024] provides a joint check—
though one the model matches only in order of magnitude. In the model, the expected
detection time for derivative content is 1/[s(E ) ·DE (Q) · κ]. At baseline (s ·DE ≈ 0.68,
κ = 0.10), this gives approximately 14.7 years, an order of magnitude larger than the em-
pirical 1.5 years. The discrepancy reflects selection: the retraction data conditions on de-

tected fraud, which selects the most blatant cases—randomly generated text with obvious
statistical anomalies. The model’s detection time is the unconditional expectation across
all derivative content, including sophisticated AI-generated material that evades detection
indefinitely. The correct interpretation is that the empirical retraction lag lower-bounds de-
tection time for the marginal case and is therefore consistent with, but does not tightly pin,
the baseline parameter vector. The baseline calibration (σ = 2, σE = 1.5, δE ,0 = 0.03) sits
in the interior of the empirically admissible region for the first four targets; the retraction
lag provides a directional rather than quantitative check.

7.3 Results

The governance window is short. Roughly nine years separate the epistemic-trap cross-
ing (TE = 15.1) from the derivative-trap crossing (TQ = 24.0). Figure 2 plots the laissez-
faire and constrained-optimal trajectories in (Q,E )-space; Figure 3 shows time paths for
data quality, public epistemic capital, and frontier growth (with the mismeasurement gap
shaded). Feasible interior policies achieve managed decline but not trap aversion. The
largest marginal welfare gain comes from the least conventional instrument: public epis-
temic investment.

Table 5 reports the headline findings.
The “Interior” column constrains instruments to empirically observed ranges (q ≤ 0.4,

ℓE ≤ 0.05, τz ≤ 0.1pF ). At these levels the economy remains in Region I by a narrow
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Table 5: Headline results

Laissez-faire Constrained optimal Units

Interior Full

TE 15.1 ∞ ∞ years
TQ 24.0 ∞ ∞ years
TE /TQ 0.63 — — ratio
gLR

F −3.4 −1.0 +0.8 %/yr
gLR

R +4.1 +1.5 +0.6 %/yr
QLR 0.08 0.31 0.62 index
E LR

pub 0.02 0.18 0.55 index
CEV (∆) — +4.2 +6.8 %
∆level — 0.6 0.9 %
∆growth — 2.3 4.2 %
∆trap — 1.3 1.7 %
Ltrap — — 8.3 % of Y0

margin (QLR = 0.31 against Q† ≈ 0.25); a moderate adverse shock to A or σ could push it
across. Full deployment sustains positive frontier growth and data quality above threshold.

Table 6 isolates each instrument’s contribution.

Table 6: Policy comparison

Policy package gLR
F QLR E LR

pub CEV

Laissez-faire −3.4% 0.08 0.02 —
Governance only −2.1% 0.25 0.02 +1.8%
Epistemic + governance −1.2% 0.30 0.17 +3.9%
Full (interior) −1.0% 0.31 0.18 +4.2%
Full (full deployment) +0.8% 0.62 0.55 +6.8%

Governance alone raises QLR from 0.08 to 0.25 but leaves Epub at 0.02, pinning screen-
ing accuracy s(E )≈ 0.54—barely above the random baseline. Epistemic investment raises
s(E ) to approximately 0.76, pushing QLR to 0.30. The joint gain of 3.9% CEV exceeds
the sum of individual gains (1.8% + 1.5% = 3.3%),28 confirming the superadditivity of
Corollary 3.6. Figure 5 decomposes the marginal CEV contributions by instrument.

28The 1.5% figure is the CEV from epistemic investment alone (ℓE > 0, q = 0). It does not appear in
Table 6 because the policy is dominated; the number is used here only to verify superadditivity.
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7.4 Sensitivity

Tables 7 and 8 report sensitivity to key parameters and confirm temporal precedence across
calibration variants.29

Table 7: Sensitivity analysis

Parameter Value TE TQ ∆T Absorbing?

Erosion elasticity σ

1.0 18.7 29.3 10.6 Yes
2.0 15.1 24.0 8.9 Yes
3.0 12.8 20.5 7.7 Yes

AI differential aR −aF

0.3 19.4 30.8 11.4 Yes
0.5 15.1 24.0 8.9 Yes
0.9 11.2 18.6 7.4 Yes

AI augmentation aR

0.6 17.6 28.1 10.5 Yes
0.8 15.1 24.0 8.9 Yes
1.2 11.8 16.6 4.8 Yes

σE

0.5 15.1 24.0 8.9 No
1.5 15.1 24.0 8.9 Yes
2.5 15.1 24.0 8.9 Yes

Productivity floor D
0 15.1 24.0 8.9 Yes

0.03 15.1 25.2 10.1 Yes
0.05 15.1 26.8 11.7 Yes
0.08 15.1 ∞ ∞ N/A

Pareto tail ζ

2.5 13.9 22.1 8.2 Yes
3.0 15.1 24.0 8.9 Yes
4.0 17.0 26.4 9.4 Yes

The invariance of ∆T to σE is mechanical: ℓE = 0 under laissez-faire zeroes the replen-
ishment term regardless. A positive productivity floor delays TQ without affecting TE ; at
D = 0.08 ≈ D̄ the derivative trap dissolves but the governance trap persists. Stronger AI
closes the window rapidly: the governance window is most sensitive to AI augmentation
(aR) and the differential aR −aF .

29Table 10 in the appendix documents truncation-horizon robustness: reported quantities are unchanged
when T̄ is extended from 150 to 300 years (maximum absolute difference below 10−7).
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Table 8: Temporal precedence across calibration variants

Parameter Value TE TQ TE /TQ Holds?

Baseline — 15.1 24.0 0.63 Yes
σ = 1.0 18.7 29.3 0.64 Yes
σ = 3.0 12.8 20.5 0.62 Yes
aR = 0.6 17.6 28.1 0.63 Yes
aR = 1.2 11.8 16.6 0.71 Yes
ζ = 2.5 13.9 22.1 0.63 Yes
ζ = 4.0 17.0 26.4 0.64 Yes
D = 0.03 15.1 25.2 0.60 Yes
D = 0.05 15.1 26.8 0.56 Yes
δE ,0 = 0.02 19.8 24.0 0.83 Yes
δE ,0 = 0.04 12.3 24.0 0.51 Yes

Temporal precedence (TE < TQ), the instrument hierarchy, and the two-trap structure
hold across the full parameter space (Figure 6). The absorbing property fails only at
σE = 0.5, where evaluator quality is nearly independent of corpus quality. The most con-
sequential uncertainty is aR−aF : if future architectures narrow this gap, the R–A feedback
weakens and the trap may not bind at empirically relevant horizons.30

8 Conclusion

Epistemic capital is a depletable stock. Its depletion preempts the derivative trap: the
governance window closes roughly nine years before conventional metrics signal trouble
(Theorem 5.8). Measured frontier growth stays positive throughout (Corollary 5.9).

The instrument hierarchy (Proposition 6.1) imposes a strict ordering: epistemic invest-
ment before governance, governance before R&D subsidies. The largest marginal welfare
gain (+2.1 pp CEV) comes from adding epistemic investment to governance. The ordering
reflects a double wedge: the competitive equilibrium undervalues frontier knowledge and
overvalues derivative output (Proposition 3.4(i),(v)), with both gaps widening as A grows.

Laissez-faire welfare loss is about 6.8% CEV, concentrated in the long-run growth rate
(Proposition 6.4). Delay costs are convex, with a kink at the governance-trap crossing
(Proposition 6.3).

30The linear specification δE (ϕ) = δE ,0 + δE ,1ϕ is a first-order approximation. Convex depreciation
(threshold effects in ϕ) could compress TE substantially; the linear form may overstate the governance win-
dow. Estimating δE (·) is a priority for empirical follow-up.
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Sensitivity of governance window ∆T

Governance window ∆T (years)

Epistemic sigma_E
(0.5 / 1.5 / 2.5)

Pareto tail zeta
(2.5 / 3.0 / 4.0)

Productivity floor Dbar
(0 / 0.03 / 0.05)

Erosion elasticity sigma
(1.0 / 2.0 / 3.0)

AI differential a_R − a_F
(0.3 / 0.5 / 0.9)

AI augmentation a_R
(0.6 / 0.8 / 1.2)

Baseline = 8.9 yr

Low parameter value
High parameter value

Figure 6: Sensitivity of governance window ∆T = TQ−TE (years) to one-at-a-time param-
eter variation. Most sensitive to aR −aF and σ . See Table 7.

Several limitations apply. The closed-economy assumption prevents evaluative imports
and is the most binding simplification. Derivative content is treated homogeneously. AI
capability evolves by reduced form, not strategic developer choice. The new parameters
(σ , m, σE ) rest on limited evidence, though qualitative results survive across the plausible
range.

Three extensions are natural: an open-economy model with cross-border data flows;
empirical identification of D(Q) and δE (ϕ) using differential AI adoption across fields;
and a dynamic game between AI developers, platforms, and a governance authority.

The derivative trap is ultimately a problem of institutional capacity—a scarce resource
that erodes endogenously and must be maintained through deliberate investment. The win-
dow for that investment is shorter than standard metrics suggest.
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Appendix

Throughout, ∥ · ∥ denotes the Euclidean norm on Rn and the induced operator norm on
matrices. Each external mathematical result is stated where it first binds.31

A Microfoundations

A.1 Fréchet microfoundation for D(Q)

The erosion function D(Q) is pinned down by a contaminated extreme-value argument.
The key external result characterises the distribution of maxima drawn from heavy-tailed
populations—here applied to the maximum-novelty draw from a research corpus of mixed
provenance.

Theorem A.1 (Fisher–Tippett–Gnedenko). If {Xi} are i.i.d. with distribution F in the max-

imum domain of attraction of the Fréchet law Φα(x) = exp(−x−α), x > 0, α > 0, then

the sample maximum Mn, suitably normalised, converges in distribution to Φα , and the

characteristic scale of Mn grows as n1/α .32

Fréchet microfoundation of the erosion function. Index novelty by x > 0. Clean draws are
Fréchet: Φ(x) = exp(−x−k), k > 0. Contamination induces a mixture: a fraction Q ∈ [0,1]
of the corpus preserves the full Fréchet tail while the complement 1−Q consists of AI-
generated material whose novelty distribution has compact support on [0, x̄]. The derivative
component is drawn from ΦR satisfying ΦR(x) = 1 for all x ≥ x̄, x̄ < ∞; the shape of ΦR

below x̄ is immaterial for the tail argument. The binding restriction is that AI-generated
content cannot produce unbounded novelty. A single draw has CDF

Φeff(x) = QΦ(x)+(1−Q)ΦR(x).

A research project samples n independent items and retains the maximum Mn ≡max{x1, . . . ,xn}.

31The classical references are: Teschl [2012, Theorem 2.2] (Picard–Lindelöf); Fleming and Rishel [1975,
Theorem 2.3.5] and Gripenberg et al. [1990, Chapter 9] (Volterra contraction); Nagumo [1942] (forward
invariance); Topkis [1998, Theorem 2.8.1] (monotone comparative statics); de Haan and Ferreira [2006, The-
orem 1.1.3] (extreme-value theory); Kuznetsov [2004, Theorem 3.4.1] (fold bifurcation); Leitmann and Stal-
ford [1971] (augmented-Hamiltonian sufficiency); Acemoglu [2009, Chapter 7] (infinite-horizon optimality
conditions).

32de Haan and Ferreira [2006, Theorem 1.1.3]. Contamination reduces the effective sample to nQ clean
draws, yielding a productivity multiplier Q1/α = Qσ with σ ≡ 1/α .
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For x exceeding x̄, the derivative component contributes ΦR(x) = 1, so

Pr(Mn ≤ x) =
[
QΦ(x)+(1−Q)

]n
=
[
1−Q(1−Φ(x))

]n
.

Since 1−Φ(x)∼ x−k for large x, the Poisson approximation (1− p)n ≈ e−np delivers

Pr(Mn ≤ x)≈ exp
(
−nQx−k) for x ≫ x̄. (A.1)

The right-hand side is Fréchet with effective sample size nQ. Theorem A.1 disciplines the
characteristic scale: under nQ clean draws, the scale grows as (nQ)1/k. Relative to the
uncontaminated benchmark n1/k, the productivity multiplier is Q1/k. Setting σ ≡ 1/k pins
down the corpus-dependent component of frontier research productivity as Qσ .

The approximation (A.1) is exact in the max-stability limit n → ∞ with nQ → ∞; for
finite n a bias of order O(n−1x−2k) from the excluded derivative draws is absorbed into ΛF .

Non-corpus channels—direct observation, experimentation, tacit knowledge, interper-
sonal exchange—provide a residual discovery capacity independent of corpus quality. The
reduced form

D(Q) = D+(1−D)Qσ , D ∈ [0,1), (A.2)

preserves D(1) = 1 and delivers D(0) = D ≥ 0. The floor binds the absorbing property of
the derivative-trap region: evaluating (1) at Q = 0,

gF
∣∣
Q=0 = ΛF DAaF (ΩFH)αF Fξ−1 −δF .

Compactness of the admissible state space X and continuity of the production term sup-
ply a finite upper envelope Ψ̄F ≡ supX {ΛF AaF (ΩFH)αF Fξ−1} ∈ (0,∞), so gF |Q=0 < 0
throughout X whenever

D < D̄ ≡ δF

Ψ̄F
. (A.3)

Under (A.3) the floor cannot sustain frontier growth at full contamination; the derivative-
trap region remains nonempty.

Differentiation of (A.2) delivers D′(Q)= (1−D)σ Qσ−1 > 0 and D′′(Q)= (1−D)σ(σ −
1)Qσ−2—strictly convex for σ > 1, strictly concave for σ < 1. The comparative static
∂D/∂D = 1−Qσ ≥ 0 confirms the floor is most consequential at low quality levels.

The i.i.d. extreme-value approximation is standard: sampling without replacement from
a large corpus of size N with clean share Q is approximated by i.i.d. sampling from the
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mixture, exact as N → ∞ with n/N → 0. Order statistics converge to the i.i.d. Fréchet limit;
see de Haan and Ferreira [2006, Theorem 1.5.3]. □

A.2 Signal-detection microfoundation for s(E ), f (E ), and DE (Q)

Derivation of the signal-detection model. An evaluator observes a scalar signal

y = θ + ε,

where the latent type is θ ∈ {µF ,µR} (frontier or derivative) and ε ∼ N (0,1/E ). Epis-
temic capital E governs signal precision. Define the signal-to-noise index

∆(E )≡ |µF −µR|
√

E , (A.4)

which coincides with the sensitivity index in Green and Swets [1966]. Under equal priors
and symmetric loss, the likelihood-ratio test is equivalent to a threshold rule

y ≥ 1
2(µF +µR) ⇐⇒ classify as frontier.

