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Abstract

We study mechanism design when a designer repeatedly uses a fixed mechanism to interact
with strategic agents who learn from observing their allocations. We introduce a static framework,
calibrated mechanism design, requiring mechanisms to remain incentive compatible given the
information they reveal about an underlying state through repeated use. In single-agent settings,
we prove implementable outcomes correspond to two-stage mechanisms: the designer discloses
information about the state, then commits to a state-independent allocation rule. This yields a
tractable procedure to characterize calibrated mechanisms, combining information design and
mechanism design. In private values environments, full transparency is optimal and correlation-
based surplus extraction fails. We provide a microfoundation by showing calibrated mechanisms
characterize exactly what is implementable when an infinitely patient agent repeatedly interacts
with the same mechanism. Dynamic mechanisms that condition on histories expand implementable
outcomes only by weakening incentive constraints, but not by enriching the designer’s ability to
obfuscate learning.
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1 Introduction

Many economic institutions rely on mechanisms that remain fixed while agents interact with them
repeatedly. Online platforms commit to stable auction formats for advertising slots, lenders use
persistent scoring algorithms for loan decisions, and regulators establish durable rules for market
participants. When the mechanism’s operation depends on information known only to the designer—such
as the platform’s data about match values, the lender’s assessment of credit market conditions, or
the regulator’s understanding of market fundamentals—participants may infer this information
by observing their outcomes across repeated interactions. This learning creates a fundamental
constraint: the information a mechanism reveals through repeated use limits what outcomes it can
implement in the long run. Participants can use the information gleaned from past interactions when
deciding whether and how to participate, tightening the designer’s incentive constraints. A lender
whose approval decisions depend on unobserved credit market conditions will gradually reveal these
conditions to borrowers through his lending decisions, constraining the lender’s ability to provide
credit efficiently. We study how this endogenous information leakage shapes the set of implementable

outcomes in mechanism design.

A simple example illustrates how learning prevents the designer from exploiting his information.
Consider a seller who repeatedly offers a good whose demand depends on an unobserved state, which
can be either low (L) or high (H). Each state is equally likely. The seller faces a buyer whose value for
the good can take one of two values, 1/2 or 1. The probability that the buyer’s value is 1 is higher when
the demand state is high. Table 1 summarizes the value distribution conditional on the demand state:

| v=1/2 v=1
L[ 2/3 13
H| 13 2/3

Table 1: Value distribution conditional on demand state.

Suppose the seller can design the terms of trade, that is, the probability with which he allocates the
good to the buyer (g € [0, 1]) and the payment the buyer makes to the seller (¢ € R). The buyer’s payoff
is vqg — t, and the seller’s is ¢. The buyer can always choose to not trade with the seller and ensure a

payoff of 0.

Suppose first the buyer and the seller interact only once. Table 2 depicts an optimal mechanism for
the seller in this case:
|v=1/2 wv=1

L | (1,0 (1,0)
H | 1,3/2) (1,3/2)

Table 2: Trade probabilities and payments as a function of buyer’s value and demand state.

In this mechanism, the buyer gets the good for free when the demand state is L and pays a price of
3/2when itis H. If this mechanism were offered once without the buyer observing the demand state,

the buyer obtains a payoff of 0 from participating and truthfully reporting her type. Unsurprisingly,



the seller extracts the buyer’s surplus: the seller knows the demand state, which is correlated with the
buyer’s type, and exploits this information in the design of his mechanism (cf. Crémer and McLean,
1988).

Suppose now the buyer interacts repeatedly with the mechanism, but the state remains fixed. If the
buyer observes nothing from her interaction with the mechanism, the buyer is willing to participate
and truthfully report her value into the mechanism, no matter how many times it is offered: In
each period, she anticipates getting a (continuation) payoff of 0 from engaging with the mechanism.
Suppose, instead, the buyer observes her allocation in the mechanism. If the demand state is L, the
buyer gets the good for free at the end of the first period, and from now on knows this is what she will
get in the mechanism. If the demand state is H, the buyer gets the good and pays a price of 3/2 as
she agreed to when she decided to participate in period 1, but anticipating a price of 3/2 from then
onwards, never again participates in the mechanism. Thus, whereas the seller can implement the
outcomes in Table 2 when the buyer does not observe her allocations, this is no longer the case when

she can.

This paper develops a framework for mechanism design in which agents’ ability to learn about the
designer’s information from repeatedly playing a mechanism constrains implementable outcomes.
In our framework, allocations depend on agents’ reports and on a state known only to the designer.
Through repeated participation, agents observe their allocations and gradually learn about this state.
A mechanism therefore serves a dual role: it determines allocations based on reports, and it acts as an
information structure that reveals the underlying state. The more the mechanism conditions on the

state, the more information it leaks, and the tighter the constraints on implementable outcomes.

We approach our analysis in two steps. First, we introduce a static solution concept for mechanism
design that directly models the feedback between the mechanism, the information it reveals, and
participants’ behavior. This solution concept allows us to tractably capture the limits on the set
of implementable outcomes implied by agents’ learning, while abstracting from the dynamics of
experimentation. Second, we provide a dynamic microfoundation showing this static solution concept
precisely captures the implementable outcomes when an infinitely patient agent repeatedly interacts

with the same mechanism.

In Section 2, we introduce a static solution concept—calibrated mechanism design—requiring that
mechanisms remain incentive compatible and individually rational given the information they reveal
about the state through their allocations. We formalize this requirement through the notion of a
calibrated mechanism. We couple each mechanism with an information structure that describes
what participants learn about the state from the mechanism. The information structure reveals
to each agent an interim allocation rule—the mapping from her type reports to lotteries over her
allocations—capturing what she would learn from repeatedly observing her outcomes in the mechanism.
We require the information structure to be calibrated in the sense of Foster and Vohra (1997): the
interim allocation rule each agent observes must accurately describe the allocation probabilities
she faces. Throughout the paper, we study calibrated mechanism design: the designer chooses a
mechanism that remains incentive compatible and individually rational when participants have access

to the mechanism’s calibrated information structure before playing. Calibration imposes a constraint



on the designer relative to standard mechanism design: the more the allocation rule depends on
the state, the more informative the calibrated information structure becomes, and hence the more

incentive and participation constraints the designer must satisfy.

In private values environments, the constraint that the mechanism must remain incentive compatible
and individually rational given the information it reveals about the state pushes the designer to full
transparency. We show in Theorem 1 that, under the calibration constraint, the designer can do no
better than inducing in each state the optimal direct mechanism when there is common knowledge
of that state. In particular, in settings with transferable utility in which the designer has statistical

information about the agents’ types, Theorem 1 implies the designer cannot extract full surplus.

In Section 3, we characterize optimal calibrated mechanisms through a tractable class we dub two-
stage mechanisms. In a two-stage mechanism, the designer first discloses information about the state
to the agent—inducing a belief about the state—then commits to an allocation rule that depends only
on the agent’s report, not the state itself. Theorem 2 shows that in single-agent settings, calibrated
mechanisms and two-stage mechanisms implement exactly the same outcome distributions. This
equivalence yields a practical algorithm for finding optimal calibrated mechanisms, combining tools
from information design and mechanism design: for each possible belief the designer might induce,
solve a standard mechanism design problem given that belief; then choose the optimal information

disclosure by concavifying the resulting value function.

In the case of multiple agents, Proposition 1 shows calibrated mechanisms admit a similar representation
via generalized two-stage mechanisms: Like two-stage mechanisms, the designer individually discloses
to each agent a belief about the state and offers an incentive compatible and individually rational
interim allocation rule that no longer conditions on the state. Whereas the designer observes the
disclosed belief profile, each agent only observes the belief disclosed to her.! Moreover, each agent
learns only her own interim allocation rule—how her reports map to her allocations—rather than
the complete mapping from type profiles to allocations. This partial observability requires additional
consistency conditions to ensure agents’ interim allocation rules are mutually compatible. In contrast
to the single-agent case, not every generalized two-stage mechanism induces a calibrated mechanism,

as generalized two-stage mechanisms may reveal strictly less information than calibrated mechanisms.

In Section 4, we study optimal calibrated mechanism design in the canonical setting of quasilinear
utilities, single-dimensional types and allocations. In Section 4.1, we study the single-agent case. We
show that if the order of types is state independent, then optimal two-stage mechanisms fully reveal
the state, whereas this conclusion can be reversed when the order of types is state-dependent. In
Section 4.2, we compare optimal calibrated mechanism design against the Myersonian benchmark.
We provide sufficient conditions under which the designer realizes the payoff of the Myersonian
benchmark under the calibration constraint; under these conditions, the optimal Myersonian mechanism
satisfies the agent’s incentive constraints state-by-state. Building on that result, we analyze multi-agent

applications in Section 4.3.

1n (generalized) two-stage mechanisms, the designer communicates with the agents before the agents communicate
with the mechanism. Whereas this communication is a restriction on the set of implementable outcomes relative to the
single-designer Myersonian benchmark, Attar et al. (2025) show that allowing competing principals to first communicate
with agents expands the set of implementable outcomes.



Section 5 provides a microfoundation for calibrated mechanism design. We analyze an infinite-
horizon game where an infinitely patient agent repeatedly plays the same mechanism.? The state
remains fixed, but the agent’s type is redrawn each period independently of the state.® Our notion of
implementation is based on the long-run expected frequency of allocation-type-state tuples when
the agent best responds to the mechanism. Theorem 3 shows that the implementable outcome
distributions are precisely those induced by incentive compatible two-stage mechanisms. This result
validates our static framework: calibrated mechanism design captures exactly what is implementable

through repeated play.

We then ask whether giving the designer additional flexibility helps. In a dynamic mechanism, the
designer can condition each period’s allocation on the complete history of past reports and allocations,
rather than using the same mechanism repeatedly. Theorem 4 shows that dynamic mechanisms
expand implementable outcomes in a specific way: they correspond to two-stage mechanisms with
weaker incentive compatibility and individual rationality conditions. The designer can now exploit
the ability to monitor the frequency of type reports over time, which allows him to punish detectable
deviations—reporting strategies whose frequency distribution differs from the true type distribution.
Instead, the mechanism must be robust to undetectable ones. Importantly, in environments with
transferable utility, this distinction vanishes: As shown in Rahman (2024), eliminating profitable
undetectable deviations is equivalent to incentive compatibility, so dynamic mechanisms implement
exactly the same distributions over physical allocations, types, and states as our static calibrated

mechanisms.

Related Literature The paper lies at the intersection of four literatures: rational expectations
equilibria, (public) information disclosure in mechanism design, the computer science literature on

learning in repeated auctions, and dynamic implementation.

The definition of a calibrated mechanism is in the spirit of rational expectations equilibria (Radner,
1979; Green, 1977; Kreps, 1977). Indeed, requiring a mechanism to remain incentive compatible given
the information it reveals about the state mirrors the rational-expectations requirement that prices
clear markets given the information they convey. Unlike rational expectations equilibrium, where
the only role of prices is to clear the market, calibrated mechanisms are chosen by a designer who
understands the incentive implications of the mechanism’s information leakage and trades this off
against the value of conditioning the mechanism on the state. Similar to our analysis in Section 5,
some papers in the literature have studied the question of whether rational expectations equilibria

emerge from learning dynamics (see, for instance, Milgrom, 1981; Blume et al., 1982).

Following Milgrom and Weber (1982), a literature has studied whether a designer should publicly
disclose information he knows before a mechanism is played. Ottaviani and Prat (2001) show revealing
a signal affiliated with the buyer’s value is optimal in a single-agent screening problem. When
considering the case of an informed principal, they consider what we call two-stage mechanisms to
bound the monopolist’s profits. Szabadi (2018) and Yamashita (2018) study the optimal release of

ZWe assume the agent has limit-of-means preferences, so we can pass to the 6 — 1 limit without approximation.

3Theorem 3 holds when the agent's type is drawn once at the beginning without further assumptions on the distribution.
As we explain in Section 5, we choose the i.i.d. specification for the evolution of the agent’s private information to put
repeated and dynamic mechanisms on a more equal footing.



public information followed by an optimal mechanism conditional on that disclosure, while Fu et al.
(2012) study this question in the context of a second price auction. In those papers, the restriction to
public disclosure and the independence of the mechanism on information other than the disclosed
one is a constraint on the class of mechanisms the designer can use. Instead, we show this class of
mechanisms is without loss when the designer faces our calibration constraint in the single-agent case,
but it may not be in the multi-agent case. Note, however, that when full or no disclosure are optimal in
the Myersonian benchmark the distinction between private and public disclosure is immaterial. For
that reason, the results on the achievability of the Myersonian benchmark are similar across their and
our work. Daskalakis et al. (2016) lift the restriction to public disclosure and study the Myersonian
benchmark in an auction setting, showing that the complexity of that problem is the same as that of a
multi-product monopolist (cf. Guesnerie and Laffont, 1984).*

Motivated by the prevalence of fixed auction formats with which bidders interact repeatedly, a
literature in computer science studies the properties of bidder learning algorithms and the implications
for the auctioneer (see, for instance, Golrezaei et al., 2019; Nedelec et al., 2019; Kanoria and Nazerzadeh,
2020, and Nedelec et al., 2022 for a survey treatment). A common finding is that learning bidders can
take advantage of “naive” auction formats which are no longer incentive compatible when bidders
learn. Inspired by this literature, we develop a framework which allows us to systematically study the

question of optimal mechanism design in the presence of learning agents.

Our dynamic implementation results relate to the literature that studies whether a mechanism can
be implemented either by linking decisions (Jackson and Sonnenschein, 2007; Ball and Kattwinkel,
2023) or in the patient limit of a repeated interaction (Renou and Tomala, 2015; Margaria and Smolin,
2018; Meng, 2021). Both strands identify cyclical monotonicity as the condition for implementation
(cf. Rochet, 1987). Rahman (2024) shows that cyclical monotonicity is equivalent to the absence of
profitable undetectable deviations.

By focusing on what agents learn from the designer’s information, our paper is distinct from the
literature on mechanism design with interdependent payoffs which focuses on agents’ learning about
others’ types through their actions in the mechanism (Green and Laffont, 1987; Niemeyer, 2022;
Héfner et al., 2025). Moreover, by focusing in the case of a designer with commitment, we are distinct

from the literature on the informed principal (Myerson, 1983; Maskin and Tirole, 1990).

Lastly, our paper contributes to two literatures. First, by studying the informational role of the
mechanism, we contribute to the literature on feedback in auctions, which analyzes how different
feedback rules affect bidders’ information about other agents, and ultimately behavior in first price
auctions (see, for instance, Esponda, 2008; Bergemann and Horner, 2018; Cesa-Bianchi et al., 2024).
Second, by showing the designer’s problem involves solving information and mechanism design
problems, our paper joins a recent literature that highlights the dual role of the mechanism as an
information structure and an allocation rule (Calzolari and Pavan, 2006; Dworczak, 2020; Doval and
Skreta, 2022).

4There is also a literature that studies a designer’s disclosure of information that must be elicited from the agents (Esé and
Szentes, 2007; Bergemann and Pesendorfer, 2007; Li and Shi, 2017; Krdhmer, 2020; Bergemann et al., 2022a,b; Smolin, 2023).
By contrast, the designer knows the realization of the state and also what information the two-stage mechanism discloses to
the agents, so he need not elicit this information.



2 Calibrated Mechanism Design

In this section, we introduce the static setting and solution concept that captures the impact of agents’
learning from the mechanism on the set of implementable outcomes. We defer to Section 5 the

analysis of the dynamic game whose outcomes our static solution concept captures.

Primitives A designer (he) interacts with N privately informed agents (she) to determine an allocation.
Let ©; denote the set of types of agent i, and © = Xﬁ-\i ,0;. Each agent knows her type, but not those
of other agents. The allocation space is given by A = xg\i 1Ai.5 Finally, let Q denote a set of states,
which are known to the designer, but not to the agents. The sets ©;, A;, and Q are assumed to be
finite throughout.® Agent i’s payoffs are given by u; : A; x ©; x Q — R. That is, agent i cares about her

dimension of the allocation, her type, and the state, and not about other agents’ allocations or types.

Denote by p the distribution over Q. For each w € Q, let f(-|w) € A(®) denote the type distribution.

We assume throughout the types are independently distributed conditional on the state, that is,

N
fOlw) =[] fiBilw), 65)
i=1

for all 8 € ® and w € Q. Together with the assumption on agents’ payoffs, the assumption on f(-|w)
allows us to isolate the effect of learning about the state from that of learning about others’ types

(perhaps because others’ types provide additional information about the state).

Mechanisms We model mechanisms as mappings
$:0xQx[0,1] — A(4), 2)

where ¢ € [0, 1] is a uniformly distributed random variable, which we refer to as the randomization

device.

Several comments are in order. First, to understand how a mechanism works, the timing of when
the different random variables is drawn is important. In particular, we assume that both the state
w and the realization of the randomization device ¢ are independently drawn at the beginning, but
not observed by the agents. This determines the direct mechanism ¢(:,w, €) : ® — A(A) to which the
agents send type reports, which in turn determines the lottery from which the allocation is drawn.
Thus, the allocation is random in our setting for two reasons: on the one hand, the agents do not know
the realization of (w, €), and hence the direct mechanism ¢ (-, w, €) they face. Second, conditional on
(w, €), the allocation may be drawn at random. Mathematically, we could have subsumed all sources
of randomness in the allocation into the randomization device. However, as we explain next, the
definition in Equation 2 allows us to distinguish the source of randomness in the allocation that is

informative about the state from that which is not.

5Assuming the allocation space is a product space is without loss of generality. Any restriction on the allocations, such as
all agents must receive the same allocation, can be incorporated as restrictions on the support of the mechanism.

6Because we allow for lotteries over allocations, that the allocation space is finite does not preclude the case of transferable
utility. Indeed, we could let each A; = A; x {—K, K} for some large enough K > 0.



Second, it is useful to consider the reason for the randomization device in the definition of a mechanism.
For simplicity, consider the case of the designer facing a single agent. If the agent had repeated access
to the mechanism, the agent would stand to learn the mapping ¢ (-, w, €) : ® — A(A) by experimenting
with different reports into the mechanism and observing the resulting allocations.” Without the
randomization device, the agent would stand to learn a partition of the set of states, where states in
the same cell of the partition induce the same direct mechanism ¢(:, w, €). By allowing the designer
to rely on the randomization device, we allow him to obfuscate the agent’s learning beyond a simple
partitional structure. Contrast this with the Myersonian benchmark in which without loss of generality
the designer would offer mechanisms that do not rely on such devices, that is, ¢y, : © x Q — A(A).
Indeed, the Myersonian designer is not concerned with the agents’ learning: without loss of generality,
he does not disclose anything about the state to the agents, so that the question of how to optimally

release information about the state is moot.

Lastly, note that we assume the mechanism asks the agents for type reports. In Appendix D, we show
that the revelation principle holds in the setting of this section: it is without loss of generality to focus

on direct and incentive compatible mechanisms that induce full participation.

Calibrated information structures We now describe how a mechanism induces an information
structure, which we define using the language in Green and Stokey (2022) and Gentzkow and Kamenica

(2017). An information structure is a mapping®
m:Qx[0,1] = 8] x---x Sy,

where ¢ € [0,1] is a uniformly distributed random variable—in fact, it is the same as in the definition
of a mechanism—and
S =AA)%,

is the set of agent i’s interim allocation rules.’ We choose this language for the information structure
to capture the idea that if agent i plays the mechanism repeatedly, she stands to learn how her reports
influence her allocation probabilities, i.e., her interim allocation rule. The interim allocation rule, in
turn, depends on the mechanism and the strategies of others. Below, we require the interim allocation

rule is well-calibrated with the mechanism and others’ strategies:

Definition 1 (Calibrated information structures). We say that the information structure is calibrated to

mechanism ¢ if for all (w, €) € Q x [0,1] such that w(w, €) = (s},...,sy) we have that for alli € {1,..., N},

"When the agent is infinitely patient as in Section 5, we can exhibit a sequence of strategies under which the agent
(approximately) learns this mapping. See the proof of Lemma C.4 in Appendix D.

8Gentzkow and Kamenica (2017) highlight that the language in Green and Stokey (2022) allows one to describe the
correlation across signal structures. This is exactly what we need to allow the designer to obfuscate the agents’ ability to
learn. It is again instructive to consider the single-agent case. For each type report 6 € ©, the mechanism can be seen as an
information structure ¢ (6, ) : Q x [0, 1] — A(A). Thus, the randomization device allows the designer to control the correlation
across these different signal structures, which in turn disciplines what the agent stands to learn when experimenting with
different reports.

9The terminology is by analogy to reduced form auctions where the map from own types to own probabilities of being
allocated the good are referred to as the interim allocation.



allf; € O;, andall a; € A;

sT@il0)=F5 s wm| X ¢0i0-;06@,a)|. 3)

a_;jeA_;
We denote by 1y the information structure calibrated to mechanism ¢.

In words, the information structure is calibrated if whenever agent i observes that her interim
allocation rule in the mechanism is sl?‘, then s;.“ describes the true probabilities with which agent
i gets different allocations a; as a function of her different type reports 6’ in the mechanism. As the
right hand side of Equation 3 shows, these probabilities depend on: (i) the mechanism ¢(:,w, ), and
(ii) others’ type reports. Implicit in the definition is that other agents are submitting their reports
truthfully. While this is a simplification, ' it turns out to not be an issue because we study incentive

compatible and individually rational mechanisms in the sense we define next.

Information leakage from a mechanism To close our model, we consider how the mechanism and
its induced information structure affect agents’ incentives. The mechanism ¢ and the calibrated
information structure 74 induce the following game of incomplete information among the agents,
where we use Bayes Nash equilibrium as the solution concept. In this game, nature draws (i) the state
o from distribution py, (ii) € € [0, 1] according to the uniform distribution, and (iii) the type profile
6 from f(-|w). Then, each agent i observes her type 0; and her signal s; = 74, ; (w, €). Finally, agents
simultaneously decide whether to participate in the mechanism, and conditional on participating
what type report to send. Conditional on an agent choosing not to participate, each agent i gets

outside option a;g.'!

