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Abstract

We study mechanism design when a designer repeatedly uses a fixed mechanism to interact

with strategic agents who learn from observing their allocations. We introduce a static framework,

calibrated mechanism design, requiring mechanisms to remain incentive compatible given the

information they reveal about an underlying state through repeated use. In single-agent settings,

we prove implementable outcomes correspond to two-stage mechanisms: the designer discloses

information about the state, then commits to a state-independent allocation rule. This yields a

tractable procedure to characterize calibrated mechanisms, combining information design and

mechanism design. In private values environments, full transparency is optimal and correlation-

based surplus extraction fails. We provide a microfoundation by showing calibrated mechanisms

characterize exactly what is implementable when an infinitely patient agent repeatedly interacts

with the same mechanism. Dynamic mechanisms that condition on histories expand implementable

outcomes only by weakening incentive constraints, but not by enriching the designer’s ability to

obfuscate learning.
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1 Introduction

Many economic institutions rely on mechanisms that remain fixed while agents interact with them

repeatedly. Online platforms commit to stable auction formats for advertising slots, lenders use

persistent scoring algorithms for loan decisions, and regulators establish durable rules for market

participants. When the mechanism’s operation depends on information known only to the designer—such

as the platform’s data about match values, the lender’s assessment of credit market conditions, or

the regulator’s understanding of market fundamentals—participants may infer this information

by observing their outcomes across repeated interactions. This learning creates a fundamental

constraint: the information a mechanism reveals through repeated use limits what outcomes it can

implement in the long run. Participants can use the information gleaned from past interactions when

deciding whether and how to participate, tightening the designer’s incentive constraints. A lender

whose approval decisions depend on unobserved credit market conditions will gradually reveal these

conditions to borrowers through his lending decisions, constraining the lender’s ability to provide

credit efficiently. We study how this endogenous information leakage shapes the set of implementable

outcomes in mechanism design.

A simple example illustrates how learning prevents the designer from exploiting his information.

Consider a seller who repeatedly offers a good whose demand depends on an unobserved state, which

can be either low (L) or high (H). Each state is equally likely. The seller faces a buyer whose value for

the good can take one of two values, 1/2 or 1. The probability that the buyer’s value is 1 is higher when

the demand state is high. Table 1 summarizes the value distribution conditional on the demand state:

v = 1/2 v = 1
L 2/3 1/3
H 1/3 2/3

Table 1: Value distribution conditional on demand state.

Suppose the seller can design the terms of trade, that is, the probability with which he allocates the

good to the buyer (q ∈ [0,1]) and the payment the buyer makes to the seller (t ∈R). The buyer’s payoff

is vq − t , and the seller’s is t . The buyer can always choose to not trade with the seller and ensure a

payoff of 0.

Suppose first the buyer and the seller interact only once. Table 2 depicts an optimal mechanism for

the seller in this case:

v = 1/2 v = 1
L (1,0) (1,0)
H (1,3/2) (1,3/2)

Table 2: Trade probabilities and payments as a function of buyer’s value and demand state.

In this mechanism, the buyer gets the good for free when the demand state is L and pays a price of

3/2 when it is H . If this mechanism were offered once without the buyer observing the demand state,

the buyer obtains a payoff of 0 from participating and truthfully reporting her type. Unsurprisingly,
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the seller extracts the buyer’s surplus: the seller knows the demand state, which is correlated with the

buyer’s type, and exploits this information in the design of his mechanism (cf. Crémer and McLean,

1988).

Suppose now the buyer interacts repeatedly with the mechanism, but the state remains fixed. If the

buyer observes nothing from her interaction with the mechanism, the buyer is willing to participate

and truthfully report her value into the mechanism, no matter how many times it is offered: In

each period, she anticipates getting a (continuation) payoff of 0 from engaging with the mechanism.

Suppose, instead, the buyer observes her allocation in the mechanism. If the demand state is L, the

buyer gets the good for free at the end of the first period, and from now on knows this is what she will

get in the mechanism. If the demand state is H , the buyer gets the good and pays a price of 3/2 as

she agreed to when she decided to participate in period 1, but anticipating a price of 3/2 from then

onwards, never again participates in the mechanism. Thus, whereas the seller can implement the

outcomes in Table 2 when the buyer does not observe her allocations, this is no longer the case when

she can.

This paper develops a framework for mechanism design in which agents’ ability to learn about the

designer’s information from repeatedly playing a mechanism constrains implementable outcomes.

In our framework, allocations depend on agents’ reports and on a state known only to the designer.

Through repeated participation, agents observe their allocations and gradually learn about this state.

A mechanism therefore serves a dual role: it determines allocations based on reports, and it acts as an

information structure that reveals the underlying state. The more the mechanism conditions on the

state, the more information it leaks, and the tighter the constraints on implementable outcomes.

We approach our analysis in two steps. First, we introduce a static solution concept for mechanism

design that directly models the feedback between the mechanism, the information it reveals, and

participants’ behavior. This solution concept allows us to tractably capture the limits on the set

of implementable outcomes implied by agents’ learning, while abstracting from the dynamics of

experimentation. Second, we provide a dynamic microfoundation showing this static solution concept

precisely captures the implementable outcomes when an infinitely patient agent repeatedly interacts

with the same mechanism.

In Section 2, we introduce a static solution concept—calibrated mechanism design—requiring that

mechanisms remain incentive compatible and individually rational given the information they reveal

about the state through their allocations. We formalize this requirement through the notion of a

calibrated mechanism. We couple each mechanism with an information structure that describes

what participants learn about the state from the mechanism. The information structure reveals

to each agent an interim allocation rule—the mapping from her type reports to lotteries over her

allocations—capturing what she would learn from repeatedly observing her outcomes in the mechanism.

We require the information structure to be calibrated in the sense of Foster and Vohra (1997): the

interim allocation rule each agent observes must accurately describe the allocation probabilities

she faces. Throughout the paper, we study calibrated mechanism design: the designer chooses a

mechanism that remains incentive compatible and individually rational when participants have access

to the mechanism’s calibrated information structure before playing. Calibration imposes a constraint

2



on the designer relative to standard mechanism design: the more the allocation rule depends on

the state, the more informative the calibrated information structure becomes, and hence the more

incentive and participation constraints the designer must satisfy.

In private values environments, the constraint that the mechanism must remain incentive compatible

and individually rational given the information it reveals about the state pushes the designer to full

transparency. We show in Theorem 1 that, under the calibration constraint, the designer can do no

better than inducing in each state the optimal direct mechanism when there is common knowledge

of that state. In particular, in settings with transferable utility in which the designer has statistical

information about the agents’ types, Theorem 1 implies the designer cannot extract full surplus.

In Section 3, we characterize optimal calibrated mechanisms through a tractable class we dub two-

stage mechanisms. In a two-stage mechanism, the designer first discloses information about the state

to the agent—inducing a belief about the state—then commits to an allocation rule that depends only

on the agent’s report, not the state itself. Theorem 2 shows that in single-agent settings, calibrated

mechanisms and two-stage mechanisms implement exactly the same outcome distributions. This

equivalence yields a practical algorithm for finding optimal calibrated mechanisms, combining tools

from information design and mechanism design: for each possible belief the designer might induce,

solve a standard mechanism design problem given that belief; then choose the optimal information

disclosure by concavifying the resulting value function.

In the case of multiple agents, Proposition 1 shows calibrated mechanisms admit a similar representation

via generalized two-stage mechanisms: Like two-stage mechanisms, the designer individually discloses

to each agent a belief about the state and offers an incentive compatible and individually rational

interim allocation rule that no longer conditions on the state. Whereas the designer observes the

disclosed belief profile, each agent only observes the belief disclosed to her.1 Moreover, each agent

learns only her own interim allocation rule—how her reports map to her allocations—rather than

the complete mapping from type profiles to allocations. This partial observability requires additional

consistency conditions to ensure agents’ interim allocation rules are mutually compatible. In contrast

to the single-agent case, not every generalized two-stage mechanism induces a calibrated mechanism,

as generalized two-stage mechanisms may reveal strictly less information than calibrated mechanisms.

In Section 4, we study optimal calibrated mechanism design in the canonical setting of quasilinear

utilities, single-dimensional types and allocations. In Section 4.1, we study the single-agent case. We

show that if the order of types is state independent, then optimal two-stage mechanisms fully reveal

the state, whereas this conclusion can be reversed when the order of types is state-dependent. In

Section 4.2, we compare optimal calibrated mechanism design against the Myersonian benchmark.

We provide sufficient conditions under which the designer realizes the payoff of the Myersonian

benchmark under the calibration constraint; under these conditions, the optimal Myersonian mechanism

satisfies the agent’s incentive constraints state-by-state. Building on that result, we analyze multi-agent

applications in Section 4.3.

1In (generalized) two-stage mechanisms, the designer communicates with the agents before the agents communicate
with the mechanism. Whereas this communication is a restriction on the set of implementable outcomes relative to the
single-designer Myersonian benchmark, Attar et al. (2025) show that allowing competing principals to first communicate
with agents expands the set of implementable outcomes.
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Section 5 provides a microfoundation for calibrated mechanism design. We analyze an infinite-

horizon game where an infinitely patient agent repeatedly plays the same mechanism.2 The state

remains fixed, but the agent’s type is redrawn each period independently of the state.3 Our notion of

implementation is based on the long-run expected frequency of allocation-type-state tuples when

the agent best responds to the mechanism. Theorem 3 shows that the implementable outcome

distributions are precisely those induced by incentive compatible two-stage mechanisms. This result

validates our static framework: calibrated mechanism design captures exactly what is implementable

through repeated play.

We then ask whether giving the designer additional flexibility helps. In a dynamic mechanism, the

designer can condition each period’s allocation on the complete history of past reports and allocations,

rather than using the same mechanism repeatedly. Theorem 4 shows that dynamic mechanisms

expand implementable outcomes in a specific way: they correspond to two-stage mechanisms with

weaker incentive compatibility and individual rationality conditions. The designer can now exploit

the ability to monitor the frequency of type reports over time, which allows him to punish detectable

deviations—reporting strategies whose frequency distribution differs from the true type distribution.

Instead, the mechanism must be robust to undetectable ones. Importantly, in environments with

transferable utility, this distinction vanishes: As shown in Rahman (2024), eliminating profitable

undetectable deviations is equivalent to incentive compatibility, so dynamic mechanisms implement

exactly the same distributions over physical allocations, types, and states as our static calibrated

mechanisms.

Related Literature The paper lies at the intersection of four literatures: rational expectations

equilibria, (public) information disclosure in mechanism design, the computer science literature on

learning in repeated auctions, and dynamic implementation.

The definition of a calibrated mechanism is in the spirit of rational expectations equilibria (Radner,

1979; Green, 1977; Kreps, 1977). Indeed, requiring a mechanism to remain incentive compatible given

the information it reveals about the state mirrors the rational-expectations requirement that prices

clear markets given the information they convey. Unlike rational expectations equilibrium, where

the only role of prices is to clear the market, calibrated mechanisms are chosen by a designer who

understands the incentive implications of the mechanism’s information leakage and trades this off

against the value of conditioning the mechanism on the state. Similar to our analysis in Section 5,

some papers in the literature have studied the question of whether rational expectations equilibria

emerge from learning dynamics (see, for instance, Milgrom, 1981; Blume et al., 1982).

Following Milgrom and Weber (1982), a literature has studied whether a designer should publicly

disclose information he knows before a mechanism is played. Ottaviani and Prat (2001) show revealing

a signal affiliated with the buyer’s value is optimal in a single-agent screening problem. When

considering the case of an informed principal, they consider what we call two-stage mechanisms to

bound the monopolist’s profits. Szabadi (2018) and Yamashita (2018) study the optimal release of

2We assume the agent has limit-of-means preferences, so we can pass to the δ→ 1 limit without approximation.
3Theorem 3 holds when the agent’s type is drawn once at the beginning without further assumptions on the distribution.

As we explain in Section 5, we choose the i.i.d. specification for the evolution of the agent’s private information to put
repeated and dynamic mechanisms on a more equal footing.
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public information followed by an optimal mechanism conditional on that disclosure, while Fu et al.

(2012) study this question in the context of a second price auction. In those papers, the restriction to

public disclosure and the independence of the mechanism on information other than the disclosed

one is a constraint on the class of mechanisms the designer can use. Instead, we show this class of

mechanisms is without loss when the designer faces our calibration constraint in the single-agent case,

but it may not be in the multi-agent case. Note, however, that when full or no disclosure are optimal in

the Myersonian benchmark the distinction between private and public disclosure is immaterial. For

that reason, the results on the achievability of the Myersonian benchmark are similar across their and

our work. Daskalakis et al. (2016) lift the restriction to public disclosure and study the Myersonian

benchmark in an auction setting, showing that the complexity of that problem is the same as that of a

multi-product monopolist (cf. Guesnerie and Laffont, 1984).4

Motivated by the prevalence of fixed auction formats with which bidders interact repeatedly, a

literature in computer science studies the properties of bidder learning algorithms and the implications

for the auctioneer (see, for instance, Golrezaei et al., 2019; Nedelec et al., 2019; Kanoria and Nazerzadeh,

2020, and Nedelec et al., 2022 for a survey treatment). A common finding is that learning bidders can

take advantage of “naive” auction formats which are no longer incentive compatible when bidders

learn. Inspired by this literature, we develop a framework which allows us to systematically study the

question of optimal mechanism design in the presence of learning agents.

Our dynamic implementation results relate to the literature that studies whether a mechanism can

be implemented either by linking decisions (Jackson and Sonnenschein, 2007; Ball and Kattwinkel,

2023) or in the patient limit of a repeated interaction (Renou and Tomala, 2015; Margaria and Smolin,

2018; Meng, 2021). Both strands identify cyclical monotonicity as the condition for implementation

(cf. Rochet, 1987). Rahman (2024) shows that cyclical monotonicity is equivalent to the absence of

profitable undetectable deviations.

By focusing on what agents learn from the designer’s information, our paper is distinct from the

literature on mechanism design with interdependent payoffs which focuses on agents’ learning about

others’ types through their actions in the mechanism (Green and Laffont, 1987; Niemeyer, 2022;

Häfner et al., 2025). Moreover, by focusing in the case of a designer with commitment, we are distinct

from the literature on the informed principal (Myerson, 1983; Maskin and Tirole, 1990).

Lastly, our paper contributes to two literatures. First, by studying the informational role of the

mechanism, we contribute to the literature on feedback in auctions, which analyzes how different

feedback rules affect bidders’ information about other agents, and ultimately behavior in first price

auctions (see, for instance, Esponda, 2008; Bergemann and Hörner, 2018; Cesa-Bianchi et al., 2024).

Second, by showing the designer’s problem involves solving information and mechanism design

problems, our paper joins a recent literature that highlights the dual role of the mechanism as an

information structure and an allocation rule (Calzolari and Pavan, 2006; Dworczak, 2020; Doval and

Skreta, 2022).

4There is also a literature that studies a designer’s disclosure of information that must be elicited from the agents (Eső and
Szentes, 2007; Bergemann and Pesendorfer, 2007; Li and Shi, 2017; Krähmer, 2020; Bergemann et al., 2022a,b; Smolin, 2023).
By contrast, the designer knows the realization of the state and also what information the two-stage mechanism discloses to
the agents, so he need not elicit this information.
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2 Calibrated Mechanism Design

In this section, we introduce the static setting and solution concept that captures the impact of agents’

learning from the mechanism on the set of implementable outcomes. We defer to Section 5 the

analysis of the dynamic game whose outcomes our static solution concept captures.

Primitives A designer (he) interacts with N privately informed agents (she) to determine an allocation.

Let Θi denote the set of types of agent i , and Θ≡×N
i=1Θi . Each agent knows her type, but not those

of other agents. The allocation space is given by A ≡ ×N
i=1 Ai .5 Finally, let Ω denote a set of states,

which are known to the designer, but not to the agents. The sets Θi , Ai , and Ω are assumed to be

finite throughout.6 Agent i ’s payoffs are given by ui : Ai ×Θi ×Ω→R. That is, agent i cares about her

dimension of the allocation, her type, and the state, and not about other agents’ allocations or types.

Denote by µ0 the distribution over Ω. For each ω ∈Ω, let f (·|ω) ∈∆(Θ) denote the type distribution.

We assume throughout the types are independently distributed conditional on the state, that is,

f (θ|ω) =
N∏

i=1
fi (θi |ω), (1)

for all θ ∈Θ and ω ∈Ω. Together with the assumption on agents’ payoffs, the assumption on f (·|ω)

allows us to isolate the effect of learning about the state from that of learning about others’ types

(perhaps because others’ types provide additional information about the state).

Mechanisms We model mechanisms as mappings

φ :Θ×Ω× [0,1] →∆(A), (2)

where ε ∈ [0,1] is a uniformly distributed random variable, which we refer to as the randomization

device.

Several comments are in order. First, to understand how a mechanism works, the timing of when

the different random variables is drawn is important. In particular, we assume that both the state

ω and the realization of the randomization device ε are independently drawn at the beginning, but

not observed by the agents. This determines the direct mechanism φ(·,ω,ε) :Θ→∆(A) to which the

agents send type reports, which in turn determines the lottery from which the allocation is drawn.

Thus, the allocation is random in our setting for two reasons: on the one hand, the agents do not know

the realization of (ω,ε), and hence the direct mechanism φ(·,ω,ε) they face. Second, conditional on

(ω,ε), the allocation may be drawn at random. Mathematically, we could have subsumed all sources

of randomness in the allocation into the randomization device. However, as we explain next, the

definition in Equation 2 allows us to distinguish the source of randomness in the allocation that is

informative about the state from that which is not.

5Assuming the allocation space is a product space is without loss of generality. Any restriction on the allocations, such as
all agents must receive the same allocation, can be incorporated as restrictions on the support of the mechanism.

6Because we allow for lotteries over allocations, that the allocation space is finite does not preclude the case of transferable
utility. Indeed, we could let each Ai = Ãi × {−K ,K } for some large enough K > 0.
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Second, it is useful to consider the reason for the randomization device in the definition of a mechanism.

For simplicity, consider the case of the designer facing a single agent. If the agent had repeated access

to the mechanism, the agent would stand to learn the mapping φ(·,ω,ε) :Θ→∆(A) by experimenting

with different reports into the mechanism and observing the resulting allocations.7 Without the

randomization device, the agent would stand to learn a partition of the set of states, where states in

the same cell of the partition induce the same direct mechanism φ(·,ω,ε). By allowing the designer

to rely on the randomization device, we allow him to obfuscate the agent’s learning beyond a simple

partitional structure. Contrast this with the Myersonian benchmark in which without loss of generality

the designer would offer mechanisms that do not rely on such devices, that is, φMy :Θ×Ω→ ∆(A).

Indeed, the Myersonian designer is not concerned with the agents’ learning: without loss of generality,

he does not disclose anything about the state to the agents, so that the question of how to optimally

release information about the state is moot.

Lastly, note that we assume the mechanism asks the agents for type reports. In Appendix D, we show

that the revelation principle holds in the setting of this section: it is without loss of generality to focus

on direct and incentive compatible mechanisms that induce full participation.

Calibrated information structures We now describe how a mechanism induces an information

structure, which we define using the language in Green and Stokey (2022) and Gentzkow and Kamenica

(2017). An information structure is a mapping8

π :Ω× [0,1] → S∗
1 ×·· ·×S∗

N ,

where ε ∈ [0,1] is a uniformly distributed random variable—in fact, it is the same as in the definition

of a mechanism—and

S∗
i =∆(Ai )Θi ,

is the set of agent i ’s interim allocation rules.9 We choose this language for the information structure

to capture the idea that if agent i plays the mechanism repeatedly, she stands to learn how her reports

influence her allocation probabilities, i.e., her interim allocation rule. The interim allocation rule, in

turn, depends on the mechanism and the strategies of others. Below, we require the interim allocation

rule is well-calibrated with the mechanism and others’ strategies:

Definition 1 (Calibrated information structures). We say that the information structure is calibrated to

mechanism φ if for all (ω,ε) ∈Ω× [0,1] such that π(ω,ε) = (s∗1 , . . . , s∗N ) we have that for all i ∈ {1, . . . , N },

7When the agent is infinitely patient as in Section 5, we can exhibit a sequence of strategies under which the agent
(approximately) learns this mapping. See the proof of Lemma C.4 in Appendix D.

8Gentzkow and Kamenica (2017) highlight that the language in Green and Stokey (2022) allows one to describe the
correlation across signal structures. This is exactly what we need to allow the designer to obfuscate the agents’ ability to
learn. It is again instructive to consider the single-agent case. For each type report θ ∈Θ, the mechanism can be seen as an
information structureφ(θ, ·) :Ω×[0,1] →∆(A). Thus, the randomization device allows the designer to control the correlation
across these different signal structures, which in turn disciplines what the agent stands to learn when experimenting with
different reports.

9The terminology is by analogy to reduced form auctions where the map from own types to own probabilities of being
allocated the good are referred to as the interim allocation.
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all θi ∈Θi , and all ai ∈ Ai

s∗i (ai |θi ) = Eθ̃−i∼ f−i (·|ω)

[ ∑
a−i∈A−i

φ(θi , θ̃−i ,ω,ε)(ai , a−i )

]
. (3)

We denote by πφ the information structure calibrated to mechanism φ.

In words, the information structure is calibrated if whenever agent i observes that her interim

allocation rule in the mechanism is s∗i , then s∗i describes the true probabilities with which agent

i gets different allocations ai as a function of her different type reports θ′i in the mechanism. As the

right hand side of Equation 3 shows, these probabilities depend on: (i) the mechanism φ(·,ω,ε), and

(ii) others’ type reports. Implicit in the definition is that other agents are submitting their reports

truthfully. While this is a simplification,10 it turns out to not be an issue because we study incentive

compatible and individually rational mechanisms in the sense we define next.

Information leakage from a mechanism To close our model, we consider how the mechanism and

its induced information structure affect agents’ incentives. The mechanism φ and the calibrated

information structure πφ induce the following game of incomplete information among the agents,

where we use Bayes Nash equilibrium as the solution concept. In this game, nature draws (i) the state

ω from distribution µ0, (ii) ε ∈ [0,1] according to the uniform distribution, and (iii) the type profile

θ from f (·|ω). Then, each agent i observes her type θi and her signal s∗i = πφ,i (ω,ε). Finally, agents

simultaneously decide whether to participate in the mechanism, and conditional on participating

what type report to send. Conditional on an agent choosing not to participate, each agent i gets

outside option ai;.11

Formally, given the mechanismφ and its calibrated information structureπφ, we say that the mechanism

is incentive compatible if for all agents i , types θi ∈ Θi , signals s∗i ∈ S∗
i on the support of πφ,i , the

following holds:

θi ∈ arg max
θ′i∈Θi

E(ω,ε,θ−i )
[
ui (φ(θ′i ,θ−i ,ω,ε),θi ,ω)|(θi , s∗i )

]
, (IC(θi , s∗i ))

where we abuse notation and implicitly (linearly) extend the agent’s payoff function to account for

lotteries over allocations (conditional on (θ−i ,ω,ε)). Furthermore, we say that the mechanism is

individually rational if for all agents i , types θi ∈Θi , and signals s∗i ∈ S∗
i on the support of πφ,i , the

following holds:

E(ω,ε,θ−i )
[
ui (φ(θi ,θ−i ,ω,ε),θi ,ω)−ui (ai;,θi ,ω)|(θi , s∗i )

]≥ 0. (IR(θi , s∗i ))

Importantly, the agents’ incentive and participation constraints must hold for each of their types

and each of their private signals, reflecting the agents have access to the information leaked by the

mechanism before they play in it. Note, however, the mechanism need not elicit the agents’ observed

10When we consider mechanisms with arbitrary message spaces in Appendix D.1, the requirement of calibration is relative
to both the mechanism and agents’ equilibrium participation and reporting strategies.

11Thus, we are assuming that a; = (ai;)i∈N is an element of A. In Appendix D.1, we consider more general participation
decisions, allowing the mechanism to condition on the set of participating agents, but even with this extra generality, it is
still without loss to restrict attention to mechanisms that induce full participation.
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signals, as the mechanism “knows” each agent’s signal realization.

Calibrated Mechanism Design In the rest of the paper, we study the problem of calibrated mechanism

design in which the designer selects a mechanism φ that satisfies Equations IC(θi , s∗i ) and IR(θi , s∗i )

for all (i ,θi , s∗i ), when the signals are drawn according to the calibrated information structure πφ.

Definition 2 (Calibrated Mechanism Design). Let w : A×Θ×Ω→R denote the designer’s payoff and

let Mcal denote the set of mechanisms that are incentive compatible and individually rational when

agents have access to the calibrated information structure. The calibrated mechanism design problem is

as follows:

max
φ∈Mcal

E(ω,ε,θ)
[
w(φ(θ,ω,ε),θ,ω)

]
. (OPTcal)

We refer to elements of Mcal as calibrated mechanisms and the solution to OPTcal as the optimal

calibrated mechanism.

Three comments are in order:

First, calibration imposes a constraint on the designer vis-à-vis standard mechanism design. After all,

the incentive and participation constraints faced by the designer are endogenous to the mechanism.

The more the designer’s mechanism depends on the state, the more informative the calibrated

information structure is, and the more incentive constraints the designer faces. Only when each

agent’s interim allocation rule is constant in ω does the mechanism not leak information and the

incentive and participation constraints reduce to the standard ones.

Second, in the single-agent setting, the calibration constraint admits two complementary interpretations.