Conditional on frontier type, y ∼ N (µF ,1/E ), so the true-positive (hit) rate is

s(E ) = Pr
(
y ≥ 1

2(µF +µR) | θ = µF
)
= ΦN

(
∆(E )

2

)
, (A.5)

where ΦN denotes the standard normal CDF. Conditional on derivative type, y∼N (µR,1/E ),
so the false-positive rate is

f (E ) = Pr
(
y ≥ 1

2(µF +µR) | θ = µR
)
= 1−ΦN

(
∆(E )

2

)
= 1− s(E ). (A.6)

Let c ≡ |µF −µR|/2 > 0. Then s(E ) = ΦN (c
√

E ) is strictly increasing for E > 0. More-
over, s is strictly concave on (0,∞):

s′′(E ) =−ϕN (c
√

E )
c(c2E +1)

4E 3/2 < 0,

where ϕN is the standard normal density. Diminishing returns to screening precision fol-
low.
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A shift in the base rate induced by a higher derivative share

ϕ ≡ R
F +R

reduces the positive predictive value,

PPV(ϕ,E ) =
(1−ϕ)s(E )

(1−ϕ)s(E )+ϕ f (E )
.

Since s(E )> f (E ) for E > 0, it follows that ∂PPV/∂ϕ < 0. This motivates a specification
in which the effective depreciation or fragility of epistemic capital, δE (ϕ), is increasing
in the derivative share: a more contaminated corpus worsens the evaluative environment
holding precision fixed.

Quality feedback arises when evaluators are (re)trained on the prevailing corpus. Let
Q ∈ (0,1] denote corpus quality. If a fraction 1−Q of items labelled “frontier” are in fact
derivative, then the effective frontier mean in the training labels is

µ̃F(Q)≡ QµF +(1−Q)µR.

The implied separation between training-label means is µ̃F(Q)−µR = Q(µF −µR), so the
effective sensitivity index becomes

∆̃(Q,E ) = Q∆(E ). (A.7)

Because (A.5) is monotone in the sensitivity index, detection performance decreases mono-
tonically in Q. The reduced form DE (Q) = QσE imposes this monotonicity and concavity
while remaining parsimonious. In the Gaussian SDT benchmark, performance measures
proportional to the sensitivity index correspond to σE = 1. The calibration selects σE to
match the implied annualised decline in detection accuracy over the relevant range of Q.

Finally, the reduced-form misclassification function used in the main text can be chosen
to match f (E ) on the calibration domain. For example, φ(E )= (1−E )m provides a smooth
approximation to (A.6), and the calibration selects m to minimise approximation error on
the relevant set. □
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A.3 Roy-model derivation

Derivation of equations (20)–(10). Ability z is Pareto: Pr(z ≥ x) = (z/x)ζ , x ≥ z > 0, ζ >

1. Frontier work pays wF(z) = pF zγF AaF ; derivative work pays wR(z) = pR zγR AaR with
γF > γR. The wage ratio wF/wR = (pFAaF/pRAaR)zγF−γR is strictly increasing in ability, so
single-crossing selects an interior threshold. Indifference wF(z̄) = wR(z̄) pins

z̄ =
( pRAaR

pFAaF

)1/(γF−γR)
. (A.8)

Higher-ability agents sort into frontier work; lower-ability agents into derivative produc-
tion.

The frontier participation rate is πF(z̄) = (z/z̄)ζ . Conditional average effective skill
among frontier workers integrates directly under the Pareto tail:

ZF(z̄)≡ E
[
zγF | z > z̄

]
=

ζ

ζ − γF
z̄γF ,

converging when ζ > γF (Assumption 2.4(ii)). Quality-adjusted frontier talent is

ΩF(z̄) = ZF(z̄)πF(z̄) =
ζ zζ

ζ − γF
z̄γF−ζ . (A.9)

The exponent γF − ζ < 0 disciplines the sign: ΩF is strictly decreasing in z̄, so the mass
effect dominates selection. A rightward shift in the Roy threshold—more agents choosing
derivative work—reduces the quality-adjusted frontier labour force.

The AI-augmentation comparative static at fixed prices:

d ln z̄
d lnA

∣∣∣∣
pF ,pR

=
aR −aF

γF − γR
.

When aR > aF , improvements in algorithmic capacity raise z̄, draining talent from the
frontier. Combining with (A.9):

d lnΩF

d lnA

∣∣∣∣
pF ,pR

= (γF −ζ )
aR −aF

γF − γR
< 0,

which isolates the talent-drain channel.
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In general equilibrium, pR/pF responds to A through the CES aggregator (G.2):

d ln z̄
d lnA

=
1

γF − γR

[
(aR −aF)+

d ln(pR/pF)

d lnA

]
.

The induced price response is derived in Appendix H.2. The sign of the total GE effect
remains negative under the maintained parameter restrictions (aR −aF dominates the price
feedback when θ > 1 and the frontier output share is bounded away from zero; verified at
the calibration of Table 3), but the magnitude differs from the PE expression. The BGP
analysis (Appendix H) uses the full GE derivative throughout. □

B Equilibrium Proofs

This appendix proves the shadow-price ordering results used in the main text (Proposi-
tion 3.4). The argument expresses the planner–competitive gaps in the relevant costate
variables as the unique bounded solution to an infinite-horizon Volterra integral equation
of the second kind. Positivity follows from a cooperative kernel structure and a strictly
positive forcing term induced by the data-quality externality.

B.1 Shadow-price ordering

The objective is to sign the planner–competitive gaps in the shadow values of frontier
knowledge and public epistemic capital. The classical Volterra existence result is stated
first for reference. That theorem is formulated on a finite horizon and does not address
the tail control required on an infinite horizon with transversality at infinity. The proof
therefore uses a weighted contraction condition for the infinite-horizon operator.

Theorem B.1 (Finite-horizon Volterra equation). Let T > t0. Let f : [t0,T ] → Rn be

bounded and measurable, and let K : {(t,s) : t0 ≤ s ≤ t ≤ T} → Rn×n be measurable and

bounded. Then the Volterra integral equation of the second kind

x(t) = f (t)+
∫ t

t0
K(t,s)x(s)ds, t ∈ [t0,T ],

admits a unique bounded measurable solution on [t0,T ]. If, in addition, f (t) ≥ 0 and

K(t,s)≥ 0 entrywise, then x(t)≥ 0 entrywise for all t ∈ [t0,T ].
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Remark B.2 (Scope). A standard proof uses Picard iteration on the triangular domain
t0 ≤ s ≤ t ≤ T . If supt0≤s≤t≤T ∥K(t,s)∥ ≤ M, then the m-fold Volterra operator satisfies
∥T m∥∞ ≤ [M(T − t0)]m/m!, so the Neumann series converges and uniqueness follows; see
Gripenberg et al. [1990, Chapter 9]. The wedge system below is posed on [t0,∞) and is
pinned down by transversality conditions at infinity. On an unbounded horizon, the finite-
horizon argument does not control the tail of the integral operator. The analysis therefore
imposes a discounted weighted summability condition and establishes a contraction di-
rectly in a weighted sup norm.

Assumption B.3 (Weighted Volterra summability). There exist weights wF ,wQ,wE > 0
and a constant κ ∈ (0,1) such that, along the planner allocation,

sup
t≥t0

max
i∈{F,Q,E }

1
wi

∑
j∈{F,Q,E }

∫
∞

t

∣∣Ki j(t,s)
∣∣w j ds ≤ κ, (B.1)

where K(t,s) is the kernel defined in (B.7).

Theorem B.4 (Weighted infinite-horizon Volterra contraction). Let Xb be the space of

bounded measurable maps ∆ : [t0,∞)→ R3. For w = (wF ,wQ,wE ) ∈ R3
++, define

∥∆∥w ≡ sup
t≥t0

max
i∈{F,Q,E }

|∆i(t)|
wi

.

For bounded measurable Φ : [t0,∞)→ R3, consider the Volterra equation

∆(t) = Φ(t)+
∫

∞

t
K(t,s)∆(s)ds. (B.2)

Under Assumption B.3, (B.2) admits a unique bounded solution ∆∗ ∈ Xb. Moreover, the

Picard iteration ∆(n+1) = Φ+T ∆(n) converges to ∆∗ in ∥ · ∥w from every bounded initial

guess, where

(T ∆)(t)≡
∫

∞

t
K(t,s)∆(s)ds.

If Φ ≥ 0 and Ki j(t,s)≥ 0 entrywise, then ∆∗ ≥ 0.

Proof. For any ∆ ∈ Xb and each i ∈ {F,Q,E },

|(T ∆)i(t)| ≤ ∑
j

∫
∞

t
|Ki j(t,s)| |∆ j(s)|ds ≤ ∥∆∥w ∑

j

∫
∞

t
|Ki j(t,s)|w j ds.
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Dividing by wi, taking maxi, and then supt≥t0 yields

∥T ∆∥w ≤

(
sup
t≥t0

max
i

1
wi

∑
j

∫
∞

t
|Ki j(t,s)|w j ds

)
∥∆∥w ≤ κ∥∆∥w.

Hence T is a contraction on the complete metric space (Xb,∥ · ∥w). Banach’s fixed-point
theorem implies existence and uniqueness of a bounded fixed point ∆∗ = Φ+T ∆∗ and
geometric convergence of Picard iterates.33

If Φ ≥ 0 and K ≥ 0 entrywise, then T is order-preserving, so Picard iterates initialised
at any nonnegative bounded element remain nonnegative; the limit ∆∗ is therefore nonneg-
ative. □

Lemma B.5 (Competitive frontier shadow value). Along the competitive equilibrium path,

the shadow value VF of frontier knowledge satisfies VF(t)> 0 for all t ≥ t0.

Proof. In current value, VF solves

V̇F = (ρ +δF)VF −u′(C)YF −ξ
GF

F
VF ≡ µF(t)VF −u′(C)YF , µF(t)≡ ρ +δF −ξ

GF

F
.

Backward variation of constants, together with the transversality condition for VF , gives

VF(t) =
∫

∞

t
exp
(
−
∫ s

t
µF(τ)dτ

)
u′(C(s))YF(s)ds. (B.3)

Since u′(C)> 0 and YF = ∂Y/∂F > 0 almost everywhere, the integrand in (B.3) is strictly
positive on a set of positive measure, so VF(t)> 0 for all t. □

Proposition B.6 (Shadow-price ordering in the frontier and epistemic channels). Define

the wedge vector

∆(t)≡
(
∆F(t),ΨQ(t),λ

pub
E (t)

)⊤
, ∆F(t)≡ λF(t)−VF(t),

where VF is the competitive shadow value of F and λF the planner costate. Under Assump-

tion B.3, the unique bounded solution of the wedge system satisfies

ΨQ(t)> 0, ∆F(t)> 0, t ≥ t0,

33The contraction estimate in (B.1) yields the explicit bound ∥∆(n) − ∆∗∥w ≤ κn∥∆(0) − ∆∗∥w for any
bounded initial guess ∆(0) ∈ Xb. On a finite horizon, Picard iteration is also standard, but convergence
follows from factorial decay of iterates, ∥T m∥∞ ≤ [M(T − t0)]m/m!, rather than from a contraction constant;
see Gripenberg et al. [1990, Chapter 9].
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and

λ
pub
E (t)> 0 whenever q > 0 on a set of positive measure.

This establishes parts (i)–(iii) of Proposition 3.4.

Proof. The planner’s current-value Hamiltonian is

H = u(C)+λF Ḟ +λRṘ+λAȦ+λHḢ +λ
pub
E Ėpub +λ

priv
E Ėpriv.

The data-quality index Q ≡ F/(F +R) is algebraic and enters the state dynamics through
D(Q), DE (Q), and δE (ϕ) with ϕ = 1−Q. Define the composite marginal value of quality

ΨQ ≡ ∂H

∂Q

∣∣∣
F,R fixed

= λF
D′(Q)

D(Q)
GF +λ

pub
E

∂ Ėpub

∂Q
+λ

priv
E

∂ Ėpriv

∂Q
.

The derivatives of Q satisfy

∂Q
∂F

=
R

(F +R)2 > 0,
∂Q
∂R

=− F
(F +R)2 < 0.

Competitive agents take (Q,Epub) as exogenous aggregates, so VQ = V pub
E = 0. Sub-

tracting the competitive shadow equation for VF from the planner costate equation for λF

yields a linear equation in the frontier wedge:

−∆̇F +µF(t)∆F =
R

(F +R)2 ΨQ, (B.4)

where µF is defined in Lemma B.5. The quantity ΨQ is linear in (λF ,λ
pub
E ,λ

priv
E ) along

a fixed state-control trajectory, and each primitive costate ODE is linear in the costates
along that trajectory. Differentiating ΨQ, substituting the planner costate equations, and
then substituting λF =VF +∆F yields a linear system in (∆F ,ΨQ,λ

pub
E ) with forcing terms

driven by VF and the decoupled costate λ
priv
E . The transversality conditions for the primitive

costates imply e−ρt∆F(t)→ 0, e−ρtΨQ(t)→ 0, and e−ρtλ
pub
E (t)→ 0.

Backward variation of constants applied to the linear wedge system yields the Volterra
representation

∆(t) = Φ(t)+
∫

∞

t
K(t,s)∆(s)ds, (B.5)
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with forcing Φ(t) = (0,ΦQ(t),0)⊤,

ΦQ(t) =
∫

∞

t
e−ρ(s−t)VF(s)D′(Q(s))ΛFA(s)aF (ΩF(s)H(s))αF F(s)ξ ds, (B.6)

and kernel

K(t,s) = e−
∫ s

t µ(τ)dτ

 0 KFQ(s) KFE (s)

KQF(s) 0 0
0 KE Q(s) 0

 , (B.7)

where µ(τ) = diag(µF ,µQ,µE ) and each diagonal entry satisfies µ j(τ)≥ ρ along the plan-
ner allocation. The nonzero kernel entries are

KFQ(s) =
R

(F +R)2 > 0, KQF(s) = D′(Q)ΛFAaF (ΩFH)αF Fξ > 0,

KE Q(s) = qs′(E )κ
R

F +R
≥ 0, KFE (s) =

(
∂ Ėpub

∂Q

)(
∂Q
∂F

)
q ≥ 0.

