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Abstract

Optimal energy transitions are characterized in an economy where fossil energy
requires dedicated conversion capital that is costly to reverse and where cumulative
emissions are capped by an exogenous carbon budget. Short-run complementarity
between fossil inputs and sector-specific capital interacts with intertemporal scarcity
of the remaining budget. The optimal path typically selects an expansion regime,
a production plateau, a decline regime, and a post-fossil steady state. The plateau
is pinned down by the need to operate in order to amortize sunk conversion capital
while the shadow value of remaining emissions rises over time. These forces gen-
erate non-monotone useful-energy prices and deliver sharp conditions under which
dedicated fossil capital becomes stranded.

Calibrated to global energy data, the baseline features a plateau of about 42
years accounting for 48% of cumulative emissions. Delaying policy by 20 years
lowers welfare by 1.8% and strands $287bn in assets; a 40-year delay lowers welfare
by 4.3% and strands $532bn. When explicit carbon taxation is infeasible, quantity
instruments approximate the tax allocation in the calibration: a capacity cap and
an investment ban deliver welfare losses of 0.8% and 1.2%, respectively.
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1 Introduction

Fossil fuel prices and extraction paths have long posed a challenge for the canonical
Hotelling benchmark (Hotelling, 1931). Even after allowing for technological progress and
exploration dynamics, recent empirical work finds persistent departures from Hotelling-
style predictions for oil, gas, and coal (Anderson et al., 2018; Gaudet and Lasserre,
2022). Using more than a century of data across multiple commodities, Stiirmer (2018)
documents that real resource prices have more often trended downward than upward,
and attributes this pattern to sustained technological progress that compresses scarcity

rents.

A natural mechanism for such departures is the capital intensity of extraction. When
production requires large, lumpy, and partially irreversible investments, firms’ intertem-
poral choices can differ sharply from those in frictionless exhaustible-resource models,
and equilibrium price and quantity dynamics need not resemble Hotelling-type paths;
see, e.g., (Puu, 1977; Crémer, 1979; Campbell, 1980; Lasserre, 1982, 1985a,b; Cairns and
Lasserre, 1986; Olsen, 1989; Cairns and Lasserre, 1991; Lozada, 1993; Cairns, 1998, 2001;
Holland, 2003a). A related literature studies how fixed and setup costs shape competitive
equilibria in resource markets (Hartwick et al., 1986; Holland, 2003b; Vu and Im, 2011;
Bommier et al., 2018).! More recent work emphasizes that irreversibility interacts with
policy uncertainty: when capital is sunk, private and political incentives may tilt toward
delay even under substantial increases in carbon prices (Coulomb and Henriet, 2018). In
the same vein, Lemoine and Rudik (2017) shows that uncertainty about climate damages

and technological change creates option values that slow both mitigation and adaptation.

Even when Hotelling-type models are amended to incorporate investment costs, they
say little about how scarcity in primary resources translates into prices of downstream en-
ergy services. In the transformation chain from underground energy to final consumption,
most capital is not located in extraction but in conversion and infrastructure systems.
Oil, for example, must be refined and often further converted into electricity or hydro-
gen, then combined with vehicles and transport networks to deliver useful mechanical
energy.? As renewable energy penetration increases, downstream capital requirements
become even more prominent, particularly through grid infrastructure needed to manage
intermittency and reliability (Joskow, 2011; Hirth, 2015; Millstein et al., 2021).

Much of this downstream capital is highly specific to fossil fuel use and cannot be
redeployed to clean energy without significant cost. This specificity has gained renewed

attention following the Paris Agreement and subsequent climate commitments. Pfeiffer

LA broader notion of capital would include both R&D and exploration expenditures.
2See Fouquet (2008) for a historical review of useful energy prices. Kander et al. (2013) and Stern

(2011) document more recent developments.



et al. (2016) show that operating existing fossil infrastructure through its planned lifetime
would exhaust remaining carbon budgets consistent with limiting warming to 1.5°C or
2°C, creating a tension between amortizing sunk investments and meeting climate tar-
gets. This tension is reflected in a striking empirical pattern: despite solar photovoltaic
costs falling by more than 60% between 2010 and 2022 (IRENA, 2023), global coal-fired
capacity continued to expand over the same period, even as carbon prices remained low
and heterogeneous (Table 1). This persistence contrasts sharply with models predicting

smooth technological substitution in response to relative price changes.

Table 1: The Fossil Lock-In Paradox: Divergent Global Trends

Coal Capacity Carbon Price Solar LCOE

Year

(GW) (USD/tCO;) (USD/kWh)
2010 1,879 ~9 0.138
2015 2,010 ~12 0.087
2020 2,145 ~21 0.060
2022 2,167 ~25 0.053

Note: Coal capacity aggregates global coal-fired power generation. Carbon prices are approximate
emissions-weighted averages across jurisdictions with carbon taxes or emissions trading systems;
coverage grew from roughly 5% of global emissions in 2010 to about 23% by 2022, so cross-year

comparisons should be treated with caution. Solar LCOE denotes the global weighted-average levelized

cost of electricity for utility-scale photovoltaic installations. Coal capacity data are from Global Energy

Monitor (2025). Carbon price data are from the World Bank Carbon Pricing Dashboard (World Bank,
2024). Solar cost estimates are from the International Renewable Energy Agency (IRENA, 2023).

Capital specificity matters most when climate policy is framed in terms of a cumu-
lative emissions constraint. We assume a finite carbon budget consistent with long-run
temperature stabilization goals, as articulated in the Paris Agreement. Recent IPCC as-
sessments place the remaining budget at roughly 500 GtCO4 for a 50% chance of limiting
warming to 1.5°C, and about 1,150 GtCO, for 1.75°C (IPCC, 2021, 2022). Under such a
constraint, carbon is scarce in an intertemporal sense: the key restriction is cumulative

emissions, not contemporaneous flows alone.

A growing literature models the carbon budget as an exhaustible resource. Golosov
et al. (2014) show that finite atmospheric capacity generates positive and rising carbon
rents in dynamic general equilibrium, while Hassler and Krusell (2018) show that opti-
mal carbon taxes can rise faster than the Hotelling rate when clean innovation features
learning-by-doing. Related work studies the implications of cumulative constraints for
stranded assets and price dynamics (Barbier and Burgess, 2017; van der Ploeg and Rezai,
2020; Dietz and Venmans, 2019). Integrated assessment models with capital vintages and
retrofit costs imply stranded assets on the order of trillions of dollars under ambitious
scenarios (Bauer et al., 2015, 2023; Luderer et al., 2022; Kriegler et al., 2023).



We develop a tractable model of the energy transition in which (i) fossil energy re-
quires dedicated conversion capital that is irreversible once installed and (ii) cumulative
emissions are constrained by an exogenous carbon budget. The planner internalizes both
the scarcity rent on the remaining carbon budget and the quasi-rents on fossil-specific
capital. Their interaction can generate an extended interval in which fossil capacity is
optimally held fixed even as renewables expand and the carbon price continues to rise.
This mechanism rationalizes the persistence of fossil capacity observed in practice and
delivers transparent conditions under which fossil-related capital becomes stranded along

the transition path.

We characterize the optimal transition analytically and then quantify transition dy-

namics and policy costs in a calibrated version of the model.

We apply the framework to an economy with two energy sources: a renewable tech-
nology (solar) and a non-renewable resource (coal). The analysis departs from standard
transition models by making explicit the dedicated capital required to convert coal into
usable energy services. In contrast to the smooth substitutability typically assumed in the
directed technical change literature (Acemoglu et al., 2012; Hassler and Krusell, 2018), we
impose strong short-run complementarity between coal and fossil-specific capital. This
complementarity implies a transition with distinct phases, including a plateau during
which fossil-based energy production remains constant as the economy amortizes sunk

conversion capital while the shadow value of the remaining carbon budget rises over time.

Embedding capital-resource complementarity in a setting with a cumulative emis-
sions constraint links the Hotelling logic for exhaustible resources to the carbon-budget
interpretation of climate policy. The key implication is that declining renewable costs
need not translate into an immediate contraction of fossil output when fossil use is tied
to dedicated conversion capital. This mechanism helps rationalize the pattern in Table 1,

where coal generation remains elevated despite rapid cost declines in renewables.

Most analyses of optimal carbon pricing emphasize the scarcity rent on cumulative
emissions—the shadow value of the remaining carbon budget (Golosov et al., 2014; Nord-
haus, 2017; Lemoine and Traeger, 2014; Gollier, 2024). Our framework introduces a
second scarcity margin: retiring sector-specific productive capital before it is fully amor-
tized. When the shadow value of the carbon budget rises while fossil capital is quasi-fixed,
the interaction between carbon scarcity and capital irreversibility generates transition dy-

namics that are absent under frictionless substitution across energy technologies.

For tractability, we consider an economy with two energy sources. Coal is an ex-
haustible resource that must be combined with sector-specific capital to produce usable
energy. Solar is a renewable flow produced with non-dedicated capital; its marginal cost

is increasing in scale (e.g., due to site quality and integration costs) but it does not in-



herit the same lock-in from fossil-specific infrastructure. We abstract from intermittency,
storage, grid constraints, and endogenous directed technical change in order to isolate
a single mechanism: irreversible, sector-specific capital creates path dependence in the

optimal transition when cumulative emissions are constrained.

Coal extraction is assumed to have constant marginal cost and no fixed installation
costs. In our setting, the relevant exhaustible stock is the remaining carbon budget rather
than the coal deposit itself. Accordingly, the shadow value of the remaining carbon
budget satisfies a Hotelling condition, and the effective marginal cost of coal use rises
over time through the carbon price component. Conversion of coal into usable energy,
by contrast, requires a stock of sector-specific capital. We represent conversion with a
three-input Leontief technology that combines coal, capital services, and a supplementary
input (e.g., labor), which imposes strict short-run complementarity between coal and the

dedicated capital.

Complementarity in the short run does not preclude substitution over time. For a
given installed capital stock, coal use is governed by utilization—the duration and inten-
sity with which the capital is operated—whereas cumulative processing is determined by
when that capital is accumulated and when it is ultimately retired. Through this channel,
capital dynamics pin down the time profile of coal use and hence the associated path of
carbon emissions. Conversely, depletion of the carbon budget feeds back into optimal
investment and scrapping decisions for fossil-specific capital. The interaction between
carbon scarcity and capital irreversibility therefore becomes a first-order determinant of

transition dynamics.

We model solar more sparingly. Solar is a renewable flow produced without fossil-
specific capital lock-in; its marginal cost is increasing in scale, but it does not require
a dedicated conversion stock analogous to that in the coal sector. Under standard as-
sumptions on preferences, convex adjustment costs for investment, and constant per-unit
maintenance costs, the optimal transition can be described as a sequence of four phases:
an initial period in which coal-based energy expands while solar contracts; a plateau dur-
ing which coal output is held at its maximum; a phase in which the tightening carbon
constraint induces declining coal production alongside expanding solar; and, finally, a

terminal phase in which energy production is fully renewable.

Relative to standard models that deliver a symmetric “peak oil” profile, irreversible
investment in fossil infrastructure produces a prolonged plateau. Dedicated capital must
operate long enough to recover its upfront cost even as the shadow value of the remain-
ing carbon budget rises. This mechanism aligns with the persistence of coal generation
observed in practice. Germany’s coal phase-out, initially scheduled for 2038 and later
accelerated toward 2030, was accompanied by an extended period of roughly constant

generation despite rapid renewable expansion (Pahle et al., 2022). In China, coal capac-



ity has been on the order of 1,100 GW since the early 2020s even as coal’s share in total
generation has declined (Global Energy Monitor, 2023). In the United Kingdom, coal
output remained broadly stable for nearly two decades before declining rapidly after 2010
(Speirs et al., 2015).

