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Abstract

We revisit the tension between the legal doctrine of renegotiation and economic
efficiency. We introduce self-revealing mechanisms that combine bidirectional com-
munication (the agent sends and receives information) with conditional disclosure
(communication remains private during renegotiation but becomes verifiable at con-
tract execution). In the canonical Fudenberg and Tirole (1990) framework, we
design a self-revealing mechanism that fully mitigates the renegotiation threat by
uniquely implementing the second-best allocation. Thus, the construction achieves
the full-commitment outcome while satisfying renegotiation-proofness. Our optimal
mechanism is structurally simple, and exploits signal disclosures to the agent to
construct incentive-compatible off-path punishments, which she activates after ob-
serving a renegotiation offer. It verifies standard commitment assumptions by only
conditioning decisions on public information, without requiring any third-party en-
forcement. In practical terms, it can be implemented with existing smart-contract
techniques. Our results extend to general settings of renegotiation. (JEL D43, D82,
D86)
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Francois Salanié, Steve Tadelis, and Takuro Yamashita for very thoughtful comments. We also thank
seminar audiences at Berkeley University, Bonn University, Collegio Carlo Alberto, Northwestern Univer-
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1 Introduction

The threat of renegotiation is ubiquitous in contracting, embodying the problem of col-

lective opportunism that inherently emerges when dealing with incentive problems. As

first pointed out by Dewatripont (1989), this opportunism arises because contracts that

optimally resolve incentive problems typically do so by implementing allocations that

prove inefficient ex post. Consequently, when contracting parties are unable to credibly

commit to refraining from renegotiating away ex post inefficiencies, they find themselves

at a disadvantage from an ex-ante perspective.

The inability to prevent renegotiation reflects a conflict between economic efficiency

and legal doctrine (Jolls, 1997; Davis, 2006). Courts generally refuse to enforce no-

renegotiation clauses, viewing them as violations of the freedom of contract principle.1

This refusal prevents direct contractual solutions to the renegotiation problem, requiring

economic solutions that work within existing legal frameworks.

We provide a novel solution through mechanisms that combine two features. First,

bidirectional communication: a mechanism determines final allocations through the re-

ports it receives from the agent and the signals it sends back to her. Second, conditional

disclosure: communication within a mechanism remains private over the course of the

interaction but becomes verifiable at the contract execution stage. We show that a simple

architecture of communication, which only involves a binary message and a coin flip, allows

to retrieve the full-commitment allocation without any third-party commitment device.

By implementing the second-best allocation via design, we thus overturn the conventional

wisdom that the inability to prevent renegotiation in contractual terms fundamentally

constrains incentive provision under asymmetric information.

We illustrate our approach in the canonical model of Fudenberg and Tirole (1990)

(FT), in which a risk-neutral principal contracts with a risk-averse agent who privately

chooses a binary effort level. In this moral hazard setup, the incentive-compatible transfers

for high effort entail ex-post inefficient risk sharing, creating scope for Pareto-improving

renegotiation. FT show that this renegotiation threat prevents achieving second-best ef-

ficiency when the principal is restricted to using revelation mechanisms. We show that

self-revealing mechanisms—which incorporate both bidirectional communication and con-

ditional disclosure—fully mitigate this threat.

1For instance, the US Code on contract law under Title 42,§1981 declares the right of all persons to
“the making, performance, modification, and termination of contracts”. Jolls (1997) and Davis (2006)
cite multiple applications of this code voiding contractual clauses limiting collective renegotiation. A
notable example is Beatty v. Guggenheim Exploration Co. 225 N.Y. 380, 1919, where in his judgment
Justice Cardozo voided an explicit contractual clause forbidding future modification stating that “Those
who make a contract, may unmake it. The clause which forbids a change, may be changed like any
other.”
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Specifically, we construct a self-revealing mechanism which uniquely implements the

second-best allocation: high effort is chosen deterministically in the unique equilibrium

outcome. While FT analyze the renegotiation game using revelation mechanisms, which

only require the agent to report her private information, we set up an alternative mode of

communication to prevent renegotiation. Our approach draws on the dynamic mechanism

design principles of Forges (1986) and Myerson (1986) but uses signals for a distinct

purpose: rather than correlating players’ behaviors, our mechanism exploits private signals

to the agent to generate off-equilibrium punishments that deter renegotiation.

Thus, enriching the structure of communication allows to reconcile the conflict between

renegotiation-proofness and economic efficiency: our optimal mechanism successfully pre-

vents renegotiation while implementing the same allocation that would obtain under full

commitment.

The mechanism’s structure is straightforward. After observing a renegotiation offer,

the agent privately submits one of two reports: status quo or renegotiation. The mecha-

nism then privately reveals to the agent the outcome of a fair coin toss, committing to the

following payment rule: (i) if she reports status quo, it executes the second-best transfers;

(ii) if she reports renegotiation, it modifies the contract by either improving or worsening

her expected utility depending on the coin toss.