Formally, given the mechanism ¢ and its calibrated information structure 75, we say that the mechanism
is incentive compatible if for all agents i, types 6; € ©;, signals s/ € S* on the support of 7y,;, the

following holds:

Hi € argégaéx[E(w,e,H,i) [ui ((P(H;‘)H—i)w» 5),01', w)l(el’ s;k)] ’ (Ic(el» S:‘))

where we abuse notation and implicitly (linearly) extend the agent’s payoff function to account for
lotteries over allocations (conditional on (0_;,w, €)). Furthermore, we say that the mechanism is
individually rational if for all agents i, types 0; € ©;, and signals s € S7 on the support of 77y ;, the

following holds:
Ew,eo ) [ti(@©0;,0_;,0,€),0;,0) — ui(aig,0;,w)(0;,s])] = 0. (IR©;,s7))

Importantly, the agents’ incentive and participation constraints must hold for each of their types
and each of their private signals, reflecting the agents have access to the information leaked by the

mechanism before they play in it. Note, however, the mechanism need not elicit the agents’ observed

10When we consider mechanisms with arbitrary message spaces in Appendix D.1, the requirement of calibration is relative
to both the mechanism and agents’ equilibrium participation and reporting strategies.

UThus, we are assuming that ag = (a;¢) e is an element of A. In Appendix D.1, we consider more general participation
decisions, allowing the mechanism to condition on the set of participating agents, but even with this extra generality, it is
still without loss to restrict attention to mechanisms that induce full participation.



signals, as the mechanism “knows” each agent’s signal realization.

Calibrated Mechanism Design In the rest of the paper, we study the problem of calibrated mechanism
design in which the designer selects a mechanism ¢ that satisfies Equations IC(0;, sl’.“) and IR(6;, sl’.‘)

forall (7,6, s7), when the signals are drawn according to the calibrated information structure 7.

Definition 2 (Calibrated Mechanism Design). Let w: A x © x Q — R denote the designer’s payoff and
let M .41 denote the set of mechanisms that are incentive compatible and individually rational when
agents have access to the calibrated information structure. The calibrated mechanism design problem is

as follows:

max E, .0 [wO,0,¢),0,0)]. (OPT¢y)
(pEMcal
We refer to elements of My as calibrated mechanisms and the solution to OPT., as the optimal

calibrated mechanism.
Three comments are in order:

First, calibration imposes a constraint on the designer vis-a-vis standard mechanism design. After all,
the incentive and participation constraints faced by the designer are endogenous to the mechanism.
The more the designer’s mechanism depends on the state, the more informative the calibrated
information structure is, and the more incentive constraints the designer faces. Only when each
agent’s interim allocation rule is constant in @ does the mechanism not leak information and the

incentive and participation constraints reduce to the standard ones.

Second, in the single-agent setting, the calibration constraint admits two complementary interpretations.
Throughout the paper, we emphasize the learning-by-experimentation interpretation: the calibrated
information structure represents what the agent can ultimately infer by repeatedly interacting with
the mechanism. Accordingly, the designer should ensure incentive compatibility with respect to the
full information the agent eventually obtains. At the same time, calibration can also be interpreted
as a transparency requirement. Indeed, upon observing signal s* : ® — A(A), the agent knows the

consequences of her choices in the mechanism, even if she does not know the state. '

With multiple agents, these interpretations differ. The natural extension of the transparency requirement
is that agents learn the mapping from profiles of type reports to lotteries over profiles of allocations
before playing the mechanism. By contrast, the calibrated information structure reveals to each
agent her interim allocation rule, that is, the mappings from her own reports to lotteries over her own
allocations. As we discuss in the next section, the gap between these two interpretations is the gap

between the designer publicly or privately disclosing information about the state to the agents.

Lastly, the definition of calibration assumes agents only learn about the state through their allocations

121t js common for online platforms to inform agents of the consequences of their choices: marketplaces inform sellers of
their probability of sale at different posted prices, and transportation providers inform riders of their probability of receiving
a seat upgrade at different bid levels. Even insurance companies provide consumers with projected expenditures under
different plan choices.



in the mechanism, and not their payoffs.'®'!* This assumption allows us to focus on the information
that the mechanism leaks regardless of payoff assumptions. This allows us to avoid situations in which
the mechanism does not condition the allocation on the state, but the agents learn because they have
different payoffs from the same allocation in different states; or the mechanism conditions on the
state, but this information is not payoff relevant to (some types of) the agent. Our microfoundation in
Section 5.1 in fact deals with this last wrinkle: We show that even if the agent extracts less information
than that in the calibrated information structure, she learns enough that her payoff is as if she had

access to the calibrated information structure.

We conclude this section by illustrating how our static solution concept captures the dynamics we

alluded to in the introductory example:

Example 1 (Selling a good under demand uncertainty). Consider again the example in the introduction,
in which a buyer with binary values v € {1/2,1} faces a seller who knows whether demand is high (w = H)
or low (w = L). The left panel of Table 3 describes the probabilities of trade and payments of the optimal
(Myersonian) mechanism. In the introduction, we discussed this mechanism fails to extract full surplus
in the long run as the buyer would quit the mechanism after seeing her allocation is (1,3/2). We now

describe this in the language of calibration.

The right panel of Table 3 describes the information structure induced by the surplus extraction
mechanism. Because in this mechanism the buyer’s allocation does not depend on her values, we
describe signals as allocations. The calibrated information structure is fully informative: when the state
is L, the buyer sees signal (1,0) with probability 1, and when the state is H, she sees signal (1,3/2) with
probability 1.

lv=1/2 v=1 | (1,0) (1,3/2)
w=L| (L0) (1,0 w=L| 1 0
w=H | (1,3/2) (1,3/2) w=H| 0 1

Table 3: Trade probabilities and payments in optimal Myersonian mechanism (left); calibrated
information structure (right). We describe signals as allocations, because the mechanism does not
screen the buyer’s values.

When the buyer has access to the calibrated information structure before playing the mechanism,
the surplus extraction mechanism does not satisfy the buyer’s participation constraints, which must
hold for each buyer value and each signal she observes. In particular, when the buyer sees signal
(1,3/2), she knows her payoff in the mechanism is negative and quits. Thus, the calibration constraint
prevents the seller from extracting the buyer’s surplus. In this case, the restriction induced by calibration
endogenously provides the buyer with withdrawal rights, which, as Haberman and Jagadeesan (2025)

show, prevent sellers from employing Crémer-McLean-style schemes."

13Indeed, in the analysis of the dynamic interaction in Section 5, we assume the agent only observes her type and her
allocation, but not her payoffs.

14This assumption is routinely made in dynamic settings. See Pavan et al. (2014) and Cesa-Bianchi et al. (2024) for two
examples in the context of agents’ behavior within mechanisms.

151n Section 3, we provide an example in which when agents have access to the calibrated information structure the
optimal Myersonian mechanism fails to be incentive compatible.
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Consider now the mechanism in the left panel of Table 4, which corresponds to posting a price of 1/2
when the state is L and a price of 1 when the state is H. The right panel of Table 4 depicts the calibrated
information structure. Note that when the state is H, the information structure sends with probability 1
the interim allocation rule{(1/2,(0,0)), (1, (1, 1))}, representing that if the buyer reports her value is 1/2
she gets nothing and pays nothing, whereas if her report is 1, she obtains the good at a price of 1.

‘ v=1/2 v=1 ‘ {1,1/2)}  {(1/2,(0,0)),(1,(1,1))}
w=L | 1,1/2) (1,1/2) w=1L 1 0
w=H | (0,0 (1,1) w=H 0 1

Table 4: Trade probabilities and payments in optimal calibrated mechanism (left); calibrated
information structure (right)

Note that the mechanism is incentive compatible and individually rational when the buyer has access
to the calibrated information structure. As the results that follow allow us to establish, this is indeed the

optimal calibrated mechanism.

Private value environments A natural case to consider is that when agents’ payoffs are state
independent, that is, for each agent i, the agent’s utility function can be written as u;(a;,0;). Under
private values, the state describes either statistical information about the agents’ types as in Example 1,

or a payoff-relevant variable for the designer.

Theorem 1 collects our main characterization result for this case. To state it, let ¢psy11 denote the
following mechanism: For each (w,¢€) € Q x [0,1], ¢su11(-,w,€) : @ — A(A) is the designer optimal
incentive compatible and individually rational direct mechanism when it is common knowledge that

the state is w.

Theorem 1 (Private values). Under private values, the designer’s payoff under the optimal calibrated

mechanism is the same payoff he would obtain by choosing ¢ u11.

That is, in private values environments, the calibration constraint pushes the designer toward full
transparency. In particular, in settings with transferable utility in which the designer possesses
statistical information about the agents’ types, Theorem 1 implies the designer cannot engage
in Crémer-McLean style schemes under calibration, and hence extract full surplus. Whereas the
implication of calibrated mechanism design in private values environments is powerful, the result is
fairly intuitive: The designer benefits from making the mechanism opaque by pooling states inasmuch
as it weakens the incentive or participation constraints of the agents. Under private values, however,
agents’ incentive constraints depend on the state only through the mechanism, and calibration

imposes constraints on the mechanism state-by-state. '

16 tempting comparison is Maskin and Tirole (1990, Prop. 11): with private values and quasilinear utilities, the informed
principal’s unique equilibrium payoff coincides with the state-by-state optimum. The authors show this conclusion depends
on quasilinearity: absent this assumption, an informed principal can benefit from concealing his information in the case of
private values. Instead, Theorem 1 relies neither on quasilinearity nor on the designer’s lack of commitment.
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3 Two-stage mechanisms

In this section, we introduce an alternative representation of calibrated mechanisms that we use
throughout our illustrations. We introduce it first for the case of a single agent and then for multiple

agents.

Single-agent case and two-stage mechanisms We find it instructive to first consider the case N =1,
and for simplicity drop the subscripts 1 from the notation. Consider a mechanism ¢ and its calibrated
information structure 7. When the agent of type 6 observes signal s*, two things happen: On the one
hand, the agent updates her prior, o (w|0),!” to some belief (6, s*) € A(Q). On the other hand, the
agent learns that she faces allocation rule s* in the mechanism. Thus, her payoff in the mechanism

when her type is 6, observes signal s*, and reports 6’ can be written as follows:

Ew,e) [u(@O,0,8),0,0)|0,5)] = >_ s"(alf)| D uwlb,s" ) ula,0,w)]. )

acA weQ)
In other words, the information structure 74 provides the agent with all the necessary information
to evaluate her payoffs in the mechanism: her belief about the state and her allocation rule. This
allocation rule s* : © — A(A) satisfies two properties. First, because under calibration s* is the true
interim allocation rule faced by the agent, she learns no further information about the state beyond
that contained in u(f,s*). Second, Equations IC(6;, s;‘) and IR(O;, s;.") imply the allocation rule is

incentive compatible and individually rational when the agent holds belief p(, s*).

The above discussion suggests an alternative representation of a calibrated mechanism, which we

dub a two-stage mechanism and define as follows:

Definition 3 (Two-stage mechanisms). A two-stage mechanism is a mappingy : 0 x Q — A(A x A(Q))
such that a Bayes plausible Blackwell experiment 3 : Q — A(A(Q)) and an allocation rule @ : © x A(Q) —
A(A) exist such that for all (0,w) € © x Q and all measurable subsets A c A(Q),'

wia) < Al0,0) = fA a(al0, 1 fldulw).

We say the two-stage mechanism is incentive compatible and individually rational if on the support
of o ® B, the allocation rule a(:|-,u) : © — A(A) is incentive compatible and individually rational

conditional on the agent observing .

In a two-stage mechanism, the designer first discloses information about w in the form of a belief
1 about Q, and conditional on that belief—but not the state—offers a direct mechanism «a(:|-, u) :
© — A(A). Two aspects of two-stage mechanisms are worth highlighting: First, the disclosure is

type-independent. The designer discloses information to the agent without first communicating

17Formally,

Ho () f(Olw)
Y weqto@)f@lw)

o (w]0) =

18We refer the reader to the appendix for our mathematical conventions, in particular, the definition of the corresponding
o-algebras.
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with the agent. Second, because the direct mechanism a(:|-, ) does not depend on w, observing the

allocation reveals no further information about the state.

Lastly, when we say the experiment S is Bayes plausible, we mean that the distribution of posteriors
induced by g has mean p, and hence we can interpret u as the designer’s belief about the state
conditional on observing p.'° Whereas the designer and the agent do not necessarily have the same
beliefs about the state, the agent’s beliefs about the state conditional on observing i obtain from a
known transformation from those of the designer (Alonso and Camara, 2016; Laclau and Renou, 2017).

Thus, ensuring Bayes plausibility with respect to pg suffices.

Theorem 2 shows that (incentive compatible and individually rational) calibrated mechanisms and
two-stage mechanisms implement the same distributions over outcomes 9 € A(A x © x Q):

Theorem 2 (Two-stage and calibrated mechanisms). Suppose N = 1. An outcome distribution 9 €
A (A x © x Q) isimplementable by an incentive compatible and individually rational calibrated mechanism
if and only if it is implementable by an incentive compatible and individually rational two-stage

mechanism. That is, if and only if
9(a,0,w) =uo(w)f(0lw)fA(ma(dl&u)ﬁ(dula}), (5)

for some Bayes plausible § : Q — A(A(Q)) and incentive compatible and individually rational « :
0 x A(Q) — A(A).

The proof of this and all results in this section can be found in Appendix B.

In the single-agent case, Theorem 2 shows that the calibrated mechanism design problem is equivalent
to a standard mechanism design problem in which we restrict the designer to using a specific class of
mechanisms; namely, incentive compatible and individually rational two-stage mechanisms. As we
explained above, a mechanism ¢ and its calibrated information structure 7y can be seen as actually
inducing a joint distribution over A x © x Q x A(Q). Theorem 2 implies this joint distribution admits
two conditional independence properties. First, the allocation is conditionally independent of the
state, conditional on the agent’s type and the induced belief.”” This follows from the signals s* carrying
no further information about the state than that what is contained in the agent’s belief. Second, the
designer disclosed belief is conditionally independent of the agent’s type conditional on the state. In
the static setting of Section 2, this is because the calibrated information structure discloses information
to the agent uniformly across her types. In the dynamic setting of Section 5.1, this type-independent
disclosure arises endogenously because the agent’s experimentation opportunities are independent

of her type.

Two-stage mechanisms solve calibrated mechanism design Theorem 2 is of practical import as
it provides a recipe of sorts for characterizing the designer’s optimal calibrated mechanism (see the
applications in Section 4). For each p € A(Q), the designer chooses a mechanism a (|-, i) : © — A(A)

that maximizes his expected payoff when the designer believes p is the distribution of states, and

19Formally, define the belief distribution induced by g, 7 g = Ho ® p. The claim is that E; 5 (1] = po-

20This is a consequence of Bayes rule: beliefs are a sufficient statistic for w. Hence, conditional on (8, w), the allocation
rule carries no more information about the state.
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subject to the agent’s incentive compatibility and individually rational constraints conditional on the
designer’s belief being p. Proceeding in this way, we obtain the designer’s value function W: A(Q) — R.
The optimal Blackwell experiment obtains from the concavification of W. We illustrate this procedure

with two examples:

Example 1 (continued). Consider again the seller-buyer example, in which the buyer is privately
informed about her value for the good and the seller knows the demand state. By Theorem 2, we can
find the seller’s optimal calibrated mechanism as follows. First, equate p with the probability that the
stateis H. For each p € [0,1], consider the following problem:

2 1 1 2
W = u(gt(1)+gt(1/2))+(1—y)(§t(l)+gt(l/Z)) (6)

max
(q,1):V—[0,1]xR

st (Vvel{l/2,1}) vqg(v)—t(v)=0
T W e1/2,1L v £ V) vgw) - t(v) = vgW) -t

That is, the seller chooses an incentive compatible and individually rational selling mechanism that
maximizes his expected revenue when his belief is . Because w is not payoff relevant to the buyer—it is
just statistical information about the buyer’s valuation—and the mechanism does not depend on state,

the buyer’s belief about w does not enter her incentive constraints.

The solution to the seller’s problem in Equation 6 is simple: the seller posts a price of 1/2 when < 1/2

and a price of 1 when u > 1/2. Hence, the seller’s value function is given by
W()—max{1 2+(1 )1}
H= 23 Hsf

and is illustrated by the solid line in blue on Figure 1. In words, the seller either sells the good at a price
of 1/2 and the buyer buys with probability 1, or he sells the good at a price of 1 and the buyer buys

whenever her value is 1, which happens with the probability in the second argument of the max.

w

---cav W

0.5

Ho u

Figure 1: Seller’s payoff in Example 1.

The optimal calibrated mechanism can be read from the concavification of W, which is the dashed, red
linein Figure 1: The seller first reveals the state to the agent, and offers a price of 1/2 whenw = L and a

price of 1 whenw = H.
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Example 1 illustrates a more general principle that provides additional intuition for Theorem 1. In
the private values case and when N = 1, the designer’s value function W : A(Q) — R is convex. As
Equation 6 illustrates, the designer maximizes a linear function in beliefs subject to constraints that
do not depend on the induced belief. Convexity of W implies full disclosure is (weakly) optimal, and

Theorem 1 follows.

Example 2 (Horizontal differentiation). Consider a seller who owns a good of unknown type, w € {L, R},
and a buyer whose private information is indexed by © = {01,0,,03}. Assume the good’s type (the state)
and the buyer’s types are independent, and equally likely. Table 5 describes the buyer’s value for the
seller’s good as a function of hers and the good’s type, v(8,w). When the good is w = L, the buyer of type
03 has the highest value for the good, whereas when the good is w = R, the buyer of type 03 has the lowest
value for the good.

|61 6, 65
w=L|1 2 3
w=R| 2 2 1

Table 5: Buyer’s values.

Suppose the buyer’s utility is quasilinear, that is, u(q,t,0,w) = qu(0,w) — t, and the seller wishes to

maximize his revenue. Furthermore, assume the buyer’s outside option is no trade.

Consider first the optimal mechanism the designer would offer absent the calibration constraint,
depicted in the top panel of Table 6. This mechanism asks types 6, and 03 for a payment of 2 and
allocates the good with probability 1, regardless of its kind. Instead, it asks the buyer of 0 to pay 1 in
exchange for getting the good only when it is of her favorite kind (v = R).

| 61 6, 63
w=L| 0D 1,2 12

‘ {(61,(0,1)),(0,,(1,2)),(03,(1,2))} {(61,(1,1)),(02,(1,2)),(03,(1,2))}
w=1L 1 0
w=R 0 1

Table 6: Trade probabilities and transfers in the optimal mechanism (top); calibrated information
structure (bottom).

The bottom panel of Table 6 depicts the information structure calibrated to the optimal mechanism. It
sends two signals: when the good is L, the buyer can choose to either not get the good and pay 1, or get
the good and pay 2. Instead, when the good is R, the buyer is choosing between paying 1 or 2 to obtain
the good with probability 1.

Under the calibrated information structure, the optimal mechanism is neither incentive compatible nor
individually rational. When the good is R, the buyer would prefer to choose (1,1) regardless of her type.
Instead, when the good is L, the buyer of 61 would quit the mechanism instead of paying 1 and getting
nothing.
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To characterize the optimal calibrated mechanism, we rely again on two-stage mechanisms. Equate i
with the probability that the good is R. Note that because states and types are independent, if the seller
assigns probability i to the state being R, so does the buyer (and vice versa). For each p € [0,1], the seller

solves the following problem

1
W (W) = (q,n:glafé,uxueg;@§ t(6) (7
o] (¥0€161,02,05) qO)E,v(0,)—t(0) =0
| (V0,0 €{601,02,034,0'£0)  q@OELv(®,) - t©O) = qO)E,v®,") — (O

In this case, the seller’s objective function does not depend on the induced belief 1 as types and states are
independent. Instead, the buyer’s incentive and individual rationality constraints do depend on i as
the state is payoff relevant. The solution to the problem in Equation 7 is a posted price, whose value
depends on . For instance, when u € {0, 1}, the optimal price is 2 and the seller’s revenue is 4/3. Instead,
when u = 2/3, the optimal price is 5/3 and profits are maximal and equal to 5/3. Indeed, when 1 =2/3,
the heterogeneity across buyer types is minimized (and hence, their rents), and by setting p = 5/3 all

buyer types buy. The blue line in Figure 2 depicts the seller’s expected profit as a function of his belief L.

4

— W
--- cav W(n)

Ho [
Figure 2: Seller’s profit in the two-stage mechanism
The optimal calibrated mechanism can be read from the concavification of W at uo = 1/2, depicted by
the dashed red line in Figure 2. The seller provides the buyer with partial information about the good:

He either reveals the good is L and sells the good at a price of 2, or he obfuscates the good—inducing a
belief of 2/3—and sets a price of5/3.

Another consequence of Theorem 2 is that without loss of generality, we can focus on calibrated

mechanisms with finite calibrated information structures:

Corollary 1 (Support of calibrated information structures). It is without loss of generality to restrict

attention to two-stage mechanisms that induce at most |Q| beliefs.

In other words, it is without loss of generality to focus on calibrated mechanisms that induce at most

|Q| allocation rules.
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Multiple agents and generalized two-stage mechanisms In the case of multiple agents, we can
also interpret a calibrated mechanism as conveying to each agent i both the information she should
have about the state upon seeing signal s;.“, i (0;, s:‘), and her interim allocation rule, s;‘ :0; — A(A)).
However, two differences arise relative to the single-agent case: First, each agent i receives her
information privately from that of other agents. Second, even if the agents put together the information
they receive, this is not enough to learn the ex-post allocation rule, that is, the map from type profiles
to allocations. After all, each agent i observes her interim allocation rule alone. These differences
are natural when we think of calibrated mechanisms as capturing the information agents stand to
learn from experimenting with the mechanism: There is no reason all agents will learn the same
information, and from observing her own allocations, and not those of others, an agent can only learn

about her interim allocation rule, not the ex-post one.