For the sign of KFE , note that along the planner allocation ∂Q/∂F > 0 and

∂ Ėpub

∂Q
= Λ

pub
E ℓηE

E σE QσE −1 +δE ,1 Epub > 0,

so KFE ≥ 0 with equality only if q = 0. By Lemma B.5 and D′(Q) > 0, the forcing (B.6)
satisfies ΦQ(t)> 0 for all t ≥ t0.

Assumption B.3 and Theorem B.4 yield a unique bounded solution to (B.5) with ∆ ≥ 0.
Since ΦQ > 0, one has ΨQ(t) ≥ ΦQ(t) > 0. Substituting ΨQ > 0 into the linear equation
(B.4) and applying backward variation of constants gives

∆F(t) =
∫

∞

t
exp
(
−
∫ s

t
µF(τ)dτ

) R(s)
(F(s)+R(s))2 ΨQ(s)ds > 0.

If q > 0 on a set of positive measure, then KE Q is strictly positive on a set of positive
measure, so

λ
pub
E (t)≥

∫
∞

t
KE Q(t,s)ΦQ(s)ds > 0.

□
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B.2 Derivative-knowledge and algorithmic-capital wedges

Write
∆R ≡ λR −VR, ∆A ≡ λA −VA.

Lemma B.7 (Derivative-knowledge wedge). If qSP > 0 and λA ≥ 0 along the planner al-

location, then ∆R(t)< 0 for all t ≥ t0. This establishes part (v) of Proposition 3.4.

Proof. Subtract the competitive Euler equation for VR from the planner costate equation for
λR. The resulting linear equation is

∆̇R = aR(t)∆R +bR(t), aR(t)≡ ρ +δR −ξR
Ṙ
R
,

with forcing

bR(t) =−ΨQ(t)
F(t)

(F(t)+R(t))2 .

By Proposition B.6, ΨQ(t) > 0 for all t ≥ t0, and F,R > 0 along the planner alloca-
tion, so bR(t) < 0. Backward variation of constants, together with the terminal condition
e−

∫ t
0 aR(τ)dτ∆R(t)→ 0, yields

∆R(t) =−
∫

∞

t
exp
(
−
∫ s

t
aR(τ)dτ

)
|bR(s)|ds < 0.

□

Proposition B.8 (Algorithmic-capital wedge). The sign of ∆A(t) = λA(t)−VA(t) is gener-

ically ambiguous. In particular,

∆A(t) =
∫

∞

t
e−

∫ s
t µA(τ)dτ 1

A(s)

[
ωggross

A (s)VA(s)+aFggross
F (s)∆F(s)+aRggross

R (s)∆R(s)
]

ds,

where the first two terms in brackets are nonnegative, while the third is strictly negative

under Lemma B.7. The sign of ∆A depends on which force dominates. This completes

part (iv) of Proposition 3.4.

Proof. Subtract the competitive shadow equation for VA from the planner costate equation
for λA and integrate backward using the transversality condition for the algorithmic-capital
shadow value. The stated representation follows. The sign decomposition follows from
VA ≥ 0, Proposition B.6 (∆F > 0), and Lemma B.7 (∆R < 0). □
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B.3 Economic interpretation and numerical verification

Remark B.9 (Weights and discounting). Assumption B.3 imposes a small-gain restric-
tion on the discounted cross-channel feedback embedded in the kernel (B.7). The weights
(wF ,wQ,wE ) normalise the three wedge components (∆F ,ΨQ,λ

pub
E ) to comparable mag-

nitudes and units, so the contraction property depends on economically meaningful ampli-
fication rather than arbitrary scaling. Discounting enters through the diagonal propagation
factor e−

∫ s
t µ(τ)dτ , with µ j ≥ ρ along the planner allocation, which controls the infinite-

horizon tail. The weights discipline heterogeneity across channels; the discounting disci-
plines horizon length.

Remark B.10 (Discrete verification of the weighted bound). Let t0 = t1 < · · · < tN be
a grid with steps ∆tℓ = tℓ+1 − tℓ. For each component i ∈ {F,Q,E }, define the discrete
approximation of the weighted row-sum bound at time tk by

κ̂i(tk)≡
1
wi

∑
j∈{F,Q,E }

N−1

∑
ℓ=k

∣∣Ki j(tk, tℓ)
∣∣w j ∆tℓ, K(tk, tℓ) given by (B.7).

The implied contraction coefficient is

κ̂ ≡ max
k∈{1,...,N}

max
i∈{F,Q,E }

κ̂i(tk).

Assumption B.3 holds numerically if κ̂ < 1 and the grid is sufficiently fine. In the baseline
calibration, the computed value satisfies κ̂ ≈ 0.51. The assumption and λA ≥ 0 are verified
along the computed planner allocation at every parameterisation in Table 7.

Remark B.11 (Choice of weights). A numerically stable choice is to set (wF ,wQ,wE ) to
the componentwise sup norms of the corresponding wedge objects along the computed
planner path (or to economically meaningful normalisations that render each component
O(1)). The reported κ̂ should be insensitive to moderate rescalings of w when the contrac-
tion margin is nontrivial. Replication code for the discrete verification is available in the
supplementary archive.

B.4 Policy instruments

The first-order conditions for the planner’s labour allocation and governance instruments
are stated in Section 6; this appendix provides the superadditivity argument.
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Talent allocation. At z̄CE , the planner’s left-hand side strictly exceeds the CE counter-
part: λF > VF (Part (i)), ΨQ > 0 (Part (ii)), and λ

pub
E > 0 when q > 0 (Part (iii)). The

right-hand side is weakly smaller since λR ≤VR (Lemma B.7). The planner selects a lower
threshold z̄SP < z̄CE , inducing a larger quality-adjusted frontier workforce ΩSP

F > ΩCE
F .

Governance and epistemic investment. The planner’s FOCs for q and ℓE load ΨQ and
λ

pub
E —both identically zero in competitive equilibrium. The market sets qCE = 0 and ℓCE

E =

0; the planner deploys strictly positive levels whenever marginal governance and epistemic
costs are finite. The wedge is entirely attributable to the unpriced externalities on Q and
Epub.

Superadditivity. Define

B(ℓE ,q)≡ λF D
(
Qeff(ℓE ,q)

)
ΛFAaF (ΩFH)αF Fξ−1.

The cross-partial is

∂ 2B
∂ℓE ∂q

= λF ΛFAaF (ΩFH)αF Fξ−1
[
D′ ∂ 2Qeff

∂ℓE ∂q
+D′′ ∂Qeff

∂ℓE

∂Qeff

∂q

]
.

Both terms in brackets are nonneg: D′ > 0; ∂Qeff/∂q > 0 and ∂Qeff/∂ℓE > 0; the cross-
partial ∂ 2Qeff/(∂ℓE ∂q)> 0 because raising ℓE accumulates E and thereby increases screen-
ing effectiveness. For σ > 1, D′′ > 0 renders the second term strictly positive. The flow
payoff B is therefore supermodular in (ℓE ,q) and has increasing differences—the condi-
tions of Topkis’s theorem. Applied to B, the theorem disciplines the joint correction: the
welfare gain from simultaneously deploying governance and epistemic investment exceeds
the sum of their separate contributions.

C Derivative Trap Proofs

The forward-invariance arguments below rest on Nagumo’s theorem, which characterises
when a closed set is positively invariant under a flow—here applied to the sublevel sets
defined by the quality and epistemic thresholds. The bifurcation analysis uses the fold
(saddle-node) theorem, which identifies the critical parameter value at which two equilibria
coalesce and vanish.
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Theorem C.1 (Nagumo, nonautonomous). Let C (t) ⊂ Rn be a family of closed sets de-

pending continuously on t in the Hausdorff metric, and let f be continuous and locally Lip-

schitz in the state. The set C̃ ≡{(x,τ) : x ∈C (τ)} is forward invariant under (ẋ, τ̇) = (f,1)
if the augmented velocity lies in the contingent cone at every boundary point. When

C (t) = {x : V (x, t) ≤ 0} with V ∈ C1 and (∇xV,∂tV ) ̸= 0 on {V = 0}, the condition re-

duces to V̇ ≤ 0 on {V = 0}.34

Theorem C.2 (Fold (saddle-node) bifurcation). Consider ẋ = f (x,µ) with f (x0,µ0) = 0,

fx(x0,µ0) = 0, fxx(x0,µ0) ̸= 0, and fµ(x0,µ0) ̸= 0. A smooth curve of equilibria passes

through (x0,µ0) with a quadratic turning point: two equilibria exist on one side of µ0 and

none on the other.35

C.1 The quality threshold Q†

Proposition C.3 (Properties of Q†). Under Assumptions 2.1–2.5 and D < D̄, the threshold

Q† defined in (28) satisfies Q† ∈ (0,1) throughout any trajectory with G > δF/(1−D), is

C1 in the state, and has comparative statics ∂Q†/∂A < 0, ∂Q†/∂H < 0, ∂Q†/∂F > 0.

Derivation of Definition 4.1 and Proposition 4.2. Divide (1) by F > 0:

gF = ΛF D(Q)AaF (ΩFH)αF Fξ−1 −δF .

Denote the gross production term G ≡ ΛFAaF (ΩFH)αF Fξ−1; then gF ≥ 0 requires D(Q)≥
δF/G. Under the baseline D = 0, substituting D(Q) = Qσ and inverting: Q ≥ Q† ≡
(δF/G)1/σ . The threshold Q† pins down the lowest data quality consistent with non-
negative frontier growth at given factor endowments.

The chain rule delivers the comparative statics:

∂Q†

∂x
=− Q†

σG
∂G
∂x

.

Hence ∂Q†/∂A< 0 (A augments frontier production), ∂Q†/∂H < 0 (H augments it through
labour), and ∂Q†/∂F = (1−ξ )Q†/(σF)> 0 since ξ < 1 (frontier production exhibits di-
minishing returns in own stock). Any primitive that reduces ΩF—in particular, an increase
in z̄ through the talent-drain channel—raises Q† by depressing G.

34Nagumo [1942]; nonautonomous extension via time-augmentation: Blanchard et al. [2012, Theo-
rem 4.7.1]. All barrier functions in this paper have ∂tV = 0, so the autonomous specialisation applies.

35Kuznetsov [2004, Theorem 3.4.1].
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Along an equilibrium path with aR > aF , the induced increase in the derivative share ϕ

depresses Q faster than the direct channel lowers Q† whenever the condition (30) is met.
Improvements in algorithmic capacity therefore move the system toward the threshold even
as they relax it pointwise—a paradox resolved by the general-equilibrium talent realloca-
tion. □

C.2 Forward invariance

Proof of Theorem 4.5. Define the barrier function

V (x)≡ Q†(x)−Q(x), x = (F,R,A,H,Epub,Epriv),

where Q(x) = F/(F +R) and Q†(x) is the threshold in Proposition C.3. The trap region
T ≡ {x : V (x)≥ 0}, i.e. Q ≤ Q†, is a closed (time-independent) subset of the state space.
By the autonomous version of Nagumo’s theorem (Theorem C.1 with ∂tV ≡ 0, superlevel-
set form), T is forward invariant provided V̇ ≡ ∇xV · f(x)≥ 0 on ∂T = {V = 0}, where f
is the vector field governing the state dynamics.

Regularity. Assumption 2.5 supplies F(t) ≥ F > 0, which keeps Fξ−1 bounded above
and ensures Q† is well-defined and C1 in the state variables. The composition Q 7→ D(Q)

is smooth on (0,1], so the vector field f is locally Lipschitz on compact subsets of X

(Lemma G.4). These regularity conditions place the problem within the scope of Theo-
rem C.1.

Barrier drift on ∂T . On the boundary, Q = Q† and

V̇ =
∂Q†

∂A
Ȧ+

∂Q†

∂ΩF
Ω̇F +

∂Q†

∂F
Ḟ +

∂Q†

∂H
Ḣ︸ ︷︷ ︸

≡ Q̇†

− Q̇. (C.1)

The signs are disciplined by the comparative statics of Q†: the direct-augmentation channel
(∂Q†/∂A < 0, Ȧ > 0) lowers Q†; the human-capital channel (∂Q†/∂H < 0, Ḣ > 0 under
interior ℓH) lowers it; the talent-reallocation channel (∂Q†/∂ΩF < 0, Ω̇F < 0 when the
Roy margin shifts against the frontier) raises it. By definition of Q†, gF ≤ 0 on ∂T ,
while derivative activity persists with gR > 0 (Lemma G.5), hence gR −gF > 0. (Here and
throughout this proof, gJ ≡ J̇/J denotes the net growth rate including all channels; under
the competitive equilibrium qCE = 0, this coincides with gprod

J defined in Appendix H.1.)
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The quality law of motion (17) then delivers

−Q̇ = Q(1−Q)(gR −gF) = Qϕ (gR −gF)> 0 on ∂T ,

which provides the dominant positive contribution to V̇ .

Sufficient conditions with explicit bounds. Three conditions jointly ensure V̇ ≥ 0 on ∂T .
Each is derived by bounding the relevant term in (C.1) using infima and suprema on ∂T .

Condition C.4 (C1: compositional drift dominates human-capital deepening). For all x ∈
∂T ,

σ ϕ(x)(gR(x)−gF(x)) > µ(x)αF gH(x), (C.2)

where µ ≡ δF/(δF −DG) ≥ 1.36 A sufficient scalar specialisation (easier to verify) is

σ ϕ inf∂T ∩KT (gR − gF) > αFgmax
H with ϕ ≡ infϕ > 0, gmax

H ≡ λHℓ
βH
H − δH , and KT any

compact forward-invariant subset containing the equilibrium trajectory.37

Derivation. Log-differentiating Q† = Ψ(G)1/σ gives Q̇†/Q† = −(µ/σ) Ġ/G (see (C.4)
below). The H-channel contributes −(µ/σ)Q†αFgH to Q̇†, which is bounded below by
−(µ/σ)αFgmax

H after dividing through by Q† > 0. The Q̇ term contributes −Q̇=Q†ϕ(gR−
gF). Factoring Q† from both sides, the bracket ϕ(gR −gF)− (µ/σ)αFgH ≥ 0 holds under
(C.2).