Throughout the paper, we emphasize the learning-by-experimentation interpretation: the calibrated

information structure represents what the agent can ultimately infer by repeatedly interacting with

the mechanism. Accordingly, the designer should ensure incentive compatibility with respect to the

full information the agent eventually obtains. At the same time, calibration can also be interpreted

as a transparency requirement. Indeed, upon observing signal s∗ :Θ→ ∆(A), the agent knows the

consequences of her choices in the mechanism, even if she does not know the state.12

With multiple agents, these interpretations differ. The natural extension of the transparency requirement

is that agents learn the mapping from profiles of type reports to lotteries over profiles of allocations

before playing the mechanism. By contrast, the calibrated information structure reveals to each

agent her interim allocation rule, that is, the mappings from her own reports to lotteries over her own

allocations. As we discuss in the next section, the gap between these two interpretations is the gap

between the designer publicly or privately disclosing information about the state to the agents.

Lastly, the definition of calibration assumes agents only learn about the state through their allocations

12It is common for online platforms to inform agents of the consequences of their choices: marketplaces inform sellers of
their probability of sale at different posted prices, and transportation providers inform riders of their probability of receiving
a seat upgrade at different bid levels. Even insurance companies provide consumers with projected expenditures under
different plan choices.
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in the mechanism, and not their payoffs.13,14 This assumption allows us to focus on the information

that the mechanism leaks regardless of payoff assumptions. This allows us to avoid situations in which

the mechanism does not condition the allocation on the state, but the agents learn because they have

different payoffs from the same allocation in different states; or the mechanism conditions on the

state, but this information is not payoff relevant to (some types of) the agent. Our microfoundation in

Section 5.1 in fact deals with this last wrinkle: We show that even if the agent extracts less information

than that in the calibrated information structure, she learns enough that her payoff is as if she had

access to the calibrated information structure.

We conclude this section by illustrating how our static solution concept captures the dynamics we

alluded to in the introductory example:

Example 1 (Selling a good under demand uncertainty). Consider again the example in the introduction,

in which a buyer with binary values v ∈ {1/2,1} faces a seller who knows whether demand is high (ω= H )

or low (ω= L). The left panel of Table 3 describes the probabilities of trade and payments of the optimal

(Myersonian) mechanism. In the introduction, we discussed this mechanism fails to extract full surplus

in the long run as the buyer would quit the mechanism after seeing her allocation is (1,3/2). We now

describe this in the language of calibration.

The right panel of Table 3 describes the information structure induced by the surplus extraction

mechanism. Because in this mechanism the buyer’s allocation does not depend on her values, we

describe signals as allocations. The calibrated information structure is fully informative: when the state

is L, the buyer sees signal (1,0) with probability 1, and when the state is H, she sees signal (1,3/2) with

probability 1.

v = 1/2 v = 1
ω= L (1,0) (1,0)
ω= H (1,3/2) (1,3/2)

(1,0) (1,3/2)
ω= L 1 0
ω= H 0 1

Table 3: Trade probabilities and payments in optimal Myersonian mechanism (left); calibrated
information structure (right). We describe signals as allocations, because the mechanism does not

screen the buyer’s values.

When the buyer has access to the calibrated information structure before playing the mechanism,

the surplus extraction mechanism does not satisfy the buyer’s participation constraints, which must

hold for each buyer value and each signal she observes. In particular, when the buyer sees signal

(1,3/2), she knows her payoff in the mechanism is negative and quits. Thus, the calibration constraint

prevents the seller from extracting the buyer’s surplus. In this case, the restriction induced by calibration

endogenously provides the buyer with withdrawal rights, which, as Haberman and Jagadeesan (2025)

show, prevent sellers from employing Crémer-McLean-style schemes.15

13Indeed, in the analysis of the dynamic interaction in Section 5, we assume the agent only observes her type and her
allocation, but not her payoffs.

14This assumption is routinely made in dynamic settings. See Pavan et al. (2014) and Cesa-Bianchi et al. (2024) for two
examples in the context of agents’ behavior within mechanisms.

15In Section 3, we provide an example in which when agents have access to the calibrated information structure the
optimal Myersonian mechanism fails to be incentive compatible.
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Consider now the mechanism in the left panel of Table 4, which corresponds to posting a price of 1/2

when the state is L and a price of 1 when the state is H. The right panel of Table 4 depicts the calibrated

information structure. Note that when the state is H, the information structure sends with probability 1

the interim allocation rule {(1/2,(0,0)), (1, (1,1))}, representing that if the buyer reports her value is 1/2

she gets nothing and pays nothing, whereas if her report is 1, she obtains the good at a price of 1.

v = 1/2 v = 1
ω= L (1,1/2) (1,1/2)
ω= H (0,0) (1,1)

{(1,1/2)} {(1/2,(0,0)),(1,(1,1))}
ω= L 1 0
ω= H 0 1

Table 4: Trade probabilities and payments in optimal calibrated mechanism (left); calibrated
information structure (right)

Note that the mechanism is incentive compatible and individually rational when the buyer has access

to the calibrated information structure. As the results that follow allow us to establish, this is indeed the

optimal calibrated mechanism.

Private value environments A natural case to consider is that when agents’ payoffs are state

independent, that is, for each agent i , the agent’s utility function can be written as ui (ai ,θi ). Under

private values, the state describes either statistical information about the agents’ types as in Example 1,

or a payoff-relevant variable for the designer.

Theorem 1 collects our main characterization result for this case. To state it, let φfull denote the

following mechanism: For each (ω,ε) ∈ Ω× [0,1], φfull(·,ω,ε) : Θ→ ∆(A) is the designer optimal

incentive compatible and individually rational direct mechanism when it is common knowledge that

the state is ω.

Theorem 1 (Private values). Under private values, the designer’s payoff under the optimal calibrated

mechanism is the same payoff he would obtain by choosing φfull.

That is, in private values environments, the calibration constraint pushes the designer toward full

transparency. In particular, in settings with transferable utility in which the designer possesses

statistical information about the agents’ types, Theorem 1 implies the designer cannot engage

in Crémer-McLean style schemes under calibration, and hence extract full surplus. Whereas the

implication of calibrated mechanism design in private values environments is powerful, the result is

fairly intuitive: The designer benefits from making the mechanism opaque by pooling states inasmuch

as it weakens the incentive or participation constraints of the agents. Under private values, however,

agents’ incentive constraints depend on the state only through the mechanism, and calibration

imposes constraints on the mechanism state-by-state.16

16A tempting comparison is Maskin and Tirole (1990, Prop. 11): with private values and quasilinear utilities, the informed
principal’s unique equilibrium payoff coincides with the state-by-state optimum. The authors show this conclusion depends
on quasilinearity: absent this assumption, an informed principal can benefit from concealing his information in the case of
private values. Instead, Theorem 1 relies neither on quasilinearity nor on the designer’s lack of commitment.
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3 Two-stage mechanisms

In this section, we introduce an alternative representation of calibrated mechanisms that we use

throughout our illustrations. We introduce it first for the case of a single agent and then for multiple

agents.

Single-agent case and two-stage mechanisms We find it instructive to first consider the case N = 1,

and for simplicity drop the subscripts 1 from the notation. Consider a mechanism φ and its calibrated

information structure πφ. When the agent of type θ observes signal s∗, two things happen: On the one

hand, the agent updates her prior, µ0(ω|θ),17 to some belief µ(θ, s∗) ∈∆(Ω). On the other hand, the

agent learns that she faces allocation rule s∗ in the mechanism. Thus, her payoff in the mechanism

when her type is θ, observes signal s∗, and reports θ′ can be written as follows:

E(ω,ε)
[
u(φ(θ′,ω,ε),θ,ω)|(θ, s∗)

]= ∑
a∈A

s∗(a|θ′)
( ∑
ω∈Ω

µ(ω|θ, s∗)u(a,θ,ω)

)
. (4)

In other words, the information structure πφ provides the agent with all the necessary information

to evaluate her payoffs in the mechanism: her belief about the state and her allocation rule. This

allocation rule s∗ :Θ→∆(A) satisfies two properties. First, because under calibration s∗ is the true

interim allocation rule faced by the agent, she learns no further information about the state beyond

that contained in µ(θ, s∗). Second, Equations IC(θi , s∗i ) and IR(θi , s∗i ) imply the allocation rule is

incentive compatible and individually rational when the agent holds belief µ(θ, s∗).

The above discussion suggests an alternative representation of a calibrated mechanism, which we

dub a two-stage mechanism and define as follows:

Definition 3 (Two-stage mechanisms). A two-stage mechanism is a mapping ψ :Θ×Ω→∆(A×∆(Ω))

such that a Bayes plausible Blackwell experiment β :Ω→∆(∆(Ω)) and an allocation ruleα :Θ×∆(Ω) →
∆(A) exist such that for all (θ,ω) ∈Θ×Ω and all measurable subsets ∆̃⊂∆(Ω),18

ψ({a}× ∆̃|θ,ω) =
∫
∆̃
α(a|θ,µ)β(dµ|ω).

We say the two-stage mechanism is incentive compatible and individually rational if on the support

of µ0 ⊗β, the allocation rule α(·|·,µ) : Θ→ ∆(A) is incentive compatible and individually rational

conditional on the agent observing µ.

In a two-stage mechanism, the designer first discloses information about ω in the form of a belief

µ about Ω, and conditional on that belief—but not the state—offers a direct mechanism α(·|·,µ) :

Θ→ ∆(A). Two aspects of two-stage mechanisms are worth highlighting: First, the disclosure is

type-independent. The designer discloses information to the agent without first communicating

17Formally,

µ0(ω|θ) = µ0(ω) f (θ|ω)∑
ω′∈Ωµ0(ω′) f (θ|ω′) .

18We refer the reader to the appendix for our mathematical conventions, in particular, the definition of the corresponding
σ-algebras.
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with the agent. Second, because the direct mechanism α(·|·,µ) does not depend on ω, observing the

allocation reveals no further information about the state.

Lastly, when we say the experiment β is Bayes plausible, we mean that the distribution of posteriors

induced by β has mean µ0, and hence we can interpret µ as the designer’s belief about the state

conditional on observing µ.19 Whereas the designer and the agent do not necessarily have the same

beliefs about the state, the agent’s beliefs about the state conditional on observing µ obtain from a

known transformation from those of the designer (Alonso and Câmara, 2016; Laclau and Renou, 2017).

Thus, ensuring Bayes plausibility with respect to µ0 suffices.

Theorem 2 shows that (incentive compatible and individually rational) calibrated mechanisms and

two-stage mechanisms implement the same distributions over outcomes ϑ ∈∆(A×Θ×Ω):

Theorem 2 (Two-stage and calibrated mechanisms). Suppose N = 1. An outcome distribution ϑ ∈
∆ (A×Θ×Ω) is implementable by an incentive compatible and individually rational calibrated mechanism

if and only if it is implementable by an incentive compatible and individually rational two-stage

mechanism. That is, if and only if

ϑ(a,θ,ω) =µ0(ω) f (θ|ω)
∫
∆(Ω)

α(a|θ,µ)β(dµ|ω), (5)

for some Bayes plausible β : Ω → ∆(∆(Ω)) and incentive compatible and individually rational α :

Θ×∆(Ω) →∆(A).

The proof of this and all results in this section can be found in Appendix B.

In the single-agent case, Theorem 2 shows that the calibrated mechanism design problem is equivalent

to a standard mechanism design problem in which we restrict the designer to using a specific class of

mechanisms; namely, incentive compatible and individually rational two-stage mechanisms. As we

explained above, a mechanism φ and its calibrated information structure πφ can be seen as actually

inducing a joint distribution over A×Θ×Ω×∆(Ω). Theorem 2 implies this joint distribution admits

two conditional independence properties. First, the allocation is conditionally independent of the

state, conditional on the agent’s type and the induced belief.20 This follows from the signals s∗ carrying

no further information about the state than that what is contained in the agent’s belief. Second, the

designer disclosed belief is conditionally independent of the agent’s type conditional on the state. In

the static setting of Section 2, this is because the calibrated information structure discloses information

to the agent uniformly across her types. In the dynamic setting of Section 5.1, this type-independent

disclosure arises endogenously because the agent’s experimentation opportunities are independent

of her type.

Two-stage mechanisms solve calibrated mechanism design Theorem 2 is of practical import as

it provides a recipe of sorts for characterizing the designer’s optimal calibrated mechanism (see the

applications in Section 4). For each µ ∈∆(Ω), the designer chooses a mechanism α(·|·,µ) :Θ→∆(A)

that maximizes his expected payoff when the designer believes µ is the distribution of states, and

19Formally, define the belief distribution induced by β, τβ =µ0 ⊗β. The claim is that Eτβ
[
µ
]=µ0.

20This is a consequence of Bayes rule: beliefs are a sufficient statistic for ω. Hence, conditional on (θ,µ), the allocation
rule carries no more information about the state.
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subject to the agent’s incentive compatibility and individually rational constraints conditional on the

designer’s belief being µ. Proceeding in this way, we obtain the designer’s value function W :∆(Ω) →R.

The optimal Blackwell experiment obtains from the concavification of W . We illustrate this procedure

with two examples:

Example 1 (continued). Consider again the seller-buyer example, in which the buyer is privately

informed about her value for the good and the seller knows the demand state. By Theorem 2, we can

find the seller’s optimal calibrated mechanism as follows. First, equate µ with the probability that the

state is H. For each µ ∈ [0,1], consider the following problem:

W (µ) ≡ max
(q,t ):V →[0,1]×R

µ

(
2

3
t (1)+ 1

3
t (1/2)

)
+ (1−µ)

(
1

3
t (1)+ 2

3
t (1/2)

)
(6)

s.t.

{
(∀v ∈ {1/2,1}) vq(v)− t (v) ≥ 0

(∀v, v ′ ∈ {1/2,1}, v ̸= v ′) vq(v)− t (v) ≥ vq(v ′)− t (v ′)
.

That is, the seller chooses an incentive compatible and individually rational selling mechanism that

maximizes his expected revenue when his belief is µ. Because ω is not payoff relevant to the buyer—it is

just statistical information about the buyer’s valuation—and the mechanism does not depend on state,

the buyer’s belief about ω does not enter her incentive constraints.

The solution to the seller’s problem in Equation 6 is simple: the seller posts a price of 1/2 when µ≤ 1/2

and a price of 1 when µ> 1/2. Hence, the seller’s value function is given by

W (µ) = max

{
1

2
,µ

2

3
+ (1−µ)

1

3

}
,

and is illustrated by the solid line in blue on Figure 1. In words, the seller either sells the good at a price

of 1/2 and the buyer buys with probability 1, or he sells the good at a price of 1 and the buyer buys

whenever her value is 1, which happens with the probability in the second argument of the max.

µ0

0.5

µ

W
W

cav W

Figure 1: Seller’s payoff in Example 1.

The optimal calibrated mechanism can be read from the concavification of W , which is the dashed, red

line in Figure 1: The seller first reveals the state to the agent, and offers a price of 1/2 when ω= L and a

price of 1 when ω= H.
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Example 1 illustrates a more general principle that provides additional intuition for Theorem 1. In

the private values case and when N = 1, the designer’s value function W : ∆(Ω) → R is convex. As

Equation 6 illustrates, the designer maximizes a linear function in beliefs subject to constraints that

do not depend on the induced belief. Convexity of W implies full disclosure is (weakly) optimal, and

Theorem 1 follows.

Example 2 (Horizontal differentiation). Consider a seller who owns a good of unknown type, ω ∈ {L,R},

and a buyer whose private information is indexed byΘ= {θ1,θ2,θ3}. Assume the good’s type (the state)

and the buyer’s types are independent, and equally likely. Table 5 describes the buyer’s value for the

seller’s good as a function of hers and the good’s type, v(θ,ω). When the good is ω= L, the buyer of type

θ3 has the highest value for the good, whereas when the good isω= R, the buyer of type θ3 has the lowest

value for the good.

θ1 θ2 θ3

ω= L 1 2 3
ω= R 2 2 1

Table 5: Buyer’s values.

Suppose the buyer’s utility is quasilinear, that is, u(q, t ,θ,ω) = qv(θ,ω)− t , and the seller wishes to

maximize his revenue. Furthermore, assume the buyer’s outside option is no trade.

Consider first the optimal mechanism the designer would offer absent the calibration constraint,

depicted in the top panel of Table 6. This mechanism asks types θ2 and θ3 for a payment of 2 and

allocates the good with probability 1, regardless of its kind. Instead, it asks the buyer of θ1 to pay 1 in

exchange for getting the good only when it is of her favorite kind (ω= R).

θ1 θ2 θ3

ω= L (0,1) (1,2) (1,2)
ω= R (1,1) (1,2) (1,2)

{(θ1, (0,1)), (θ2, (1,2)), (θ3, (1,2))} {(θ1, (1,1)), (θ2, (1,2)), (θ3, (1,2))}
ω= L 1 0
ω= R 0 1

Table 6: Trade probabilities and transfers in the optimal mechanism (top); calibrated information
structure (bottom).

The bottom panel of Table 6 depicts the information structure calibrated to the optimal mechanism. It

sends two signals: when the good is L, the buyer can choose to either not get the good and pay 1, or get

the good and pay 2. Instead, when the good is R, the buyer is choosing between paying 1 or 2 to obtain

the good with probability 1.

Under the calibrated information structure, the optimal mechanism is neither incentive compatible nor

individually rational. When the good is R, the buyer would prefer to choose (1,1) regardless of her type.

Instead, when the good is L, the buyer of θ1 would quit the mechanism instead of paying 1 and getting

nothing.
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To characterize the optimal calibrated mechanism, we rely again on two-stage mechanisms. Equate µ

with the probability that the good is R. Note that because states and types are independent, if the seller

assigns probability µ to the state being R, so does the buyer (and vice versa). For each µ ∈ [0,1], the seller

solves the following problem

W (µ) ≡ max
(q,t ):Θ→[0,1]×R

∑
θ∈Θ

1

3
t (θ) (7)

s.t.

{
(∀θ ∈ {θ1,θ2,θ3}) q(θ)Eµv(θ, ·)− t (θ) ≥ 0

(∀θ,θ′ ∈ {θ1,θ2,θ3},θ′ ̸= θ) q(θ)Eµv(θ, ·)− t (θ) ≥ q(θ′)Eµv(θ, ·)− t (θ′)
.

In this case, the seller’s objective function does not depend on the induced belief µ as types and states are

independent. Instead, the buyer’s incentive and individual rationality constraints do depend on µ as

the state is payoff relevant. The solution to the problem in Equation 7 is a posted price, whose value

depends on µ. For instance, when µ ∈ {0,1}, the optimal price is 2 and the seller’s revenue is 4/3. Instead,

when µ= 2/3, the optimal price is 5/3 and profits are maximal and equal to 5/3. Indeed, when µ= 2/3,

the heterogeneity across buyer types is minimized (and hence, their rents), and by setting p = 5/3 all

buyer types buy. The blue line in Figure 2 depicts the seller’s expected profit as a function of his belief µ.

µ0 µ

W (µ)
W (µ)

cav W (µ)

Figure 2: Seller’s profit in the two-stage mechanism

The optimal calibrated mechanism can be read from the concavification of W at µ0 = 1/2, depicted by

the dashed red line in Figure 2. The seller provides the buyer with partial information about the good:

He either reveals the good is L and sells the good at a price of 2, or he obfuscates the good—inducing a

belief of 2/3—and sets a price of 5/3.

Another consequence of Theorem 2 is that without loss of generality, we can focus on calibrated

mechanisms with finite calibrated information structures:

Corollary 1 (Support of calibrated information structures). It is without loss of generality to restrict

attention to two-stage mechanisms that induce at most |Ω| beliefs.

In other words, it is without loss of generality to focus on calibrated mechanisms that induce at most

|Ω| allocation rules.
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Multiple agents and generalized two-stage mechanisms In the case of multiple agents, we can

also interpret a calibrated mechanism as conveying to each agent i both the information she should

have about the state upon seeing signal s∗i , µi (θi , s∗i ), and her interim allocation rule, s∗i :Θi →∆(Ai ).

However, two differences arise relative to the single-agent case: First, each agent i receives her

information privately from that of other agents. Second, even if the agents put together the information

they receive, this is not enough to learn the ex-post allocation rule, that is, the map from type profiles

to allocations. After all, each agent i observes her interim allocation rule alone. These differences

are natural when we think of calibrated mechanisms as capturing the information agents stand to

learn from experimenting with the mechanism: There is no reason all agents will learn the same

information, and from observing her own allocations, and not those of others, an agent can only learn

about her interim allocation rule, not the ex-post one.

These observations together imply that to describe the analogue of a two-stage mechanism in multi-

agent settings we need to (i) allow for agent-by-agent information disclosure, and (ii) keep track that

the interim allocation rules are consistent with the same ex-post allocation rule. These considerations

motivate the following generalization of a two-stage mechanism:

Definition 4 (Generalized two-stage mechanism). A generalized two-stage mechanism is a mapping

ψ :Θ×Ω→∆(∆(Ω)N × A) for which a tuple of mappings

β :Ω→∆(∆(Ω)N ), αi :Θi ×∆(Ω) →∆(Ai ), α :Θ×Ω×∆(Ω)N →∆(A),

exist such that:

1. For all (θ,ω) ∈Θ×Ω, and all measurable subsets (∆̃i )N
i=1 ⊂∆(Ω)N , we have

ψ(×N
i=1∆̃i × {a}|θ,ω) =

∫
×N

i=1∆̃i

α(a|θ,ω,µ1, . . . ,µN )β(d(µ1, . . . ,µN )|ω)

2. The Blackwell experiment β is Bayes plausible,

3. For all i ∈ {1, . . . , N }, the interim allocation rule αi satisfies that for all measurable subsets ∆̃ of

∆(Ω) and all (ai ,θi ,ω) ∈ Ai ×Θi ×Ω∫
∆̃×∆(Ω)N−1

{
αi (ai |θi ,µi )−E f−i (·|ω)

[ ∑
a−i∈A−i

α(ai , a−i |θi ,θ−i ,ω,µi ,µ−i )

]}
β(d(µi ,µ−i )|ω) = 0.

We say the generalized two-stage mechanism is incentive compatible and individually rational if for all

i ∈ {1, . . . , N }, on the support of µ0 ⊗β, αi (·|·,µi ) is incentive compatible and individually rational for

agent i when she learns µi .

As anticipated, generalized two-stage mechanisms differ from two-stage mechanisms in three ways

when N > 1. First, because disclosures are private, the experiment β now outputs a profile of beliefs,

one for each agent. As shown in Arieli et al. (2024), β is Bayes plausible if and only if for each agent

i , the marginal Blackwell experiment βi is Bayes plausible. Second, while the individual interim

allocation rule αi only depends on the disclosed belief to agent i , µi , and not the state, the ex-post
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allocation rule α may depend on the state, even conditional on the belief profile (µ1, . . . ,µN ). The

reason is that this belief profile is no longer a sufficient statistic for the ex-post allocation rule as each

agent i only observes their interim allocation. Third and relatedly, we need to keep track of both the

interim allocation rules (αi )N
i=1 and the ex-post allocation rule α to check that the interim allocation

rules are consistent with the same mechanism. An interesting question for future work would be to

characterize which interim allocation rules (αi )N
i=1 are consistent with some ex-post allocation rule α,

so that one could focus on the interim allocation rules alone.

As we show in Proposition 1, a calibrated mechanism induces a generalized two-stage mechanism:

Proposition 1. If outcome distribution ϑ ∈∆ (A×Θ×Ω) is implementable by an incentive compatible

and individually rational calibrated mechanism, then it is implementable by an incentive compatible

and individually rational generalized two-stage mechanism.

In contrast to the single-agent case, not every outcome distribution implemented by a generalized

two-stage mechanism can be implemented by a calibrated mechanism. On the one hand, no agent’s

beliefs are a sufficient statistic for the information the mechanism leaks about the state, so that

the allocation rule ᾱ may still leak information about the state or others’ beliefs, which in turn leak

information about the state. On the other hand, because in a calibrated mechanism each agent learns

her interim allocation rule conditional on (ω,ε), the incentive and participation constraints associated

to a generalized two-stage mechanism are weaker than those implied by a calibrated mechanism

whenever multiple interim allocation rules underlie the same belief: Even if the average interim

allocation rule αi is incentive compatible and individually rational, each of the interim allocation

rules underlying that average need not be.

4 Applications

In this section, we study optimal calibrated mechanism design in canonical mechanism design settings

with quasilinear utilities. We first consider the case of a single agent, with single-dimensional types

and allocations, and supermodular payoffs. In Section 4.1, we show that if the order of types is state

independent, then optimal two-stage mechanisms fully reveal the state, whereas this conclusion can

be reversed when the order of types is state-dependent. In Section 4.2, we compare optimal calibrated

mechanism design against the Myersonian benchmark. Lastly, we analyze a multi-agent application

in Section 4.3.

4.1 Calibrated Screening

We consider the following version of the model in Section 2. Suppose N = 1 and letΘ= [θ,θ] denote

the set of types. Assume θ is distributed according to a full support distribution F with density f .

Hence, throughout, we consider the case in which the agent’s type is independent of ω. Denote the set

of allocations by A = [0, q̄]×R, where q ∈ [0, q̄] is the (physical) allocation and t ∈R is a payment from

the agent to the designer.21

21In contrast to the model of Section 2, we are assuming the set of types and allocations to be intervals in the real line. The
results in the previous sections go through with richer type and allocation spaces, at the cost of more notation.
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The agent’s and the designer’s payoffs are given by u(q,θ,ω)− t and w(q,θ,ω)+ t , respectively. Assume

that if the agent does not participate, then the outside option is a; = (0,0), and that this yields a payoff

of 0 to both the designer and the agent. Throughout, we assume that for each ω ∈Ω, the family of

functions
{
θ 7→ u(q,θ,ω) : q ∈ [0, q̄]

}
is equi-Lipschitz onΘ: a positive constant Lω exists such that for

all θ,θ′ ∈Θ and q ∈ [0, q̄], |u(q,θ,ω)−u(q,θ′,ω)| ≤ Lω|θ−θ′|.22 Furthermore, the analysis that follows

restricts attention to mechanisms that do not randomize on the allocation (beyond the inherent

randomness ofΩ× [0,1]). Remark 1 at the end of this section discusses settings in which this is not a

restriction and how to generalize the observations herein when random allocations are allowed.