These observations together imply that to describe the analogue of a two-stage mechanism in multi-
agent settings we need to (i) allow for agent-by-agent information disclosure, and (ii) keep track that
the interim allocation rules are consistent with the same ex-post allocation rule. These considerations

motivate the following generalization of a two-stage mechanism:

Definition 4 (Generalized two-stage mechanism). A generalized two-stage mechanism is a mapping
¥:0xQ— AAQN x A) for which a tuple of mappings

B:Q—ANY), a;i:0;xAQ)—A4;), a:0xQxAQYN - AA),
exist such that:

1. Forall (8,w) € ©® x Q, and all measurable subsets (Ai)f.\il c AN, we have

w(Xﬁlﬁix{a}IB,w)sz _alalf,w,py, ..., uN) Bld(uy,..., uN)|w)

iz A

2. The Blackwell experiment f is Bayes plausible,

3. Foralli€{l,...,N}, the interim allocation rule a; satisfies that for all measurable subsets A of
AQ) and all (a;,0;,w) € A; x O; x Q

fA A {ai(aimi»ﬂi) —Ef.(jw

Y. alai, a—ileiﬁ_i,w,ui,u_i)] },B(d(ui,,u_i)lw) =0.

a_ieA_;

We say the generalized two-stage mechanism is incentive compatible and individually rational if for all
i€{l,...,N}, on the support of tip ® B, a;(-|-, ;) is incentive compatible and individually rational for

agent i when she learns ;.

As anticipated, generalized two-stage mechanisms differ from two-stage mechanisms in three ways
when N > 1. First, because disclosures are private, the experiment  now outputs a profile of beliefs,
one for each agent. As shown in Arieli et al. (2024), (3 is Bayes plausible if and only if for each agent
i, the marginal Blackwell experiment f; is Bayes plausible. Second, while the individual interim

allocation rule a; only depends on the disclosed belief to agent i, u;, and not the state, the ex-post
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allocation rule a may depend on the state, even conditional on the belief profile (y;,...,un). The
reason is that this belief profile is no longer a sufficient statistic for the ex-post allocation rule as each
agent i only observes their interim allocation. Third and relatedly, we need to keep track of both the
interim allocation rules (ai)ﬁ\i , and the ex-post allocation rule « to check that the interim allocation
rules are consistent with the same mechanism. An interesting question for future work would be to
characterize which interim allocation rules (ai)é\i , are consistent with some ex-post allocation rule «,

so that one could focus on the interim allocation rules alone.
As we show in Proposition 1, a calibrated mechanism induces a generalized two-stage mechanism:

Proposition 1. Ifoutcome distribution 9 € A (A x © x Q) is implementable by an incentive compatible
and individually rational calibrated mechanism, then it is implementable by an incentive compatible

and individually rational generalized two-stage mechanism.

In contrast to the single-agent case, not every outcome distribution implemented by a generalized
two-stage mechanism can be implemented by a calibrated mechanism. On the one hand, no agent’s
beliefs are a sufficient statistic for the information the mechanism leaks about the state, so that
the allocation rule @ may still leak information about the state or others’ beliefs, which in turn leak
information about the state. On the other hand, because in a calibrated mechanism each agent learns
her interim allocation rule conditional on (w, €), the incentive and participation constraints associated
to a generalized two-stage mechanism are weaker than those implied by a calibrated mechanism
whenever multiple interim allocation rules underlie the same belief: Even if the average interim
allocation rule «; is incentive compatible and individually rational, each of the interim allocation

rules underlying that average need not be.

4 Applications

In this section, we study optimal calibrated mechanism design in canonical mechanism design settings
with quasilinear utilities. We first consider the case of a single agent, with single-dimensional types
and allocations, and supermodular payoffs. In Section 4.1, we show that if the order of types is state
independent, then optimal two-stage mechanisms fully reveal the state, whereas this conclusion can
be reversed when the order of types is state-dependent. In Section 4.2, we compare optimal calibrated
mechanism design against the Myersonian benchmark. Lastly, we analyze a multi-agent application

in Section 4.3.

4.1 Calibrated Screening

We consider the following version of the model in Section 2. Suppose N =1 and let® = [0, 6] denote
the set of types. Assume 6 is distributed according to a full support distribution F with density f.
Hence, throughout, we consider the case in which the agent’s type is independent of w. Denote the set
of allocations by A = [0, ] x R, where g € [0, ] is the (physical) allocation and ¢ € R is a payment from

the agent to the designer.”!

2l contrast to the model of Section 2, we are assuming the set of types and allocations to be intervals in the real line. The
results in the previous sections go through with richer type and allocation spaces, at the cost of more notation.
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The agent’s and the designer’s payoffs are given by u(q,0,w) -t and w(q, 8, w) + t, respectively. Assume
that if the agent does not participate, then the outside option is as = (0,0), and that this yields a payoff
of 0 to both the designer and the agent. Throughout, we assume that for each w € Q, the family of
functions {6 — u(q,0,w) : q € [0, 1} is equi-Lipschitz on ©: a positive constant L,, exists such that for
allg,0' e ® and g € (0,41, |u(g,0,0) — u(q,0',w)| < L,|0 —0'|.>? Furthermore, the analysis that follows
restricts attention to mechanisms that do not randomize on the allocation (beyond the inherent
randomness of Q x [0, 1]). Remark 1 at the end of this section discusses settings in which this is not a

restriction and how to generalize the observations herein when random allocations are allowed.

Our goal is to characterize the designer optimal calibrated mechanism and how its properties depend

on how the state affects the order of types.

State-independent type ranking We consider first the case in which the order of types is independent
of the state. Formally, assume that for all w € Q, the function u(-, w) is supermodular in (g, ). That
is, in all states, the agent with higher value of 8 values g more. These assumptions are satisfied, for

instance, for u(q,0,w) =0wq or u(q,0,w) = (0 +w)q.

By Theorem 2, we can characterize the optimal calibrated mechanism via two-stage mechanisms. To
do so, we solve the problem “backward”: For each u € A(Q) the designer may induce about the state,
the designer chooses an optimal direct mechanism (g, f,,) : ® — A. This determines the designer’s
value function W : A(Q) — R. We obtain the designer’s optimal Blackwell experiment by studying the
properties of W.

Given belief y, define the agent’s and the designer’s (expected) payoff at (g, t,0) as follows:

u(q, 0l = ) pwu(q,6,w), wig,blw =) wwwq,o,w).

weQ) we)

Thus, conditional on inducing belief y, the designer’s problem can be written as follows:

W(u) = 0),0, t@)| F(do 8
() (q,ggAg[W(q() W+ t(0)] F(dO) ®)

t{ VOe®)  u(qg®),0|w) —tO) =0
S.1. .
(V0,0'€0) u(q0),0lu) - t0) = u(q@®),0|u) — t(O")

Our assumptions imply that u(-|u) is supermodular in (q,6). It follows that the designer can only
choose among those g : ® — [0, 4] that are (weakly) increasing in 0. Let Q; denote the set of all such

q(-). Furthermore, at the optimum, the participation constraint of 8 = 8 binds.
Define the virtual surplus at (g, 6, w) as follows:

1-F@©
J(q,0,0); F) = w(q,0,w) + u(q,0,0) ~ u2(q,0,0) _f(H()_),

where u; is the derivative of u against its second coordinate; the equi-Lipschitz assumption implies it

exists almost everywhere. Then, conditional on inducing belief 1, the designer’s payoff can be written

22This assumption ensures the Lipschitz continuity of the agent’s indirect utility function when the allocation space is
infinite. Because Q is finite, requiring the condition to hold state-by-state suffices.
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as follows:
W) = max[ Ey []((6](9),9,60);}7)] F(d0). 9)
qeQy Jo

Note the objective is linear in ¢ and the constraint set is independent of y. We conclude that W is
convex, as it is the maximum of linear functionals in u. It follows that full disclosure is an optimal
experiment for the designer. Equivalently, an optimal calibrated mechanism exists in which the
designer chooses the mechanism <p£ull, where for all w € Q, (/)?ull (,w,"):©x[0,1] — Ais the optimal

deterministic mechanism when it is common knowledge that the state is w.
Proposition 2 summarizes the above discussion:

Proposition 2 (State-Independent Type Ranking). In a single-dimensional screening problem with
state-independent type ranking, the designer can do no better than choosing (,blf)u” among deterministic

mechanisms.

By Proposition 2, in screening problems with state-independent ranking of types across states, the
calibration constraint makes any pooling of mechanisms across states unprofitable.>> Remarkably,
this result holds for any designer objective, such as profit, revenue, or efficiency. It also requires no
regularity assumptions on the type distribution, as we do not obtain the result by looking at the relaxed
problem. Instead, our argument relies on the restriction to deterministic mechanisms (conditional on
the induced belief), which in turn delivers that the set of implementable allocations does not depend
on the induced belief. Remark 1 discusses conditions under which (i) the restriction to deterministic
mechanisms is without loss of optimality, and (ii) the set of implementable allocations does not
depend on the induced belief, even when randomized mechanisms are allowed. Readers interested in

the case of state-dependent ranking can skip this remark with little loss of continuity.

Remark 1 (Proposition 2 without deterministic mechanisms). Under our assumptions, deterministic
mechanisms are without loss of optimality if the agent’s payoff is linear in q and the designer’s
payoff is concave in q. (See Section 4.2 for yet another condition.) However, the driving force behind
Proposition 2 is that the designer’s constraint set does not depend on the induced belief. The state-by-
state supermodularity assumption and the restriction to deterministic mechanisms is one way to ensure
this is the case. We now discuss two other cases in which the designer’s constraint set does not depend on
the induced belief and thus Proposition 2 holds for the optimal (not necessarily deterministic) calibrated

mechanism.

First, suppose the agent’s payoff is linear in q, so that u(q,0,w) = qv(0,w), where v(-,w) is increasing for

all w. Then, the set of implementable lotteries over q when the belief is | is given by:
Qf random = {¢:© — A([0, G1) : E¢ () [q] is increasing in 6} .

In this case, we obtain that the designer cannot do any better than choosing ¢ ¢y, which is the

23The calibrated mechanism which state-by-state implements the optimal direct mechanism under common knowledge
of the state may reveal less than full information about the state, e.g., because at w and o’ the same direct mechanism
is optimal. The point is that pooling those states does not weaken the incentive constraints of the agent, so it is as if the
designer were forced to reveal the state.
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mechanism that implements in each state w the optimal mechanism under common knowledge that
the state is w. This relates to the results in Szabadi (2018) and Yamashita (2018), who study the optimal
mechanism design preceded by public information disclosure. Both papers consider settings in which
the agent’s payoff is linear in q and obtain that full disclosure is optimal when the ranking of types is
independent of the state.**

Second, suppose the agent’s payoff has the form
u(g,0,w) =bO)c(w)v(q) + ki(q,w) + k20, w),

where b is increasing in 0 and c(-) does not change sign on Q. Under this assumption, u(q,0|u) satisfies
monotonic expectational differences for all u € A(Q) (see, e.g., Kartik et al., 2024). Consequently, one can
define a linear order = over A([0, §]) as follows: & = &' if u(é,0\u) — u(é',0|w) is increasing in 6, where
u(¢, 0\ is the linear extension of u(-,0\|u) to A([0, q1). This linear order implies the ranking of types
is state independent. Indeed, the analog of Q1 random IS the set of all¢ : © — A([0, g1) such that 6 = 6’
implies £(0) = &(0"), which is again independent of the induced belief.

State-dependent type ranking Example 2 illustrates that when the ranking of types is not uniform
across states, full transparency may not be optimal.>> We now provide a more systematic analysis of
this phenomenon, using the previous results. To provide the starkest contrast with Proposition 2, we
consider a setting that shares a key feature of Example 2: we can partition A(Q) into two regions such
that within each region the ranking of types—as determined by u(q, 8|u)—is the same, but it differs

across regions.

Concretely, suppose that Q = {w;, w»}. Furthermore, assume

q0 ifw=w;

u(q,0,w) =
1 { q(c—DbO) otherwise,

where c € R, and b > 0. Identify beliefs with the probability that the state is w, and define

. b
=1y

For pu < f1, we have that u(q,0|u) is decreasing in 6, whereas if y > i, then u(qg,0|p) is increasing in 6.

Consider now the designer’s optimal payoff W : A(Q) — R as a function of the different beliefs he may
induce. When p = i, the designer’s payoff can be obtained by solving the program in Equation 9 as
before. Instead, when u < i, the designer’s payoff can be obtained by solving a problem analogous to
Equation 9, but where the space of implementable allocations is the set of decreasing ¢, Q|, and the
participation constraint of 6 binds. It follows that W is convex on [0, 1) and ({2, 1]. Thus, the support of

designer’s optimal experiment is included in {0, {1, 1}.

24Restricting attention to deterministic mechanisms, Ottaviani and Prat (2001) obtain the optimality of full disclosure
without such a linearity assumption. Their model, however, is different from ours and that of the aforementioned papers: the
agent’s type is not payoff relevant and the agent’s type and the state are affiliated. Thus, while related in spirit, Proposition 2
is distinct from their result.

25gee Szabadi (2018) for a similar observation.
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Proposition 3 (State-dependent type ranking). Suppose the agent'’s payoff satisfies the assumptions
above. If (1 - )W (0) + W (1) = W (1), full transparency is optimal. Otherwise, full transparency is not
optimal: if uy < f1, it is optimal to split uy to 0 and [1; if po > [i, it is optimal to split o to L and 1. In
particular, if W (1) > max{W (0), W (1)}, then full transparency is not optimal.

By Proposition 3, whether full transparency is optimal depends on the designer and agent’s payoffs
and the type distribution, but only through their impact on the value the function W takes at points
{0, 1, 1}. At 1, the agent earns no rents—as u(-|f1) is constant across types—which pushes against full
transparency. At the same time, efficiency may dictate the designer to condition the allocation rule
on the state, which favors information disclosure. The piecewise convexity of W implies that if W ({1)
dominates W at the extreme beliefs, the rent extraction motive dominates and the designer does not

engage in full disclosure.

4.2 Comparison with Myersonian Mechanism Design

We now compare optimal calibrated mechanism design and the Myersonian benchmark. In the
Myersonian benchmark, the designer is not concerned with the information the mechanism reveals
about the state, and hence provides a natural upper bound on the designer’s payoffs in calibrated
mechanism design. The gap between the designer’s optimal payoff across both benchmarks quantifies
the loss from the calibration constraint. If no gap exists, the calibration constraint is non-binding and
an optimal calibrated mechanism can be found solving the Myersonian benchmark. Instead, if a gap
exists, the optimal mechanism in the Myersonian benchmark reveals information about the state in a

way that it fails to be incentive compatible or individually rational under calibration.

Myersonian benchmark In the Myersonian benchmark, the designer chooses a direct mechanism
(&, 1) :0xQ — A([0, g]) xR subject to incentive and participation constraints that must hold on average

across states under the prior p.2% Formally,

Wy = max f[EMO[w(é(@,w),@,w)+t(B,w)]F(dH) (OPTyy)
(q,1):0xQ—[0,g1xR J@

ot (VO e O)E,, [u(@,w),8,w)—tl,w)] =0
| (V0,0 € O, [uE(0,w),0,w) - 10, )] = Ey, [uE B, 0),0,0) - t0',w)]

where w(¢,0,w) and u(¢,0,w) are the linear extensions of w(:,0,w) and u(:,0,w), respectively.

Program OPTyy is a mechanism design problem with a multidimensional allocation, corresponding to
assigning (a distribution over) g in each state. As a result, the distinction between the Myersonian
benchmark and optimal calibrated design shows in the monotonicity requirements the allocation
¢(0, w) must satisfy for a transfer £ : @xQ — R to exist that implements ¢ (6, ). Indeed, implementability

of £:0 x Q — A([0, §]) is equivalent to integral monotonicity (Rochet, 1987; Pavan et al., 2014):%7

0
(V9,0’€®)f f[uz(€(s,w),s,w)—uz(f(H',w),s,w)]duod820, (M)
o Ja

26Because payoffs are quasilinear, considering mechanisms that do not randomize on transfers is without loss of generality.
27The equi-Lipschitz condition on u ensures we can take the derivative inside the integral.
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where recall u; is the derivative of u in its second coordinate.

Comparison with calibrated mechanism design To facilitate the comparison with Proposition 2,
we focus on deterministic mechanisms (g, t) : © x Q — [0, §] x R. Remarkably, even if the agent’s
payoff net of transfers, u(q,6,w), is supermodular in (g,0) for all w € Q, the characterization of
the set of implementable g(-) cannot be simplified beyond integral monotonicity without further
assumptions. Because integral monotonicity is a global, implicitly defined constraint, verifying
implementability and computing the optimal mechanism is more computationally involved in the
Myersonian benchmark than in calibrated mechanism design. Indeed, Proposition 2 implies the
optimal deterministic calibrated mechanism coincides with the state-by-state optimal deterministic
mechanism under this assumptions. In other words, the optimal deterministic calibrated mechanism

can be obtained by selecting allocations ¢g(-) that satisfy
Qea1 ={q:0xQ—[0,4]: (Vw € Q) q(-,w) is increasing} .

That is, the allocation in the optimal calibrated mechanism must satisfy monotonicity state-by-state.
Instead, the optimal deterministic Myersonian mechanism can be obtained by selecting allocations

q(-) that satisfy Equation IM, which we denote by Qj.

When u(q,0,w) is supermodular in (g,0) for all w € Q, the above discussion implies the designer’s

optimal payoff in the Myersonian and calibration settings can be written as follows:
W = maxf Ey, [7(q(0,),0,0; F)] F(d0), 10
My qEQMy o) Ho [ (q ] ( )

WD, = max f E,., [J(q(60,0),6,0; )] F(d6),
qEQcal @

where the superscript D in the objective is a reminder that we restrict attention to mechanisms that

are deterministic conditional on the state, or the induced belief.

By reducing the comparison across settings to monotonicity requirements on the space of allocations,
the above expressions provide us with an immediate way of comparing the designer’s payoffs across
settings. In particular, when the optimal Myersonian mechanism satisfies the state-by-state monotonicity
constraints, we have that the calibration constraint entails no loss to the designer. We record this

observation for future use:

Observation 1. Suppose u(q,0,) is supermodularin (q,0) for allw € Q. Then, if the allocation rule in

the Myersonian benchmark satisfies monotonicity state-by-state, Wc]il = ng.

Two natural questions are under what conditions the solution to OPTy, is deterministic and satisfies
state-by-state monotonicity. We answer them simultaneously by studying the relaxed program.
Inspection of Equation 10 reveals that if the virtual surplus is supermodular in (gq,8) for every w,

then the solution g to the relaxed problem
Wil = max E 0,w),0,w;F)|F(dO), 11
rel q:@xQ—»[O,Ey]L 1 [J(q(0, ) )| F(dO) (11)
satisfies monotonicity state-by-state by Topkis’ theorem. Moreover, a stochastic mechanism is
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equivalent to a deterministic mechanism which depends on the random reports of a fictitious agent
(Pavan et al., 2014). The virtual surplus in this fictitious setting coincides with that in the integrand on
the right-hand side of Equation 11—the type reports of the fictitious agent are payoff irrelevant—and
is maximized by ¢ye).

Proposition 4 (Sufficient condition for no gap). Suppose the virtual surplus J((q, 0, w); F) is supermodular
in (q,0) for allw. Then, the designer’s payoffs under the optimal Myersonian and calibrated mechanisms

coincide.

By contrast to Proposition 2, Proposition 4 relies on assumptions on the type distribution and the
designer’s payoff. As Example 2 illustrates, the supermodularity of the virtual surplus can fail when the
type distribution is not regular, creating a gap between the designer’s payoff at the optimal Myersonian
and calibrated mechanisms. Example 3 illustrates such a gap can also arise when the designer’s payoff

is not supermodular:

Example 3 (Payoff gap when w is not supermodular). Suppose states are binary, Q = {wr,wg} ={1,3},
and equally likely. Suppose types are uniformly distributed, 0 ~ U|[0, 1]. Finally, let q € [0, 1] denote the
probability the seller’s good is allocated. Payoffs are given by:

u(q,0,w) = qlw
w(q,0,w) =2(1-20)q.

Note that w is increasing in q when 0 < 1/2 and decreasing in q when 6 > 1/2.?% In this case, the virtual

surplus evaluated at different states is:

1-20)g ifw=wr

,0,w); F) = :
J((q,0,w); F) {(20—1)q otherwise

In the Myersonian benchmark, implementable allocations are elements of Qyy, which in this case is
equivalent to requiring that E,,, [q(-,w)w] is increasing. The optimal Myersonian allocation obtains

from pointwise maximizing the virtual surplus, and is given by:

1 ifo=wpandf<1/2
awy0,w)=1 1 ifo=wyandl>1/2

0 otherwise

The designer’s payoff under the Myersonian mechanism is 1/4.

By Proposition 2, qyy cannot be implemented by a calibrated mechanism as it is not increasing state-by-
state. Intuitively, when w = wy, types above 1/2 would learn from the calibrated information structure

that they do not obtain the good, whereas types below 1/2 do, and would misreport their types.

Instead, in the optimal calibrated mechanism, the designer sets q.,1(0,wy) = 1[0 = 1/2] and sets

28The designer can be viewed as an online advertising platform and the agent as an advertiser. State w represents the
click-through rate of an ad slot, and higher 6 corresponds to a larger advertiser willing to pay more for exposure. The
designer’s payoff captures both the value created by advertising and the disutility from showing ads of large advertisers, e.g.,
due to user brand fatigue.
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q(0,wy) to be constant in 6. The designer’s payoff under calibration is Weq; = 1/8 < Wy

4.3 Optimal Calibrated Auction

In this section, we consider a multiple agent application and study the design of the optimal calibrated
auction. Proposition 1 implies the optimal calibrated auction induces a generalized two-stage
mechanism, and hence the optimal generalized two-stage mechanism provides an upper bound
on the designer’s optimal payoff under calibration. However, computing the optimal generalized
two-stage mechanism is complicated because (i) no tractable characterization of joint distributions
over posterior beliefs is available, and (ii) the allocation rule may condition on the state and not only
the agents’ beliefs. For that reason, our analysis below relies on Observation 1: We show the optimal
Myersonian auction can be implemented by fully revealing the state, and hence, remains incentive
compatible and individually rational when the agents have access to the calibrated information
structure. Below, we first specialize our multi-agent model and notation to the auction application

and then link our assumptions to online advertising.