Condition C.5 (C2: talent-drain offsets direct augmentation). αF · (ζ − γF)/(γF − γR) ·
(aR −aF)> aF .

Derivation. The A-channel contributes (∂Q†/∂A)Ȧ=−(aF/σ)(Q†/A)gAA=−(aF/σ)Q†gA

(lowering Q†, which is harmful for the bound). The ΩF -channel depends on gz̄, which from
the Roy cutoff (20) and CES price ratio (G.2) satisfies

gz̄ =
(aR −aF)gA +gr

γF − γR
, gr =

θ−1
θ

(φHgH −φAgA)+
1
θ
(gF −gR). (C.3)

On ∂T under the CE (gF = 0, gR > 0), the term −gR/θ in gr reflects the general-equilibrium
price adjustment: rapid derivative growth depresses pR/pF , partially offsetting the productivity-

36The interior-threshold condition Q† ∈ (0,1) requires DG < δF , so µ is finite on ∂T . At the baseline
calibration D = 0 and µ = 1.

37An earlier version stated σ2 in place of σ . The σ2 bound is strictly stronger (hence conservative): the
Q† factor cancels from both the H-channel of Q̇† and the drift term −Q̇, so only σ (not σ2) appears in the
sharp bound.
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asymmetry driver (aR−aF)gA. Define c≡αF(γF −ζ )/(γF −γR)< 0. The net A+talent+price
contribution to Ġ/G is

aFgA +αFgΩF = [aF + c(aR −aF)]︸ ︷︷ ︸
< 0 under C2

gA + cgr.

C2 ensures the first bracket is negative (the talent-drain from the productivity asymmetry
exceeds direct augmentation). The residual c ·gr captures the GE price adjustment.38

Condition C.6 (C3: epistemic erosion dominates replenishment on ∂T ). δE (ϕ)>ηE ℓηE −1
E (Q†)σE .

Under laissez-faire, ℓCE
E = 0 and this holds trivially.

Log-differentiating Q† = Ψ(G)1/σ with Ψ(G) = (δF −DG)/((1−D)G) gives

Q̇†

Q† =−µ

σ
· Ġ

G
, µ ≡ δF

δF −DG
≥ 1, (C.4)

where Ġ/G = aFgA +αFgH +αFgΩF +(ξ −1)gF . On ∂T under the CE, gF = 0.
Under C1–C3, each negative contribution to V̇ is bounded above in absolute value by

the corresponding positive contribution. Factoring Q† > 0 from all channels and combining
with −Q̇ = Q†ϕ(gR −gF):

V̇ ≥ Q†[
ϕ(gR −gF)− (µ/σ)αFgH − (µ/σ)(aFgA +αFgΩF )

]
≥ 0,

where the final inequality uses C1 (compositional drift dominates human-capital deepen-
ing) and C2 (the A+talent channel is beneficial, so the last group is nonpositive). Nagumo’s
condition is satisfied and T is forward invariant. □

Remark C.7. When C2 fails pointwise—i.e. the GE price correction (equation (C.3))
makes the combined A+talent+price channel positive at some parameter values (cf. Ta-
ble 9)—forward invariance is verified using the full boundary drift V̇ rather than the point-
wise inequalities. The numerical exercises implement this check directly.

Table 9 reports the integral margins across calibration variants.

38C2 as stated bounds only the A-channel at fixed prices. The full condition including the GE price cor-
rection is aF + c[(aR − aF)− (θ − 1)φA/θ ] < 0, which is slightly stronger. At calibration this holds with
a comfortable margin. When C2 fails pointwise, forward invariance is verified numerically using the full
boundary drift (Remark C.7).
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Table 9: Talent-drain dominance: parameter verification

Parameter Value αF
ζ−γF
γF−γR

aF Margin M

Baseline — 0.65 1/3 0.30 +0.087
aF = 0.20 0.65 1/3 0.20 +0.017
aF = 0.40 0.65 1/3 0.40 −0.183∗

ζ = 2.5 0.65 1/5 0.30 −0.170∗

ζ = 4.0 0.65 1/2 0.30 +0.025
Note: M > 0: pointwise condition holds. ∗M < 0: integral condition verified numerically.

When both pointwise and integral conditions fail (not observed at the calibration but
possible at, e.g., aF = 0.5 or ζ < 2.3), T is no longer forward invariant. The economy then
converges to a low-growth steady state with Q stabilised below Q† rather than collapsing
to zero. The governance trap still binds in such configurations.

C.3 Fold bifurcation and non-substitutability

Proof of Proposition 4.7. Consider the (ϕ,E ) subsystem with governance intensity q treated
as a parameter. The ϕ̇ = 0 locus is defined by gR(ϕ,A) = gF(ϕ,Qeff(ϕ,q,E ),A). The
derivative share ϕ enters gR with a positive coefficient (more derivative activity raises
derivative growth, given AI augmentation) and gF with a negative coefficient (through
Qeff), so the nullcline slopes downward in (ϕ,E ) space. At low q, screening is ineffec-
tive and no interior intersection with the Ė = 0 locus exists; at high q, two intersections
appear. Theorem C.2 (fold bifurcation) identifies the critical parameter value qc at the tan-
gency. Genericity of the fold follows from the transversality condition ∂ 2ϕ̇/(∂ϕ ∂q) ̸= 0,
which holds because ∂Qeff/∂q > 0 ensures a nondegenerate unfolding. □

Proof of Proposition 4.8. Since aR > aF , raising A augments gR more than gF at any (ϕ,q),
shifting the tangency condition. By the implicit function theorem,

∂qc

∂A
=−ΦA

Φq
.

The terms ΦA and Φq have opposite signs. Therefore, ∂qc/∂A > 0, so qc increases in A.
Governance must intensify to keep pace with algorithmic improvement. □

Proof of Theorem 4.9. Fix q < qc and consider the modified vector field f̃(x;τF ,τz,χ). The
claim is V̇ ≥ 0 on ∂T under any admissible (τF ,τz,χ), so forward invariance is preserved.
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Step 1: compositional drift remains negative. On ∂T , Q = Q† and gprod
F ≤ 0. A fron-

tier subsidy replaces GF by (1 + τF)GF , giving modified frontier growth g̃prod
F = (1 +

τF)ΛFD(Q†)AaF (ΩFH)αF Fξ−1 − δF . At Q = Q† this equals τF(δF −DG)/(1−D) after
substituting D(Q†)G = δF , so g̃prod

F = τF δF DG−1 · [G−δF/D]/(1−D). When DG < δF

(the relevant regime), g̃prod
F can be made positive for sufficiently large τF . However, the sub-

sidy simultaneously raises A through increased output: Ȧ = µARνAω − δAA is unchanged
directly, but the induced growth in A feeds back via AaR with aR > aF .

Step 2: derivative response dominates. Any increase in A augments GR by factor AaR−aF

relative to GF . The modified derivative growth satisfies g̃prod
R − g̃prod

F ≥ (aR − aF)gA +

(terms bounded below by C1–C3) > 0 on ∂T . A talent subsidy τz shifts z̄ downward,
raising ΩF and hence G̃F , but the same asymmetry applies: πR = 1−πF falls, but AaR−aF

amplifies the derivative sector more. Copyright χ ∈ [0,1) reduces Ȧ by factor (1−χ)ν but
does not reverse gprod

R > 0 (Lemma G.5), since RξR−1 remains positive and A > 0.

Step 3: governance term is too weak. The governance reclassification contributes q · s(E ) ·
κ ·(1−Q) to Q̇. At q< qc, this is bounded above by qc ·s(E ) ·κ ·(1−Q†)<Q†(1−Q†)gprod

R

(the definition of qc). Hence the positive governance contribution is strictly less than the
negative compositional drift, and Q̇ < 0 on ∂T .

Step 4: barrier conclusion. Since Q̇ < 0 on ∂T and Q̇† is controlled by C1–C3 (whose
verification is unchanged because non-governance instruments do not affect the H, A, or
ΩF channels of Q† adversely enough to violate the conditions), V̇ = Q̇† − Q̇ ≥ 0 on ∂T .
Nagumo’s theorem gives forward invariance of T under the modified vector field. □

C.4 Acceleration and diminishing returns

Acceleration by endogenous AI. Let QA(t) denote quality under endogenous A, and
Qbase(t) the counterfactual with A frozen at A(0). Endogenous algorithmic improvement
raises derivative output through AaR , so ṘA > Ṙbase whenever A(t)> A(0). The comparison
ϕA(t)>ϕbase(t) follows, and monotonicity of (17) in ϕ gives QA(t)<Qbase(t): endogenous
AI accelerates the approach to the derivative trap.

Diminishing returns. Under αF + ξ = 1− ε with ε > 0, ∂Q†
ε/∂ε = Q†

ε lnF/σ > 0 for
F > 1. Diminishing returns in frontier production raise Q†, tightening the trap by narrowing
the feasibility margin.
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D Governance Trap Proofs

D.1 Absorbing property

Lemma D.1 (Control-invariance of T on G ). For any admissible policy (q, ℓE ) with q ∈
[0,1], if x ∈ G ∩∂T (i.e. Etot ≤ E † and Q = Q†), then Q̇ ≤ 0. Hence trajectories in G ∩T

cannot exit T under any admissible control.

Proof. From (17) at Q = Q† (where gprod
F = 0):

Q̇
∣∣
Q=Q† = (1−Q†)

[
−Q† gprod

R +q · s(Etot) ·κ
]
.

By Definition 5.1, s(E †) = Q†gprod
R /κ . Since s is increasing and Etot ≤ E † on G :

q · s(Etot) ·κ ≤ 1 · s(E †) ·κ = Q† gprod
R .

Hence the bracket is ≤ 0, giving Q̇ ≤ 0, with equality only when q = 1 and Etot = E †. For
Q < Q†: gprod

F < 0, making the drift term more negative, so Q̇ < 0 a fortiori. □

Remark D.2 (Economic content). Lemma D.1 formalises the definition of E †: inside the
governance trap, epistemic capacity is by definition insufficient for screening to offset com-
positional drift. No policy can push Q above Q† because s(Etot) is too low.

Proof of Theorem 5.4. Reduction to ∂G ∩T . By Lemma D.1, T is control-invariant
within G : for any admissible (q, ℓE ), trajectories starting in G ∩T (Region III) remain in
T . They can only potentially exit G through ∂G ∩T (since they cannot exit T ), so the
Nagumo condition need only be verified on ∂G ∩T .39

On ∂G ∩T : Etot = E † and Q ≤ Q†. Grant the planner maximum feasible intervention:
ℓE = ℓmax

E and q = 1.

Step 1: the requirement E † is nondecreasing on ∂G ∩T . By the chain rule,

Ė † =
∂E †

∂A
Ȧ+

∂E †

∂ϕ
ϕ̇.

39The complementary part of ∂G —the Region II locus where Q > Q† and Etot = E †—is reached before
the derivative trap closes (temporal precedence, Proposition 5.6). Absorption on this locus is not needed for
the two-trap hierarchy (Theorem 5.8); see Remark D.3 below.
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Both contributions are nonnegative on G ∩T : Ȧ > 0 and ∂E †/∂A > 0 (Lemma 5.2(i)),
reflecting that more powerful AI demands more epistemic capacity. By Lemma D.1, Q̇ ≤ 0
under any admissible policy on G ∩T , hence ϕ̇ = −Q̇ ≥ 0; combined with ∂E †/∂ϕ > 0
(Lemma 5.2(ii)), the ϕ-channel is nonnegative. Hence Ė † ≥ 0 on ∂G ∩T .

Step 2: upper bound on epistemic replenishment. On ∂G ∩T , Q ≤ Q† and QσE is in-
creasing in Q (since σE > 0), so QσE ≤ (Q†)σE . Even under the strongest feasible response,
the net epistemic drift satisfies

Ėpub
∣∣
∂G∩T

≤ λ
pub
E (ℓmax

E )ηE (Q†)σE −δE ,0 Epub,

dropping the nonpositive term −δE ,1ϕ Epub and used δE (ϕ)≥ δE ,0. This is the critical step
where restriction to T is used: Q ≤ Q† < 1 ensures (Q†)σE is a valid upper bound.40

Step 3: replenishment-to-erosion ratio. On ∂G ∩T , Epub +Epriv = E †, so

V̇G = Ė † − Ėtot ≥ 0−
[
λ (Q†)σE −δ E †]= δ E † −λ (Q†)σE ,

using Ė † ≥ 0 from Step 1, where λ ≡ λ
pub
E (ℓmax

E )ηE +λ
priv
E (ℓ

priv,max
E )ηE and δ ≡min{δE ,0,δ

priv
E ,0 }.

Define the replenishment-to-erosion ratio

R(σE ) ≡ λ (Q†)σE

δ E † . (D.1)

Then V̇G ≥ 0 on ∂G ∩T whenever R ≤ 1.
To obtain a uniform (state-independent) threshold σ̄E , the worst case is bounded: min-

imise E † and maximise Q† over ∂G ∩T . Define

E †
min ≡ inf

∂G∩T
E † > 0, Q†

max ≡ sup
∂G∩T

Q† ∈ (0,1).

Positivity of E †
min follows from Q†gprod

R /κ > 0 on ∂G ∩T (Lemma G.5) and s−1 increasing
with s−1(0) = 0. The bound Q†

max < 1 holds because the interior-threshold condition Q† ∈
(0,1) applies uniformly on ∂G ∩T ; along trap trajectories, G → ∞ (via the R–A feedback)
drives Q† → 0, so the supremum is attained near initial entry (Q†

max ≈ 0.65 at calibration).

40On ∂G \T (Region II), Q > Q† and Q ≤ 1 would be needed, giving the trivial bound QσE ≤ 1. The
replenishment-to-erosion ratio could then exceed unity, and absorption may fail—economically correct, since
high data quality aids retraining.
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Since Q†
max < 1, the map σE 7→ (Q†

max)
σE is strictly decreasing. The intermediate value

theorem delivers a unique threshold σ̄E ≥ 0 with R(σ̄E ) = 1 (at the worst-case point),
given in closed form by

σ̄E = max

{
0,

ln(δ E †
min)− lnλ

lnQ†
max

}
. (D.2)

The max{0, · · ·} handles the case where depreciation dominates replenishment even at
σE = 0; then the trap is absorbing for all σE > 0.

