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Abstract

We study optimal taxation when the conversion of tax revenue into public goods is

uncertain. In a static Ramsey framework with a representative household, a competitive

firm, and two broad instruments (a labor-income tax and a commodity/output tax), a

simple measure of trust— the perceived likelihood that revenue is actually delivered

as public consumption—scales the marginal value of public funds. We show: (i) a

trust threshold below which any distortionary taxation reduces welfare; (ii) above that

threshold, policy uniquely pins down the scale of taxation but leaves a continuum of

tax mixes (an equivalence frontier) that implement the same allocation and welfare;

and (iii) tiny administrative or salience wedges select a unique instrument, typically

favoring a broad base collected at source. We derive a trust-adjusted Ramsey rule in

sufficient-statistics form, establish robustness to mild preference non-separabilities and

concave public-good utility, and provide an isoelastic specialization with transparent

comparative statics.

Keywords: Optimal taxation; public goods; credibility; marginal value of public funds; tax

mix; administration.

JEL: E61, H21, H30, C73.

1 Introduction

Tax systems are built on a simple promise: citizens hand over resources today and receive

public services in return. But in many places that promise is uncertain. Money leaks through

waste, corruption, or weak capacity; delivery is delayed or diluted; and citizens doubt that

an extra dollar of tax will show up as an extra dollar of roads, clinics, or security. When that

doubt is material, the classic trade-off behind optimal taxation changes. This paper takes
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that doubt—call it trust in the conversion of revenue into public goods—and puts it at the

center of a clean Ramsey benchmark.1

We study a static environment with a representative household, a competitive firm,

and two broad tax instruments (a labor-income tax and a commodity or output tax).2

Trust is treated as an exogenous, measurable belief about whether collected revenue will in

fact be delivered as public consumption. Agents choose labor and consumption before the

government’s type is realized, so they internalize the expected conversion of taxes into public

goods.3

Four results emerge. First, there is a sharp trust threshold:4 below it, any distortionary

taxation lowers welfare, and the unique optimum is no tax at all (Proposition 1). Second,

once trust clears that threshold, policy pins down the overall scale of taxation but leaves

the tax mix indeterminate along a one-dimensional equivalence frontier; every point on that

frontier implements the same allocation and welfare (Theorem 1, with comparative statics

in Proposition 3 and global concavity in Proposition 4). Third, tiny, instrument-specific

frictions—administrative costs or salience differences—break the indifference and uniquely

select the cheaper instrument, typically the broad base collected at source (Proposition 5).

Fourth, we derive a trust-adjusted Ramsey rule in sufficient-statistics form: the marginal

excess burden per marginal unit of delivered revenue equals a trust-scaled marginal value of

public funds (Section 5.6).

Robustness is straightforward. Mild non-separability between consumption and leisure

leaves the scale result intact but predictably tilts the preferred mix: when consumption

and leisure are complements, the planner leans toward the commodity base; when they are

substitutes, toward the labor base (Proposition 6). Allowing diminishing marginal utility of

public goods reduces the optimal scale but preserves the frontier logic and the selection-by-

wedges result; we characterize the scale implicitly and show it moves monotonically with trust

(Propositions 7–8, Theorem 2). An isoelastic specialization provides closed-form schedules

and figures that map measured trust into optimal rates, delivered public consumption, and

welfare.

1We treat “trust” as a reduced-form, exogenous sufficient statistic for credibility, administrative capacity,
and leakage risk. Keeping it exogenous in a one-period benchmark delivers closed forms and avoids overlap
with the dynamic reputation study, where trust evolves endogenously.

2Think of the commodity/output tax as a uniform VAT or sales tax applied to a single composite good.
In a representative-agent, one-good setting with no intermediate distortions, this aligns with broad-base
recommendations from Diamond and Mirrlees (1971a,b); Atkinson and Stiglitz (1976). Multi-sector or
input-tax complications are beyond our scope here.

3This timing implies an expected-utility evaluation of the public-good lottery. If agents were risk-averse
over that lottery or if v(·) were concave, the trust threshold rises; we characterize this in Section 6.

4The threshold depends only on primitives at the origin (local marginal deadweight loss versus marginal
delivered revenue). With concave public-good utility v, it becomes 1/

(
v′(0)Y ∗); see Section 6.
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2 Related Literature

Our benchmark is a static Ramsey problem with distortionary instruments financing a public

good. The classic production-efficiency and broad-base results of Diamond and Mirrlees

(1971a,b) and the uniform-tax logic of Atkinson and Stiglitz (1976) underpin our equivalence

frontier: when trust is sufficiently high to warrant positive taxation, the planner is indifferent

across tax mixes that keep the private distortion index fixed while raising the same delivered

revenue. The sufficient-statistics view echoes the spirit of classic Ramsey calculations (Ramsey,

1927) while making the marginal value of public funds trust-adjusted.

The selection of a unique instrument on the frontier by tiny wedges relates to the

administrative/evasion perspective in Slemrod and Yitzhaki (2002). Our prediction that

the broad base is typically favored is consistent with institutional evidence and practice

documented in Ebrill et al. (2001) and field evidence on VAT self-enforcement (Pomeranz,

2015). In our static model, such differences enter as curvature in instrument-specific costs

and pin down the mix.

Time inconsistency and rules versus discretion (Kydland and Prescott, 1977) triggered the

reputation literature in macroeconomic policy (Barro and Gordon, 1983; Barro, 1986) and a

broader commitment/sustainable-plans agenda (Chari and Kehoe, 1990; Debortoli and Nunes,

2010). We take a complementary route: by keeping trust exogenous in a one-shot benchmark,

we obtain (i) a sharp trust threshold for any taxation and (ii) a one-dimensional equivalence

frontier in the tax mix. Dynamic reputation models with hidden types and updating—e.g.

Phelan (2006) and Lu (2013)—are natural complements; our sufficient-statistics formulas

provide primitives for such environments.

Empirically, higher institutional trust and tax morale correlate with stronger compliance

and fiscal capacity, e.g. Scholz and Lubell (1998) and Torgler (2007). While our benchmark

keeps compliance at one (and thus abstracts from evasion), the trust-scaling of the marginal

value of public funds aligns with the broader finding that legitimacy conditions the effectiveness

of taxation. Extensions with compliance responses can be added without leaving the static

framework (see Section 6 for other robustness results).