Suppose there is a single good for sale and the state is multidimensional, w = (w;, wo;)ie(n] € RiN , and
distributed according to prior distribution p. Suppose that for all i € [V], ©; = [0, 1], with 8; ~ F; with
full-support density f;. That is, we are assuming agents’ types are independent of the state, and hence,
independent across each other. Denote by g; € [0, 1] the probability agent i is allocated the good, and
note that feasibility implies that0< ¥V g; < 1.

We assume the agents’ and the designer’s utilities are quasilinear in transfers. Agent i’s payoff net of
transfers is u;(q;,0;, w) = q; (w;0; + wo;). Thus, state components w; capture the value responsiveness
to agent’s private information, whereas state components wy; capture the overall shift. The state
components can be correlated (and asymmetric) across agents, allowing for interdependent values.
The designer’s payoff net of transfers is w(q,0,w) =3_; q;w; (0, w) for some functions (w;);c[n;. Below,

we study the designer-optimal calibrated mechanism.

To fix ideas, consider the following mapping to an online advertising environment. The designer is an
advertising platform, and the good is an advertising slot on a given webpage targeted to a selected
category of users in a given week. Agents are firms that wish to display their ads, and their private
types represent the expected revenue from a click on their ad. State components w; could capture
individual click-through rates or match values, while state components wy; could capture individual
display values, that is, the expected revenue from an ad being displayed irrespective of whether it
is clicked (for instance, due to brand-building effects). The state is observed through proprietary
data available to the platform and can be used in the design of the auction. The platform values the

resulting revenue but may also have additional efficiency considerations, summarized by w;.

As anticipated, we characterize the optimal calibrated mechanism by showing that it coincides with the
Myersonian optimal one. To this end, consider the Myersonian problem, in which the designer chooses
(g0, w), t0,w)) € [0,1]N x RN, Because agent i’s payoff is linear in ;, arguments analogous to those
in Section 4.2 imply a feasible g(0, w) is implementable if and only if for all i, Ex_; 4,[q;(0;,0-;, w)w;] is
increasing in 6;. In a slight abuse of notation, denote by Quy the set of all such functions and define

25



the virtual surplus as

N 1-F;(6;)

J(q,0,0);F) =) qi(0,0) | w;(6,w) +|0; - ————— | w; +wo; |. (12)
i=1 fl (9 i )

Standard arguments imply the individual rationality constraint of 8; = 0 binds for all i, and an optimal

mechanism solves

Wyy = max £y, [J(q0,0),0,w; F)] f(0)do.
H q€Quy J10,1]1N Ho I !
Proposition 5 (No gap in regular auctions). Suppose that (i) for alli € {1,..., N}, F; is Myerson regular,
and for alli, j,0, and w, wig,(0,w) = 0, wig, (0, w) = wjg,0,w).*° Then, Weqy = Wy

The proof of Proposition 5 in Appendix D.2 shows that under our assumptions the optimal Myersonian
mechanism can be obtained by solving the relaxed program. Importantly, the assumption that
wip, (0,w) = w 6 (8,w) ensures that an increase in agent i’s type increases the designer’s payoff of
giving the object to agent i by more than the value of giving it to other agents. This, in turn, ensures

agent i’s allocation probability is increasing in her type.

Viewed through the lens of the online advertising example, Proposition 5 implies that in regular
environments, while the advertising platform benefits from having the data on click-through rates and
display values, it does not benefit from the informational advantage over bidders that such data entails.
Its objective is maximized by making the click-through rates and display values readily available to

bidders and running optimal auctions in all instances.

5 Microfoundation

In this section, we provide a microfoundation for calibrated mechanism design by analyzing the
outcome distributions that can arise when an agent repeatedly engages with the same mechanism
(Section 5.1) and contrast this to what can be implemented when the designer can offer the agent a
fully dynamic mechanism (Section 5.2). To keep the presentation simple, we present the results with

minimal notation, and refer the reader to Appendix C for details.

Throughout, we consider the case of a single agent, whose type (i) is redrawn each period from the
same distribution and (ii) is independent of the state. The reason for (i) is as follows. When the designer
offers the agent a fully dynamic mechanism, the revelation principle implies that it is without loss of
generality for the designer to ask the agent for type reports. Moreover, logic similar to that in Myerson
(1986) implies that the designer only elicits one type report when the agent’s type is persistent, and
hence, the agent has no possibility of experimenting with the mechanism. Hence, to put repeated
and dynamic mechanisms on a more similar footing, assuming the agent’s type is redrawn each
period is necessary. However, when the agent’s type is repeatedly drawn from a distribution that
depends on the state, the agent learns about the state both through her own type and her allocations

in the mechanism.3° Thus, we assume (ii) so that the agent learns about the state only through her

291n the statement, Wi, denotes the derivative of wy with respectto 6;, for k€ {1,..., N}.
30To be sure, Theorem 3 extends to the case in which the agent’s type is fully persistent and correlated with the state.
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interaction with the mechanism. Lastly, we consider the single-agent case as extending the results in
this section to multiple agents requires addressing subtle issues in strategic experimentation, which

we plan to pursue in future work.

5.1 Repeated Interactions with a Mechanism

We consider first the case in which the agent interacts repeatedly with the same mechanism ¢ in each

period of an infinite horizon interaction. In line with Section 2, a repeated mechanism is a mapping
G:MxQxE—AA),

where M is a finite set of messages and £ is a finite set endowed with some measure, denoted 7.
The results in Section 3 imply that assuming £ is finite is without loss of generality and it simplifies
the proofs. In contrast to Section 2, we allow the mechanism to have an arbitrary message space.
The reason is that we cannot invoke the revelation principle when the designer offers the same
mechanism repeatedly: unless the agent’s best response is the same across periods, the composition
of the mechanism with the agent’s reporting strategy yields a time-dependent, direct mechanism. To
avoid keeping track of participation and reporting strategies separately in what follows, we assume a

message mg € M exists such that for all (w,&) € Q@ x &, p(mg,w,€) =6 4,.

Timing Given ¢, the agent faces the following extensive form. Nature draws (w,€) once at the
beginning, unobserved to the agent. In each period, nature first draws the agent’s type, which the
agent observes. The agent then sends a message m into the mechanism. The mechanism then draws

the allocation from ¢(:|m, w, €), which the agent observes.

Given the mechanism ¢ and the extensive form game it induces, the agent’s strategy specifies for
each period t and each period- type 6 € ©, a distribution over M, as a function of the agent’s past
observations, which include her past types, messages, and allocations. Importantly, we assume the

agent does not observe her payoffs to focus on the agent learning through the mechanism.

We assume the agent is infinitely patient, that is, she has limit-of-means preferences. Her average
payoff through period T when the realization is (w, €) and the type-message-allocation sequence is
O, my, at)thl is given by:

T

1
Ur (0, mt,ﬂt)tT:pw,E) =T Z u(as, 0, w).
=1

A strategy o is a best response for the agent if for all alternative strategies o', we have that

lim inf E, [U7] =lim sup E, [U7], (13)
T—oo T—oo

where E, is the expectation relative to the measure induced over the terminal histories by the prior on

Q, the distribution on &, the agent’s type distribution f, the mechanism ¢, and the agent’s reporting

strategy 0.°!

31The Tonescu-Tulcea extension theorem implies this measure is always well-defined for any mechanism and any agent’s
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Implementation Our notion of implementation is based on the induced occupation measure on
Ax 0O xQ, that is, the (limit) expected frequency of tuples (a, 8, w) when the agent best responds to the
mechanism. For this reason, we restrict attention to mechanisms ¢ for which (i) a best-response o

exists, and (ii) its induced occupation measure v, over A x ©@ x M x Q x £ exists, defined as follows>2
1 T
VU(ave)mver) = llm _|E(7 Z ]l[(atlgtrmtrw,vel) :(ayeymrwrg)] = hm Vg(ayey m;wrg)y (]-4)
T—oo T = T—o0

where the last identity defines v, as the limit of the up to period T occupation measures vl , which

are always well-defined.

Under our definition of best response, which is the same as in Hart (1985), existence of a best response
implies the agent’s payoff at the best-response strategy is well-defined.*® Even if the occupation
measure in Equation 14 is enough to calculate the agent’s payoffs, that the agent’s payoffs are well-
defined does not mean the occupation measure is well-defined. Because outcome distributions—and
not payoffs—are usually the focus of mechanism design, we require that both the mechanism has a

best response and it induces a well-defined occupation measure.

Definition 5 (Implementation). Outcome distribution J € A(A x © x Q) can be implemented by a

repeated mechanism if a mechanism ¢ and a best-response strategy o exist such that

9a,0,w)= >  vs(a,6,muw.e).
ceE, meM

We are now ready to state the main result of this section. Theorem 3 shows that the outcome
distributions implemented by repeated mechanisms can be implemented by two-stage mechanisms,

and hence by calibrated mechanisms:

Theorem 3 (Microfoundation of Calibrated Mechanism Design). Outcome distribution € A (A x © x Q)
is implementable by a repeated mechanism if and only if 9 can be implemented by an incentive

compatible and individually rational two-stage mechanism, that is for all (a,0,w) € Ax @ x Q,
9(a,0,w) =,Lto(w)f(9)fA(ma(aIH,u)ﬁ(dulw), (15)

where B : Q — A(A(Q)) is Bayes plausible and a(-|-, i) : © — A(A) is incentive compatible and individually
rational on the support of iy ® B.

The proof of this and all results in this section can be found in Appendix C.

Theorem 3 provides a microfoundation for calibrated mechanism design. Whenever the designer
is concerned with agents learning from the outcome of the mechanism and cares only about the

long-run outcome distribution, it is as if he is designing a two-stage mechanism.

We now provide a proof sketch for Theorem 3, which is also useful to understand the proof of the result

strategy. See Appendix C.1 for details.

32Throughout this section, limits of measures should always be understood in the weak# sense.

33Note that in mechanism design one always focuses on mechanisms that have well-defined best responses in single-agent
settings, and equilibria in multi-agent ones.
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in the next section. For simplicity, let Q = Q x £ with elements @. Suppose repeated mechanism ¢
implements 9, and let v, € A(A x © x M x Q) denote the induced occupation measure. As the analysis
so far illustrates, tracking the joint distribution over allocations, types, states, and beliefs is important
to show that 9 can be implemented via a two-stage mechanism. To this end, we extend the up to
period T occupation measures, vg € A(Ax 0 x M x Q), to account for the frequency of beliefs through
period T. In fact, we define two sequences of extended occupation measures over Ax 0 x M x Q x A(Q):
the first, Vg’l, calculates the frequency of a tuple (a, 0, m,®, u) by counting the beliefs at the beginning
of period t and the second, 75'2, by counting the beliefs at the end of period ¢. Whereas the martingale
property of beliefs implies these two sequences have the same (subsequential) limits, they have
different conditional independence properties, which we use to derive the representation of 9 via a

two-stage mechanism. Suppose for simplicity that 175‘1 (and hence, 1'/5’2), have limit v, though this

f,34

assumption is not needed for the proof.”* A consequence of the martingale property of beliefs is that

only the long-run beliefs of the agent are in the support of V.

The proof consists of three steps. In the first step, we show that v, admits the following decomposition:
Vo ({(a,0,m,@)} x A) = fﬁu(d))f(ﬁ)p(mlﬁ, wa'(alm, Wt (dy),

where (i) 7 € A(A(Q)) has mean g ® 17, where recall 7 is the measure on &, and (ii) p : © x A(Q) —
A(M) is a “Markovian reporting strategy”, and (iii) a’ is almost the allocation rule in the two-stage
mechanism, and hence the prime notation. Moreover, on the support of u, a’(:|-, u) coincides with
¢ (|-, ®), implying that ¢(-|-,®) is constant in @ on the support of u. This is the step which exploits the
different conditional independence properties of 17;’1 and 17;’2. We use v({'l to show the conditional
independence of types and beliefs—all agent types in period ¢ have the same belief at the beginning
of period t—and v2* to show the conditional independence of the allocation and the state—the belief

at the end of period ¢ contains all the information about the state contained in the allocation.

In the second step, we show that p: © x A(Q) — A(M) is indeed a best response for the agent when her
type is 6 and her belief is u. In other words, the support of p(-|6, ) is contained in

argmax »_ u(@) Y ¢plalm,d)u(a,6,w),
meM 25 acA

for beliefs on the support of 7. Hence, we can use p and ¢ to define a direct mechanism a(:|-, i) : © —

A(A) that satisfies the agent’s participation and incentive constraints when her belief is p1. Together,

Steps 1 and 2 allow us to obtain the representation of 9 as in Equation 15.3°

Whereas the above steps are enough to show that 9 is implementable by some individually rational and
incentive compatible two-stage mechanism, they do not necessarily imply that the distribution over
posteriors 7 is the one induced by the information structure calibrated to ¢, 7. The last step of the
proof shows that even if this is not the case, the agent adequately learns the information contained in

7 in the sense of Aghion et al. (1991). Indeed, Lemma C.4 shows a strategy exists that approximately

34By assumption, the marginal of x‘/g on Ax 0 x M x Q) converges to v. Moreover, we show that the marginal of vZ on
A(Q) also converges (Lemma C.3). However, this is not enough to ensure the convergence of v

35Whereas the above two-stage mechanism is described in terms of beliefs over Q x £, we show in the appendix how to
derive from it a two-stage mechanism in terms of beliefs over Q.
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delivers the payoff from learning 74, so that the agent’s payoff under o is at least the payoff she would
obtain if she had learned 7. Because the payoff from learning 7 is the maximal payoff the agent can
possibly attain, we conclude that the payoff under o is the payoff the agent would attain when facing

the calibrated information structure 7 (and best responding to it).

5.2 Dynamic Mechanisms

In this section, we consider the case in which the designer can offer the agent a dynamic mechanism,
that is, one that conditions the allocation in each period on the history of past allocations and reports.
The analysis herein allows us to describe the limits implied by calibration on the set of implementable

outcomes.

Dynamic mechanisms A dynamic mechanism ¢ = (¢;) e is a sequence of mappings that condition
on the state, the history of participation decisions, type reports and allocations, and today’s report, and
output an allocation. Formally, expand the set of type reports and allocations by a non-participation
message and the outside option, which we denote by ®Ag = © x AU {(®, ag)}.>° For each t € N, define
the mechanism in period ¢, ¢, : Q x (BAg)""! x ® — A(A). Because the designer can flexibly design

the mechanism in each period we no longer rely on the randomization device.

A dynamic mechanism induces an extensive-form game for the agent, in which in each period, the
agent decides whether to participate, and conditional on participation what type to report. Whenever
the agent chooses not to participate, she obtains her outside option as. We denote by p the agent’s

participation strategy and by o the agent’s reporting strategy.

Implementation Our notion of implementation continues to be based on the occupation measure
over the set of allocations, types, participation decisions, type reports, and states, induced by the
distributions py and f, the mechanism ¢, and the agent’s participation and reporting strategy.
However, as we show in Appendix D.3.1, it is without loss to focus on mechanisms such that (i)
participation with probability 1 and truthtelling is a best response for the agent, and (ii) the mechanism
implements the outside option with probability 1 in all future periods following a non-participation
decision by the agent.®” Thus, we focus on dynamic mechanisms ¢ such that (i) a best response exists,

and (ii) the occupation measure over A x © x Q is well-defined.

Incentives in dynamic mechanisms Dynamic mechanisms allow the designer to condition the
agent’s allocation on the history of past participation decisions and reports (and allocations), and
hence allow the designer to implement outcomes that satisfy weaker notions of truthtelling and

participation, which we explain next.

Because the designer can condition the mechanism on the history of past reports, he can compare the
frequency of type reports against the type distribution. So long as the agent is telling the truth, the

36This notation allows us to keep the definitions of the histories when the agent participates and does not participate
symmetric, and saves us on including the agent’s participation strategy in the histories.

37That is, starting from a dynamic mechanism ¢ and a best response strategy (p, o), one can construct an alternative
mechanism ¢’ such that participation and truthtelling are a best response for the agent and preserves the distribution over
(Q x © x A)* induced by (p, o) and ¢.
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frequency of reports will match the type distribution f over large blocks of time. In fact, any reporting
strategy whose expected frequency of reports matches the type distribution will be indistinguishable
from truthtelling.

Definition 6 (Undetectable deviations). An undetectable deviation is a reporting strategy o : © — A(©)
such that for all§' € ©

Y f(6)0©'10)=fO".
0e®

By tracking the empirical distribution of type reports, the designer can dissuade the agent from
employing detectable deviations. Thus, in a dynamic mechanism, the designer should be concerned
with only discouraging undetectable deviations. This leads to a weaker notion of incentive compatibility

for allocation rules:

Definition 7 (Unprofitable undetectable deviations). The allocation rule a : © x A(Q) — A(A) lacks
profitable undetectable deviations at belief 1 € A(Q) if for all undetectable deviations o,

> fO ) a@l,w ) pwu@dw=) fO) ) @0 ) a@b,w ). pwuab,w).

[2J=(C] acA weQ 0cO 0'e® acA weQ)
A two-stage mechanism v with allocation rule « lacks profitable undetectable deviations if a(:|-, 1)
lacks profitable undetectable deviations for all beliefs in the support of the mechanism.

To illustrate the difference between the lack of profitable undetectable deviations and incentive
compatibility, consider the following example from Ball and Kattwinkel (2023). Suppose the agent
types are binary, {01,602}, and equally likely. The set of allocations, g € {0, 1}, describes whether the
agent receives a good. Finally, suppose the agent’s payoff is u(q,0) = g6 and 8, < 8,. Consider the
mechanism that allocates the good to 8,: While it is not incentive compatible, it lacks profitable
undetectable deviations. The constraint that the deviation must be undetectable implies the gains

from 0; obtaining the good come at the expense of 8, getting the good.

Consider now the agent’s participation incentives in the dynamic mechanism: once the agent rejects
the mechanism once, the agent obtains her outside option in all continuation histories independent
of her participation decision and her types. In other words, whereas the agent can always ensure her
outside option by rejecting the mechanism in a given period, she is effectively quitting the mechanism
forever for all her types. The following definition introduces the notion of individual rationality

satisfied by the mechanism in the long run.

Definition 8 (Ex ante individual rationality). The allocation rule « : © x A(Q)) — A(A) is ex ante
individually rational at belief u € A(Q) if

Y. O ) alo,w ) pwula,b,o) =) fO) ) wwulad,w).

0e® acA weQ 0@ weQ

A two-stage mechanism ¥ with allocation rule a is ex ante individually rational if a(-|-, u) is ex ante

individually rational for all beliefs in the support of the mechanism.
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We are now ready to state the main result of this section:

Theorem 4 (Implementable Outcomes via Dynamic Mechanisms). A dynamic mechanism exists that
implements outcome 9 € A (A x © x Q) if and only if 9 can be implemented by an ex ante individually
rational two-stage mechanism which lacks profitable undetectable deviations. That is, if and only if for
all(a,0,w) e AxOxQ

9(a,0,w) =,uo(w)f(9)fA(Q)a(aIH,/u),B(dulw), (16)

where B: Q — A(A(Q)) is Bayes plausible and «(:|-, 1) : © — A(A) lacks profitable undetectable deviations

and is ex ante individually rational on the support of o ® .

Theorem 4 characterizes the outcome distributions implementable by dynamic mechanisms as
those implemented by two-stage mechanisms that satisfy the incentive constraints: unprofitability
of undetectable deviations and ex ante individual rationality. Notably, both notions of incentive
constraints apply in the aggregate over the type distribution, which reflects the transient nature of the

agent’s private information.

Comparing Theorem 3 and Theorem 4, we see that dynamic mechanisms allow the designer to
weaken the incentive constraints of the agent, but do not allow him to engage in richer—i.e., type-
dependent—disclosures. Despite dynamic mechanisms implying weaker incentive constraints, we
can build on the results of Rochet (1987) and Rahman (2024) to show that in settings with transferable
utility, where a = (g, f), dynamic and repeated mechanisms implement the same set of physical
allocations q : ©® x Q — R.*® Indeed, Rahman (2024) shows the lack of profitable undetectable
deviations is equivalent to cyclical monotonicity in Rochet (1987). Thus, in settings with transferable
utility, Theorems 3 and 4 imply that dynamic mechanisms do not allow the designer to expand on the

set of implementable distributions over (g,0, w).

The proof of the only if direction is similar to that of Theorem 3, in that we similarly extend the
occupation measure to account for the agent’s beliefs and show it satisfies the conditional independence
properties implied by a two-stage mechanism. In a dynamic mechanism, however, the agent can
ensure the payoff of some, but not all deviations. The latter property is what delivers that the two-stage

mechanism must lack profitable undetectable deviations.

The proof of the if direction, instead, harnesses a construction in Margaria and Smolin (2018). The
proof proceeds in two steps. In the first step, we analyze a fictitious model without state uncertainty in
which a designer faces a privately informed agent, so that implementable outcomes are elements of
A(A x ©). We show that if 9'(a,0) = f(0)a’(alf) € A(A x ©) is such that a’ lacks profitable undetectable
deviations and is ex ante individually rational, then a dynamic mechanism exists that implements
9’39 This is the step that relies on Margaria and Smolin (2018). We construct a dynamic mechanism,

which can be split into blocks of random length. Each block consists of two phases: a reporting

38This is easily seen in the example after Definition 7. Note the mechanism that allocates the good to the agent if and only
if her type is 0 satisfies monotonicity. Hence, a transfer scheme exists that implements this allocation rule with transfers.