Our goal is to characterize the designer optimal calibrated mechanism and how its properties depend

on how the state affects the order of types.

State-independent type ranking We consider first the case in which the order of types is independent

of the state. Formally, assume that for all ω ∈Ω, the function u(·,ω) is supermodular in (q,θ). That

is, in all states, the agent with higher value of θ values q more. These assumptions are satisfied, for

instance, for u(q,θ,ω) = θωq or u(q,θ,ω) = (θ+ω)q .

By Theorem 2, we can characterize the optimal calibrated mechanism via two-stage mechanisms. To

do so, we solve the problem “backward”: For each µ ∈∆(Ω) the designer may induce about the state,

the designer chooses an optimal direct mechanism (qµ, tµ) :Θ→ A. This determines the designer’s

value function W :∆(Ω) →R. We obtain the designer’s optimal Blackwell experiment by studying the

properties of W .

Given belief µ, define the agent’s and the designer’s (expected) payoff at (q, t ,θ) as follows:

u(q,θ|µ) ≡ ∑
ω∈Ω

µ(ω)u(q,θ,ω), w(q,θ|µ) ≡ ∑
ω∈Ω

µ(ω)w(q,θ,ω).

Thus, conditional on inducing belief µ, the designer’s problem can be written as follows:

W (µ) ≡ max
(q,t ):Θ→A

∫
Θ

[
w(q(θ),θ,µ)+ t (θ)

]
F (dθ) (8)

s.t.

{
(∀θ ∈Θ) u(q(θ),θ|µ)− t (θ) ≥ 0

(∀θ,θ′ ∈Θ) u(q(θ),θ|µ)− t (θ) ≥ u(q(θ′),θ|µ)− t (θ′)
.

Our assumptions imply that u(·|µ) is supermodular in (q,θ). It follows that the designer can only

choose among those q :Θ→ [0, q̄] that are (weakly) increasing in θ. Let Q↑ denote the set of all such

q(·). Furthermore, at the optimum, the participation constraint of θ = θ binds.

Define the virtual surplus at (q,θ,ω) as follows:

J ((q,θ,ω);F ) = w(q,θ,ω)+u(q,θ,ω)−u2(q,θ,ω)
1−F (θ)

f (θ)
,

where u2 is the derivative of u against its second coordinate; the equi-Lipschitz assumption implies it

exists almost everywhere. Then, conditional on inducing belief µ, the designer’s payoff can be written

22This assumption ensures the Lipschitz continuity of the agent’s indirect utility function when the allocation space is
infinite. BecauseΩ is finite, requiring the condition to hold state-by-state suffices.
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as follows:

W (µ) = max
q∈Q↑

∫
Θ
Eµ

[
J ((q(θ),θ,ω);F )

]
F (dθ). (9)

Note the objective is linear in µ and the constraint set is independent of µ. We conclude that W is

convex, as it is the maximum of linear functionals in µ. It follows that full disclosure is an optimal

experiment for the designer. Equivalently, an optimal calibrated mechanism exists in which the

designer chooses the mechanism φD
full, where for all ω ∈Ω, φD

full(·,ω, ·) :Θ× [0,1] → A is the optimal

deterministic mechanism when it is common knowledge that the state is ω.

Proposition 2 summarizes the above discussion:

Proposition 2 (State-Independent Type Ranking). In a single-dimensional screening problem with

state-independent type ranking, the designer can do no better than choosing φD
full among deterministic

mechanisms.

By Proposition 2, in screening problems with state-independent ranking of types across states, the

calibration constraint makes any pooling of mechanisms across states unprofitable.23 Remarkably,

this result holds for any designer objective, such as profit, revenue, or efficiency. It also requires no

regularity assumptions on the type distribution, as we do not obtain the result by looking at the relaxed

problem. Instead, our argument relies on the restriction to deterministic mechanisms (conditional on

the induced belief), which in turn delivers that the set of implementable allocations does not depend

on the induced belief. Remark 1 discusses conditions under which (i) the restriction to deterministic

mechanisms is without loss of optimality, and (ii) the set of implementable allocations does not

depend on the induced belief, even when randomized mechanisms are allowed. Readers interested in

the case of state-dependent ranking can skip this remark with little loss of continuity.

Remark 1 (Proposition 2 without deterministic mechanisms). Under our assumptions, deterministic

mechanisms are without loss of optimality if the agent’s payoff is linear in q and the designer’s

payoff is concave in q. (See Section 4.2 for yet another condition.) However, the driving force behind

Proposition 2 is that the designer’s constraint set does not depend on the induced belief. The state-by-

state supermodularity assumption and the restriction to deterministic mechanisms is one way to ensure

this is the case. We now discuss two other cases in which the designer’s constraint set does not depend on

the induced belief and thus Proposition 2 holds for the optimal (not necessarily deterministic) calibrated

mechanism.

First, suppose the agent’s payoff is linear in q, so that u(q,θ,ω) = qv(θ,ω), where v(·,ω) is increasing for

all ω. Then, the set of implementable lotteries over q when the belief is µ is given by:

Q↑,random = {
ξ :Θ→∆([0, q̄]) : Eξ(θ)

[
q
]

is increasing in θ
}

.

In this case, we obtain that the designer cannot do any better than choosing φfull, which is the

23The calibrated mechanism which state-by-state implements the optimal direct mechanism under common knowledge
of the state may reveal less than full information about the state, e.g., because at ω and ω′ the same direct mechanism
is optimal. The point is that pooling those states does not weaken the incentive constraints of the agent, so it is as if the
designer were forced to reveal the state.
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mechanism that implements in each state ω the optimal mechanism under common knowledge that

the state is ω. This relates to the results in Szabadi (2018) and Yamashita (2018), who study the optimal

mechanism design preceded by public information disclosure. Both papers consider settings in which

the agent’s payoff is linear in q and obtain that full disclosure is optimal when the ranking of types is

independent of the state.24

Second, suppose the agent’s payoff has the form

u(q,θ,ω) = b(θ)c(ω)v(q)+k1(q,ω)+k2(θ,ω),

where b is increasing in θ and c(·) does not change sign on Ω. Under this assumption, u(q,θ|µ) satisfies

monotonic expectational differences for all µ ∈∆(Ω) (see, e.g., Kartik et al., 2024). Consequently, one can

define a linear order ⪰ over ∆([0, q̄]) as follows: ξ⪰ ξ′ if u(ξ,θ|µ)−u(ξ′,θ|µ) is increasing in θ, where

u(ξ,θ|µ) is the linear extension of u(·,θ|µ) to ∆([0, q̄]). This linear order implies the ranking of types

is state independent. Indeed, the analog of Q↑,random is the set of all ξ :Θ→∆([0, q̄]) such that θ ≥ θ′

implies ξ(θ) ⪰ ξ(θ′), which is again independent of the induced belief.

State-dependent type ranking Example 2 illustrates that when the ranking of types is not uniform

across states, full transparency may not be optimal.25 We now provide a more systematic analysis of

this phenomenon, using the previous results. To provide the starkest contrast with Proposition 2, we

consider a setting that shares a key feature of Example 2: we can partition ∆(Ω) into two regions such

that within each region the ranking of types—as determined by u(q,θ|µ)—is the same, but it differs

across regions.

Concretely, suppose thatΩ= {ω1,ω2}. Furthermore, assume

u(q,θ,ω) =
{

qθ if ω=ω2

q(c −bθ) otherwise,
,

where c ∈R, and b > 0. Identify beliefs with the probability that the state is ω2 and define

µ̂= b

1+b
.

For µ< µ̂, we have that u(q,θ|µ) is decreasing in θ, whereas if µ> µ̂, then u(q,θ|µ) is increasing in θ.

Consider now the designer’s optimal payoff W :∆(Ω) →R as a function of the different beliefs he may

induce. When µ≥ µ̂, the designer’s payoff can be obtained by solving the program in Equation 9 as

before. Instead, when µ< µ̂, the designer’s payoff can be obtained by solving a problem analogous to

Equation 9, but where the space of implementable allocations is the set of decreasing q , Q↓, and the

participation constraint of θ binds. It follows that W is convex on [0, µ̂) and (µ̂,1]. Thus, the support of

designer’s optimal experiment is included in {0, µ̂,1}.

24Restricting attention to deterministic mechanisms, Ottaviani and Prat (2001) obtain the optimality of full disclosure
without such a linearity assumption. Their model, however, is different from ours and that of the aforementioned papers: the
agent’s type is not payoff relevant and the agent’s type and the state are affiliated. Thus, while related in spirit, Proposition 2
is distinct from their result.

25See Szabadi (2018) for a similar observation.
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Proposition 3 (State-dependent type ranking). Suppose the agent’s payoff satisfies the assumptions

above. If (1− µ̂)W (0)+ µ̂W (1) ≥W (µ̂), full transparency is optimal. Otherwise, full transparency is not

optimal: if µ0 < µ̂, it is optimal to split µ0 to 0 and µ̂; if µ0 > µ̂, it is optimal to split µ0 to µ̂ and 1. In

particular, if W (µ̂) > max{W (0),W (1)}, then full transparency is not optimal.

By Proposition 3, whether full transparency is optimal depends on the designer and agent’s payoffs

and the type distribution, but only through their impact on the value the function W takes at points

{0, µ̂,1}. At µ̂, the agent earns no rents—as u(·|µ̂) is constant across types—which pushes against full

transparency. At the same time, efficiency may dictate the designer to condition the allocation rule

on the state, which favors information disclosure. The piecewise convexity of W implies that if W (µ̂)

dominates W at the extreme beliefs, the rent extraction motive dominates and the designer does not

engage in full disclosure.

4.2 Comparison with Myersonian Mechanism Design

We now compare optimal calibrated mechanism design and the Myersonian benchmark. In the

Myersonian benchmark, the designer is not concerned with the information the mechanism reveals

about the state, and hence provides a natural upper bound on the designer’s payoffs in calibrated

mechanism design. The gap between the designer’s optimal payoff across both benchmarks quantifies

the loss from the calibration constraint. If no gap exists, the calibration constraint is non-binding and

an optimal calibrated mechanism can be found solving the Myersonian benchmark. Instead, if a gap

exists, the optimal mechanism in the Myersonian benchmark reveals information about the state in a

way that it fails to be incentive compatible or individually rational under calibration.

Myersonian benchmark In the Myersonian benchmark, the designer chooses a direct mechanism

(ξ, t ) :Θ×Ω→∆([0, q̄])×R subject to incentive and participation constraints that must hold on average

across states under the prior µ0.26 Formally,

WMy ≡ max
(q,t ):Θ×Ω→[0,q̄]×R

∫
Θ
Eµ0 [w(ξ(θ,ω),θ,ω)+ t (θ,ω)]F (dθ) (OPTMy)

s.t.

{
(∀θ ∈Θ)Eµ0 [u(ξ(θ,ω),θ,ω)− t (θ,ω)] ≥ 0

(∀θ,θ′ ∈Θ)Eµ0 [u(ξ(θ,ω),θ,ω)− t (θ,ω)] ≥ Eµ0

[
u(ξ(θ′,ω),θ,ω)− t (θ′,ω)

] ,

where w(ξ,θ,ω) and u(ξ,θ,ω) are the linear extensions of w(·,θ,ω) and u(·,θ,ω), respectively.

Program OPTMy is a mechanism design problem with a multidimensional allocation, corresponding to

assigning (a distribution over) q in each state. As a result, the distinction between the Myersonian

benchmark and optimal calibrated design shows in the monotonicity requirements the allocation

ξ(θ,ω) must satisfy for a transfer t :Θ×Ω→R to exist that implements ξ(θ,ω). Indeed, implementability

of ξ :Θ×Ω→∆([0, q̄]) is equivalent to integral monotonicity (Rochet, 1987; Pavan et al., 2014):27

(∀θ,θ′ ∈Θ)
∫ θ

θ′

∫
Ω

[
u2(ξ(s,ω), s,ω)−u2(ξ(θ′,ω), s,ω)

]
dµ0d s ≥ 0, (IM)

26Because payoffs are quasilinear, considering mechanisms that do not randomize on transfers is without loss of generality.
27The equi-Lipschitz condition on u ensures we can take the derivative inside the integral.
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where recall u2 is the derivative of u in its second coordinate.

Comparison with calibrated mechanism design To facilitate the comparison with Proposition 2,

we focus on deterministic mechanisms (q, t) : Θ×Ω→ [0, q̄]×R. Remarkably, even if the agent’s

payoff net of transfers, u(q,θ,ω), is supermodular in (q,θ) for all ω ∈ Ω, the characterization of

the set of implementable q(·) cannot be simplified beyond integral monotonicity without further

assumptions. Because integral monotonicity is a global, implicitly defined constraint, verifying

implementability and computing the optimal mechanism is more computationally involved in the

Myersonian benchmark than in calibrated mechanism design. Indeed, Proposition 2 implies the

optimal deterministic calibrated mechanism coincides with the state-by-state optimal deterministic

mechanism under this assumptions. In other words, the optimal deterministic calibrated mechanism

can be obtained by selecting allocations q(·) that satisfy

Qcal =
{

q :Θ×Ω→ [0, q̄] : (∀ω ∈Ω)q(·,ω) is increasing
}

.

That is, the allocation in the optimal calibrated mechanism must satisfy monotonicity state-by-state.

Instead, the optimal deterministic Myersonian mechanism can be obtained by selecting allocations

q(·) that satisfy Equation IM, which we denote by QMy.

When u(q,θ,ω) is supermodular in (q,θ) for all ω ∈Ω, the above discussion implies the designer’s

optimal payoff in the Myersonian and calibration settings can be written as follows:

W D
My = max

q∈QMy

∫
Θ
Eµ0

[
J (q(θ,ω),θ,ω;F )

]
F (dθ), (10)

W D
cal = max

q∈Qcal

∫
Θ
Eµ0

[
J (q(θ,ω),θ,ω;F )

]
F (dθ),

where the superscript D in the objective is a reminder that we restrict attention to mechanisms that

are deterministic conditional on the state, or the induced belief.

By reducing the comparison across settings to monotonicity requirements on the space of allocations,

the above expressions provide us with an immediate way of comparing the designer’s payoffs across

settings. In particular, when the optimal Myersonian mechanism satisfies the state-by-state monotonicity

constraints, we have that the calibration constraint entails no loss to the designer. We record this

observation for future use:

Observation 1. Suppose u(q,θ,ω) is supermodular in (q,θ) for all ω ∈Ω. Then, if the allocation rule in

the Myersonian benchmark satisfies monotonicity state-by-state, W D
cal =W D

My.

Two natural questions are under what conditions the solution to OPTMy is deterministic and satisfies

state-by-state monotonicity. We answer them simultaneously by studying the relaxed program.

Inspection of Equation 10 reveals that if the virtual surplus is supermodular in (q,θ) for every ω,

then the solution qrel to the relaxed problem

Wrel = max
q :Θ×Ω→[0,q̄]

∫
Θ
Eµ0

[
J (q(θ,ω),θ,ω;F )

]
F (dθ), (11)

satisfies monotonicity state-by-state by Topkis’ theorem. Moreover, a stochastic mechanism is
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equivalent to a deterministic mechanism which depends on the random reports of a fictitious agent

(Pavan et al., 2014). The virtual surplus in this fictitious setting coincides with that in the integrand on

the right-hand side of Equation 11—the type reports of the fictitious agent are payoff irrelevant—and

is maximized by qrel.

Proposition 4 (Sufficient condition for no gap). Suppose the virtual surplus J ((q,θ,ω);F ) is supermodular

in (q,θ) for allω. Then, the designer’s payoffs under the optimal Myersonian and calibrated mechanisms

coincide.

By contrast to Proposition 2, Proposition 4 relies on assumptions on the type distribution and the

designer’s payoff. As Example 2 illustrates, the supermodularity of the virtual surplus can fail when the

type distribution is not regular, creating a gap between the designer’s payoff at the optimal Myersonian

and calibrated mechanisms. Example 3 illustrates such a gap can also arise when the designer’s payoff

is not supermodular:

Example 3 (Payoff gap when w is not supermodular). Suppose states are binary, Ω= {ωL ,ωH } = {1,3},

and equally likely. Suppose types are uniformly distributed, θ ∼U [0,1]. Finally, let q ∈ [0,1] denote the

probability the seller’s good is allocated. Payoffs are given by:

u(q,θ,ω) = qθω

w(q,θ,ω) = 2(1−2θ)q.

Note that w is increasing in q when θ < 1/2 and decreasing in q when θ > 1/2.28 In this case, the virtual

surplus evaluated at different states is:

J ((q,θ,ω);F ) =
{

(1−2θ)q if ω=ωL

(2θ−1)q otherwise
.

In the Myersonian benchmark, implementable allocations are elements of QMy, which in this case is

equivalent to requiring that Eµ0

[
q(·,ω)ω

]
is increasing. The optimal Myersonian allocation obtains

from pointwise maximizing the virtual surplus, and is given by:

qMy(θ,ω) =


1 if ω=ωL and θ < 1/2

1 if ω=ωH and θ > 1/2

0 otherwise

.

The designer’s payoff under the Myersonian mechanism is 1/4.

By Proposition 2, qMy cannot be implemented by a calibrated mechanism as it is not increasing state-by-

state. Intuitively, when ω=ωL , types above 1/2 would learn from the calibrated information structure

that they do not obtain the good, whereas types below 1/2 do, and would misreport their types.

Instead, in the optimal calibrated mechanism, the designer sets qcal(θ,ωH ) = 1[θ ≥ 1/2] and sets

28The designer can be viewed as an online advertising platform and the agent as an advertiser. State ω represents the
click-through rate of an ad slot, and higher θ corresponds to a larger advertiser willing to pay more for exposure. The
designer’s payoff captures both the value created by advertising and the disutility from showing ads of large advertisers, e.g.,
due to user brand fatigue.
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q(θ,ωL) to be constant in θ. The designer’s payoff under calibration is Wcal = 1/8 <WMy.

4.3 Optimal Calibrated Auction

In this section, we consider a multiple agent application and study the design of the optimal calibrated

auction. Proposition 1 implies the optimal calibrated auction induces a generalized two-stage

mechanism, and hence the optimal generalized two-stage mechanism provides an upper bound

on the designer’s optimal payoff under calibration. However, computing the optimal generalized

two-stage mechanism is complicated because (i) no tractable characterization of joint distributions

over posterior beliefs is available, and (ii) the allocation rule may condition on the state and not only

the agents’ beliefs. For that reason, our analysis below relies on Observation 1: We show the optimal

Myersonian auction can be implemented by fully revealing the state, and hence, remains incentive

compatible and individually rational when the agents have access to the calibrated information

structure. Below, we first specialize our multi-agent model and notation to the auction application

and then link our assumptions to online advertising.

Suppose there is a single good for sale and the state is multidimensional, ω= (ωi ,ω0i )i∈[N ] ∈R2N+ , and

distributed according to prior distribution µ0. Suppose that for all i ∈ [N ], Θi = [0,1], with θi ∼ Fi with

full-support density fi . That is, we are assuming agents’ types are independent of the state, and hence,

independent across each other. Denote by qi ∈ [0,1] the probability agent i is allocated the good, and

note that feasibility implies that 0 ≤∑N
i=1 qi ≤ 1.

We assume the agents’ and the designer’s utilities are quasilinear in transfers. Agent i ’s payoff net of

transfers is ui (qi ,θi ,ω) = qi (ωiθi +ω0i ). Thus, state components ωi capture the value responsiveness

to agent’s private information, whereas state components ω0i capture the overall shift. The state

components can be correlated (and asymmetric) across agents, allowing for interdependent values.

The designer’s payoff net of transfers is w(q,θ,ω) =∑
i qi wi (θ,ω) for some functions (wi )i∈[N ]. Below,

we study the designer-optimal calibrated mechanism.

To fix ideas, consider the following mapping to an online advertising environment. The designer is an

advertising platform, and the good is an advertising slot on a given webpage targeted to a selected

category of users in a given week. Agents are firms that wish to display their ads, and their private

types represent the expected revenue from a click on their ad. State components ωi could capture

individual click-through rates or match values, while state components ω0i could capture individual

display values, that is, the expected revenue from an ad being displayed irrespective of whether it

is clicked (for instance, due to brand-building effects). The state is observed through proprietary

data available to the platform and can be used in the design of the auction. The platform values the

resulting revenue but may also have additional efficiency considerations, summarized by wi .

As anticipated, we characterize the optimal calibrated mechanism by showing that it coincides with the

Myersonian optimal one. To this end, consider the Myersonian problem, in which the designer chooses

(q(θ,ω), t (θ,ω)) ∈ [0,1]N ×RN . Because agent i ’s payoff is linear in θi , arguments analogous to those

in Section 4.2 imply a feasible q(θ,ω) is implementable if and only if for all i , EF−i ,µ0 [qi (θi ,θ−i ,ω)ωi ] is

increasing in θi . In a slight abuse of notation, denote by QMy the set of all such functions and define
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the virtual surplus as

J ((q,θ,ω);F ) =
N∑

i=1
qi (θ,ω)

(
wi (θ,ω)+

(
θi − 1−Fi (θi )

fi (θi )

)
ωi +ω0i

)
. (12)

Standard arguments imply the individual rationality constraint of θi = 0 binds for all i , and an optimal

mechanism solves

WMy = max
q∈QMy

∫
[0,1]N

Eµ0 [J (q(θ,ω),θ,ω;F )] f (θ)dθ.

Proposition 5 (No gap in regular auctions). Suppose that (i) for all i ∈ {1, . . . , N }, Fi is Myerson regular,

and for all i , j ,θ, and ω, wiθi (θ,ω) ≥ 0, wiθi (θ,ω) ≥ w jθi (θ,ω).29 Then, Wcal =WMy.

The proof of Proposition 5 in Appendix D.2 shows that under our assumptions the optimal Myersonian

mechanism can be obtained by solving the relaxed program. Importantly, the assumption that

wiθi (θ,ω) ≥ w jθi (θ,ω) ensures that an increase in agent i ’s type increases the designer’s payoff of

giving the object to agent i by more than the value of giving it to other agents. This, in turn, ensures

agent i ’s allocation probability is increasing in her type.

Viewed through the lens of the online advertising example, Proposition 5 implies that in regular

environments, while the advertising platform benefits from having the data on click-through rates and

display values, it does not benefit from the informational advantage over bidders that such data entails.

Its objective is maximized by making the click-through rates and display values readily available to

bidders and running optimal auctions in all instances.

5 Microfoundation

In this section, we provide a microfoundation for calibrated mechanism design by analyzing the

outcome distributions that can arise when an agent repeatedly engages with the same mechanism

(Section 5.1) and contrast this to what can be implemented when the designer can offer the agent a

fully dynamic mechanism (Section 5.2). To keep the presentation simple, we present the results with

minimal notation, and refer the reader to Appendix C for details.

Throughout, we consider the case of a single agent, whose type (i) is redrawn each period from the

same distribution and (ii) is independent of the state. The reason for (i) is as follows. When the designer

offers the agent a fully dynamic mechanism, the revelation principle implies that it is without loss of

generality for the designer to ask the agent for type reports. Moreover, logic similar to that in Myerson

(1986) implies that the designer only elicits one type report when the agent’s type is persistent, and

hence, the agent has no possibility of experimenting with the mechanism. Hence, to put repeated

and dynamic mechanisms on a more similar footing, assuming the agent’s type is redrawn each

period is necessary. However, when the agent’s type is repeatedly drawn from a distribution that

depends on the state, the agent learns about the state both through her own type and her allocations

in the mechanism.30 Thus, we assume (ii) so that the agent learns about the state only through her

29In the statement, wkθi
denotes the derivative of wk with respect to θi , for k ∈ {1, . . . , N }.

30To be sure, Theorem 3 extends to the case in which the agent’s type is fully persistent and correlated with the state.

26



interaction with the mechanism. Lastly, we consider the single-agent case as extending the results in

this section to multiple agents requires addressing subtle issues in strategic experimentation, which

we plan to pursue in future work.

5.1 Repeated Interactions with a Mechanism

We consider first the case in which the agent interacts repeatedly with the same mechanism φ in each

period of an infinite horizon interaction. In line with Section 2, a repeated mechanism is a mapping

φ : M ×Ω×E →∆(A),

where M is a finite set of messages and E is a finite set endowed with some measure, denoted η.

The results in Section 3 imply that assuming E is finite is without loss of generality and it simplifies

the proofs. In contrast to Section 2, we allow the mechanism to have an arbitrary message space.

The reason is that we cannot invoke the revelation principle when the designer offers the same

mechanism repeatedly: unless the agent’s best response is the same across periods, the composition

of the mechanism with the agent’s reporting strategy yields a time-dependent, direct mechanism. To

avoid keeping track of participation and reporting strategies separately in what follows, we assume a

message m; ∈ M exists such that for all (ω,ε) ∈Ω×E , φ(m;,ω,ε) = δa; .

Timing Given φ, the agent faces the following extensive form. Nature draws (ω,ε) once at the

beginning, unobserved to the agent. In each period, nature first draws the agent’s type, which the

agent observes. The agent then sends a message m into the mechanism. The mechanism then draws

the allocation from φ(·|m,ω,ε), which the agent observes.

Given the mechanism φ and the extensive form game it induces, the agent’s strategy specifies for

each period t and each period-t type θ ∈Θ, a distribution over M , as a function of the agent’s past

observations, which include her past types, messages, and allocations. Importantly, we assume the

agent does not observe her payoffs to focus on the agent learning through the mechanism.

We assume the agent is infinitely patient, that is, she has limit-of-means preferences. Her average

payoff through period T when the realization is (ω,ε) and the type-message-allocation sequence is

(θt ,mt , at )T
t=1 is given by:

UT ((θt ,mt , at )T
t=1,ω,ε) = 1

T

T∑
t=1

u(at ,θt ,ω).