Intuitively, reporting renegotiation enables the agent to trigger a random automated

counter-offer, whose outcome is privately revealed to the agent. Thus, when a renegoti-

ation is proposed, and the agent reports this event, she accepts the new offer only when

the randomization implemented by the original mechanism is unfavorable to her. This

makes any attempt to renegotiate prohibitively costly to the principal. In equilibrium,

the agent’s self-enforcing punishment fully prevents renegotiation, leading to a unique

implementation of the second-best allocation. The random counter-offer is key to our

result: it requires the mechanism to send private signals to the agent, creating crucial

informational asymmetries.

While bidirectional communication is necessary, it is not sufficient for eliminating rene-

gotiation threats. Our mechanism must also resolve a verifiability paradox. The mech-

anism’s communication cannot be publicly verifiable when renegotiation is proposed—

otherwise the principal could condition his renegotiation offer on it, undermining the

punishment. Yet this communication must become verifiable for enforcement when the

original contract executes. Our mechanism resolves this paradox through its self-revealing

property: bidirectional communication remains private during renegotiation but becomes

verifiably disclosed if the original contract is executed.

Our mechanism also verifies standard commitment requirements under renegotiation.

By only conditioning decisions on public information, it requires no external enforcement
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from a third-party. Moreover, the timing of the agent’s communication need not be

monitored: her self-interest ensures she finds strategically optimal to communicate in

accordance with our construction.

In practical terms, our optimal mechanism is directly implementable through existing

smart contract technologies. Using off-the-shelf commit-and-reveal cryptographic tools,

a contracting party can privately encode a message on a blockchain and later disclose

it publicly: this directly mirrors the self-revealing functionality of keeping bidirectional

communication private and revealing it verifiably upon contract execution. We provide

a proof-of-concept implementation in Solidity (v0.8.0), demonstrating compatibility with

current smart-contract toolkits.

Our approach extends beyond the FT framework. The key insight—bidirectional

communication with strategically timed information disclosure generates self-enforcing

punishments against renegotiation—applies wherever ex-post inefficiencies create renego-

tiation incentives. To support this view, we extend our approach to other settings of

contract renegotiation.

We first consider alternative extensive forms for the renegotiation game, focusing,

in particular, on the case of infinite rounds of renegotiation. We hence model, in the

spirit of Strulovici (2017), an infinite-horizon setting where renegotiation breaks down

with positive probability in each round, in which case the last accepted contract exe-

cutes. In our moral hazard context, second-best efficiency involves imperfect risk sharing,

which leaves in principle room for renegotiation after each round. We instead construct

a self-revealing mechanism, offered at the ex-ante stage, which implements the second-

best allocation thereby suggesting that backward induction reasoning is not key to our

approach.

We next argue that self-revealing mechanisms retain their power under alternative

specification of the renegotiation process. We consider, in particular, the situations in

which renegotiation may also complement, and need not necessarily replace, the original

mechanism. This gives rise to a richer set of renegotiation opportunities: a new offer

may exploit the observability of the original mechanism’s transfers to undo any potential

punishment. We show, however, that a modified self-revealing revealing mechanism can

be designed to prevent these additional effects, and implement the second-best allocation

even under this supplementary view of renegotiation.

The broader implication of our analysis is therefore that mechanism design is flexible

enough to accommodate legal constraints on renegotiation. By exploiting bidirectional

communication and strategically timed information disclosure, contracting parties can

achieve full commitment outcomes within existing contract law, without requiring courts

to enforce no-renegotiation clauses.
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Related literature. Our work contributes to the literature on contract renegotiation

which, starting with Dewatripont (1989), focuses on optimal renegotiation-proof mecha-

nisms. The renegotiation threat has been typically assessed under different informational

assumptions: while Fudenberg and Tirole (1990) and Ma (1994) consider a moral haz-

ard scenario, renegotiation under incomplete information is analyzed by Hart and Tirole

(1988), Laffont and Tirole (1990), and, more recently, by Maestri (2017). Strulovici (2017)

establishes a non-cooperative foundation for Coasian outcomes in an infinite-horizon rene-

gotiation game.

Bolton (1990) points out that optimally preventing renegotiation requires introducing

private information at the renegotiation stage. Without mechanisms that send signals to

agents, this information can only be generated through agent randomization over reports

or efforts at equilibrium. Such randomization implies allocative costs, making second-best

efficiency unattainable.

Instead, our self-revealing mechanism generates private information through signals

sent to the agent, eliminating these randomization costs. Critically, this uncertainty

matters only off-equilibrium: following a renegotiation offer, the mechanism’s signals

enable the agent to punish renegotiation attempts, uniquely implementing the second-

best allocation.

Formally, our approach draws on the dynamic mechanism design tradition initiated

by Forges (1986) and Myerson (1986). In contrast with these early works, we explicitly

consider an extensive form game in which a player, i.e. the principal, has commitment

power. This allows us to exploit the signals privately sent by the mechanism to target

a new objective: generating off-equilibrium punishments rather than correlating players’

strategies.

