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Abstract

We study public persuasion when a sender communicates with a large audience that
can fact-check at heterogeneous costs. The sender commits to a public information
policy before the state is realized, but any verifiable claim she makes after observing
the state must be truthful (an ex-post implementability constraint). Receivers observe
the public message and then decide whether to verify; this selective verification feeds
back into the sender’s objective and turns the design problem into a constrained version
of Bayesian persuasion. Our main result is a reverse comparative static: when fact-
checking becomes cheaper in the population, the sender optimally supplies a strictly
less informative public signal. Intuitively, cheaper verification makes bold claims
invite scrutiny, so the sender coarsens information to dampen the incentive to verify.
We also endogenize two ex-post instruments—continuous falsification and fixed-cost
repression—and characterize threshold substitutions from persuasion to manipulation
and, ultimately, to repression as monitoring improves. The framework provides testable
predictions for how transparency, manipulation, and repression co-move with changes
in verification technology.

Keywords: Bayesian persuasion; information design; verifiable evidence; costly verification;
public signals; Blackwell informativeness; falsification; repression.
JEL: D72; D82; D83; L14

1 Introduction

We analyze a public persuasion problem in which a sender communicates with a mass audience
that can endogenously verify the state at heterogeneous costs. The sender commits ex ante
to a public information policy (an experiment over messages), observes the state, and then
sends a public message. Ex post, any verifiable claim must be truthful: given receivers’
equilibrium verification, the sender cannot benefit from misreporting verifiable content. This
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ex-post incentive (truthfulness) constraint (EPIC) serves as an implementability restriction on
top of Bayes plausibility, yielding a constrained information-design problem in the spirit of
Kamenica and Gentzkow (2011) with feasibility frictions.

Receivers observe the public message, form a posterior µ, and then decide whether to
incur a private cost (drawn from F ) to verify the state. This generates a cutoff rule and a
verifying mass λ(µ; F ) that depends on the public posterior. Folding selective verification
into the sender’s objective induces an indirect value v(µ; F ); because actions aggregate across
a continuum of receivers, the distribution of induced posteriors (not only the mean) matters
for outcomes, echoing the role of higher-order uncertainty in public-signal environments. The
sender’s design problem is therefore a constrained concavification: choose a distribution over
posteriors subject to Bayes plausibility and EPIC implementability to maximize the expected
value of v(µ; F ).

Our first main result is a stark comparative static that reverses the usual logic from
single-receiver persuasion with costly learning.

If the verification-cost distribution improves in the first-order stochastic dominance sense
(verification becomes cheaper), then the sender’s indirect payoff v(µ; F ) becomes more concave
in µ. Consequently, every optimal public experiment is (strictly) less informative in the
Blackwell order.

Intuitively, when more receivers are willing to verify, extreme public beliefs trigger scrutiny
and attenuate the sender’s gains; concavity increases, and the optimal policy coarsens—
“confusion as strategy.” The result hinges on EPIC implementability in a mass-audience
environment; without the truthfulness friction or with full commitment to unverifiable claims,
cheaper outside information can instead induce more precise signaling.

We then endogenize two ex post instruments that many applications feature: falsification,
a continuous manipulation technology that distorts observed outcomes at convex marginal
cost (e.g., fabricated engagement or padded counts), and repression, a fixed-cost discrete
tool that directly shifts aggregate actions. We characterize threshold substitutions from
persuasion to falsification and, once verification is sufficiently cheap, to repression. These
results provide a unified, tractable account of how a sender reallocates effort across persuasion
and post-message instruments as monitoring improves.

Methodologically, the paper contributes a clean formulation of public persuasion with
selective verification as a constrained concavification problem: Bayes-plausible posteriors
filtered through EPIC implementability. Substantively, it delivers a reverse comparative static—
cheaper verification ⇒ optimally less informative public signals—and sharp substitution
thresholds toward manipulation and repression. The framework complements Bayesian
persuasion, mechanisms with evidence, constrained information design, and work emphasizing
the role of belief dispersion in public environments, while contrasting with models where
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cheaper learning induces more transparent signaling.

2 Related literature

Our paper connects and advances four strands: (i) information design and Bayesian persuasion
with feasibility/frictions, (ii) persuasion when receivers can acquire (or verify) information
at a cost, (iii) communication with verifiable evidence and limited commitment, and (iv)
multi-receiver/public-signal environments where belief dispersion matters, with applications
to political economy.

We build on the persuasion paradigm of Kamenica and Gentzkow (2011), treating the
sender’s problem as a concavification over posteriors subject to Bayes plausibility. Within
the broader information-design program (see Bergemann and Morris, 2016; Kamenica, 2019),
we introduce an explicit implementability restriction: after the state is realized, any veri-
fiable claim must pass an ex post truthfulness (EPIC) constraint. Methodologically, this
complements recent work on constrained information design (e.g., Doval and Skreta, 2022),
which shows how auxiliary feasibility constraints can be embedded into the design problem
and alter the shape of the sender’s indirect value. Our contribution is to pin down how an
EPIC-style constraint—motivated by hard-evidence disclosure—interacts with the equilibrium
verification response of a mass audience, and to derive a sharp comparative static for Blackwell
informativeness.

A growing literature endogenizes the receiver’s acquisition of outside information within
persuasion. In a single-receiver benchmark, Matysková and Montes (2023) show that a
sender may increase public informativeness to deter costly learning by the receiver; related
forces appear when the receiver can verify probabilistically at a cost (e.g., Yang, 2024). Our
environment differs in two respects: (i) a mass audience self-selects into verification, so the
sender cares about the cross-sectional distribution of posteriors that triggers verification
thresholds; and (ii) EPIC implementability binds ex post. These features overturn the usual
deterrence logic: when the cost distribution improves in the FOSD sense, we show that the
induced value function v(µ; F ) becomes more concave and every optimal public experiment
becomes strictly less informative in the Blackwell order. In short, cheaper verification leads to
coarser public information in our setting, in contrast to the single-receiver/full-commitment
predictions.1

Our EPIC restriction is in the spirit of mechanisms with verifiable evidence. Classic
disclosure theory (Grossman, 1981; Milgrom, 1981; Shin, 1994, 2003) shows that, with hard

1See also work on persuasion with privately informed or strategic receivers (e.g., Kolotilin et al., 2017;
Arieli and Babichenko, 2019), which highlights how informational frictions on the receiver side shape optimal
experiments. Our mechanism is distinct: it operates through selective verification by a continuum of receivers
and an EPIC friction on the sender.
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evidence and no frictions, non-disclosure tends to unravel. In mechanism-design environments
with evidence, Ben-Porath et al. (2019) establish powerful commitment and robustness
properties, while in persuasion settings Titova (2022) explores how verifiable information
restores commitment payoffs under appropriate conditions. We differ in two ways: we study
a public signal to a mass audience that endogenously verifies, and our EPIC feasibility
requirement is coupled with a minimal delivery friction to prevent complete unraveling of
silence. Relative to certifiable-message models (e.g., Seidmann and Winter, 1997), we keep the
hard-evidence discipline but embed it as an implementability constraint inside an information-
design problem rather than as a full-blown disclosure game. This generates tractable, testable
predictions for how credibility constraints reshape optimal public experiments.

In multi-receiver persuasion, the sender’s payoff depends on how posteriors distribute
across an audience rather than on a representative posterior; see, e.g., Caillaud and Tirole
(2007) for group persuasion and Arieli and Babichenko (2019) for private signaling. Our
analysis is closest to the public-signal case with independent actions: the verifying mass λ(µ; F )
depends on the public posterior, so the sender effectively optimizes over the distribution
of posteriors. This resonates with the macro/coordination literature’s emphasis on the
dispersion of beliefs under public information (Morris and Shin, 2002). We formalize this
within persuasion: selective verification makes v(µ; F ) curvature the pivotal object, and a
FOSD drop in verification costs increases that curvature, pushing optimal experiments toward
coarser partitions.

Beyond persuasion, we allow the sender to (i) falsify outcomes at a convex marginal
cost and (ii) use repression/violence at a fixed cost. The falsification margin is linked to
design with manipulable inputs (e.g., Skreta and Pérez-Richet, 2022), while the repression
margin connects to models and evidence on informational autocracy and the substitution
between propaganda and force (Guriev and Treisman, 2019, 2020; Gehlbach et al., 2021).
Our contribution is to embed these instruments within a constrained persuasion problem
and characterize threshold substitutions as verification becomes cheaper: the sender first
coarsens public information, then shifts into falsification, and finally resorts to repression
once persuasion and manipulation can no longer sustain desired actions.