During the first three phases of the transition, aggregate useful energy, the sum of coal
and solar-based output, exceeds the level delivered in the terminal all-renewable phase.
The price of useful energy is non-monotone: it declines during the initial build-out of
coal-specific capital, is flat over the production plateau, and rises during the coal phase-
out, eventually converging back to its initial level. By contrast, the effective marginal
cost of coal use, the marginal extraction cost plus the carbon price, moves monotonically.
With constant marginal extraction cost, its time profile is pinned down by the carbon
price, which increases at the planner’s discount rate along the optimal depletion of the
carbon budget. In our calibration, the carbon price rises from about $22/tCO; initially
to above $200/tCO; at budget exhaustion, a range in line with recent empirical SCC
estimates (Rennert et al., 2022).

The wedge between these price paths reflects shifting scarcity from fossil-specific capi-
tal to the carbon budget. Early in the transition, the shadow value of coal-specific capital
falls as capacity accumulates, and this decline more than offsets the rising carbon price,
generating a negative comovement between the price of useful energy and the effective
marginal cost of coal. Over the plateau, the two forces approximately offset, leaving the
price of useful energy essentially constant. Once the shadow value of coal-specific capital
is driven to zero, continued coal use entails only maintenance and the carbon price, and
the price of useful energy becomes increasingly disciplined by the rising scarcity rent on

the remaining carbon budget.

These dynamics reflect intertemporal substitution between two constraints—coal-
specific capacity and cumulative emissions. Accordingly, the optimal transition need
not feature a single, sharp emissions peak; instead it can exhibit a sustained plateau in
coal-based production and associated COs emissions. This source of transition inertia
is distinct from political-economy mechanisms (Branger and Quirion, 2014), learning-by-
doing in clean technologies (Hassler and Krusell, 2018), or option value under uncertainty
(Lemoine and Rudik, 2017; Lemoine and Traeger, 2014). It arises under certainty and
perfect foresight as a direct implication of irreversibility and the incentive to amortize

sunk capital.

Our results speak to three policy questions that recur in current debates: how to
interpret persistent fossil use during the transition, how costly delayed action can be, and

how to manage the risk of stranded assets when long-run targets shift.

Persistent fossil production need not, by itself, indicate policy failure. When fossil



energy is tied to irreversible, sector-specific capital, the optimal response to a cumula-
tive carbon constraint can include a prolonged production plateau. During this phase,
renewable output expands and the carbon price rises, yet fossil capacity is held fixed to

complete the amortization of sunk conversion capital.

Delaying policy implementation is costly because it induces over-accumulation of
fossil-specific capital and then forces a compressed adjustment once the constraint be-
comes binding. In our quantitative exercises, a 20-year delay generates stranded assets of
$287 bn and a welfare loss of 1.8%, while a 40-year delay raises stranded assets to $532 bn
and the welfare loss to 4.3% (Table 4). These magnitudes put quantitative content behind

precautionary arguments for earlier action, as in Lemoine and Traeger (2014).

The model also clarifies the economic origin of stranded assets and how it differs from
“technological obsolescence.” In our framework, stranding arises when a tighter carbon
constraint renders previously built, dedicated capital unable to recover its upfront cost.
For example, when the carbon budget is unexpectedly tightened at year 30, the optimal
response entails immediate scrapping of 120 EJ/yr of fossil-specific capacity, valued at
$185bn, and a welfare loss of 1.4% relative to perfect foresight under the tighter budget;
these orders of magnitude are in the range reported by integrated assessment models
(Luderer et al., 2022). The same logic implies a role for policies that affect how quickly
renewables become competitive: learning-driven declines in renewable costs shorten the
plateau by pulling forward the point at which solar displaces coal, complementing carbon

pricing in accelerating the transition (Acemoglu et al., 2012).

The framework is useful for evaluating second-best policy instruments when explicit
carbon taxation is politically constrained. In our calibration, quantity-based policies
can approximate the first-best carbon tax closely when calibrated to the same carbon
budget. A capacity cap delivers a welfare loss of 0.8% relative to the tax benchmark, and

an investment ban delivers a welfare loss of 1.2% (Table 5).

The remainder of the paper is organized as follows. Section 2 presents the model.
Section 3 formulates the social planner’s problem and derives the associated optimality
conditions. Section 4 characterizes the qualitative structure of optimal transition paths
and establishes the four-phase pattern. Section 5 describes the calibration strategy and
parameter choices. Section 7?7 reports quantitative results and policy experiments. Sec-

tion 6 concludes. Technical details and proofs are provided in the appendices.

2 The model

We consider an economy producing useful energy (U.E) from either a polluting non-

renewable primary energy resource (coal) or from a clean renewable resource (solar).



Coal useful energy (C.U.E) and solar useful energy (S.U.E) are perfect substitutes for
the final users. We denote by ¢, the instantaneous production rate of C.U.E, by ¢, the
instantaneous production rate of S.U.E and by ¢ the instantaneous production rate of
U.E. Under the perfect substitutability assumption ¢(t) = ¢.(t) + ¢,(¢), t > 0. Without

useful energy storage possibilities, ¢(t) is also the U.E consumption rate.

User surplus

Let u(q(t)) denote the instantaneous gross surplus of the U.E users. The function u

is assumed to satisfy the below standard assumption.?

Assumption A. 1 u: R, — R is twice continuously differentiable, strictly increasing

and strictly concave with u'(07) = 400 and u'(c0) = 0. *

We sometimes denote by p(q) the marginal surplus function u/(g), the inverse demand
function, and by ¢?(p) the direct demand function, the inverse of p(q), where p is the U.E

price.
Coal U.E production

Producing U.E from coal requires capital and other inputs together with coal. We
assume that the C.U.E production function is a Leontief one and without loss of generality
that there is only one input other than capital and coal, hence the following Assumption
A2

Assumption A. 2 The C.U.E production function reads:

¢ = min{K,v,7z}, K,v,>0and1>7>0, (2.1)

where x, K,v are respectively the coal, the capital and the other input, all measured in

enerqy units.

The assumption 7 < 1 means that some energy is lost in the transformation of coal
into U.E. In what follows we mainly use its inverse r = 1/F > 1, the quantity of coal

energy required to produce one unit of U.E.%

3For any function f(z) defined on X C R we denote by f(z7) and f(Z7),Z € X, respectively, the
limits lim, )z f(z) and limgqz f(z) when such limits exist.

4 Admittedly we need only that u/(0%) be "sufficiently" high.

5Tt is well known that the energy is constant. Thus by energy loss we mean that some part of the

chemical energy of coal is transformed into energy improving the surplus of the final users, the remaining

being mostly dissipated in useless heat.



We denote by ¢, the unitary cost of the input v, assumed to be constant through
time. The capital K is dedicated to the production of C.U.E without valuable use outside
the C.U.E industry and requires a unitary maintenance cost m assumed to be constant
through time. This capital dies by lack of maintenance and cost-free scrapping. Let k(t)
be the production rate of new capital, then absent any "abrupt" reduction of the installed

capacity K (t), the capital stock dynamics satisfies the following condition:®
K(t) = k(t) —6(t)K(t), 6(t)>0, t>0, (2.2)
where §(t) is the instantaneous proportional scrapping rate.

Let cgx(k) be the production cost function of new capital. This function satisfies
the following standard Assumption A.3 where ¢} (k) and acg(k) denote respectively the

marginal and the average cost functions.

Assumption A. 3 ¢, : Ry — R, is a twice continuously differentiable function, strictly

increasing and strictly convez, with ¢,(0) = 0 and ¢}, (07) = ac,(0%) > 0.

The assumption ¢}, (0%) > 0 means that nothing can be built without some costly
input. In what follows we use the more compact notation ¢, for ¢, (0%). Time t = 0 is
the time at which the technical knowledge required to produce useful energy from coal
becomes available, that is the time of the industrial revolution (see Wrigley 1988, 2010,
and 2016).

Carbon emissions and budget constraint

Let z(t) be the flow of fossil fuel used at time ¢ and ¢ > 0 the average carbon content
of fossil fuels, measured in GtCOs per unit of z. Then the corresponding carbon emissions
flow is Cx(t). Let B(t) denote the remaining allowable cumulative carbon budget, with

initial condition B(0) = By > 0. The dynamics of B(t) are given by:

B(t) = —Cu(t) = —(raa(t) . (2.3)

Although the scarcity of the non-renewable coal reserves should be accounted for, we
assume that the initial coal reserves, we denote X (0), satisfy (X (0) > B(0), so that the
coal energy industry cannot deplete the coal reserves while satisfying at the same time the
carbon budget constraint. Then the coal scarcity issue can be neglected and no specific
scarcity rent has to be added to the opportunity cost of coal use. There is only one scarce
resource in the model, the safe storage space for carbon emissions in the atmosphere.

The carbon budget constraint replaces the traditional resource stock constraint and will

6By "abrupt" reduction at a time ¢t we mean that K(¢t~) > K(t1).



play a central role in determining the optimal trajectory of fossil fuel use and the timing

of the transition to renewable energy.

To simplify, we assume that the extraction and delivery cost of fossil fuels to the

C.U.E industry is linear in x, hence:

Assumption A. 4 ¢, : R, — R, is the linear function c,(x) = c,z, ¢, > 0.

Solar U.E production

The sites devoted to the production of solar U.E are exploited by merit order that is
by increasing marginal opportunity costs including the loss in net surplus generated by
their allocation to the S.U.E production rather than to other net surplus generating uses,
for example food production when S.U.E is biofuel. However for some S.U.E production
processes the opportunity cost is nil, for example the S.U.E production via photovoltaic
cells in desert land. Taking care that other costs than the pure opportunity loss must be
supported, we assume, denoting by ¢,(g,) the full cost of S.U.E and by ¢ (¢,) and ac,(g,)

respectively the marginal and average costs, that:

Assumption A. 5 ¢, : Ry — Ry is a twice continuously differentiable function, strictly

increasing and strictly conver, with c,(0) =0 and ¢, (0%) = ac,(07) > 0.

The rationale for ¢, (07) > 0 is the same as for ¢(07) > 0, and we use from now the

more compact notation ¢, for ¢, (07).

When the S.U.E industry is the only supplier of U.E, then the marginal surplus «'(g,)
must be equal to its marginal cost c;(g,). Under A.1 and A.5 the solution of v/(q,) = ¢ (gy)
is unique and strictly positive. We denote by ¢,, equivalently by ¢, this solution and by
p the corresponding U.E price: p = u/(§). This is the state of the energy sector at the

beginning and at the end of the fossil fuel interlude.

In order that the C.U.E production be a competitive option we must assume that
its lowest marginal cost be lower than the marginal cost of the S.U.E production when

S.U.E is the only supplier of U.E, hence:

Assumption A. 6 ¢, +rc, + pg, +m < ¢, (q), where pc), is the rental cost of the least
costly piece of C.U.E equipment valued at the social rate of discount p.

10



Discounting and Welfare

The welfare W is the sum of the net surplus discounted at a social rate of discount

p > 0, constant through time.

3 The social planner problem and preliminary results

The social planner determines a path {(q.(t), g, (%), k (t),d(t))};2, maximizing the social
welfare, that is solves the following problem (S.P):

(SP) max / [ulae(t) + 4, (8)) — (co + re)ga(t) — mE ()

qz,qy,k,0
— c(k(t)) — cy(gy(t)) Ye " dt (3.1)
s.t. B(t) = —Crq,(t), B(0) = By > 0 given, B(t) >0 (3.2)
K(t) = k(t) — §(t)K (), K(0)=0, K(t) >0 (3.3)
K(t) > (), qu(t) >0, q,(t) >0, k(t) >0, 5(t) > 0. (3.4)

3.1 Optimality conditions

For the dual variables we denote by A’s the co-state variables, by v’s the Lagrange mul-
tipliers associated with the constraints on the state variables, by 7’s the multipliers as-
sociated with the constraints on the control variables, and by n the multiplier associated
with the constraint involving both a state and a control variable. We denote —Ap the
co-state associated with the state variable B in order that Ag be positive, thus standing

as the social cost of carbon.

The current-value Hamiltonian, H, and Lagrangian, £, read:”

H = ul(g: +ay) — (co +7¢,)qn — mEK — cr(k) — ¢y(qy) — Ap(ree
+ )\K(k — 5K),
L=H+vpB+vkK +n(K — ¢:) + V2qz + Vyqy + 1k + 750

"We drop the time argument as far as no confusion is possible.