Rahman and Obara (2010) achieve virtual implementation through mediated contracts

conditioning on private communication, but do not address contractual enforceability.

By contrast, we achieve full implementation and our conditional revelation—disclosing

communication only when the original contract executes—provides explicit enforcement

power so that they are implementable without a trusted third party (mediator).

Bester and Strausz (2007) are the first to develop the idea that, in the absence of

full commitment, mechanisms featuring private communication with an agent may have a

welfare-enhancing role. The subsequent literature has mainly focused on the class of pure

limited-commitment settings, in which contracts can be unilaterally voided by the princi-

pal. In this context, Doval and Skreta (2022) and Lomys and Yamashita (2022) establish

different versions of a revelation principle under noisy communication. Recent works by

Brzustowski et al. (2023) and Doval and Skreta (2024) focus on the Coase-conjecture en-

vironment and characterize optimal allocations under different contracting assumptions
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(long-term vs short-term contracts). Yet, they typically do not achieve second-best effi-

ciency.

We analyze mechanism design under the threat of renegotiation, providing a new

rationale for private communication. Key to our construction is a defining feature of

renegotiation environments: until both parties agree on new terms, the agent retains ac-

cess to the options available in the original mechanism. This enables mechanisms sending

private signals to generate a new set of punishments and, ultimately, to achieve unique

(Perfect Bayesian equilibrium) implementation of the second-best allocation.

The renegotiation problem can be rationalized as the competition taking place between

the principal at the ex-ante stage and his future self at the renegotiation stage to trade

with the agent. This suggests a close relationship with common agency games, which

analyze the competition among several principals who post mechanisms to deal with a

common agent. In line with common agency, we let a mechanism delegate the implemen-

tation of any punishment –against renegotiation– to the agent. In our construction, such

punishments correspond to (random) options that are offered but not activated by the

agent on the equilibrium path. They hence serve the same role of the latent contracts,

which are used to deter principals’ deviation in common agency.2

Finally, our work contributes to literature on implementing mechanisms through smart

contracts (Townsend, 2020, Chapter 6; Akbarpour and Li, 2020; Roughgarden, 2021).

Brzustowski et al. (2023) appeal to smart contracts for implementing mechanisms that

receive private messages without sending signals. We extend this idea by explicitly show-

ing that smart contracts can also implement the reverse: mechanisms sending private

signals to agents. This extension is crucial for demonstrating how current technologies en-

able full implementation of self-revealing mechanisms without mediators or third parties.

This eliminates potential manipulation risks and achieves practical feasibility, bridging

our theoretical innovation with real-world applicability.

The paper proceeds as follows. Section 2 presents the Fudenberg-Tirole framework

and identifies its methodological limitations. Section 3 constructs the self-revealing mech-

anism and establishes unique implementation of the second-best allocation. Section 4

addresses enforcement requirements and demonstrates practical implementation through

smart contracts. Section 5 extends the analysis to other contracting environments. Sec-

tion 6 concludes. Proofs are in Appendix A.

2See Bisin and Guaitoli, 2004; Attar and Chassagnon, 2009; Attar et al., 2011; Attar et al., 2019.
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2 The Benchmark

We consider the canonical framework of Fudenberg and Tirole (1990) (FT, henceforth), in

which a risk-neutral principal (he) contracts with a risk-averse agent (she), who chooses

an unobservable effort. There are two outputs ω ∈ {g, b}, a good one g and a bad one b,

where g > b > 0. The probability distribution over outputs depends on the binary effort

e ∈ E ≡ {L,H}. Let pe ≡ P(g|e) represent the probability of the good output given

effort e ∈ E with pH > pL so that ∆p ≡ pH − pL > 0. The effort e yields expected output

Ye ≡ peg + (1− pe)b.

Payoffs and Allocations. The agent’s utility is additively separable in income w ∈ R
and effort e ∈ E, expressed as u(w) − D(e). The utility function u exhibits u′(w) > 0

and u′′(w) < 0 for each w ∈ R, and is unbounded over its domain, i.e., lim
w→−∞

u(w) = −∞
and lim

w→∞
u(w) = ∞. Consequently, the inverse Φ = u−1 is well-defined on the range of

u, strictly increasing, Φ′(u) > 0, and strictly convex, Φ′′(u) > 0. The low effort cost is

normalized to D(e = L) = 0 and the high effort cost is D(e = H) = d > 0.3

Final payoffs are determined by the output-contingent transfers that the principal

makes to the agent. A contract is a pair (wg, wb) ∈ R2 of such transfers. For notational

convenience, we also write a contract as c = (ug, ub), with ug = u(wg) and ub = u(wb).

A (deterministic) allocation is a pair (e, c) ∈ E × R2 of payoff-relevant decisions, with c

represented in utility space unless noted.