Relative to (i) unconstrained persuasion, we show how EPIC feasibility reshapes con-
cavification and flips the key comparative static under improved verification; relative to (ii)
persuasion with costly learning, we identify the mass-audience/EPIC channel that yields less
transparency when verification becomes cheaper; relative to (iii) evidence/limited-commitment
models, we use hard-evidence logic as a tractable implementability constraint in a public-signal
environment; and relative to (iv) multi-receiver/public-signal work, we make the distribution
of posteriors the optimizing object through the endogenous verification margin. The unified
framework also rationalizes observed substitution patterns between persuasion, manipulation,
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and repression in political-economy applications.

Roadmap. Section 3 presents the environment and EPIC implementability. Section 4
derives the sender’s indirect value and the reverse comparative static. Section 5 introduces
falsification and repression and characterizes substitution thresholds. Section 6 discusses
robustness and applications; Section 7 concludes.

3 Model and Implementability under Evidence

3.1 Environment and timing

There is a Sender (S) and a unit mass of Receivers indexed by i ∈ [0, 1]. The state is
θ ∈ {0, 1} with prior Pr(θ = 1) = π ∈ (0, 1) (we shall specialize to π = 1

2 when convenient).
The Sender’s bias is b ≥ 0.

Each Receiver i chooses an action ai ∈ [0, 1] after observing a public message and (possibly)
verifying the state. Her loss is quadratic, ℓi(ai, θ) = (ai − θ)2 , and verifying the state costs
ci ≥ 0. Costs are i.i.d. across Receivers with continuous cdf F on [0, c̄]; we use first-order
stochastic dominance (FOSD) shifts of F to model cheaper verification in the population.
The aggregate action is

A =
∫ 1

0
ai di ∈ [0, 1].

The Sender’s loss is quadratic in the distance between the aggregate and a bias-shifted state:

LS(A, θ) =
(
A − (θ + b)

)2
.

(Results below extend to any Sender loss that is convex and symmetric around θ + b.)
Timing is as follows.
1. Design. Before learning θ, S commits to a public information policy and to a reporting

rule that must satisfy ex-post truthfulness (EPIC) once θ is realized.2

2. Realization and reporting. Nature draws θ. The reporting rule may produce a
verifiable disclosure e ∈ {0, 1} (“hard evidence”) or silence. With a small, exogenous
probability ε ∈ (0, 1), verifiable disclosure fails to reach the public (delivery friction).

3. Verification and actions. Receivers observe the public message m ∈ {e = 0, e =
1, silence}, form a public posterior µ = Pr(θ = 1 | m), and then decide whether to
verify the state at private cost ci. Verifiers learn θ perfectly and then choose ai = θ;
non-verifiers choose ai = µ (quadratic loss).

2We impose truthfulness only on verifiable (hard-evidence) reports. Soft labels are chosen ex ante as
part of the public experiment and are not constrained ex post. This limited-commitment friction prevents
full-commitment disclosure from collapsing to full revelation and gives bite to the design problem.
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3.2 Public experiments and EPIC-implementability

A public experiment is a distribution Π over posteriors µ ∈ [0, 1] that is Bayes-plausible:
EΠ[µ] = π. We interpret Π as being generated by the triplet (δ0, δ1, µs) consisting of disclosure
probabilities δθ ∈ [0, 1] in state θ and the posterior µs ∈ (0, 1) induced by silence. With the
delivery friction ε3, Bayes’ rule gives

µs = Pr(θ = 1 | silence)

= (1 − δ1 + ε δ1) π

(1 − δ1 + ε δ1) π + (1 − δ0 + ε δ0) (1 − π) .
(3.1)

When verifiable evidence is observed, µ = 1 after e = 1 and µ = 0 after e = 0.
After observing θ, the Sender must not strictly prefer deviating from the committed

reporting rule. With hard evidence, the only feasible deviation is to withhold disclosure. Thus
EPIC imposes the following inequalities:

E[−LS(A, θ) | θ = 1, e = 1] ≥ E[−LS(A, θ) | θ = 1, silence] ; (EPIC-1)
E[−LS(A, θ) | θ = 0, silence] ≥ E[−LS(A, θ) | θ = 0, e = 0] . (EPIC-0)

Under quadratic losses and the behavior described below, (EPIC-1) binds as a strict inequality
so that δ1 = 1; (EPIC-0) binds at equality when δ0 ∈ (0, 1) and pins down the silence posterior
µs (the object that will respond to F ).

3.3 Receivers: verification and actions

Given a public posterior µ ∈ [0, 1] and quadratic loss, a Receiver who does not verify chooses
ai = µ, yielding expected loss E[(µ − θ)2 | µ] = µ(1 − µ). By verifying, she learns θ and
sets ai = θ, yielding loss 0 but paying ci. Hence the benefit of verification at belief µ equals
µ(1 − µ). The equilibrium verification rule is a cutoff:

verify ⇐⇒ ci ≤ c∗(µ) := µ(1 − µ), (3.2)
λ(µ; F ) := Pr(ci ≤ c∗(µ)) = F

(
µ(1 − µ)

)
. (3.3)

We call λ(µ; F ) the verifying mass at belief µ. A FOSD reduction of F increases λ(µ; F )
pointwise for all µ ∈ (0, 1).

3Interpret ε as a vanishing probability that verifiable evidence fails to reach the public (outages, censorship
glitches). We keep ε > 0 only to avoid full unraveling of silence and take ε → 0 when convenient; none of the
comparative statics hinge on its exact value.
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Given µ and λ(µ; F ), the realized aggregate action is

A(µ, θ; F ) = (1 − λ(µ; F )) µ + λ(µ; F ) θ. (3.4)

Note that A(µ, θ; F ) is random through θ even conditional on µ.

3.4 The Sender’s indirect payoff at belief µ

Define the Sender’s expected indirect value at belief µ as

v(µ; F ) := −E
[
LS

(
A(µ, θ; F ), θ

) ∣∣∣ µ
]

= −
(

b2 + (1 − λ(µ; F ))2 µ(1 − µ)
)

.
(3.5)

The first term, −b2, is the loss from the bias; the second term increases in the posterior
variance µ(1 − µ) and decreases with the verifying mass. When F FOSD-decreases, λ(µ; F )
increases and v(µ; F ) becomes more concave in µ.

3.5 Implementable experiments and EPIC in closed form

Because δ1 = 1 under (EPIC-1), the only nontrivial implementability restriction is (EPIC-0).
Under quadratic losses we have

E[−LS(A, θ) | θ = 0, e = 0] = − b2, (3.6)

E[−LS(A, θ) | θ = 0, silence] = −
(

A(µs, 0; F ) − b
)2

= −
(

(1 − λ(µs; F )) µs − b
)2

.

(3.7)

Therefore the (EPIC-0) condition binds at the Sender’s optimum whenever δ0 ∈ (0, 1) and
delivers the indifference equation4

(1 − λ(µs; F )) µs = 2b. (3.8)

Equation (3.8) is the key implementability restriction that determines the equilibrium silence
posterior µs as a function of b and F .

4This equates the sender’s continuation loss under silence in θ = 0,
(
(1 − λ(µs; F )) µs − b

)2, to the loss
under truthful disclosure, b2. It implies µs ≥ 1

2 whenever b > 0.
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Bayes plausibility. The disclosure probabilities (δ0, δ1) and the silence posterior µs must
satisfy EΠ[µ] = π, that is

π = (1 − ε) δ1 · 1 + (1 − ε) δ0 · 0 +
(
1 − (1 − ε)(δ0 + δ1)

)
µs. (3.9)

Given π and µs that solve (3.8), (3.9) pins down the set of feasible (δ0, δ1); under (EPIC-1)
we take δ1 = 1 and solve for δ0 ∈ [0, 1] (feasible for all sufficiently small ε).

3.6 Equilibrium

An implementable public persuasion equilibrium is a triplet (δ∗
0, δ∗

1, µ∗
s) and a verification rule

λ(·; F ) such that (i) Receivers use the cutoff rule (3.2); (ii) posteriors are given by Bayes’ rule
(3.1); (iii) EPIC holds, with δ∗

1 = 1 and µ∗
s solving (3.8); and (iv) the Sender’s experiment

(i.e., the choice of µs and thus the distribution Π) maximizes EΠ[v(µ; F )] subject to Bayes
plausibility and (3.8).