Roadmap. Section 3 introduces the environment and instruments. Section 4 states the

planner’s problem and defines sufficient statistics. Section 5 presents the main results: the

trust threshold, the equivalence frontier, instrument selection with small wedges, and the

trust-adjusted Ramsey rule. Section 6 provides robustness: mild non-separability between

consumption and labor, and a general concave utility for the public good. Section 7 specializes

to an isoelastic case with closed forms and figures. Section 8 offers policy implications. Section
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9 concludes. Proofs are collected in Appendix A.

3 Environment

Time is a single period. The private good is the numéraire. The economy has a representative

household, a competitive firm, and a government.

The household has strictly concave u(C,G,L) with uC > 0, uG > 0, uL < 0, and standard

curvature. We permit additivity in G as a leading case: u(C,G,L) = ũ(C,L) + v(G) with

ũC > 0, ũL < 0, and v′(·) > 0, v′′(·) ≤ 0. The household is atomistic and takes G as given

when choosing L.

A competitive firm produces Y = f(L) with f ′ > 0, f ′′ < 0 and pays wage w; profits Π

accrue to the household. Let k ≡ f ′(L)L denote the private marginal product times input at

the chosen L.

The government levies proportional taxes τℓ ∈ [0, 1) on labor income and τc ∈ [0, 1) on

the broad commodity/output base.5

After private choices are made, the government’s type realizes. With probability θ ∈ (0, 1)

it is honest and converts collected revenue one-for-one into G; with probability 1− θ it is

opportunistic and provides G = 0.6

In the honest realization, the public-goods budget identity is G = τℓwL+ τcY .

The government announces (τℓ, τc); private agents choose (C,L) and input demand; then

the type realizes and, if honest, transforms revenue into G.

Given (τℓ, τc), the firm solves maxL≥0(1−τc)f(L)−wL, yielding w = (1−τc)f
′(L). Profits

are Π = (1− τc)[f(L)− f ′(L)L]. The household’s budget constraint binds:

C = w(1− τℓ)L+Π. (1)

Combining firm conditions and (1) implies (suppressing the argument L)

C = (1− τc) (1− α τℓ) f(L) where α ≡ f ′(L)L

f(L)
∈ (0, 1). (2)

For the isoelastic case f(L) = aLβ we have α = β (constant). The household chooses L

to maximize u(C, G, L) taking G as given; in the additively separable benchmark this is

5We treat τc as a uniform tax on the single private good/value-added; with representative agents and no
intermediate distortions, this corresponds to a broad commodity or output tax.

6This binary type can be read as a reduced-form for leakage, waste, or non-delivery. An equivalent
interpretation is Bernoulli delivery of public goods with success probability θ; allowing fractional waste does
not affect the main insights.
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equivalent to maximizing ũ(C(L), L). Existence and uniqueness of L∗ follow from standard

concavity assumptions. Let Y ∗ ≡ f(L∗) and k∗ ≡ f ′(L∗)L∗.

Assumption 1. (i) f : R+ → R+ is C2, strictly concave, strictly increasing, with f(0) = 0 and

f(L) > 0 for L > 0.

(ii) ũ : R++ ×R+ → R is C2, strictly concave, nondecreasing in C and nonincreasing in L. In

the benchmark we take ũ(C,L) = lnC − ϕ(L) with ϕ strictly convex, limL→∞ ϕ(L) = +∞.

(iii) v : R+ → R is C2, nondecreasing and concave; the leading case is v(G) = G.

(iv) For any (τℓ, τc) ∈ [0, 1)2, the household problem admits a unique interior solution

L∗(τℓ, τc) > 0.

Assumption 2. Let α∗ ≡ f ′(L∗)L∗

f(L∗)
∈ (0, 1), Y ∗ ≡ f(L∗), and k∗ ≡ f ′(L∗)L∗ = α∗Y ∗. Define

S(τℓ, τc) ≡ (1− τc)
(
1− α∗ τℓ

)
, R̃(τℓ, τc) ≡ τℓ(1− τc) +

1

α∗ τc.

Then at the induced private equilibrium,

C∗ = S(τℓ, τc)Y
∗, GB(τℓ, τc) = k∗ R̃(τℓ, τc) = k∗ τℓ(1− τc) + Y ∗ τc.

Remark 1. This normalization ensures the marginal delivered revenue effects match primitives:

∂τℓG
B|(0,0) = k∗ and ∂τcG

B|(0,0) = Y ∗.

4 Planner and Sufficient Statistics

This section recasts the policy problem in a form that makes the role of trust transparent and

portable across primitives. Rather than work directly with tax rates, we map policies into

two sufficient statistics:7 a single “private distortion” index that captures how the tax system

loads on the net-of-tax margins, and a delivered-revenue term that captures how much public

consumption is expected when policy is implemented. This index mapping lets us express the

planner’s objective in a compact way and pin down what is identified by data or calibration

(e.g., measured trust, administrative wedges) and what is a genuine choice variable (the tax

mix versus the overall scale). With these building blocks, the main results in Section 5 follow

from first principles and require only mild regularity.

A benevolent planner (ex ante) chooses (τℓ, τc) to maximize expected utility

W (τℓ, τc; θ) = ũ(C∗(τℓ, τc), L
∗(τℓ, τc)) + θ v

(
GB(τℓ, τc)

)
, (3)

7Our normalization for delivered revenue ensures that the marginal delivered revenue from a unit labor-tax
increase equals k∗ (the marginal product times input) and from a unit commodity-tax increase equals Y ∗

(output). This choice yields the clean threshold and frontier expressions used later.
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where

GB(τℓ, τc) = τℓ w
∗L∗ + τc Y

∗ = [τℓ(1− τc)α
∗ + τc]Y

∗, (4)

is delivered public consumption in the honest state (a function of (τℓ, τc) via L∗, Y ∗, α∗), and

C∗ is given by (2) evaluated at the equilibrium L∗.

For transparency we define two sufficient-statistics aggregators at the equilibrium alloca-

tion:

S(τℓ, τc) ≡ (1− τc)
(
1− α∗ τℓ

)
, (private distortion index) (5)

R(τℓ, τc) ≡ τℓ(1− τc)α
∗ + τc, (revenue index per unit of Y ∗) (6)

so that C∗ = S(τ)Y ∗ and GB = R(τ)Y ∗. In the isoelastic case (α∗ = β constant), S and R

are exactly as in (5)–(6), independent of L∗.