The agent’s expected payoff from (e, c) is

Ue(c) = peug + (1− pe)ub −D(e),

where U0 is her reservation payoff.4 The principal’s expected payoff from (e, c) is

Ve(c) = Ye − peΦ(ug)− (1− pe)Φ(ub).

Efficient and Incentive-Compatible Allocations. Because the agent is risk-averse,

while the principal is risk-neutral, efficient risk-sharing between the parties requires full

insurance. For any e ∈ E, let cFI
e (U) ≡ (U + D(e), U + D(e)) denote the full-insurance

contract that yields the agent the expected payoff U ∈ R. We also define, for each e ∈ E,

the function V FI
e : R → R where

V FI
e (U) ≡ Ve(c

FI
e (U)) = Ye − Φ(U +D(e))

3These assumptions are all directly taken from FT. As we explicitly show in Appendix C, FT’s
unboundedness assumption is not crucial to our results.

4In FT, it holds U0 = 0. Writing the outside option as U0 is more insightful for interpreting results.
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identifies the principal’s payoff associated to the full-insurance contract leaving an ex-

pected payoff U to the agent. Since Φ′ > 0, V FI
e is strictly decreasing in U for any

e ∈ E.

With observable effort, the principal’s optimal contract induces efficient risk-sharing

while guaranteeing the agent her reservation payoff U0. We refer to cFB ≡ cFI
H (U0) as

the first-best contract. The first-best allocation (H, cFB) yields V FB ≡ V FI
H (U0) to the

principal, and U = U0 to the agent.5

If, instead, effort is unobservable, any feasible allocation must be incentive-compatible.

Then, the optimal contract for the principal, which we denote the second-best contract,

is the unique solution of:

argmax
c∈R2

VH(c) = pH(g − Φ(ug)) + (1− pH)(b− Φ(ub))

s.t. pHug + (1− pH)ub − d ≥ pLug + (1− pL)ub (IC)

pHug + (1− pH)ub − d ≥ U0. (PC)

At the solution, the agent’s incentive constraint (IC) binds. Accordingly, let cIC(U) ≡
(uIC

g (U), uIC
b (U)) denote the contract leaving expected payoff U to the agent, while sat-

isfying the incentive constraint (IC) with equality:

uIC
g (U) ≡ U +

1− pL
∆p

d and uIC
b (U) ≡ U − pL

∆p
d. (1)

Hence, uIC
g (U) > uIC

b (U) for all U ∈ R. It is convenient to define, for each e ∈ E,

the function V IC
e : R → R, which denotes the principal’s payoff from the allocation

(e, cIC(U)):

V IC
e (U) ≡ Ve(c

IC(U)) = Ye − peΦ

(
U +

1− pL
∆p

d

)
− (1− pe)Φ

(
U − pL

∆p
d

)
.

Since V IC
H is decreasing in U , the agent’s participation constraint (PC) binds at

the solution, implying that the second-best contract is cSB ≡ cIC(U0). The second-

best, ex-ante efficient, allocation (H, cSB) yields V SB ≡ V IC
H (U0) to the principal, and

UH(c
IC(U0)) = U0 to the agent.

The Renegotiation Threat. Any contract agreed upon ex-ante can be renegotiated

at the interim stage, i.e., after effort is chosen but before output is realized. The impact

of this renegotiation threat is assessed in a non-cooperative game between the principal

at the contract design stage and his future self at the interim stage. The timing of this

game is as follows:

5Because we follow FT in focusing on the non-trivial case that e = H is optimal in the second-best,
we have that e = H is also optimal in the first-best.
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(i) The principal publicly offers a contract c ∈ R2.

(ii) The agent publicly accepts or rejects c. If she rejects, the game ends and the outside

options accrue. If she accepts, the game continues as follows:

(iii) The agent privately chooses e ∈ E.

(iv) Without observing e, the principal makes a public renegotiation offer cr ∈ R2∪{∅},
where ∅ represents the principal’s decision not to renegotiate.

(v) If cr ̸= ∅, the agent publicly accepts or rejects cr by declaring ρ ∈ {y, n}. Acceptance
implies that c is replaced by cr.

(vi) If cr = ∅, or ρ = n, transfers are determined by c. If ρ = y, transfers are determined

by the renegotiated cr. Nature publicly draws the output realization g or b and

payoffs are implemented.

Stages (i)− (vi) define the primitive game G, which captures the physical constraints

arising under renegotiation. The game embodies the following assumptions:

A.1. The renegotiation offer cr is made only once, i.e., at stage (iv). As already argued by

FT, any finite number k of renegotiation rounds does not add any strategic effect:

all bargaining would occur in the last round, making the analysis equivalent to the

single-round case.6

A.2. The original offer c cannot condition on the renegotiation offer cr or on the agent’s

decision ρ at stage (v). This captures the legal doctrine that parties cannot prevent

renegotiation contractually.

A.3. If cr = ∅, both parties remain bound to the original contract c. This reflects the

legal doctrine requiring mutual consent for contract modification.