3.7 A handy special case and a threshold

Suppose π = 1
2 , ε → 0, and verification costs are uniformly distributed on [0, 1], i.e., F (x) = x

on [0, 1]. Then λ(µ; F ) = µ(1 − µ) by (3.2), and (3.8) becomes
(
1 − µs(1 − µs)

)
µs = 2b. (3.10)

The left-hand side of (3.10) is maximized at µs = 1
2 , where it equals 3

8 . Hence:

Proposition 3.1. In the uniform-cost special case, if b ≥ 3
16

5 then the unique solution to
(3.10) is µ∗

s = 1
2 and the verifying mass at silence equals λ(µ∗

s) = 1
4 . If 0 < b < 3

16 , there is
a unique interior solution µ∗

s(b) ∈ (1
2 , 1) characterized by (3.10).

Proof. The function g(µ) := (1 − µ(1 − µ))µ is strictly increasing on [1
2 , 1] with g(1

2) = 3
8

and g(1) = 1. For b ≥ 3
16 the equation g(µ) = 2b has the boundary solution µ∗ = 1

2 ; for
0 < b < 3

16 the Intermediate Value Theorem and monotonicity deliver a unique interior root.
The expression for λ(µ∗) follows from λ(µ) = µ(1 − µ).

Proposition 3.1 reproduces, within our implementability framework, the threshold pattern
that motivates the empirical narrative: as the Sender’s bias b grows, the silence posterior
saturates at µs = 1

2 and the verifying mass at silence pins at 1/4. Section 4 uses v(µ; F ) to
derive the general comparative static (FOSD-improvement of F ⇒ optimal coarsening of Π).

5With F (x) = x, g(µ) := (1 − µ(1 − µ))µ attains its maximum 3
8 at µ = 1

2 ; since EPIC sets g(µs) = 2b,
the corner binds at 2b = 3

8 .
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4 Persuasion and the Optimal Public Experiment

This section solves the Sender’s ex-ante problem. The object of design is the distribution of
public posteriors Π (a public experiment). Given Π, Receivers’ optimal verification behavior
and actions are as in Section 3. The Sender’s objective at posterior µ is the indirect value

v(µ; F ) = −
(

b2 + (1 − λ(µ; F ))2 µ(1 − µ)
)

,

λ(µ; F ) = F
(
µ(1 − µ)

)
,

and the Sender chooses Π to maximize EΠ[v(µ; F )] subject to Bayes plausibility and imple-
mentability.. Until then, “benchmark persuasion” refers to the unconstrained information-
design problem in which any Bayes-plausible Π is feasible.

4.1 Concavification benchmark

In the benchmark persuasion problem, the feasible set of posterior laws is

X (π) =
{
Π probability law on [0, 1] : EΠ[µ] = π

}
.

The Sender solves
V (π, F ) = sup

Π∈X (π)
EΠ[v(µ; F )]. (4.1)

Lemma 4.1. For any F , the function v(·; F ) is continuous, symmetric around µ = 1
2 , and

single-peaked with a (global) maximum at µ ∈ {0, 1
2 , 1}. Moreover, if F FOSD-decreases to

F ′, then v(·; F ′) is a pointwise mean-preserving contraction of v(·; F ) in the sense that for
any µ ∈ (0, 1),

v(µ; F ′) − v(1
2 ; F ′) ≤ v(µ; F ) − v(1

2 ; F ),

with equality at µ ∈ {0, 1
2 , 1}.

Proof. Symmetry follows from symmetry of µ(1 − µ) and of λ(µ; F ) = F (µ(1 − µ)). Since
x 7→ (1 − F (x))2x is increasing on [0, 1

4 ], the “penalty term” (1 − λ)2µ(1 − µ) is minimized at
the endpoints and (weakly) maximized near µ = 1

2 , yielding single-peakedness. If F ′ ⪰FOSD F ,
then 1−λ(µ; F ′) ≤ 1−λ(µ; F ) for all µ, hence (1−λ(µ; F ′))2µ(1−µ) ≤ (1−λ(µ; F ))2µ(1−µ)
with equality at µ ∈ {0, 1} (where µ(1 − µ) = 0), establishing the contraction around
µ = 1

2 .

Let cav v(·; F ) denote the concave envelope of v(·; F ) on [0, 1]. By the Kamenica–Gentzkow
method, the value in (4.1) equals (cav v(·; F ))(π) and an optimal experiment puts probability
on at most two posteriors µL ≤ π ≤ µH with a supporting line to v(·; F ) at these points.
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Theorem 4.2. Fix π ∈ (0, 1) and let F ′, F satisfy F ′ ⪰FOSD F (verification becomes cheaper).
Let Π∗

F and Π∗
F ′ be optimal solutions to (4.1) at F and F ′, respectively. Then there exist

binary optimal solutions

Π∗
F = α δµH

+ (1 − α) δµL
,

Π∗
F ′ = α′ δµ′

H
+ (1 − α′) δµ′

L
,

with µL ≤ µ′
L ≤ π ≤ µ′

H ≤ µH . In particular, Π∗
F ′ is a mean-preserving contraction of Π∗

F

and is Blackwell less informative.

Proof sketch. By Lemma 4.1, v(·; F ′) is a contraction of v(·; F ) around µ = 1
2 . Concavification

tightens as the objective gets more concave: the supporting chord at π intersects v(·; F ′) at
posteriors closer to π than under F . Formally, let ℓ(µ) = τµ + κ be the common supporting
line at µL, µH for v(·; F ); by pointwise contraction, for the same slope τ the contact points
with v(·; F ′) lie weakly inside [µL, µH ], yielding µ′

L and µ′
H that satisfy the stated inequalities.

Mean preservation pins the weights. Blackwell comparisons follow because binary experiments
are ordered by spread when the mean is fixed.

When fewer people verify, the Sender benefits from sharpening (making the public signal
more extreme); when more people verify, the value function becomes more concave in the
posterior, so the Sender best responds by coarsening—creating confusion by design.

4.2 EPIC-implementable persuasion

We now impose the implementability (EPIC) constraints from Section 3. Write the feasible
set as

XEPIC(π; F, b, ε) ⊆ X (π),

the (convex) set of Bayes-plausible posterior laws that arise from some reporting rule and
experiment for which, after the state is realized, the Sender prefers truthful reporting to any
deviation (“withholding” or misreporting), given Receivers’ equilibrium verification behavior.
We study two protocols.

Protocol A: Hard evidence + silence. Messages are e ∈ {0, 1} (verifiable evidence) or
silence. As shown in Section 3, EPIC implies δ1 = 1 (truthful disclosure in θ = 1) and pins
the silence posterior µs in θ = 0 by the indifference condition

(1 − λ(µs; F )) µs = 2b. (4.2)
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Hence any implementable Π places mass only on {0, µs, 1}, with weights determined by Bayes
plausibility and ε.

Proposition 4.3. If F ′ ⪰FOSD F , then the solution µs(F ) of (4.2) satisfies µs(F ′) ≥ µs(F ),
with strict inequality whenever b > 0 and F ′ ̸= F .

Proof. Define ϕ(µ; F ) := (1 − λ(µ; F ))µ = (1 − F (µ(1 − µ)))µ. For fixed b > 0, the equation
ϕ(µ; F ) = 2b defines µs(F ); FOSD-shifts of F decrease ϕ(·; F ) pointwise on (0, 1), so the
unique solution must move weakly right.

Under Protocol A, a decrease in verification costs raises the interior posterior µs. Because
δ1 = 1, Bayes plausibility forces the probability of silence to adjust. Whether the overall
experiment becomes more or less informative (in the Blackwell sense) is a priori ambiguous:
Π concentrates more weight on the extremes {0, 1} (tending to increase precision) but also
moves the interior point rightward (tending to decrease the usefulness of silence). This
protocol is therefore too restrictive to guarantee the benchmark coarsening result.