A strategy σ is a best response for the agent if for all alternative strategies σ′, we have that

lim inf
T→∞

Eσ [UT ] ≥ lim sup
T→∞

Eσ′ [UT ] , (13)

where Eσ is the expectation relative to the measure induced over the terminal histories by the prior on

Ω, the distribution on E , the agent’s type distribution f , the mechanism φ, and the agent’s reporting

strategy σ.31

31The Ionescu-Tulcea extension theorem implies this measure is always well-defined for any mechanism and any agent’s
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Implementation Our notion of implementation is based on the induced occupation measure on

A×Θ×Ω, that is, the (limit) expected frequency of tuples (a,θ,ω) when the agent best responds to the

mechanism. For this reason, we restrict attention to mechanisms φ for which (i) a best-response σ

exists, and (ii) its induced occupation measure νσ over A×Θ×M ×Ω×E exists, defined as follows32

νσ(a,θ,m,ω,ε) = lim
T→∞

1

T
Eσ

[
T∑

t=1
1

[
(at ,θt ,mt ,ω′,ε′) = (a,θ,m,ω,ε)

]]= lim
T→∞

νT
σ(a,θ,m,ω,ε), (14)

where the last identity defines νσ as the limit of the up to period T occupation measures νT
σ , which

are always well-defined.

Under our definition of best response, which is the same as in Hart (1985), existence of a best response

implies the agent’s payoff at the best-response strategy is well-defined.33 Even if the occupation

measure in Equation 14 is enough to calculate the agent’s payoffs, that the agent’s payoffs are well-

defined does not mean the occupation measure is well-defined. Because outcome distributions—and

not payoffs—are usually the focus of mechanism design, we require that both the mechanism has a

best response and it induces a well-defined occupation measure.

Definition 5 (Implementation). Outcome distribution ϑ ∈ ∆(A ×Θ×Ω) can be implemented by a

repeated mechanism if a mechanism φ and a best-response strategy σ exist such that

ϑ(a,θ,ω) = ∑
ε∈E ,m∈M

νσ(a,θ,m,ω,ε).

We are now ready to state the main result of this section. Theorem 3 shows that the outcome

distributions implemented by repeated mechanisms can be implemented by two-stage mechanisms,

and hence by calibrated mechanisms:

Theorem 3 (Microfoundation of Calibrated Mechanism Design). Outcome distributionϑ ∈∆ (A×Θ×Ω)

is implementable by a repeated mechanism if and only if ϑ can be implemented by an incentive

compatible and individually rational two-stage mechanism, that is for all (a,θ,ω) ∈ A×Θ×Ω,

ϑ(a,θ,ω) =µ0(ω) f (θ)
∫
∆(Ω)

α(a|θ,µ)β(dµ|ω), (15)

whereβ :Ω→∆(∆(Ω)) is Bayes plausible andα(·|·,µ) :Θ→∆(A) is incentive compatible and individually

rational on the support of µ0 ⊗β.

The proof of this and all results in this section can be found in Appendix C.

Theorem 3 provides a microfoundation for calibrated mechanism design. Whenever the designer

is concerned with agents learning from the outcome of the mechanism and cares only about the

long-run outcome distribution, it is as if he is designing a two-stage mechanism.

We now provide a proof sketch for Theorem 3, which is also useful to understand the proof of the result

strategy. See Appendix C.1 for details.
32Throughout this section, limits of measures should always be understood in the weak∗ sense.
33Note that in mechanism design one always focuses on mechanisms that have well-defined best responses in single-agent

settings, and equilibria in multi-agent ones.
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in the next section. For simplicity, let Ω̃=Ω×E with elements ω̃. Suppose repeated mechanism φ

implements ϑ, and let νσ ∈∆(A×Θ×M × Ω̃) denote the induced occupation measure. As the analysis

so far illustrates, tracking the joint distribution over allocations, types, states, and beliefs is important

to show that ϑ can be implemented via a two-stage mechanism. To this end, we extend the up to

period T occupation measures, νT
σ ∈∆(A×Θ×M × Ω̃), to account for the frequency of beliefs through

period T . In fact, we define two sequences of extended occupation measures over A×Θ×M×Ω̃×∆(Ω̃):

the first, νT,1
σ , calculates the frequency of a tuple (a,θ,m,ω̃,µ) by counting the beliefs at the beginning

of period t and the second, νT,2
σ , by counting the beliefs at the end of period t . Whereas the martingale

property of beliefs implies these two sequences have the same (subsequential) limits, they have

different conditional independence properties, which we use to derive the representation of ϑ via a

two-stage mechanism. Suppose for simplicity that ν̄T,1
σ (and hence, ν̄T,2

σ ), have limit ν̄σ, though this

assumption is not needed for the proof.34 A consequence of the martingale property of beliefs is that

only the long-run beliefs of the agent are in the support of ν̄σ.

The proof consists of three steps. In the first step, we show that ν̄σ admits the following decomposition:

ν̄σ({(a,θ,m,ω̃)}× ∆̃) =
∫
∆̃
µ(ω̃) f (θ)ρ(m|θ,µ)α′(a|m,µ)τ(dµ),

where (i) τ ∈ ∆(∆(Ω̃)) has mean µ0 ⊗η, where recall η is the measure on E , and (ii) ρ : Θ×∆(Ω̃) →
∆(M) is a “Markovian reporting strategy”, and (iii) α′ is almost the allocation rule in the two-stage

mechanism, and hence the prime notation. Moreover, on the support of µ, α′(·|·,µ) coincides with

φ(·|·,ω̃), implying that φ(·|·,ω̃) is constant in ω̃ on the support of µ. This is the step which exploits the

different conditional independence properties of ν̄T,1
σ and ν̄T,2

σ . We use ν̄T,1
σ to show the conditional

independence of types and beliefs—all agent types in period t have the same belief at the beginning

of period t—and ν̄T,2
σ to show the conditional independence of the allocation and the state—the belief

at the end of period t contains all the information about the state contained in the allocation.

In the second step, we show that ρ :Θ×∆(Ω̃) →∆(M) is indeed a best response for the agent when her

type is θ and her belief is µ. In other words, the support of ρ(·|θ,µ) is contained in

arg max
m∈M

∑
ω̃∈Ω̃

µ(ω̃)
∑

a∈A
φ(a|m,ω̃)u(a,θ,ω),

for beliefs on the support of τ. Hence, we can use ρ and φ to define a direct mechanism α(·|·,µ) :Θ→
∆(A) that satisfies the agent’s participation and incentive constraints when her belief is µ. Together,

Steps 1 and 2 allow us to obtain the representation of ϑ as in Equation 15.35

Whereas the above steps are enough to show that ϑ is implementable by some individually rational and

incentive compatible two-stage mechanism, they do not necessarily imply that the distribution over

posteriors τ is the one induced by the information structure calibrated to φ, πφ. The last step of the

proof shows that even if this is not the case, the agent adequately learns the information contained in

πφ in the sense of Aghion et al. (1991). Indeed, Lemma C.4 shows a strategy exists that approximately

34By assumption, the marginal of ν̄T
σ on A×Θ×M × Ω̃ converges to νσ. Moreover, we show that the marginal of ν̄T

σ on
∆(Ω̃) also converges (Lemma C.3). However, this is not enough to ensure the convergence of ν̄T

σ .
35Whereas the above two-stage mechanism is described in terms of beliefs overΩ×E , we show in the appendix how to

derive from it a two-stage mechanism in terms of beliefs overΩ.

29



delivers the payoff from learning πφ, so that the agent’s payoff under σ is at least the payoff she would

obtain if she had learned πφ. Because the payoff from learning πφ is the maximal payoff the agent can

possibly attain, we conclude that the payoff under σ is the payoff the agent would attain when facing

the calibrated information structure πφ (and best responding to it).

5.2 Dynamic Mechanisms

In this section, we consider the case in which the designer can offer the agent a dynamic mechanism,

that is, one that conditions the allocation in each period on the history of past allocations and reports.

The analysis herein allows us to describe the limits implied by calibration on the set of implementable

outcomes.

Dynamic mechanisms A dynamic mechanism ϕ= (ϕt )t∈N is a sequence of mappings that condition

on the state, the history of participation decisions, type reports and allocations, and today’s report, and

output an allocation. Formally, expand the set of type reports and allocations by a non-participation

message and the outside option, which we denote by ΘA; =Θ× A∪ {(;, a;)}.36 For each t ∈N, define

the mechanism in period t , ϕt :Ω× (ΘA;)t−1 ×Θ→∆(A). Because the designer can flexibly design

the mechanism in each period we no longer rely on the randomization device.

A dynamic mechanism induces an extensive-form game for the agent, in which in each period, the

agent decides whether to participate, and conditional on participation what type to report. Whenever

the agent chooses not to participate, she obtains her outside option a;. We denote by p the agent’s

participation strategy and by σ the agent’s reporting strategy.

Implementation Our notion of implementation continues to be based on the occupation measure

over the set of allocations, types, participation decisions, type reports, and states, induced by the

distributions µ0 and f , the mechanism ϕ, and the agent’s participation and reporting strategy.

However, as we show in Appendix D.3.1, it is without loss to focus on mechanisms such that (i)

participation with probability 1 and truthtelling is a best response for the agent, and (ii) the mechanism

implements the outside option with probability 1 in all future periods following a non-participation

decision by the agent.37 Thus, we focus on dynamic mechanisms ϕ such that (i) a best response exists,

and (ii) the occupation measure over A×Θ×Ω is well-defined.

Incentives in dynamic mechanisms Dynamic mechanisms allow the designer to condition the

agent’s allocation on the history of past participation decisions and reports (and allocations), and

hence allow the designer to implement outcomes that satisfy weaker notions of truthtelling and

participation, which we explain next.

Because the designer can condition the mechanism on the history of past reports, he can compare the

frequency of type reports against the type distribution. So long as the agent is telling the truth, the

36This notation allows us to keep the definitions of the histories when the agent participates and does not participate
symmetric, and saves us on including the agent’s participation strategy in the histories.

37That is, starting from a dynamic mechanism ϕ and a best response strategy (p,σ), one can construct an alternative
mechanism ϕ′ such that participation and truthtelling are a best response for the agent and preserves the distribution over
(Ω×Θ× A)∞ induced by (p,σ) and ϕ.
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frequency of reports will match the type distribution f over large blocks of time. In fact, any reporting

strategy whose expected frequency of reports matches the type distribution will be indistinguishable

from truthtelling.

Definition 6 (Undetectable deviations). An undetectable deviation is a reporting strategy σ :Θ→∆(Θ)

such that for all θ′ ∈Θ
∑
θ∈Θ

f (θ)σ(θ′|θ) = f (θ′).

By tracking the empirical distribution of type reports, the designer can dissuade the agent from

employing detectable deviations. Thus, in a dynamic mechanism, the designer should be concerned

with only discouraging undetectable deviations. This leads to a weaker notion of incentive compatibility

for allocation rules:

Definition 7 (Unprofitable undetectable deviations). The allocation rule α :Θ×∆(Ω) →∆(A) lacks

profitable undetectable deviations at belief µ ∈∆(Ω) if for all undetectable deviations σ,

∑
θ∈Θ

f (θ)
∑

a∈A
α(a|θ,µ)

∑
ω∈Ω

µ(ω)u(a,θ,ω) ≥ ∑
θ∈Θ

f (θ)
∑
θ′∈Θ

σ(θ′|θ)
∑

a∈A
α(a|θ′,µ)

∑
ω∈Ω

µ(ω)u(a,θ,ω).

A two-stage mechanism ψ with allocation rule α lacks profitable undetectable deviations if α(·|·,µ)

lacks profitable undetectable deviations for all beliefs in the support of the mechanism.

To illustrate the difference between the lack of profitable undetectable deviations and incentive

compatibility, consider the following example from Ball and Kattwinkel (2023). Suppose the agent

types are binary, {θ1,θ2}, and equally likely. The set of allocations, q ∈ {0,1}, describes whether the

agent receives a good. Finally, suppose the agent’s payoff is u(q,θ) = qθ and θ1 < θ2. Consider the

mechanism that allocates the good to θ2: While it is not incentive compatible, it lacks profitable

undetectable deviations. The constraint that the deviation must be undetectable implies the gains

from θ1 obtaining the good come at the expense of θ2 getting the good.

Consider now the agent’s participation incentives in the dynamic mechanism: once the agent rejects

the mechanism once, the agent obtains her outside option in all continuation histories independent

of her participation decision and her types. In other words, whereas the agent can always ensure her

outside option by rejecting the mechanism in a given period, she is effectively quitting the mechanism

forever for all her types. The following definition introduces the notion of individual rationality

satisfied by the mechanism in the long run.

Definition 8 (Ex ante individual rationality). The allocation rule α : Θ×∆(Ω) → ∆(A) is ex ante

individually rational at belief µ ∈∆(Ω) if

∑
θ∈Θ

f (θ)
∑

a∈A
α(a|θ,µ)

∑
ω∈Ω

µ(ω)u(a,θ,ω) ≥ ∑
θ∈Θ

f (θ)
∑
ω∈Ω

µ(ω)u(a;,θ,ω).

A two-stage mechanism ψ with allocation rule α is ex ante individually rational if α(·|·,µ) is ex ante

individually rational for all beliefs in the support of the mechanism.
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We are now ready to state the main result of this section:

Theorem 4 (Implementable Outcomes via Dynamic Mechanisms). A dynamic mechanism exists that

implements outcome ϑ ∈∆ (A×Θ×Ω) if and only if ϑ can be implemented by an ex ante individually

rational two-stage mechanism which lacks profitable undetectable deviations. That is, if and only if for

all (a,θ,ω) ∈ A×Θ×Ω

ϑ(a,θ,ω) =µ0(ω) f (θ)
∫
∆(Ω)

α(a|θ,µ)β(dµ|ω), (16)

whereβ :Ω→∆(∆(Ω)) is Bayes plausible andα(·|·,µ) :Θ→∆(A) lacks profitable undetectable deviations

and is ex ante individually rational on the support of µ0 ⊗β.

Theorem 4 characterizes the outcome distributions implementable by dynamic mechanisms as

those implemented by two-stage mechanisms that satisfy the incentive constraints: unprofitability

of undetectable deviations and ex ante individual rationality. Notably, both notions of incentive

constraints apply in the aggregate over the type distribution, which reflects the transient nature of the

agent’s private information.

Comparing Theorem 3 and Theorem 4, we see that dynamic mechanisms allow the designer to

weaken the incentive constraints of the agent, but do not allow him to engage in richer—i.e., type-

dependent—disclosures. Despite dynamic mechanisms implying weaker incentive constraints, we

can build on the results of Rochet (1987) and Rahman (2024) to show that in settings with transferable

utility, where a = (q, t), dynamic and repeated mechanisms implement the same set of physical

allocations q : Θ×Ω → R.38 Indeed, Rahman (2024) shows the lack of profitable undetectable

deviations is equivalent to cyclical monotonicity in Rochet (1987). Thus, in settings with transferable

utility, Theorems 3 and 4 imply that dynamic mechanisms do not allow the designer to expand on the

set of implementable distributions over (q,θ,ω).

The proof of the only if direction is similar to that of Theorem 3, in that we similarly extend the

occupation measure to account for the agent’s beliefs and show it satisfies the conditional independence

properties implied by a two-stage mechanism. In a dynamic mechanism, however, the agent can

ensure the payoff of some, but not all deviations. The latter property is what delivers that the two-stage

mechanism must lack profitable undetectable deviations.

The proof of the if direction, instead, harnesses a construction in Margaria and Smolin (2018). The

proof proceeds in two steps. In the first step, we analyze a fictitious model without state uncertainty in

which a designer faces a privately informed agent, so that implementable outcomes are elements of

∆(A×Θ). We show that if ϑ′(a,θ) = f (θ)α′(a|θ) ∈∆(A×Θ) is such that α′ lacks profitable undetectable

deviations and is ex ante individually rational, then a dynamic mechanism exists that implements

ϑ′.39 This is the step that relies on Margaria and Smolin (2018). We construct a dynamic mechanism,

which can be split into blocks of random length. Each block consists of two phases: a reporting

38This is easily seen in the example after Definition 7. Note the mechanism that allocates the good to the agent if and only
if her type is θ2 satisfies monotonicity. Hence, a transfer scheme exists that implements this allocation rule with transfers.

39In a repeated principal-agent game with communication, Meng (2021) shows that the principal can guarantee in the
patient limit his complete information payoff subject to the constraint that her actions satisfy the cyclic monotonicity
condition in Rochet (1987). We view the results as complementary: We focus on implementable outcome distributions,
instead of payoffs, when the agent has limit of the means preferences, which makes our notion of implementation exact.
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phase and an adjustment phase. In the reporting phase, the mechanism uses the agent’s reports to

determine the allocation. Instead, in the adjustment phase, the mechanism simulates type reports so

that the frequency of type reports matches the type distribution (in expectation) over the length of the

block, whenever this is not the case at the end of the reporting phase. These two steps ensure that

the expected frequency of type reports and allocations matches ϑ′. We then leverage that α′(·|θ) lacks

profitable undetectable deviations to show the agent cannot do better than by telling the truth. Hence,

the induced frequency of types and allocations also matches ϑ′. Moreover, the construction ensures

that after any history, truthtelling delivers a continuation payoff equal to the ex ante payoff. Because

α′ is ex ante individually rational, we conclude the participation constraints are satisfied.

The second step uses the above result and the representation of the outcome distribution via a two-

stage mechanism to construct a dynamic mechanism that implements any outcome distribution that

satisfies the properties in Theorem 4. Indeed, one can construct a dynamic mechanism which uses

a finite number of steps to disclose information to the agent via the realized allocations,40 and then

continues as in the above construction to implement the allocation rule α(·|·,µ).

6 Conclusions

Many economic institutions—online platforms, lenders, regulators—rely on mechanisms that remain

fixed while agents interact with them repeatedly. When the mechanism’s operation depends on a state

known only to the designer, agents can learn this state from their outcomes, constraining what the

mechanism can implement. We introduce calibrated mechanism design, a static solution concept that

requires mechanisms to remain incentive compatible given the information they endogenously reveal

about the designer’s private state through repeated use. In private value environments, the calibration

constraint pushes the designer toward full transparency, precluding Crémer-McLean-style schemes

under transferable utility. In single agent-settings, calibrated mechanisms are equivalent to two-stage

mechanisms. This equivalence yields a practical algorithm for finding optimal calibrated mechanisms,

combining tools from information design and mechanism design. We provide a microfoundation by

showing calibrated mechanisms characterize exactly what is implementable when an infinitely patient

agent repeatedly interacts with the same mechanism, and study the implications on implementable

outcomes of allowing the designer to offer fully dynamic mechanisms.

The most important direction for future work is deepening the analysis of multi-agent settings. On

the one hand, understanding when generalized two-stage mechanisms coincide with calibrated

mechanisms would enable the study of multi-agent applications, while abstracting from the dynamics

of experimentation. On the other hand, extending our microfoundation to the multi-agent case

would further ground calibrated mechanism design. More broadly, our framework suggests that

any institution whose repeated operation leaks information about its designer’s knowledge faces a

fundamental tradeoff between conditioning the mechanism on this information and the information

this leaks to participants, and calibrated mechanism design offers a disciplined way to analyze it.

40A standard argument implies that ifϑ satisfies Equation 16, then a finite supportβ′ exists such thatϑ satisfies Equation 16
with β′ in place of β.
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Mathematical conventions

Throughout the appendix, we take all sets to be Polish spaces, that is, completely metrizable, separable,

topological spaces, and endow them with their Borel σ-algebra. We endow product spaces with their

product σ-algebra. For a Polish space X , we let BX denote its Borel σ-algebra and ∆(X ) the set of all

Borel probability measures on X , endowed with the weak∗ topology. Thus, ∆(X ) is also a Polish space

(Aliprantis and Border, 2006), and it is compact, whenever X is compact (Aliprantis and Border, 2006,

Theorem 15.11 and Theorem 15.15).

Notational conventions If X is a Polish space, X̃ denotes a measurable subset of X , i.e., an element

of the Borel σ-algebra on X , and Cb(X ) denotes the set of continuous and bounded functions on X .

Given a measure ν ∈∆(×N
i=1Yi ), we denote by νY j Yk ...Yl the marginal of ν on Y j Yk . . .Yl . When one of

the Yi =∆(Xi ), we write ∆ instead of Yi in the subscript, when it is unlikely to generate confusion.

Throughout the appendix, we define different distributions that arise in our proofs. Because we endow

product spaces with their product topology and their product Borel σ-algebra, it is enough to define

these new measures on the measurable rectangles and we follow this convention throughout.

Disintegration We rely on the notion of disintegration in many of our proofs (Bogachev, 2007,

Chapter 10.6). We define disintegration in the context of product sets X ×Y , as this is the one that

shows up in the proof, but it is more general than this. Given a measure ν ∈∆(X ×Y ), λ : X ×BY → [0,1]

is the disintegration of ν along X if the following holds

1. For all Ỹ ∈BY , x 7→λx (Ỹ ) is measurable,

2. For νX -almost everywhere x ∈ X , Ỹ 7→λx (Ỹ ) is a probability measure, and

3. For every bounded measurable function g : X ×Y →R,∫
X×Y

g (x, y)ν(d(x, y)) =
∫

X

∫
Y

g (x, y)λx (d y)νX (d x).

Kallenberg (2017, Theorem 1.23) ensures that {λx : x ∈ X } exists and is unique νX -almost everywhere.

A Omitted proofs from Section 2

Proof of Theorem 1. Suppose the agents’ payoffs are state independent and in a slight abuse of

notation let ui (ai ,θi ) denote agent i ’s utility.

The calibrated mechanism design problem is

max
φ:Θ×Ω×[0,1]→∆(A)

∑
ω∈Ω

µ0(ω)
∑
θ∈Θ

f (θ|ω)
∫ 1

0
w(φ(θ,ω,ε),θ,ω)λ(dε),
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subject to the following constraints holding for all (ω,ε) ∈Ω× [0,1], i ∈ [N ], θi ∈Θ and θ′i ∈Θ:

∑
ai∈Ai

E f−i (·|ω)[
∑

a−i∈A−i

φ(θi ,θ−i ,ω,ε)(ai , a−i )]ui (ai ,θi ) ≥ ∑
(ai∈Ai )

E f−i (·|ω)[
∑

a−i∈A−i

φ(θ′i ,θ−i ,ω,ε)(ai , a−i )]ui (ai ,θi )

∑
ai∈Ai

E f−i (·|ω)[
∑

a−i∈A−i

φ(θi ,θ−i ,ω,ε)(ai , a−i )]ui (ai ,θi ) ≥ ui (ai;,θi ).

In other words, for each agent i , her interim allocation rule πφ,i (ω,ε) must be an element of S∗
IC /I R,i ,

where the latter is the set of interim allocation rules S∗
i :Θi →∆(Ai ) that satisfy the following incentive

compatibility and individual rationality constraints:

(∀θi ,θ′i ∈Θi )
∑

ai∈Ai

s∗i (ai |θi )ui (ai ,θi ) ≥ ∑
ai∈Ai

s∗i (ai |θ′i )ui (ai ,θi )

(∀θi ∈Θi )
∑

ai∈Ai

s∗i (ai |θi )ui (ai ,θi ) ≥ ui (ai;,θi ).

Because the individual rationality and incentive constraints must hold for each pair (ω,ε), the

designer’s problem is separable across variables for different ω,ε: the sets of variables φ(·,ω,ε) appear

in different sets of constraints and the objective function is additively separable across those variables.

Consequently, the designer’s problem can be solved as a collection of independent problems, one for

each ω,ε.

B Omitted proofs from Section 3

In this section, we present the proofs of Theorem 2 and Proposition 1. We proceed as follows: We first

prove Proposition 1, as when N = 1 its proof implies the “if” direction of Theorem 2. We then prove

the “only if” direction of Theorem 2.

Proof of Proposition 1. We focus on the case in which types and states are independently distributed,

and explain how to extend the proof when they are not.

Let ϑ ∈∆(A×Θ×Ω) denote the outcome distribution implemented by an incentive compatible and

individually rational calibrated mechanism. We show transition probabilities β : Ω→ ∆(∆(Ω)N ),

ᾱ :Θ×Ω×∆(Ω)N →∆(A), and αi :Θi ×∆(Ω) →∆(Ai ) for i ∈ {1, . . . , N } exist such that

ϑ(a,θ,ω) =µ0(ω) f (θ)
∫
∆(Ω)N

ᾱ(a|θ,ω,µ1, . . . ,µN )β(d(µ1, . . . ,µN )|ω), (B.1)

and for all i ∈ {1, . . . , N }, (i) αi satisfies item 3 of Definition 4, and (ii) on the support of µ0⊗β, αi (·|·,µi )

is incentive compatible and individually rational when agent i holds belief µi .

Let πω,i : [0,1] → S∗
i denote the mapping ε 7→πi (ω, ·). For S̃∗

i ∈∆(Ai )Θi , define

Pri ({ω}× S̃∗
i ) =µ0(ω)λ(π−1

ω,i (S̃∗
i )) =

∫
S̃∗

i

µi (ω|s∗i )τφ,i (d s∗i ),

where the second equality follows from disintegration of Pri ∈∆(Ω×S∗
i ) along S∗

i , and corresponds

to the definition of Bayes rule for agent i . Define the measurable mappings, Ti : S∗
i → ∆(Ω) and
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T : S∗ →∆(Ω)N as follows: Ti (s∗i ) =µi (·|s∗i ) and T (s∗) = (T1(s∗1 ), . . . ,TN (s∗N )).