A.4. If cr ̸= ∅, the contract cr replaces contract c only if the agent accepts it at stage

(v) by declaring ρ = y. In this case, c becomes irrelevant. By contrast, if the agent

rejects cr in stage (v) by declaring ρ = n, the contract cr becomes irrelevant.

A.5. Contracts c and cr ̸= ∅ are exclusive; at most one executes at stage (vi).7

6See Section 6B in Fudenberg and Tirole (1990). In Section 5.1, we explicitly analyze the case with
infinite rounds of renegotiation in the spirit of Strulovici (2017).

7This “replacement” view of renegotiation is commonly adopted in the renegotiation literature (Bolton,
1990). In Section 5.2 we discuss the alternative “supplementary” view of renegotiation.
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FT’s Renegotiation Game. FT show that, for any probability x ∈ (0, 1) that the

agent selects e = H at stage (iii), the renegotiation stage (iv) corresponds to Stiglitz

(1977)’s seminal setting of a monopolistic insurer facing a privately informed consumer.

Hence, following Stiglitz (1977) and appealing to the revelation principle, FT let the

principal offer revelation mechanisms γc : E → R2, which map each effort report to a

contract.

Denoting by C the set of all revelation mechanism, FT thus modify the primitive game

G into a renegotiation game GC that allows the principal to design revelation mechanisms

to deal with the agent’s private information and the renegotiation threat. The modified

game GC is as follows. First, the principal offers a revelation mechanism γc ∈ C at

stage (i) and may renegotiate to γr
c ∈ C at stage (iv). Second, the agent, after taking

her participation decision at stage (v), sends a message m ∈ E in the mechanism she

participates in.

In GC , any mechanism γc accepted by the agent at stage (ii) yields a subgame GC(γc)

starting at stage (iii). In any such subgame, choosing x = 1 is not part of a Perfect

Bayesian equilibrium. To see this, suppose the agent takes e = H with probability one.

Then, the principal’s best reply is to offer the full-insurance contract cFI
H (U0) in stage (iv)

that is accepted by the agent. But against this renegotiation offer, the agent would be

strictly better off choosing e = L.

When characterizing the equilibria of GC , FT exploit the renegotiation-proofness prin-

ciple, and argue it is without loss to focus on the principal offering a mechanism in stage

(i) that is not renegotiated on the equilibrium path. Restricting attention to revelation

mechanisms γc ∈ C, FT then show that, in the unique (perfect Bayesian) equilibrium

allocation of GC , e = H is only implemented with probability xFT < 1.

FT further show that revelation mechanisms at stage (i) yield no gain over simple

contracts: the same allocation obtains irrespective of whether the principal offers a mech-

anism γc ∈ C or a single contract c (with on-path renegotiation in the latter case).8

This suggests that mechanism design cannot resolve the conflict between ex-ante and

interim efficiency. By contrast, we show that designing mechanisms with bidirectional

communication—where the mechanism both receives messages and sends signals—fully

eliminates the renegotiation threat. As we shall argue, considering this new channel of

communication allows to reconcile renegotiation-proofness of the optimal mechanism with

second-best, ex-ante, efficiency of the equilibrium allocation.

8See Section 5.B in Fudenberg and Tirole (1990).
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3 Self-Revealing Mechanisms and Renegotiation

In this section, we construct a simple mechanism that uniquely implements the second-

best allocation, fully mitigating the renegotiation threat. Like FT, we let the principal

design mechanisms within the event sequence (i)−(vi) of the primitive gameG. Unlike FT,

we explicitly recognize the dynamic nature of this game. Thus, we introduce bidirectional

communication, as emphasized in the dynamic mechanism design frameworks of Forges

(1986) and Myerson (1986).

Separating the design of communication from that of final transfers, we write a dy-

namic mechanism (C, τ) in terms of two elements. First, a communication protocol C that

specifies the (possibly bidirectional) communication exchanged at each stage t, including

how stage-t signals are generated following any history. Second, a decision rule τ that

maps communication into final transfers.

Following dynamic mechanism design, the mechanism (C, τ) is publicly observed at

stage (i), while all messages and signals exchanged through C remain private during the

communication phase. However, we design our mechanisms to publicly reveal the full

communication history at the final payout stage. This defines our notion of self-revealing

mechanisms, extending canonical dynamic mechanisms by conditioning revelation on ex-

ecution.

In our dynamic contracting framework, these self-revealing mechanisms serve two

purposes. First, they generate private information during the game that enables off-

equilibrium punishments. Second, by publicly revealing communication at execution,

they ensure that conditional transfers are contractually enforceable in standard contract-

theoretic terms and do not require third-party mediation.9 Importantly, because execution

halts upon renegotiation, self–revelation occurs only if the original mechanism is retained.

Rather than considering all possible self-revealing mechanisms, we focus on a simple

class that suffices for achieving unique implementation. Specifically, we fix a communica-

tion protocol with the following features:

1. Bidirectional communication occurs only with the agent and only at the beginning

of stage (v).