Protocol B: Minimal soft layer with evidence. Augment Protocol A with a soft public
label m ∈ {L, H} that is chosen according to a state-dependent experiment fixed ex ante
(probabilities (a, b) with a = Pr[m = H | θ = 1], b = Pr[m = H | θ = 0]). Messages m

are not verifiable; the Sender can always disclose e ∈ {0, 1} truthfully, and EPIC prohibits
misreporting (a, b) after the state is realized. Receivers observe (m, e) jointly, update to
posteriors µ ∈ [0, 1], and then verify optimally. With ε > 0, any posterior µ ∈ (0, 1) can be
generated with both states occurring with positive probability; the EPIC constraints reduce
to statewise no-regret inequalities, which (given quadratic loss and the verification responses)
impose:

1. If θ = 1, any interior µ used with positive probability must satisfy

(1 − λ(µ; F ))(1 − µ) = 0 ⇒ µ = 1; (4.3)

2. If θ = 0, any interior µ used with positive probability must satisfy

(1 − λ(µ; F ))µ = 2b. (4.4)

Hence the set of EPIC-admissible posteriors used in θ = 0 is the interval

M0(F, b) =
{
µ ∈ [µ(F, b), µ(F, b)]

}
with µ(F, b) solving (4.4), and µ(F, b) ∈ [0, 1

2 ].
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Because θ = 1 uses only µ = 1 by (4.3), any implementable experiment under Protocol B
has support contained in {1} ∪ M0(F, b) and is convex in the sense of mixtures over M0(F, b).

Theorem 4.4. Fix π ∈ (0, 1) and assume Protocol B. Let Π∗
F ∈ XEPIC(π; F, b, ε) be optimal

at F . If F ′ ⪰FOSD F , then there exists an optimal Π∗
F ′ ∈ XEPIC(π; F ′, b, ε) that is a mean-

preserving contraction of Π∗
F and hence Blackwell less informative. In particular, if Π∗

F is
binary with support {µL, 1}, then Π∗

F ′ is binary with support {µ′
L, 1} and µ′

L ≥ µL (the support
collapses toward 1).

Proof sketch. Under Protocol B, the feasible set of posterior laws at a fixed mean π is convex
and contains all binary distributions supported on {µ, 1} with µ ∈ M0(F, b); M0(F ′, b) shifts
right as F ′ ⪰FOSD F (by the same monotonicity as in Proposition 4.3). By Lemma 4.1, v(·; F ′)
is a contraction of v(·; F ), so the concavification at π requires less spread in µ once the left
endpoint is constrained to lie in a set that shifts right. The binary-support characterization
then yields µ′

L ≥ µL and the Blackwell comparison follows.

The benchmark persuasion comparative static (Theorem 4.2) survives EPIC once we
allow a minimal, non-verifiable “label” alongside evidence (Protocol B). By contrast, the pure
hard-evidence protocol (Protocol A) is too narrow: it pins a single interior posterior µs and
may shift the mass of posteriors in ways that do not line up monotonically with Blackwell
precision.

4.3 Worked-out symmetric special case

Take π = 1
2 and assume F has a twice continuously differentiable density on [0, 1] with

F (0) = 0 and F (1) = 1. Under Protocol B, the optimal experiment is binary with support

{µL, 1} and weight α =
1
2 −µL

1−µL
on µ = 1. The tangency condition reads

v′(µL; F ) = v(1; F ) − v(µL; F )
1 − µL

=
−b2 +

(
b2 + (1 − λ(µL; F ))2µL(1 − µL)

)
1 − µL

.

As F FOSD-decreases to F ′, we have (1 − λ(µL; F ′)) ≤ (1 − λ(µL; F )), so the right-hand side
contracts and the solution µL moves right. Hence the spread 1 − µL shrinks and the posterior
law coarsens.

Under the uniform-cost example and ε → 0, (4.2) yields µ3
s − µ2

s + µs − 2b = 0 and
λ(µs) = µs(1 − µs) as in Section 3.7. Under Protocol B, the left endpoint µL is constrained
by µL ≤ µs and moves right as F improves, so the induced spread shrinks.
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4.4 What to measure as “precision”

We use the Blackwell (garbling) order to notionally rank informativeness. For binary-support
posterior laws at a fixed mean, less spread is less informative. In the tri-point Protocol A,
informativeness is not monotone in (µs, Prob[silence]); by contrast, under Protocol B the
one-sided binary support {µL, 1} yields a clean monotone relation between µL and information
(spread 1 − µL).

In sum, our main comparative static—cheaper verification ⇒ less precise public informa-
tion—is a robust property of the concavification problem and holds under EPIC as soon as
the protocol allows a minimal soft layer alongside evidence.

5 Falsification and Violence

We enrich the baseline with two ex–post instruments that the Sender (government, platform,
firm) can deploy after the public message has been sent and Receivers have (possibly) verified
and acted:

1. Falsification allows the Sender to distort the realized aggregate action A to a nearby
value A′, at a convex cost that grows with the magnitude of the distortion.

2. Violence (repression) is a fixed–setup technology that raises the aggregate by a discrete
amount (e.g., by silencing or removing a hostile mass of Receivers), at a fixed cost
K > 0 and possibly a small variable cost.

These instruments operate after the state θ is realized and after Receivers choose actions
based on the public posterior µ and their verification decisions. Hence the EPIC constraints
developed in Sections 3–4 continue to apply to the reporting rule; the new instruments only
change the Sender’s continuation payoff at each posterior realization.

5.1 Falsification

Let the post–action aggregate under posterior µ be

A(µ, θ; F ) = (1 − λ(µ; F )) µ + λ(µ; F ) θ,

λ(µ; F ) = F
(
µ(1 − µ)

)
.

After observing θ and A(µ, θ; F ), the Sender can choose a distortion d ∈ R to implement
A′ = Π[0,1]

(
A(µ, θ; F ) + d

)
where Π[0,1] denotes truncation to [0, 1]. The falsification cost is

cf (d), where cf is convex, even, cf (0) = 0, and c′
f (0) = 0. The (state–wise) post–instrument

loss is
Lf

(
d; µ, θ

)
=

(
A(µ, θ; F ) + d − (θ + b)

)2
+ cf (d),

13



and the Sender chooses d to minimize Lf .
If cf (d) = κ

2 d2 with κ > 0, the unique minimizer is

d∗(µ, θ) = 2
2 + κ

(
(θ + b) − A(µ, θ; F )

)
. (5.1)

The minimized state–wise loss equals

Lf

(
d∗; µ, θ

)
= κ

2 + κ

(
(θ + b) − A(µ, θ; F )

)2
,

so the Sender’s indirect value at posterior µ becomes

v f (µ; F, κ) = − κ

2 + κ
E

[(
(θ + b) − A(µ, θ; F )

)2
∣∣∣∣ µ

]
= − κ

2 + κ

(
b2 + (1 − λ(µ; F ))2µ(1 − µ)

)
.

(5.2)

Up to the multiplicative factor κ/(2+κ), the shape in µ is the same as in the baseline objective
(3.5). Therefore, with symmetric quadratic falsification, the Sender’s persuasion choice (the
optimal posterior law Π) is unchanged; falsification simply scales up the continuation value.
The instrument is then used purely as an insurance device, and there is no substitution
margin between persuasion and falsification.

Two empirically plausible frictions break the neutrality:
• Upward–only falsification: d ≥ 0 (bots/upvotes/astroturf raise the aggregate but cannot

push it below what the audience organically generated).
• Capacity constraint: |d| ≤ d̄ for some d̄ > 0 (limited budgets or platform frictions).

Write the constrained problem as

min
d∈D

(
A(µ, θ; F ) + d − (θ + b)

)2
+ cf (d),

D = [0, ∞) or D = [−d̄, d̄].

Let d∗
D(µ, θ) denote the optimal constrained distortion, and define

v f
D(µ; F ) = −E

[(
A(µ, θ; F ) + d∗

D(µ, θ) − (θ + b)
)2

+ cf

(
d∗

D(µ, θ)
)

| µ
]
.

Proposition 5.1. Suppose falsification is upward–only (D = [0, ∞)) and cf is convex and
differentiable. Then for any posterior µ:

1. d∗
D(µ, 1) is weakly decreasing in λ(µ; F ), while d∗

D(µ, 0) is weakly increasing in λ(µ; F ).
2. If F ′ ⪰FOSD F , then for any EPIC–implementable experiment the ex–ante expected

use of falsification (the probability–weighted mass of states in which d∗
D > 0) weakly
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increases.

Proof sketch. With D = [0, ∞) and convex cf , the optimal d is the projection of the un-
constrained optimum onto [0, ∞). From (5.1) (or directly by subgradient conditions), d∗ is
monotone in the shortfall (θ + b) − A(µ, θ; F ). For θ = 0, A(µ, 0; F ) = (1 − λ)µ decreases in
λ, so the shortfall increases with λ, hence d∗ increases. For θ = 1, A(µ, 1; F ) = (1 − λ)µ + λ

increases in λ, so the shortfall decreases, hence d∗ decreases. FOSD improvements raise
λ(µ; F ) pointwise, implying the second claim after averaging over states and posteriors used
in equilibrium.