Under the normalisations in the main text (ℓmax
E = 1, λ

priv
E = 0, δ = δE ,0, and E †

min ≈ 1
at the boundary normalisation), (D.2) reduces to the displayed expression (33). At the
calibration, σ̄E ≈ 0.73.

Step 4: Nagumo conclusion. For σE > σ̄E , R < 1, so V̇G ≥ 0 on ∂G ∩T . The barrier
VG(x) = E †(x)−Etot(x) is C1 with no explicit time dependence; the autonomous Nagumo
condition (Theorem C.1) applies. Since T is control-invariant within G (Lemma D.1),
trajectories originating in G ∩T remain in T and can only potentially exit G through ∂G ∩
T . The Nagumo condition blocks this exit, so G ∩T is forward invariant (absorbing):
once the economy enters Region III, no admissible policy restores Etot > E †. □

Remark D.3 (Governance trap in Region II). On ∂G \T (Region II: Q > Q†, Etot = E †),
the absorbing property need not hold, and this is economically appropriate. In Region II,
data quality has not yet collapsed, so aggressive evaluator retraining (with high QσE ) could
in principle replenish E faster than it erodes. The governance trap is “soft” in Region II:
a social planner with sufficient resources could escape by investing heavily in epistemic
infrastructure while Q is still high. The trap becomes “hard” (absorbing) only after the
system crosses into Region III, where both Q ≤ Q† (limiting retraining effectiveness) and
control-invariance of T (Lemma D.1) jointly close the escape route. The two-trap hierar-
chy (Theorem 5.8) relies only on absorption in Region III.

E Computational Methods

The replication package provides code and parameter files for all numerical exercises re-
ported in the paper.
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E.1 Planner transition

The planner chooses controls u = (q, ℓF , ℓR, ℓE , ℓH) subject to ∑ℓ j = 1 and C =Y −Γ(q)>

0. Eliminating ℓR leaves four free controls, determined pointwise from the Hamiltonian
FOCs. The planner’s choice of ℓF pins down the Roy cutoff z̄SP = zℓ−1/ζ

F and hence the
quality-weighted talent input ΩF(z̄SP) that enters GF below (see Appendix A.3).

E.1.1 State–costate system

The necessary conditions comprise six state laws (equations (6)–(10) in the main text) and
six current-value costate equations. Define the gross production terms

GF ≡ ΛF D(Q)AaF (ΩFH)αF Fξ ,

GR ≡ ΛR AaR (ℓRH)αR RξR,

so that Ḟ = GF −δFF +qsκ R and Ṙ = GR −δRR−qsκ R. The costates satisfy:

λ̇F = (ρ +δF)λF −u′(C) pF −λF ξ GF/F −ΨQ R/(F +R)2, (E.1)

λ̇R = (ρ +δR)λR −u′(C) pR −λR ξR GR/R+ΨQ F/(F +R)2

−λA µAνRν−1Aω +(λR −λF)qsκ, (E.2)

λ̇A = (ρ +δA)λA −u′(C)∂Y/∂A−λF aF GF/A−λR aR GR/A

−λA ωµARνAω−1, (E.3)

λ̇H = (ρ +δH)λH −u′(C)∂Y/∂H −λF αF GF/H −λR αR GR/H

−λH λ̄H ℓ
βH
H , (E.4)

λ̇
pub
E = (ρ +δE (ϕ))λ

pub
E − (λF −λR)qs′(E )κ R, (E.5)

λ̇
priv
E = (ρ +δ

priv
E (ϕ))λ

priv
E −u′(C)κcert pR R, (E.6)

where λ̄H is the human-capital accumulation productivity parameter (not the costate; con-
text disambiguates), ∂Y/∂A and ∂Y/∂H are the CES marginal products from (3), and the
last equation uses the certification-premium channel: in symmetric equilibrium, aggregate
private epistemic capital raises the average certified price to p̃R = pR(1+κcertEpriv) (aggre-
gating the firm-level premia p̃R,i = pR(1+κcertei) from Proposition 3.2), so ∂ p̃RR/∂Epriv =

κcert pR R. When the model omits the certification channel, the last term reduces to zero and
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λ
priv
E decays at rate ρ +δ

priv
E .

Derivation note. Since Q = F/(F +R) is algebraic, all Q-dependence in the Hamiltonian
generates chain-rule terms in λ̇F and λ̇R via ∂Q/∂F =R/(F+R)2 and ∂Q/∂R=−F/(F+

R)2. These are collected in ΨQ, which absorbs all Q-channels: the productivity channel
λF [D′(Q)/D(Q)]GF , the epistemic replenishment channel through DE (Q) = QσE , and the
depreciation channel through δE (ϕ) with ϕ = 1−Q. No separate δE ,1 terms appear in λ̇F

or λ̇R; that channel is already inside ΨQ.
Throughout, GJ/x denotes the gross production elasticity: ξ GF/F = ∂GF/∂F (since

GF = ΛFDAaF (ΩFH)αF Fξ gives ∂GF/∂F = ξ GF/F). The distinction between gross
GF/F and net Ḟ/F matters: the depreciation −δF in Ḟ is absorbed into the (ρ + δF)

coefficient and must not appear again in the production term. The computational code uses
automatic differentiation of the full right-hand side to construct the Jacobian; the displayed
system is included for analytical transparency.

The full system is 12-dimensional.

E.1.2 Control computation

Controls are computed at each evaluation of the vector field. Governance satisfies the
interior condition

u′(C)Γ
′(q) = (λF −λR)s(E )κ R.

Strict convexity Γ′′ > 0 pins down at most one interior solution, computed by bisection
on [0,1] at tolerance 10−12; the corner q = 1 binds when the right-hand side exceeds
u′(C)Γ′(1).

Labour allocations satisfy equalisation of marginal Hamiltonian value. Since labour en-
ters the model only through the accumulation equations Ḟ , Ṙ, Ė , Ḣ and not through current
output Y (which depends on stocks F,R,A,H), the Hamiltonian FOC for ℓ j involves only
the costate channel λ j ∂ ẋ j/∂ℓ j, with no direct utility term u′(C)∂Y/∂ℓ j:

λF
∂ Ḟ
∂ℓF

= λR
∂ Ṙ
∂ℓR

= λ
pub
E

∂ Ėpub

∂ℓE
= λH

∂ Ḣ
∂ℓH

.

The implied 3×3 system in (ℓF , ℓE , ℓH) is solved by Newton’s method with analytic Jaco-
bian. Corner solutions arise when interior Newton iterates produce a negative allocation;
these are detected by checking ℓ j < ε with ε = 10−8. When a corner binds, the corre-
sponding control is set to zero and removed from the active set, reducing the system dimen-
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sion. Feasibility of the remaining allocations is maintained by projecting onto the simplex
{ℓ j ≥ 0 : ∑ℓ j = 1− ℓH} after each Newton step. The binding set is re-evaluated at each
time point; transitions between interior and corner regimes are smooth at the calibration
(no chattering is observed).

E.1.3 Boundary conditions and shooting

The problem is a two-point BVP: initial states x(0) are given; transversality conditions

lim
t→∞

e−ρt
λ j(t)x j(t) = 0 (E.7)

pin down λ 0. The infinite horizon is approximated by truncation at T̄ with terminal costates
anchored to the managed BGP (Appendix H). On the BGP, each costate satisfies λ̇ j =

(ρ − g∗j)λ j − u′(C∗)∂Y ∗/∂x j (plus cross terms that vanish at the balanced allocation), so
the stationary costate is

λ j(T̄ ) =
u′(C∗)(∂Y ∗/∂x j)

ρ −g∗j +η g∗C
, (E.8)

where g∗j is the BGP growth rate of stock j and η is the CRRA parameter (so u̇′/u′ =

−ηgC). The denominator is positive under the standard transversality restriction ρ >ηg∗C+

(1−η)g∗j , verified at the calibration.
The shooting residual r(λ 0)≡ λ (T̄ ;λ 0)−λ

term is driven to zero by Levenberg–Marquardt.
The Jacobian ∂r/∂λ 0 is computed by forward sensitivity analysis: the 12 × 6 matrix
S(t) = ∂ (x,λ )/∂λ 0 satisfies Ṡ = J(t)S with J the 12 × 12 Jacobian of the full system
(computed analytically). The sensitivity ODE is integrated jointly with the 12 state-costate
equations (84 coupled equations in total).

Stopping criteria: ∥r∥∞ < 10−6 (primary); relative change in λ 0 below 10−8 (sec-
ondary). Three initialisations are used: (i) a scale-normalised guess from (E.8) evaluated
at t = 0; (ii) a backward sweep from T̄ along the CE state path; (iii) random perturbations
around (ii). The reported solution is invariant across convergent starts.
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Table 10: Truncation-horizon sensitivity

T̄ TE TQ gLR
F CEV ∥r∥∞ |H (T̄ )−H (0)|

75 15.08 23.97 +0.81% 6.83% 3.1×10−5 1.2×10−4

100 15.10 24.01 +0.80% 6.81% 4.7×10−6 2.8×10−5

150 15.10 24.02 +0.80% 6.80% 8.3×10−7 4.9×10−7

200 15.10 24.02 +0.80% 6.80% 2.1×10−7 6.1×10−8

300 15.10 24.02 +0.80% 6.80% 5.4×10−8 8.7×10−9

E.2 Truncation-horizon robustness

F Algorithmic Capacity Robustness

The main text uses a stock formulation for algorithmic capacity ((6)). An alternative flow
formulation delivers the same qualitative predictions.

Stock formulation (baseline):

Ȧ = µARνAω −δAA.

Flow formulation (alternative):

Ȧ = µA(Ṙ+)νAω −δAA, Ṙ+ ≡ max{Ṙ,0}.

Table 11: Stock vs. flow formulation

Stock Flow Difference

TE (years) 14.3 15.1 +0.8
TQ (years) 22.7 24.0 +1.3
∆T (years) 8.4 8.9 +0.5
gLR

F (%/yr) −3.8 −3.4 +0.4
CEV (%) 7.4 6.8 −0.6

Under the flow formulation, (Ṙ+)ν collapses immediately when Ṙ ≤ 0, attenuating the
AI improvement channel and delaying trap crossings modestly. Forward invariance, the
absorbing property, temporal precedence, and the instrument ordering are unchanged.

Remark F.1 (Data deletion). Under the stock formulation, accumulated R contributes to AI
improvement even after governance curtails new derivative output. Permitting data deletion
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from training corpora introduces an effective stock Reff = R−
∫ t

0 d(s)ds, which weakens
the persistence of the AI-capacity channel. Under the flow formulation, governance that
reduces Ṙ+ immediately attenuates Ȧ, so the incremental value of deletion is smaller.

G Existence and Uniqueness of Competitive Equilibrium

The competitive equilibrium characterised in Section 3.1 exists, is unique, and generates
a well-defined trajectory on [0,∞). The global-extension step rests on Picard–Lindelöf,
which guarantees local existence and uniqueness for ODEs with locally Lipschitz right-
hand sides and characterises when solutions extend to all time—here applied to the reduced
five-dimensional dynamics after the static equilibrium map eliminates the control variables.

Theorem G.1 (Picard–Lindelöf and maximal extension). Let U ⊂Rn be open and f : U →
Rn locally Lipschitz.

(a) For every x0 ∈U there exists T0 > 0 and a unique C1 solution on [0,T0].

(b) The solution extends uniquely to a maximal interval [0,T ∗), T ∗ ∈ (0,∞].

(c) If T ∗ < ∞, the trajectory eventually leaves every compact subset of U; equivalently,

a trajectory remaining in a compact subset on every finite interval forces T ∗ = ∞.41

Maintain Assumptions 2.1–2.5 and 2.4 throughout. Fix the education share ℓH ∈ (0,1);
Remark G.9 extends the argument to endogenous ℓH .

G.1 The static equilibrium map

Define the admissible state space

X ≡ {(F,R,A,H,Epub,Epriv) ∈ R4
++×R2

+}.

Given x∈X , the static equilibrium is a triple (z̄,θE ,π) satisfying profit maximisation, Roy
sorting, optimal private epistemic investment, and labour-market clearing. The construction
is sequential and each step yields a unique, smooth outcome.

41Teschl [2012, Theorems 2.2, 2.13, Corollary 2.16].
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Step 1: Prices. The CES aggregator (3) with θ > 1 delivers competitive prices as marginal
products:

pF(x) = αY AφA
(
Y/(AφAF)

)1/θ
, pR(x) = (1−αY )HφH

(
Y/(HφH R)

)1/θ
. (G.1)

Both are C∞ on X and strictly positive, since θ > 1 ensures that each composite receives
a positive share of output. The ratio

r(x)≡ pR/pF =
1−αY

αY

HφH

AφA

(
AφAF/(HφH R)

)1/θ (G.2)

is C∞ and strictly positive on X .

Step 2: Roy threshold.

Lemma G.2 (Single-crossing). For each x ∈ X , the Roy sorting problem has a unique

equilibrium: either an interior cutoff z̄ > z or the corner πR = 0.

Proof. The wage ratio wF(z)/wR(z) = (pF/pR)AaF−aRzγF−γR is strictly increasing in z be-
cause γF > γR (Assumption 2.4(i)). The single-crossing property is inherited from the
monotone-likelihood-ratio structure of the Pareto distribution: higher-ability agents have a
comparative advantage in frontier work, and the advantage is strict. Hence there is at most
one cutoff. If wF(z) ≥ wR(z), all researchers prefer the frontier and πR = 0. Otherwise a
unique z̄ > z solves wF(z̄) = wR(z̄).

Existence of the interior cutoff when wF(z)<wR(z) follows from the intermediate value
theorem: as z → ∞, the wage ratio wF/wR → ∞, so the continuous function z 7→ wF(z)−
wR(z) changes sign exactly once. Uniqueness follows from strict monotonicity. □

The cutoff map is

z̄(x) = max
{

z, (r(x) ·AaR−aF )1/(γF−γR)
}
, (G.3)

which is continuous on X and C∞ on the open set {z̄ > z}.

Step 3: Talent allocation. Given z̄(x), the Pareto distribution pins down all labour-
market aggregates:

πF = (1− ℓH)(z/z̄)ζ , ΩF = (1− ℓH)
ζ zζ

ζ − γF
z̄γF−ζ , πR = (1− ℓH)

(
1− (z/z̄)ζ

)
.
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Since γF < ζ (Assumption 2.4(ii)), the exponent γF −ζ < 0 and all three maps are C∞ in z̄,
hence C∞ in x by composition.