2. At stage (v), the agent sends a message m from a message set M = {N,R} where

N indicates “no renegotiation proposed” and R indicates “renegotiation proposed”.

3. At stage (v), the agent also receives a signal s from the signal set S = {h, t}
representing a fair coin toss with σ(h|m) = σ(t|m) = 1/2 for each m ∈ M.

9Section 4.3 explicitlly discusses how, with the use of cryptographic tools, existing “smart contracting”
technologies provide a concrete way to implement self-revelation without the need for any third-party
mediation.
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4. The agent sends m and receives s before her participation decision ρ.10

We denote such a protocol by C = (M,S, σ). The corresponding decision rule τ :

M× S → R2 maps each (m, s) pair to a contract c = (ug, ub). We denote the set of all

such mechanisms by Γ.

In the remainder of this section, we let the principal design mechanisms in the class

Γ under the threat of renegotiation. The design problem is structurally simple: only four

transfer pairs {τ(N, h), τ(N, t), τ(R, h), τ(R, t)} require specification. We next formalize

the induced renegotiation game GΓ.

3.1 The Self-Revealing Renegotiation Game GΓ

Allowing the principal to select self-revealing mechanisms from Γ modifies the primitive

game G into the extensive-form game GΓ as follows:

(i) The principal publicly offers a self-revealing mechanism γ ∈ Γ. That is, he chooses

the four transfer pairs that determine the decision rule τ : M×S → R2.

(ii) The agent publicly accepts or rejects γ. If she rejects, the game ends and outside

options accrue. If she accepts, the game continues as follows:

(iii) The agent privately chooses e ∈ E.

(iv) Without observing e, the principal makes a public renegotiation offer γr ∈ C ∪ {∅},
where ∅ represents the principal’s decision not to renegotiate.

(v) The agent sends a private message m ∈ M = {N,R} and receives a private random

signal s ∈ {h, t}. After this bidirectional communication, if γr ̸= ∅, she publicly

accepts or rejects γr by declaring ρ ∈ {y, n}. Acceptance implies that γ is replaced

by γr.

(vi) The communication (m, s) from stage (v) is publicly revealed if and only if γ executes

(i.e., either γr = ∅ or ρ = n) in which case transfers are determined by τ(m, s). If

ρ = y, transfers are determined by a report mr ∈ E sent by the agent in γr. Nature

publicly draws the output realization g or b and conditional transfers are executed.

In GΓ, the principal selects a self-revealing mechanism γ ∈ Γ at stage (i) but is

restricted to revelation mechanisms γr ∈ C at the renegotiation stage (iv). As in FT’s

analysis, this restriction involves no loss of generality.

10Given that signal s does not condition on message m, the sequential structure of first sending m and
then receiving s is strategically equivalent to the message and the signal being exchanged simultaneously.
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To see this, note that a self-revealing mechanism γ at stage (i) constrains feasible

renegotiation offers at stage (iv) in two ways. First, no offer can contractually condition

on the private communication (m, s): if the agent accepts γr, the original mechanism

γ does not execute, so (m, s) are never publicly revealed. Second, rejected offers are

payoff-irrelevant.

Given these constraints, the renegotiation stage becomes a mechanism design problem

where the principal faces an agent with private information (e,m, s). Her preferences over

contracts within γr, however, depend solely on e: an agent with a given e but different

(m, s) evaluates any contract c identically via Ue(c). Consequently, for any (m, s), she

has the same set of optimal reports in any mechanism γr, regardless of its message space.

This implies that the principal cannot screen on (m, s). Although different (m, s) may

correspond to different outside options in the original mechanism γ for the agent, this

heterogeneity only affects whether she accepts γr. Thus, the information relative to (m, s)

cannot be elicited via screening. This implies that restricting a renegotiation offer to be

a revelation mechanism γr ∈ C is without loss of generality.

A (pure) strategy for the principal in GΓ consists of a mechanism γ ∈ Γ followed by

a renegotiation offer γr ∈ C ∪ {∅} for any γ ∈ Γ. An agent’s (behavioral) strategy λ

in GΓ has three components. First, it associates with any γ ∈ Γ a probability. Second,

for any history (γ, e, γr), the strategy λ specifies a probability distribution over messages

m ∈ M. Third, for any (γ, e, γr ̸= ∅,m, s), the strategy λ specifies whether to accept or

reject by declaring ρ ∈ {y, n}. Finally, for γr ̸= ∅ and ρ = y, the strategy λ specifies a

message mr ∈ E in the renegotiated mechanism γr.