11



The first-order conditions (F.0.C.’s) are:

g_qi = 0= (g +qy) = o +7(c, +CAB) + 1 — % (3.5)
g_qﬁy = 0= v(g +q) = ¢, (¢) — (3.6)
% = 0= A = c;(k) — (3.7)
% = 0= A =% (3.8)

together with the usual complementary slackness conditions.

The co-state variables satisfy the following conditions when time differentiable:

)\B:p)\B—a—B:>)\B:p>\B—I/B, VB ZO, I/BB:O (39)
)\K:p)\K—a—K:>/\K:(p+5))\K+m—77—VK, VKZO, I/KK:O (310)

The transversality condition at infinity reads:

lim e " [Ap(t)B(t) + A K(1)] =0 . (3.11)

t—o00

3.2 Some properties of the optimal plans

Carbon rent

Under the constant average extraction cost assumption A.4 and the C.U.E industry
competitiveness assumption A.6, the initial carbon budget By must be exhausted in finite
time.® Then equation (3.9) with v = 0 implies that the shadow cost of carbon pollution

follows the standard Hotelling rule under a binding carbon constraint:
)\B(t) = )\Boe"’t, )\B0 = )\B(O), t S tB s (312)
where tp is the date of carbon budget exhaustion.

Here, A\p(t) is the social cost of carbon, expressed in dollars per GtCOs, while (Ap(t)

is the optimal carbon tax expressed in dollars per unit of fossil fuel input (e.g., per barrel
of oil).

Gross and net margins of the C.U.E industry and shadow value of the C.U.E produc-
tion capacity

8See Appendix A for a proof in the present context. The proof uses properties of the optimal paths
proven in Section ?77.
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The multiplier n is the shadow marginal current value of the C.U.E production ca-
pacity. At any time ¢t at which the C.U.E industry is active, ¢,(t) > 0 and ~,(¢) = 0, so
that from (3.5):

¢2(t) > 0 = n(t) = u'(q(t)) — [co + (e, + CAs(1))] - (3.13)

Since u/(g(t)) = p(t), the marginal surplus, 7(t) appears as the current gross margin
of the C.U.E industry when the price of the fossil fuel input is equal to its full marginal

cost, which includes the resource cost ¢, and the carbon tax (Ag(t).

Subtracting the unitary maintenance cost of capital from the gross margin yields the
net operational margin, 5(t) = n(t) — m. Then, for any time period during which the
C.U.E industry does not scrap production capacity (§(¢f) = 0), equation (3.10) may be

rewritten as:

Ak (t) = pAkc(t) = B(2) | (3.14)

where pAk is the rental price of a piece of equipment valued at Ag. Equation (3.14)
states that the shadow marginal value of the installed capacity increases or decreases

depending on whether its rental cost exceeds or falls below the net margin.

C.U.E production capital ends its active life when the carbon budget is exhausted.
Hence at the time tp, A\g(tp) = 0, since the dedicated capital becomes useless in the
absence of fossil fuel use. However, as shown in Section 4, C.U.E production capacity
begins to be scrapped before the budget is fully exhausted. During the scrapping phase
(6(t) > 0), 75 = 0, and since K(t) > 0 (scrapping requires existing equipment), condition
(3.8) is satisfied if and only if:

Ak (t) = 0.

Thus, denoting by ¢s5 the time at which the scrapping phase begins and integrating
(3.14) over the interval [t,ts], for 0 <t < tg, yields:

Mg (t) = /t ! B(r)e P Ddr . (3.15)

This means that the shadow marginal value of installed capital equals the sum of
the discounted future net margins of the C.U.E industry up to the point when scrapping

begins.
Full marginal cost of C.U.E and marginal cost of capital

In (3.5), the full cost of C.U.E appears as the sum of monetary costs ¢,+rc, in both the

C.U.E and fossil fuel supply chain, the shadow marginal cost of carbon emissions, (rAg,
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and the multiplier associated with the capacity constraint, n. The alternative expression

of n given by (3.10) allows to interpret 7 as the shadow marginal cost of capital use.

Using (3.10) for time periods during which the capital is not scrapped (4(t) = 0), we
obtain:

n = pA — A +m.

Substituting this into (3.5) results in:

(g + qy) = o +7(c, + CAp) + m + pAg — N s

where the term m + pAg — Ak is the full marginal cost of capital use. Using capital
requires incurring a maintenance cost m. To this must be added its rental cost pAg, from
which must be subtracted its capital gain or loss Ak. This is a local arbitrage condition

under the assumption that the price of equipment is Ag and the social rate of discount
is p.

Assuming that the maintenance cost m is borne by the user, suppose that the rental
payment at time ¢ + dt over the interval [t,¢ 4 dt] is some amount g(t 4 dt) less than
[PAK — }\K]dt. Then the owner would prefer to sell the equipment at time ¢ for price
Ak (t) and earn return pAgdt. Under the rental option, the owner’s asset value at t + dt
becomes g + Agdt + g(t + dt), whereas under the sale option it becomes (1 + p) Ak ().
If g(t + dt) < (pAx — Ak )dt, the owner would demand a sale price higher than Ax (t).

We will show in the next section that Ag(t) is initially negative up to the point
when the C.U.E industry begins to decline. Thus, the full marginal cost of capital use is
initially greater than m + pAg(t). At this stage, capital is relatively scarce, given the size
of the remaining carbon budget and the amount of fossil-based U.E still to be produced.
However, over time, this scarcity decreases. Once the carbon budget becomes sufficiently
tight, capital is no longer a binding constraint, its shadow value \x drops to zero, and

the marginal cost of using capital reduces to the maintenance cost m.
Benchmarks and useful auxiliary functions

The following functions summarize some necessary relations between the C.U.E in-
dustry capacity, K, the production of S.U.E, ¢,, the total production, ¢, and the sum of

the shadow value components of the C.U.E industry marginal cost, which we denote by
1%
M = C 7“)\ B + n.

These functions will be repeatedly used to characterize the optimal paths.

First note that there exists a critical level of C.U.E production capacity below which

14



the S.U.E industry is active and above which it is no longer competitive. Let us denote
this critical level by K, defined as the solution of v'(K) = ¢, hence K, > g,.

Let us denote by ¢,(K) and ¢(K) respectively the optimal production of the S.U.E
industry and the total U.E production as functions of the C.U.E production ¢, = K:
J(K) = K + ¢,(K). From the definition of K, and the F.O.C. (3.6) with respect to g,

we get:
(=g, K=0
0 #Qeeum0<K<@
,(K):{ €(0,4,), 0<K<K, %;
0, K, <K
| =0, K, <K
(3.16)
(=4, K=0
. #%EQJLO<K<&
AK):{ €@, K,), V<K<K, . o=
1, K, <K
| = K, K, <K
(3.17)

Now consider the critical level of K denoted by K, for which the F.O.C. (3.5) with
respect to ¢, is satisfied when = 0 and ¢, = ¢,(K) is optimal. Then K, solves:

U (K 4 4y (K)) = ¢, + re,.

Since p must be non-negative, the function fi(K) — the value of u satisfying the F.O.C.

— is decreasing on [0, K,):

i) If ¢, +rc, > ¢, then K, < K, and

d/fl u//C//
. _ y
A(K)>0, 0<K<K,, and K= T <0. (3.18)

i) If ¢, > ¢, +r¢,, then K, < K, and

d/l ri,,<o, 0<K<Ky

MK)>0, 0<K<K, and —= : 3.19
(%) ! dK W' <0, K,<K<K, (3.19)

Note that ¢,(K), ¢(K), and a(K) (if K, < K,) are not differentiable at K, (see
Appendix A):

dg, dg, dq dq
“y -} d — — 2
dK | k=K <K K=K’ MUK K=Ky <K K=K (3:20)
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dK |k=K; ” dK |k=K; (3:21)

We now show how these functions are used to determine the qualitative properties of

the optimal paths.

4 Optimal paths

All the optimal paths include four main phases: an initial phase of C.U.E production ca-
pacity building up to some maximum K, followed by a phase of constant C.U.E capacity
at this maximum K, before entering a third phase of scrapping induced by the increasing
scarcity of the carbon budget, and ending when the carbon budget is exhausted and the
energy system returns to its initial renewable-only regime—the fourth and final phase.
According to whether K is larger or smaller than K,, the S.U.E sector is either tem-
porarily closed or permanently kept active when the C.U.E sector reaches its maximum
development. In the former case, the initial phase of C.U.E industry expansion includes
two sub-phases: a first during which the S.U.E industry is active but declining, and a sec-
ond during which the S.U.E production rate is nil. Symmetrically, the third phase—the
scrapping phase—also includes two sub-phases: a first one during which the S.U.E sector
remains inactive, and a second marked by the revival of S.U.E production. The sequence

of phases and sub-phases, along with date notations, is summarized in Figure 1°.

We first characterize the three phases of the active C.U.E industry, and next we
determine how these phases unfold in the (K, B)-plane and examine how the paths depend

on the size of the initial carbon budget By.

4.1 Expansion, stabilization and decline phases of the C.U.E in-
dustry

Under assumption A.6, which ensures the competitiveness of the C.U.E industry, the

1'10

initial phase must involve investment in C.U.E production capital.”” Proposition 1 shows

9Temporal structure of the four-phase optimal path under binding carbon constraints with K, < K.
The horizontal axis measures time from initial conditions (¢ = 0) through complete fossil phase-out
(t = tp). Vertical markers indicate phase boundaries: ¢, (solar displacement), ¢ (peak capacity),
ts (scrapping initiation), ¢, (solar revival), and ¢p (budget exhaustion). The expansion phase [0, )
subdivides into periods with active solar [0,¢,) and complete displacement [t,,#x). The stabilization
(plateau) phase [tx, ts) maintains constant capacity K. The Hotelling (decline) phase [ts,t5) subdivides

into initial decline without solar [ts,t,) and final decline with solar revival [t,,¢p).
10Tf not, given the stationarity assumption of the model, the C.U.E industry would never de-

velop—contradicting its assumed competitiveness.
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Pure Solas
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(t>tp)
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Ly y 32}
Expansion Stabilization Hotelling
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Figure 1: Optimal Transition Timeline. Temporal structure of the four-phase opti-
mal path under binding carbon constraints. The "Pure coal" brace spans the fossil-based
interlude from initial development (¢ = 0) until budget exhaustion (¢ = t5). The subse-
quent "Pure Solar" phase represents the stationary renewable steady state attained once

fossil capacity is fully phased out.

that this phase features a decreasing investment rate, and must be followed by a phase
of constant capacity. Proposition 2 states that this second phase—characterized by con-
stant C.U.E capacity—must extend until the time at which A (¢) = 0, provided no new
round of investment occurs. Proposition 3 characterizes the decline of the C.U.E indus-
try’s production capacity during the capital scrapping phase, which is triggered by the
progressive tightening of the carbon budget constraint.

Proposition P. 1 Ezpansion phase of the C.U.E industry

Let [0,tg) be the initial time interval of investment in C.U.E production capacity:
k(t) >0, t € [0,ty) and k(t) =0, t € [tg, tx, +T') for some T > 0. Then:

Ak(t) <0, te(0,ty), and limAg(t) =c. (4.1)

Tty

Furthermore, this initial phase is followed by a phase [tg, ti, + A), A >0, of constant
dustry capacity:
K(t) = K(tg), tE€ [ty tx + Al (4.2)

Proof: Assume that [0,%;) is followed by a scrapping phase during which §(¢) > 0.
Then part of the capital built at ¢, — 6, & > 0 and small, with marginal cost at least

¢, > 0, would have an infinitely short life, making cost recovery impossible.

First consider the case K (t;) < K, so that dfi/dK is continuous on [0, K (tx)]. Assume
there exists t; € (0,t;) such that )'\K(tl) > 0. We show this implies )\K(t) > (0 for all
t € (t1,tx), which leads to a contradiction.
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At ¢y, since 0(t) = 0, from equation (3.14) we have:

Ak (t1) = pAk(t) — B(t1) = 0.
Since 5(t) = n(t) — m, and n(t) = p(t) — (rAp(t), then:
() = ft) = CrAp(t) = t) = CroAs(t),

using the Hotelling rule for the carbon shadow price. Now, since K (t;) = k(t;) > 0, and
from (3.18) dji/dK < 0, we have fi(t;) < 0, implying 7(t;) < 0 and hence 8(t1) < 0.