Step 4: Private epistemic investment. Each derivative-sector firm i accumulates a pro-
prietary detection stock ei by diverting fraction θi of its labour force to detection. The
certified price for firm i is p̃R,i = pR(1+κcertei), so each firm internalises the return to its
own detection effort. The FOC equates marginal certification revenue (strictly decreasing
in θi by concavity of the detection technology) to marginal cost (strictly increasing in θi

by convexity of the labour reallocation). The two curves cross exactly once, delivering a
unique interior solution θ ∗

i ∈ (0,1). In symmetric equilibrium θi = θCE
E (x) for all i, and ag-

gregate private epistemic capital is Epriv = e ·πR(z̄) where e is the common per-firm stock.
The implicit function theorem—applicable because the Jacobian of the FOC with respect
to θE is nonzero at the root—gives C1 dependence on x.

Combining. Define Φ : X → (z,∞)× (0,1), Φ(x) = (z̄(x),θCE
E (x)).

Proposition G.3 (Static equilibrium). For each x ∈X , Φ(x) exists, is unique, and is C1 in

x.

Proof. Existence and uniqueness of z̄: Lemma G.2. Existence and uniqueness of θCE
E : the

strictly decreasing marginal revenue and strictly increasing marginal cost cross exactly once
on (0,1)—a standard fixed-point argument on a compact interval. Smoothness: z̄ is C∞ in
x on the interior (composition of C∞ functions); θCE

E is C1 in x by the implicit function
theorem applied to the FOC, whose partial derivative with respect to θE is strictly negative
(second-order sufficiency). The composition Φ = (z̄,θCE

E ) is therefore C1 on X . □

G.2 Reduced-form dynamics

Substituting Φ(x) into the laws of motion yields the reduced-form ODE

ẋ = f(x), (G.4)

where f : X → R6.

Lemma G.4 (Lipschitz regularity). For every compact K ⊂ X with infK min{F,R}> 0,

there exists L(K )< ∞ such that ∥f(x)− f(y)∥ ≤ L(K )∥x−y∥ for all x,y ∈ K .
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Proof. By Proposition G.3, z̄(·) and θCE
E (·) are C1 on X , hence Lipschitz on any compact

subset (by the mean value theorem on a convex compact set, or more generally by com-
pactness and continuity of the derivative). The remaining ingredients are: power functions
Fξ , RξR , Aa j , Aω , Rν—all C∞ on R++; the ratio Q = F/(F +R), which is C∞ away from
F = R = 0; the erosion function D(Q), which is C1 on (0,1] and Lipschitz on K since Q

is bounded away from zero there; affine depreciation rates; and the talent maps, C∞ in z̄.
Each component of f is a composition and product of C1 functions on X , hence is itself
C1. A C1 function on a compact set is Lipschitz, which completes the argument. □

Lemma G.5 (Positive derivative growth on ∂T ). Under Assumptions 2.1–2.5 with S ≡
aRν/[(1− ξR)(1−ω)] > 1, there exists gR > 0 such that gprod

R ≥ gR on ∂T along any

competitive-equilibrium or planner trajectory.

Proof. Write gprod
R = ΛRAaR(ℓRH)αRRξR−1 − δR. Along the R–A feedback loop, Ȧ/A ≈

µARνAω−1, so A ∼ Rν/(1−ω) on average. Substituting, AaRRξR−1 ∼ RaRν/(1−ω)+ξR−1 =

RS(1−ξR)+ξR−1 = R(S−1)(1−ξR). Since S> 1 and ξR < 1, the exponent (S−1)(1−ξR)> 0,
so the product AaRRξR−1 → ∞ as R → ∞. Combining with (ℓRH)αR bounded below (since
ℓR > 0 and H grows) and δR finite, gprod

R is bounded below by a positive constant on compact
invariant sets, hence on ∂T . □

G.3 Existence, uniqueness, and global extension

Theorem G.6 (Competitive equilibrium). Under Assumptions 2.1–2.5 and 2.4, for every

x0 ∈ X with strictly positive stocks:

(i) There exists a unique maximal C1 solution x : [0,T ∗)→ X , T ∗ ∈ (0,∞].

(ii) All stocks remain strictly positive and epistemic capital remains in [0,1] on [0,T ∗).

(iii) If the knowledge stocks remain bounded on every finite interval, then T ∗ = ∞.

(iv) The competitive equilibrium is the unique path along which all agents optimise and

markets clear at every instant.

Proof.

Part (i). The state space X = R4
++×R2

+ is not open (the boundary E j = 0 is included),
so Picard–Lindelöf (Theorem G.1) cannot be applied directly on X . Define the open su-
perset U ≡ R4

++× (−ε,∞)2 for some ε > 0. The vector field f extends continuously to U
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(the production and depreciation terms are smooth in R4
++ and polynomial in Epub,Epriv)

and is locally Lipschitz on compact subsets of U by the argument of Lemma G.4. Theo-
rem G.1(a)–(b) applied on U delivers a unique maximal solution x : [0,T ∗) → U , where
T ∗ ∈ (0,∞] is the supremum of the existence interval (Theorem G.1(b)). Part (ii) below
establishes that the solution remains in the smaller set X , so the distinction between U and
X is immaterial for the equilibrium trajectory.

Part (ii): positivity and boundedness. For each knowledge stock J ∈ {F,R,A}, the law
of motion has the form J̇ = GJ(x)JeJ − δJJ with GJ ≥ 0 and eJ ≤ 1. At J = 0 the depre-
ciation term vanishes and the production term is nonnegative, so J̇ ≥ 0. More precisely,
J̇ ≥−δJJ everywhere, giving the comparison bound J(t)≥ J(0)e−δJt > 0. Strict positivity
is preserved.

Human capital satisfies Ḣ/H = λHℓ
βH
H − δH , a constant coefficient ODE, so H(t) =

H(0)exp{(λHℓ
βH
H −δH)t}> 0.

Public epistemic capital: under ℓCE
E = 0, Ėpub = −δE (ϕ)Epub ≤ 0, so Epub is non-

increasing, stays in [0,1], and Epub(t) = Epub(0)exp{−
∫ t

0 δE (ϕ(s))ds} ≥ 0.
Private epistemic capital: by comparison with the autonomous equation ẋ = λ

priv
E −

δ
priv
E ,0 x, Epriv(t) ≤ max{Epriv(0), λ

priv
E /δ

priv
E ,0 } < 1 by Assumption 2.4(vi). Hence Epriv stays

in [0,1).

Part (iii): global extension. Suppose F , R, A remain bounded on every [0,T ] ⊂ [0,T ∗).
Part (ii) confines H to exponential growth and both epistemic capitals to [0,1]. The trajec-
tory therefore remains in a compact subset of X on each [0,T ]. The blow-up alternative
(Theorem G.1(c)) stipulates that if T ∗ < ∞, the solution must eventually leave every com-
pact subset of X ; boundedness precludes this, so T ∗ = ∞.

Part (iv): uniqueness of the equilibrium path. Proposition G.3 shows Φ(x) is unique at
each state, which pins down the vector field f uniquely. Part (i) then gives a unique trajec-
tory for any initial condition. Since the static equilibrium determines all prices, allocations,
and labour-market outcomes at each instant, the full equilibrium path is unique. □

Remark G.7 (Global existence at the calibration). Part (iii) is verified numerically: the
ODE solution extends to T = 300 years under all parameterisations in Table 7, with all
stocks bounded and residuals below 10−7. The calibration has aR + ξR > 1 (increasing
returns in AI-augmented derivative production), which prevents a purely analytical global-
existence proof based on sublinear comparison. A sufficient analytical condition is ω+ν ≤
1 and aR +ξR ≤ 1; the calibration relaxes the latter for the derivative sector.
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Remark G.8 (Gross substitutability and uniqueness). The assumption θ > 1 (gross sub-
stitutability between frontier and derivative composites) simplifies uniqueness but is not
required for existence. Under θ > 1, pR/pF is decreasing in Q: an increase in frontier
knowledge depresses its relative price and raises z̄, generating negative feedback that pre-
vents multiplicity of the static map. When θ < 1 the feedback reverses sign and multiple
static equilibria could in principle arise, though this does not occur at the calibration. The
negative feedback under gross substitutability is the economic primitive that disciplines
uniqueness.

Remark G.9 (Endogenous ℓH). When households optimise over ℓH , the equilibrium adds
an Euler equation for µH . The augmented vector field remains locally Lipschitz and the a
priori bounds carry over. Saddle-path uniqueness follows by the stable-manifold selection
argument.

H Balanced Growth Path

H.1 Definition and endogenous stationarity of Q

Write gJ ≡ J̇/J. Fix ℓH and set gH ≡ λHℓ
βH
H −δH .

Definition H.1 (Balanced growth path). A balanced growth path (BGP) is a trajectory
along which the growth rates (gF ,gR,gA) are constant, the education-driven rate gH is con-
stant, and all labour allocations (ℓF , ℓR, ℓE , ℓH) are time-invariant.

The definition does not assume stationarity of Q, z̄, or any intensive margin; these are
derived as necessary consequences.

Proposition H.2 (Endogenous stationarity of data quality). On any BGP with Q(0)∈ (0,1)
and constant growth rates and controls, Q is time-invariant.

Proof. The law of motion of Q ≡ F/(F + R), derived from the governance-augmented
production equations, gives

Q̇ = Q(1−Q)(gprod
F −gprod

R )+qs(E )κ (1−Q), (H.1)

where gprod
J ≡ GJ/J−δJ is the non-governance growth rate. Consider the laissez-faire case

q = 0. The functional form D(Q) = D+(1−D)Qσ enters the frontier growth rate through
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gprod
F = ΛFD(Q)AaF (ΩFH)αF Fξ−1 − δF . Under αF + ξ = 1 (Assumption 2.1), dividing

(1) by F and using ΩF = ΩF(z̄):

gF +δF = ΛFD(Q)AaF (ΩF(z̄)H)αF .

The right-hand side depends on the state through Q, A, z̄, and H. On a BGP, gF is constant
by definition. Since A grows at constant rate gA and H at gH , the product AaF HαF grows
at constant rate aFgA +αFgH . Constancy of gF + δF then requires the remaining factor
D(Q)ΩF(z̄)αF to grow at rate −(aFgA +αFgH).

Now examine z̄. From (A.8), z̄ ∝ (pRAaR/(pFAaF ))1/(γF−γR). The price ratio pR/pF

depends on F , R, A, H through (G.2). On a BGP, F and R grow at rates gF and gR respec-
tively. If gF ̸= gR and Q(0) ∈ (0,1), then Q(t) = F(t)/(F(t)+R(t)) drifts monotonically
over time: Q rises if gF > gR and falls if gF < gR. But D(Q) enters the production func-
tion with exponent σ ̸= 0, so a drifting Q induces a time-varying component in gF through
Ḋ/D = σ(1−D)Qσ−1Q̇/D(Q). Unless Q̇ = 0, gF cannot remain constant—a contradic-
tion. (One might conjecture that a compensating drift in ΩF(z̄) could offset D(Q); Propo-
sition H.3 below rules this out by showing that z̄—and hence ΩF—must itself be stationary
on any BGP.)

It remains to verify that Q̇ = 0 is consistent with the definition. Setting q = 0 and Q̇ = 0
in (H.1) requires either Q ∈ {0,1} (boundary) or gF = gR. Since Q(0) ∈ (0,1) and the
dynamics are continuous, the interior condition gF = gR must hold. Denote this common
rate g ≡ gF = gR.

Under policy (q > 0), set Q̇ = 0 in (H.1). If gF ̸= gR, the governance term qs(E )κ (1−
Q) must exactly offset Q(1−Q)(gF −gR) at every instant. Since q and E are constant on
a BGP and Q would otherwise drift (by the argument above), Q must be constant for the
offset to hold at a single Q value rather than tracking a moving target. Hence Q is stationary
under policy as well. □

Two further consequences follow. Under laissez-faire, Ėpub =−δE (ϕ)Epub with ℓE = 0
forces Epub ↓ 0 monotonically; any laissez-faire BGP is therefore asymptotic with E ∗

pub = 0.
Under the laissez-faire BGP, Q stationary and Q ∈ (0,1) require gF = gR ≡ g (Proposi-
tion H.2).
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H.2 Stationarity of the Roy threshold

Proposition H.3 (Endogenous stationarity of z̄). On a laissez-faire BGP with Q constant

and gF = gR = g, the sorting threshold z̄ is time-invariant if and only if[
aR −aF +

(1−θ)φA

θ

]
gA =

(1−θ)φH

θ
gH . (H.2)

When the condition fails, no BGP with constant ΩF exists.

Proof. From (G.3), z̄ ∝ (r ·AaR−aF )1/(γF−γR). The price ratio r = pR/pF evolves as

ṙ
r
=

(θ −1)
θ

[
φHgH −φAgA

]
+

gF −gR

θ

(differentiating the log of (G.2)). When gF = gR, the last term vanishes and the log-
derivative of z̄ is

˙̄z
z̄
=

1
γF − γR

[(θ −1)φH

θ
gH +

(
aR −aF − (θ −1)φA

θ

)
gA

]
.

Setting ˙̄z = 0 delivers (H.2). Since ΩF ∝ z̄γF−ζ and πF ∝ z̄−ζ , stationarity of z̄ is both
necessary and sufficient for stationarity of all talent-allocation margins. □

H.3 Growth-rate restrictions

Maintain Assumption 2.1 (αF +ξ = 1).

Lemma H.4 (AI accumulation). On any BGP with R,A > 0, gA = νgR/(1−ω).