Define a joint distribution Q ∈∆(A×Θ×Ω×∆(Ω)N ) as follows:

Q({(a,θ,ω)}××N
i=1∆̃i ) =µ0(ω) f (θ)

∫
π−1
ω (T −1(×∆̃i ))

φ(a|θ,ω,ε)λ(dε),

where π−1
ω (T −1(×∆̃i )) =∩N

i=1{ε : Ti (πω,i (ε)) ∈ ∆̃i }.

We note the following properties of Q. First, consider its marginal over Θ×Ω×∆(Ω)N ,

QΘΩ∆N ({(θ,ω)}××N
i=1∆̃i ) =µ0(ω) f (θ)λ(∩N

i=1{ε : Ti (πω,i (ε)) ∈ ∆̃i }),

which implies that the disintegration of QΘΩ∆N alongΘ×Ω, β :Θ×Ω→∆(∆(Ω)N ) does not depend

on θ. This automatically implies that Q admits the following disintegration:

Q({(a,θ,ω)}××N
i=1∆̃i ) =µ0(ω) f (θ)

∫
×N

i=1∆̃i

ᾱ(a|θ,ω,µ1, . . . ,µN )β(d(µ1, . . . ,µN )|ω), (B.2)

which, in turn, delivers Equation B.1. Moreover, note that the marginal of β on the beliefs of agent i ,

βi :Ω→∆(∆(Ω)), satisfies

βi (∆̃i |ω) =λ(π−1
ω,i (T −1

i (∆̃i ))).

Consider now the marginal on Ai ×Θi ×Ω×∆(Ω) of Q, Q AiΘiΩ∆i , which satisfies:

Q AiΘiΩ∆i ({(ai ,θi ,ω)}× ∆̃i ) = ∑
θ−i∈Θ−i

∑
a−i∈A−i

Q({(a,θ,ω)}× ∆̃i ×∆(Ω)N−1) = (B.3)

=µ0(ω) fi (θi )
∫
π−1
ω,i (T −1

i (∆̃i ))

( ∑
θ−i∈Θ−i

f−i (θ−i )
∑

a−i∈A−i

φ(ai , a−i |θi ,θ−i ,ω,ε)

)
λ(dε)

=µ0(ω) fi (θi )
∫
π−1
ω,i (T −1

i (∆̃i ))
πω,i (ε)(ai |θi )λ(dε) =µ0(ω) fi (θi )

∫
T −1

i (∆̃i )
s∗i (ai |θi )(λ◦π−1

ω,i )(d s∗i ).

Lastly, Q AiΘiΩ∆i admits the following representation via disintegration:

Q AiΘiΩ∆i ({(ai ,θi ,ω)}× ∆̃i ) =µ0(ω) fi (θi )
∫
∆̃i

αi (ai |θi ,ω,µi )βi (dµi |ω)

=µ0(ω) fi (θi )
∫
∆̃i

αi (ai |θi ,ω,µi )(λ◦π−1
ω,i ◦T −1

i )(dµi ) (B.4)

Together with the uniqueness of disintegration and the sufficiency property of beliefs, Equations B.3

and B.4 imply that αi does not depend on ω. The incentive compatibility and individual rationality of

αi follows from that of the calibrated mechanism.

Finally, consider the case in which θ andω are not independent. Then, the experimentβ in Equation B.2

induces a joint distribution over the beliefs of N fictitious agents whose prior over the state is given

by µ0. Agent i ’s updated beliefs when her type is θi obtain from a transformation of µ (Alonso and

Câmara, 2016; Laclau and Renou, 2017).41 Thus, up to changing f (θ) by f (θ|ω), and interpreting

41Let µ0(·|θi ) ∈∆(Ω) denote the prior of the agent with type θi and µ(·|si ) denote the updated belief of an agent with prior
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the draw from the Blackwell experiment as the posterior of an agent with prior belief µ0, the result

follows.

Proof of Theorem 2.

“Only if” direction Similar to the proof of Proposition 1, we focus on the case in which θ and ω are

independent. Suppose ϑ ∈∆ (A×Θ×Ω) is implemented by an incentive compatible and individually

rational two-stage mechanism. That is,

ϑ(a,θ,ω) =µ0(ω) f (θ)
∫
∆(Ω)

α(a|θ,µ)β(dµ|ω), (B.5)

and α is incentive compatible and individually rational on the support of µ0 ⊗β. We construct an

incentive compatible and individually rational calibrated mechanism that implements ϑ.

First, if ϑ satisfies Equation B.5, Rubin and Wesler (1958) and Carathéodory’s theorem (Aliprantis and

Border, 2006, Theorem 5.32) imply that a finite support β′ :Ω→∆
(
{µ1, . . . ,µK }

)
exists such that for all

(a,θ,ω) ∈ A×Θ×Ω42

ϑ(a,θ,ω) =µ0(ω) f (θ)
K∑

k=1
α(a|θ,µk )β′({µk }|ω).

For each ω ∈Ω, partition [0,1] =∪K−2
k=1 [bωk ,bωk+1)∪ [bωK−1,1], where b1 = 0, and for all k ∈ {1, . . . ,K −2},

bωk+1 =
∑k

l=1β
′({µl }|ω). Define for ε ∈ [bωk ,bωk+1)

φ(a|θ,ω,ε) =α(a|θ,µk ).

The calibrated information structure is πφ(ω,ε) =φ(·|·,ω,ε) =α(·|θ,µk ) for ε ∈ [bωk ,bωk+1) if m ≤ K −2

or ε ∈ [bωK−1,1].

We now show that for all θ and all s ∈ supp πφ, the mechanism φ is incentive compatible and

individually rational. Note that πφ has finite support, and let s ∈ supp πφ and let µ(·|s) denote the

updated posterior. Then, k exists such that the following holds:

µ(ω|s) = µ0(ω)λ({ε :π(ω,ε) = s})∑
ω′∈Ωµ0(ω′)λ({ε :π(ω′,ε) = s})

= µ0(ω)(bωk+1 −bωk )∑
ω′∈Ωµ0(ω′)(bω

′
k+1 −bω

′
k )

=µk (ω).

Moreover, because φ(·|·,ω,ε) = α(·|·,µk ), then it satisfies the agent’s incentive compatibility and

individual rationality constraints when she holds belief µk .43

µ0 upon observing signal s∗i . When the signal is s∗i , the agent with type θi updates her beliefs to:

µi (·|θi , s∗i ) =
µ0(·|θi ) · µ(·|s∗i )

µ0(·)∥∥∥∥µ0(·|θi ) · µ(·|s∗i )
µ0(·)

∥∥∥∥ ,

where the · and / operations are meant componentwise, and ∥ ·∥ is the l 1-norm.
42Namely, Equation B.5 implies that for all (θ,ω), ϑ(·|θ,ω) ∈ clco{α(·|θ,µ) : µ ∈ ∆(Ω)}. Rubin and Wesler (1958) implies

that our under assumptions clco{α(·|θ,µ) : µ ∈ ∆(Ω)} = co{α(·|θ,µ) : µ ∈ ∆(Ω)}, and the rest of the claim follows from
Carathéodory’s theorem.

43To extend the result to the case in which the agent’s type is correlated with the state, note the following. Knowing µ0
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Supplementary Appendix

C Omitted proofs from Section 5

C.1 Repeated Mechanisms

In this section, we present the proof of Theorem 3. To do so, we first complete the formal definition of

the game induced by repeating mechanism φ : M ×Ω×E →∆(A), by specifying the histories, strategy

space, and the distribution over terminal histories induced by the agent’s strategy and the mechanism.

Having laid this groundwork, we describe the proof strategy, and then provide the formal details of the

proof. Throughout this section, we use the shorthand Ω̃=Ω×E , and denote its elements by ω̃.

Histories and strategies Histories through period t ∈N are defined as H t ≡ (Θ×M × A)t−1. The set

of infinite histories from the agent’s point of view is H∞. The set of terminal histories is H∞ ≡ Ω̃×H∞,

where recall E is finite and endowed with some measure η.

The agent’s behavioral strategy is defined as a collection σ≡ (σt )t∈N such that for all t ≥ 1

σt : H t ×Θ→∆(M).

The tuple of distributions (µ0,η, f ) together with the mechanismφ and the agent’s strategyσdetermine

a joint distribution over H∞ by the Ionescu-Tulcea theorem (Bogachev, 2007, Theorem 10.7.3). We

provide more details on this probability distribution below. Denote by P(µ0,η, f ,φ,σ) and E(µ0,η, f ,φ,σ) the

probability distribution over the terminal histories and the expectation with respect to this distribution,

respectively. Whenever it is not likely to lead to confusion, we drop the dependence on (µ0,η, f ,φ,σ),

and whenever we want to emphasize the dependence on the agent’s strategy we note the dependence

on σ.

The distribution over terminal histories H∞ For future use, we review the construction of Pσ. For

each t , the distributions (µ0,η, f ) together with the mechanism φ and the agent’s strategy σ determine

a distribution over Ω̃×H t , which we denote by Pt
σ ∈∆(Ω̃×H t ). Note that for any subset H̃t ⊂ Ω̃×H t ,

Pt
σ(H̃t ) =Pt+1

σ (H̃t × (Θ×M × A)). (C.1)

Moreover,

Pt+1
σ (ω̃,ht ,θ,m, a) =Pt

σ(ω̃,ht ) f (θ)σt (ht ,θ)(m)φ(a|m,ω̃). (C.2)

By the Ionescu-Tulcea theorem, the distribution Pσ ∈ ∆(Ω̃× H∞) is the unique distribution that

satisfies that for all t ∈N, H̃t ⊂ Ω̃×H t ,

Pσ(H̃t ×
∞∏

s=t+1
(Θ×M × A)) =Pt

σ(H̃t ). (C.3)

updates to µk conditional on s is enough to pin down the agent’s belief µ(·|θ, s), with respect to which the agent’s incentive
compatibility and individual rationality constraints are defined (see footnote 41).
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Belief system The agent’s beliefs over Ω̃ at the beginning of each t are determined by the belief

system, which in a slight abuse of notation we denote by µt : H t →∆(Ω̃). The belief system satisfies

Pt
σ(ht )µt (ω̃|ht ) =Pt

σ(ω̃,ht ).

That is, whenever ht is such that Pσ
(
{h̃ ∈ H∞ : h̃t = ht }

)> 0,

µt (ω̃|ht ) = Pt
σ(ω̃,ht )

Pt
σ(ht )

=Pt
σ(ω̃|ht ).

Given Pσ ∈ ∆(H∞), define µ∞(ω̃|h∞) ≡ Pσ(ω̃|h∞) to be the belief system conditional on the whole

terminal history h∞.

Remark C.1 (Belief system and strategies as functions on H∞). Whereas the beliefs and strategies are

defined on the finite histories, it is sometimes convenient to write them as functions on H∞ that are

adapted to H t .

A property of the belief system We collect here a property of the belief system which we use in our

proofs below.

Lemma C.1 (Martingale property under weak∗ convergence). µt (h∞)
w∗
−→µ∞(h∞) Pσ-almost surely.

This and the proof of other technical results are in Appendix D.

C.1.1 Proof of Theorem 3 (necessity)

We are now ready to present the proof of Theorem 3, starting by the “only if” direction. Let ϑ ∈∆(A×
Θ×Ω) denote the outcome distribution implemented by repeated mechanism φ under best response

σ, and let νσ denote the associated occupation measure, the definition of which we reproduce below

for ease of reference:

νσ(a,θ,m,ω̃) = lim
T→∞

1

T
Eσ

[
T∑

t=1
1

[
(at ,θt ,mt ,ω̃′) = (a,θ,m,ω̃)

]]= lim
T→∞

νT
σ(a,θ,m,ω̃), (C.4)

where recall limits are in the weak* sense. We show that ϑ can be implemented by an incentive

compatible and individually rational two-stage mechanism.

To this end, we consider two sequences of extended occupation measures on A×Θ×M × Ω̃×∆(Ω̃):

νT,1
σ ({(a,θ,m,ω̃)}× ∆̃) = 1

T
Eσ

[
T∑

t=1
1[(at ,θt ,mt ,ω̃′) = (a,θ,m,ω̃)]1[µt ∈ ∆̃]

]
, (C.5)

νT,2
σ ({(a,θ,m,ω̃)}× ∆̃) = 1

T
Eσ

[
T∑

t=1
1[(at ,θt ,mt ,ω̃′) = (a,θ,m,ω̃)]1[µt+1 ∈ ∆̃]

]
. (C.6)

We note the following. First, Equation C.5 counts the beliefs at the beginning of period t , while

Equation C.6 counts the beliefs at the end of period t (after the realization of θ, m, and a.) Equation C.5

is key to obtain the (limit) independence of the belief and type distributions, while Equation C.6 allows

us to obtain the (limit) independence of the allocation and the state, conditional on the induced belief.
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Second, νT
σ is the marginal of both νT,1

σ and νT,2
σ . Third, by Lemma C.1, µt

w∗
−→µ∞, and hence both νT,1

σ

and νT,2
σ have the same set of subsequential limits, which we record for future reference below (see

Appendix D for the proof):

Lemma C.2. The occupation measures νT,1
σ and νT,2

σ have the same set of subsequential limits.

The proof of necessity of Theorem 3 proceeds in five steps. First, we show that the marginal of νT,1
σ on

∆(Ω̃), which we denote by τT
σ weak*-converges to Pσ ◦µ−1∞ . We denote this limit measure by τσ. By

Lemma C.2, τσ is also the (limit) marginal of νT,2
σ on ∆(Ω̃).

Second, we show that up to a subsequence νT,1
σ ,νT,2

σ
w∗
−→ νσ. Furthermore, transition probabilities

τσ ∈∆(∆(Ω̃)),ρ :Θ×∆(Ω̃) →∆(M),α′ : M ×∆(Ω̃) →∆(A) exist such that

νσ(a,θ,m,ω̃) =
∫
∆(Ω̃)

µ(ω̃) f (θ)ρ(m|θ,µ)α′(a|m,µ)τσ(dµ). (C.7)

Hence, the agent’s payoff when faced with mechanism φ and playing strategy σ can be written as:

Eνσ [u(a,θ,ω)] =
∫
∆(Ω̃)

∑
θ∈Θ

f (θ)
∑

m∈M
ρ(m|θ,µ)Eω̃∼µ

[ ∑
a∈A

α′(a|µ,m)u(a,θ,ω)

]
τσ(dµ). (C.8)

Third, we show that for all θ ∈Θ

Eτσ

{ ∑
m∈M

ρ(m|θ,µ)Eω̃∼µ

[ ∑
a∈A

α′(a|µ,m)u(a,θ,ω)

]
−max

m∈M
Eω̃∼µ

[ ∑
a∈A

α′(a|µ,m)u(a,θ,ω)

]}
= 0. (C.9)

Equations C.8 and C.9 allow us to identify the incentive compatible and individually rational allocation

rule of the two-stage mechanism that implements ϑ.

Fourth, whereas the previous steps identify a two-stage mechanism expressed in terms of posterior

beliefs over Ω̃, we show how to obtain a two-stage mechanism expressed in terms of posterior beliefs

overΩ. Finally, we show that the agent’s payoff in Equation C.8 coincides with the payoff she would

get when best responding to the information structure calibrated to φ.

Step 1 Having defined the extended occupation measure in Equation C.5, we present here a property

we use in our proof. Let τT
σ denote the marginal of νT,1

σ on ∆(Ω̃). That is, for any measurable subset

∆̃⊂∆(Ω̃), define

τT
σ(∆̃) = 1

T
Eσ

[
T∑

t=1
1[µt ∈ ∆̃]

]
. (C.10)

In Appendix D, we prove the following:

Lemma C.3. The sequence of measures (τT
σ)T∈N defined by Equation C.10 converges in the weak* sense

to the push-forward measure τσ ≡Pσ ◦µ−1∞ , where µ∞(h∞) =Pσ(·|h∞).

43



Step 2 To show that Equation C.7 holds, we show the following properties of νT,1
σ and νT,2

σ . On the

one hand, νT,1
σ satisfies that for all g ∈Cb(A×Θ×M × Ω̃×∆(Ω̃)),∫

A×Θ×M×Ω̃×∆(Ω̃)
g (a,θ,m,ω̃,µ)dνT,1

σ =
∫
Θ×M×∆(Ω̃)

Eµ
[
Eφ(·|m,ω̃)

[
g (a,θ,m,ω̃,µ)

]]
dνT,1

σ,ΘM∆, (C.11)

and for all q ∈Cb(Θ×∆(Ω)),∫
Θ×∆(Ω̃)

q(θ,µ)dνT,1
σ,Θ∆ =

∫
∆(Ω̃)

∫
Θ

f (θ)q(θ,µ)dτT
σ . (C.12)

On the other hand, νT,2
σ satisfies that for all g ∈Cb(A×Θ×M × Ω̃×∆(Ω̃)),∫

A×Θ×M×Ω̃×∆(Ω̃)
g (a,θ,m,ω̃,µ)dνT,2

σ =
∫
Θ×M×A×∆(Ω̃)

Eω̃∼µ
[
g (a,θ,m,ω̃,µ)

]
dνT,2

σ,ΘM A∆. (C.13)

In the expressions above, the subscripts on νT,k
σ next to σ are the spaces over which we take the

marginals, and∆ is shorthand notation for∆(Ω̃). Because∆(A×Θ×M×Ω̃×∆(Ω̃)) is compact (Aliprantis

and Border, 2006, Theorem 15.11), νT,1
σ has a convergent subsequence (νTn ,1

σ )n∈N, which by Lemma C.2

is also a convergent subsequence of νT,2
σ . Let νσ denote the weak∗ limit along Tn . The continuity of

the projection implies that νσ is the marginal of νσ on A×Θ×M ×Ω̃, and τσ ≡Pσ◦µ−1∞ is the marginal

on ∆(Ω). Equations C.12 and C.13 together imply that νσ admits the decomposition in the right hand

side of Equation C.7, and the result follows.

To show Equation C.11 holds, use that νT,1
σ has finite support to write it as follows:

νT,1
σ (a,θ,m,ω̃,µ) = 1

T

T∑
t=1

∑
ht∈H t

Pt
σ(ω̃,ht ) f (θ)σt (ht ,θ)(m)φ(a|m,ω̃)1[µt =µ]

= 1

T

T∑
t=1

∑
ht∈H t

Pt
σ(ht )µ(ω̃) f (θ)σt (ht ,θ)(m)φ(a|m,ω̃)1[µt =µ], (C.14)

where the second equality uses that µt (ht ) =Pt
σ(·|ht ).

Equation C.14 implies the following holds for every bounded continuous function g ∈Cb(A×Θ×M ×
Ω̃×∆(Ω̃)):

EνT,1
σ

[
g (a,θ,m,ω̃,µ)

]= EνT,1
σ,ΘM∆

[
Eµ

[
Eφ(·|m,ω̃)

[
g (a,θ,m,ω̃,µ)

]]]
,

This completes the proof that Equation C.11 holds. Letting Vg (θ, M ,µ) = Eµ
[
Eφ(·|m,ω̃)

[
g (a,θ,m,ω̃,µ)

]]
,

we have that∫
A×Θ×M×Ω̃×∆(Ω̃)

g dνT,1
σ =

∫
Θ×M×∆(Ω̃)

Vg dνT,1
σ,ΘM∆⇔

∫
A×Θ×M×Ω̃×∆(Ω̃)

(g −Vg )dνT,1
σ = 0.

Because g −Vg ∈Cb(A×Θ×M × Ω̃×∆(Ω̃)) and νTn ,1
σ

w∗
−→ νσ, we conclude that

Eνσ
[
g (a,θ,m,ω̃,µ)

]= ∫
Θ×M×∆(Ω̃)

Eµ
[
Eφ(·|m,ω̃)

[
g (a,θ,m,ω̃,µ)

]]
dνσ,ΘM∆. (C.15)

To show that Equation C.12 holds, note that the marginal of νT,1
σ onΘ×∆(Ω̃) equals τT

σ ⊗ f . Indeed, fix
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any continuous function q ∈Cb(Θ×∆(Ω̃)) and note that for all T

EνT,1
σ,Θ∆

[
q(θ,µ)

]= EτT
σ

[ ∑
θ∈Θ

f (θ)q(θ,µ)

]
.

Letting Vq (µ) =∑
θ∈Θ f (θ)q(θ,µ), we have that for all T∫

∆(Ω̃)×Θ
(
q(θ,µ)−Vq (µ)

)
dνT,1

σ,Θ∆ = 0.

Because q −Vq ∈Cb(Θ×∆(Ω̃)) and νTn ,1
σ

w∗
−→ νσ, we conclude that∫

Θ×∆(Ω̃)
q(θ,µ)dνσ,Θ∆ =

∫
∆(Ω̃)

∫
Θ

f (θ)q(θ,µ)dτσ. (C.16)

Lastly, to show that Equation C.13 holds, note that we can write νT,2
σ as follows (once again, we use

that for finite T , it has finite support):

νT,2
σ (a,θ,m,ω̃,µ) = 1

T

T∑
t=1

∑
ht∈H t

Pt
σ(ht )Pt

σ(ω̃|ht ) f (θ)σt (ht ,θ)(m)φ(a|m,ω̃)1[µt+1(ht ,θ,m, a) =µ] =

= 1

T

T∑
t=1

∑
ht∈H t :µt+1(ht ,θ,m,a)=µ

Pt+1
σ (ω̃,ht ,θ,m, a) = 1

T

T∑
t=1

∑
ht∈H t :µt+1(ht ,θ,m,a)=µ

µ(ω̃)Pt+1
σ (ht ,θ,m, a)

=µ(ω̃)
1

T

T∑
t=1

∑
ht∈H t :µt+1(ht ,θ,m,a)=µ

Pt+1
σ (ht ,θ,m, a) =µ(ω̃)νT,2

σ,AΘM∆(a,θ,m,µ),

where the last expression follows from noting that the term multiplying µ(ω) in the first expression in

the third line is
∑
ω̃ν

T,2
σ (a,θ,m,ω̃,µ).

Then, for every g ∈Cb(A×Θ×M × Ω̃×∆(Ω̃)), we have that

EνT,2
σ

[
g (a,θ,m,ω̃,µ)

]= EνT,2
σ,AΘM∆(Ω̃)

[
Eω̃∼µ

[
g (a,θ,m,ω̃,µ)

]]
,

which completes the proof that Equation C.13 holds. Letting Vg (a,θ,m,µ) = Eω̃∼µ
[
g (a,θ,m,ω̃,µ)

]
, we

have that ∫ (
g −Vg

)
dνT,2

σ = 0.

Because g −Vg ∈Cb(A×Θ×M × Ω̃×∆(Ω̃)) and νTn ,2
σ

w∗
−→ νσ, we conclude that

Eνσ
[
g (a,θ,m,ω̃,µ)

]= ∫
A×Θ×M×∆(Ω̃)

Eω̃∼µ
[
g (a,θ,m,ω̃,µ)

]
νσ,AΘM∆(d(a,θ,m,µ)). (C.17)

Equations C.16 and C.17 imply νσ admits the following disintegration:

νσ({(a,θ,m,ω̃)}× ∆̃) =
∫
∆̃
µ(ω̃) f (θ)α′(a|θ,m,µ)ρ(m|θ,µ)τσ(dµ), (C.18)

where we disintegratedνσ,AΘM∆ first alongΘ×∆(Ω̃)—and used Equation C.16 to obtain the independence
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ofΘ and∆(Ω̃)—and then further disintegrated the distribution of A×M conditional onΘ×∆(Ω̃). Now,

Equation C.15 implies that the following also holds

νσ({(a,θ,m,ω̃)}× ∆̃) =
∫
∆̃
µ(ω̃) f (θ)φ(a|m,ω̃)ρ(m|θ,µ)τσ(dµ), (C.19)

where once again we use the uniqueness of disintegration. Because Equations C.18 and C.19 hold

for any tuple (a,θ,m,ω̃) and measurable subset ∆̃ of ∆(Ω̃), we conclude that (i) α′(a|θ,m,µ) does not

depend on θ τσ-almost everywhere, and (ii) φ(·|m,ω̃) is constant on ω̃ in the support of µ τσ-almost

everywhere. This concludes the proof of Step 2.

Step 3 We now argue that the agent achieves

u∗(µ) ≡ ∑
θ∈Θ

f (θ) max
m∈M

∑
ω̃∈Ω̃

µ(ω̃)
∑

a∈A
φ(a|m,ω̃)u(a,θ,ω) = ∑

θ∈Θ
f (θ) max

m∈M

∑
ω̃∈Ω̃

µ(ω̃)
∑

a∈A
α′(a|m,µ)u(a,θ,ω),

(C.20)

on the support of τσ, where the second equality follows from Step 2. Toward a contradiction, suppose

this is not the case; that is,

Eτσ

[ ∑
θ∈Θ

f (θ)
∑

m∈M
ρ(m|θ,µ)

∑
ω̃∈Ω̃

µ(ω̃)
∑
a
φ(a|m,ω̃)u(a,θ,ω)

]
< Eτσ

[ ∑
θ∈Θ

u∗(µ)

]
=U∗.

We show that the agent can achieve a payoff arbitrarily close to U∗ by playing according toσ until some

finite T and then best-responding to her beliefs at time T in every period thereafter; a contradiction.

Consider a strategyσ′ which until some period T plays according toσ and after period T best responds

to µT (hT ) ∈∆(Ω̃). Because payoffs accumulated on a finite number of periods are irrelevant to long-

run payoffs, this strategy results in a payoff:

∑
hT ∈H T

PT
σ(hT )

∑
θ∈Θ

f (θ) max
m∈M

[ ∑
ω̃∈Ω̃

µT (ω̃)
∑

a∈A
φ(a|m,ω̃)u(a,θ,ω)

]
= ∑

hT ∈H T

PT
σ(hT )u∗(µT (hT ))

= EPT
σ◦µ−1

T

[
u∗(µ)

]= EPσ◦µ−1
T

[
u∗(µ)

]
,

where the last equality follows as µT is adapted to the histories through T . Similar arguments to

Lemma C.3 imply that Pσ ◦µ−1
T

w∗
−→ Pσ ◦µ−1∞ ≡ τσ. Noting that u∗ : ∆(Ω̃) → R is continuous and

bounded (as it is the maximum of linear functions in beliefs), we obtain that as T →∞,

EPσ◦µ−1
T

[
u∗(µ)

]→ Eτσ
[
u∗(µ)

]
.