Therefore, for small dt > 0:
Ak (ti+dt) > Ak (t), Bt +dt) < B(h),

implying:

By repetition, Ag(t) > 0 for all t € (t,t;), and since k(t,) > 0, from (3.7), Ag(t;) =
¢, (k(t1)) > ¢, hence:

. /
grtil Ak (t) > ¢

But since k(t) = 0 for t € (tx,tx + A), then by (3.7) Ax(t) < ¢, on this interval. A
discontinuous jump down in Ax at t; would contradict its continuity (Seierstad and
Sydsaeter, 1987, Theorem 16, p. 244).

Now consider the case K(tz) > K, and let ¢, be the time such that K(t,) = K,. At
K = K,, dii/dK has a downward jump (see 3.21). If t; € (Z,,t;), the same argument
applies since dji/dK is continuous over (K, K(ty)).

If t; € (0,t,), apply the argument on (tl,zy), yielding Mg (t,) > Ar(t1) and B(t,) <
B(t1). Continuity of A\ and B implies Ak(t,) is well-defined and > 0, allowing the
argument to continue over (t,,t;) and again yield:

. /
lim Ak (t) > ¢,

which contradicts the necessary continuity at t;.! u

Corollary 1 During the initial phase [0,t;) of investment in C.U.E production capacity,
the speed of capital accumulation decreases from a positive value at the start to zero at
the end of the phase.

Proposition P. 2 Phase of mazximal expansion and stabilization of the C.U.E
industry

UThe jump in dji/dK at K = K, implies a jump in Ag(t), not in Ag(t).
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There exists an extension [ty ts) of the time interval [tg,t; + A) during which K(t) =
K(ty), such that the net operation margin B(t) decreases over this interval down to zero
at time ts. Provided that B(t) = 0 for t € (ts,tp5), the shadow value of capital Ak (t)

decreases over this interval down to zero at time tg.

Proof: During this phase, ¢(t) = G(K(t)) is constant and
Bt) = n(t) —m = u'(q(t) = [co + r(c, + CAp(t)) +m].

Since Ap(t) increases with ¢ due to the Hotelling rule Ag = pAp, we have ((t) < 0, so
there exists t5 such that S(ts) = 0.

Assuming (t) = 0 for t € (t5,tp) and using equation (3.15), since Ak (ts) = 0, we get:
ts
Melt) = [ 8(r)e O
t

<o [
— B@)(l — e*P(tsft))

= =h(t) >0
: 0
Now from equation (3.14):
A (t) B(t) B(t) pe—rts—)
A =P - = 0. 43
@ LT ST ) T Tt s S (4.3)
Thus, Ak (t) < 0. n

Proposition P. 3 Hotelling phase of capital scrapping
If B(t) =0 fort € (ts,tp), then:

a. The final phase of C.U.E production follows the Hotelling path under a carbon
budget constraint. The marginal cost of U.E is equal to its full marginal cost, p(t) =
ey +r(c, +CAp(t)) +m, with p(tp) = p.

b. This phase is characterized by scrapping of the C.U.E capital stock. Capacity K (t)
decreases from K(t) at time ts down to zero at tp, with K(t) = G,(t). Simultaneously,
the carbon budget B(t) decreases from B(ts) to zero at tg, with B(t) = —(rqu(t).

Proof: If 5(t) = 0, then n(t) = m, and the F.O.C. (3.5) reduces to:

W' (q(t) = p(t) = ¢, + r(c, + (Ap(2)) + m.

19



Differentiating with respect to time gives:

o CrpAg(?)
40 = e

<0, te (tg,tB).

From K(t) = ¢.(t) = q(t) — ¢,(K(t)), and using equation (3.17), we get:

o q(t) < 0, K(t) > K, . i (D) . u
G=(t) = K(t) = . Zéﬂ/dlf_ <0, Kit) <K, =0t~ 44)
o K(t) > K, ;
W) = By je), K@) < K, 439)

dK

Let 7, be the time at which K(t) = K, if K > K,. Then:

Q:(,) = K(&) > K(t)) = @.(f)), () <o), d4(t) =0<q(E).  (46)

4.2 The phase diagram in the (K, B) plane

Our objective is to characterize the optimal evolution trajectories of the coal and solar
energy industries for a range of possible levels of the carbon budget. We want to identify
the critical configuration of the carbon budget and the coal energy conversion capital
such that the industry should start immediately to scrap its capacities when having to
comply with the carbon budget. We want also to assess the carbon budget-coal energy
production capital combination for which the industry should not try to expand its ca-
pacity and just maintain it for some time, before having to scrap its capacities when the
remaining carbon budget becomes tight. We adopt a geometric approach picturing these
critical configurations by means of a phase diagram in the carbon budget-coal energy
capital plane. The critical configurations are described by two frontiers in this plane,
we call respectively the Stabilization-Scrapping frontier and the Expansion-Stabilization
frontier. To build the diagram we proceed backwards, first characterizing the Stabiliza-

tion—Scrapping frontier, and then the Expansion—Stabilization one.

4.2.1 The Stabilization—Scrapping or Hotelling frontier

Let K5 and Bs be, respectively, the C.U.E production capacity and the remaining carbon
budget at the beginning of the Hotelling phase. We denote by Kpy(Bs) the frontier
function: Ky (Bs) is the C.U.E capacity required to follow the Hotelling path starting at
ts with a carbon budget Bs.

20



Because ¢,(t) is decreasing during the Hotelling phase, maintaining a capacity greater
than current production would be unnecessarily costly. Hence K (t) = q.(t) fort € (ts,1p),
and Kp(Bs) is the initial C.U.E production rate consistent with starting the Hotelling
path from Bj. If K5 > Kpy(Bjs), then the difference must be scrapped immediately—an

outcome ruled out along optimal paths.

Note that the graph of Ky (Bs) is the Hotelling path itself: any point (Ky(Bj), Bj)
attained at some time t’' corresponds to a point on a Hotelling trajectory, regardless of
whether it is reached as the end of a stabilization phase or as part of an ongoing Hotelling
path.

Let Ap, be the value of the carbon shadow price Ap at time 5, and I'y(Ag,) be the
duration of the Hotelling phase. Given that at carbon budget exhaustion the U.E price
must equal p, we solve:

o +rle, + (Ap e ] +m = p,

implying:
dl'y 1 -
= — <0, A, €(0,\g), lim I'y = +o0, lim I'y =0, 4.7
d)\35 p)\B5 Bs ( B> Apgl0 " /\B5T5\B " ( )
where \p = Z=(evtre,tm)

(r
For Ag, € (0, S\B) and t € [ts,ts + 'y, define the Hotelling price path:
p(t, Ag;) = o + 7c, + CApye? )] + m.

Let q(t, Mg, ), ¢(t, AB,) and q,(t, Ag,) be the corresponding U.E, C.U.E, and S.U.E pro-
duction rates. Since K (t) = ¢.(t, Ag,), the F.O.C. (3.5) becomes:

ul<q(t7 )‘Ba)) = u/(qar(tv >‘Ba) + Qy(ta >\B5))
= ul<Q$(tv )‘Ba) + ij(QJ?(t? /\B(s»)
= ¢y +7rle, + (e + m.

Differentiating with respect to A, and using the chain rule:

dq(t,Ag;) 1 Oq

— b e (ts,t5 +T). 4.8
8)\35 p)\B5 ot ( 6> b8 + H) ( )
From this and (4.4), (4.5) we get:
0q.(t, A 1 0gy o
Gl As;) _ o <0, te(tsts+Ty), t#1E,if qlts) > K, (4.9)

8)\36 N p)\Bé ot

a(];(; (1?317 )‘Ba) > aqx(fg—;a )\Bé)
O\n, ONpy

if qu(ts) > K, (4.10)
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And for g,

0, te (t(g,{y), if qm(t(;) > Ky,
>0, te (tyts+Tn), if ¢ (ts) > K, (4.11)
>0, te (ta,t(; + FH), if qx(t(;) < Ky.

Ogy _ 1 0y _
8)\35 p)\B(S (‘%

Hence: _ _
aqll (t;, >‘Ba> < aq?; (tg—;’_v )‘35)

O\g, g,

if ¢, (ts) > K,. (4.12)

Determination of the optimal value of Ap;, given Bs, and of the slope of Ky (Bs)

The optimal value of \p,, given By, is the one that satisfies the carbon budget ex-

haustion condition:

ts+Tu(ABg)
C’r’/ ¢ (t, A\p;)dt = By . (4.13)
ts

Let us denote (slightly abusing notation) by Ap,(Bs) the shadow cost of carbon at
the beginning of the Hotelling phase as a function of the available carbon budget Bs at
the same date. Differentiating (4.13) and using the fact that q,(ts + T'u(Ag,), Ag;) = 0,

we obtain:

s, 1

= <0. (4.14)
dBjs Cr L';”FH()‘B(S) —8%(;;:‘;6)&
Hence, the slope of the Hotelling frontier function is:
dKH aQ$ (téa )\Bg) d/\35 . =
= . >0, Bs+#B f K, < Kgyp - 4.15
dB; Do, dB, O Be# B K, P (4.15)
And:
Jlslgrﬁ) Ky(Bs) =0, and éggo Ky (Bs) = Keup < 400 . (4.16)

Here, Bs, is the carbon budget such that Ky (Bs) = K, if K, < Kqup, and Kg,, solves:

u'(K 4 4y (K)) =c, +re, +m,

i.e., Ky, is the asymptotic level of C.U.E capacity as the carbon constraint becomes

non-binding (i.e., Ag, = 0 or Bs — +00).

Clearly, either K, < Kgp or K, > Kg,, may occur. In the case K, < Ky, the
function Ky (Bs) is not differentiable at Bs = By, and from equations (4.10) and (4.15)

we get:
dKH(ngJ) _ dKH(Bgy)
dB; dBs '

(4.17)
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The frontier Kp(Bs) is illustrated in Figure 2 for the case K, < Kyp.

Would the initial state of the system be a pair located above the frontier Ky (Bs),
such as (K’, B') in Figure 2, then the optimal policy would be to scrap the excess capital
K'— Ky (B') at once, then move along the Hotelling frontier from (K (B’), B') down to
(0,0). However, such a state (K’, B') is never attainable starting from K(0) = 0 for any
initial carbon budget Bj.

4.2.2 The Expansion—Stabilization frontier

We proceed backward, starting from the state (K5, Bs, Ap,) at the end of the stabilization
phase: where K5 = Ky (Bs), Ap; = Ap,(Bs), and K5 = K = K;, = K(t;,). Since C.U.E
capacity is constant during the stabilization phase, K(t) = K for t € [t;,ts], carbon

emissions are proportional to the phase duration I'g = t5 — t.

Let By be the carbon budget at the beginning of the stabilization phase. Then:
Bk = B(s + CT[_(FS.
Let Kg(By) denote the frontier function. Then:

KH(B(S) =K = K5<B(; + CT’I_(Fs)

We now show that the duration I's is an increasing function of K, so in the (K, B)-
plane, the horizontal distance between Ky (B;) and Kg(By) increases with K, as illus-
trated in Figure 2, provided K < K.y < f(sup.