Proof. From (6), gA + δA = µARνAω−1. Take logs and differentiate: constancy of gA re-
quires νgR +(ω −1)gA = 0. Solving pins down gA. □

Lemma H.5 (Frontier stationarity). On a laissez-faire BGP with Q ∈ (0,1) stationary and

ΩF constant,

g =
αF(1−ω)gH

αF(1−ω)−aFν
, αF(1−ω) ̸= aFν . (H.3)

Proof. Divide (1) by F under αF +ξ = 1. Stationarity of Q fixes D(Q); stationarity of ΩF

removes that margin. The gross production term then grows at rate aFgA +αFgH . Setting
gF = g constant and substituting gA = νg/(1−ω) (Lemma H.4 with gR = g) gives the
result after collecting terms. □
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Lemma H.6 (Derivative stationarity). On a laissez-faire BGP with πR constant,

g =
αR(1−ω)gH

(1−ξR)(1−ω)−aRν
, (1−ξR)(1−ω) ̸= aRν . (H.4)

Proof. The argument parallels Lemma H.5. Divide (2) by R. Stationarity of πR and z̄

(hence ΩR) removes the talent margin. The gross production term grows at rate aRgA +

αRgH − (1−ξR)g. Setting this to zero and substituting Lemma H.4 with gR = g yields the
stated expression. □

H.4 The self-reinforcement index

Definition H.7 (AI self-reinforcement). The self-reinforcement index is

S≡ aRν

(1−ξR)(1−ω)
. (SR)

The R–A feedback is strong when S≥ 1 and weak when S< 1.

The index measures round-trip amplification: aR captures how much AI augments
derivative production, ν how much derivative output trains new AI, and the denomina-
tor collects diminishing returns from own-stock concavity (1−ξR) and AI self-knowledge
(1−ω). When S≥ 1, the denominator of (H.4) is nonpositive and no finite positive growth
rate balances the derivative sector.

Proposition H.8 (No interior laissez-faire BGP). If gH > 0 and S ≥ 1, no laissez-faire

BGP exists with Q∗ ∈ (0,1) and g ≥ 0.

Proof. Under S ≥ 1, the denominator of (H.4) is nonpositive; gH > 0 forces g ≤ 0. Con-
sider g < 0: both F and R shrink, but the derivative-sector gross production term grows
at rate aRgA +αRgH − (1− ξR)g = aRνg/(1−ω)+αRgH − (1− ξR)g. Under S ≥ 1, the
coefficient on g is aRν/(1−ω)−(1−ξR)≥ 0; combined with αRgH > 0, the gross produc-
tion growth rate is strictly positive even as R declines. Hence gR increases over time and
no constant gR is compatible—contradicting the BGP definition. The g = 0 case similarly
fails because αRgH > 0 drives gR above zero. □

At the calibration: aRν = 0.48, (1−ξR)(1−ω) = 0.30, S= 1.6—firmly in the strong-
feedback regime.
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Proposition H.9 (Knife-edge). A laissez-faire interior BGP requires simultaneously: (i) S<

1; (ii) compatibility of (H.3) and (H.4); (iii) the sorting-stationarity condition (H.2). All

three fail at the baseline calibration.

H.5 Existence when S< 1

When the AI feedback is weak, both growth-rate equations yield positive finite values.
Generically g∗F ̸= g∗R, but the level of Q adjusts frontier productivity through D(Q) and
creates a fixed-point equation.

Define Ψ(Q) ≡ ggross
F (Q)− ggross

R , where ggross
F (Q) ≡ ΛFD(Q)AaF (ΩFH)αF and ggross

R

is independent of Q. Since D′ > 0, Ψ is strictly increasing and continuous.

Proposition H.10. Suppose S< 1, gH > 0, and D < D̄. An interior BGP with Q∗ ∈ (0,1)
exists if and only if ggross

F (0)< ggross
R < ggross

F (1). The BGP quality Q∗ is unique.

Proof. The condition Ψ(0) < 0 < Ψ(1) is the stated sandwich. Strict monotonicity of
Ψ (inherited from D′ > 0) and continuity deliver a unique root by the intermediate value
theorem. □

H.6 BGP growth rates

When an interior BGP exists:

g∗ =
αF(1−ω)gH

αF(1−ω)−aFν
, (H.5)

g∗A =
αFν gH

αF(1−ω)−aFν
, (H.6)

g∗Y = φθ (φAg∗A +g∗)+(1−φθ )(φHgH +g∗), (H.7)

where φθ is the frontier composite’s output share at the BGP. Epistemic capital: E ∗
pub = 0

in CE (monotone decay); under the planner, ℓSP
E > 0 sustains E ∗

pub > 0.
At the calibration, the managed BGP (planner with q > 0, ℓE > 0) yields: g∗ ≈ 1.86gH ;

with gH ≈ 1%, frontier growth is roughly 1.9%. Output growth g∗Y ≈ 2.3%.

H.7 Stability of the interior BGP

Proposition H.11 (Saddle-path stability). Suppose S < 1 and an interior BGP exists.

The BGP is saddle-path stable in the detrended state space x̂ ≡ (Q, Ã ≡ A/FaF/αF , H̃ ≡
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H/F1/αF , Epriv).

Proof. Detrend each stock by the appropriate power of F to obtain a stationary system
˙̂x = f̂(x̂) with rest point x̂∗. The Jacobian J∗ ≡ Df̂(x̂∗) is computed by linearising the
detrended laws of motion at the BGP.

The eigenstructure of J∗ is governed by three channels:
(a) Data-quality feedback (Q equation). The Q-row of J∗ has a diagonal entry ∂ Q̇/∂Q|∗=

(1−Q∗)
[
∂gF/∂Q− ∂gR/∂Q

]
+level terms. Since ∂gF/∂Q = σD′(Q∗)/D(Q∗) > 0 and

∂gR/∂Q = 0 (derivative growth does not depend on corpus quality), the diagonal entry
is negative: higher Q raises frontier growth relative to derivative growth, depressing Q̇

through the compositional channel. This negative feedback generates a stable eigenvalue.
(b) AI-accumulation feedback (Ã equation). The detrended Ã equation inherits concav-

ity from ω < 1: the diagonal entry of J∗ is (ω −1)g∗A/Ã∗ < 0, contributing a second stable
eigenvalue.

(c) Jump variables. The remaining eigenvalue(s) associated with forward-looking con-
trols (private epistemic investment, education allocation under endogenous ℓH) carry pos-
itive real parts. The number of unstable eigenvalues equals the number of jump variables,
delivering the saddle-path structure.

Multiplicity of steady states. Under S< 1, strict monotonicity of Ψ(Q) (Proposition H.10)
rules out multiple interior rest points in the detrended system: the unique root Q∗ is the only
candidate, and the detrending is a smooth bijection on X . Under S ≥ 1, no interior rest
point exists (Proposition H.8); the only attractors are the boundary configurations described
in Proposition H.13. Hence, conditional on the feedback regime, the detrended system has
a unique rest point (interior or boundary) and no additional steady states. □

Remark H.12 (Calibration verification). At the baseline calibration, the eigenvalues of the
4-dimensional detrended system are {−0.047,−0.023,+0.031,+0.058}: two stable, two
unstable, confirming the saddle-path structure of Proposition H.11.

H.8 Asymptotic dynamics when S≥ 1

Under strong self-reinforcement, no interior BGP exists and the laissez-faire economy con-
verges to a degenerate configuration.
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Proposition H.13 (Trap asymptotics). Suppose S ≥ 1 and D = 0. Along the laissez-

faire path: (i) Q(t)→ 0; (ii) gF(t)→−δF ; (iii) gR(t) and gA(t) increase without bound;

(iv) Epub, Epriv → 0.

Proof. (i) Forward invariance (Theorem 4.5) ensures that once Q < Q†, the trajectory re-
mains in the trap region and Q is non-increasing. Being bounded below by zero, Q con-
verges. Suppose limQ = Q̄ > 0. Then D(Q̄)> 0, and frontier production retains a positive
floor. But under S≥ 1, the derivative production term grows without bound (as established
in the proof of Proposition H.8), driving ϕ → 1 and Q below Q̄—a contradiction.

(ii) D(Q)→D(0)= 0 implies Ḟ →−δFF : frontier knowledge decays at its depreciation
rate.

(iii) The derivative gross production term AaR(πRH)αRRξR−1 accelerates through the R–
A loop; S ≥ 1 ensures effective round-trip returns exceed unity, so the feedback does not
attenuate.

(iv) Epub decays exponentially under ℓCE
E = 0. For Epriv: the retraining technology

DE (Q) = QσE → 0 as Q → 0, while depreciation stays bounded below by δ
priv
E ,0 > 0.

□

When D > 0, the frontier retains productive capacity at Q = 0 and the CES price mech-
anism provides a restoring force: as Q → 0, pF/pR → ∞, which pulls z̄ → z and πF → 1.
Whether Q stabilises depends on the race between price-mediated talent reallocation and
derivative self-reinforcement. Numerically: D = 0.03 gives Q → 0.04; D = 0.05 gives
Q → 0.11; at D = D̄ ≈ 0.08 the trap dissolves.

H.9 Policy BGP

Under governance, Q̇ = 0 no longer requires gF = gR.

Lemma H.14. Along any path with Q(t)≡ Q∗ and E (t)≡ E ∗, Q̇ = 0 is equivalent to

gR −gF =
κ qs(E ∗)

Q∗ . (H.8)

Proof. Set Q̇ = Q(1−Q)(gF − gR)+ qs(E )κ(1−Q) = 0 and divide by Q(1−Q): gF −
gR +qs(E )κ/Q = 0. Rearranging gives (H.8). □

Equation (H.8) is the missing degree of freedom: governance absorbs the growth-
rate differential that laissez-faire cannot accommodate. The screening intensity q selects
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the Q∗ at which the frontier can sustain positive growth despite derivative-sector self-
reinforcement.

Proposition H.15 (Managed BGP). Suppose αF(1−ω) > aFν and gH > 0. There exist

qSP > 0 and ℓSP
E > 0 implementing a BGP with growth rate g∗ given by (H.5), QSP > Q†,

and E SP > E †.

Proof. The frontier production block pins gF = g∗ under any fixed ℓF and QSP satisfying
D(QSP) > 0. The derivative block yields gR(QSP) at any allocation. Lemma H.14 then
determines qSP to absorb gR −g∗. The right-hand side of (H.8) is continuous in q on [0,1],
ranging from 0 at q = 0 to κ s(E ∗)/Q∗ at q = 1. For E ∗ sufficiently large (which ℓSP

E > 0
guarantees), the upper bound exceeds gR −g∗ and the intermediate value theorem delivers
qSP ∈ (0,1].

Epistemic investment ℓSP
E is chosen to sustain E SP via Ėpub = 0: the replenishment term

must offset depreciation. The planner’s FOC for ℓE has interior solutions when ΨQ > 0
(Proposition 3.4(ii)), since the shadow price of data quality makes epistemic investment
socially productive. □

I Sufficiency Conditions

The planner’s problem (24) is non-concave: the quality ratio Q≡F/(F+R) enters both the
flow payoff and the laws of motion through D(Q) and DE (Q), destroying joint concavity
of the Hamiltonian in (F,R). Neither Mangasarian’s condition (joint concavity of H in
(x,u); Acemoglu, 2009, Theorem 7.11) nor Arrow’s condition (concavity of the maximised
Hamiltonian in x; Acemoglu, 2009, Theorem 7.14) holds, because D′′(Q) > 0 for σ > 1
(Proposition I.1).

The non-concavity is structurally the same as in epidemiological growth models where
an infection share enters nonlinearly in both constraints and objective. Goenka et al. [2014]
face non-convex constraints and a non-concave Hamiltonian from SIS dynamics; Goenka
et al. [2024] add disease-induced mortality and endogenous discounting. In each case,
the Leitmann–Stalford decomposition [Leitmann and Stalford, 1971] provides the route to
sufficiency. The present model replaces the epidemiological state (i) with the knowledge-
quality state (Q), but the algebraic structure—a ratio of two stocks entering multiplicatively
in production—is the same.
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Sufficiency follows from the augmented-Hamiltonian argument in Goenka et al. [2014],
Nguyen and Nguyen-Van [2016], Goenka et al. [2024]. The boundary term is controlled by
a generalised transversality condition in the pathwise form of Cartigny and Michel [2003],
verified via costate-sign arguments and a decay lemma for sign-ambiguous costates.

Non-concavity of the Hamiltonian

Proposition I.1 (Failure of concavity in (F,R)). For σ > 1 and λF > 0, the restriction of

H (·,u,λ ) to the (F,R) block is not concave on any neighbourhood with F,R > 0.

Proof. Gross frontier production is GF ≡ ΛFD(Q)AaF (ΩFH)αF Fξ . The term λFGF con-
tributes to ∂ 2H /∂F2 the component

λF AaF (ΩFH)αF Fξ D′′(Q)
( R
(F +R)2

)2
.

With D(Q) =D+(1−D)Qσ and σ > 1, D′′(Q)> 0 on (0,1), so this contribution is strictly
positive whenever λF > 0 and F,R > 0. Diminishing-returns curvature in Fξ (ξ < 1) does
not generically dominate; the (F,R) Hessian block is indefinite. □ □

Existence and endogenous state bounds

Lemma I.2 (Endogenous state bounds). Under Assumptions 2.1–2.5, any admissible path

satisfies:

(i) Epub, Epriv ∈ [0,1] and Q ∈ [0,1];

(ii) H(t)≤ H0 egH t with gH ≡ λ̄H −δH;

(iii) R(t)≤ R̄(t) and A(t)≤ Ā(t), where (R̄, Ā) solves the comparison system

˙̄R = ΛR ĀaR (H0egH t)αR R̄ξR, ˙̄A = µA R̄ν Āω ;

sublinearity (ξR,ω ∈ (0,1)) excludes finite-time blowup, and the comparison solu-

tions satisfy R̄, Ā = O(eḡt) with ḡ pinned by the BGP system (Appendix H);

(iv) F(t) = O(eḡF t) for a finite ḡF ;

(v) the discounted objective
∫

∞

0 e−ρtu(C)dt is well-defined and finite.
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Proof. (i) Nonneg production and positive depreciation pin Epub,Epriv to [0,1]; Q=F/(F+

R)∈ [0,1] is algebraic. (ii) From (12) with ℓH ≤ 1: Ḣ ≤ (λ̄H −δH)H; Gronwall. (iii) Drop-
ping depreciation, governance, and using ℓR ≤ 1, D(Q)≤ 1 yields Ṙ≤ΛRAaRHαRRξR; simi-
larly Ȧ ≤ µARνAω . The comparison system dominates (R,A) componentwise. Sublinearity
in own stock excludes blowup (Osgood); exponential rates from Appendix H. (iv) Given
(ii)–(iii): Ḟ ≤ ΛF ĀaF (H0egH t)αF Fξ +κR̄(t)−δFF . Sublinearity (ξ < 1) plus linear depre-
ciation; Gronwall. (v) CRRA with η > 1: u(C)≤ 0; discounted integral bounded above by
zero, below by

∫
∞

0 e−ρtu(C)dt >−∞. □ □

Proposition I.3 (Existence). The planner’s problem admits an optimal solution.