With |d| ≤ d̄, falsification can only partially offset large shortfalls. Let the residual
shortfall be

∆(µ, θ; F, d̄) =
∣∣∣(θ + b) − A(µ, θ; F )

∣∣∣ − d̄ truncated at 0.

The minimized loss is bounded below by ∆(µ, θ; F, d̄)2. As verification becomes cheaper
(higher λ), ∆(µ, 0; F, d̄) weakly increases for any fixed µ, making persuasion relatively more
valuable (the Sender prefers to coarsen the experiment to move mass away from posteriors
that generate large residual shortfalls in state 0).

Corollary 5.2. If |d| ≤ d̄ and F ′ ⪰FOSD F , then the concavified objective in (4.1) with contin-
uation value v f

D(·; F ) becomes strictly more concave in µ on any region where ∆(µ, 0; F, d̄) > 0,
and the optimal posterior law Blackwell–coarsens relative to the case F .

5.2 Repression

Violence is modeled as a fixed–setup instrument that jumps the aggregate upward. Formally,
after A(µ, θ; F ) is realized, the Sender may choose u ∈ {0, 1} at fixed cost K > 0, and if
u = 1 the aggregate becomes

A V (µ, θ; F ) = min{A(µ, θ; F ) + ρ, 1},

where ρ ∈ (0, 1] is the repression reach. Intuitively, u = 1 removes or silences a mass of hostile
Receivers, raising the effective average by ρ. Let cv(u) = K 1{u = 1}.

Given (µ, θ), the Sender compares the best falsification–only continuation loss to the loss
after adding violence (and optionally then fine–tuning with falsification):

L f (µ, θ) := min
d∈D

(
A(µ, θ; F ) + d − (θ + b)

)2
+ cf (d) (5.3)

L V f (µ, θ) := K + min
d∈D

(
min{A(µ, θ; F ) + ρ, 1} + d − (θ + b)

)2
+ cf (d). (5.4)

Violence is used in (µ, θ) iff L V f (µ, θ) < L f (µ, θ).
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Proposition 5.3. Fix F and D and suppose cf is convex. There exists a state–contingent
gap function

G(µ, θ; F, ρ, D) :=
[ (

Aρ(µ, θ; F ) − (θ + b)
)2

]↓f

−
[ (

A(µ, θ; F ) − (θ + b)
)2

]↓f

,

where x↓f denotes the value after optimal falsification (projection onto D and payment of cf),
such that violence is used iff K < G(µ, θ; F, ρ, D). Moreover:

1. G(µ, 1; F, ρ, D) is weakly decreasing in λ(µ; F ), while G(µ, 0; F, ρ, D) is weakly increas-
ing in λ(µ; F ).

2. If F ′ ⪰FOSD F , the ex–ante region in which violence is optimal (integrating over the
equilibrium distribution of posteriors) weakly expands, and strictly expands whenever
violence binds in state 0 for some posterior under F .

Proof sketch. The function G is the violence–induced reduction in the falsification–adjusted
squared gap to the target (θ+b). When θ = 0, A(µ, 0; F ) decreases with λ, so the pre–violence
shortfall to the upward target b increases and the marginal benefit of a ρ–jump rises; conversely
in θ = 1 the shortfall to 1 + b decreases with λ. FOSD improvements raise λ pointwise, so
the measure of (µ, θ) where K < G weakly increases.

Violence exhibits a fixed–cost threshold K; falsification (with convex cf) is a marginal
instrument. Hence, as verification becomes cheaper, the Sender’s ex–post adjustments follow
a predictable hierarchy: first increase falsification on the margins where upward gaps grow
(Proposition 5.1); once the integrated benefit G exceeds K on a set of realized posteriors with
sufficient probability, trigger violence.

5.3 Interaction with persuasion

Let V pol(π; F ) denote the Sender’s ex–ante value from persuasion alone (Section 4); let
V pol+f and V pol+f+V denote the values when falsification and then violence are available
ex post. The persuasion problem with these instruments simply replaces v(µ; F ) by the
appropriate continuation value:

V pol+X(π; F ) = sup
Π∈XEPIC(π;F,b,ε)

EΠ
[
v X(µ; F )

]
,

where X ∈ { f, f +V }.

Theorem 5.4. Assume EPIC–implementable persuasion (Protocol B in Section 4.2). If
falsification is upward–only or capacity–limited, then for any π ∈ (0, 1) and F ′ ⪰FOSD F the
optimal posterior law under X ∈ {f, f+V } Blackwell–coarsens as F improves. Moreover, the
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ex–ante probability of using falsification weakly increases, and—if K is below the threshold in
Proposition 5.3 for some (µ, θ) used with positive probability—so does the ex–ante probability
of violence.

Proof sketch. With upward–only or capacity–limited falsification, the continuation value
v X(µ; F ) becomes strictly more concave in µ on regions where the residual shortfall in θ = 0
is positive. The feasible set of posteriors under Protocol B shifts right in θ = 0 as F improves
(Proposition 4.3), tightening the concavification at any fixed mean. Standard binary–support
arguments then yield Blackwell coarsening. The usage claims follow from Propositions 5.1–5.3
after integrating over the equilibrium posterior distribution.

Falsification smooths small gaps while persuasion shapes which gaps occur; violence covers
large, recurrent gaps but only once a fixed–cost threshold is met. As verification becomes
cheaper in the population, the Sender optimally reduces the precision of public information
and shifts toward heavier ex–post instruments—first falsification, then violence.

6 Discussion and Applications

This section connects the theory to empirical settings, records robustness and modeling
choices, and sketches policy and welfare implications. Throughout, we refer back to the
primitives and EPIC implementability in Section 3, the concavification logic in Section 4,
and the ex–post instruments in Section 5.

6.1 Applied interpretations and observables

A natural interpretation is propaganda in environments where a government communicates
about performance, war progress, or economic conditions to a mass audience that can verify
at heterogeneous costs using independent outlets, VPNs, open–source intelligence, or expert
reports. In this reading, the public message corresponds to a distribution of posteriors,
verification is the equilibrium cutoff response to that message, and ex–post manipulation
takes the form of falsification or violence. The central prediction is that when verification
becomes cheaper in the population (a first–order stochastic decrease of the cost distribution),
the optimal public signal becomes less precise. Confusion is not a by–product but a deliberate
equilibrium response to a more disciplined audience.

The same logic travels to public health and consumer safety. Health authorities or political
actors communicate about epidemic risk while citizens can verify through expert channels,
lab tests, or third–party dashboards. Firms release performance or safety statistics while
consumers can pay to test or rely on professional reviews. Falsification here corresponds
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to review manipulation or synthetic engagement, while violence corresponds to discrete
suppression technologies such as takedowns or delistings.

Several observables map to the primitives. Empirical proxies for the verification–cost
distribution include adoption of VPNs, consumption of independent media, engagement
with fact checks, data prices, outages, and local expertise density. Message precision can
be proxied by dispersion or entropy in official communications, inconsistency rates across
outlets, retraction frequencies, or the share of ambiguous frames. Falsification intensity may
be proxied by bot and astroturf diagnostics or synthetic engagement, and repression by
arrests, platform shutdowns, or event cancellations.

6.2 Testable predictions

The model yields a sequence of qualitative predictions.
First, when verification becomes cheaper, the optimal public experiment coarsens. In the

benchmark of Section 4, the support of the posterior distribution contracts toward the prior;
under the EPIC–implementable protocol with a minimal soft layer, the low support point
shifts right, reducing spread in a Blackwell sense.

Second, cheaper verification increases the use of falsification in precisely those states and
posteriors where the upward gap to the sender’s target grows; once the integrated benefit of
a discrete upward jump exceeds its fixed cost, violence appears, so the hazard of repression
rises with cheaper verification.

Third, capacity limits on falsification strengthen the coarsening of persuasion: when
falsification cannot cover large residual shortfalls, the sender anticipates those regions and
reduces the likelihood of landing there by supplying a coarser public signal.

Fourth, policy shocks that exogenously reduce verification costs—fact–checking rollouts,
censorship breaks, or data–price collapses—should be followed by noisier public messages,
higher falsification where upward gaps expand, and, where fixed costs are low, discrete onsets
of repression.