Arbitrage condition for the last installed C.U.FE capital unit

For capacity to remain constant after the investment phase, the discounted sum of
profit margins during the stabilization phase must equal the construction cost of the
last capital unit, i.e., ¢, by Proposition 1. Hence, the arbitrage condition for optimal

duration T's, optimal carbon shadow price Ag,, and capacity K reads:

I's
/0 {0/ (4(K)) = [co +7 (¢, + (Ape TS +m] } e 7dr = ¢, (4.18)

Since Ap, is determined by the optimality condition at the transition to the Hotelling

phase, where A = 0, we have:

g,
dK

Crag;, = v (G(K)) — (cy +1c, +m) = < 0. (4.19)

23



K
K, KB
( K/, B/) H( 5)
(K//’ BH)

- / /— Ks(B)
Ky
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Figure 2: Phase diagram in the (K, B) plane. Optimal trajectories in the capital—
carbon budget plane when K, < Kuax. The vertical axis is the fossil capital stock K
and the horizontal axis is the remaining carbon budget B. The solid loci are thresholds:
Kg(B) separates expansion from the plateau, Ky (B) is the Hotelling boundary where
scrapping starts (Ax = 0), and K, is the solar-displacement threshold (horizontal line).
Arrows indicate the direction of optimal motion. Starting from (K, B) = (0, By), the
economy expands: K rises while B falls. Hitting Kg(B), the optimal path enters a
plateau: K stays constant while B continues to decline. After crossing Ky (B), scrapping
begins and the system contracts, with both K and B falling until it reaches (0,0) when
fossil production stops and the budget is exhausted. The diagram highlights a central
implication of the model: optimal paths can feature long plateau phases with constant

fossil capacity, unlike the monotone depletion paths in standard Hotelling settings.



Substituting Ap, (K) into (4.18) yields:

I's B
{v'(G(K)) = (cy +rc, + m)} e 7Tdr — (rap,(K)Tge s = (. (4.20)
0

Differentiating this with respect to K, we get:

0= {'(G(K)) = (co + e, +m) — CrAp,(K) + (rpip,(K)Ts} e ?5dl's
+ { /O - {u"((j(}_())ﬂ _¢r dAB& —ﬂrs} dT} e

Using (4.19), we simplify the second line to:

_dg ([T _
W (G(K))——= | (e —eTS)dr - dK. (4.21)
Therefore: -
T Ma(KNSL [F5(e—PT — e—Pls)(
s R o
dK —CrpAp; (K)Dge=Ts
From: A5, — By o
Kk — Ds =l s
—_—= K—+Tg| >0
iz qr { =t S] ,
and since 422 > 0 (from 4.15 with K = Ky), we conclude:
dBy(K) d(By, — Bs)
— >0 d — > 0. 4.23
dK . dK (4.23)

However, this holds only as long as there exists a pair (K,I'g) satisfying (4.20). We
now show that this is true only for values K < Kpay, where Koy < l_(sup, the asymptotic
maximum of the Hotelling frontier. Let us assume that e ”'s \ B; = A, =~ 0 because I'g is

very large, so that the instantaneous net margin in the C.U.E industry is approximately:
W' (G(K)) — [e, +re, +m]

throughout most of the stabilization phase. The capitalized value at time t; of any

equipment unit is thus no greater than:

; S{U/(Q(K)) — ey + e, +m]}te dr.

At the limit when I's — oo, the arbitrage condition (4.20) becomes:

u'(G(K)) = [ev + re, +m] = pc. (4.24)

25



Let Kpax denote the unique solution to (4.24). Then:
Kmax < Ksup7

and the arbitrage condition (4.20) can be satisfied if and only if:

K < Kpox '2
To conclude:'?
Ks(By) < Kuax, Cfl—g*: > 0 if By # By, and K, < Kyax, (4.25)
g:ilo Ks(By) =0, éi?olo Ks(Bi) = Kuax, (4.26)

where By, solves Kg(By) = K, when K, < K. In this case:

dKS(B,jy) _ dKS(Bk_y)
dBj, dB,

(4.27)

If the initial state lies below the Hotelling frontier K5 (Bs) but above the horizontal
line Ky, as in point (K", B”) in Figure 2, then the optimal policy is to use the available
capital K", emit (r K" units of carbon per unit time, until the system reaches a point on
the frontier Ky (B) = K”. From there, it follows the Hotelling trajectory down to (0, 0).

During this preliminary phase, the shadow marginal value of capital g is strictly pos-
itive, starting below ¢}, and decreasing to zero as the system reaches the frontier. However,
such a state (K”, B”) is never encountered along an optimal trajectory beginning from
K(0) = 0, regardless of the initial carbon budget Bj.

4.2.3 Critical carbon budget when K, < K pax

If K, < Kpax, there exists a unique expansion path during which the C.U.E industry
accumulates capital and reaches the Hotelling frontier exactly at K,. Let By, be the
initial carbon budget corresponding to this path (see Figure 2 ). This is the critical
carbon budget below which the optimal path retains an active S.U.E industry at all

2Recall that Kgyp solves v/ (§(K)) — (cy +rc, +m) =0, 350 Kiax < Ksup. The gap increases with ¢},
ie., dKpax/dc), < 0.

BFor very small Bj, extending the duration of the stabilization phase and choosing a sufficiently
small C.U.E production rate, the U.E price can be kept close to p > u/'(G(Kmax)). As in the previous
argument, the arbitrage condition (4.20) is satisfiable if p — (¢, + rc, +m) > pc},, which holds strictly

under Assumption A.6. Thus, a maximum feasible capacity Ky.x > 0 exists. This also implies that
HmeLO Fs'(Bk) > 0.
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times, and above which the S.U.E sector is temporarily shut down during the interval
(t,, t,) which includes the maximum capacity plateau of the C.U.E industry: t, <ty and
ts < Ey < tp.

The following proposition summarizes the structure of the optimal energy transition
path.

Proposition P. 4 Optimal path

Starting from a fully renewable energy system with q(0) = ¢,(0) = ¢ and p(0) = p, the
optimal transition unfolds as follows:

1. Ezpansion phase: During [0,ty), the capacity of the C.U.E industry increases, with
K(t) = k(t) > 0 and K(t) = k(t) < 0. C.U.E production q,(t) rises, S.U.E production
qy(t) declines, but total U.E production q(t) increases, and the U.E price falls.

- If the S.U.E industry is highly competitive (K, > Kmax ), it remains active regardless
of the initial carbon budget By, though it shrinks to its minimum operational level by
the end of the phase. - If the S.U.E industry is only marginally or non-competitive
(K, < Kuax), its survival depends on By: - If By < By, (carbon-constrained), S.U.E
remains active throughout. - If By > By, (less constrained), the C.U.E sector becomes

dominant and the S.U.E industry is shut down before the plateau phase.

2. Stabilization phase: During [tg,ts5), the production capacities and flows of C.U.E
and S.U.E are constant. This phase marks the plateau of mazximum fossil-based energy
output and minimal S.U.E contribution. It also corresponds to the lowest U.E price along

the transition path.

3. Decline and return to renewables: During [ts,tg), the final Hotelling phase unfolds:
- Carbon emissions (rq,(t) decline, - The carbon budget B(t) is gradually depleted, -
C.U.E production and capital are phased out, - The U.E price increases as fossil inputs
are tazed at rising shadow cost (Ag(t), - S.U.E production either increases or revives if
it had been shut down.

However, S.U.E output cannot fully compensate for the fossil phase-down, leading to
an overall decline in total U.E production. The phase concludes when B(tg) = 0 —
1.e., the carbon budget is exhausted — and the economy permanently reverts to its initial

renewable-only regime. The fossil-based interlude ends.

The trajectories of energy quantities and prices for the case of a marginally competitive

S.U.E industry and large carbon budget are illustrated in Figure 3.
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Figure 3: Prices, quantities, and shadow values along the optimal transition. The figure plots
(i) the energy price p(t) and carbon tax 7(t), (ii) energy quantities (with fossil output ¢,(¢) = K(t) and
renewable output g, (t)), and (iii) the shadow value of fossil capital Ax(t). The energy price declines
during capacity expansion, remains flat during the plateau (with ¢, (t) = K), and rises during phase-out;
the carbon tax grows at rate p throughout. Renewable production is fully displaced over [Lwt(;) and

resumes as fossil capacity is retired, while A (¢) falls to zero when scrapping begins at ;.
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4.3 Determination of the optimal path

We now show how to use the frontier function Kg(By) and the phase duration functions
[s(K) and T (\g,) to construct the optimal path.!*

We first consider the cases where either K. < K, for any By, or K, < K pax and

By < By, for which the S.U.E sector remains active along the entire optimal path.
Ezpansion phase [0,1):

From the F.O.C. (3.5) with ¢,(¢) = K(t), ¢.(t) +qy,(t) = G(K(t)), and v,(t) = 0 (since
q.(t) > 0), we have:

' (G(K (1)) = ¢, +1(c, + CAp,e™) +n(t). (4.28)

From the co-state equation (3.10) with §(¢) = 0 and vk () = 0 (since K (t) > 0):
0(t) = —Ax(t) + pAx(t) +m,
so substituting into (4.28) yields:

U (GE (1)) + Ax(t) = pAR(E) = ¢y + 7(c, + (Apge™) +m. (4.29)

From the F.0.C. (3.7) with ~(t) = 0 and k(t) = K(t), we obtain:
Aic(t) = (K (8)) = Aic(t) = (K () K (1),
and substituting into (4.29):
W (G (1) = pe (K (1) + LK () K (1) = ¢ +1(c, + (Apge™) +m. (4.30)

For a given Ap,, denote by K (t, Ag,) a solution to (4.30) with initial condition K (0) =
0, and let t;(Ag,) be the time such that K (t;) = 0, i.e., when \g(t) = ¢

In order for K(t,Ap,), t € [0,tx(Ap,)], to represent the optimal expansion phase, the
system’s state at t;(Ap,) must lie on the expansion-stabilization frontier. That is, the

optimal value A3 = solves:

K(tx(ABy), AB,) = K

tk(ABg)
Bo—¢r / K (t A, )t | (4.31)
0

“These functions were constructed backwards from the carbon budget exhaustion point B(tg) = 0,
and are independent of what occurs during the initial expansion phase. Therefore, to determine the full

optimal trajectory, it remains to solve for the initial expansion dynamics given Kg(By), I's(K), and
Tu(Ag;)-
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Let A3, be the unique solution. Then the optimal shadow value of capital A} ()
during the expansion is given by:

Ak (t) = A (K(t, Ag,)),
where 75, (t) = 0 and k(t) = K(t).
Stabilization phase [ty ts]:
During this phase, the C.U.E industry capacity remains constant:
K(t) = K = K(t(\,), A,

The optimal duration I's(K) solves the arbitrage equation:

s
/ [u’(cj(K)) — (cv +r (gm + C)\*Boep[t’“(ABoHﬂ) + m)} e Tdr = ¢,.°
0

Over this period, the shadow value of capital Ak (t) declines from Ak (tx) = ¢}, down
to Ak (ts) = 0, where:

ts = tp(Ng,) + Ds(K).

The carbon budget remaining at this time is:

te(Xp,) o
Bs = By — (r / K(t,)\go)dt—l—FS(K)K )
0

Hotelling phase |[ts,tg]:

In the final phase, C.U.E capacity is scrapped and energy production shifts back
toward renewables. C.U.E production K (t) satisfies:

W(G(K(t) = ¢y + 1 (cy + (N ) +m.
Let Kp(t, A\p,) denote the solution. The phase lasts:
Tr(Xp,) = FH()\EOGP[%(A%OHFS(KH),

and ends at:
tg =1ts + FH()‘*B(S)

The carbon budget is exhausted exactly at this time:

te(A5,) o 23]
Cr / K(t, Xy, )dt + Ts(K)K + / Ki(t, Ny )dt| = B, (4.32)
0 ts

15This condition equates the present value of operational margins with the marginal construction cost
of C.U.E equipment.
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This identity follows directly from the condition that Aj solves (4.31). Hence, the
path {K(t), B(t)}icjo,ts) corresponds to the optimal trajectory starting from (0, By) in
the (K, B)-plane.

In the case Kyax > K, and By > By, (see Figure 2), the function ¢(K) is not
differentiable at K = K, (cf. (3.17)), and the composite derivative u/(§(K(t))) changes
slope at the threshold K (t) = K, occurring during both the expansion phase at time £,
and the Hotelling phase at time .

The technical derivations for these threshold effects are presented in Appendix A.

4.3.1 Budget exhaustion

The two—dimensional phase diagram in the (K, B)—plane provides a useful geometric sum-
mary of the optimal trajectories. Figure 2 illustrates the Hotelling frontier Ky (B), the
expansion-stabilization frontier Kg(B), and feasible trajectories starting from (K, B) =
(0, By). Any point above the Hotelling frontier Ky (B) would imply excess capital that
must be scrapped immediately; such points are never reached along optimal paths start-
ing from K(0) = 0. The expansion-stabilization frontier Kg(B) marks the points at
which the present value of operating margins during a potential plateau just equals the
construction cost of marginal capital. Along the optimal path, the economy moves from
(0, Bp) into the region between Kg and Ky, then along K¢ during the plateau, and finally

along Ky as capacity is scrapped and the carbon budget is exhausted.