39In a repeated principal-agent game with communication, Meng (2021) shows that the principal can guarantee in the
patient limit his complete information payoff subject to the constraint that her actions satisfy the cyclic monotonicity
condition in Rochet (1987). We view the results as complementary: We focus on implementable outcome distributions,
instead of payoffs, when the agent has limit of the means preferences, which makes our notion of implementation exact.
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phase and an adjustment phase. In the reporting phase, the mechanism uses the agent’s reports to
determine the allocation. Instead, in the adjustment phase, the mechanism simulates type reports so
that the frequency of type reports matches the type distribution (in expectation) over the length of the
block, whenever this is not the case at the end of the reporting phase. These two steps ensure that
the expected frequency of type reports and allocations matches 9'. We then leverage that a’(-|0) lacks
profitable undetectable deviations to show the agent cannot do better than by telling the truth. Hence,
the induced frequency of types and allocations also matches 9’. Moreover, the construction ensures
that after any history, truthtelling delivers a continuation payoff equal to the ex ante payoff. Because

a' is ex ante individually rational, we conclude the participation constraints are satisfied.

The second step uses the above result and the representation of the outcome distribution via a two-
stage mechanism to construct a dynamic mechanism that implements any outcome distribution that
satisfies the properties in Theorem 4. Indeed, one can construct a dynamic mechanism which uses
a finite number of steps to disclose information to the agent via the realized allocations,*? and then

continues as in the above construction to implement the allocation rule a(-|-, y).

6 Conclusions

Many economic institutions—online platforms, lenders, regulators—rely on mechanisms that remain
fixed while agents interact with them repeatedly. When the mechanism’s operation depends on a state
known only to the designer, agents can learn this state from their outcomes, constraining what the
mechanism can implement. We introduce calibrated mechanism design, a static solution concept that
requires mechanisms to remain incentive compatible given the information they endogenously reveal
about the designer’s private state through repeated use. In private value environments, the calibration
constraint pushes the designer toward full transparency, precluding Crémer-McLean-style schemes
under transferable utility. In single agent-settings, calibrated mechanisms are equivalent to two-stage
mechanisms. This equivalence yields a practical algorithm for finding optimal calibrated mechanisms,
combining tools from information design and mechanism design. We provide a microfoundation by
showing calibrated mechanisms characterize exactly what is implementable when an infinitely patient
agent repeatedly interacts with the same mechanism, and study the implications on implementable

outcomes of allowing the designer to offer fully dynamic mechanisms.

The most important direction for future work is deepening the analysis of multi-agent settings. On
the one hand, understanding when generalized two-stage mechanisms coincide with calibrated
mechanisms would enable the study of multi-agent applications, while abstracting from the dynamics
of experimentation. On the other hand, extending our microfoundation to the multi-agent case
would further ground calibrated mechanism design. More broadly, our framework suggests that
any institution whose repeated operation leaks information about its designer’s knowledge faces a
fundamental tradeoff between conditioning the mechanism on this information and the information

this leaks to participants, and calibrated mechanism design offers a disciplined way to analyze it.

40A standard argument implies that if 9 satisfies Equation 16, then a finite support 8’ exists such that 9 satisfies Equation 16
with g in place of §.
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Mathematical conventions

Throughout the appendix, we take all sets to be Polish spaces, that is, completely metrizable, separable,
topological spaces, and endow them with their Borel o-algebra. We endow product spaces with their
product o-algebra. For a Polish space X, we let Bx denote its Borel g-algebra and A(X) the set of all
Borel probability measures on X, endowed with the weak™ topology. Thus, A(X) is also a Polish space
(Aliprantis and Border, 2006), and it is compact, whenever X is compact (Aliprantis and Border, 2006,
Theorem 15.11 and Theorem 15.15).

Notational conventions If X is a Polish space, X denotes a measurable subset of X, i.e., an element
of the Borel o-algebra on X, and Cj(X) denotes the set of continuous and bounded functions on X.
Given a measure v € A(xf.\il Y;), we denote by VY, Y.V the marginal of v on Y; Y... ;. When one of

the Y; = A(X;), we write A instead of Y; in the subscript, when it is unlikely to generate confusion.

Throughout the appendix, we define different distributions that arise in our proofs. Because we endow
product spaces with their product topology and their product Borel o-algebra, it is enough to define

these new measures on the measurable rectangles and we follow this convention throughout.

Disintegration We rely on the notion of disintegration in many of our proofs (Bogachev, 2007,
Chapter 10.6). We define disintegration in the context of product sets X x Y, as this is the one that
shows up in the proof, but it is more general than this. Given ameasure v e A(Xx Y), 1: X x By — [0,1]

is the disintegration of v along X if the following holds
1. Forall Y € By, x— A,(Y) is measurable,
2. For vx-almost everywhere x € X, Y — 1,(Y) is a probability measure, and

3. For every bounded measurable function g: X x Y — R,

f g(x,y)v(d(x,y))=ffg(x,y)/lx(dy)vX(dx).
XxY XJY

Kallenberg (2017, Theorem 1.23) ensures that {1, : x € X} exists and is unique v x-almost everywhere.

A Omitted proofs from Section 2

Proof of Theorem 1. Suppose the agents’ payoffs are state independent and in a slight abuse of

notation let u;(a;,0;) denote agent i’s utility.

The calibrated mechanism design problem is

max Y o) Y. f6lw)

1
w(PO,w,¢),0,w)A(de),
(b:@xQx[O,l]—»A(A)wEQ 0c® 0
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subject to the following constraints holding for all (w, &) € Q x [0,1], 7 € [N], 8; € © and 6;. €0:

Y Efml Y, ¢0i,0-,0,6)(ai,a-Dlui(ai,0)= Y Epqwml X ¢0;,0-;,08(a;,a-)luia;b;)

a;eA; a_ij€A_; (diEAi) a_;€A_;
> Ef il Y. $0i,0-i,0,8)(ai, a-)ui(a;,0;) = ui(aig,0;).
a;eA; a_eA_;

*

IC/IR,i’
where the latter is the set of interim allocation rules S7 : ©; — A(A;) that satisfy the following incentive

In other words, for each agent i, her interim allocation rule 7 ; (w, €) must be an element of S

compatibility and individual rationality constraints:

(V0;,0;€0;) Y si(ailf)ui(a;,0;)= ) s;(ail0))u;(a;0;)

a;€A; a;i€A;
(VO; €0;) )Y s;(ailb)ui(a;,0;) = ui(aig,0;).
aicA;
Because the individual rationality and incentive constraints must hold for each pair (w,¢), the
designer’s problem is separable across variables for different w, €: the sets of variables ¢ (-, w, €) appear
in different sets of constraints and the objective function is additively separable across those variables.
Consequently, the designer’s problem can be solved as a collection of independent problems, one for

each w,e¢. O

B Omitted proofs from Section 3

In this section, we present the proofs of Theorem 2 and Proposition 1. We proceed as follows: We first
prove Proposition 1, as when N =1 its proof implies the “if” direction of Theorem 2. We then prove

the “only if” direction of Theorem 2.

Proof of Proposition 1. We focus on the case in which types and states are independently distributed,

and explain how to extend the proof when they are not.

Let 9 € A(A x © x Q) denote the outcome distribution implemented by an incentive compatible and
individually rational calibrated mechanism. We show transition probabilities §: Q — AAQN),
@:0xQxAQ)YN - A(A),and a; : ©; x A(Q) — A(A;) for i € {1,..., N} exist such that

9(a,0,w) =po(w)f(H)fA(mNd(alﬁ,w,ul,...,uw)ﬁ(d(ul,...,uw)lw), (B.1)

and forall i € {1,..., N}, (i) a; satisfies item 3 of Definition 4, and (ii) on the support of oy ® 8, a;(:|-, i;)

is incentive compatible and individually rational when agent i holds belief ;.

Let 7y, : [0,1] — S} denote the mapping € — 7; (w, ). For S:‘ e A(A;)9, define
Pr; ({w} x §7) = po (@) A, (S}) = [S Hi(ls))Tg,i(ds]),

where the second equality follows from disintegration of Pr; € A(Q x S7) along S}, and corresponds

to the definition of Bayes rule for agent i. Define the measurable mappings, T; : S; — A(Q) and
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T:8* — A(Q)N as follows: Ti(s;.*) = ui(-ls;) and T(s*) = (T1(s7), ..., TN(s}"V)).

Define a joint distribution Q € A(A x © x Q x A(Q)N) as follows:

QU(a,0,w)} x xN Ay =uo(w)f(9)f_l(T_l( M(P(ale,w,E)/l(ds),

where 7, (T (xA) = NN {e: Ti(m,,i(€)) € Aj}.
We note the following properties of Q. First, consider its marginal over © x Q x A(Q)",
Qoaan (0,0} x x N Aj) = o (@) FOANY. {2 T (4,1 () € Ag}),

which implies that the disintegration of Qgn~ along © x Q, f:0 x Q — A(A(Q)"N) does not depend

on 0. This automatically implies that Q admits the following disintegration:
Q(a,0,w)} x x| Ay = uo(w)f(H)fN 5 a(alfd,w, ..., uN) B, ..., un) o), (B.2)

which, in turn, delivers Equation B.1. Moreover, note that the marginal of 8 on the beliefs of agent i,
Bi: Q— A(A(Q)), satisfies

Bi(Ailw) = A, L (T (A))).

Consider now the marginal on A; x ©; x Q x A(Q) of Q, Q4,0,04,, which satisfies:

Qaean, (a0, xA) =Y Y Q@0 w}xA; xA@N )= (B.3)
0_,e0_;a_eA_;
:,lto(w)fi(ei)f ) ( Z f-i0-) Z ¢(ai,a—iI9i,9_i,w,£))/l(de)
nuj,li(Tiil(Ai)) 9,i€®,i (,l_l'EA_,'

= Ho(w)fi(Qi)f _ Tw,i(€)(ail0;)Ade) = ﬂo(w)fi(Qi)f ~ sH@ilf)Aom Lyds)).
m (T A)) T (A ’
Lastly, Q4,0,04; admits the following representation via disintegration:

Qa,0;00,({(ai,0;,0)} x A;) = ,uo(a))fi((?i)fA ai(ail0;,w, ;) Pi(du;lw)

= po() f;(0,) fA @iailf;, o, p) (Ao, ;o Ty ) (dpi) (B.4)

Together with the uniqueness of disintegration and the sufficiency property of beliefs, Equations B.3
and B.4 imply that a; does not depend on w. The incentive compatibility and individual rationality of

a; follows from that of the calibrated mechanism.

Finally, consider the case in which 8 and w are notindependent. Then, the experiment 8 in Equation B.2
induces a joint distribution over the beliefs of N fictitious agents whose prior over the state is given
by wo. Agent i’s updated beliefs when her type is 8; obtain from a transformation of u (Alonso and

Camara, 2016; Laclau and Renou, 2017).*! Thus, up to changing f(0) by f(0|w), and interpreting

4ULet ug(-10;) € A(Q) denote the prior of the agent with type 6; and p(:|s;) denote the updated belief of an agent with prior
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the draw from the Blackwell experiment as the posterior of an agent with prior belief u, the result
follows. =

Proof of Theorem 2.

“Only if” direction Similar to the proof of Proposition 1, we focus on the case in which 6 and w are
independent. Suppose 9 € A (A x © x Q) is implemented by an incentive compatible and individually

rational two-stage mechanism. That is,
9(a,0,w) = po(w) f(0) fA(Q) a(ald, ) B(dulw), (B.5)

and «a is incentive compatible and individually rational on the support of py ® . We construct an

incentive compatible and individually rational calibrated mechanism that implements 9.

First, if 9 satisfies Equation B.5, Rubin and Wesler (1958) and Carathéodory’s theorem (Aliprantis and
Border, 2006, Theorem 5.32) imply that a finite support §': Q — A ({pl, . pK}) exists such that for all
(a,0,w) € Ax O x Q*

K
9(a,0,0) = uo(w) f60) Y_ alald, ) f' {uiHw).

k=1
For each w € Q, partition [0,1] = UX_Z[b¥, bY, ) U [b%_,,1], where by =0, and forall k€ {1,...,K -2},
bY, =Y5 | B'(utlw). Define for e € [bY, bY, |

P(alb,w,e) = a(all, ug).

The calibrated information structure is 7y (w, €) = ¢(-|-,w,€) = a(-10, uy) for e € [b‘“ b Yifm<K-2

k+1

oree[bK 1

We now show that for all 6 and all s € supp 7y, the mechanism ¢ is incentive compatible and
individually rational. Note that 74 has finite support, and let s € supp 7y and let u(-|s) denote the
updated posterior. Then, k exists such that the following holds:

o (@A(fe : m(, &) = 5}) po(@) (b, = b))

e Ho@)AUE @, 8) = D ¥ yeq Ho@) (B — b

plwls) = = pi(w).

Moreover, because ¢(-|-,w,€) = a(-|-, 1), then it satisfies the agent’s incentive compatibility and

individual rationality constraints when she holds belief p..** O

Lo upon observing signal s;." . When the signal is s;‘, the agent with type 6; updates her beliefs to:

pCls))
Ho()
ISy H '

. Ho(10;)
K105, 8;) =

Ho(-10;) - yTIoR

where the - and / operations are meant componentwise, and | - | is the /! -norm.

42Narnely, Equation B.5 implies that for all (6, w), 9(-|10,w) € clco{a(:10, u) : p € A(Q)}. Rubin and Wesler (1958) implies
that our under assumptions clco{a(:|0, ) : p € A(Q)} = co{a(-|0, ) : 1 € A(Q)}, and the rest of the claim follows from
Carathéodory’s theorem.

43T extend the result to the case in which the agent’s type is correlated with the state, note the following. Knowing o
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Supplementary Appendix

C Omitted proofs from Section 5

C.1 Repeated Mechanisms

In this section, we present the proof of Theorem 3. To do so, we first complete the formal definition of
the game induced by repeating mechanism ¢ : M x Q x £ — A(A), by specifying the histories, strategy
space, and the distribution over terminal histories induced by the agent’s strategy and the mechanism.
Having laid this groundwork, we describe the proof strategy, and then provide the formal details of the

proof. Throughout this section, we use the shorthand Q = Q x £, and denote its elements by @.

Histories and strategies Histories through period ¢ € N are defined as H =@ x M x AL, The set
of infinite histories from the agent’s point of view is H. The set of terminal histories is H> = Q x H®,

where recall £ is finite and endowed with some measure 7).

The agent’s behavioral strategy is defined as a collection o = (0¢) seny Such that forall t = 1
o;:H' x0 — A(M).

The tuple of distributions (19,1, f) together with the mechanism ¢ and the agent’s strategy o determine
a joint distribution over H* by the Ionescu-Tulcea theorem (Bogachev, 2007, Theorem 10.7.3). We
provide more details on this probability distribution below. Denote by P,  £,6,0) and E(, 5, ,¢,0) the
probability distribution over the terminal histories and the expectation with respect to this distribution,
respectively. Whenever it is not likely to lead to confusion, we drop the dependence on (u,7, f,¢,0),
and whenever we want to emphasize the dependence on the agent’s strategy we note the dependence

ono.

The distribution over terminal histories 7> For future use, we review the construction of P,. For
each t, the distributions (uo, 7, f) together with the mechanism ¢ and the agent’s strategy o determine
a distribution over Q x H, which we denote by P.. € A(Q x H'). Note that for any subset 7’ c Q x H',

PLAHD) =PI H x (© x M x A)). (C.1)
Moreover,
P Y@, h',0,m,a) =PL(@, h") fO)o(h',0)(m)dp(alm,d). (C.2)

By the Ionescu-Tulcea theorem, the distribution P, € AQ x H®) is the unique distribution that
satisfies that forall re N, ! < Q x H,
o0

Pe(H!'x [] ©xMx A)=PLH". (C.3)

s=t+1

updates to iy conditional on s is enough to pin down the agent’s belief 1.(+|0, s), with respect to which the agent’s incentive
compatibility and individual rationality constraints are defined (see footnote 41).
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Belief system The agent’s beliefs over Q) at the beginning of each ¢ are determined by the belief

system, which in a slight abuse of notation we denote by u, : H* — A(Q). The belief system satisfies
Py (R (@|h') =Pg (@, h").
That is, whenever h' is such that P, ({fz €eH®:hi= h')>o0,

P (@, h")

ppan @

pe@\h") =
Given Py € A(H®), define oo (@|h™) = P (®|h*) to be the belief system conditional on the whole
terminal history h°°.

Remark C.1 (Belief system and strategies as functions on H*). Whereas the beliefs and strategies are
defined on the finite histories, it is sometimes convenient to write them as functions on H*> that are
adapted to H'.

A property of the belief system We collect here a property of the belief system which we use in our
proofs below.
Lemma C.1 (Martingale property under weak* convergence). p;(h°) v, oo (h™°) Py -almost surely.

This and the proof of other technical results are in Appendix D.

C.1.1 Proof of Theorem 3 (necessity)

We are now ready to present the proof of Theorem 3, starting by the “only if” direction. Let 9 € A(A x
0 x Q) denote the outcome distribution implemented by repeated mechanism ¢ under best response
o, and let v, denote the associated occupation measure, the definition of which we reproduce below
for ease of reference:

T
Y 1[(an0i,m,6) = (a,0,m]| = lim ve(a,0,m,@), (C.4)
— —00

t=1

1
rer » V) = 1. —E
vo(a,0,m,o) TgrgoT o

where recall limits are in the weak* sense. We show that 9 can be implemented by an incentive

compatible and individually rational two-stage mechanism.

To this end, we consider two sequences of extended occupation measures on A x © x M x Q x A(Q):

| T -
V({J({(a,e,m,a))}xA):?[Eg Y 1l(as, 0, me, @) = (a,0,m,@)] 1 u, €Al |, (C.5)
=1
| r -
VZ'Z({(a,e,m,w)}xA)z?Ea Y 1l(as,0:,me, @) = (a,0,m, &) 1lu €Al (C.6)
=1

We note the following. First, Equation C.5 counts the beliefs at the beginning of period ¢, while
Equation C.6 counts the beliefs at the end of period ¢ (after the realization of 8, m, and a.) Equation C.5
is key to obtain the (limit) independence of the belief and type distributions, while Equation C.6 allows
us to obtain the (limit) independence of the allocation and the state, conditional on the induced belief.
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Second, vg is the marginal of both Vg’l and V}I’Z, Third, by Lemma C.1, u; v, oo, and hence both Vg'l
and v)** have the same set of subsequential limits, which we record for future reference below (see

Appendix D for the proof):
Lemma C.2. The occupation measures Vg’l and VZ'Z have the same set of subsequential limits.

The proof of necessity of Theorem 3 proceeds in five steps. First, we show that the marginal of Vg’l on
A(Q), which we denote by 1 weak*-converges to P, o u7!. We denote this limit measure by 7,,. By

Lemma C.2, 74 is also the (limit) marginal of Vg,z on A(Q).

— — w* — .. e
Second, we show that up to a subsequence vg’l,vg’z — V4. Furthermore, transition probabilities

T4 € AA(), p:0 x A(Q) — A(M),a’ : M x A(Q) — A(A) exist such that
vg(aﬁ,m,cb):fA(Q)u(cb)f(e)p(mle,u)a'(alm,u)ra(du). (C.7)

Hence, the agent’s payoff when faced with mechanism ¢ and playing strategy o can be written as:

Ey, [u(a,6,m))=[ _ Y f©O) > pml6, ks~ | ) a'(aly, mu(a,6,w)|14s(dp). (C.8)
A ged meM acA
Third, we show that for all0 € ®
[ETU{ Y p(ml6, WEg~y | Y a'(aly, mu(a,b,w) | —maxEg-y | Y a'(aly, mu(a,d,w) }zO. (C.9)
meM acA meM acA

Equations C.8 and C.9 allow us to identify the incentive compatible and individually rational allocation

rule of the two-stage mechanism that implements 9.

Fourth, whereas the previous steps identify a two-stage mechanism expressed in terms of posterior
beliefs over (2, we show how to obtain a two-stage mechanism expressed in terms of posterior beliefs
over Q. Finally, we show that the agent’s payoff in Equation C.8 coincides with the payoff she would

get when best responding to the information structure calibrated to ¢.

Step1 Having defined the extended occupation measure in Equation C.5, we present here a property
we use in our proof. Let 71 denote the marginal of Vg’l on A(Q)). That is, for any measurable subset
A c A(Q), define

TAy=LE (C.10)
o (8= ke . .

T
Z Ly, € A
t=1

In Appendix D, we prove the following:

Lemma C.3. The sequence of measures (t1)ren defined by Equation C.10 converges in the weak* sense

to the push-forward measuret, = Py 0 p;ol, where oo (h™°) =Py (-|h™).
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Step 2 To show that Equation C.7 holds, we show the following properties of Vg'l and V}I’Z. On the
one hand, v.'! satisfies that for all g € Cj,(A x © x M x Q x A(2)),

g(a,0,m,,pdvi! = f Ey [Epciman [8(a,0,m,d,m)]]dV0g, .,  (C.11)

fo(axMxQxA(Q) OxMxA)

and for all g € C,(0© x A(QY)),

f@xm)q(e,mdvj’@:fA(Q)f@f(e)q(e,u)drg. (C.12)

On the other hand, V({'Z satisfies that for all g e Cp(A x © x M x QxAQ)),

8a.0,m 0, v :/@ Eo-ug(@0,mo,w]dvi2, . (C13)

/Ax@xMx(zxA((z xMx AxA(Q)

In the expressions above, the subscripts on Vg’k next to o are the spaces over which we take the
marginals, and A is shorthand notation for A(Q). Because A(AxOx MxQxA(Q)) is compact (Aliprantis
and Border, 2006, Theorem 15.11), Vg'l has a convergent subsequence (Vg"’l) neN, Which by Lemma C.2
is also a convergent subsequence of V;Z. Let v, denote the weak™® limit along T,,. The continuity of
the projection implies that v, is the marginal of v, on Ax ® x M x Q, and 7, =P, o u3! is the marginal
on A(Q). Equations C.12 and C.13 together imply that v, admits the decomposition in the right hand
side of Equation C.7, and the result follows.

To show Equation C.11 holds, use that Vg’l has finite support to write it as follows:
T

1
vel(a,0,m o, = 7L 2 Po@h)f®)0 (" ,0)mplalm,lip = ul
t=1hteH!