Lemma 1. Under Assumption 1, for any (τℓ, τc) ∈ [0, 1)2 there exists a unique private

equilibrium L∗(τℓ, τc) > 0. In the benchmark ũ(C,L) = lnC −ϕ(L) with ϕ strictly convex and

limL→∞ ϕ(L) = +∞, L∗ is independent of (τℓ, τc) and solves

f ′(L∗)

f(L∗)
= ϕ′(L∗),

so that Y ∗ = f(L∗) and k∗ = f ′(L∗)L∗ are constants with respect to (τℓ, τc).

Standing relations. By Assumption 2, C∗ = S Y ∗ and GB = k∗ R̃ with S = (1− τc)(1−
α∗τℓ) and R̃ = τℓ(1− τc) +

1
α∗ τc.

Lemma 2. Under Assumptions 1–2 and the benchmark ũ(C,L) = lnC − ϕ(L), v(G) = G,

the welfare can be written as

W (τℓ, τc; θ) = ln(1− τc) + ln
(
1− α∗ τℓ

)
+ θ k∗

[
τℓ(1− τc) +

1

α∗ τc

]
− ϕ(L∗) + const. (7)

Hence W is the sum of a strictly concave term in (τℓ, τc) (the two logs) and a bilinear term

that captures delivered public consumption in expectation.

Lemma 3. Fix any s ∈ (0, 1) and consider the level set L(s) ≡ {(τℓ, τc) ∈ (0, 1)2 : S(τℓ, τc) =

s}. Then ∇S(τℓ, τc) ̸= 0 on (0, 1)2 and, by the implicit function theorem, L(s) is a C1 curve.

In the isoelastic case (α∗ = β), the slope along L(s) is

dτc
dτℓ

=
α∗(1− τc)

1− α∗ τℓ
> 0,
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so level sets are strictly increasing graphs in (τℓ, τc)-space.

When ũ(C,L) = lnC − ϕ(L) and v(G) = G (the benchmark in Section 7), we have

W (τ ; θ) = lnS(τ) + θ k∗R(τ)− ϕ(L∗) + const, (8)

with k∗ ≡ f ′(L∗)L∗. The first term is concave in (τℓ, τc) and the second is linear, so W is

concave in rates under standard conditions.

We first record primitives under which the core results admit global (not merely local)

statements with closed forms.

Assumption B.

ũ(C,L) = lnC − ϕ(L) with ϕ convex and C2; v(G) = G; f : R+ → R+ is C2, strictly

increasing and strictly concave.

Implication.

Under Assumption B, the household’s labor choice L∗ solves maxL≥0{ln f(L)−ϕ(L)} and is

therefore independent of (τℓ, τc). Let Y
∗ ≡ f(L∗), k∗ ≡ f ′(L∗)L∗, and α∗ ≡ k∗/Y ∗ ∈ (0, 1).

Then

C∗ = (1− τc)(1− α∗ τℓ)Y
∗, GB =

[
τℓ(1− τc)α

∗ + τc
]
Y ∗,

and the welfare index (8) reduces to

W (τ ; θ) = ln
[
(1− τc)(1− α∗τℓ)

]
+ θ k∗ [τℓ(1− τc)α

∗ + τc
]
+ const.

Lemma 4. Under Assumption B, W (τ ; θ) is C2 and strictly concave on (0, 1)2 in (τℓ, τc).

Proof sketch. ln[(1− τc)(1− α∗τℓ)] = ln(1− τc) + ln(1− α∗τℓ) has negative diagonal second

derivatives and zero cross-partial; the revenue term is linear. Hence the Hessian is diagonal

with strictly negative entries on (0, 1)2.

5 Main Results

We now solve the trust-adjusted Ramsey problem and organize the results in four steps.

First, we establish a sharp threshold in trust below which any positive tax reduces welfare

(Proposition 1).

Second, once trust clears that threshold, the planner uniquely fixes the scale of taxation

while remaining indifferent across a continuum of tax mixes that deliver the same allocation

and value—the equivalence frontier (Theorem 1).
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Third, we show how tiny, instrument-specific frictions resolve this indifference and select

a unique instrument (Proposition 5).

Finally, we summarize the optimality conditions in a trust-adjusted Ramsey rule that is

easy to take to data or numerical experiments (Section 5.6). Along the way, we characterize

boundary cases, comparative statics in trust, and global concavity to rule out spurious optima.

5.1 A Trust Threshold for Positive Taxation

The basic question is whether it ever makes sense to raise a distortionary tax when citizens

doubt delivery. At very low trust, the marginal deadweight loss of taxation dominates the

expected benefit of public goods, so the best policy is to refrain from taxing at all. The next

result formalizes this intuition by showing that the planner’s objective has a clean cutoff in

trust: below it, zero taxation is uniquely optimal; above it, some positive revenue is strictly

welfare-improving (Proposition 1).

Proposition 1. Under Assumptions 1–2 and the benchmark ũ(C,L) = lnC−ϕ(L), v(G) = G,

define Y ∗ = f(L∗) at the private equilibrium L∗ of Lemma 1. Then:

(i) If θ ≤ θ̄ ≡ 1/Y ∗, the unique optimum is zero taxation: (τ ∗ℓ , τ
∗
c ) = (0, 0).

(ii) If θ > 1/Y ∗, any welfare-improving policy must raise positive revenue (i.e., some τi > 0

is strictly beneficial relative to (0, 0)).

5.2 Equivalence Frontier: Unique Scale, Indifferent Mix

Once trust is high enough to justify raising revenue, the planner no longer cares which broad

instrument does the work—as long as the private distortion is held fixed. This delivers a

one-dimensional equivalence frontier in the space of tax rates:8 many mixes implement the

same allocation and value. The frontier pins down the overall scale of taxation, while leaving

the mix indeterminate. We characterize this set and show that, along it, private consumption

and delivered public consumption move one-for-one with trust in a particularly transparent

way (Theorem 1).

Theorem 1. Maintain Assumptions 1–2 and the benchmark ũ = lnC − ϕ(L), v(G) = G,

and suppose α∗ is constant (isoelastic technology). If θ > 1/Y ∗, any interior optimum

8Geometrically, the frontier inherits the shape of level sets of the private-distortion index. In the isoelastic
case these level sets are strictly increasing curves; any point on the curve implements the same allocation and
value.
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Figure 1: Equivalence frontier in (τℓ, τc) space for several trust levels θ (isoelastic, a = 2, β = 1
2).