We consider the perfect Bayesian equilibria (henceforth equilibria) of GΓ.
11 We denote

GΓ(γ) the subgame induced by γ ∈ Γ starting at stage (iii). In this game, λ(γ) represents

the agent’s continuation strategy while the principal’s strategy is a renegotiation offer

γr(γ) ∈ C∪{∅}. BecauseGΓ(γ) is an extensive form game with imperfect information, any

equilibrium of GΓ must induce an equilibrium in each GΓ(γ). Therefore, in an equilibrium

of GΓ, the principal chooses an optimal mechanism γ anticipating that continuation play

will constitute an equilibrium of GΓ(γ). We say that a mechanism γ ∈ Γ is renegotiation-

proof if the continuation game GΓ(γ) admits an equilibrium in which renegotiation does

not occur, i.e. γr(γ) = ∅.
The game GΓ differs from FT’s GC only in the mechanisms available at stage (i).

Both games share the same event sequence (i)-(vi) and renegotiation threat γr ∈ C.

Mechanisms in Γ add bidirectional communication: next to the agent sending messages,

11The principal has only one information set in the game GΓ, where his belief x ∈ [0, 1] is formulated
on the probability that e = H. This is unambiguously pinned down in any equilibrium by the agent’s
equilibrium strategy. Thus, off-path belief-updating rules are irrelevant, and equilibrium refinements
beyond PBE are superfluous for our analysis.
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she also receives signals. Crucially, this bidirectional communication takes place before

the agent’s acceptance decision of a renegotiation offer.

3.2 Implementing the Second Best

We next show that self-revealing mechanisms fully mitigate the renegotiation threat.

We proceed in two steps. In this subsection, we identify a specific renegotiation-proof

mechanism γ∗ ∈ Γ that implements the second-best allocation. In the next subsection,

we show that this allocation is the unique equilibrium outcome of GΓ: in any equilibrium,

the principal obtains V SB and the agent picks e = H with probability one.

We consider the self-revealing mechanism γ∗ ∈ Γ with the following decision rule:

τ ∗(N, h) = τ ∗(N, t) = cSB; τ ∗(R, h) = cIC(U0 −∆U); τ ∗(R, t) = cIC(U0 +∆U).

Intuitively, γ∗ sets the second-best contract cSB as the “default” one, which the agent

may get by sending m = N . The mechanism also allows the agent to trigger a random

“counter-offer” by sending m = R, indicating that the principal made a renegotiation

offer. The realization of this lottery may either increase the agent’s utility by ∆U or

decrease it by ∆U . For any e ∈ E, the counter-offer yields the agent the same expected

utility as cSB but costs the principal more since Φ is convex and V IC
e is concave in U .

The principal views the counter-offer as random, whereas the agent observes its realization

after sending m = R but before deciding whether to accept the principal’s renegotiation

offer.

The next lemma guarantees that we can find a ∆U large enough to induce an agent’s

behavior that prevents renegotiation.

Lemma 1 There exists ∆U ∈ (0,∞) such that for all e ∈ E:

V IC
e (U0) > max

{
V FI
e (U0 +∆U),

1

2
V FI
e (U0 −∆U) +

1

2
V IC
e (U0 +∆U)

}
. (2)

The lemma states that, for any e ∈ E, the principal prefers the second-best contract,

cSB = cIC(U0), to a full-insurance contract that leaves an extra utility of ∆U to the

agent. Additionally, the principal prefers cSB to a 50-50 lottery between the full-insurance

contract leaving ∆U less to the agent, and the incentive-compatible one leaving the agent

an extra utility ∆U . This validates our construction: the principal attains the left-hand

side of (2) when he does not renegotiate. The first term in the maximum bounds his payoff

from offers the agent always accepts; the second bounds his payoff from offers accepted

only when s = h.

The lemma allows us to establish the following result.
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Proposition 1 The second-best allocation (H, cSB) is supported in an equilibrium of the

subgame GΓ(γ
∗).

Proof. For any effort e ∈ E and renegotiation offer γr ∈ C, let m̂r
e ∈ E denote an agent’s

optimal report in γr and let Û r
e denote her corresponding payoff upon acceptance:

m̂r
e ∈ argmax

mr∈E
Ue(γ

r(mr)) and Û r
e ≡ Ue(γ

r(m̂r
e)). (3)

Consider the following strategy profile {γr(γ∗), λ(γ∗)}: The principal does not rene-

gotiate, γr(γ∗) = ∅. The agent’s strategy λ(γ∗) is as follows

1. The agent chooses e = H with probability x = 1.

2. For any e ∈ E, her message m ∈ {N,R} in γ∗ depends on the principal’s offer γr

as follows:

(i) If γr = ∅, the agent sends m = N in γ∗.

(ii) If γr ̸= ∅ and Û r
e ≤ U0 −∆U , the agent sends m = N in γ∗.

(iii) If γr ̸= ∅ and Û r
e > U0 −∆U , the agent sends m = R in γ∗.

3. For any e ∈ E, γr ∈ C, m ∈ {N,R} and s ∈ {h, t}, her participation decisions are

the following:

(i) If Û r
e < U0 −∆U , the agent selects ρ = n for any (m, s) ∈ {N,R} × {h, t}.

(ii) If Û r
e ∈ [U0−∆U,U0), the agent selects: when m = N , ρ = n for all s ∈ {h, t};

when m = R, ρ = y if s = h and ρ = n if s = t.