1 T
== Y PLHu@) fO)o(h',60)(m)palm,d) Ly, = pul, (C.14)
T t=1hte H!

where the second equality uses that u,(h") = PL (| h").
Equation C.14 implies the following holds for every bounded continuous function g € C,(A x © x M x

Q x A(Q)):

Eyri [8(a,0,m,0,0)] =Eyr1  [Ey[Egcima [8(a.0,ma,w]]],

MA

This completes the proof that Equation C.11 holds. Letting Vg (0, M, u) = Ey, [Ep(im,a) [&(a, 0, m, @, w)]],

we have that

—T1 —T1 —T1
) _gdv':f _ Vedv < ~_(g=Vydvy =0.
fo@)xMxQxA(Q) 7 oxMxA@ 5 TOMAT |4 oxMxtixa@) e

Because g — Vg € Cp(Ax O x M x Q x A(Q)) and Vg"’l v, Vg, we conclude that
Ev, [§(a,0,m,&,p)] = f By [Epcima [8(a, 0, m,@, )] dVa,oma. (C.15)
OxMxA(Q)

To show that Equation C.12 holds, note that the marginal of Vg’l on ® x A(Q) equals Tz; ® f. Indeed, fix
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any continuous function g € Cy(0 x A(Q)) and note that for all T

> f(H)q(@,u)].

[EV?}M [q0,m)] = E.r =

Letting V(1) = Y pco f(0)q (0, 1), we have that for all T
0,1 - V(W) dviy, =0.
fA(Q)x@(q 1= Va(w) 0,0A
Because g — V; € C,(O x A(€))) and V({”'l w Vg, we conclude that

f G0, Vs en = f ) f FO)q0, wdr,. C.16)
OxA(Q) AQ) JO

Lastly, to show that Equation C.13 holds, note that we can write V% as follows (once again, we use
that for finite T, it has finite support):

T

_ ~ 1 3 _
Vel (a,0,md,pm ==Y Y PLMHPL@RK)fO)0(h',0)m)p(alm,d) Ll (h',0,m,a) = p] =
t=1hteH!

1< 1 L
== > Py @, h',0,ma)=— 3 > p@)Py (h',0,m, a)

T t=1h'eH":us1(h',0,m,a)=p T t=1h'eH":pusy1 (h',0,ma)=p

1 _

=H@ ) 2 Pe (h,6,m, a) = W@)7, 0 pn (@0, m, ),

t=1h'eH": ;41 (h',0,m,a)=p

where the last expression follows from noting that the term multiplying p(w) in the first expression in
the third line is > vg'z(a,e, m,, 1).

Then, for every g € C,(A x © x M x Q x A(QQ)), we have that
Eyre [g(a,0,m,&,p)] =Egre [Eo~u[g(a,0,m,a,w]],

0,AOMA(Q)

which completes the proof that Equation C.13 holds. Letting Vg(a,0, m, u) =Eg~y [8(a,0, m, @, W], we
have that

[ (g-voaviz=o
Because g — Vg € Cj(Ax O x M x Q x A(Q)) and vZn’Z w V4, we conclude that
Ey, [g(a,0,m, &, )] :f _ Eo-ul8(a,0,m,d,1)| Vs aomald(a,0, m, ). (C.17)
AxOx MxA(Q)
Equations C.16 and C.17 imply v, admits the following disintegration:

Vo({(a, 0, m,@)} x A) =pr(fD)f(H)a’(aIH,m,u)p(mIH,,u)rg(du), (C.18)

where we disintegrated v, qo first along © x A(Q2)—and used Equation C.16 to obtain the independence
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of ® and A(Q)—and then further disintegrated the distribution of A x M conditional on © x A(Q). Now,
Equation C.15 implies that the following also holds

Vo (l(a,0,m,@)} x A) =fA,lt(cD)f(Q)(/)(aIm,cD)p(m|9,u)Ta(du), (C.19)

where once again we use the uniqueness of disintegration. Because Equations C.18 and C.19 hold
for any tuple (a,0, m,®) and measurable subset A of A(Q)), we conclude that (i) a'(al|6, m, u) does not
depend on 6 7,-almost everywhere, and (ii) ¢(:|m, ®) is constant on & in the support of u 7,-almost

everywhere. This concludes the proof of Step 2.

Step3 We now argue that the agent achieves

u*(u) = Z [ max Z jn@) Z olalm,d)u(a,l,w) = Z [ max Z @) Z a'(alm, Wula,b,w),

C) acA 0O 0eQ) acA
(C.20)

on the support of 7, where the second equality follows from Step 2. Toward a contradiction, suppose

this is not the case; that is,

A f©) Y pmlo,w ). ;u(w)Z¢(a|m @)u(a,b,w)

6e® meM weQ

<k,

dou (u)]

0O

We show that the agent can achieve a payoff arbitrarily close to U* by playing according to ¢ until some

finite T and then best-responding to her beliefs at time T in every period thereafter; a contradiction.

Consider a strategy ¢’ which until some period T plays according to o and after period T best responds
to ur(h’) € A(Q). Because payoffs accumulated on a finite number of periods are irrelevant to long-
run payoffs, this strategy results in a payoff:

Y PL() Y FO) max Z pr@ Y. ¢plalmd)u(a,0,0)| = Y PLRDu*(urh")

hTeHT 06 acA hTeHT

= Eppopyt 1" (1] = Ep o [u (“)]'

where the last equality follows as pr is adapted to the histories through T. Similar arguments to
Lemma C.3 imply that Py o u;! =~ P, oyl = 7,. Noting that u* : A(Q)) — R is continuous and

bounded (as it is the maximum of linear functions in beliefs), we obtain that as T — oo,
Ep,opy [4 ()] = Er, [u” (W)].

It follows that for every 6 > 0, we can find T large enough so that [Ep o1 [u*(w)]-U*| <8, contradicting
the optimality of 0.

We conclude that a : © x A(Q)) — A(A) defined as follows:

a(alf,w) =Y pml6,wa'(alm,w),
meM

is incentive compatible and individually rational 7,-almost everywhere.
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Step4 We now show how to derive a two-stage mechanism §* : Q — A(A(Q)) and an allocation rule
a’:0x A(Q) — A(A) that implement 9. First, note that the agent’s payoff when her type is 8 and the

induced beliefis pu € A(Q), can be written as

Y @) ), atald, wula,b,w) =) pow) ) aald,pula,o,w),

e acA weQ) acA

where pg is the marginal of u on Q and the equality follows because the realization of ¢ is payoft-
irrelevant. By Step 3, a(-6, 1) is individually rational and incentive compatible when the agent holds

belief ygq.

Furthermore, for each (a,0,w) € A x © x Q), we have

9(a,0,w) = Zf i u(w,s)f(e)a(aIG,u)Tg(du)=f _ o) fO@)a(alb, Wts(du).
ee£JAQ) A

For each 6 € ©, consider the joint distribution Qg € A(A x A(Q)) defined as follows:
meXMZL@ﬂMﬁAmmﬂwwmmZLaWMwmemﬁ

where the third equality follows from disintegration (note a* (-|-, uq) = Ela(-|-, @)|fiq = pal). By the first
argument in Step 4, a”* (-|-, uq) is individually rational and incentive compatible when the agent holds

Uo. We obtain that
9(a,0,w) = fA 5 po (@) f@)a*(ald, ua)t* (duq).
((9)]
Defining for all w € Q and measurable subsets A € A(Q),

. % pw)
Alw)=| —=17(dW),
B (Alw) fAHO(U))T (dw

Steps 2-4 together imply that 9 can be implemented by the incentive compatible and individually
rational two-stage mechanism (8*, a™).
Step 5: The agent adequately learns Finally, we argue that the agent earns the same payoff as if she

had access to the information structure calibrated to ¢, 7.

Lemma C.4. Let 1 denote the belief distribution induced by the calibrated information structure 7.

Then, the agent'’s payoff under o equals

Ulty) =k, 9;9 f(H)Ir}lleal\)/%%u(d))%(p(alm,d))um,@,w) ) (C.21)

The proof of this is standard, and hence we defer it to Appendix D.
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C.1.2 Proof of Theorem 3 (sufficiency)

Suppose 9 € A (A x O x Q) is implemented by an incentive compatible and individually rational two-

stage mechanism. That is,
9(a,0,w) =,Lto(w)f(9)fA(Q)a(aIH,u)ﬂ(dulw), (C.22)

and a is incentive compatible and individually rational on the support of iy ® 8. As in the proof of
Theorem 2, a finite support ' : Q — A ({1,..., px}) exists such that (f, @) implement 9. As in Green
and Stokey (2022), the experiment ' can be generated by a finite information structure 7: Q x £ —

A(Q), where (i) £ is finite, (ii) £ is independent of Q, and (iii) u = 7 (w, €).

Construct a mechanism ¢ : © x Q x £ — A(A) such that ¢(-|0,w,€) = a(-|0,71(w,€)). (Note that 7 is
information structure calibrated to ¢, but expressed in beliefs.) Consider now the extensive form

game induced by such a mechanism.**

If the agent truthfully reports her type, then the occupation measure induces outcome distribution 9.

Hence, under truthtelling, the agent’s payoff is:

U(Otrutn) = Y, 9a0,0uab,0)=E,|) fO) ) a@ld,w ) pwuabw)
(a,0,0)EAxOXQ 0e® acA weQ
=k, Z f(@)max{maxz a(ald’, ) Z pw)u(a,b,w), Z ,u(w)u(aQ),H,w)} = (C.23)
0e® 0'€® gea weQ weQ
=Eg | O max{max Y pw) ) ¢lald’,w,e)ula,b,w), Y u(w)u(agsﬁ,w)} ,
0e® 0'€® e acA weQ

where (i) 7 is the belief distribution induced by the information structure 7, and (ii) the first equality
is by definition of the occupation measure, the second is the definition that 9 is implemented by the
two-stage mechanism, the third follows from incentive compatibility and individual rationality of a,

and the fourth is definitional.

Moreover, the payoff in the last line of Equation C.23 is the payoff the agent obtains by using the
“learning” strategy in Lemma C.4, which first extracts all the mechanism can teach her about the state
and then uses that information to optimize over her participation and reporting strategies. It follows

that truthtelling (and participation) are optimal and 9 is implemented by repeated mechanism ¢.

C.2 Dynamic Mechanisms

In this section, we present the proof of Theorem 4. To do so, we first complete the formal definition
of the game, by specifying the histories, strategy space, and the distribution over terminal histories
induced by the agent’s strategy and the mechanism. Having laid this groundwork, we describe the

proof strategy, and then provide the formal details of the proof.

44We could expand the mechanism by allowing the agent to have a message which triggers the outside option, but this is
not necessary as « is individually rational.
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Mechanisms, histories, and strategies A dynamic mechanism (¢;) ren is a sequence of mappings
that condition on the state, the agent’s report history, the allocation history, and today’s report and
output an allocation. By the revelation principle, it is without loss of generality to restrict attention to

mechanisms that solicit type reports.

As in the main text, we expand the set of type reports and allocations by the non-participation decision
and the outside option, which we denote by A5 = Ax @ U{(@, ag)}. Then, A’ = (©Ay)'! denotes
the histories of reports (inclusive of the non-participation decision) and allocations at the beginning
of time ¢ € N, and let H! = Q x A*. Similarly, let A% = x ;& (©Ag) denote the set of all possible
report-allocation outcome paths, and let H®=Qx A®. A dynamic mechanism is then a collection of

mappings (¢;) sen such that ¢, : H! x © — A(A).

To define the agent’s strategy, let H' = ©/~! x A’~1, where the coordinates denote the sequence of
realized types, reports (inclusive of participation decisions), and allocations through period - 1. A

behavioral strategy is a mapping (py, o) : H!x0 —[0,1] x A(©).

The distribution over terminal histories > To obtain the complete description of the paths on
the tree we need to append Q to H'; hence the paths through period ¢ —1 are Q x H' = H’. The
distributions over states, agent’s types, the agent’s strategy, and the mechanism induce a distribution
over the terminal histories H* = Q x H*, which we denote by P(,,5) € A(Q x H*). We denote by E(;,«)
the expectation under this measure. The distribution Py ) € A(Q x H*) is the unique distribution
that satisfies thatforall e N, H! c Q x £ x H!,

Py x [] ©x0Ag) =PLHY,

s=t+1

where the distributions (P (‘ p U)) ren satisfy (under participation and truthtelling)

Pl @,1",0,6',a) = P{, (0, k) fO)116' = Blg,(alw, 1,0,

Implementation We focus on incentive-compatible mechanisms ¢ for which (i) a best response,

(p,0), exists, and (ii) the occupation measure v, € A(A x © x Q) exists, where
1 d )
Vip0(@,0,0) = lim —Ep0 | Y 1[(a,0;,0") =(a,0,0)]], (C.24)
T—o0 T =1

where the limit is in the weak™ sense. In contrast to Appendix C.1, we do not keep track of the agent’s
type reports in the occupation measure, only the agent’s types. Under (p, o) only truthtelling histories
have positive probability.

C.2.1 Proof of Theorem 4 (necessity)

Let 9 € A(A x © x Q) denote the outcome distribution implemented by an incentive compatible
dynamic mechanism ¢, and let v(, ) denote the occupation measure under the agent’s truthtelling
strategy. Below, we show that v(;,»), and hence 9, can be implemented by a two-stage mechanism

which lacks profitable undetectable deviations and is ex ante individually rational.
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Analogously to the proof of Theorem 3, we define two sequences of extended occupation measures on
Ax 0 xQxA(Q) defined as follows. Letting A denote a measurable subset of A(Q), define

Vi U(@,0,0)) x &) = Z Z P(pg)(w,ht)fte)at(hf,e)(e)w(w,iﬁ,e)(amm(h‘)eA], (C.25)

ﬂ I

Vi W(a,0,0) x &) = Z Y Pl @ k) fO)0(h',0) ), h',0) (@11 (h',0,0,a) € Al

t=1h'eH!

lﬂ

(C.26)

The proof proceeds similarly to that in Appendix C.1. First, we show that the occupation measure

V(p,o) € A(A x O x Q) admits the following decomposition

Vipo) (a,0,0) =fA(mf(H)u(w)a(aIB,u)r(p,a)(du), (C.27)

where 7(;,0) is the distribution over terminal beliefs (cf. Lemma C.3) and the transition probability
a:0 x A(Q) — A(A) is our candidate allocation rule. Consequently, the agent’s equilibrium payoff can

be written as follows:

Y fO) ) po) Y alalb, pu(ab,0) | Tp,e(dw.

) |9 weQ acA

v (a,0,w)u(a,l,w) :f
Z (p,0) AQ

(a,0,w)eEAXxOxQ
(C.28)

Second, we show that the allocation rule lacks profitable undetectable deviations and is ex ante

individually rational.

The occupation measure satisfies Equation C.27 To prove that Equation C.27 holds, we first show
thatforallge C,(AxO®xQxA(Q)) andall TeN,

Lx@xQxA(Q) g(a o, H)dv(p o) Lx@xA(Q) IE'u[g(a 0o, H)]dv (p.0), ABA(D) (€29
and forall g€ C,(© x A(Q)) and all T e N,
O, wdv! @qO,wdv) (C.30)
f@xm)q WAV, 0 on = g@f q0,wdv, ;

where the subscripts on v next to (p,o) are the spaces over which we take the marginals, and A is
shorthand notation for A(Q). We skip the proof of this step as it basically repeats the proof of the
analogous step in Appendix C.1.

Because A(A x © x Q x A(Q)) is compact (Aliprantis and Border, 2006, Theorem 15.11), v (p ) has a
convergent subsequence (_ )),ZEN, which by Lemma C.2 is also a convergent subsequence of V(JZ‘U).
Let V(,,0) denote the weak™ 11m1t along T},. The continuity of the projection implies that v(, ¢ is the
marginal of vy ;) on Ax @ x Q, and 7(p,¢) =Pg 0 pod is the marginal on A(Q). Moreover, Equation C.29
and Equation C.30 together imply that v(, ») admits the decomposition on the right hand side of

Equation C.27, and the result follows.
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The allocation rule lacks profitable undetectable deviations We now show the allocation rule «
admits no profitable undetectable deviations. An undetectable deviation is a transition probability ¢’
from © x A(Q) to A(®) such that for all u € A(Q) and 6’ € ©

> f0)d'©'16,) = f(©). (C.31)
0€6
Consider a deviation by the agent to (p,o”) instead of (p,g). That is, when his type is 8 and belief
is u, the agent chooses type 6’ with probability ¢'(0'|60, u). In what follows, we index the induced
distributions over histories only by ¢ and ¢’ as we are only changing the agent’s reporting strategy. In
particular, denote by P, the induced probability distribution over terminal histories when the agent

uses (p,o0’) instead of (p, 7).

We first claim that for every ¢ the marginal of P!, over Q x A’ coincides with that of P. Recall that for

every t we have that
PL Y (w,h',0,0',a) = P!, (0, k") f(0)0" O I (h"),0)¢,(alw, h',0").
Adding up over 6 on both sides and using Equation C.31, we get:

Y PN, h',0,0",a) =P, (w,h") f(0)p,(alw, h',0").
0e®
Now, note that k' = (i!,6'"1) for some sequence 8~! € ®~!. If we add up on both sides over all such

sequences we get

Y POl h,07h0,0,a)= Y PLw R0 @) (alw, h,0).
00,0t 1e@!1 dt-le@t-1

Note that if the distribution over Q x A induced by ¢’ up to period ¢ is the same as that induced by o,
we get that the right-hand side equals:

ng,;_z[(w’ i/\lt)f(gl)(,ot(a“i), i‘lt’gl),

t+1 ot ol _ ot it li Tt 0l — mt+1 t ol s
and hence [ng,;qm (w,h",0',a) = I]J’U’ﬁ[(w, ) fO@)pi(alw, h',0") = Pg,;qm (w, h*,0', a). By definition
of P,, we conclude that P ol oo = P, oo+ Hence, the joint distribution over states, reports, and

allocations is the same under ¢ and o”’.

Let VZ’,I,V(Z’,Z e A(Ax O x 0 xQxA(Q)) denote the analogue of the occupation measures in Equations
C.25 and C.26 corresponding to ¢’, extended to account for the agent’s reports. Below, the notation
signifies those are the agent’s reports. In what follows, recalling that the belief system depends only on

the reported history and not the type history is useful. Equation C.31 implies that for all measurable
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subsets A of A(Q),

ZVZ;l({(a,H,H’,w)}xA) Z Y PLw,h) O (w,h',0) @1k (k") € Al

0cO t 1hteH!
1 T
?Z Y PL@, kN O, 7,0 (@1 u(h") € Al (C.32)
=1 ey

Hl
||[\/]~1

Z PLw, R fO) i (w,h",0) (@1 (k") e A=V ({(a,0',w)} x A).
hieH

The first equality uses the definition of undetectability, the second uses that all the terms depend only
on the reported history, the third uses that o and ¢’ induce the same distribution over states, reports,
and allocations, and the last is the definition of the occupation measure induced by o. In words, the

. —T1 . . —T1 .. e
marginal of v_;" over allocations, reports, states, and beliefs, v"’* . coincides with y Dl
o o', AGQA g

We now show that v'; o andv ,2 have a convergent subsequence with limit v,» € A(Ax© x © x Q x A(Q))

that admits the following decomposition:

By, [u(a,0,w)] :f
AQ

Y fO) > d'O,we )Za(me' wu(a,b,w)

) [peo 0'e®

where u(a, 8, 1) is the linear extension of u(a,0,-).

We proceed as follows: First, we show that for each T, under VZ',I, the allocation is independent of the

true type conditional on the period- ¢ belief and the reported type. Indeed,

T
Y viNa,0,0 0,1 = 7 Z Y. Pyi(h") ( > Paf(w|hf)<pt(w,hf,0’)(a)) FO) 7 (1 (h"),0)0)Lp (k") = pl

we) t=1hteH! we)

0)a’ (0, 1) O . R R
= M Z > P‘,(hf) Y Poi(wlh") 0@ (h',0") (@)
f(e t 1je. e (ht we)

_J©)0'0,m©") VI (a0 ) = f(9)0(9 wO" r,

!
7@ Vo, 460 G Vo aoa (@0 1),

where the third and fourth equalities use Equation C.25. Moreover, the same analysis as that under o
implies the agent’s true type is independent of the belief.

Therefore, v.'! . admits decomposition:
o', ABOA

ST1 / [0)0'0'10, p) 11 ' [©)a'©'16,1) _r,1 '
Vora00a @000 = T o 408 @0 H) = oy Vo a00 (@0 1), (C.33)
where the second equality follows from Equation C.32.

Second, by the same arguments as in Appendix C.1, vh o (a 0,0, w, 1) admits decomposition u(w)v
foreach T.

!
rA@@A(“’H’H 1)

. Ty, 1 Tpp2 . e e —
Third, convergent subsequences va”" and va'm exist with limit v, (cf. Lemma C.2).*> We note two
4SLemma C.2 implies that Vg',l and VZ‘,Z have the same set of subsequential limits. Indeed, let g
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things. On the one hand, because our previous arguments show that the set of measures admitting

the above decompositions is closed, the limit v+ admits the decomposition. That is,

fAXG)XC:)XQXA(Q) AxOxAQ) feo VACA!

weQ

Icn!
u(a,0,0)vy(d(a,0,0',w,w) =f [©0 06,1 ( > u(w)u(a,@,w)) v, son-

*

. —T1 _=T1 —T,1 w* —
On the other hand, because T, is a subsequence of T, and VU’,A(:)QA =V, 004 and Voaear — Vo

we can conclude thatv,, o, = Vo, 404 and admits the same decomposition as v,. We conclude that

Ey,, [u(a,0,0)] =f azp,o)-

AQ)

Y. f6)0'O'10,w) alald’, ( > ,u(w)u(a,(?,w))
a

0,0'e® weQ)

Consequently,

lim sup E, [Ur] = lim Ey [Ur, | =E5, [u(a,0,w)]
T—o0 m—oo " 7

=E

T(p,0)
0,0',a

> f(9)0'(9,u)(9')a(a|9’,u)u(a,O,u)],
where u(a, 8, p) is the linear extension of u(a, 8, ). Because o is a best response, we have that

=>E; »o)

Er . | D fO)a(ald, w)ula,6, )
0,a

Y f(e)a’(e,u)(e’)a(aw’,u)u(a,e,u)],
,0',a
which implies the two-stage mechanism lacks profitable undetectable deviations.