Each curve satisfies (1− τc)
(
1
β − τℓ

)
= 1/(θk∗); all points on a curve implement the same allocation

and welfare.

(τ ∗ℓ , τ
∗
c ) ∈ (0, 1)2 satisfies the single equation

(1− τc)
( 1

α∗ − τℓ

)
=

1

θk∗ , (9)

and the set of interior optima forms a one-dimensional C1 manifold (the equivalence frontier)

in (τℓ, τc)-space. All points on the frontier implement the same allocation and value:

C∗(θ) =
1

θ
, GB(θ) = Y ∗ − 1

θ
, W ∗(θ) = − ln θ + θY ∗ − ϕ(L∗) + const. (10)

5.3 KKT characterization, boundaries, and feasibility

Because the feasible policy set includes corners and axis points, a complete description

requires the Kuhn–Tucker conditions and a careful look at boundaries. This subsection

records the general KKT system, shows when interior solutions exist, and identifies the two

polar implementations on the axes. These polar points are convenient for exposition and

numerics, and they implement the same allocation and value as any interior point on the
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frontier.

We work with the box constraints 0 ≤ τi < 1, i ∈ {ℓ, c}.9

Let µi ≥ 0 be the multipliers on τi ≥ 0 and νi ≥ 0 on 1− τi ≥ 0.

Proposition 2. Under Assumptions 1–2 and the benchmark ũ = lnC − ϕ(L), v(G) = G:

(i) At any optimum (τ ∗ℓ , τ
∗
c ),

∂W

∂τℓ
(τ ∗; θ) + µℓ − νℓ = 0,

∂W

∂τc
(τ ∗; θ) + µc − νc = 0.

(ii) µi τ
∗
i = 0 and νi (1− τ ∗i ) = 0 for i ∈ {ℓ, c}.

(iii) τ ∗i ∈ [0, 1) and µi, νi ≥ 0.

(iv) If (τ ∗ℓ , τ
∗
c ) ∈ (0, 1)2, then µi = νi = 0 and the first-order conditions reduce to

− α∗

1− α∗ τ ∗ℓ
+ θk∗(1− τ ∗c ) = 0, − 1

1− τ ∗c
+ θk∗

(
1

α∗ − τ ∗ℓ

)
= 0,

whose solutions form the equivalence frontier (9).

(v) If θ > 1/Y ∗, the frontier intersects the open box (0, 1)2 and is a nonempty C1 curve

with endpoints on the axes.

Corollary 1. For θ > 1/Y ∗, the two axis points

(τℓ, τc) =
(
0, 1− 1

θY ∗

)
and (τℓ, τc) =

( 1

α∗

(
1− 1

θY ∗

)
, 0

)
satisfy the KKT conditions and implement the same allocation and value (10) as any interior

frontier point.

5.4 Comparative statics in trust

How do optimal policy objects move with measured trust? Along the frontier, the answer

is simple and intuitive: as credibility rises, statutory rates on the selected broad base rise,

delivered public consumption increases, and welfare improves at an accelerating pace.10 The

next result gathers these comparative statics and documents their monotonicity and curvature

properties in the isoelastic specialization.

9We exclude exact τi = 1 because the log terms in the objective become ill-defined there and such corner
rates are not policy-relevant. Real-world statutory rates are far below unity.

10In the isoelastic benchmark with v(G) = G and ũ(C,L) = lnC − ϕ(L), W ∗(θ) is strictly convex in θ.
With concave v, curvature can weaken but monotonicity results remain; see Section 6.
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Proposition 3. In the isoelastic specialization (α∗ = β ∈ (0, 1)) and for θ > 1/Y ∗, along

the frontier:

(a) The polar commodity/output rate τ ∗c (θ) = 1− 1
θY ∗ is strictly increasing and concave in

θ:
dτ ∗c
dθ

=
1

θ2Y ∗ > 0,
d2τ ∗c
dθ2

= − 2

θ3Y ∗ < 0.

Symmetrically, the polar labor rate τ ∗ℓ (θ) = 1
α∗

(
1 − 1

θY ∗

)
is strictly increasing and

concave.

(b) Delivered public consumption GB(θ) = Y ∗ − 1
θ
is strictly increasing and concave in θ:

dGB

dθ
=

1

θ2
> 0,

d2GB

dθ2
= − 2

θ3
< 0.

(c) Welfare W ∗(θ) = − ln θ + θY ∗ (up to an additive constant) is strictly increasing and

strictly convex on (1/Y ∗,∞):

dW ∗

dθ
= −1

θ
+ Y ∗ > 0,

d2W ∗

dθ2
=

1

θ2
> 0.

Proposition 4. For fixed θ, W (τℓ, τc; θ) in (7) is the sum of a strictly concave function and

a bilinear function, hence concave on [0, 1)2. Consequently, any stationary point is a global

maximizer. For θ ≤ 1/Y ∗ the unique maximizer is (0, 0); for θ > 1/Y ∗ the set of maximizers

is precisely the equivalence frontier segment (including its axis endpoints) described by (9).

5.5 Instrument Selection with Tiny Wedges

Indifference across mixes is knife-edge: in practice, small administrative or salience differences

break the tie. We model these as tiny, instrument-specific wedges and show that they uniquely

select the revenue workhorse.11 The conclusion is pragmatic: once trust is sufficient to tax,

use the cheaper broad base—unless there is compelling evidence that the alternative base is

administratively superior in the relevant range.

Proposition 5. Let aℓ(τℓ) and ac(τc) be C2, strictly convex with ai(0) = a′i(0) = 0, repre-

senting administrative/salience costs for each instrument. For θ > 1/Y ∗, among all points

on the frontier (9), the unique optimum minimizes aℓ(τℓ) + ac(τc). Under local quadratic

11If administrative or compliance costs are nonconvex (e.g., fixed costs or threshold effects), selection can
jump between instruments as the target scale changes. Our quadratic local comparison is conservative and
favors the cheaper instrument in a neighborhood of the origin.
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costs ai(τi) ≃ κi

2
τ 2i near the origin, the optimal mix tilts toward the instrument with the

smaller curvature κi; as κj/κi → ∞, the solution converges to the polar tax using instrument

i ∈ {ℓ, c}.