Finally, cross–sectional heterogeneity matters: groups with cheaper verification should
experience both more coarsened messaging and higher marginal use of falsification relative to
high–cost groups; reverse shocks have the opposite pattern.

6.3 Robustness and modeling choices

The sender objective was specified as a quadratic distance between the aggregate action
and a state–shifted target to connect cleanly to your original file. The comparative static
relies only on two properties: verification selectively attenuates the posterior–risk term in
the sender’s indirect value, and improvements in the cost distribution make that value more
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concave in belief. These properties extend to any objective that is convex in the aggregate
with a state–dependent target and that loads positively on posterior risk; maximizing the
aggregate (e.g., a turnout objective) fits by embedding the action rule into the same indirect
value.

Quadratic receiver loss makes the private value of verification equal to the posterior
variance. With any strictly proper scoring rule or Bregman loss, the gain from verification is
the reduction in Bayes risk, which is single–peaked in belief and preserves a monotone cutoff.
Hence the verifying mass remains increasing under a mean–preserving improvement of costs,
and the sender’s indirect value becomes more concave when costs fall.

Protocol choices matter only to the extent they affect implementability and the convexity
of the feasible posterior set. The minimal delivery friction in Section 3 prevents silence from
becoming fully revealing under hard evidence. The coarsening result under EPIC requires
only a minimal non–verifiable label alongside evidence so that posteriors can vary on the
θ = 0 branch while θ = 1 is disclosed; any protocol that delivers a convex feasible set with a
left endpoint that moves right as verification becomes cheaper yields the same conclusion.

Private messages would expand posterior heterogeneity but leave the concavification logic
intact. If the sender can tailor noise privately, coarsening appears as reduced within–group
informational content when verification becomes cheaper for that group. In dynamic set-
tings with slow–moving costs, the sender’s best response tracks the cost process: sustained
declines in verification costs imply gradual coarsening and increasing reliance on falsification,
punctuated by threshold spikes into violence when accumulated gaps make the fixed cost
worthwhile. If the sender can also raise verification costs through censorship, the comparative
statics reverse: sharper messages, lower falsification, and less violence.

6.4 Welfare and policy

Lower verification costs improve private accuracy but induce the sender to coarsen the public
signal and to substitute into falsification and, when thresholds are met, violence. Policy that
subsidizes fact–checking or access should therefore anticipate strategic responses and pair
access with enforcement on falsification (bot detection, audit trails) and credible costs on
repression.

Platform design can affect the sender’s calculus by reducing the value of ambiguity (for
example, through forced claim–review flows or friction on mass reposts), but if falsification
capacity is unconstrained, enforcement on that margin must come first.

Because verification incentives are most sensitive near intermediate beliefs, marginal
reductions in verification costs for swing populations yield the largest design effects; targeting
subsidies or access to those segments can therefore generate outsized welfare gains net of the
sender’s response.
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6.5 Limitations and next steps

The binary state is chosen for clarity. In a continuous state, verification remains a local
risk–reduction device, the sender’s indirect value becomes more concave as verification costs
fall, and concavification again delivers coarsening. Heterogeneous priors can be handled by
treating the experiment as a distribution over group–specific posteriors and applying the
argument groupwise.

Alternative aggregation technologies, such as thresholds or nonlinear payoffs, change the
exact formula for the indirect value but preserve the key feature that verification reduces
posterior risk where it matters most; the predictions survive whenever the continuation value
is convex in risk.

Network and coordination effects would likely amplify the importance of posterior disper-
sion and therefore strengthen the case for coarsening. On the empirical side, event–study
designs around plausibly exogenous verification–cost shocks—platform rollouts, outages,
censorship breaks, or data–price changes—can trace the predicted triple response: coarser
public signals, higher falsification, and threshold increases in repression where fixed costs are
low.

Taken together, the theory recommends reading public confusion not as noise but as a
designed response to disciplined audiences. Policies that lower verification costs increase
private accuracy yet push adversarial senders toward coarser signals and heavier ex–post
instruments; effective interventions must therefore integrate access, enforcement against
falsification, and credible costs on repression.

7 Conclusion

This paper develops a model of public persuasion in which a sender faces a large audience
that can verify at heterogeneous costs and the sender must satisfy ex–post truthfulness. We
cast the problem as information design with evidence and treat the public posterior as a
random variable—the natural object when many receivers react to a single public signal. Two
forces shape the sender’s choice of experiment: verification selectively attenuates posterior
risk, and the implementability constraint ties the sender’s hands after the state is realized.
Together they deliver a simple comparative static: when verification becomes cheaper in
the population, the sender’s indirect value becomes more concave in the posterior, and the
optimal public signal coarsens. Confusion is, in this sense, a strategy.

We give a constructive implementability condition under hard evidence with a minimal
delivery friction and show how it pins the interior posterior used in the unfavorable state.
A small soft layer layered on evidence yields a convex feasible set of posteriors and restores
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a clean concavification logic under EPIC. In a useful benchmark with uniform verification
costs, the model reproduces the threshold pattern that motivated our empirical reading: for
sufficiently large bias, the silence posterior saturates and the verifying mass at silence pins at
a quarter of the population.

We extend the analysis to two ex–post instruments. Falsification continuously distorts the
observed aggregate at convex marginal cost; violence (repression) induces a discrete upward
jump at a fixed cost. As verification costs fall, the sender first responds on the persuasion
margin by supplying a less precise public signal, then substitutes toward falsification in
precisely those regions where upward gaps expand, and finally—once fixed–cost thresholds
are crossed—resorts to violence. This hierarchy lines up with contemporary accounts of
information control.

The framework speaks to measurement and policy. On the measurement side, it suggests
observable mappings from verification costs (access to independent information, fact–checking
frictions) to messaging precision, falsification intensity, and repression hazards. On the policy
side, lowering verification costs improves private accuracy but induces strategic responses;
effective interventions therefore pair access with enforcement against falsification and credible
costs on repression.

Several extensions are natural. A continuous state preserves the logic that cheaper
verification steepens curvature in the sender’s value and pushes toward coarser experiments.
Private messages, heterogeneous priors, richer aggregation technologies, and dynamics can be
folded in at modest additional cost; the central mechanism survives whenever verification
reduces posterior risk where the sender’s payoff is locally convex. Endogenizing verification
costs and allowing joint design of censorship and propaganda would yield a fuller theory
of information control. Empirically, quasi–experimental shocks to verification costs offer a
way to trace the predicted triple response—coarser signals, more falsification, and threshold
repression.

Taken together, the results recommend a simple organizing principle for settings in which
senders face disciplined audiences: when verification becomes cheaper, precision is optimally
sacrificed. Public confusion is not mere noise but the predictable outcome of implementable
persuasion in the shadow of fact–checking.

A Proofs and Constructive Implementation

This appendix collects formal proofs and a constructive implementation of the EPIC–feasible
public experiments used in the main text. Throughout, we maintain the notation of Sec-
tions 3–5: the state is θ ∈ {0, 1} with prior π ∈ (0, 1); the Sender’s bias is b ≥ 0; Receiver i’s
loss is (ai − θ)2 and her private verification cost ci is drawn i.i.d. from a continuous cdf F on
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[0, c̄], normalized so that F is evaluated at µ(1 − µ) ∈ [0, 1
4 ]. The verifying mass at public

posterior µ is λ(µ; F ) = F (µ(1 − µ)), the aggregate action is

A(µ, θ; F ) = (1 − λ(µ; F )) µ + λ(µ; F ) θ,

and the Sender’s per–posterior indirect value (before any ex–post instruments) is

v(µ; F ) = −
(

b2 + (1 − λ(µ; F ))2 µ(1 − µ)
)

.

Ex–post truthfulness (EPIC) is imposed on verifiable evidence only. A vanishing “delivery
friction” ε ∈ (0, 1) guarantees that silence occurs with small probability in any state and
prevents full unraveling.

A.1. Receiver best responses and verifying mass

Lemma A.1. At any public posterior µ ∈ [0, 1], a Receiver who does not verify chooses
ai = µ and suffers expected loss µ(1 − µ). If she verifies, she learns θ and chooses ai = θ,
pays ci, and suffers loss ci. Hence the unique optimal verification rule is a cutoff:

verify ⇐⇒ ci ≤ c∗(µ) : = µ(1 − µ),
λ(µ; F ) = F

(
µ(1 − µ)

)
.