The allocation rule is ex ante individually rational Define

Y a(alf,wula,0,0) - ulag,6,w)

acA

Unet(w) = ) f(0) Y plw)

0e® weQ

)

to be the agent’s (ex ante) payoff net of the outside option at belief . Ex ante individual rationality of

« is equivalent to Unet () = 0 for all p in the support of 7(y,4).

Toward a contradiction, assume that Upet (1) < 0 with positive probability under 7, ). By Lemma D.1

denote any continuous bounded function on Q x A(Q) x © x © x A, Let Dr(g) = Er2[g] - Em[g] =
U’ U/

% Zthl Ey [g(ar, 01,0}, 0, 1r41) — 8(ar, 01,0}, 0, 11y)]. The argument in Lemma C.2 implies that D7 (g) — 0 as T — oo (this
does not rely on the existence of a limit, just the convergence of beliefs and the continuity of g). Now, let T be such that

_5”'1 Y, ¥. Note that

Vi
fgdvgf“z:fgdvgf“l+DT”(g)—»fgd17+O,

so a subsequential limit of V};’,l is a subsequential limit of Vg’,z. Switching the role of 1 and 2, we obtain the opposite set
inclusion.
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in Appendix D, a set B < A(Q2) open relative to A(Q) exists such that*6

fBUnet(H)T(p,a) (dw) <0.

Moreover, we can pick B such that 7y 4 (0B) = 0, where 0B denotes the boundary of B relative to
AQ).Y Lastly, let 6 > 0 be such that

fB Unet ()T (p,0) (dp) < —26. (C.34)

Let (1;(h") sen nee e denote the belief process under (p, o). For L € N, define a strategy (pt,o%) as

follows:

L. (pEn',),0Lh!, ) = (pe(h,),0.(h',") if either t < L OR (¢ = L and u;(h') ¢ B), where ht

precedes h',

2. Otherwise, (pf(ht, ), Uf(ht, ) = (0,0 4(h’,-) (note that when the agent quits the strategy can be
specified arbitrarily.)

Note the agent’s average payoff through period T under (p*,o%) can be written as follows:

1 T
Epron U] =Epo) [Ur] =Epor | 7 Y (u(ar,0;,0) - ulag,0;w))1lr= Land puy € B | .
=1

We show that for sufficiently large L, ( pL, ol)isa profitable deviation. For T = L, write

1 T
Ep,0 ?;L(u(am(%,w)—u(a¢,9t,w))]l[;uL€B] _fBUnet(,u)T(p,a)(d,U): (C.35)
1 T
=Ep.o ?;(u(atﬂpw)—u(aqsﬁt,w))]l[uteB] —fBUnet(u)r(p,g)(d,u)
[ 1 L-1
-Epo T l(u(atﬁt,w)—u(ags,Ht,w))]l[pteB]
L 1=
g
+Ep,0) ?Z (u(as, 0 0) - ulag,0;,w)) (1lpr € Bl- 1y, € Bl)|.
t=L

Let K = maxg 4| (u(a,0,0) — u(ag,0,w))|, and note that we can bound the term in the last line of

Equation C.35 as follows:

T

1
— > |1{pug € Bl-1[u; € Bl
Tt:L

T

1
| Ep,o) | = D (ulay, 0y, 0) — ulag,0r,w)) (1lug € Bl - 1y, € Bl)

|< K]E(pyg')
T t=L

467 set X = A(Q) is open relative to A(Q) if an open set ¥ <RI exists such that X = Y N A(Q). The boundary relative to
A(Q) is analogously defined via open sets relative to A(Q).

47Lemma D.1 provides an interval of radii r € (0, o) such that |; B(a,r) Unet DT (p,0) (dw) < 0. Note that only countable
many such r can have 7y ) (0B(f1, 1)) > 0 (the boundaries for different radii are disjoint), so we can always pick r such that
T(p,0) (0B(f1, 1)) = 0 and preserve the negative sign.
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Because v, Moo P(p,0y-a.s. (Lemma C.1) and 7,07 (0B) = 0, we conclude:*®

lim sup [1[uy € Bl - 1[u; € B]| =0 P(p,0)-a.s.

L—oo ¢>1,

Then,

E(p,a) = [E(p,a)

1 T
— Y |1{pr € B]—1[u; € B]| sup|1{uz € Bl - 1[u; € B]|
Tt:L t=L

and choose L large enough so that for all L > L, we have that:

Eqp,o) <6/K. (C.36)

sup|1l[ur € Bl —1[u; € B]|
r=L

Consider now the term in the third line of Equation C.35 and note that it is bounded in absolute value
by K(L—-1)/T, which tends to 0 as T — oco. Similarly, the term in the second line of Equation C.35

vanishes as T — 00.*” Thus, for L = L, we can find T such that for all T = 7°°

1L 3
1 Epo) | = > (ular,0;,0) —ulag, 0, w) 1y € B —fB Unet(H)T (po (A1) | 50, (C.37)
=L
and hence
1L 1
E (0 - Y (ulas,0r,0) — u(ag,0;,w)) 1L Bl | < —55. (C.38)
t=L

We conclude that
. . 1
lim ;EEOHE(F,L’UL) [Ur] = TIEEOE(”’U)[UT] + 55,
a contradiction.

C.2.2 Proof of Theorem 4 (sufficiency)

We now show that all outcome distributions 9 € A(A x © x Q) that admit the decomposition in

Theorem 4 can be implemented via a dynamic mechanism. To this end, let 7 and a : © x A(Q) — A(A)

48The property that T(p,0)(0B) = 0 ensures that 1[u;(h*°) € B] is eventually constant almost surely. Let E = {h°: tioo (h™) ¢

0B}. On E, either i is in the interior of B (relative to A(Q)) or in the interior of BC (relative to A(QQ)), thatis, ane >0
exists such that (B(Ueo,€) N A(Q)) € B or BC. In either case, for each h®°, there exists N(h°°) such that for all ¢ = N(h*°),
pr(h™) € (B(tioo,€) N A(Q) and hence 1[u;(h™) € B] is eventually constant. When 7(p )(0B) = 0, we have that E has
probability 1 under Py o).

Yndeed, By, [%Zle (ulas, 0y, 0)— ulag,0,w)) Ly, EB]] = B [(u(a,0,0) - ulag,0,w))1lueBl] and our
(p,o)
previous analysis implies it converges to [z Unet (W7 (p,o) ([dp).

50Choose T so thatforall T = T:

1 T
Ep,0) T > (ular,0r,0) - ulag,0r,w) Ly € B) —fBUnet(u)T(pyg)(du)l
t=1
1 L-1
+|E -7 Y (ular, 0, w) - ulag,0r,w)) 1p, € Bl || <6/2.
t=1
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denote the belief distribution and the ex ante individually rational allocation rule without profitable

undetectable deviations corresponding to 9. That is,

9(a,0,w) = j;(m pw) f@ a(ald, T(du). (C.39)

The proof proceeds as follows:

1. We first consider a fictitious setting in which there is no state uncertainty and we are given
an allocation rule a’ : ® — A(A) that is ex ante individually rational and lacks profitable
undetectable deviations for some utility function u': A x ® — R. Proposition C.1 shows that a

dynamic mechanism exists that implements a'.

2. We then show that if 9 satisfies Equation C.39, then a finite support belief distribution 7’ exists

such that 9 and « satisfies Equation C.39 with 7’ instead of 7.

3. Lastly, we use this result to construct a dynamic game that implements .

Step 1 For this step, we consider a fictitious setting in which there is no state uncertainty and the

designer faces a privately informed agent with payoffs u': A x ® — R, where 0 ~ f € A(©).”!

Suppose we are given an allocation rule a’ : ® — A(A) that admits no profitable undetectable deviations
relative to ' as in Definition 7 and is individually rational as in Definition 8. We have the following

result:

Proposition C.1. Let9d' = f(0)a’(al0) € A(A x ©) such that a' lacks profitable undetectable deviations

and is ex ante individually rational. Then, a dynamic mechanism exists that implements 9'.

Proof of Proposition C.1. The proofis constructive. We build on the analysis of Margaria and Smolin
(2018) and present a dynamic mechanism that alternates between communication and adjustment
phases. In all phases, the mechanism selects allocations using reports 6’ according to a’. In a
communication phase, the reports are those sent by the agent. In an adjustment phase, the agent’s
reports are disregarded; instead, the mechanism simulates reports to guarantee that the occupation
measure over reports coincides with f and these simulated reports are used to determine the allocation.
The mechanism ensures that under any agent’s strategy, the occupation measure over reports and
allocations exists and equals 9'; thus, any strategy corresponds to an undetectable deviation. The
length of communication phases grows in time. Thus, under truthtelling the relative length of
adjustment phases vanishes in time, and the expected occupation measure over types and allocations
exists and equals 9'. Because a’ lacks profitable undetectable deviations, it follows that truthtelling
is optimal for the agent. Because a' is ex ante individually rational, it follows that the participation

constraints are satisfied.

Formally, the mechanism consists of sequential blocks, each block starting with a communication

phase followed by an adjustment phase. The lengths of communication phases are fixed at L1, Ly, ...

51 Anticipating our construction in item 3, for each belief ¢ in the support of 7, the allocation rule a’(-|-, i) has no profitable
undetectable deviations relative to payoff function u'(a,0) = ¥ ,,cq pw)u(a,6,w).
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such that L, —ocoand L,/ y<, Ly — 0, e.g., L, = n. The length of adjustment phase NV,, depends
on the agent’s reports in the communication phase in block n. Denote by T}, the first period of
block n, which is the first period of the corresponding communication phase. The first period of the
corresponding adjustment phase is T, + L, + 1. Denote by freq), the average report frequencies in this
block at the beginning of the adjustment stage:
Ty+L,—1
freqp@ 2 — Y 10,=0). (C.40)
Ln =7,

If freq), = f, then the adjustment phase is empty, and the mechanism proceeds to the next block.
Otherwise, in the adjustment phase, the mechanism generates reports over N, periods to guarantee

that at the end of the adjustment phase the expected frequency of reports in this block equals f that is,

[E[freq%lfreq}i] =f (C41
where
) Aa Tp+Ly+Np=1
fi 0)= 16;=0). C.42
req, ) = T t:ZTn 6,=06) (C.42)

To do so, denote by n £ ming f(0) and observe that f € A(®) can be surrounded by a ball of radius 7

within the simplex A(®). The adjustment phase lasts for N,, periods where:**

freql —
Ny = {Ln—“ req, —f “"ﬂ , (C.43)
n

and in each period of the adjustment phase the mechanism generates the reports i.i.d. according to

it
a 1 Ly
fn = f—(freq;, — f)ﬁ- (C.44)

The construction ensures that f € A(®), because || /¥ — flloo =7, and that (C.41) holds, because

[E[freqfllfreq}l] = (Lnfreqil + N, fH=f.

1
L,+ N,

This in turn guarantees that the long-run distribution of reports (generated jointly by the agent and
the mechanism) exists and equals f irrespectively of the agent’s strategy. Intuitively, the fact that each
block becomes negligible relative to past history over time ensures the agent’s reports in each block
have less and less effect on the long run frequency of reports, whereas the adjustment phase ensures
that the frequency of reports converges to f. Formally, for any history and T denote by n'3(T) the
number of the block to which T belongs and by T'35{(T) the first period of that block. Observe that for

S2Any |1.1| p would work, but larger p results in weakly shorter adjustment phases.
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any agent’s strategy:

N,<L,|m f, ”f, nf”“’ +1| 2 L,p. (C.45)
Therefore,
|T - T'3Y(T))| L Lwwn1+P) as, (€.46)
Tlast(T) Y kenn(ry Lk T—oo
where the limit result holds because n!3t(T) —% 7—; ooand L,/ Y <, Lk — 0.
Then, for any agent’s strategy, for any feo,
i L5 =) - i[O 11 can

A last _ last last
— lim E F@) + fAUT)(T — T*(T) T*N(T)
1+(T_Tlast(T))/Tlast(T)

T—o0

=),

where f last T € A(@) is the report frequency in the last block up to period T, and the last line follows
from Equation C.46.

Since the mechanism chooses allocations in all periods according to o/, it follows that for any agent’s

strategy ¢’ the induced occupation measure over allocations and type reports satisfies:

T
Jim %[Egr > Llan00) = (a,0)]| = f6)a'(alb) = 9'(a,0). (C.48)

t=1
In other words, for any reporting strategy the occupation measure over allocations and reports exists.

We now show that under truthtelling the occupation measure over types and allocations exists and
equals f(0)a’(alf) = 9(a,0). To this end, assume that the agent always reports her true type. For any
T, denote by L°®@(T) the total number of periods spent in communication phases before T and by
N©@(T) the total number of periods spent in adjustment phases before T. Observe that by the strong

law of large numbers, because L; — oo,

Nu _llfreqy—flloo 1 as.
Ln n Ln n—oo
Therefore,

N©®(T)
total (T) + ] total (T) T—oo

’

because whenever N,,/L,, — 0, lim7_.o, N©®(D j(ntotal () 4 pro@l(ryy = lim, . N,/ (L, + Ny) =0
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It follows that

1T 5 )
TIEIC}O? ;Pr((etﬁt.ﬂt} =(0,0,a)

i E| EODI0 = 0)f0)a'(ald) + N©°@(T) £24(7)(0,0, a)
T Ntotal(T) + ltotal(T)

=10 =6)fO)a’ (alh),

where f29(T) € A(©xOx A) is the average frequency of types, reports, and allocations in the adjustment
phases before T. Therefore, under truthtelling, the occupation measure over allocations and types

equals
9'(a,0) = f(0)a'(alb). (C.49)
Hence, the agent’s payoff in the dynamic mechanism under truthtelling is:

U™t = N f0)a'(alb)u'(a,0). (C.50)
(a,0)

It remains to show that the agent cannot achieve more than U™ under any other strategy. To this

end, fix and alternative strategy o, and denote by U (o) = limsup;_ ., Ur (o) where:

1 T
Ur(o)==)_ > Pr((a;0,) = (a,0)u(a,0).

T t=1a,0
Consider any convergent subsequence (Ur,)}., along times {T},}; ;. Because A(A x © x ©) is compact
(Aliprantis and Border, 2006, Theorem 15.11), a convergent (sub)subsequence at times {Tk}‘]’c":1 c
{Tu}},., exists along which the occupation measure induced by o

vg’c W, Voo

for some v, € A(A x © x ©®), which by (C.48) satisfies vg(a,é) = f(é)a’(alé). It follows that for some

undetectable deviation v (9|9):

lim UT

n—oo "

= lim U, = 3, fOvs(010)a' (ald)u (a,0) < U™,
- G,é,a

where the inequality follows because a’ (alé) lacks profitable undetectable deviations. Because this

(e 9]

inequality holds for any convergent subsequence (Ut,)5;,

U(o) = limsup Uy (o) < U™,
T—o0

Finally, observe that the construction ensures that after every history, truthtelling from there on
delivers the continuation payoff U™® Since &' is ex ante individually rational, U™ > ¥y £(0)u/(ag,0),

and thus the participation constraints are satisfied. This concludes the proof. O
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Step2 Consider now the outcome distribution 9 € A(A x © x Q) satisfying Equation C.39. As we argue
in the proof of Theorem 2, a finite K < | A||®||Q], {u1,..., ux} € A(Q), and 7’ € A(A(Q)) exists such that

K
9(a,0,w) = f(0) ) 7' () ur(w)a(alb, wy).
k=1

Step3 We now use steps 1 and 2 to complete the proof of Theorem 4, so in what follows we use the
finite support representation of 9 in the previous step. By Bayes plausibility, a dynamic mechanism
can generate the belief split 7’/ in T periods with T < [log|A| (1211011 AD1, by treating each sequence
of allocations of length T as a message. This can be achieved by making the mechanism constant
on the agent’s type reports during the first T periods. Since each a(-|-, ug) for k € {1,...,K} lacks
profitable undetectable deviations and is individually rational, Proposition C.1 implies that a dynamic
mechanism exists that implements 9 by first generating the belief split 7’ and then implementing

a(-|-, ) in the corresponding continuation play.

D Proof of auxiliary results

D.1 Revelation principle for calibrated mechanism design

In the main text, we restricted attention to incentive compatible and individually rational calibrated
mechanisms. We show in this appendix that this restriction is without loss of generality by considering
mechanisms with arbitrary message spaces and participation and reporting decisions by the agents
that constitute an equilibrium of the game induced by the mechanism and its calibrated information

structure.

Mechanisms Let 2!V \ ¢ denote the nonempty subsets of agents. Then, we can define a mechanism
as a collection {(Mj,¢;) : J € 2IN1\ ¢}, where

Gy MyxQx[0,1] — A(A)),
is the mechanism when agents in J participate, where M = x;e;M; and Ay = x;cjA;.

Information Structure Let S i = A(A,-)Mi denote the collection of menus of lotteries with labels M;,

and let § = x iE[N]ﬁi. An information structure is (7, S), where 7: Q x [0,1] — S.

Participation and reporting strategies It is notationally convenient to allow each agent to have her
own randomization device &; ~ U[0,1] and write agents’ strategies as mappings (p;,0;) : ©; x S; x
[0,1] — {0,1} x M;, where p; denotes agent i’s participation decision, and o; her reporting strategy,
conditional on participating. To distinguish the agents’ randomization from that of the original

mechanism, we reserve g, for the realization of the mechanism’s randomization device.

Given (p;,0;)ie(n) and a mechanism (¢, M), fix a profile (0, §,€) = (0;, $, €;) je;n)- This determines a set
of agents that participate,
J0,3,€) ={je[N]:p;@;,3;,€;) =1},
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andlet J_; (0, §,€) denote the projection of (0, §,€) on J\{i}. Note that J_; onlydepends on (6_;,5_;,€_;).

Lastly, write ¢;_._;,s_,e_nutit (Mi, 00,516 0, €0) € AA)_0_;,5_,6_putiy) for

Z ( H aj(ej’§j)(mj))¢]i(9i,§i,£i)U{i}(mi’m]i(Bi,§i,8i)’w’£0)

mMy_;0_;5_e_p \jeJ_i(0-;,5-;,€_;)

Calibrated information structures Given (p;,0;);c(n) and a mechanism (¢, M), the information
structure (71’, S) is calibrated with the mechanism and the agents’ strategies if whenever n(w, &g) =

(81,...,5n), then for all i, m;

SiClm)=Fg ¢ wes | 2 Pri@ e oM 07 0,5 e 0 @€0)(a-7) |

a_;€eA_;

Below, to keep the presentation simple, we focus on the case in which the calibrated information

structure has finite support.

Equilibrium  Given (p;,0;)ic|n;, @ mechanism (¢, M) and an information structure (7, ) calibrated
with the mechanism and the agents’ strategies, (p;,0;)ie(n) is an equilibrium if for all i € [V], all
0;€0;,all §; €§;,and ¢; € [0,1], the following hold:

0i(0;,8i,€)) €arg max Y §i(ailm)Ep~p, 10,5 [Wi(ai,0;,w)],
mi€Mi g e,

pi(0i,8;,€) € argplgaax p Y. $iailoi(0i,8i,€))Ewmp 10,50 (Ui (@i, 0, 0)] + (1 = PYEgm ;101,50 (Ui (@ig, 05, 0)],
’ a;eA;
where p;(0;,5;) € A(Q) denotes agent i’s updated beliefs about the state when her type is 8; conditional

on receiving signal §;.

Revelation Principle Fix (p;,0;)icn), @ mechanism (¢, M) and an information structure (7, S
calibrated with the mechanism such that (p;,0;);¢n) is an equilibrium. We construct a direct
mechanism (¢p*, ) and a calibrated information structure (1*, S*) calibrated with the mechanism

under truthtelling and full participation such that truthtelling and full participation is an equilibrium.

First, note that we can extend each ¢;(-) € A(Aj) to a mechanism ¢ 7() € A(A) as follows: for all
meMpweQ,e€(0,1],and aj € Ay,

¢, (my,0,€0)(a) = Ppy(my,w,e0)(ay) x 8q_, .
Define a “pseudo”-mechanism as follows:

(pN 0,0,¢€0,8) = (p](g,ﬂ(w,go),g) (U](glgya,w,é’o) .

where 0 ;g ; ) is the message vector generated by the strategies. Define the full participation mechanism
0 xQx[0,1]— A(A) to be

ON0,0,60) (@) = f[ - dN O, w,€0,8) (@AY (dE)
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Let S;‘ =A(A;)® and define 7* (v, £g) = (si",...,sj*v) € x,-E[N]S;‘, where

S}“(-Iéi)=[Ee,,-~f,,-(~|w) Y on(01,0-1,0,6) ¢ a-p)|.
a—j

By definition, the information structure is calibrated relative to full participation and truthful reporting.

We now show that full participation and truthful reporting is a best response to others participating
and truthfully reporting into the mechanism. To this end, consider agent i’s payoff from submitting

/ . . _ . L
repgc;rt 6 when observing s;. Denoting by X (w, s7) the set of €9 such that 7} = s7, this payoff is given
by:*

> %Zf i (0-ilw) 9 Z¢N(9,,6 i»w,€0)(a;, a_)Mdeo)u;(a;,0;,0) =
we) i 0_; ws a

1 gl *
> o) Mui(m,@i,w)Zf-i(H zlw)f Z¢N(9§,9_i,w,£o)(ai,a_i)/l(dso)
0-;

a;€A; weQ) Pr(S*|Hl) ws )a_;

B o) fibilw) f .
—fo [ZZ Prist 0, wi(a;,0;,0) Z(w’s;)(*wde@)lﬂdsl),

where

*=[g_ ilw,E_; Z(,DN(HVH i»€0,€-¢)(ai, ay)

a_;

2 $16,,6-1,5,60),8 O 101,6_1,3(0,60),8) @ €0) (@i, A-)

a—j

= [Ee—i|wvé—i

=1[pi (0}, 3i(w,€0), &) = 118;(a;10; 0}, §;,€:)) + (1= Lp;(0}, 8i (W, €0),€) = 118 4, , (a).