5.6 A Trust-Adjusted Ramsey Rule

A useful way to summarize optimality is to compare how much private utility is lost at the

margin with how much delivered public consumption is gained. The resulting condition looks

like the classic Ramsey rule, except that the marginal value of public funds is scaled by trust.

This sufficient-statistics form can be read off the data (or a calibration) and helps organize

both theory and policy evaluation.

Let MRi ≡ ∂τiG
B denote the marginal delivered revenue from instrument i ∈ {ℓ, c} and let

MEBi denote the marginal excess burden (the marginal private utility loss) from instrument

i. Define the trust-adjusted marginal value of public funds

MVF(θ) ≡ θ v′(GB)

ũC(C,L)
.

At any interior optimum with both instruments used,

MEBi

MRi

= MVF(θ) for i ∈ {ℓ, c}, (11)

with the usual Kuhn–Tucker inequalities at corners. In the benchmark ũ(C,L) = lnC − ϕ(L)

and v(G) = G, one has MVF(θ) = θ C∗, which equals 1 along the frontier by (10).

6 Extensions and Robustness

The core insights are robust and extend in two natural directions without leaving the one-

period benchmark. First, allowing mild non-separability between consumption and leisure

preserves the scale result but predictably tilts the preferred mix, providing a simple guide to

instrument choice when preferences deviate from additivity. Second, allowing diminishing

marginal utility of public goods attenuates the optimal scale while preserving the frontier

logic and selection-by-wedges. We present each extension in turn with minimal additional

structure.
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6.1 Mild non-separability between C and L

Non-separable preferences are empirically relevant and theoretically instructive: when con-

sumption and leisure interact, the same private distortion index can be achieved in subtly

different ways by leaning on one instrument or the other. Locally, this breaks frontier

indifference and delivers a clear sign test:12 complements favor the commodity/output base;13

substitutes favor the labor base. The result provides a disciplined reason to tilt the mix when

small preference interactions matter.

We now allow u(C,L) to be C2, strictly concave, with cross-partial uCL evaluated at

the zero-tax allocation (C0, L0) = (Y ∗, L∗) possibly nonzero, while keeping v(G) = G and

Assumptions 1–2. As in Section 3, C(L, τ) = (1− τc)
(
1− α(L)τℓ

)
f(L) with α(L) = f ′(L)L

f(L)
.

The private FOC is F (L, τ) ≡ uC(C,L)CL(C,L, τ) + uL(C,L) = 0.

Proposition 6. Fix θ > 1/Y ∗ and the optimal scale Sθ from Theorem 1. Consider in-

finitesimal policy moves (dτℓ, dτc) that preserve the private-distortion index S to first order,

i.e.

dS = Sτℓ dτℓ + Sτc dτc = 0 ⇐⇒ dτc = −α∗ dτℓ at (0, 0).

Then the second-order welfare change at the zero-tax allocation satisfies

d2W = −ΞuCL(C0, L0)
(
dτℓ

)2
+ o

(
∥dτ∥2

)
, (12)

where Ξ > 0 depends only on primitives (curvature of u and f) at (C0, L0).
14 In particular:

• If uCL(C0, L0) < 0 (consumption and leisure are complements), d2W < 0 when increas-

ing τℓ and compensating τc to keep S fixed, so the planner prefers tilting the mix toward

the commodity/output tax.

• If uCL(C0, L0) > 0 (substitutes), the planner prefers tilting toward the labor-income tax.

Thus, index-based indifference in the separable benchmark is robust in scale but breaks

predictably in mix under mild non-separability.

12For GHH-type preferences (additive in C − ψ(L)), the cross-partial uCL is zero at the benchmark, so the
local tilt disappears. Small deviations from GHH restore a definite tilt with the sign given by uCL.

13We abstract from capital, savings, and intertemporal choice to isolate the trust channel.

14One convenient representation is Ξ =

(
CL(C0,L0)

)2

−FL(C0,0)
, with CL = f ′(L0) > 0 and FL < 0 by strict concavity;

see Appendix.
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6.2 Concave public-good utility

Public goods often exhibit diminishing marginal utility once a minimum service level is

achieved. Incorporating this curvature does not undermine the logic of the benchmark. It

shifts the trust threshold in a transparent way and reduces the optimal scale15 for any given

trust while leaving the equivalence frontier and the selection-by-wedges conclusion intact. We

provide the characterization and the comparative statics.

Let v : R+ → R be C2, nondecreasing and concave (v′ > 0, v′′ ≤ 0), while the private

part remains ũ(C,L) = lnC − ϕ(L) as in the benchmark, and Assumptions 1–2 hold.

Proposition 7. At the origin, the directional derivatives satisfy

∂W

∂τℓ

∣∣∣∣
(0,0)

= −α∗ + θ v′(0) k∗,
∂W

∂τc

∣∣∣∣
(0,0)

= −1 + θ v′(0)Y ∗.

Hence the trust threshold generalizes to

θ̄v =
1

v′(0)Y ∗ .

If θ ≤ θ̄v, (0, 0) is optimal; if θ > θ̄v, some positive tax is strictly welfare-improving.

Theorem 2. In the isoelastic case (α∗ = β constant), W depends on (τℓ, τc) only through

S(τ) = (1−τc)(1−α∗τℓ) and GB(τ) = (1−S(τ))Y ∗. For θ > θ̄v, the optimal scale Sθ ∈ (0, 1)

is characterized uniquely by
1

Sθ

= θ v′
(
(1− Sθ)Y

∗)Y ∗, (13)

and the mix is indeterminate: any (τℓ, τc) satisfying S(τ) = Sθ is optimal.

Proposition 8. Let Sθ solve (13). Then

dSθ

dθ
=

v′
(
(1− Sθ)Y

∗)Y ∗

− 1

S2
θ

+ θ v′′
(
(1− Sθ)Y

∗) (Y ∗)2
< 0,

because v′ > 0 and v′′ ≤ 0 imply the denominator is strictly negative. Therefore C∗(θ) = SθY
∗

is strictly decreasing and GB(θ) = (1− Sθ)Y
∗ strictly increasing in θ.