Proof. Quadratic loss implies that the Bayes action absent verification is ai = µ with Bayes
risk µ(1 − µ). Verification yields risk 0 and cost ci. The comparison is µ(1 − µ) ≥ ci, which
is monotone in ci. Aggregating over i yields the verifying mass λ(µ; F ).

A.2. Properties of the indirect value and the benchmark design
problem

Lemma A.2. For any F , the function v(·; F ) is continuous on [0, 1], symmetric around
µ = 1

2 , and single–peaked with (global) maximum at some µ⋆ ∈ {0, 1
2 , 1}. If F ′ ⪰FOSD F , then

for all µ ∈ (0, 1),
v(µ; F ′) − v(1

2 ; F ′) ≤ v(µ; F ) − v(1
2 ; F ),

with equality at µ ∈ {0, 1}.

Proof. Symmetry follows because µ(1 − µ) = (1 − µ)µ and F (µ(1 − µ)) depends on µ only via
µ(1 − µ), which is symmetric around 1

2 . Since x 7→ (1 − F (x))2x is weakly increasing on [0, 1
4 ]

when F is a cdf, the penalty term (1 − λ(µ; F ))2µ(1 − µ) is minimized at the endpoints and
maximized near 1

2 , delivering single–peakedness. If F ′ ⪰FOSD F then 1−λ(µ; F ′) ≤ 1−λ(µ; F )
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for all µ, so (1 − λ(µ; F ′))2µ(1 − µ) ≤ (1 − λ(µ; F ))2µ(1 − µ), with equality when µ(1 − µ) = 0
(i.e., µ ∈ {0, 1}). Subtracting the common constant −b2 and comparing to the value at 1

2
yields the stated contraction.

Let cav v(·; F ) denote the concave envelope on [0, 1].

Proposition A.3. In the unconstrained persuasion problem with prior π ∈ (0, 1),

sup
Π: EΠ[µ]=π

EΠ[v(µ; F )] = (cav v(·; F ))(π),

and an optimal experiment has support of size at most two, Π∗ = α δµH
+ (1 − α) δµL

with
µL ≤ π ≤ µH on an exposed face of cav v(·; F ).

Proof. This is the standard concavification characterization (one–dimensional posterior).
Carathéodory’s theorem implies support size at most two.

Theorem A.4. Fix π ∈ (0, 1) and let F ′ ⪰FOSD F . There exist optimal binary experiments

Π∗
F = α δµH

+ (1 − α) δµL
, Π∗

F ′ = α′ δµ′
H

+ (1 − α′) δµ′
L
,

with µL ≤ µ′
L ≤ π ≤ µ′

H ≤ µH . Hence Π∗
F ′ is a mean–preserving contraction of Π∗

F and
Blackwell less informative.

Proof. By Lemma A.2, v(·; F ′) is a pointwise contraction of v(·; F ) around 1
2 . Supporting

chords at π to v(·; F ′) touch at points weakly closer to π than those for v(·; F ). Mean
preservation pins the weights. For binary experiments with fixed mean, smaller spread
corresponds to a Blackwell garbling.

A.3. EPIC under hard evidence and the silence posterior

We consider Protocol A (hard evidence e ∈ {0, 1} plus silence). With delivery friction
ε ∈ (0, 1), the probability of silence in state θ is (1 − δθ) + εδθ, where δθ is the disclosure
probability in state θ. When evidence is disclosed, posteriors are µ = 1 after e = 1 and µ = 0
after e = 0. When silence occurs, the posterior is

µs = Pr(θ = 1 | silence) = (1 − δ1 + εδ1) π

(1 − δ1 + εδ1) π + (1 − δ0 + εδ0) (1 − π) . (A.1)

Lemma A.5. Let the Sender’s loss be (A − (θ + b))2. Then: (i) the EPIC constraint in θ = 1
implies δ1 = 1 at any optimum; (ii) if δ0 ∈ (0, 1), the EPIC constraint in θ = 0 binds and
pins µs by

(1 − λ(µs; F )) µs = 2b. (A.2)
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Proof. In θ = 1, truthful disclosure sets µ = 1 and the aggregate is A(1, 1; F ) = (1−λ(1; F )) ·
1+λ(1; F ) ·1 = 1, so the loss is (1−(1+b))2 = b2. Withholding induces silence and µs ∈ (0, 1),
which yields A(µs, 1; F ) = (1 − λ(µs; F ))µs + λ(µs; F ) and loss

(
(1 − λ)µs + λ − (1 + b)

)2
≥ b2

with strict inequality whenever µs < 1 (since (1 − λ)µs + λ ≤ 1). Hence δ1 = 1.
In θ = 0, disclosure yields µ = 0 and A(0, 0; F ) = 0, loss b2. Withholding yields loss(

(1 − λ(µs; F )) µs − b
)2

. Indifference (δ0 ∈ (0, 1)) gives (1 − λ(µs; F )) µs = 2b.

Proposition A.6. Let F ′ ⪰FOSD F . If µs(F ) solves (A.2) for F , then µs(F ′) ≥ µs(F ), with
strict inequality when b > 0 and F ′ ̸= F .

Proof. Define ϕ(µ; F ) = (1 − λ(µ; F ))µ = (1 − F (µ(1 − µ)))µ. If F ′ ⪰FOSD F , then
ϕ(µ; F ′) ≤ ϕ(µ; F ) for all µ ∈ (0, 1). Since ϕ(·; F ) is strictly increasing on [1

2 , 1] (because µ

increases and 1 − F (µ(1 − µ)) weakly decreases), the unique solution to ϕ(µ; F ) = 2b moves
weakly right as F improves.

A.4. EPIC with a minimal soft layer and concavification

Protocol B augments hard evidence with a non–verifiable public label m ∈ {L, H}, chosen
according to state–dependent probabilities (a, b) fixed ex ante: a = Pr[m = H | θ = 1],
b = Pr[m = H | θ = 0]. The Sender still faces EPIC on verifiable evidence as in Lemma A.5;
the soft layer is a standard commitment device chosen before θ is realized.

When evidence arrives (e ∈ {0, 1}), it pins the posterior at µ ∈ {0, 1} in either protocol.
When silence occurs, Bayes’ rule with the delivery friction ε gives, for x ∈ {L, H},

Pr(θ = 1 | silence, m = x) = π(1 − δ1 + εδ1) Pr(m = x | θ = 1)∑
θ′∈{0,1} Pr(θ′) (1 − δθ′ + εδθ′) Pr(m = x | θ′) . (A.3)

Because δ1 = 1 by Lemma A.5, the numerator has factor ε; by choosing δ0 close to 1, the
denominator acquires the same factor, and the posterior becomes sensitive to the ratio a/b.
This allows us to generate interior posteriors on the θ = 0 branch while keeping θ = 1 at
µ = 1 whenever evidence is delivered.

Lemma A.7. Under Protocol B, any posterior used with positive probability in state θ = 1
must be µ = 1. Any interior posterior µ ∈ (0, 1) used with positive probability in state θ = 0
must satisfy

(1 − λ(µ; F )) µ = 2b.

Hence the set of EPIC–admissible interior posteriors under θ = 0 equals the solution set of
the above equation; in the uniform special case F (x) = x there is a unique solution µs ∈ (1

2 , 1].

Proof. The first claim follows as in Lemma A.5: because disclosure in θ = 1 is strictly
preferred to any silence–induced interior posterior, an interior posterior cannot be used with
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positive probability in θ = 1. For θ = 0, the no–regret condition is the same indifference as
in Lemma A.5, since only hard evidence is constrained ex post. Uniqueness in the uniform
case follows from strict monotonicity of g(µ) = (1 − µ(1 − µ))µ on [1

2 , 1].

Theorem A.8. Fix π ∈ (0, 1). Under Protocol B, the set of EPIC–implementable posterior
laws with mean π is convex and contains all binary laws supported on {µL, 1} where µL

solves (1 − λ(µL; F ))µL = 2b. If F ′ ⪰FOSD F , there exists an optimal law Π∗
F ′ that is a

mean–preserving contraction of an optimal law Π∗
F .

Proof. Convexity follows from the ability to mix m across realizations of silence in θ = 0
while θ = 1 is pinned at µ = 1 by evidence. The admissible µL is determined by Lemma A.7.
The objective v(·; F ) becomes more concave as F improves (Lemma A.2); binary support
and a left endpoint that moves weakly right (Proposition A.6) imply a tighter supporting
chord and a mean–preserving contraction of the optimal posterior law.