Because agent i of type 0; could have imitated type 0}, reporting 6; dominates. By the same logic,

when the agent reports 6;, she obtains at least the payoff from participating in the mechanism.

D.2 Optimal Calibrated Auction

Proof of Proposition 5. The pointwise solution to the Myersonian problem allocates the good to agents
in N*(8,w) = argmax;e[njuior [w; (0, w) + J;(0;)w; + wo;] where i = 0 corresponds to an outside option

with wy = Jo = wgp = 0. The conditions of the proposition ensure that for all i € N and j € [N] U {0},

i (wi0,w) + J;(0;, F))w; + wo;) = —

0, 26, (wj@,w)+Jj0),Fjw;+wj).

Thus, an optimal selection g*(6,w) exists such that for each i, 6_;, and w, q*(0;,0-;,w) is non-

decreasing in 6; (e.g., one that uniformly randomizes over N* (6, w)).

Denote by Qsy11 the set of allocation rules implementable under full state disclosure. These are the
rules such that for all i and w, Er ,[g;(0;,0-;,w)] is non-decreasing in 6;. It follows that g* € Q¢y11,
and hence g* € Quy. Thus, g solves the Myersonian problem and can also be implemented by fully

disclosing the state to the agents and conducting an optimal mechanism state-by-state. By revenue

531n the expressions that follow, recall the full participation mechanism ¢ already averages over the agents’ own
randomization devices.
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equivalence, the expected revenue of such implementation is the same as under no disclosure, and
thus the designer obtains payoff Wyy. O
D.3 Technical results from Appendix C

Proof of Lemma C.1. The set of continuous bounded functions on Q is separable and hence it has a

countable dense subset {gx}xen < Cp (Q). It is immediate to see that Un w pifand onlyifforall ke N
[gxdpn — [ grdp.

For each k € N define a real-valued, bounded, martingale on (H°, By, P,) as follows:
MF @, i) =fﬂgk(w’,(?)dut(d),h°°)(w’,£).

Doob’s martingale convergence theorem implies that M f (@, h®) = Elgi|h'] — MK (@, h™°) = E[gi|h™]
Ps-a.s. Let Ex denote the subset of 7{°° where convergence happens, and note that P, (E) = 1.

Let E = Ny Ej. and note that P, (E) = 1. Then, on E, we have that for all k e N,
f gr(w',&)dp (@, h™®) (', €) — Mfo(d'), h). (D.1)
o)
Fix now a terminal history (@, h°°). Because A(Q) is compact (Aliprantis and Border, 2006, Theorem

15.11), the sequence (u;(@, h*)) ey has a convergent subsequence He; (@, h®°) w fi. Passing the limit

along ¢; in Equation D.1 we have that for all k€ N

fogk(w',&‘)dﬂt(@, h*) (', ¢€) *f@gk(w’,s)dﬁ.

Because the set {gy : k € N} determines the convergent subsequences, any subsequential limits must be

equal. Hence p(-) converges on E and call this limit fi,. Hence on E we have that p;(h*) v floo (™).

Now, for each k, [ gxd e = E[gk|h™] almost surely. Hence, fi is a version of the law of Q conditional

on h*. This is P (-|h*°), completing the proof. O

Proof of Lemma C.2. Fix a continuous and bounded function g € C,(A x © x Q x A(Q2)) and define for
each terminal history (w, h*°)

Al’(wy hOO) = g(at(hoo)»et(hoo)rw) ut(hoo)) - g(at(hoo))at(hoo)yw)ut+l (hoo))-

As in Lemma C.1, let E denote the probability-1 subset of H* on which yu; v, ,uoo.54 Then, on E,
A¢(w, h*°) — 0, and hence,

[EO' [At’(w» hoo)] - 0)

54T be sure, the proof of Lemma C.1 is written in the context of repeated mechanisms but it extends verbatim to dynamic
mechanisms with simple notational adjustments.
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as t — oco. Now, for every T,

1 T
Dr(g) =Eym 8] — By (8] = T 2 Es[Ad,
=1

and hence the left-hand side goes to 0 as T — oo.

Now, let T}, be such that VZ"’Z Y. ¥ for some v € A(Ax 0 xQ xA(Q)). Note that

Eyrur [g] = Egmz ] + D1, [g] — Ev[g] +0,

Tp,2 Tn)1

so a subsequential limit of v,*“ is a subsequential limit of v;”". Switching the role of 1 and 2, we

obtain the opposite set inclusion and the result follows. O

Proof of Lemma C.3. Fix a continuous function g on A(Q). Then, we want to show that
Er, [g] — Ep,opz! [g]-

By Lemma C.1, y; v, Hoo Ps-almost surely and g is continuous, we have that E¢ [g (/)] — Eo [ g(Hoo) ]
by dominated convergence theorem.”® Because eventually constant sequences have Cesaro limits, we

have that ,

Z (8] — o [g(Hoo)] -

And now we are basically done, because

1 L
E,, 8] = f LY g B)Po(dh®) = = 3 Eq [g(10)] — Eolg(tioo)] = f gdPy o).
= T (3 f i

In other words, the occupation measure on beliefs induced by the strategy (and the prior, the type
distribution, and the mechanism) is the push-forward measure (P, o u5}). In particular, that P, is a

measure implies that (P, o u!) is a measure itself (Bogachev, 2007, Chapter 3.6). O

Proof of Lemma C.4. We now show the agent can ensure the payoff U(74) in Equation C.21, which
corresponds to the agent’s maximum payoff under the calibrated information structure 7. Recall that
this information structure is the one that corresponds to the partition of Q, 2, defined as follows: @, @’
in the same cell P of & if for all (a, m), ¢p(alm,®) = ¢p(alm,®’). Conditional on cell P, the associated
posterior is u(|P) € AQ). Let Tp€ A(A(Q)) denote the induced belief distribution (with mean Lo ®1).

To prove the result, we consider the strategy o'y, parameterized by a number N and defined as follows.
In the exploration phase of o', the agent plays each message m for N rounds. Let t (hN'M1y denote

the agent’s beliefs as a function of the realized sequence of allocations implied by NI, For each

55To be sure,

Eo [gun)] = me 8 (K™®)Pg (dh™).
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history that succeeds hV'M!, the agent of type 0 plays the message m that solves

max} v (BN @) Y. plalm, @)u(a,6,w).

acA

It is immediate to verify that the agent’s (limit) average payoff under o', is given by:

Uloy) =Eq, | Y, fO max} unn(h™)@) 3 plalm,d)u(a,0,0)| =
0e© meM-@ acA

= ¥ PN G (BVM), (D.2)
RNIMIg (FNIM|

where u* is as in Equation C.20.

Below, we show that the distribution of beliefs under o’ Pgr o ,u]‘\,l| M = 74. Consequently, as u* is

continuous and bounded on A(Q), for any § > 0, we can choose Nj so that for all N = N,
|U(0y) —Ul(ty)| <6.
Consequently, the agent’s payoff under o must be U(7y) because by definition for all § > 0°°

liﬁi{gf[EU [Ur] = limsup[Eg;Vé [Ur] = U(cf;\,é) =U(ty) -0,

T—o0

and hence,
11Trrilolgf[Eg [ur] = (lslir(l) Ulty) -6 =Ul(typ).

which completes the proof.

We now complete the missing step:
The law of 15y converges to 7, It is useful to write the bottom line of Equation D.2 as follows:

Y (ko @M@ Epvinn g [1” (niaa)] -

weQ)

We show that the conditional law of pna, Pg (-|®), converges to the Dirac measure on u(:|P(®)).
Noting that 7y = Y ;.5 (Lo ® N) (@)6 (. p@)) completes the proof.

For the exploration block, define for each m € M, the empirical frequency ¢, : (@ x M x A)NM! —

A(A), as follows

N
S m (WM (@) = % Y 1A= al,

n=1

where A, ,, is the n'"" draw from A when the message is m. Let ¢ : HVM! — A(A)M denote the vector

56The argument shows that the agent’s equilibrium payoff is at least U (r¢). However, it is immediate that U(7y) is the
most the agent can make in the game as 7 extracts all information from the mechanism.
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of empirical frequencies. The agent’s belief at history 4V!M! is given by:

(110 ® 1) (@) [ne s aea plalm, @) Nonn ™)@

v (BN @) = —
Yo (o @ 1) (@") TTmemt [ae a Plalm, &YNorm X0 @

(D.3)

Denote by 7 M6 € A(A(Q)) the law of 1 conditional on @, i.e., T njMp = IP’U;V (l@)o “N}Mr Below,

we show that 7y, converges weakly to 6, p(@))-

Suppose the true state is @®*. Then, (A;;,1,..., A, N) are drawn i.i.d. from distribution ¢(-|m,®*). Fixa

continuous and bounded function g on A. Then, almost surely,’’

. 1 X
ngakpN(-lm) =N Y 8Amn) =~ Eglg(Ap, )] = Y gl@plalm,d™),
n=1

acA

by the strong law of large numbers applied to thei.i.d random variables (g(A;,1), .., §(Am, n)). Because

this holds for all g, then ¢ (-|m) v, ¢(-|m,®*) almost surely when the true state is @*.

Fix an arbitrary state @ and consider the ratio of the right-hand side of Equation D.3 at @ and &*:

pnn (BN @) (uo @ ) (@) 1 (¢>(a|m,w)

Ny, m (BN (a)
i (BN (@%) (o @ 1) (@) gep mens )

dlalm,o*) (D4

Suppose @ ¢ P(®*). By definition of the partition &, a message m € M and allocation a € A exist such
that ¢(alm,®) # ¢(alm,®*). Taking logarithm on both sides of Equation D.4 and dividing by N,

1 fanvingg (R (@) ) 1 ( (ko ® 1) (@) ) A NIMIy, ( Pla|m', o) )
-1 = —Jog| 2= ‘(h log| ———-~—|.
N 8 i (B @5 | T N B e e m @) EAmgM“’Nvm( o\ o aim, o)
(D.5)
Because (Z)N(-Im) w ¢(-|m,®*) almost surely when the true state is @*,
1 v (R @) )_ ~ - -
R Nlog(umm(thM')(@*) - mgMDKL (eCim, &lgt1m, ). b-H

where Dy, is the Kullback-Leibler divergence. Note that at least one of the terms in the KL-divergence

is positive as ¢(-|m,®) # ¢(-|m,d®*). Hence,

lim lo
N—oco

( g (MM (@) ) e
i (RNIMD (&%) '

meaning that gy (BNM)(@) 1 pniag (BNMY (@) — 0.
Suppose now that @ € P(®*). Then, Equation D.4 reduces to

pnia (BYMY@) (o @ m)(@)

- ’ D.7
g (BNMY @%) ~ (o @ 1) (@) (D.7)

for all N.

57This almost surely is under the law of A under ¢(-|m, @*).
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Collecting both cases, we conclude that conditional on the true state being @*,

Z UNIM| (@) = N—oo 1,

WeP(@*)

and moreover, within the cell, the fixed-ratio property implies the law 7 njpz,o+* s uClP@+)- We
conclude that the unconditional belief distribution, }_ ;& (Lo®17) (@) T N M6 W, Y 5ea (Ho®N) (D)0 (@) =

74. In particular,
Iy _ * "
V(N =EFp, oy, [0 00] = Er, [ W],

completing the proof. O

Lemma D.1. Suppose u: A(Q) — R satisfies that
f u(wt(dyp) < f max{u(u),0} T(dw),
AQ) A(QY)
then a set B < A(Q) open relative to A(Q)) exists such that
f u(p)t(dw) <0.
B
Proof. Define the positive and negative parts of u:
u+ (1) := max{u(p), 0}, u— () := max{—u(w),0}.
Then u = u; — u_ pointwise. Integrating and using the assumed strict inequality,

fudrzfu+dr—fu_dr<fu+dr = fu_dr>0.

Hence the set N :={u € A(Q) : u(u) < 0} has strictly positive mass under 1.

Embed A(Q) c R, Extend 7 to a finite Borel measure 7 on R% by
T(A):=1(ANA(Q)) (A';Rd Borel),

and extend u to i :RY — [-1,1] by il = u on A(Q) and & = 0 on R4\ A(Q). Then i € L'() and
#(N) = T(N) > 0.

Let By (x,7) denote the ball in R”! with center x and radius r. By the Lebesgue differentiation

theorem for finite Borel measures on R?, there is a #-full-measure set D < R? such that for every x € D,

1
lim~—/ ad7 = i(x),
rl0 T(Bra(x,1)) JB4(x,r)

whenever 7(Bga(x,r)) > 0 (and this positivity holds for all sufficiently small r for 7-a.e. x). Since
T(NN D) >0, choose ug € Nn D. Then i(ug) = u(uo) < 0. Therefore the above limit is strictly negative,
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so there exists 1y > 0 such that forall 0 < r < ry,

f dft <0.
Bga (1o,7)

Forsuch anr,let B := Ba(uo, 1) = A(Q) N Bga (1o, 1), which is an open ball in A(Q). Using the definitions
of T and 1,

f udT:f udt <0.
B Bpa (to,7)

This proves the claim. O

D.3.1 Revelation principle for limit of means preferences

We show in this section that when the designer uses dynamic mechanismes, it is without loss of
generality for the designer to employ direct dynamic mechanisms that (i) implement the outside
option at all histories after the agent first exercises her option not to participate in the mechanism,
and (ii) for which the agent’s best response is to always participate and truthfully report her type. This

justifies the class of mechanisms we employ in the analysis of Section 5.2.

Histories, mechanisms, and strategies As in the main text, to simplify notation, we do not include
the agent’s decision to participate in the mechanism in the histories of the game. Instead, we follow
the convention that if the agent does not participate, it is as if she reported @ and the allocation is ay.
Formally, let MAg = (M x A) U{(®, ag)}. With this notation, a history through period ¢ is an element of
FII(/I =(MAg)""! and let 7:[5\/] =Qx FII{/I.SB

A mechanism is a collection ¢ = (¢;)$2, such that the mechanism in period 7 is a mapping ¢; :
HE, x M — A(A).

Let Hl = (@ x MAy) t-l_@t-lx g + .- The agent's strategy, (p,0), is given by her participation strategy
pr:H ]{4 x ® — [0,1], and conditional on participating, her reporting strategy o;: H ]{4 x 0O — A(M).

The distribution over terminal histories To obtain the complete description of the paths on the tree
we need to append Q to H, ; hence the paths through period ¢ -1 are Q x H!, = H},. The distributions
over states and agent’s types, the agent’s strategy, and the mechanism induce a distribution over the
terminal histories Hf; = Q x Hyf, which we denote by Py, (p,0) € A(Q x Hyy), as it is now useful to keep
track of the mechanism. We denote by E(, o) the expectation under this measure. The distribution
Py, (p,0) € A(Q x HY?) is the unique distribution that satisfies that forall re N, H! < Qx H! ,

~ oo ~
Po,pp.o)Hyy x ] ©xMA) =Py, , o (H}p,

s=t+1

58We index histories by the messages to distinguish these histories from those when the designer uses direct mechanisms.
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t

where the distributions (P 0(po

))IEN satisfy

P e @ 1y, 0,m @) =Pl (@, ki) fO) pi Ry, 0)0 ((hiy, 0) M), (@, By, m) (@),

Pt o) @ B, 0,8,0) =Py (@, hy) fO) (1= pi(hyy,0)1[a= agl.

Outcome distribution Our interest is in the distribution over payoff-relevant outcomes, Q x (@ x A)*°,

and hence on the marginal of Py, (,») on Q x (© x A)*°, which we denote by Py, ().

Bestresponse We say that strategy (p, o) is a best response for the agent if for all alternative strategies

(p',0"), we have that

li%ninf[E(pyg) [Ur] =zlimsupEy o [UT], (D.8)
—00

T—o0

where recall Ut is the agent’s average payoff until period T

Direct and full participation mechanisms A special case of the above game is that in which M =0,
and whenever the agent does not participate, the mechanism chooses a4 with probability 1 for
any message in all continuation histories. We call these mechanisms direct and full participation

mechanisms. Below, when M = 0, we drop the dependence of the set histories on M.

Formally, let ’Hfb denote the subset of 7! such that at some point the sequence (@, ag) appears. We
define mechanisms
@r:H x0 — A(A),

such that ¢;(w, i’,-) = 1[a = ay] whenever (w, i) € 7:[;

Theorem D.1. Suppose that (p, o) is a best response to mechanism . Then, a direct and full participation

mechanism @ exists such that
1. Participation with probability 1 and truthtelling are a best response for the agent,

2. The distribution over Q x (O x A)* induced by (@, (p,0)) is the same as that induced by ¢ under
participation and truthtelling.

Proof. Fixamechanism ¢ = (¢’);> and a best response (p, o) for the agent in the sense of Equation 13.
Let Py, (p,0) denote the induced distribution over H™. We write (w, (@, m, ar)=1) for a generic

realization, where m; = @ = a; = ap.

The proof proceeds in three steps. In the first step, we construct a direct (but not full participation)
mechanism ¢, which under participation and truthtelling after every history on path implements
the same outcome distribution as (¢, (p,0)). In the second step, we verify that participation and
truthtelling after every history on path is a best response to @. In the third step, we construct a direct
and full participation mechanism from @. That the agent can always quit the mechanism at each step
and obtain a4 and Step 3 implies that participation and truthtelling after every history is also a best

response to the full participation mechanism obtained from .
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Step 1: We first construct the direct mechanism @, : HixO — A(A). Define a collection of transition
probabilities x; : H, x © — A(M U {@}) as follows:

Ke(melhy,,00) = (1= p(hy, 00)1ime = @1+ pe(hl,, 000 (hy,,00) (my).

We construct ¢ recursively. In period 1, if the state is w and the report is 8, the designer draws

fictitious m; from «(-|0;), and implements a; = ay if m; = @, and otherwise draws a; ~ ¢; (w, m;).

Recursively, for ¢ > 2, if the sequence of reports, fictitious messages, and allocations is (6’ “omttl et =

(Gg,ms,as)z;} and the agent reports 0, the designer draws m; from Kt(-IH’Z_l,mt_l,at_l,Ht) and

-1
’

implements a, = ag if m; = @, and otherwise draws a, ~ ¢, (w, m*~!,a*~1, m;).>®

It is immediate that under truthtelling and participation the mechanism ¢ implements the same
distribution over Q x (A x ©)>.%0

Step 2: Let (p*,0*) denote the agent’s strategy that participates and truthfully reports after every

history. We now show that (p*,0*) is a best response to ¢ in the sense of Equation D.8.

To do so, we show that for any strategy (p, ) in the game induced by the direct mechanism @, a
strategy (p’,0’) exists such that

[E(p,(ﬁ,(;) [UT] = IE(py(p"o") [UT] for all T, (D.9)

where Ur is the average payoff through period T. Given Equation D.9 and the best-response property
of (p,0) to o,
lijminf[Ew,(,,,g) [Ur] = limsupEy, (o1 [Ur] forall (p',0").
—o0 T—o0

Using Step 1, we have Ey, (p, ) [Ut] = Eg,(p* o) [Ur] for all T, and by Equation D.9 we have Ey, (o [UT] =
Eg,(5,5)Ur] for all T. Hence

liminfEg (p* o+ [Ur] = limsupky, 5,5 [Ur] forall (p,0),
T—oo T—oo

which is exactly the definition of (p*,0*) being a best response to ¢. It remains to construct (p’, o)
and verify (D.9).

We show how the agent can emulate the strategy (p, &) in the game induced by the indirect mechanism

via strategy (p’,0”). Define &, : H' x ® — A(@ U {@}) as follows
% 0'|n",0,) =1-ph',0))1[0" = @]+ p(h',0,)6(h',0,)(6).

The strategy (p’,0”) privately simulates the report process induced by (p, &) in the direct mechanism,
and conditional on the fictitious reports, generates the actual message in the indirect mechanism ¢

using the kernel «; in Step 1, evaluated at the fictitious type history.

59Recall the fictitious reports encode the agent’s participation decisions in the original mechanism.
6011 fact, if we kept track of the designer’s draws of fictitious messages, the new mechanism implements the same
distribution over terminal histories 7%, and a fortiori, its marginal over Q x (A x ®) is the same.
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Formally, for ¢ = 1 given the history of types, messages, and allocations through period ¢, (8 =1 pt=1 gt=1y,
and the privately tracked fictitious type reports 6’ ' 61 the agent of type 6; draws a fictitious report
0, ~ %C107L,0" " at"l,0,). If 0, = @, then m; = @ (the agent does not participate in period ¢).

-1

Otherwise, 0 € © and m; is drawn from K (10" m ,a'™1,0"). The allocation is ag upon rejection,

-1 t-1
’

and a; ~ @:(w,m'™",a'™", my), otherwise.

It is immediate that Equation D.9 holds and hence (p*,c*) is a best response to ¢:%? In the extensive
form game induced by @, the designer simulates the agent’s participation and reporting strategies
using (p, o) based on the agent’s type reports and determines allocations in the mechanism. When
the agent’s strategy is given by (p, &), the process described in the above paragraph correspond
to the designer’s simulated participation and reporting strategies, and allocations continued to be
determined by ¢. Hence, in the extensive form game induced by ¢, when the agent plays (p, §), it is
as if she faces mechanism ¢ and plays strategy (p’,0’). The best response property of (p, o) implies
that playing (p’,0’) yields a weakly worse payoff, and hence (,d) is not a profitable deviation from

(p*,0") in the direct mechanism .

Step 3: Modify @ at all histories that include at least one non-participation decision, so that the
mechanism implements the outside option ag. With this modification, the mechanism satisfies
the full participation property. It is immediate that participation and truthtelling after every history

remains a best response. O

61Recall that to minimize notation and make history lengths symmetric across participation and nonparticipation, we
record the agent’s rejection of the mechanism as the empty message @.

621 fact, the construction ensures the stronger property that [P’%w = [P’; ') when in a slight abuse of notation we

,(P,0)

keep track of the fictitious messages in [P’g (5,5)"
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