Remark 2. Concavity of v attenuates the optimal tax scale relative to the linear case v(G) = G,

but the equivalence-frontier logic (mix indifference at a fixed Sθ) and wedge-based instrument

selection remain unchanged.
15Calibrating v′(0) amounts to choosing the social value of the first unit of public services (e.g., basic

security or primary health). Higher v′(0) lowers the threshold and justifies taxation at lower measured trust.
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7 Isoelastic Specialization

To make the logic fully transparent and to facilitate figures, we specialize to a simple isoelastic

technology16 and a log-linear private utility. This yields closed-form expressions for the trust

threshold, polar tax schedules, delivered public consumption, and welfare. The specialization

is not needed for the theory but is helpful for calibration, teaching, and quick policy analytics;

the figures visualize how optimal objects rise with trust and where the frontier lies in rate

space.

Let f(L) = aLβ with a > 0 and β ∈ (0, 1); take ũ(C,L) = lnC − 1
2
L2 and v(G) = G.

Then α∗ = β, the equilibrium input is L∗ =
√
β, output Y ∗ = a ββ/2, and k∗ = βY ∗. The

sufficient-statistics reduce to

S(τ) = (1− τc)(1− βτℓ), R(τ) = βτℓ(1− τc) + τc. (14)

Threshold. The trust threshold equals

θ̄ =
1

Y ∗ =
1

a ββ/2
. (15)

Frontier and polar implementations. For θ > θ̄, the frontier is

(1− τc)
(

1
β
− τℓ

)
=

1

θk∗ . (16)

Two polar optima implement the same allocation and welfare:

τ ∗c (θ) = 1− 1

θY ∗ , τ ∗ℓ (θ) =
1

β

(
1− 1

θY ∗

)
. (17)

Along the frontier C∗(θ) = 1/θ, GB(θ) = Y ∗ − 1
θ
, and W ∗(θ) = − ln θ+ θY ∗ − 1

2
(L∗)2 +const.

8 Policy Implications

The analysis yields a compact policy map for environments where the conversion of revenue

into public services is uncertain.

When measured trust is below the threshold, any distortionary tax worsens welfare. The

right lever is not the rate but credibility: actions that make delivery more visible, verifiable,

and timely. Examples include transparent procurement and publication of delivery milestones;

16The figures use a = 2 and β = 1
2 purely for illustration. Any monotone rescaling of a or moderate change

in β preserves the shapes and the qualitative comparative statics.
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Figure 2: Optimal commodity/output tax τ∗c (θ) in the isoelastic specialization (a = 2, β = 1
2).

The dashed line marks the trust threshold θ̄ = 1/Y ∗.

third-party audits; narrow, highly visible pilot projects; and clear ex ante commitments about

scope and timelines. In our benchmark, such actions raise the effective trust parameter and

move the economy into the region where positive taxation is justified.

Above the threshold, the planner fixes the scale and is indifferent over the mix in the

frictionless benchmark. In practice, small administrative and compliance differences matter:

broad bases collected at source (such as a well-designed VAT or uniform sales tax) typically

dominate on collection cost and enforceability. The model provides the normative justification:

when tiny wedges break indifference, use the instrument with the lower wedge. Where the

labor base is demonstrably cheaper to collect (e.g., highly formalized payroll systems with

strong withholding), tilt accordingly.

As credibility improves, optimal statutory rates on the selected base rise monotonically,

delivered public consumption increases one-for-one with the contraction in private consump-

tion, and welfare improves at an accelerating pace. This suggests a practical rule: calibrate or

proxy trust (from surveys, delivery audits, or outcome-tracking dashboards) and map it into

a target tax-to-GDP for the selected base. The isoelastic specialization provides ready-to-use

formulas and visuals for communication and planning.

To lift trust efficiently, choose projects and delivery mechanisms with short feedback
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Figure 3: Delivered public consumption GB(θ) = Y ∗−1/θ along the equivalence frontier (isoelastic
case). The dashed line marks θ̄ = 1/Y ∗.

loops and high observability (e.g., maintenance with visible outputs, digital public services

with user-side logs). Where feasible, publish contract-level data and simple indicators of

completion. Even in a static benchmark, these choices act like raising the effective conversion

rate for the marginal unit of revenue.

When policymakers face a choice between two bases with similar statutory reach, a small

diagnostic calculation—how much administrative/salience wedge is needed to prefer one base

over the other at the target scale—can be decisive. If that wedge is plausibly positive (e.g.,

difference in enforcement costs or evasion exposure), the model’s selection result gives clear

guidance.

For public buy-in, the policy message can be made simple: “We raise rates only when

we can credibly deliver. As trust increases, we scale gradually and use the cheapest base to

collect.” This aligns incentives on both sides—government commits to visibility and delivery;

citizens observe and update trust.

The benchmark is static and representative-agent. It abstracts from distributional

objectives, sectoral specifics, and explicit compliance responses. These omissions are deliberate

and help isolate the trust channel. Extensions can add distributional weights, heterogeneity

in trust, or simple compliance responses without compromising the central policy messages.
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9 Conclusion

This paper places public trust at the center of the optimal tax problem.17 In a static Ramsey

benchmark with two broad instruments, trust acts as a primitive that determines whether

to tax at all, how much to tax when it is worthwhile, and which instrument should carry

the load when tiny practical wedges matter. The theory yields a threshold for taxing, an

equivalence frontier for the mix, and a trust-adjusted Ramsey rule in sufficient statistics. The

resulting policy map is simple: build credibility first; once trust is sufficient, keep the base

broad and let measured trust determine the scale.
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A Proofs

This appendix provides formal proofs and omitted derivations.

Proof of Lemma 1

Fix (τℓ, τc). The household maximizes L 7→ ũ
(
C(L), L

)
where, by firm optimality and

the budget, C(L) = (1 − τc)
(
1 − α(L)τℓ

)
f(L) with α(L) ≡ f ′(L)L/f(L) ∈ (0, 1). Under

Assumption 1(ii), ũ is strictly concave; under (i), f is concave and increasing; hence L 7→
ũ(C(L), L) is strictly concave provided u1 is concave and nondecreasing in C (composition with

a concave map) and u2 is strictly concave in L. Coercivity follows from limL→∞ ũ(C(L), L) =

−∞ (e.g. when ũ = lnC − ϕ(L) with ϕ strictly convex and unbounded), and the objective

tends to −∞ as L ↓ 0 whenever f(0) = 0 and ũ(C, ·) penalizes vanishing C (e.g. lnC → −∞),

implying an interior maximizer. Strict concavity delivers uniqueness.