A.5. Constructive implementation under EPIC

This subsection provides an explicit recipe to implement the binary law Π∗ = α δ1 +(1−α) δµL

that arises in the main text. We treat Protocol A first to pin the silence posterior and then
Protocol B to realize it on the θ = 0 branch with a soft label.

A.5.1. Protocol A (hard evidence + silence)

Choose δ1 = 1. Let µL be a solution to (1 − λ(µ; F ))µ = 2b (Lemma A.5) and set µs := µL.
Select any δ0 ∈ (0, 1); the probability of silence in θ = 0 is s0 := 1 − δ0 + εδ0, and in θ = 1 it
is s1 := ε. The Bayes mean imposed by (A.1) is

π = (1 − ε) · 1 +
(
1 − (1 − ε)(1 + δ0)

)
µs,

which is a linear equation in δ0. For any ε ∈ (0, 1) and µs ∈ (0, 1) there exists δ0 ∈ (0, 1)
solving it (indeed, as δ0 varies the r.h.s. spans an interval containing π). The resulting
posterior law has support {0, µs, 1}, with the mass at 0 proportional to (1 − ε)δ0(1 − π);
EPIC holds by Lemma A.5.

A.5.2. Protocol B (adding a minimal soft label)

We now collapse the interior support to a single µL on the θ = 0 branch while keeping
θ = 1 at µ = 1 whenever evidence arrives. Let δ1 = 1. Choose δ0 ∈ (0, 1) close to 1
so that s0 := 1 − δ0 + εδ0 is of order ε. Fix a1 := Pr[m = H | θ = 1] = 1 and choose
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a0 := Pr[m = H | θ = 0] ∈ (0, 1) to make the posterior after (silence, m = H) equal to the
target µL ∈ (1

2 , 1):

µL = π s1 a1

π s1 a1 + (1 − π) s0 a0
⇐⇒ a0 = πs1

(1 − π)s0

( 1
µL

− 1
)

, s1 = ε. (A.4)

As δ0 → 1 we have s0 → ε, and the right–hand side tends to π
1−π

(
1

µL
− 1

)
. For π ≤ µL ≤ 1

this limit lies in [0, 1]; hence, by continuity, there exists δ0 sufficiently close to 1 such that
a0 ∈ (0, 1). Under this choice, all silence+m = H events induce µL. Silence+m = L can
be made measure–zero by setting Pr[m = L | θ = 0, silence] = 0 (which is compatible with
(A.4) since only m = H is used). Bayes plausibility pins the mass α on µ = 1 via the mean
constraint α ·1+(1−α)µL = π. EPIC holds since only µ = 1 is used with positive probability
in θ = 1, and µL satisfies (1 − λ(µL; F ))µL = 2b.

A.6. Extensions: falsification and violence

This subsection derives the properties used in Section 5. Let D denote the feasible set for the
distortion d (either R, [0, ∞), or [−d̄, d̄]), and let cf be convex, even, cf (0) = 0.

A.6.1. Quadratic falsification cost

If cf (d) = κ
2 d2, the statewise problem

min
d∈R

(
A(µ, θ; F ) + d − (θ + b)

)2
+ κ

2 d2

has unique minimizer d∗ = 2
2+κ

(
(θ + b) − A(µ, θ; F )

)
and minimized loss κ

2+κ

(
(θ + b) −

A(µ, θ; F )
)2

. Hence

v f
R (µ; F, κ) = − κ

2 + κ

(
b2 + (1 − λ(µ; F ))2 µ(1 − µ)

)
,

which is a positive multiple of v(µ; F ). The concavification and thus the optimal experiment
are unchanged.

A.6.2. One–sided and capacity–limited falsification

When D = [0, ∞) (upward–only manipulation), the optimal d∗
D is the projection of the

unconstrained minimizer onto [0, ∞). Writing ∆(µ, θ; F ) := (θ + b) − A(µ, θ; F ), we have
d∗

D = max{0, d̃(µ, θ)} where d̃ is monotone in ∆. Since ∂λA(µ, 0; F ) = −µ < 0 and
∂λA(µ, 1; F ) = 1 − µ > 0, it follows that ∆(µ, 0; F ) is increasing and ∆(µ, 1; F ) is decreasing
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in λ(µ; F ). As F ′ ⪰FOSD F raises λ(µ; F ) pointwise, the probability and expected size of
upward falsification weakly increase in θ = 0 and weakly decrease in θ = 1. Integrating over
the equilibrium posterior law yields the monotonicity in Proposition 5.1 in the main text.

With a capacity |d| ≤ d̄, the minimized loss is bounded below by the squared residual
shortfall

∆d̄(µ, θ; F ) := max
{

0,
∣∣∣(θ + b) − A(µ, θ; F )

∣∣∣ − d̄
}

,

loss ≥ ∆d̄(µ, θ; F )2.
As F improves, ∆d̄(µ, 0; F ) weakly increases for any fixed µ while ∆d̄(µ, 1; F ) weakly

decreases, making the continuation value strictly more concave in µ on regions where
∆d̄(µ, 0; F ) > 0. The corollary in Section 5.1 follows by the same concavification argument as
in Theorem A.4.

A.6.3. Violence (fixed–cost upward jump)

Let u ∈ {0, 1} denote the violence decision, with cost K > 0 when u = 1 and shift
A 7→ Aρ := min{A + ρ, 1}. Define the post–violence falsification–adjusted values

L f (µ, θ) = min
d∈D

(
A(µ, θ; F ) + d − (θ + b)

)2
+ cf (d),

L V f (µ, θ) = K + min
d∈D

(
Aρ(µ, θ; F ) + d − (θ + b)

)2
+ cf (d).

Violence is optimal iff K < G(µ, θ; F, ρ, D) where

G(µ, θ; F, ρ, D) :=
[(

Aρ(µ, θ; F ) − (θ + b)
)2

]↓f

−
[(

A(µ, θ; F ) − (θ + b)
)2

]↓f

,

and x↓f denotes the value after optimal falsification subject to D. Since ∂λA(µ, 0; F ) = −µ <

0, the pre–violence gap to the upward target b increases with λ in θ = 0, while the gap to
(1 + b) in θ = 1 decreases with λ. Therefore G(µ, 0; ·) is weakly increasing and G(µ, 1; ·)
weakly decreasing in λ. If F ′ ⪰FOSD F , then λ(µ; F ′) ≥ λ(µ; F ) pointwise, and the ex–ante
region where K < G weakly expands, yielding Proposition 5.3.

A.7. Worked–out special case

Assume π = 1
2 , ε → 0, and F (x) = x on [0, 1]. Then λ(µ; F ) = µ(1 − µ) and the EPIC

condition (A.2) reduces to

(1 − µs(1 − µs))µs = 2b ⇐⇒ µ3
s − µ2

s + µs − 2b = 0,
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with a unique solution µs(b) ∈ [1
2 , 1]. The left–hand side is maximized at 1

2 where it equals 3
8 , so

for b ≥ 3
16 the solution saturates at µs = 1

2 . The verifying mass at silence is λ(µs) = µs(1−µs),
which equals 1

4 at the corner. This reproduces Proposition 3.1 in the text.

A.8. Continuous states

The binary state simplifies exposition. Suppose now θ ∈ [0, 1] with prior G and Receiver loss
(a − θ)2. Verification reveals θ at cost ci. For any public posterior distribution over θ with
mean m, a non–verifier chooses a = m and incurs Bayes risk E

[
(θ − m)2 | m

]
= Var(θ | m).

The benefit of verification equals this posterior variance, yielding a cutoff ci ≤ Var(θ | m)
and a verifying mass λ(m; F ) = F (Var(θ | m)). The aggregate action is (1 − λ)m + λ θ, and
the Sender’s continuation value takes the form

v(m; F ) = −
(

b2 + (1 − λ(m; F ))2 Var(θ | m)
)

,

which is single–peaked and becomes more concave in m when F improves. Concavification
and the EPIC construction (now with hard evidence about θ on intervals and a minimal soft
layer) go through with obvious modifications; details are omitted for brevity.

Summary. The appendix established: (i) the cutoff verification rule and expression for
λ(µ; F ); (ii) the shape and comparative statics of the indirect value; (iii) concavification–based
coarsening in the benchmark; (iv) EPIC implementability under hard evidence, including the
closed–form indifference (1 − λ(µs; F ))µs = 2b and monotonicity of µs; (v) coarsening under
EPIC with a minimal soft layer; (vi) a constructive implementation of the optimal binary
experiment; and (vii) substitution patterns and thresholds for falsification and violence.
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