It follows that for everyδ> 0, we can find T large enough so that |EPσ◦µ−1
T

[
u∗(µ)

]−U∗| < δ, contradicting

the optimality of σ.

We conclude that α :Θ×∆(Ω̃) →∆(A) defined as follows:

α(a|θ,µ) = ∑
m∈M

ρ(m|θ,µ)α′(a|m,µ),

is incentive compatible and individually rational τσ-almost everywhere.
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Step 4 We now show how to derive a two-stage mechanism β∗ :Ω→∆(∆(Ω)) and an allocation rule

α∗ :Θ×∆(Ω) →∆(A) that implement ϑ. First, note that the agent’s payoff when her type is θ and the

induced belief is µ ∈∆(Ω̃), can be written as

∑
ω̃∈Ω̃

µ(ω̃)
∑

a∈A
α(a|θ,µ)u(a,θ,ω) = ∑

ω∈Ω
µΩ(ω)

∑
a∈A

α(a|θ,µ)u(a,θ,ω),

where µΩ is the marginal of µ on Ω and the equality follows because the realization of ε is payoff-

irrelevant. By Step 3, α(·|θ,µ) is individually rational and incentive compatible when the agent holds

belief µΩ.

Furthermore, for each (a,θ,ω) ∈ A×Θ×Ω, we have

ϑ(a,θ,ω) = ∑
ε∈E

∫
∆(Ω̃)

µ(ω,ε) f (θ)α(a|θ,µ)τσ(dµ) =
∫
∆(Ω̃)

µΩ(ω) f (θ)α(a|θ,µ)τσ(dµ).

For each θ ∈Θ, consider the joint distribution Qθ ∈∆(A×∆(Ω)) defined as follows:

Qθ({a}× ∆̃) =
∫
∆(Ω̃)

1[µΩ ∈ ∆̃]α(a|θ,µ)τσ(dµ) =
∫
∆̃
α∗(a|θ,µΩ)τ∗(dµΩ),

where the third equality follows from disintegration (note α∗(·|·,µΩ) = E[α(·|·, µ̃)|µ̃Ω =µΩ]). By the first

argument in Step 4, α∗(·|·,µΩ) is individually rational and incentive compatible when the agent holds

µΩ. We obtain that

ϑ(a,θ,ω) =
∫
∆(Ω)

µΩ(ω) f (θ)α∗(a|θ,µΩ)τ∗(dµΩ).

Defining for all ω ∈Ω and measurable subsets ∆̃ ∈∆(Ω),

β∗(∆̃|ω) =
∫
∆̃

µ(ω)

µ0(ω)
τ∗(dµ),

Steps 2-4 together imply that ϑ can be implemented by the incentive compatible and individually

rational two-stage mechanism (β∗,α∗).

Step 5: The agent adequately learns Finally, we argue that the agent earns the same payoff as if she

had access to the information structure calibrated to φ, πφ.

Lemma C.4. Let τφ denote the belief distribution induced by the calibrated information structure πφ.

Then, the agent’s payoff under σ equals

U (τφ) ≡ Eτφ
[ ∑
θ∈Θ

f (θ) max
m∈M

∑
ω̃∈Ω̃

µ(ω̃)
∑

a∈A
φ(a|m,ω̃)u(a,θ,ω)

]
. (C.21)

The proof of this is standard, and hence we defer it to Appendix D.
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C.1.2 Proof of Theorem 3 (sufficiency)

Suppose ϑ ∈∆ (A×Θ×Ω) is implemented by an incentive compatible and individually rational two-

stage mechanism. That is,

ϑ(a,θ,ω) =µ0(ω) f (θ)
∫
∆(Ω)

α(a|θ,µ)β(dµ|ω), (C.22)

and α is incentive compatible and individually rational on the support of µ0 ⊗β. As in the proof of

Theorem 2, a finite support β′ :Ω→∆
(
{µ1, . . . ,µK }

)
exists such that (β′,α) implement ϑ. As in Green

and Stokey (2022), the experiment β′ can be generated by a finite information structure π :Ω×E →
∆(Ω), where (i) E is finite, (ii) E is independent ofΩ, and (iii) µ=π(ω,ε).

Construct a mechanism φ : Θ×Ω×E → ∆(A) such that φ(·|θ,ω,ε) = α(·|θ,π(ω,ε)). (Note that π is

information structure calibrated to φ, but expressed in beliefs.) Consider now the extensive form

game induced by such a mechanism.44

If the agent truthfully reports her type, then the occupation measure induces outcome distribution ϑ.

Hence, under truthtelling, the agent’s payoff is:

U (σtruth) = ∑
(a,θ,ω)∈A×Θ×Ω

ϑ(a,θ,ω)u(a,θ,ω) = Eτφ
[ ∑
θ∈Θ

f (θ)
∑

a∈A
α(a|θ,µ)

∑
ω∈Ω

µ(ω)u(a,θ,ω)

]

= Eτφ
[ ∑
θ∈Θ

f (θ)max

{
max
θ′∈Θ

∑
a∈A

α(a|θ′,µ)
∑
ω∈Ω

µ(ω)u(a,θ,ω),
∑
ω∈Ω

µ(ω)u(a;,θ,ω)

}]
= (C.23)

= EE
[ ∑
θ∈Θ

f (θ)max

{
max
θ′∈Θ

∑
ω∈Ω

µ(ω)
∑

a∈A
φ(a|θ′,ω,ε)u(a,θ,ω),

∑
ω∈Ω

µ(ω)u(a;,θ,ω)

}]
,

where (i) τφ is the belief distribution induced by the information structure π, and (ii) the first equality

is by definition of the occupation measure, the second is the definition that ϑ is implemented by the

two-stage mechanism, the third follows from incentive compatibility and individual rationality of α,

and the fourth is definitional.

Moreover, the payoff in the last line of Equation C.23 is the payoff the agent obtains by using the

“learning” strategy in Lemma C.4, which first extracts all the mechanism can teach her about the state

and then uses that information to optimize over her participation and reporting strategies. It follows

that truthtelling (and participation) are optimal and ϑ is implemented by repeated mechanism φ.

C.2 Dynamic Mechanisms

In this section, we present the proof of Theorem 4. To do so, we first complete the formal definition

of the game, by specifying the histories, strategy space, and the distribution over terminal histories

induced by the agent’s strategy and the mechanism. Having laid this groundwork, we describe the

proof strategy, and then provide the formal details of the proof.

44We could expand the mechanism by allowing the agent to have a message which triggers the outside option, but this is
not necessary as α is individually rational.

48



Mechanisms, histories, and strategies A dynamic mechanism (ϕt )t∈N is a sequence of mappings

that condition on the state, the agent’s report history, the allocation history, and today’s report and

output an allocation. By the revelation principle, it is without loss of generality to restrict attention to

mechanisms that solicit type reports.

As in the main text, we expand the set of type reports and allocations by the non-participation decision

and the outside option, which we denote by ΘA; ≡ A ×Θ∪ {(;, a;)}. Then, Ĥ t = (ΘA;)t−1 denotes

the histories of reports (inclusive of the non-participation decision) and allocations at the beginning

of time t ∈ N, and let Ĥt = Ω× Ĥ t . Similarly, let Ĥ∞ = ×t∈N
(
ΘA;

)
denote the set of all possible

report-allocation outcome paths, and let Ĥ∞ =Ω× Ĥ∞. A dynamic mechanism is then a collection of

mappings (ϕt )t∈N such that ϕt : Ĥt ×Θ→∆(A).

To define the agent’s strategy, let H t =Θt−1 × Ĥ t−1, where the coordinates denote the sequence of

realized types, reports (inclusive of participation decisions), and allocations through period t −1. A

behavioral strategy is a mapping (pt ,σt ) : H t ×Θ→ [0,1]×∆(Θ).

The distribution over terminal histories H∞ To obtain the complete description of the paths on

the tree we need to append Ω to H t ; hence the paths through period t −1 are Ω× H t ≡ Ht . The

distributions over states, agent’s types, the agent’s strategy, and the mechanism induce a distribution

over the terminal histories H∞ ≡Ω×H∞, which we denote by P(p,σ) ∈∆(Ω×H∞). We denote by E(p,σ)

the expectation under this measure. The distribution P(p,σ) ∈∆(Ω×H∞) is the unique distribution

that satisfies that for all t ∈N, H̃t ⊂Ω×E ×H t ,

P(p,σ)(H̃t ×
∞∏

s=t+1
(Θ×ΘA;) =Pt

σ(H̃t ),

where the distributions (Pt
(p,σ))t∈N satisfy (under participation and truthtelling)

Pt+1
(p,σ)(ω,ht ,θ,θ′, a) =Pt

(p,σ)(ω,ht ) f (θ)1[θ′ = θ]ϕt (a|ω, ĥt ,θ′).

Implementation We focus on incentive-compatible mechanisms ϕ for which (i) a best response,

(p,σ), exists, and (ii) the occupation measure νσ ∈∆(A×Θ×Ω) exists, where

ν(p,σ)(a,θ,ω) = lim
T→∞

1

T
E(p,σ)

[
T∑

t=1
1

[
(at ,θt ,ω′) = (a,θ,ω)

]]
, (C.24)

where the limit is in the weak∗ sense. In contrast to Appendix C.1, we do not keep track of the agent’s

type reports in the occupation measure, only the agent’s types. Under (p,σ) only truthtelling histories

have positive probability.

C.2.1 Proof of Theorem 4 (necessity)

Let ϑ ∈ ∆(A ×Θ×Ω) denote the outcome distribution implemented by an incentive compatible

dynamic mechanism ϕ, and let ν(p,σ) denote the occupation measure under the agent’s truthtelling

strategy. Below, we show that ν(p,σ), and hence ϑ, can be implemented by a two-stage mechanism

which lacks profitable undetectable deviations and is ex ante individually rational.
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Analogously to the proof of Theorem 3, we define two sequences of extended occupation measures on

A×Θ×Ω×∆(Ω) defined as follows. Letting ∆̃ denote a measurable subset of ∆(Ω), define

νT,1
(p,σ)({(a,θ,ω)}× ∆̃) = 1

T

T∑
t=1

∑
ht∈H t

Pt
(p,σ)(ω,ht ) f (θ)σt (ht ,θ)(θ)ϕ(ω, ĥt ,θ)(a)1[µt (ht ) ∈ ∆̃], (C.25)

νT,2
(p,σ)({(a,θ,ω)}× ∆̃) = 1

T

T∑
t=1

∑
ht∈H t

Pt
(p,σ)(ω,ht ) f (θ)σt (ht ,θ)(θ)ϕ(ω, ĥt ,θ)(a)1[µt+1(ht ,θ,θ, a) ∈ ∆̃].

(C.26)

The proof proceeds similarly to that in Appendix C.1. First, we show that the occupation measure

ν(p,σ) ∈∆(A×Θ×Ω) admits the following decomposition

ν(p,σ)(a,θ,ω) =
∫
∆(Ω)

f (θ)µ(ω)α(a|θ,µ)τ(p,σ)(dµ), (C.27)

where τ(p,σ) is the distribution over terminal beliefs (cf. Lemma C.3) and the transition probability

α :Θ×∆(Ω) →∆(A) is our candidate allocation rule. Consequently, the agent’s equilibrium payoff can

be written as follows:

∑
(a,θ,ω)∈A×Θ×Ω

ν(p,σ)(a,θ,ω)u(a,θ,ω) =
∫
∆(Ω)

[ ∑
θ∈Θ

f (θ)
∑
ω∈Ω

µ(ω)
∑

a∈A
α(a|θ,µ)u(a,θ,ω)

]
τ(p,σ)(dµ).

(C.28)

Second, we show that the allocation rule lacks profitable undetectable deviations and is ex ante

individually rational.

The occupation measure satisfies Equation C.27 To prove that Equation C.27 holds, we first show

that for all g ∈Cb(A×Θ×Ω×∆(Ω)) and all T ∈N,∫
A×Θ×Ω×∆(Ω)

g (a,θ,ω,µ)dνT,2
(p,σ) =

∫
A×Θ×∆(Ω)

Eµ[g (a,θ,ω,µ)]dνT,2
(p,σ),AΘ∆(Ω) (C.29)

and for all q ∈Cb(Θ×∆(Ω)) and all T ∈N,∫
Θ×∆(Ω)

q(θ,µ)dνT,1
(p,σ),Θ∆ =

∫
∆(Ω)

∑
θ∈Θ

f (θ)q(θ,µ)dνT,1
(p,σ),∆, (C.30)

where the subscripts on ν next to (p,σ) are the spaces over which we take the marginals, and ∆ is

shorthand notation for ∆(Ω). We skip the proof of this step as it basically repeats the proof of the

analogous step in Appendix C.1.

Because ∆(A ×Θ×Ω×∆(Ω)) is compact (Aliprantis and Border, 2006, Theorem 15.11), νT,1
(p,σ) has a

convergent subsequence (νTn ,1
(p,σ))n∈N, which by Lemma C.2 is also a convergent subsequence of νT,2

(p,σ).

Let ν(p,σ) denote the weak∗ limit along Tn . The continuity of the projection implies that ν(p,σ) is the

marginal of ν(p,σ) on A×Θ×Ω, and τ(p,σ) ≡Pσ ◦µ−1∞ is the marginal on ∆(Ω). Moreover, Equation C.29

and Equation C.30 together imply that ν(p,σ) admits the decomposition on the right hand side of

Equation C.27, and the result follows.
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The allocation rule lacks profitable undetectable deviations We now show the allocation rule α

admits no profitable undetectable deviations. An undetectable deviation is a transition probability σ′

fromΘ×∆(Ω) to ∆(Θ) such that for all µ ∈∆(Ω) and θ′ ∈Θ
∑
θ∈Θ

f (θ)σ′(θ′|θ,µ) = f (θ′). (C.31)

Consider a deviation by the agent to (p,σ′) instead of (p,σ). That is, when his type is θ and belief

is µ, the agent chooses type θ′ with probability σ′(θ′|θ,µ). In what follows, we index the induced

distributions over histories only by σ and σ′ as we are only changing the agent’s reporting strategy. In

particular, denote by Pσ′ the induced probability distribution over terminal histories when the agent

uses (p,σ′) instead of (p,σ).

We first claim that for every t the marginal of Pt
σ′ overΩ× Ĥ t coincides with that of Pt

σ. Recall that for

every t we have that

Pt+1
σ′ (ω,ht ,θ,θ′, a) =Pt

σ′(ω,ht ) f (θ)σ′(θ′|µt (ht ),θ)ϕt (a|ω, ĥt ,θ′).

Adding up over θ on both sides and using Equation C.31, we get:

∑
θ∈Θ

Pt+1
σ′ (ω,ht ,θ,θ′, a) =Pt

σ′(ω,ht ) f (θ′)ϕt (a|ω, ĥt ,θ′).

Now, note that ht = (ĥt , θ̃t−1) for some sequence θ̃t−1 ∈Θt−1. If we add up on both sides over all such

sequences we get

∑
θ∈Θ,θ̃t−1∈Θt−1

Pt+1
σ′ (ω, ĥt , θ̃t−1,θ,θ′, a) = ∑

θ̃t−1∈Θt−1

Pt
σ′(ω, ĥt , θ̃t−1) f (θ′)ϕt (a|ω, ĥt ,θ′).

Note that if the distribution over Ω× Ĥ t induced by σ′ up to period t is the same as that induced by σ,

we get that the right-hand side equals:

Pt
σ,Ĥt (ω, ĥt ) f (θ′)ϕt (a|ω, ĥt ,θ′),

and hence Pt+1
σ′,Ĥt+1

(ω, ĥt ,θ′, a) = Pt
σ,Ĥt

(ω, ĥt ) f (θ′)ϕt (a|ω, ĥt ,θ′) = Pt+1
σ,Ĥt+1

(ω, ĥt ,θ′, a). By definition

of Pσ′ , we conclude that Pσ′,Ĥ∞ = Pσ,Ĥ∞ . Hence, the joint distribution over states, reports, and

allocations is the same under σ and σ′.

Let νT,1
σ′ ,νT,2

σ′ ∈∆(A×Θ× Θ̂×Ω×∆(Ω)) denote the analogue of the occupation measures in Equations

C.25 and C.26 corresponding to σ′, extended to account for the agent’s reports. Below, the notation Θ̂

signifies those are the agent’s reports. In what follows, recalling that the belief system depends only on

the reported history and not the type history is useful. Equation C.31 implies that for all measurable
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subsets ∆̃ of ∆(Ω),

∑
θ∈Θ

νT,1
σ′ ({(a,θ,θ′,ω)}× ∆̃) = 1

T

T∑
t=1

∑
ht∈H t

Pt
σ′(ω,ht ) f (θ′)ϕt (ω, ĥt ,θ′)(a)1[µt (ht ) ∈ ∆̃]

= 1

T

T∑
t=1

∑
ĥt∈Ĥ t

Pt
σ′(ω, ĥt ) f (θ′)ϕt (ω, ĥt ,θ′)(a)1[µt (ĥt ) ∈ ∆̃] (C.32)

= 1

T

T∑
t=1

∑
ĥt∈Ĥ t

Pt
σ(ω, ĥt ) f (θ′)ϕt (ω, ĥt ,θ′)(a)1[µt (ĥt ) ∈ ∆̃] = νT,1

σ ({(a,θ′,ω)}× ∆̃).

The first equality uses the definition of undetectability, the second uses that all the terms depend only

on the reported history, the third uses that σ and σ′ induce the same distribution over states, reports,

and allocations, and the last is the definition of the occupation measure induced by σ. In words, the

marginal of νT,1
σ′ over allocations, reports, states, and beliefs, νT,1

σ′,AΘ̂Ω∆
coincides with νT,1

σ .

We now show that νT,1
σ′ and νT,2

σ′ have a convergent subsequence with limit νσ′ ∈∆(A×Θ×Θ̂×Ω×∆(Ω))

that admits the following decomposition:

Eνσ′ [u(a,θ,ω)] =
∫
∆(Ω)

[ ∑
θ∈Θ

f (θ)
∑
θ′∈Θ

σ′(θ,µ)(θ′)
∑
a
α(a|θ′,µ)u(a,θ,µ)

]
dτ(p,σ),

where u(a,θ,µ) is the linear extension of u(a,θ, ·).

We proceed as follows: First, we show that for each T , under νT,1
σ′ , the allocation is independent of the

true type conditional on the period-t belief and the reported type. Indeed,

∑
ω∈Ω

νT,1
σ′ (a,θ,θ′,ω,µ) = 1

T

T∑
t=1

∑
ht∈H t

Pσ′(ht )

( ∑
ω∈Ω

Pσ′(ω|ht )ϕt (ω, ĥt ,θ′)(a)

)
f (θ)σ′(µt (ht ),θ)(θ′)1[µt (ht ) =µ]

= f (θ)σ′(θ,µ)(θ′)
f (θ′)

 1

T

T∑
t=1

∑
ĥt :µt (ĥt )=µ

Pt
σ′(ĥt )

∑
ω∈Ω

Pσ′(ω|ĥt ) f (θ′)ϕt (ĥt ,θ′)(a)


= f (θ)σ′(θ,µ)(θ′)

f (θ′)
νT,1
σ′,AΘ̂∆

(a,θ′,µ) = f (θ)σ′(θ,µ)(θ′)
f (θ′)

νT,1
σ,AΘ∆(a,θ′,µ),

where the third and fourth equalities use Equation C.25. Moreover, the same analysis as that under σ

implies the agent’s true type is independent of the belief.

Therefore, νT,1
σ′,AΘΘ̂∆

admits decomposition:

νT,1
σ′,AΘΘ̂∆

(a,θ,θ′,µ) = f (θ)σ′(θ′|θ,µ)

f (θ′)
νT,1
σ′,AΘ̂∆

(a,θ′,µ) = f (θ)σ′(θ′|θ,µ)

f (θ′)
νT,1
σ,AΘ∆(a,θ′,µ), (C.33)

where the second equality follows from Equation C.32.

Second, by the same arguments as in Appendix C.1, νT,2
σ′ (a,θ,θ′,ω,µ) admits decompositionµ(ω)νT,2

σ′,AΘΘ̂∆
(a,θ,θ′,µ)

for each T .

Third, convergent subsequences ν
Tnm ,1
σ′ and ν

Tnm ,2
σ′ exist with limit νσ′ (cf. Lemma C.2).45 We note two

45Lemma C.2 implies that ν
T,1
σ′ and ν

T,2
σ′ have the same set of subsequential limits. Indeed, let g
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things. On the one hand, because our previous arguments show that the set of measures admitting

the above decompositions is closed, the limit νσ′ admits the decomposition. That is,

∫
A×Θ×Θ̂×Ω×∆(Ω)

u(a,θ,ω)νσ′(d(a,θ,θ′,ω,µ)) =
∫

A×Θ̂×∆(Ω)

∑
θ∈Θ

f (θ)σ′(θ′|θ,µ)

f (θ′)

( ∑
ω∈Ω

µ(ω)u(a,θ,ω)

)
dνσ′,AΘ̂∆.

On the other hand, because Tnm is a subsequence of Tn and νT,1
σ′,AΘ̂Ω∆

= νT,1
σ,AΘΩ∆ and νTn ,1

σ,AΘΩ∆
w∗
−→ νσ,

we can conclude that νσ′,AΘ̂∆ = νσ,AΘ∆ and admits the same decomposition as ν̄σ. We conclude that

Eνσ′ [u(a,θ,ω)] =
∫
∆(Ω)

[ ∑
θ,θ′∈Θ

f (θ)σ′(θ′|θ,µ)
∑
a
α(a|θ′,µ)

( ∑
ω∈Ω

µ(ω)u(a,θ,ω)

)]
dτ(p,σ).

Consequently,

lim sup
T→∞

Eσ′ [UT ] ≥ lim
m→∞Eσ′

[
UTnm

]= Eνσ′ [u(a,θ,ω)]

= Eτ(p,σ)

[ ∑
θ,θ′,a

f (θ)σ′(θ,µ)(θ′)α(a|θ′,µ)u(a,θ,µ)

]
,

where u(a,θ,µ) is the linear extension of u(a,θ, ·). Because σ is a best response, we have that

Eτ(p,σ)

[∑
θ,a

f (θ)α(a|θ,µ)u(a,θ,µ)

]
≥ Eτ(p,σ)

[ ∑
θ,θ′,a

f (θ)σ′(θ,µ)(θ′)α(a|θ′,µ)u(a,θ,µ)

]
,

which implies the two-stage mechanism lacks profitable undetectable deviations.

The allocation rule is ex ante individually rational Define

Unet(µ) = ∑
θ∈Θ

f (θ)
∑
ω∈Ω

µ(ω)

[ ∑
a∈A

α(a|θ,µ)u(a,θ,ω)−u(a;,θ,ω)

]
,

to be the agent’s (ex ante) payoff net of the outside option at belief µ. Ex ante individual rationality of

α is equivalent to Unet(µ) ≥ 0 for all µ in the support of τ(p,σ).

Toward a contradiction, assume that Unet(µ) < 0 with positive probability under τ(p,σ). By Lemma D.1

denote any continuous bounded function on Ω × ∆(Ω) × Θ × Θ × A. Let DT (g ) = E
νT,2
σ′

[
g
] − E

νT,1
σ′

[
g
] =

1
T

∑T
t=1 Eσ′

[
g (at ,θt ,θ′t ,ω,µt+1)− g (at ,θt ,θ′t ,ω,µt )

]
. The argument in Lemma C.2 implies that DT (g ) → 0 as T →∞ (this

does not rely on the existence of a limit, just the convergence of beliefs and the continuity of g ). Now, let Tn be such that

ν
Tn ,1
σ′

w∗
−→ ν̃. Note that ∫

g dνTn ,2
σ′ =

∫
g dνTn ,1

σ′ +DTn (g ) →
∫

g d ν̃+0,

so a subsequential limit of νT,1
σ′ is a subsequential limit of νT,2

σ′ . Switching the role of 1 and 2, we obtain the opposite set
inclusion.

53



in Appendix D, a set B ⊂∆(Ω) open relative to ∆(Ω) exists such that46

∫
B

Unet(µ)τ(p,σ)(dµ) < 0.

Moreover, we can pick B such that τ(p,σ)(∂B) = 0, where ∂B denotes the boundary of B relative to

∆(Ω).47 Lastly, let δ> 0 be such that ∫
B

Unet(µ)τ(p,σ)(dµ) ≤−2δ. (C.34)

Let (µt (ht ))t∈N,ht∈H t denote the belief process under (p,σ). For L ∈ N, define a strategy (pL ,σL) as

follows:

1. (pL
t (ht , ·),σL

t (ht , ·)) = (pt (ht , ·),σt (ht , ·)) if either t < L OR (t ≥ L and µL(hL) ∉ B), where hL

precedes ht ,

2. Otherwise, (pL
t (ht , ·),σL

t (ht , ·)) = (0,σt (ht , ·)) (note that when the agent quits the strategy can be

specified arbitrarily.)

Note the agent’s average payoff through period T under (pL ,σL) can be written as follows:

E(pL ,σL ) [UT ] = E(p,σ) [UT ]−E(p,σ)

[
1

T

T∑
t=1

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[t ≥ L and µL ∈ B ]

]
.