For the benchmark ũ(C,L) = lnC − ϕ(L), we have

max
L>0

ln
(
S(τℓ, τc) f(L)

)
− ϕ(L) = lnS(τℓ, τc) + max

L>0

{
ln f(L)− ϕ(L)

}
,

so the argmax L∗ solves
(
f ′(L)/f(L)

)
− ϕ′(L) = 0 and is independent of (τℓ, τc). Setting

Y ∗ = f(L∗) and k∗ = f ′(L∗)L∗ yields the stated constants.

Proof of Lemma 2

Under Assumption 2, C∗ = S Y ∗ and GB = (1− S)Y ∗ with S = S(τℓ, τc), Y
∗ constant. With

ũ(C,L) = lnC − ϕ(L) and v(G) = G,

W (τℓ, τc; θ) = ln(SY ∗)− ϕ(L∗) + θ (1− S)Y ∗ + const = lnS + θk∗(1− S)− ϕ(L∗) + const,
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since k∗ = f ′(L∗)L∗ and Y ∗ = k∗

α∗ . Hence W depends on (τℓ, τc) only through S(τℓ, τc).

Finally,

lnS(τℓ, τc) = ln(1− τc) + ln
(
1− α∗ τℓ

)
,

a sum of concave functions on [0, 1)2 (each term is the log of a positive affine function), hence

strictly concave.

Proof of Lemma 3

Compute the gradient

∇S(τℓ, τc) =
(
− α∗(1− τc), −(1− α∗ τℓ)

)
,

which is nonzero on (0, 1)2. By the implicit function theorem, the level set L(s) = {S = s} is

a C1 curve. In the isoelastic case α∗ = β, differentiating S(τℓ, τc) = (1− τc)(1− α∗ τℓ) = s

yields

−(1− α∗ τℓ) dτc − α∗(1− τc) dτℓ = 0 ⇒ dτc
dτℓ

=
α∗(1− τc)

1− α∗ τℓ
> 0.

Thus L(s) is strictly increasing in (τℓ, τc)-space.

Preliminaries under Assumption B. Write S(τ) ≡ (1 − τc)(1 − α∗τℓ) and R(τ) ≡
τℓ(1− τc)α

∗+ τc. By Assumption B, L∗ (hence Y ∗, k∗, α∗) is independent of (τℓ, τc). Therefore

W (τ ; θ) = lnS(τ) + θk∗R(τ) + const,

which is concave by Lemma 4.

Proof of Proposition 1

From (7), the partial derivatives at the origin are

∂W

∂τℓ

∣∣∣∣
(0,0)

= −α∗ + θk∗,
∂W

∂τc

∣∣∣∣
(0,0)

= −1 + θ
k∗

α∗ = −1 + θY ∗.

Hence, if θ ≤ 1/Y ∗, both one-sided partials are ≤ 0, so no feasible revenue-raising movement

from (0, 0) can increase W . Since W is continuous on the compact [0, 1]2 and (by the

benchmark) strictly decreases in each log term initially, (0, 0) is a global maximizer. If

θ > 1/Y ∗, then ∂τcW |(0,0) > 0, so increasing τc slightly (raising revenue) increases W ; in

particular, any improvement requires strictly positive revenue.
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Proof of Theorem 1

Compute the first-order conditions from (7):

∂W

∂τℓ
= − α∗

1− α∗ τℓ
+ θk∗(1− τc) = 0,

∂W

∂τc
= − 1

1− τc
+ θk∗

(
1

α∗ − τℓ

)
= 0.

Rearranging the two equations and multiplying sides yields

(
1− τc

)( 1

α∗ − τℓ

)
=

1

θk∗ ,

which is (9). For θ > 1/Y ∗, feasibility of (9) with (τℓ, τc) ∈ (0, 1)2 is immediate (e.g., set

τℓ = 0 and solve for τc). The implicit function theorem (as in Lemma 3) implies the solution

set is a C1 curve.

To compute the implemented allocation along the frontier, note that

S(τ) = (1− τc)(1− α∗τℓ) = α∗ (1− τc)

(
1

α∗ − τℓ

)
=

α∗

θk∗ =
1

θY ∗ .

Hence C∗(θ) = S Y ∗ = 1/θ and GB(θ) = Y ∗ − C∗(θ) = Y ∗ − 1/θ. Substituting into (7) at

any frontier point yields

W ∗(θ) = lnC∗(θ)− ϕ(L∗) + θ GB(θ) + const = − ln θ + θY ∗ − ϕ(L∗) + const,

which is independent of the mix (τℓ, τc) on (9).

Proof of Proposition 2

Parts (i)–(iii) are the standard KKT conditions for the box-constrained maximization of

the concave W . For (iv), interior optimality implies µi = νi = 0 and stationarity reduces

to the FOCs computed from (7), yielding the frontier equations. For (v), if θ > 1/Y ∗ then

1/(θk∗) ∈ (0, 1/α∗) since k∗ = α∗Y ∗; the curve (1− τc)(1/α
∗ − τℓ) = 1/(θk∗) intersects each

axis at the finite points reported in Corollary 1, so it enters (0, 1)2. By Lemma 3 and ∇S ≠ 0

on (0, 1)2, the frontier is a nonempty C1 curve with those endpoints.
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Proof of Corollary 1

Evaluate the FOCs at (τℓ, τc) =
(
0, 1− 1

θY ∗

)
: ∂τcW = − 1

1−τc
+ θk∗(1/α∗) = −θY ∗ + θY ∗ = 0

and ∂τℓW = −α∗ + θk∗(1− τc) = −α∗ + θk∗(1/(θY ∗)) = 0. With νi = 0 (both rates strictly

below 1), stationarity holds with µi = 0 and complementary slackness is satisfied since τℓ = 0.

The other polar point is analogous. Both lie on (9), hence implement (10).

Proof of Proposition 3

(a) and (b) are direct differentiations of τ ∗c (θ) = 1− 1/(θY ∗), τ ∗ℓ (θ) = (1/α∗)(1− 1/(θY ∗)),

and GB(θ) = Y ∗ − 1/θ. (c) Differentiating W ∗(θ) = − ln θ + θY ∗ yields W ′∗(θ) = −1/θ + Y ∗

and W ′′∗(θ) = 1/θ2 > 0; since θ > 1/Y ∗, W ′∗(θ) > 0.