The proof that the carbon budget must be exhausted in finite time and that fossil
exploitation must end in finite time is illustrated in Figure 4. If a positive budget remained
at the end of the fossil era, the planner could profitably substitute fossil energy for
renewables over a small interval, while maintaining the same total useful energy; this

would violate optimality.

5 Calibration

The calibration is anchored to the global energy system around 2020. Useful energy
is ¢(t) = q.(t) + q,(t), where ¢,(t) is coal-based useful energy and g,(t) is solar-based
useful energy (EJ/yr). Coal-based output requires fossil-specific conversion capacity K (t)
(EJ/yr). Cumulative emissions are limited by a remaining carbon budget B(t) (GtCO,)
with B(0) = B,. Welfare is discounted at the constant social rate p (yr='). Coal-
sector parameters are mapped to coal-fired power generation, which combines high carbon
intensity with long-lived dedicated capital.
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Figure 4: Optimality of complete carbon budget exhaustion. The solid curves depict
a candidate optimal path that leaves unused carbon budget at tg. The dashed curves
show a locally modified path that reallocates energy production toward additional fossil
use while holding total useful energy constant. Because marginal renewable costs exceed
fossil marginal costs when the carbon shadow price is positive, the modified path delivers
the same utility at lower cost, contradicting optimality. Therefore, any optimal path

must exhaust the carbon budget exactly and terminate fossil use in finite time.

5.1 Functional forms

Instantaneous surplus from useful energy ¢ > 0 is

Ay 1—
= 7 >0 5.1
ug)=7—>9¢77 >0 (5.1)

which implies inverse demand p(q) = v'(q) = ¢~ 7 with constant elasticity —1/o.

Solar supply cost is increasing and convex:

min 5
Cy(qz;) = cy dy + 5q12n (52)

where ¢ ($/GJ) is the marginal cost at the lowest-cost sites and ¢ ($/GJ?) governs the

slope of marginal cost with deployment.
Investment in fossil-specific capacity faces convex adjustment costs:
min W9
Cr(k) ="k + §k ) (5.3)

where k is the investment flow in coal-specific capacity (GJ-cap/yr?), ¢ ($/GJ-cap)
is the marginal cost at £ = 0, and w governs curvature. This reduced form captures

bottlenecks in specialized inputs, construction, and permitting (Sovacool et al., 2014).
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Table 2: External parameters

Parameter Symbol Value Unit Source

Social discount rate p 0.03 yr—t Nordhaus (2017); Drupp et al. (2018).
Carbon budget By 1,150  GtCOq IPCC (2021).

Carbon intensity ¢ 0.095 tCO2/GJ Bituminous coal; International En-

ergy Agency (2020a).

Fuel—capital ratio r 25 — Reciprocal of 40% efficiency; Interna-
tional Energy Agency (2020Db).

Extraction cost Co 1.8 $/GJ Global average mine-mouth cost.

Variable O&M Co 42 $/GJ Non-fuel operating cost; Lazard
(2021); U.S. Energy Information Ad-
ministration (2021).

Fixed O&M m 12.0 $/GJ- Derived below; U.S. Energy Informa-
cap/yr tion Administration (2021).

Reference energy q 580 EJ/yr Global primary energy, 2020; Interna-
tional Energy Agency (2021).

5.2 External parameters

Table 2 reports parameters fixed from external sources. The baseline discount rate p =
0.03 lies between prescriptive and market-based values and is close to the median in expert
surveys (Drupp et al., 2018); Section 5.7 reports sensitivity over p € [0.015,0.05]. The
baseline carbon budget By = 1,150 GtCO5 matches the IPCC ARG6 estimate for roughly
1.75°C with 50% probability from 2020 onward (IPCC, 2021, 2022). Sensitivity in By
addresses remaining budget uncertainty (Rogelj et al., 2019).

Fixed O&M is converted to energy-flow units as

F

where F' is fixed O&M ($/kW-yr), H is annual hours, ¢ is the utilization rate, and e is
the energy conversion factor (GJ/kWh). Using F' ~ 31.5%/kW-yr, H = 8,760, ¢ = 0.65,
and e = 0.0036 gives m ~ 12$/GJ-cap/yr.

5.3 Internal parameters

Table 3 reports parameters chosen to match aggregate price and quantity moments around
2020.
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Table 3: Internal parameters

Parameter Symbol Value Unit Calibration target

Utility curvature o 145 — Elasticity ~ —0.69; Labandeira et al.
(2017).

Utility scale u 28,140 — p(G) ~ 28%/GJ at 580 EJ /yr.

Min. capital cost ¢ 20.0 $/GJ-cap Annualized coal plant cost; Lazard
(2021).

Capital convexity w 0.5 — Approx. 40% cost increase when build

speed doubles; Sovacool et al. (2014).

Min. solar cost c;nin 5.0 $/GJ Best-site PV; International Renew-
able Energy Agency (2021).

Solar convexity £ 0.012 $/GJ? Cost-deployment gradient at g, ~
140EJ /yr.

Demand. The curvature parameter ¢ = 1.45 implies an elasticity of —0.69, consistent
with meta-analytic estimates of aggregate energy demand (Labandeira et al., 2017). The
scale parameter o, = 28,140 sets p(q) ~ 28$/GJ at ¢ = 580 EJ /yr.

Fossil capital. The zero-investment marginal cost ¢ = 20$/GJ-cap is inferred from
overnight coal plant costs (about $3,700/kW), annualized over a 40-year life with a 6%
capital recovery factor and mapped into capacity units using ¢ = 0.65.'® The curvature
parameter w = 0.5 is chosen to match evidence that compressed construction schedules

raise total cost materially (Sovacool et al., 2014).

Renewables. The minimum solar cost c;nin = 5%/GJ matches best-site utility-scale
PV (International Renewable Energy Agency, 2021). The convexity parameter § =
0.012$/GJ* matches an average solar cost of about 15.8%/GJ at ¢, ~ 140EJ/yr in

2020.

Lemma 1 (Interior fossil use under zero carbon pricing) Let ¢ denote the renewable-
only steady state defined by v'(q) = C,(q). If

o+ 1Cy +m+ p™ < C)(q), (5.5)

then coal-based useful energy is used on an interior interval in the planner solution.

16The mapping treats K as effective annual output capacity.
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Proof sketch. At (qs,qy, K) = (0,4,0), the marginal welfare gain from a small increase in
coal-based output, financed by marginal investment in K, is »/(¢) minus the full marginal
cost in (5.5). Under the strict inequality, the deviation is locally profitable. Concavity
of u and convexity of Cy, and C} then imply an interior optimum with g, > 0 over some

interval.

Consistency check. Without carbon pricing, the marginal cost of coal-based useful
energy is
CoF+TCp +m 4 pct™ =424+ 45+ 12.0+0.6 = 21.3 $/GJ,

which is below p(¢) ~ 28$/GJ and above ¢J**. The calibration therefore supports coex-

istence of coal and solar at intermediate deployment levels.

5.4 Plausibility

Observed coal capacity additions during peak buildout episodes imply annual expansion
rates on the order of tens of GW. Under (5.3), these rates imply marginal investment
costs only moderately above ¢ and therefore generate smooth accumulation rather
than corner solutions. Coal generation costs of $100-120/MWh (28-34%/GJ) exceed
the model-implied wholesale cost because the planner problem excludes transmission,
distribution, and regulatory wedges. Stranding magnitudes in the policy exercises are
in the hundreds of billions of dollars when long-run targets tighten after substantial

investment, which is in line with integrated-assessment estimates (Luderer et al., 2022).

5.5 Numerical method

We solve the planner’s problem as a boundary-value system with states (K (t), B(t)) and
current-value costates (Ax(t), Ag(t)), where A\g(t) is the shadow value of the remaining

carbon budget (in $/GtCO,). For a candidate initial value Agg = Ap(0), we integrate

K =k — 0K, B = —(rq,, (5.6)
Ap = pAg, Mg = (p+0)Ak +m —n, (5.7)
forward from (K(0), B(0)) = (0, By). The multiplier n(t) > 0 enforces ¢,(t) < K(t). At

each date, controls (g,, gy, k,0) satisfy the static first-order conditions, complementary

slackness, and nonnegativity.

We use an adaptive Dormand-Prince RK4/5 integrator. Regime changes are treated
as events: solar inactivity (g, = 0), plateau entry (k = 0 and A\x = ¢}, (0+)), scrapping
onset (Ax = 0), and budget exhaustion (B = 0). The shooting variable Apg is updated
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by bracketing and bisection, with Newton refinement when smoothness permits, until

implied cumulative emissions equal By.

Lemma 2 (Monotonicity of emissions in \gg) Along feasible paths satisfying the static
optimality conditions, cumulative emissions fJB Crq.(t) dt are weakly decreasing in Apo,

with strict decrease whenever q,(t) > 0 on a set of positive measure.

Proof sketch. While B(t) > 0, (5.7) implies Ag(t) = Apoe*. A higher \pq raises the
effective marginal cost of coal use, (rAg(t), at each date. This lowers the static optimum
for g, and weakly reduces investment incentives through the shadow margin n(¢). Under
feasibility and convexity, these effects cannot be offset by higher coal use at other dates,

so cumulative emissions fall weakly.

Welfare along a computed path is

—ptp

[u(q) — Cy(9)]
(5.8)
where tp is the budget exhaustion date and the terminal term is the renewable-only

tp
W= / (g + ay) — Cy(ay) — Colk) — (co + ren)gs — mE] ditS
0

continuation value.

5.6 Baseline path

Figure 5 reports the optimal transition for By = 1,150 GtCO,.

Expansion (¢ € [0,31.5]). Fossil capacity builds with k(¢) > 0, and investment declines
over time (about 12 EJ/yr initially and near zero by year 30). Total useful energy peaks
near 600 EJ /yr, about 3% above the renewable-only level ¢, while the energy price falls
from 28 to about 22$/GJ.

Plateau (¢ € [31.5,73.8]). Net investment stops and capacity remains at K ~ 215EJ /yr
for about 42 years. The energy price stays near 223$/GJ. Because fossil output remains

at peak capacity, the plateau accounts for 48% of cumulative emissions.

Decline (t € [73.8,95.3]). Scrapping starts when Ax reaches zero. Capacity then falls
to zero over about 21.5 years as the carbon tax rises toward $200/tCO;. The energy price

rises from about 22 to 28 $/GJ, and solar output converges to q.

Post-fossil (¢t > 95.3). The economy converges to the renewable-only steady state:

¢=4q,p=1(q), and K =0,
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Figure 5: Baseline transition (By = 1,150 GtCO,, 1.75°C). (a) Energy quantities. (b)
Energy price and carbon tax. (c) Fossil capital. (d) Cumulative emissions and remaining
budget.

5.7 Sensitivity analysis

5.7.1 Carbon budget

Figure 6 reports transitions for By € {600,900, 1,150, 1,400, 1,700} GtCOs.

Increasing By from 600 to 1,700 GtCO4 extends the fossil era from about 55 to 125
years. Most of the adjustment occurs through the plateau, which lengthens from about
15 to 65 years. Expansion and decline move much less (roughly 26-35 years and 18-
23 years). Peak capacity rises concavely, from about 110 to 240 EJ/yr, so additional
budget is allocated mainly through longer operation rather than proportionally higher
peak buildout.
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Figure 6: Carbon-budget sensitivity. (a) Fossil capital paths. (b)—(d) Phase durations.
(e) Peak capacity. (f) Summary values.

5.7.2 Discount rate

Figure 7 reports transitions for p € {0.015,0.02,0.03,0.04,0.05}.

Lower discounting lengthens the transition and raises peak fossil capacity. As p falls
from 5% to 1.5%, the fossil era expands from about 42 to 210 years, peak capacity rises
from about 166 to 304 EJ /yr, and plateau duration rises from about 19 to 140 years. The
welfare cost of the carbon constraint ranges from 0.3% (p = 1.5%) to 5.2% (p = 5%).