We show that for sufficiently large L, (pL ,σL) is a profitable deviation. For T ≥ L, write

E(p,σ)

[
1

T

T∑
t=L

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µL ∈ B ]

]
−

∫
B

Unet(µ)τ(p,σ)(dµ) = (C.35)

=E(p,σ)

[
1

T

T∑
t=1

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µt ∈ B ]

]
−

∫
B

Unet(µ)τ(p,σ)(dµ)

−E(p,σ)

[
1

T

L−1∑
t=1

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µt ∈ B ]

]

+E(p,σ)

[
1

T

T∑
t=L

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)(
1[µL ∈ B ]−1[µt ∈ B ]

)]
.

Let K = maxθ,ω,a |
(
u(a,θ,ω)−u(a;,θ,ω)

) |, and note that we can bound the term in the last line of

Equation C.35 as follows:

|E(p,σ)

[
1

T

T∑
t=L

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)(
1[µL ∈ B ]−1[µt ∈ B ]

)] |≤ KE(p,σ)

[
1

T

T∑
t=L

|1[µL ∈ B ]−1[µt ∈ B ]|.
]

46A set X ⊆∆(Ω) is open relative to ∆(Ω) if an open set Y ⊆R|Ω| exists such that X = Y ∩∆(Ω). The boundary relative to
∆(Ω) is analogously defined via open sets relative to ∆(Ω).

47Lemma D.1 provides an interval of radii r ∈ (0,r0) such that
∫

B(µ̂,r ) Unet(µ)τ(p,σ)(dµ) < 0. Note that only countable
many such r can have τ(p,σ)(∂B(µ̂,r )) > 0 (the boundaries for different radii are disjoint), so we can always pick r such that
τ(p,σ)(∂B(µ̂,r )) = 0 and preserve the negative sign.
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Because µt
w∗
−→µ∞ P(p,σ)-a.s. (Lemma C.1) and τ(p,σ)(∂B) = 0, we conclude:48

lim
L→∞

sup
t≥L

|1[µL ∈ B ]−1[µt ∈ B ]| = 0 P(p,σ)-a.s.

Then,

E(p,σ)

[
1

T

T∑
t=L

|1[µL ∈ B ]−1[µt ∈ B ]|
]
≤ E(p,σ)

[
sup
t≥L

|1[µL ∈ B ]−1[µt ∈ B ]|
]

and choose L̄ large enough so that for all L ≥ L̄, we have that:

E(p,σ)

[
sup
t≥L

|1[µL ∈ B ]−1[µt ∈ B ]|
]
≤ δ/K . (C.36)

Consider now the term in the third line of Equation C.35 and note that it is bounded in absolute value

by K (L −1)/T , which tends to 0 as T →∞. Similarly, the term in the second line of Equation C.35

vanishes as T →∞.49 Thus, for L ≥ L̄, we can find T such that for all T ≥ T 50

|E(p,σ)

[
1

T

T∑
t=L

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µL ∈ B ]

]
−

∫
B

Unet(µ)τ(p,σ)(dµ) |≤ 3

2
δ, (C.37)

and hence

E(p,σ)

[
1

T

T∑
t=L

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µL ∈ B ]

]
≤−1

2
δ. (C.38)

We conclude that

lim sup
T→∞

E(pL ,σL ) [UT ] ≥ lim
T→∞

E(p,σ)[UT ]+ 1

2
δ,

a contradiction.

C.2.2 Proof of Theorem 4 (sufficiency)

We now show that all outcome distributions ϑ ∈ ∆(A ×Θ×Ω) that admit the decomposition in

Theorem 4 can be implemented via a dynamic mechanism. To this end, let τ and α :Θ×∆(Ω) →∆(A)

48The property that τ(p,σ)(∂B) = 0 ensures that1[µt (h∞) ∈ B ] is eventually constant almost surely. Let E = {h∞ :µ∞(h∞) ∉
∂B}. On E , either µ∞ is in the interior of B (relative to ∆(Ω)) or in the interior of B∁ (relative to ∆(Ω)), that is, an ϵ > 0

exists such that (B(µ∞,ϵ)∩∆(Ω)) ⊂ B or B∁. In either case, for each h∞, there exists N (h∞) such that for all t ≥ N (h∞),
µt (h∞) ∈ (B(µ∞,ϵ)∩∆(Ω)) and hence 1[µt (h∞) ∈ B ] is eventually constant. When τ(p,σ)(∂B) = 0, we have that E has
probability 1 under P(p,σ).

49Indeed, E(p,σ)

[
1
T

∑T
t=1

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µt ∈ B ]

]
= E

νT,1
(p,σ)

[(
u(a,θ,ω)−u(a;,θ,ω)

)
1[µ ∈ B ]

]
and our

previous analysis implies it converges to
∫

B Unet(µ)τ(p,σ)(dµ).
50Choose T so that for all T ≥ T :

|E(p,σ)

[
1

T

T∑
t=1

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µt ∈ B ]

]
−

∫
B

Unet(µ)τ(p,σ)(dµ)|

+ |E
[
− 1

T

L−1∑
t=1

(
u(at ,θt ,ω)−u(a;,θt ,ω)

)
1[µt ∈ B ]

]
| ≤ δ/2.
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denote the belief distribution and the ex ante individually rational allocation rule without profitable

undetectable deviations corresponding to ϑ. That is,

ϑ(a,θ,ω) =
∫
∆(Ω)

µ(ω) f (θ)α(a|θ,µ)τ(dµ). (C.39)

The proof proceeds as follows:

1. We first consider a fictitious setting in which there is no state uncertainty and we are given

an allocation rule α′ : Θ → ∆(A) that is ex ante individually rational and lacks profitable

undetectable deviations for some utility function u′ : A×Θ→R. Proposition C.1 shows that a

dynamic mechanism exists that implements α′.

2. We then show that if ϑ satisfies Equation C.39, then a finite support belief distribution τ′ exists

such that ϑ and α satisfies Equation C.39 with τ′ instead of τ.

3. Lastly, we use this result to construct a dynamic game that implements ϑ.

Step 1 For this step, we consider a fictitious setting in which there is no state uncertainty and the

designer faces a privately informed agent with payoffs u′ : A×Θ→R, where θ ∼ f ∈∆(Θ).51

Suppose we are given an allocation ruleα′ :Θ→∆(A) that admits no profitable undetectable deviations

relative to u′ as in Definition 7 and is individually rational as in Definition 8. We have the following

result:

Proposition C.1. Let ϑ′ = f (θ)α′(a|θ) ∈∆(A×Θ) such that α′ lacks profitable undetectable deviations

and is ex ante individually rational. Then, a dynamic mechanism exists that implements ϑ′.

Proof of Proposition C.1. The proof is constructive. We build on the analysis of Margaria and Smolin

(2018) and present a dynamic mechanism that alternates between communication and adjustment

phases. In all phases, the mechanism selects allocations using reports θ′ according to α′. In a

communication phase, the reports are those sent by the agent. In an adjustment phase, the agent’s

reports are disregarded; instead, the mechanism simulates reports to guarantee that the occupation

measure over reports coincides with f and these simulated reports are used to determine the allocation.

The mechanism ensures that under any agent’s strategy, the occupation measure over reports and

allocations exists and equals ϑ′; thus, any strategy corresponds to an undetectable deviation. The

length of communication phases grows in time. Thus, under truthtelling the relative length of

adjustment phases vanishes in time, and the expected occupation measure over types and allocations

exists and equals ϑ′. Because α′ lacks profitable undetectable deviations, it follows that truthtelling

is optimal for the agent. Because α′ is ex ante individually rational, it follows that the participation

constraints are satisfied.

Formally, the mechanism consists of sequential blocks, each block starting with a communication

phase followed by an adjustment phase. The lengths of communication phases are fixed at L1,L2, . . .

51Anticipating our construction in item 3, for each belief µ in the support of τ, the allocation rule α′(·|·,µ) has no profitable
undetectable deviations relative to payoff function u′(a,θ) =∑

ω∈Ωµ(ω)u(a,θ,ω).
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such that Ln →∞ and Ln/
∑

k≤n Lk → 0, e.g., Ln = n. The length of adjustment phase Nn depends

on the agent’s reports in the communication phase in block n. Denote by Tn the first period of

block n, which is the first period of the corresponding communication phase. The first period of the

corresponding adjustment phase is Tn +Ln +1. Denote by freq1
n the average report frequencies in this

block at the beginning of the adjustment stage:

freq1
n(θ̂)≜

1

Ln

Tn+Ln−1∑
t=Tn

1(θ̂t = θ̂). (C.40)

If freq1
n = f , then the adjustment phase is empty, and the mechanism proceeds to the next block.

Otherwise, in the adjustment phase, the mechanism generates reports over Nn periods to guarantee

that at the end of the adjustment phase the expected frequency of reports in this block equals f that is,

E[freq2
n |freq1

n] = f (C.41)

where

freq2
n(θ̂)≜

1

Ln +Nn

Tn+Ln+Nn−1∑
t=Tn

1(θ̂t = θ̂). (C.42)

To do so, denote by η≜minθ f (θ) and observe that f ∈∆(Θ) can be surrounded by a ball of radius η

within the simplex ∆(Θ). The adjustment phase lasts for Nn periods where:52

Nn =
⌈

Ln
||freq1

n − f ||∞
η

⌉
, (C.43)

and in each period of the adjustment phase the mechanism generates the reports i.i.d. according to

f̃ a
n :

f a
n = f − (freq1

n − f )
Ln

Nn
. (C.44)

The construction ensures that f a
n ∈∆(Θ), because || f a

n − f ||∞ ≤ η, and that (C.41) holds, because

E[freq2
n |freq1

n] = 1

Ln +Nn
(Lnfreq1

n +Nn f a
n ) = f .

This in turn guarantees that the long-run distribution of reports (generated jointly by the agent and

the mechanism) exists and equals f irrespectively of the agent’s strategy. Intuitively, the fact that each

block becomes negligible relative to past history over time ensures the agent’s reports in each block

have less and less effect on the long run frequency of reports, whereas the adjustment phase ensures

that the frequency of reports converges to f . Formally, for any history and T denote by nlast(T ) the

number of the block to which T belongs and by T last(T ) the first period of that block. Observe that for

52Any ||.||p would work, but larger p results in weakly shorter adjustment phases.
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any agent’s strategy:

Nn ≤ Ln

(
max

f ′
|| f ′− f ||∞

η
+1

)
≜ Lnρ. (C.45)

Therefore,

|T −T last(T )|
T last(T )

≤ Lnlast(T )(1+ρ)∑
k<nlast(T ) Lk

a.s.−−−−→
T→∞

0, (C.46)

where the limit result holds because nlast(T )
a.s.−−−−→

T→∞
∞ and Ln/

∑
k≤n Lk −−−−→

n→∞ 0.

Then, for any agent’s strategy, for any θ̂ ∈Θ,

lim
T→∞

1

T

T∑
t=1

Pr(θ̂t = θ̂) = lim
T→∞

E

[
f (θ̂)T last(T )+ f last(T )(T −T last(T ))

T last(T )+T −T last(T )

]
(C.47)

= lim
T→∞

E

[
f (θ̂)+ f last(T )(T −T last(T )/T last(T )

1+ (T −T last(T ))/T last(T )

]
= f (θ̂),

where f last(T ) ∈∆(Θ) is the report frequency in the last block up to period T , and the last line follows

from Equation C.46.

Since the mechanism chooses allocations in all periods according to α′, it follows that for any agent’s

strategy σ′ the induced occupation measure over allocations and type reports satisfies:

lim
T→∞

1

T
Eσ′

[
T∑

t=1
1[(at , θ̂t ) = (a, θ̂)]

]
= f (θ̂)α′(a|θ̂) =ϑ′(a, θ̂). (C.48)

In other words, for any reporting strategy the occupation measure over allocations and reports exists.

We now show that under truthtelling the occupation measure over types and allocations exists and

equals f (θ)α′(a|θ) =ϑ(a,θ). To this end, assume that the agent always reports her true type. For any

T , denote by L̃total(T ) the total number of periods spent in communication phases before T and by

Ñ total(T ) the total number of periods spent in adjustment phases before T . Observe that by the strong

law of large numbers, because Ln →∞,

Nn

Ln
≤ ||freq1

n − f ||∞
η

+ 1

Ln

a.s.−−−−→
n→∞ 0.

Therefore,

Ñ total(T )

Ñ total(T )+ L̃total(T )

a.s.−−−−→
T→∞

0,

because whenever Nn/Ln → 0, limT→∞ N total(T )/(N total(T )+Ltotal(T )) = limn→∞ Nn/(Ln +Nn) = 0.
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It follows that

lim
T→∞

1

T

T∑
t=1

Pr((θt , θ̂t , at ) = (θ, θ̂, a))

= lim
T→∞

E

[
L̃total(T )1(θ = θ̂) f (θ̂)α′(a|θ̂)+ Ñ total(T ) f adj(T )(θ, θ̂, a)

Ñ total(T )+ L̃total(T )

]
= 1(θ = θ̂) f (θ̂)α′(a|θ̂),

where f adj(T ) ∈∆(Θ×Θ×A) is the average frequency of types, reports, and allocations in the adjustment

phases before T . Therefore, under truthtelling, the occupation measure over allocations and types

equals

ϑ′(a,θ) = f (θ)α′(a|θ). (C.49)

Hence, the agent’s payoff in the dynamic mechanism under truthtelling is:

U truth = ∑
(a,θ)

f (θ)α′(a|θ)u′(a,θ). (C.50)

It remains to show that the agent cannot achieve more than U truth under any other strategy. To this

end, fix and alternative strategy σ, and denote by U (σ) = limsupT→∞UT (σ) where:

UT (σ) = 1

T

T∑
t=1

∑
a,θ

Pr((at ,θt ) = (a,θ))u′(a,θ).

Consider any convergent subsequence (UTn )∞n=1 along times {Tn}∞n=1. Because∆(A×Θ×Θ) is compact

(Aliprantis and Border, 2006, Theorem 15.11), a convergent (sub)subsequence at times {Tk }∞k=1 ⊆
{Tn}∞n=1 exists along which the occupation measure induced by σ

ν
Tk
σ

w∗
−→ νσ,

for some νσ ∈∆(A ×Θ×Θ), which by (C.48) satisfies νσ(a, θ̂) = f (θ̂)α′(a|θ̂). It follows that for some

undetectable deviation νσ(θ̂|θ):

lim
n→∞UTn = lim

k→∞
UTk =

∑
θ,θ̂,a

f (θ)νσ(θ̂|θ)α′(a|θ̂)u′(a,θ) ≤U truth,

where the inequality follows because α′(a|θ̂) lacks profitable undetectable deviations. Because this

inequality holds for any convergent subsequence (UTn )∞n=1,

U (σ) = limsup
T→∞

UT (σ) ≤U truth.

Finally, observe that the construction ensures that after every history, truthtelling from there on

delivers the continuation payoff U truth. Sinceα′ is ex ante individually rational, U truth ≥∑
θ f (θ)u′(a;,θ),

and thus the participation constraints are satisfied. This concludes the proof.
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Step 2 Consider now the outcome distribution ϑ ∈∆(A×Θ×Ω) satisfying Equation C.39. As we argue

in the proof of Theorem 2, a finite K ≤ |A||Θ||Ω|, {µ1, . . . ,µK } ∈∆(Ω), and τ′ ∈∆(∆(Ω)) exists such that

ϑ(a,θ,ω) = f (θ)
K∑

k=1
τ′(µk )µk (ω)α(a|θ,µk ).

Step 3 We now use steps 1 and 2 to complete the proof of Theorem 4, so in what follows we use the

finite support representation of ϑ in the previous step. By Bayes plausibility, a dynamic mechanism

can generate the belief split τ′ in T periods with T ≤ ⌈log|A|(|Ω||Θ||A|)⌉, by treating each sequence

of allocations of length T as a message. This can be achieved by making the mechanism constant

on the agent’s type reports during the first T periods. Since each α(·|·,µk ) for k ∈ {1, . . . ,K } lacks

profitable undetectable deviations and is individually rational, Proposition C.1 implies that a dynamic

mechanism exists that implements ϑ by first generating the belief split τ′ and then implementing

α(·|·,µk ) in the corresponding continuation play.

D Proof of auxiliary results

D.1 Revelation principle for calibrated mechanism design

In the main text, we restricted attention to incentive compatible and individually rational calibrated

mechanisms. We show in this appendix that this restriction is without loss of generality by considering

mechanisms with arbitrary message spaces and participation and reporting decisions by the agents

that constitute an equilibrium of the game induced by the mechanism and its calibrated information

structure.

Mechanisms Let 2[N ] \; denote the nonempty subsets of agents. Then, we can define a mechanism

as a collection
{(

M J ,φJ
)

: J ∈ 2[N ] \;}
, where

φJ : M J ×Ω× [0,1] →∆(A J ),

is the mechanism when agents in J participate, where M J =×i∈J Mi and A J =×i∈J Ai .

Information Structure Let Ŝi =∆(Ai )Mi denote the collection of menus of lotteries with labels Mi ,

and let Ŝ =×i∈[N ]Ŝi . An information structure is (π, Ŝ), where π :Ω× [0,1] → Ŝ.

Participation and reporting strategies It is notationally convenient to allow each agent to have her

own randomization device εi ∼U [0,1] and write agents’ strategies as mappings (pi ,σi ) : Θi × Ŝi ×
[0,1] → {0,1}×Mi , where pi denotes agent i ’s participation decision, and σi her reporting strategy,

conditional on participating. To distinguish the agents’ randomization from that of the original

mechanism, we reserve ε0 for the realization of the mechanism’s randomization device.

Given (pi ,σi )i∈[N ] and a mechanism (φ, M), fix a profile (θ, ŝ,ε) ≡ (θi , ŝ,εi )i∈[N ]. This determines a set

of agents that participate,

J (θ, ŝ,ε) = { j ∈ [N ] : p j (θ j , ŝ j ,ε j ) = 1},
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and let J−i (θ, ŝ,ε) denote the projection of J (θ, ŝ,ε) on J\{i }. Note that J−i only depends on (θ−i , ŝ−i ,ε−i ).

Lastly, write φJ−i (θ−i ,ŝ−i ,ε−i )∪{i }(mi ,σJ−i (θ−i ,ŝ−i ,ε−i ),ω,ε0) ∈∆(A J−i (θ−i ,ŝ−i ,ε−i )∪{i }) for

∑
m J−i (θ−i ,ŝ−i ,ε−i )

( ∏
j∈J−i (θ−i ,ŝ−i ,ε−i )

σ j (θ j , ŝ j )(m j )

)
φJ−i (θ−i ,ŝ−i ,ε−i )∪{i }(mi ,m J−i (θ−i ,ŝ−i ,ε−i ),ω,ε0)

Calibrated information structures Given (pi ,σi )i∈[N ] and a mechanism (φ, M), the information

structure
(
π, Ŝ

)
is calibrated with the mechanism and the agents’ strategies if whenever π(ω,ε0) =

(ŝ1, . . . , ŝN ), then for all i ,mi

ŝi (·|mi ) = Eθ̃−i∼ f−i (·|ω),ϵ−i

[ ∑
a−i∈A−i

φJ−i (θ−i ,ŝ−i ,ε−i )∪{i }(mi ,σJ−i (θ−i ,ŝ−i ,ε−i ),ω,ϵ0)(·, a−i )

]
.

Below, to keep the presentation simple, we focus on the case in which the calibrated information

structure has finite support.

Equilibrium Given (pi ,σi )i∈[N ], a mechanism (φ, M) and an information structure
(
π, Ŝ

)
calibrated

with the mechanism and the agents’ strategies, (pi ,σi )i∈[N ] is an equilibrium if for all i ∈ [N ], all

θi ∈Θi , all ŝi ∈ Ŝi , and εi ∈ [0,1], the following hold:

σi (θi , ŝi ,εi ) ∈ arg max
mi∈Mi

∑
ai∈Ai

ŝi (ai |mi )Eω∼µi (·|θi ,ŝi ) [ui (ai ,θi ,ω)] ,

pi (θi , ŝi ,εi ) ∈ arg max
p∈{0,1}

p
∑

ai∈Ai

ŝi (ai |σi (θi , ŝi ,εi ))Eω∼µi (·|θi ,ŝi ) [ui (ai ,θi ,ω)]+ (1−p)Eω∼µi (·|θi ,ŝi )
[
ui (ai;,θi ,ω)

]
,

whereµi (θi , ŝi ) ∈∆(Ω) denotes agent i ’s updated beliefs about the state when her type is θi conditional

on receiving signal ŝi .

Revelation Principle Fix (pi ,σi )i∈[N ], a mechanism (φ, M) and an information structure (π, Ŝ)

calibrated with the mechanism such that (pi ,σi )i∈[N ] is an equilibrium. We construct a direct

mechanism (φ∗,Θ) and a calibrated information structure (π∗,S∗) calibrated with the mechanism

under truthtelling and full participation such that truthtelling and full participation is an equilibrium.

First, note that we can extend each φJ (·) ∈ ∆(A J ) to a mechanism φJ (·) ∈ ∆(A) as follows: for all

m ∈ M J ,ω ∈Ω,ε0 ∈ [0,1], and a J ∈ A J ,

φJ (m J ,ω,ε0)(a) =φJ (m J ,ω,ε0)(a J )×δa−J ,; .

Define a “pseudo”-mechanism as follows:

φ̂N (θ,ω,ε0, ε̄) =φJ (θ,π(ω,ε0),ε̄)

(
σJ (θ,ŝ,ε),ω,ε0

)
.

whereσJ (θ,ŝ,ε̄) is the message vector generated by the strategies. Define the full participation mechanism

φ∗
N :Θ×Ω× [0,1] 7→∆(A) to be

φ∗
N (θ,ω,ε0)(a) =

∫
[0,1]N

φ̂N (θ,ω,ε0, ε̄)(a)λN (d ε̄)
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Let S∗
i =∆(Ai )Θi and define π∗(ω,ε0) = (s∗1 , . . . , s∗N ) ∈×i∈[N ]S∗

i , where

s∗i (·|θ̂i ) = Eθ−i∼ f−i (·|ω)

[∑
a−i

φ∗
N

(
θ̂i ,θ−i ,ω,ε0

)
(·, a−i )

]
.

By definition, the information structure is calibrated relative to full participation and truthful reporting.

We now show that full participation and truthful reporting is a best response to others participating

and truthfully reporting into the mechanism. To this end, consider agent i ’s payoff from submitting

report θ′i when observing s∗i . Denoting by Σ(ω, s∗i ) the set of ε0 such that π∗
i = s∗i , this payoff is given

by:53

∑
ω∈Ω

µ0(ω) fi (θi |ω)

Pr (s∗i |θi )

∑
θ−i

f−i (θ−i |ω)
∫
Σ(ω,s∗i )

∑
a
φ∗

N (θ′i ,θ−i ,ω,ε0)(ai , a−i )λ(dε0)ui (ai ,θi ,ω) =

∑
ai∈Ai

∑
ω∈Ω

µ0(ω) fi (θi |ω)

Pr (s∗i |θi )
ui (ai ,θi ,ω)

∑
θ−i

f−i (θ−i |ω)
∫
Σ(ω,s∗i )

∑
a−i

φ∗
N (θ′i ,θ−i ,ω,ε0)(ai , a−i )λ(dε0)

=
∫ 1

0

[∑
ai

∑
ω

µ0(ω) fi (θi |ω)

Pr (s∗i |θi )
ui (ai ,θi ,ω)

∫
Σ(ω,s∗i )

(⋆)λ(dε0)

]
λ(dεi ),

where

⋆= Eθ−i |ω,ε̄−i

[∑
a−i

φ̂N (θ′i ,θ−i ,ε0, ε̄−i )(ai , a−i )

]

= Eθ−i |ω,ε̄−i

[∑
a−i

φ̄J (θ′i ,θ−i ,ŝ(ω,ε0),ε̄)(σJ (θ′i ,θ−i ,ŝ(ω,ε0),ε),ω,ε0)(ai , a−i )

]
=1[pi (θ′i , ŝi (ω,ε0),εi ) = 1]ŝi (ai |σi (θ′i , ŝi ,εi ))+ (1−1[pi (θ′i , ŝi (ω,ε0),εi ) = 1])δai ,;(ai ).

Because agent i of type θi could have imitated type θ′i , reporting θi dominates. By the same logic,

when the agent reports θi , she obtains at least the payoff from participating in the mechanism.

D.2 Optimal Calibrated Auction

Proof of Proposition 5. The pointwise solution to the Myersonian problem allocates the good to agents

in N∗(θ,ω) = argmaxi∈[N ]∪{0}[wi (θ,ω)+ Ji (θi )ωi +ω0i ] where i = 0 corresponds to an outside option

with w0 ≡ J0 ≡ω00 ≡ 0. The conditions of the proposition ensure that for all i ∈ N and j ∈ [N ]∪ {0},

d

dθi
(wi (θ,ω)+ Ji (θi ,Fi )ωi +ω0i ) ≥ d

dθi

(
w j (θ,ω)+ J j (θ j ,F j )ω j +ω0 j

)
.

Thus, an optimal selection q∗(θ,ω) exists such that for each i , θ−i , and ω, q∗(θi ,θ−i ,ω) is non-

decreasing in θi (e.g., one that uniformly randomizes over N∗(θ,ω)).

Denote by Qfull the set of allocation rules implementable under full state disclosure. These are the

rules such that for all i and ω, EF−i [qi (θi ,θ−i ,ω)] is non-decreasing in θi . It follows that q∗ ∈ Qfull,

and hence q∗ ∈QMy. Thus, q∗ solves the Myersonian problem and can also be implemented by fully

disclosing the state to the agents and conducting an optimal mechanism state-by-state. By revenue

53In the expressions that follow, recall the full participation mechanism φ∗
N already averages over the agents’ own

randomization devices.
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equivalence, the expected revenue of such implementation is the same as under no disclosure, and

thus the designer obtains payoff WMy.