Proof. The control set is compact. By Lemma I.2, the state dynamics are continuous in
(x,u), satisfy a linear growth bound, and the payoff is bounded above. Hence a maximizing
sequence exists.

Although the velocity correspondence f(x,U ) is generally non-convex, the existence
argument follows the weak-compactness approach used in Goenka et al. [2014] for non-
concave dynamic problems. Specifically, from any maximizing sequence, the controls and
induced state derivatives admit a subsequence that converges weakly in σ(L1(e−ρt),L∞),
while the corresponding state paths converge pointwise (after extraction) by the growth
bound and equicontinuity.

Pointwise convergence is sufficient to pass to the limit in the state equations wherever
strong convergence is available. For the weakly convergent components, Mazur’s lemma
provides convex combinations that converge strongly (hence pointwise a.e.). Feasibility of
the limit path then follows from continuity of the dynamics. Jensen’s inequality is used to
remove the convex-combination coefficients and recover an admissible limit control with-
out lowering the objective, relying on the required concavity in the control arguments. The
argument is a direct adaptation of the existence proofs in Romer [1986] and Goenka et al.
[2014], under the present assumptions (bounded controls, linear-growth dynamics, and an
integrable upper bound for utility). Therefore, the claim follows. □

Costate signs

Three costates are strictly positive along any interior planner path; the remaining three may
change sign.

Lemma I.4 (Positivity of the frontier shadow value). Along any interior planner path with

C(t)> 0 and YF(t)≡ ∂Y/∂F > 0 a.e., λF(t)> 0 for all t ≥ 0.
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Proof. Proposition 3.4(i) decomposes λF =VF +∆F , where VF is the competitive shadow
value and ∆F ≡ λF −VF the planner–private wedge.

VF > 0. By the integral representation in Proposition 3.4(i),

VF(t) =
∫

∞

t
exp
(
−
∫ s

t
µF(τ)dτ

)
u′(C(s))YF(s)ds (I.1)

with µF ≡ ρ + δF − ξ GF/F . Since u′(C) > 0 and YF > 0 a.e., the integrand is strictly
positive and VF(t)> 0.

∆F > 0. Proposition 3.4(iv) shows that the wedge vector ∆ = (∆F ,ΨQ,λ
pub
E )⊤ satisfies

the cooperative Volterra system (Theorem B.4), with forcing Φ = (0,ΦQ,0)⊤ and K ≥ 0.
Along an interior path ΦQ > 0 a.e. (VF > 0 and D′(Q)> 0). The off-diagonal entry KFQ =

R/(F +R)2 > 0 transmits quality value into the F-channel. At the first Picard iterate:

∆
(1)
F (t) =

∫
∞

t
KFQ(t,s)ΦQ(s)ds > 0.

Cooperativity preserves ∆
(n) ≥ ∆

(1) for all n; the contraction condition (Assumption B.3)
delivers uniform convergence.

λF =VF +∆F > 0. □ □

Lemma I.5 (Costate signs from interior FOCs). Along an interior planner path with ℓH > 0
and ℓE > 0: (a) λH > 0; (b) λ

pub
E > 0.

Proof. The interior FOC (Appendix E.1.2) equalises marginal costate-value products:

λF
∂ Ḟ
∂ℓF

= λH
∂ Ḣ
∂ℓH

= λ
pub
E

∂ Ėpub

∂ℓE
. (I.2)

(a) ∂ Ḟ/∂ℓF > 0 and ∂ Ḣ/∂ℓH = λ̄HβHℓ
βH−1
H H > 0. Lemma I.4 gives λF > 0; dividing by

the positive marginal product of ℓH pins λH > 0. (b) ∂ Ėpub/∂ℓE = ηE ℓηE −1
E DE (Q)> 0 for

Q > 0. The same argument gives λ
pub
E > 0. □ □

No sign claim is made for λR, λA, or λ
priv
E . The costate λR can be negative when

quality-erosion costs outweigh the direct marginal product of derivative content; λA is sign-
ambiguous because AI augments both frontier and derivative production. This parallels the
sign ambiguity of the costate on infectives in Goenka et al. [2024], where sufficiency still
obtains because the generalised TVC is verified directly rather than through costate signs.
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Generalised transversality conditions

Write µ j(t)≡ e−ρtλ j(t) for the present-value costate of stock j. The standard transversality
conditions are

lim
t→∞

e−ρt
λ j(t)x∗j(t) = 0, j ∈ {F,R,A,H,Epub,Epriv}. (I.3)

These hold at the solution x∗ but provide no information about deviations along an arbitrary
feasible path. Sufficiency requires the pathwise form of Cartigny and Michel [2003]:

limsup
t→∞

e−ρt
∑

j
λ j(t)

(
x∗j(t)− x j(t)

)
≤ 0 (I.4)

for any feasible x(·) from x0. In the concave case, Acemoglu [2009, Theorem 7.14] as-
sumes (I.4) together with Arrow sufficiency. When concavity fails, the condition must be
verified directly—the approach here and in Goenka et al. [2014], Nguyen and Nguyen-Van
[2016], Goenka et al. [2024].

Two primitives deliver (I.4) for all six states. For signed costates (F,H,Epub): nonnega-
tivity of both the costate and the state gives e−ρtλ j(x∗j −x j)≤ e−ρtλ jx∗j → 0 by the standard
TVC, and the nonneg product pins the liminf, so limsup ≤ 0. (In Goenka et al., 2024 the
corresponding step uses λ1 ≥ 0 from the consumption FOC; here the Volterra decompo-
sition and interior FOCs sign three costates.) For unsigned costates (R,A,Epriv): present-
value costate decay µ j → 0 combined with bounded deviation growth |x∗j − x j| = O(eg jt)

drives the product to zero. The bounded state Epriv ∈ [0,1] is handled as in Goenka et al.
[2024]; the unbounded states R and A require the growth-rate comparison in Lemma I.2.

Lemma I.6 (Decay of present-value costates). Along the optimal path, µ j(t)→ 0 as t → ∞

for every state j.

Proof. Signed costates (F,H,Epub). Lemmas I.4 and I.5 give λ j ≥ 0. The standard TVC
µ jx∗j → 0 together with x∗j bounded away from zero (F ≥ F > 0 by Assumption 2.5; H ≥
H0e−δH t > 0; Epub > 0 when ℓE > 0) forces µ j → 0.

Unsigned costates (R,A,Epriv). The present-value costate satisfies µ̇ j =−e−ρt∂H /∂x j.
The forcing is integrable: bounded by products of discounted marginal utilities and polyno-
mially growing states (Lemma I.2), with the transversality restriction ρ > ηg∗C +(1−η)g∗j
(verified at the calibration, Appendix H) ensuring convergence [Michel, 1982]. Hence µ j

has a finite limit.
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For Epriv ∈ [0,1]: the standard TVC and E ∗
priv bounded away from zero force the limit to

zero. For R: the effective own-discount µ∗
R ≡ ρ +(1−ξR)δR −ξRg∗R +q∗s∗κ > ρ (sublin-

earity term (1−ξR)δR > 0, governance term nonneg); the standard TVC with R∗ bounded
away from zero pins µR → 0. For A: µ∗

A = ρ+(1−ω)δA−ωg∗A > ρ; the argument parallels
R. □

Proposition I.7 (Generalised TVCs and Michel condition). Condition (I.4) holds for every

feasible x(·) from x0. The Michel condition limt→∞ e−ρtH cv(t) = 0 is also satisfied.

Proof. Sign-based: j ∈{F,H,Epub}. λ j ≥ 0 and x j ≥ 0 give e−ρtλ j(x∗j −x j)≤ e−ρtλ jx∗j →
0 by (I.3); liminfe−ρtλ jx j ≥ 0 pins limsup ≤ 0.

Decay-based: j ∈ {R,A,Epriv}. Lemma I.6 gives µ j → 0. Any two admissible paths
satisfy |x∗j − x j| ≤ C jeḡ jt (Lemma I.2 bounds growth; Gronwall bounds the deviation; for
Epriv ∈ [0,1] the deviation is uniformly bounded). The present-value costate decays at rate
µ∗

j > ρ , so |µ j| ≤C′e−µ∗
j t eventually. The excess rate µ∗

j − ḡ j > 0 drives |µ j| |x∗j −x j| → 0.
Summing over j:

limsup
t→∞

e−ρt〈
λ (t), x∗(t)−x(t)

〉
≤ 0. (I.5)

Michel condition. The system is autonomous: along optimal paths Ḣ cv = ρH cv, so
H pv(t)≡ e−ρtH cv(t) is constant. The standard TVCs and Lemma I.6 give e−ρt⟨λ , ẋ∗⟩→
0; discounting gives e−ρtu(C∗)→ 0. Hence H pv = 0 [Michel, 1982]; see Acemoglu [2009,
Theorem 7.12] for a textbook derivation. □

Sufficiency via the Leitmann–Stalford decomposition

The augmented Hamiltonian is

H̄ (x,u,λ )≡ H (x,u,λ )+ ⟨λ̇ , x⟩. (I.6)

Since ⟨λ̇ ,x∗⟩ is independent of u, the maximum principle selects u∗ as a maximiser of
H̄ (x∗, ·,λ ). The Euler equations give ∇xH̄

∣∣
(x∗,u∗) = 0.

Lemma I.8 (Control-wise maximality). Given x∗, H̄ (x∗,u∗,λ )≥ H̄ (x∗,u,λ ) for all ad-

missible u.

Proof. At x = x∗ the augmented Hamiltonian separates into control channels. Consump-

tion. Concavity of u: u(C∗)−u(C) ≥ u′(C∗)(C∗−C) = u′(C∗)[Γ(q)−Γ(q∗)] at fixed x∗.
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Governance. The intensity q enters Ḟ and Ṙ linearly through ±qsκR. Convexity of Γ and
the FOC (26) (u′Γ′(q∗) = (λF −λR)sκR∗) combine to a nonneg difference. Labour. The
shares (ℓF , ℓE , ℓH) enter through concave accumulation functions (βH ,ηE ∈ (0,1)); the
FOC (I.2) equalises marginal costate-value products; concavity delivers a global maximum
in the labour block. The argument exploits separability of the Hamiltonian in controls and
concavity in each control block—the same structure used in Goenka et al. [2024] for the
lockdown–consumption decomposition. □ □

Proposition I.9 (Augmented-Hamiltonian inequality). Along (x∗,u∗), for any feasible (x,u),

H̄ (x∗,u∗,λ )≥ H̄ (x,u,λ ) a.e. in t. (I.7)

Proof. Following Leitmann and Stalford [1971] and its infinite-horizon extensions in Goenka
et al. [2014, 2024], freeze Q at its optimal-path value Q∗(t). The frozen-Q Hamiltonian

Hc(x,u,λ ;Q∗)≡ u(Y −Γ(q))+λF [ΛFD(Q∗)AaF (ΩFH)αF Fξ −δFF+qsκR]+∑ j ̸=F λ jẋ j

treats D(Q∗) as a known function of time. Freezing Q eliminates the source of non-
concavity (Proposition I.1): the CES aggregator is jointly concave in (F,R,A,H); each
accumulation function is concave in its argument (ξ ,ξR,ω ∈ (0,1)). Hence Hc is jointly
concave in (x,u). The decomposition parallels Goenka et al. [2024], where freezing the
infection share at i∗ recovers a concave core; here Q = F/(F +R) plays the role of i, and
D(Q) the role of the contact rate.

The augmented frozen-Q Hamiltonian H̄c ≡ Hc + ⟨λ̇ ,x⟩ inherits joint concavity (the
augmentation is linear). Arrow sufficiency gives

H̄c(x∗,u∗;Q∗)≥ H̄c(x,u;Q∗). (I.8)

The perturbation P ≡ H −Hc collects all Q-dependent terms:

|P| ≤ |λF | ḠF |D(Q)−D(Q∗)|+|λ pub
E | Λ̄E |DE (Q)−DE (Q∗)|+|λ pub

E | Ē |δE (ϕ)−δE (ϕ
∗)|,

(I.9)
uniformly bounded: Q ∈ [0,1], D and DE are Lipschitz on [0,1], and all remaining factors
are capped by Lemmas I.2 and I.6. Along the optimal path P∗ = 0 (since Q = Q∗).

Combining (I.8) with the perturbation: the concave-core difference is ≥ 0; the per-
turbation difference equals 0−P(x,u,λ ), bounded by (I.9). Integrating over [0,∞) with
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discount e−ρt : the nonneg concave-core integral absorbs the (bounded, discounted) pertur-
bation integral, delivering the integrated augmented inequality and, by density of evaluation
times, the pointwise inequality (I.7). □ □

Remark I.10. Proposition I.9 is weaker than concavity of the maximised Hamiltonian
M(x,λ ) (Arrow’s condition) and weaker than joint concavity of H (Mangasarian).

Theorem I.11 (Sufficiency). Let (x∗,u∗) be an interior path satisfying the necessary con-

ditions: the labour-allocation FOC (Appendix E.1.2), the governance FOC (26), and the

costate system (E.1)–(E.6), together with the standard TVCs (I.3). Then (x∗,u∗) is optimal

among all feasible paths from x0.

Proof. Proposition I.9 gives H ∗−H + ⟨λ̇ ,x∗−x⟩ ≥ 0. Substituting H = u(C)+ ⟨λ , ẋ⟩
and applying the product rule ⟨λ , ẋ∗− ẋ⟩+ ⟨λ̇ ,x∗−x⟩= d

dt ⟨λ ,x
∗−x⟩:

u(C∗)−u(C)+
d
dt

〈
λ , x∗−x

〉
≥ 0.

Multiply by e−ρt , integrate on [0,T ], use x∗(0) = x(0):

∫ T

0
e−ρt [u(C∗)−u(C)]dt ≥−e−ρT〈

λ (T ), x∗(T )−x(T )
〉
.

Taking T → ∞ and applying the generalised TVC (I.5):
∫

∞

0 e−ρt [u(C∗)−u(C)]dt ≥ 0. □

Corollary I.12. The planner allocation characterised in Section 3.2 is globally optimal.

Proof. Proposition I.3 delivers existence. The candidate path satisfies the necessary condi-
tions and (I.3); Theorem I.11 selects it. □ □
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