Proof of Proposition 4

From (7), W (τℓ, τc; θ) = ln(1− τc) + ln(1−α∗τℓ) + θk∗[τℓ(1− τc) + (1/α∗)τc
]
− ϕ(L∗) + const.

The sum of the two log terms is strictly concave on [0, 1)2; the last bracket is bilinear, hence

affine in each coordinate and thus preserves concavity when added. Therefore W is concave

on [0, 1)2 and any stationary point is globally optimal. If θ ≤ 1/Y ∗, Proposition 1 gives

(0, 0) as the unique maximizer. If θ > 1/Y ∗, the interior stationarity equations define the C1

frontier (9); including the axis endpoints (Corollary 1) yields the full set of maximizers.

Proof of Proposition 5

For θ > 1/Y ∗, the set of interior optima without costs is the frontier F(θ) ≡ {(τℓ, τc) :

(1− τc)(
1
α∗ − τℓ) = 1/(θk∗)}. Adding instrument-specific costs aℓ(τℓ) + ac(τc) changes W by

a strictly convex penalty along F(θ). Therefore the maximizer of W − aℓ − ac on F(θ) is

equivalent to

min
(τℓ,τc)∈F(θ)

aℓ(τℓ) + ac(τc),

which has a unique solution by strict convexity and the fact that F(θ) is a C1 curve. The

quadratic local-comparison claim follows by linearizing the frontier near a point with small

rates (so that (1 − τc) ≈ 1 and (1/α∗ − τℓ) ≈ 1/α∗) and solving the quadratic program

min κℓ

2
τ 2ℓ + κc

2
τ 2c subject to τℓ +

1
α∗ τc = const: the solution tilts toward the instrument with

smaller curvature; the polar limit obtains as the curvature ratio diverges.
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Proof of (11) (trust-adjusted Ramsey rule)

Write the planner’s objective as W = ũ(C,L) + θv(GB) and consider a small change in τi.

Let MRi ≡ ∂τiG
B and define the marginal private utility loss (excess burden) as MEBi ≡

− (ũC ∂τiC + ũL ∂τiL). At an interior optimum, the total derivative satisfies 0 = ∂τiW =

−MEBi + θv′(GB)MRi. Dividing by ũC > 0 gives

MEBi

MRi

=
θv′(GB)

ũC(C,L)
= MVF(θ),

establishing (11). In the benchmark ũ(C,L) = lnC−ϕ(L) and v(G) = G, we have ũC = 1/C

and v′(G) = 1, so MVF(θ) = θC; along the frontier C∗(θ) = 1/θ by (10), hence MVF(θ) =

1.

Proof of Proposition 6

Work at the zero-tax allocation (C0, L0) = (Y ∗, L∗). Let F (L, τ) ≡ uC(C,L)CL(C,L, τ) +

uL(C,L) denote the private FOC, with F (C0, L0, 0) = 0 and FL < 0 by strict concavity. By

the implicit function theorem, L(τ) is C1 near τ = 0 and

dL = − Fτℓ dτℓ + Fτc dτc
FL

.

Along directions that preserve S to first order at the origin, dτc = −α∗ dτℓ. Moreover

Cτℓ(C0, L0, 0) = −f ′(L0)L0 = −k∗ and Cτc(C0, L0, 0) = −f(L0) = −Y ∗, whence the direct

change in C cancels: Cτℓdτℓ + Cτcdτc = −k∗ dτℓ + α∗Y ∗ dτℓ = 0 (since k∗ = α∗Y ∗). Similarly,

the public-good term changes only at O(∥dτ∥2): GB is linear in τ times bases, so its variation

via L is second order at the origin.

Hence the first-order welfare change vanishes and the leading term is second order via the

induced dL:

dW = uC CL dL+ uL dL+ o(∥dτ∥) =
(
uCCL + uL

)
dL+ o(∥dτ∥) = o(∥dτ∥),

using F = 0 at (C0, L0, 0). A standard second-order expansion (or differentiating the envelope

condition) yields

d2W = −
(
uCL(C0, L0)

) (
CL(C0, L0)

)2
−FL(C0, L0, 0)

(
dτℓ

)2
+ o

(
∥dτ∥2

)
,

after substituting dτc = −α∗ dτℓ and collecting terms; see, e.g., the quadratic form obtained
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from the implicit-function reduction of L(τ). Set Ξ ≡ (CL)
2

−FL
> 0 to obtain (12) and the sign

conclusions.

Proof of Proposition 7

With v concave, W (τ ; θ) = ln(1− τc)+ ln(1−α∗τℓ)+ θ v
(
k∗[τℓ(1− τc)]+

k∗

α∗ τc
)
−ϕ(L∗)+const

near the origin. Differentiating at (0, 0) gives the stated partials: ∂τℓW |(0,0) = −α∗ + θv′(0)k∗

and ∂τcW |(0,0) = −1+θv′(0)Y ∗. Thus the threshold is θ̄v = 1/(v′(0)Y ∗) by the same concavity

argument as in Proposition 1.

Proof of Theorem 2

Under ũ = lnC − ϕ(L), C∗ = SY ∗ with S = (1− τc)(1− α∗τℓ), and GB = (1− S)Y ∗; hence

W (τ ; θ) = lnS + θ v
(
(1−S)Y ∗)+const depends on (τℓ, τc) only through S. Maximizing over

S ∈ (0, 1) yields the first-order condition 0 = ∂W/∂S = 1/S − θ v′
(
(1 − S)Y ∗)Y ∗, which

uniquely determines Sθ because the left-hand side is strictly decreasing in S (since v′′ ≤ 0).

Any (τℓ, τc) with S(τ) = Sθ is optimal, proving mix indifference.

Proof of Proposition 8

Let F (S, θ) ≡ 1
S
− θ v′

(
(1 − S)Y ∗)Y ∗. At Sθ we have F (Sθ, θ) = 0 and ∂θF = − v′

(
(1 −

Sθ)Y
∗)Y ∗ < 0, while ∂SF = − 1

S2
θ
+ θ v′′

(
(1 − Sθ)Y

∗) (Y ∗)2 < 0 because v′′ ≤ 0. By the

implicit function theorem, dSθ/dθ = −(∂θF )/(∂SF ) < 0. Therefore C∗(θ) = SθY
∗ decreases

and GB(θ) = (1− Sθ)Y
∗ increases with θ.
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