5.7.3 Renewable learning
Renewable learning is introduced through ¢*" () = ;"™ (0)e™"* with v € {0, 0.04,0.08,0.12}.

At v = 0.12, peak fossil capacity falls from 215 to 128 EJ /yr and plateau duration falls
from 42 to 29 years. Solar remains active throughout the transition, including during the
plateau. The effect is quantitatively comparable to large changes in By, consistent with

complementarity between carbon pricing and innovation policy (Acemoglu et al., 2012).

5.7.4 Parameter ranking

Figure 9 reports the response of peak capacity and plateau duration to 10% increases in
each parameter.
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Figure 7: Discount-rate sensitivity. (a) Fossil capital paths. (b)—(d) Phase durations.
Peak capacity. (f) Summary values.

Table 4: Delayed action: emissions, stranded assets, and welfare

Emissions Remaining Stranded Post-policy Welfare
Scenario yrs 01T budget assets duration loss

(GtCOz)  (GtCO») (3 bn) (yrs) (%)
Immediate (T' = 0) 287 1,150 0 95 0.0
20-yr delay 486 664 287 48 1.8
40-yr delay 712 438 532 32 4.3

The carbon budget By and discount rate p explain most of the variation. Adjustment

frictions w and learning v are second-order in this calibration.

5.8 Policy experiments

5.8.1 Delayed action

Suppose the economy evolves without a binding carbon constraint for 7" years, after which

the optimal carbon tax is imposed on the remaining budget. Table 4 reports outcomes

for T' € {0, 20, 40}.

A 20-year delay uses 486 GtCO, and shortens the remaining transition from 95 to 48

years. Fossil capacity at policy adoption reaches 337 EJ/yr, above the level consistent
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Figure 8: Renewable learning. (a) Peak fossil capacity. (b) Plateau duration. (c) Solar
output paths.
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Figure 9: Parameter ranking. Percentage response of peak capacity (a) and plateau
duration (b) to a 10% parameter increase.

with the remaining budget, implying $287bn in stranded assets. A 40-year delay raises
stranding to $532bn and the welfare loss to 4.3%. These losses reflect premature retire-
ment of sunk capital and compressed adjustment under a binding budget, holding climate
benefits fixed (Lemoine and Traeger, 2014).

5.8.2 Unexpected tightening and stranded assets

Consider an economy planned under By = 1,700 GtCO, and unexpectedly tightened to
1,150 GtCOq at year 30. Under the original plan, capacity reaches 278 EJ/yr and cumu-
lative emissions reach 392 GtCO, by year 30. The remaining budget is then 758 GtCOa,
consistent with capacity of only 158 EJ /yr. The tightening therefore requires immediate

scrapping of 120 EJ /yr, valued at $185 bn, and reduces welfare by 1.4% relative to perfect
foresight under the tighter budget.
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Table 5: Instrument comparison (all calibrated to the same budget)

Peak cap. Plateau Welfare loss

Instrument Notes
(EJ/yr) (yrs) vs. tax (%)

Carbon tax 215 42 0.0 First-best.

Capacity cap (187EJ/yr) 187 61 0.8 Calibrated to By.

Investment ban (yr 25) 198 58 1.2 Calibrated to By.

5.8.3 Taxes versus quantity instruments

We compare three instruments, each calibrated to exhaust By = 1,150 GtCOy: (i) the
first-best carbon tax 7(t) = (rApoe?’; (ii) a constant capacity cap K(t) < K.,p; and (iii)

an investment ban k(t) = 0 for ¢ > Tyan.

In this homogeneous one-technology setting, calibrated quantity instruments perform
close to the tax benchmark. The capacity cap shifts adjustment toward longer operation
at lower peak capacity and yields a 0.8% welfare loss. The investment ban is more dis-
tortionary because it rules out capacity additions even when the shadow margin remains

positive, and yields a 1.2% loss.

6 Conclusion

This paper characterizes the optimal energy transition under a cumulative carbon con-
straint when fossil energy requires long-lived, sector-specific capital. Capital irreversibil-
ity changes the transition problem relative to standard exhaustible-resource models and

generates a distinct time profile of fossil production.

The key result is an endogenous production plateau. Over an interior region of the
transition, the shadow value of fossil-specific capital declines as capacity accumulates,
while the shadow value of the remaining carbon budget rises as cumulative emissions
increase. When these margins offset, neither additional investment nor scrapping is op-
timal. Fossil capacity is therefore operated at a constant level for an extended interval,

allowing sunk costs to be amortized under a binding carbon budget.

This mechanism also implies that useful-energy prices need not follow a Hotelling path.
The extraction price of the fossil resource may satisfy Hotelling logic, but downstream
energy prices reflect capital adjustment and carbon scarcity jointly. In the model, useful-
energy prices fall during capacity expansion, remain roughly flat on the plateau, and rise
during phase-out. Final energy prices are therefore not a valid proxy for testing Hotelling

predictions in this environment.
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Tightening the carbon budget affects transition phases asymmetrically. Expansion
and decline durations move relatively little because they are governed mainly by ad-
justment frictions and operating conditions. Most of the adjustment occurs through the
plateau, which contracts sharply as the budget tightens. In the calibration, moving from a
budget consistent with 2°C to one consistent with 1.5°C primarily shortens the plateau,
with smaller effects on entry and exit dates. This is the main channel through which

stricter targets generate stranded assets.

The quantitative exercise is used to discipline mechanisms, not to produce forecasts.
Within that scope, several implications are robust. Carbon prices rise as the budget is
depleted. Sustained fossil output during the transition is not, by itself, evidence of pol-
icy failure; in the model it reflects optimal use of installed capital. Renewable learning
shortens the plateau and lowers peak fossil capacity, so innovation policy and carbon
pricing act through complementary margins. Delayed policy implementation or unex-
pected tightening increases welfare losses through premature capital retirement and com-
pressed adjustment, even abstracting from climate damages. In the homogeneous-sector
benchmark, simple quantity instruments (capacity caps) can approximate the first-best

allocation with modest welfare losses relative to an optimal carbon tax.

The framework is deliberately parsimonious. The carbon budget is exogenous, renew-
ables are represented in reduced form, scrapping is costless, and uncertainty is absent.
These assumptions matter for magnitudes. They are less central for the main mechanism,
which relies on the interaction between cumulative carbon scarcity and irreversible fossil
capital. Extending the model to decentralized equilibrium with imperfect commitment is

a natural next step for studying implementation, distribution, and political constraints.

The paper’s contribution is to isolate a capital-amortization mechanism that is absent
from standard transition models. Under a cumulative carbon constraint, irreversible
fossil capital makes an extended plateau in fossil production an optimal feature of the
transition path, not an anomaly. This result clarifies why timing, commitment, and

capital specificity are central to transition policy design.
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Appendix

A1 Non-Differentiability at the Solar Displacement Thresh-
old

We establish the non-differentiability of key equilibrium functions at the critical capital
threshold K = K, where solar energy is completely displaced by fossil-based production.
This threshold plays a central role in determining the structure of optimal transition

paths under binding carbon constraints.

Consider the solar energy output function §,(K), total useful energy ¢(K), and
marginal surplus function /i(K) when the carbon budget B(t) depletes according to

B(t) = —(rq.(t), B(0)= By,

with shadow price Ag(t) on the remaining atmospheric capacity.

Non-differentiability of solar output §,(/). From first-order conditions (Eq. 3.16),

the left-hand derivative as K approaches K, from below satisfies

dg, - u"(K,)
KK, dK — (0) — u'(K,)’

Given u” < 0 (concave utility) and ¢; > 0 (convex renewable costs), this derivative lies
in (—1, 0], with equality when ¢, (0") = 0 (linear renewable costs at low deployment). By

contrast, for K > K, where solar production ceases,

This discontinuity in the marginal response reflects the discrete shift from partial to

complete fossil dominance at the threshold.

Non-differentiability of total energy ¢(K). Total useful energy satisfies §(K) =
K + ¢,(K), inheriting the kink from solar output:

. dq _ . dgy L dq
A T Tt O <= im o

This non-smoothness reflects changing returns to capital accumulation as the energy mix

shifts discretely.
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Non-differentiability of marginal surplus ji(K). From Eq. 3.19, the marginal sur-

plus function exhibits

/A G A . dp
im — =
Kk, dK - ¢)(0F) — u”(Ky)

where the inequality holds strictly when c;(0%) > 0.

These results establish kinks at K = K, across all major equilibrium functions, driven
by the discontinuous shift in optimal energy sourcing. Under carbon constraints, fossil
extraction ¢, (t) depletes B(t), creating dynamic interaction between the rising carbon
shadow price A\g(t) and the (initially) rising, then falling capital shadow value Ak (t) that

governs optimal transition timing.

A2 Optimal Transition Path: Phase-by-Phase Charac-

terization

We characterize the complete optimal path by solving the necessary conditions phase by
phase, tracking both state variables (K, B) and shadow prices (Ax, Ag) throughout the

transition.

A2.1 Expansion Phase: [0, ;)
A2.1.1 Early Expansion with Active Solar: [0,¢,)

During initial expansion, both energy sources operate. With no scrapping (6 = 0), capital
accumulation follows K = k and fossil extraction equals capacity: ¢, = K. The necessary
conditions yield

(G (K (1)) = co+ (e + Ape™) + (1), (AA2.1)
n(t) = =Mk (t) + prr(t) +m, (AA2.2)

where Ap denotes the initial shadow price of the carbon budget and 7(t) is the shadow

rent on capacity constraints.

Combining these conditions with the adjustment cost relationship Ak (t) = ¢, (K (1))

implies
QU)K (t) = u' (G (K (t)) — co — r(ce + Ape”) —m — pci (K (1)).

This second-order differential equation in K(¢) governs capital dynamics, with solution
denoted K (t, Ap) satisfying boundary condition K (0) = 0.
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The sub-phase terminates at ¢,(Ag) when solar displacement occurs: K (t,, Ap) = K.

At this threshold, renewable generation becomes uncompetitive and ¢, (K,) = 0.

Throughout this phase, the carbon budget evolves according to

B<t> = BO - CT‘ /t K1(37)‘B) dS,
0

linking cumulative emissions to the investment path. This constraint shapes optimal
capacity accumulation by incorporating the opportunity cost of atmospheric absorption

capacity.

A2.1.2 Late Expansion without Solar: [t,, 1)

Following solar displacement, fossil energy supplies all demand: ¢ = K and ¢, = 0. The

governing equation becomes
U (G2(K (1)) — pei(K (1)) + (K (£) K (t) = ¢y + 7(cu + Ape) +m, (AA2.3)
with solution Ks(t, Ag) satisfying continuity at the switching time:

Ks(t,(Ap), Ag) = K, = K1(t,(AB), Ap).

The expansion phase concludes at ¢, (Ag) when net investment ceases: Kg(tk, Ag) = 0.
At this point, the capital stock reaches its peak K = Ky (tx, Ag), and the shadow value

equals the minimum investment cost: Ak (tx) = ¢;(0).

For the path to be optimal, terminal conditions at ¢, must lie on the expansion-

stabilization frontier defined by the carbon budget constraint:

t, (AB) tx(AB)
K(tk()\B),)\B) :KS BQ—CT’ / Kl(t, )\B) dt—i—/ Kg(t, )\B) dt .
0 t,(AB)
(AA2.4)

Let A} denote the value satisfying this transversality condition. Then the complete

expansion path is

Ki(t,\y), 0<t< z_fy()\}‘g),

K(t,\p) =
Ky(t, Ap), 1,(Ap) <t <tr(Ap),

with corresponding shadow value

A (f) = (Kt Ag), 0<t<t,(\g),
K - .
G(Kat, Xp)), £, (Np) <t < ta(Ap).
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A2.2 Stabilization Phase: [t;,t5)

Capacity remains constant throughout this phase:
K(t) = K = K> (te(X\5), Ap), k(t) =46(t) =0.