D.3 Technical results from Appendix C

Proof of Lemma C.1. The set of continuous bounded functions on Ω̃ is separable and hence it has a

countable dense subset {gk }k∈N ⊂Cb(Ω̃). It is immediate to see that µn
w∗
−→µ if and only if for all k ∈N∫

gk dµn → ∫
gk dµ.

For each k ∈N define a real-valued, bounded, martingale on (H∞,BH∞ ,Pσ) as follows:

M k
t (ω̃,h∞) =

∫
Ω̃

gk (ω′,ε)dµt (ω̃,h∞)(ω′,ε).

Doob’s martingale convergence theorem implies that M k
t (ω̃,h∞) = E[gk |ht ] → M k∞(ω̃,h∞) = E[gk |h∞]

Pσ-a.s. Let Ek denote the subset of H∞ where convergence happens, and note that Pσ(Ek ) = 1.

Let E =∩k Ek and note that Pσ(E) = 1. Then, on E , we have that for all k ∈N,∫
Ω̃

gk (ω′,ε)dµt (ω̃,h∞)(ω′,ε) → M k
∞(ω̃,h∞). (D.1)

Fix now a terminal history (ω̃,h∞). Because ∆(Ω̃) is compact (Aliprantis and Border, 2006, Theorem

15.11), the sequence (µt (ω̃,h∞))t∈N has a convergent subsequence µt j (ω̃,h∞)
w∗
−→ µ̃. Passing the limit

along t j in Equation D.1 we have that for all k ∈N∫
Ω̃

gk (ω′,ε)dµt (ω̃,h∞)(ω′,ε) →
∫
Ω̃

gk (ω′,ε)d µ̃.

Because the set {gk : k ∈N} determines the convergent subsequences, any subsequential limits must be

equal. Hence µt (·) converges on E and call this limit µ̃∞. Hence on E we have that µt (h∞)
w∗
−→ µ̃∞(h∞).

Now, for each k,
∫

gk dµ∞ = E[gk |h∞] almost surely. Hence, µ̃∞ is a version of the law of Ω̃ conditional

on h∞. This is Pσ(·|h∞), completing the proof.

Proof of Lemma C.2. Fix a continuous and bounded function g ∈Cb(A×Θ×Ω×∆(Ω)) and define for

each terminal history (ω,h∞)

∆t (ω,h∞) = g (at (h∞),θt (h∞),ω,µt (h∞))− g (at (h∞),θt (h∞),ω,µt+1(h∞)).

As in Lemma C.1, let E denote the probability-1 subset of H∞ on which µt
w∗
−→ µ∞.54 Then, on E ,

∆t (ω,h∞) → 0, and hence,

Eσ
[
∆t (ω,h∞)

]→ 0,

54To be sure, the proof of Lemma C.1 is written in the context of repeated mechanisms but it extends verbatim to dynamic
mechanisms with simple notational adjustments.
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as t →∞. Now, for every T ,

DT (g ) ≡ EνT,1
σ

[
g
]−EνT,2

σ

[
g
]= 1

T

T∑
t=1

Eσ [∆t ] ,

and hence the left-hand side goes to 0 as T →∞.

Now, let Tn be such that νTn ,2
σ

w∗
−→ ν for some ν ∈∆(A×Θ×Ω×∆(Ω)). Note that

EνTn ,1
σ

[
g
]= EνTn ,2

σ

[
g
]+DTn

[
g
]→ Eν

[
g
]+0,

so a subsequential limit of νTn ,2
σ is a subsequential limit of νTn ,1

σ . Switching the role of 1 and 2, we

obtain the opposite set inclusion and the result follows.

Proof of Lemma C.3. Fix a continuous function g on ∆(Ω̃). Then, we want to show that

EτT

[
g
]→ EPσ◦µ−1∞

[
g
]

.

By Lemma C.1, µt
w∗
−→µ∞ Pσ-almost surely and g is continuous, we have that Eσ[g (µt )] → Eσ

[
g (µ∞)

]
by dominated convergence theorem.55 Because eventually constant sequences have Cesàro limits, we

have that
1

T

T∑
t=1

Eσ
[
g (µt )

]→ Eσ
[
g (µ∞)

]
.

And now we are basically done, because

EτT [g ] =
∫

H∞

1

T

T∑
t=1

g (µt (h∞))Pσ(dh∞) = 1

T

T∑
t=1

Eσ
[
g (µt )

]→ Eσ[g (µ∞)] =
∫

g d(Pσ ◦µ−1
∞ ).

In other words, the occupation measure on beliefs induced by the strategy (and the prior, the type

distribution, and the mechanism) is the push-forward measure
(
Pσ ◦µ−1∞

)
. In particular, that Pσ is a

measure implies that
(
Pσ ◦µ−1∞

)
is a measure itself (Bogachev, 2007, Chapter 3.6).

Proof of Lemma C.4. We now show the agent can ensure the payoff U (τφ) in Equation C.21, which

corresponds to the agent’s maximum payoff under the calibrated information structure πφ. Recall that

this information structure is the one that corresponds to the partition of Ω̃, P , defined as follows: ω̃,ω̃′

in the same cell P of P if for all (a,m), φ(a|m,ω̃) =φ(a|m,ω̃′). Conditional on cell P , the associated

posterior is µ(|P ) ∈∆(Ω̃). Let τφ ∈∆(∆(Ω̃)) denote the induced belief distribution (with mean µ0 ⊗η).

To prove the result, we consider the strategy σ′
N parameterized by a number N and defined as follows.

In the exploration phase ofσ′
N , the agent plays each message m for N rounds. LetµN |M |(hN |M |) denote

the agent’s beliefs as a function of the realized sequence of allocations implied by hN |M |. For each

55To be sure,

Eσ
[
g (µt )

]= ∫
H∞

g (µt (h∞))Pσ(dh∞).
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history that succeeds hN |M |, the agent of type θ plays the message m that solves

max
m∈M

∑
ω̃

µN |M |(hN |M |)(ω̃)
∑

a∈A
φ(a|m,ω̃)u(a,θ,ω).

It is immediate to verify that the agent’s (limit) average payoff under σ′
N is given by:

U (σ′
N ) = Eσ′

N

[ ∑
θ∈Θ

f (θ) max
m∈M

∑
ω̃

µN |M |(hN |M |)(ω̃)
∑

a∈A
φ(a|m,ω̃)u(a,θ,ω)

]
=

= ∑
hN |M |∈H N |M |

P
N |M |
σ′

N
(hN |M |)u∗(µN |M |(hN |M |)), (D.2)

where u∗ is as in Equation C.20.

Below, we show that the distribution of beliefs under σ′
N , Pσ′

N
◦µ−1

N |M |
w∗
−→ τφ. Consequently, as u∗ is

continuous and bounded on ∆(Ω̃), for any δ> 0, we can choose Nδ so that for all N ≥ Nδ,

|U (σ′
N )−U (τφ)| ≤ δ.

Consequently, the agent’s payoff under σ must be U (τφ) because by definition for all δ> 056

liminf
T→∞

Eσ [UT ] ≥ limsup
T→∞

Eσ′
Nδ

[UT ] =U (σ′
Nδ

) ≥U (τφ)−δ,

and hence,

liminf
T→∞

Eσ [UT ] ≥ lim
δ→0

U (τφ)−δ=U (τφ).

which completes the proof.

We now complete the missing step:

The law of µN |M | converges to τφ It is useful to write the bottom line of Equation D.2 as follows:

∑
ω̃∈Ω̃

(µ0 ⊗η)(ω̃)E
P

N |M |
σ′N

(·|ω̃)

[
u∗(µN |M |)

]
.

We show that the conditional law of µN |M |, Pσ′
N

(·|ω̃), converges to the Dirac measure on µ(·|P (ω̃)).

Noting that τφ =∑
ω̃∈Ω̃(µ0 ⊗η)(ω̃)δµ(·|P (ω̃)) completes the proof.

For the exploration block, define for each m ∈ M , the empirical frequency φ̂N ,m : (Θ×M × A)N |M | →
∆(A), as follows

φ̂N ,m(hN |M |)(a) = 1

N

N∑
n=1

1[Am,n = a],

where Am,n is the nth draw from A when the message is m. Let φ̂N : H N |M | →∆(A)M denote the vector

56The argument shows that the agent’s equilibrium payoff is at least U (τφ). However, it is immediate that U (τφ) is the
most the agent can make in the game as τφ extracts all information from the mechanism.
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of empirical frequencies. The agent’s belief at history hN |M | is given by:

µN |M |(hN |M |)(ω̃) = (µ0 ⊗η)(ω̃)
∏

m∈M
∏

a∈Aφ(a|m,ω̃)N φ̂N ,m (hN |M |)(a)∑
ω̃′(µ0 ⊗η)(ω̃′)

∏
m∈M

∏
a∈Aφ(a|m,ω̃′)N φ̂N ,m (hN |M |)(a)

. (D.3)

Denote by τN |M |,ω̃ ∈∆(∆(Ω̃)) the law of µN |M | conditional on ω̃, i.e., τN |M |,ω̃ =Pσ′
N

(·|ω̃)◦µ−1
N |M |. Below,

we show that τN |M |,ω̃ converges weakly to δµ(·|P (ω̃)).

Suppose the true state is ω̃⋆. Then, (Am,1, . . . , Am,N ) are drawn i.i.d. from distribution φ(·|m,ω̃⋆). Fix a

continuous and bounded function g on A. Then, almost surely,57

∫
A

g dφ̂N (·|m) = 1

N

N∑
n=1

g (Am,n) → Eφ[g (Am,1)] = ∑
a∈A

g (a)φ(a|m,ω̃⋆),

by the strong law of large numbers applied to the i.i.d random variables (g (Am,1), . . . , g (Am,N )). Because

this holds for all g , then φ̂N (·|m)
w∗
−→φ(·|m,ω̃⋆) almost surely when the true state is ω̃⋆.

Fix an arbitrary state ω̃ and consider the ratio of the right-hand side of Equation D.3 at ω̃ and ω̃⋆:

µN |M |(hN |M |)(ω̃)

µN |M |(hN |M |)(ω̃⋆)
= (µ0 ⊗η)(ω̃)

(µ0 ⊗η)(ω̃⋆)

∏
a∈A

∏
m∈M

(
φ(a|m,ω̃)

φ(a|m,ω̃⋆)

)N φ̂N ,m (hN |M |)(a)

. (D.4)

Suppose ω̃ ∉ P (ω̃⋆). By definition of the partition P , a message m ∈ M and allocation a ∈ A exist such

that φ(a|m,ω̃) ̸=φ(a|m,ω̃⋆). Taking logarithm on both sides of Equation D.4 and dividing by N ,

1

N
log

(
µN |M |(hN |M |)(ω̃)

µN |M |(hN |M |)(ω̃⋆)

)
= 1

N
log

(
(µ0 ⊗η)(ω̃)

(µ0 ⊗η)(ω̃⋆)

)
+ ∑

a′∈A

∑
m′∈M

φ̂N ,m′(hN |M |)(a′) log

(
φ(a′|m′,ω̃)

φ(a′|m′,ω̃⋆)

)
.

(D.5)

Because φ̂N (·|m)
w∗
−→φ(·|m,ω̃⋆) almost surely when the true state is ω̃⋆,

lim
N→∞

1

N
log

(
µN |M |(hN |M |)(ω̃)

µN |M |(hN |M |)(ω̃⋆)

)
=− ∑

m∈M
DKL

(
φ(·|m,ω̃⋆)|φ(·|m,ω̃)

)
, (D.6)

where DKL is the Kullback-Leibler divergence. Note that at least one of the terms in the KL-divergence

is positive as φ(·|m,ω̃) ̸=φ(·|m,ω̃⋆). Hence,

lim
N→∞

log

(
µN |M |(hN |M |)(ω̃)

µN |M |(hN |M |)(ω̃⋆)

)
=−∞,

meaning that µN |M |(hN |M |)(ω̃)/µN |M |(hN |M |)(ω̃⋆) → 0.

Suppose now that ω̃ ∈ P (ω̃⋆). Then, Equation D.4 reduces to

µN |M |(hN |M |)(ω̃)

µN |M |(hN |M |)(ω̃⋆)
= (µ0 ⊗η)(ω̃)

(µ0 ⊗η)(ω̃⋆)
, (D.7)

for all N .

57This almost surely is under the law of A under φ(·|m,ω̃⋆).
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Collecting both cases, we conclude that conditional on the true state being ω̃⋆,

∑
ω̃∈P (ω̃⋆)

µN |M |(ω̃) →N→∞ 1,

and moreover, within the cell, the fixed-ratio property implies the law τN |M |,ω̃⋆
w∗
−→ δµ(·|P (ω̃⋆)). We

conclude that the unconditional belief distribution,
∑
ω̃∈Ω̃(µ0⊗η)(ω̃)τN |M |,ω̃

w∗
−→∑

ω̃∈Ω̃(µ0⊗η)(ω̃)δµ(P (ω̃)) =
τφ. In particular,

U (σ′
N ) = EPσ′N ◦µ−1

N |M |

[
u∗(µ)

]→ Eτφ
[
u∗(µ)

]
,

completing the proof.

Lemma D.1. Suppose u :∆(Ω) →R satisfies that∫
∆(Ω)

u(µ)τ(dµ) <
∫
∆(Ω)

max{u(µ),0}τ(dµ),

then a set B ⊆∆(Ω) open relative to ∆(Ω) exists such that∫
B

u(µ)τ(dµ) < 0.

Proof. Define the positive and negative parts of u:

u+(µ) := max{u(µ),0}, u−(µ) := max{−u(µ),0}.

Then u = u+−u− pointwise. Integrating and using the assumed strict inequality,∫
u dτ=

∫
u+dτ−

∫
u−dτ<

∫
u+dτ =⇒

∫
u−dτ> 0.

Hence the set N := {µ ∈∆(Ω) : u(µ) < 0} has strictly positive mass under τ.

Embed ∆(Ω) ⊂R|Ω|. Extend τ to a finite Borel measure τ̃ on Rd by

τ̃(A) := τ(A∩∆(Ω)) (A ⊆Rd Borel),

and extend u to ũ : Rd → [−1,1] by ũ = u on ∆(Ω) and ũ = 0 on Rd \∆(Ω). Then ũ ∈ L1(τ̃) and

τ̃(N ) = τ(N ) > 0.

Let BR|Ω|(x,r ) denote the ball in R|Ω| with center x and radius r . By the Lebesgue differentiation

theorem for finite Borel measures on Rd , there is a τ̃-full-measure set D ⊆Rd such that for every x ∈ D ,

lim
r↓0

1

τ̃(BRd (x,r ))

∫
B
Rd (x,r )

ũ d τ̃= ũ(x),

whenever τ̃(BRd (x,r )) > 0 (and this positivity holds for all sufficiently small r for τ̃-a.e. x). Since

τ̃(N ∩D) > 0, choose µ0 ∈ N ∩D . Then ũ(µ0) = u(µ0) < 0. Therefore the above limit is strictly negative,
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so there exists r0 > 0 such that for all 0 < r < r0,∫
B
Rd (µ0,r )

ũ d τ̃< 0.

For such an r , let B := B∆(µ0,r ) =∆(Ω)∩BRd (µ0,r ), which is an open ball in∆(Ω). Using the definitions

of τ̃ and ũ, ∫
B

u dτ=
∫

B
Rd (µ0,r )

ũ d τ̃< 0.

This proves the claim.

D.3.1 Revelation principle for limit of means preferences

We show in this section that when the designer uses dynamic mechanisms, it is without loss of

generality for the designer to employ direct dynamic mechanisms that (i) implement the outside

option at all histories after the agent first exercises her option not to participate in the mechanism,

and (ii) for which the agent’s best response is to always participate and truthfully report her type. This

justifies the class of mechanisms we employ in the analysis of Section 5.2.

Histories, mechanisms, and strategies As in the main text, to simplify notation, we do not include

the agent’s decision to participate in the mechanism in the histories of the game. Instead, we follow

the convention that if the agent does not participate, it is as if she reported ; and the allocation is a;.

Formally, let M A; = (M × A)∪ {(;, a;)}. With this notation, a history through period t is an element of

Ĥ t
M ≡ (M A;)t−1 and let Ĥt

M =Ω× Ĥ t
M .58

A mechanism is a collection ϕ ≡ (ϕt )∞t=1 such that the mechanism in period t is a mapping ϕt :

Ĥt
M ×M →∆(A).

Let H t
M = (Θ×M A;)t−1 =Θt−1 × Ĥ t

M . The agent’s strategy, (p,σ), is given by her participation strategy

pt : H t
M ×Θ→ [0,1], and conditional on participating, her reporting strategy σt : H t

M ×Θ→∆(M).

The distribution over terminal histories To obtain the complete description of the paths on the tree

we need to appendΩ to H t
M ; hence the paths through period t −1 areΩ×H t

M ≡Ht
M . The distributions

over states and agent’s types, the agent’s strategy, and the mechanism induce a distribution over the

terminal histories H∞
M ≡Ω×H∞

M , which we denote by Pϕ,(p,σ) ∈∆(Ω×H∞
M ), as it is now useful to keep

track of the mechanism. We denote by E(p,σ) the expectation under this measure. The distribution

Pϕ,(p,σ) ∈∆(Ω×H∞
M ) is the unique distribution that satisfies that for all t ∈N, H̃t

M ⊂Ω×H t
M ,

Pϕ,(p,σ)(H̃t
M ×

∞∏
s=t+1

(Θ×M A;)) =Pt
ϕ,(p,σ)(H̃

t
M ),

58We index histories by the messages to distinguish these histories from those when the designer uses direct mechanisms.
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where the distributions (Pt
ϕ,(p,σ))t∈N satisfy

Pt+1
ϕ,(p,σ)(ω,ht

M ,θ,m, a) =Pt
ϕ,(p,σ)(ω,ht

M ) f (θ)pt (ht
M ,θ)σt (ht

M ,θ)(m)ϕt (ω, ĥt
M ,m)(a),

Pt+1
ϕ,(p,σ)(ω,ht

M ,θ,;, a) =Pt
ϕ,(p,σ)(ω,ht

M ) f (θ)(1−pt (ht
M ,θ))1[a = a;].

Outcome distribution Our interest is in the distribution over payoff-relevant outcomes,Ω×(Θ×A)∞,

and hence on the marginal of Pϕ,(p,σ) onΩ× (Θ× A)∞, which we denote by P̄ϕ,(p,σ).

Best response We say that strategy (p,σ) is a best response for the agent if for all alternative strategies

(p ′,σ′), we have that

liminf
T→∞

E(p,σ) [UT ] ≥ limsup
T→∞

E(p ′,σ′) [UT ] , (D.8)

where recall UT is the agent’s average payoff until period T .

Direct and full participation mechanisms A special case of the above game is that in which M =Θ,

and whenever the agent does not participate, the mechanism chooses a; with probability 1 for

any message in all continuation histories. We call these mechanisms direct and full participation

mechanisms. Below, when M =Θ, we drop the dependence of the set histories on M .

Formally, let Ĥt
; denote the subset of Ĥt such that at some point the sequence (;, a;) appears. We

define mechanisms

ϕ̃t : Ĥt ×Θ→∆(A),

such that ϕ̃t (ω, ĥt , ·) =1[a = a;] whenever (ω, ĥt ) ∈ Ĥt
;.

Theorem D.1. Suppose that (p,σ) is a best response to mechanismϕ. Then, a direct and full participation

mechanism ϕ̃ exists such that

1. Participation with probability 1 and truthtelling are a best response for the agent,

2. The distribution overΩ× (Θ× A)∞ induced by (ϕ, (p,σ)) is the same as that induced by ϕ̃ under

participation and truthtelling.

Proof. Fix a mechanismϕ= (ϕt )t≥1 and a best response (p,σ) for the agent in the sense of Equation 13.

Let Pϕ,(p,σ) denote the induced distribution over H∞. We write (ω, (θt ,mt , at )t≥1) for a generic

realization, where mt =;⇒ at = a;.

The proof proceeds in three steps. In the first step, we construct a direct (but not full participation)

mechanism ϕ̃, which under participation and truthtelling after every history on path implements

the same outcome distribution as (ϕ, (p,σ)). In the second step, we verify that participation and

truthtelling after every history on path is a best response to ϕ̃. In the third step, we construct a direct

and full participation mechanism from ϕ̃. That the agent can always quit the mechanism at each step

and obtain a; and Step 3 implies that participation and truthtelling after every history is also a best

response to the full participation mechanism obtained from ϕ̃.
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Step 1: We first construct the direct mechanism ϕ̃t : Ĥt ×Θ→∆(A). Define a collection of transition

probabilities κt : Ht
M ×Θ→∆(M ∪ {;}) as follows:

κt (mt |ht
M ,θt ) = (1−pt (ht

M ,θt ))1[mt =;]+pt (ht
M ,θt )σt (ht

M ,θt )(mt ).

We construct ϕ̃ recursively. In period 1, if the state is ω and the report is θ1, the designer draws

fictitious m1 from κ1(·|θ1), and implements a1 = a; if m1 =;, and otherwise draws a1 ∼ϕ1(ω,m1).

Recursively, for t ≥ 2, if the sequence of reports, fictitious messages, and allocations is (θ′
t−1

,mt−1, at−1) =
(θ′s ,ms , as)t−1

s=1 and the agent reports θt , the designer draws mt from κt (·|θ′t−1
,mt−1, at−1,θt ) and

implements at = a; if mt =;, and otherwise draws at ∼ϕt (ω,mt−1, at−1,mt ).59

It is immediate that under truthtelling and participation the mechanism ϕ̃ implements the same

distribution overΩ× (A×Θ)∞.60

Step 2: Let (p∗,σ∗) denote the agent’s strategy that participates and truthfully reports after every

history. We now show that (p∗,σ∗) is a best response to ϕ̃ in the sense of Equation D.8.

To do so, we show that for any strategy (p̃, σ̃) in the game induced by the direct mechanism ϕ̃, a

strategy (p ′,σ′) exists such that

Eϕ̃,(p̃,σ̃)[UT ] = Eϕ,(p ′,σ′)[UT ] for all T, (D.9)

where UT is the average payoff through period T . Given Equation D.9 and the best-response property

of (p,σ) to ϕ,

liminf
T→∞

Eϕ,(p,σ)[UT ] ≥ limsup
T→∞

Eϕ,(p ′,σ′)[UT ] for all (p ′,σ′).

Using Step 1, we have Eϕ,(p,σ)[UT ] = Eϕ̃,(p∗,σ∗)[UT ] for all T , and by Equation D.9 we have Eϕ,(p ′,σ′)[UT ] =
Eϕ̃,(p̃,σ̃)[UT ] for all T . Hence

liminf
T→∞

Eϕ̃,(p∗,σ∗)[UT ] ≥ limsup
T→∞

Eϕ̃,(p̃,σ̃)[UT ] for all (p̃, σ̃),

which is exactly the definition of (p∗,σ∗) being a best response to ϕ̃. It remains to construct (p ′,σ′)
and verify (D.9).

We show how the agent can emulate the strategy (p̃, σ̃) in the game induced by the indirect mechanism

via strategy (p ′,σ′). Define κ̃t : H t ×Θ→∆(Θ∪ {;}) as follows

κ̃t (θ′|ht ,θt ) = (1− p̃(ht ,θt ))1[θ′ =;]+ p̃(ht ,θt )σ̃(ht ,θt )(θ′).

The strategy (p ′,σ′) privately simulates the report process induced by (p̃, σ̃) in the direct mechanism,

and conditional on the fictitious reports, generates the actual message in the indirect mechanism ϕ

using the kernel κt in Step 1, evaluated at the fictitious type history.

59Recall the fictitious reports encode the agent’s participation decisions in the original mechanism.
60In fact, if we kept track of the designer’s draws of fictitious messages, the new mechanism implements the same

distribution over terminal histories H∞
M , and a fortiori, its marginal overΩ× (A×Θ)∞ is the same.
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Formally, for t ≥ 1 given the history of types, messages, and allocations through period t , (θt−1,mt−1, at−1),

and the privately tracked fictitious type reports θ′
t−1

,61 the agent of type θt draws a fictitious report

θ′t ∼ κ̃t (·|θt−1,θ′
t−1

, at−1,θt ). If θ′t = ;, then mt = ; (the agent does not participate in period t).

Otherwise, θ′t ∈Θ and mt is drawn from κt (·|θ′t−1
,mt−1, at−1,θ′t ). The allocation is a; upon rejection,

and at ∼ϕt (ω,mt−1, at−1,mt ), otherwise.

It is immediate that Equation D.9 holds and hence (p∗,σ∗) is a best response to ϕ̃:62 In the extensive

form game induced by ϕ̃, the designer simulates the agent’s participation and reporting strategies

using (p,σ) based on the agent’s type reports and determines allocations in the mechanism. When

the agent’s strategy is given by (p̃, σ̃), the process described in the above paragraph correspond

to the designer’s simulated participation and reporting strategies, and allocations continued to be

determined by ϕ. Hence, in the extensive form game induced by ϕ̃, when the agent plays (p̃, σ̃), it is

as if she faces mechanism ϕ and plays strategy (p ′,σ′). The best response property of (p,σ) implies

that playing (p ′,σ′) yields a weakly worse payoff, and hence (p̃, σ̃) is not a profitable deviation from

(p∗,σ∗) in the direct mechanism ϕ̃.

Step 3: Modify ϕ̃ at all histories that include at least one non-participation decision, so that the

mechanism implements the outside option a;. With this modification, the mechanism satisfies

the full participation property. It is immediate that participation and truthtelling after every history

remains a best response.

61Recall that to minimize notation and make history lengths symmetric across participation and nonparticipation, we
record the agent’s rejection of the mechanism as the empty message ;.

62In fact, the construction ensures the stronger property that PT
ϕ̃,(p̃,σ̃) =PT

ϕ,(p ′,σ′), when in a slight abuse of notation we

keep track of the fictitious messages in PT
ϕ̃,(p̃,σ̃).
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