The duration I's¢(K) solves the arbitrage condition derived in the main text (Eq. 77?),
ensuring the quasi-rent from operating existing capacity exactly covers maintenance costs

plus the user cost of capital.

Setting t5 = tx(A\5) + ['s(K), cumulative emissions through the plateau are

/6§rqm(t) dt = Cr [PS(K)-K—i—/y Ki(t, )\*B)dt+/kK2(t, Ag)dt],
0 0 t,

leaving residual carbon budget

Bl(ts) = By — Cr [FS(R)R+/Oty Ki(t) dt+/tk Ko (t) dt] .

By construction, the capital shadow value falls continuously during the plateau, reach-
ing zero at its terminus: Ag(t5) = 0. This marks the transition from capital scarcity
(where investment would be profitable absent carbon constraints) to capital abundance

(where scrapping becomes optimal).

A2.3 Hotelling Phase: [ts5,15)
A2.3.1 Initial Decline without Solar Revival: [ts,1,)

Once A\ = 0, continued operation requires that operating margins cover only mainte-

nance costs. With solar still inactive, capacity evolves according to
U (G2(K (1)) = o+ r(co + Ape™) + m.

Denote the solution Kpo(t, A5). This sub-phase terminates at ¢, when rising carbon

prices restore solar competitiveness:
co +7(cp + Ape™) +m = ¢, (0),

i.e., when fossil marginal cost equals the renewable backstop price.
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A2.3.2 Final Decline with Solar Revival: [t,,t5)

Both energy sources operate during the final phase, with capacity satisfying
(G (K (1)) = o+ 1(c + Age™) +m.

Fossil production ceases at tg when operating costs exceed the long-run renewable price:
co +7(co + Ape”?) +m =p=1u(q),

where g, denotes steady-state renewable output and p the corresponding market-clearing

price.

A3 Finite Termination and Budget Exhaustion

We establish that fossil exploitation must terminate in finite time and the carbon budget
must be fully depleted at termination. The proofs proceed by contradiction. This result

is illustrated in Figure 4.

A3.1 Fossil exploitation ends in finite time: tp < 400

We consider successively the cases Ag, > 0 and Ag, = 0.
Case A\p, > 0.

Assume that there exists an infinite sequence of dates {¢,}2%, such that lim,,_, t, =
+oo and ¢, (t,) > 0 for all n. Then the shadow marginal operating current cost of the

carbon-using energy (C.U.E.) sector at time t,,, denoted SMOCC(t,), is given by
SMOCC(t,) = c, +r(c, + Ap,e”™) +m.

Since Ap, > 0, it follows that lim, ., SMOCC(t,) = +oo. Hence there exists n such
that
SMOCC(t,) >p foralln>n,

so that it would be strictly optimal to supply the renewable backstop ¢, only and set

¢. = 0, a contradiction. 0
Case \p, = 0.

Assume first that the expansion phase ends in finite time, ¢, < co. From t; onward,

the instantaneous gross margin of the C.U.E. sector equals

u'(G(K)) = (e + e, +m),
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where K denotes installed fossil capacity at the end of expansion. The arbitrage condition
determining K, which must hold at t;, for the marginal unit of capacity (cf. equation (A41)
with I'g = 4+00), is

i Oo{u'(fj(f()) —(cy +re, +m)}e dr = ¢ (AA3.5)

From t; onward, fossil use equals 7K at each instant, which requires an infinite carbon
budget—contradicting feasibility.

Assume instead that t;, = 400, so that the expansion phase is infinite. Since K (t) > 0
throughout expansion, for any ¢ € (0, K) there exists t < 400 such that

K{t)>K—¢ foralt>t,

where K solves (AA3.5). From ¢t onward, fossil input is at least 7(K — ¢) at each instant,
again requiring an infinite carbon budget. This contradiction establishes that fossil ex-

ploitation must end in finite time. O

A3.2 The carbon budget must be exhausted at time i3

Let an asterisk denote a candidate optimal path

{((1), @ (2), K" (1), 6" (1)) }iZq
along which the carbon budget is not exhausted. Let
B= B*(tB) >0

denote the remaining unused budget at the terminal date. By the previous result, opti-

mality then requires A\p, > 0.

Consider an interval (t4,t5) within the Hotelling phase, with ¢f < t; < t}, during

which g;(t) > 0. Since renewable output is increasing once positive during this phase and

limqg'(t) =q, >0
tglgqy() qy >0,

such an interval exists.

Define an alternative path
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that coincides with the candidate path on [0,?,] and is modified on (t4,t};) as follows:

q*(t) — qy(ta), ta<t <ty

‘jw(t) =
0, >t
. q*(td), td <t< t*B,
Gy(t) = Ny .
an tZ tB7
" 1(8)/q*(t) — qi(ta), tag <t <ty
s = L0/ O g, ta<t<iy

0, t> .
At t3;, the entire fossil capital stock is scrapped.
Both paths are illustrated in Figure 4.

By construction,

q*(t) = q;(t) + g (t) = G.(t) + G,(t) = q4(t),

so utility is identical along both paths. The additional cumulative emissions required by

the modified path equal

Al = [ (G0 — (k)

tq

For t3;, — t4 sufficiently small, AB(t%;) < B, so feasibility is preserved.

Cost differences satisfy, for t € (t4,t%),

q;(t)
ASC(t) = / ¢, (qy) dq,,  ACC(t) = (q,(t) — q;(ta))(cy +re, +m).

a3 (ta)

At tg4, optimality implies
Co+7(Cy + Agoe™?) +m = /(" (ta)) = (g, (ta)).
Since ¢, is increasing and Ag, > 0, we have
¢, (qy) > cy +re, +m  for all g, > g (ta),
which implies ACC(t) < ASC(t) on (tg,t%).

Hence the modified path is feasible, yields the same utility, and strictly lowers cost—a

contradiction. Therefore any optimal path must satisfy B(tg) = 0. g
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A4 Closed-Form Solutions under Quadratic Specifica-

tions

To facilitate numerical simulation and analytical characterization, we adopt quadratic

functional forms:

ay o
u(q) = auq 20
Ck(k) = Qkk + §k27
§
cy(ay) = ¢,y + 54

where ¢;, ¢, > 0 denote minimum per-unit costs, w,{ > 0 govern convexity, and a,, ¢ > 0
parameterize demand. These forms ensure twice-continuous differentiability and permit

closed-form solution of both state and co-state dynamics.

We focus on the case K > K, and By > B,, where the carbon constraint binds

and solar experiences temporary displacement. The solution method determines explicit

(aL(), g (0), ¢ (1), N(8)}"

across five sub-phases delineated by switching times ¢, t, ts, by, tB.

paths

These solutions follow from the Hamiltonian necessary conditions:

+r(ca + Ape”) +0(t) — (1),

( )
( y) = W), (AA4T)
( )
( )

U (¢ + qy)
u'(¢w + qy)
)
)

¢ (k) = (1),

= 75(t),

Ak (t
Ak (DK

together with co-state evolution:

}\B = p>\B — g, 12423 Z 0, I/BB = 0, (AA410)
M =(p+0)Ag +m—n—vg, vg>0, vgK=0, (AA4.11)

and complementarity conditions on constraint multipliers 7., vy, Y&, Vs, VB, Vi -
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A4.1 Expansion Phase: [0,;)

Sub-phase with active solar: [0,z,). No scrapping occurs (§ = 0), so K = k and
¢ = K. Solar remains active (g, > 0, hence v, = 0). The necessary conditions become

K
Qy, (1 — j}:q;;) =c, +r(ce + Ape™) + 1, (AA4.12)
K
u (1 At qy) — ¢, +£qy, (AA4.13)
q
n = pAx — Ak +m, (AA4.14)

From (AA4.15), k = (Ax —¢;)/w, hence K = (Ax —¢;,)/w and K = A /w. Combining
(AA4.12)~(AA4.14) yields

This linear second-order ODE has general solution

~)\ q Qy — C
K(t) = A1€u1t + B1€M2t + —rq Bept q |:—y

+ =

§ EL 2
1 t t qu)\B t

qy(t) = % —Ajett — Biet?t + Tep + ay, — 2(cy + e +m+pe) |

—cv—rcz—m—pgk},

where i1, 1o are roots of u? — pu — &/(wq) = 0:

_pEVPH 4/ (w))
2

) :u1>07,u2<0-

H12

The shadow value follows from differentiation:

A (t) = wK(t) + ¢, = WAy e + Bipge 4 prgip/€ - e”) + ¢

Sub-phase without solar: [t,,?;). Solar production ceases (g, = 0, 7, > 0). With
q = K, the dynamics simplify to
’I")\B ot

K—pK—a—J(:—[ozu—cv—rcr—m—pgk]—f-—e ,
wq w w

with general solution

GA
K(t) = Age” + Bye” + D925 ot 4 4

- au[au—cv—rcx—m—pgk],

Ak (t) = w(Agl/le”lt + Bovse™?t + priig /oy, - e”t) + ¢,

2= pr —ay/(wg) = 0.

where 14, 15 solve v
Constants Ay, By satisfy continuity at Z,: Kg(ty) = K, and /\K,2(Zy) = /\K,l(Zy)~
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A4.2 Stabilization Phase: [t;,t5)

=0 = 0. From (AA48), Ak = ¢, — 7. The

Capacity remains constant: K(t) = K, k
co-state equation (AA4.11) with vx = 0 (interior capacity) becomes

. K
=PV +1n—m=py+ (1—5) — ¢y — 1(cy + Apeft) —m.

This linear ODE has solution

A
w(t) = Cet — TpB (t — ty)ert

1

- = |:au (1 - 5) —Cp — TCy — m} (e”(t_t’“) - 1).
P q

Imposing Vx(tx) = 0 (so Ak (tx) = ¢;) yields C' = 0, hence

A 1
)\K(t) = Ci + TTB(t — tk)e”t + ; |:Oéu <1 —

=i

) —c, —re, — 1 — ePlt=tr))
q ) C rc m:| ( e )
A4.3 Hotelling Phase: [ts,tp)

Initial decline: [t5,1,).

Capital shadow value vanishes (A = 0), implying n = m and
Vi = ¢, With ¢, =0,

K
Qy (1 — f) =c, +7(cy + Age) +m,
q

yielding

pt

[ Co+re,+m  rAp
1-— e

Ay, Ay,

Final decline with solar revival: [{,,{5).
From (AA4.6) and (AA4.7):

K
Ol (1— —i:qy) = ¢, +7(cy + Age™) +m,
q

K+

Both sources operate (Ax = 7, = 0).

Solving simultaneously:

K(t) =

SN

- ¢, — 2(cy + e, +m) B 27’)‘B€pt
o, a, ’

qy(t)

S~}

Qy —C
[ 5 ~ — ¢, —r(c, + Age”) — m} .
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A4.4 Carbon Budget Constraint

The cumulative emissions constraint requires

tp 5 t;
By = gr/o K(t)dt = Cr [Z /t Ki(t) dt] :

where tg = 0,81 = t,,t2 = ty,l3 = ls5,t4 = ty, ts = tp denote phase boundaries. Substi-
tuting the closed-form solutions and integrating yields a transcendental equation in the

unknown parameters {Ag, A1, By, As, Ba, l_(,ﬁy, tx, ts, ty, tp}, which can be solved numer-

ically given boundary conditions.

A4.5 Boundary Conditions

The following 12 conditions determine the unknowns:

1. K(0) = 0 (initial capital stock)

2. Ki(t,) = K, (solar displacement threshold)

3. Ky(t,) = Ki(t,) (continuity at first switching)
4. Ago(t,) = Aka(t,) (co-state continuity)

5. Ky(t,) = 0 (investment ceases)

6. Ky(ty) = K (peak capacity definition)

7. Ak (tg) = ¢;, (marginal investment cost)

8. Ak (ts) = 0 (scrapping begins)

9. K5(ts) = K4(ts) (continuity at scrapping threshold)
10. K,4(t,) = K, (solar revival threshold)
11. K5(tp) = 0 (complete fossil phase-out)
12. By =(r JB K(t)dt (budget exhaustion)

These form a system of nonlinear equations solvable via Newton-Raphson or shooting

methods, yielding the complete optimal path characterized in Section ?7.
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