(iii) If Û r
e ∈ [U0, U0+∆U), the agent selects: when m = N , ρ = y for all s ∈ {h, t};

when m = R, ρ = y if s = h and ρ = n if s = t.

(iv) If Û r
e ≥ U0 +∆U , the agent selects ρ = y for any (m, s) ∈ {N,R} × {h, t}.

4. For any e ∈ E, γr ∈ C, m ∈ {N,R} and s ∈ {h, t}, after ρ = y, the agent sends m̂r
e

to γr as defined in (3).

We show that the strategy profile {γr(γ∗), λ(γ∗)}, together with the principal’s belief

that the agent picked e = H with probability x = 1, constitute an equilibrium of GΓ(γ
∗),

yielding the claimed allocation (H, cSB).

Note first that the only non-trivial information set for the principal in GΓ(γ
∗) is at

the renegotiation stage, when he offers γr. The only belief consistent with the strategies

{γr(γ∗), λ(γ∗)} is, indeed, x = 1, as λ(γ∗) prescribes e = H for the agent.

We develop the remainder of our arguments in two lemmas whose formal proofs appear

in Appendix A.
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Lemma 2 In the subgame GΓ(γ
∗), the agent’s strategy λ(γ∗) is sequentially rational given

the principal’s strategy γr(γ∗) = ∅.

The proof of Lemma 2 establishes that it is optimal for the agent to report m = R in

γ∗ after an offer γr with Û r
e ∈ (U0 − ∆U,U0 + ∆U ]. In so doing, she obtains U0 + ∆U

when s = t by rejecting, and Û r
e (which exceeds U0−∆U) when s = h by accepting . This

dominates in expected terms the payoff associated with the report m = N . In addition,

the proof establishes the optimality of e = H. In particular, since γr(γ∗) = ∅ , the agent

expects U0 from either effort level.

The next lemma establishes the absence of profitable deviations for the principal.

Lemma 3 In the subgame GΓ(γ
∗), the principal’s strategy γr(γ∗) = ∅ is sequentially

rational given his (Bayes-consistent) belief x = 1, and the agent’s strategy λ(γ∗).

The proof of Lemma 3 shows how the agent’s equilibrium strategy implements an

effective punishment against renegotiation. In particular, the payoff U0 + ∆U that she

gets with probability 1/2 by reporting m = R to γ∗ makes any attempted renegotiation

too costly to the principal.

The strategies {λ(γ∗), γr(γ∗)} and the principal’s belief x = 1 therefore constitute a

perfect Bayesian equilibrium of GΓ(γ
∗). In this equilibrium, the agent chooses e = H

with probability one and the contract cSB is implemented, establishing Proposition 1. ■

Since the principal cannot obtain more in a game with renegotiation than under full

commitment, and the agent receives her reservation payoff U0, Proposition 1 implies that

the game GΓ has an equilibrium in which the renegotiation threat is fully mitigated.

The result stands in stark contrast to FT, who restrict the principal to offer revelation

mechanisms at the initial stage.

The proof establishes that γ∗ makes any renegotiation unprofitable. For offers yield-

ing payoffs in (U0 − ∆U,U0 + ∆U ], the agent sends m = R, triggering the punishment

mechanism. In FT, renegotiation-proofness and second-best efficiency are incompatible:

achieving one precludes the other. We reconcile this conflict through γ∗, which imple-

ments the second-best efficient allocation, and exploits signals to generate off-equilibrium

punishments that prevent any renegotiation. To see this, consider the renegotiation offer

that undermines x = 1 in FT. Against γ∗, the agent effectively reveals this offer by send-

ing m = R and then rejects it with probability 1/2 (when s = t). This random rejection,

triggered by the agent’s private signal, makes renegotiation unprofitable to the principal

given the unfavorable terms associated with it.

Because this punishment hinges on the random signal s, it effectively implements a

randomized contract: the agent’s actual payoff depends on the coin flip outcome. This
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raises a natural question: could a purely stochastic mechanism — one that directly assigns

randomized contracts to any agent message — also implement the second-best allocation?

The answer is no. To see why intuitively, note that following Chade and Schlee (2012),

the optimal renegotiation offer against any distribution over efforts chosen by the agent is

deterministic. Anticipating such deterministic renegotiation, the principal cannot benefit

from committing ex ante to stochastic mechanisms.12

Indeed, a standard stochastic mechanism is random for both the principal and agent

— neither party can condition their decisions on the randomness realization. By contrast,

the contract implemented by γ∗ conditional on receiving m = R appears random only to

the principal. The agent privately observes s and conditions her acceptance on it. For

offers with Û r ∈ (U0 −∆U,U0 + ∆U ], acceptance occurs only when s = h, yielding the

principal an expected payoff of V FI
H (Û r)/2 + V IC

H (U0 + ∆U)/2, which Lemma 1 ranks

strictly below V SB. The agent’s private observation of the signal is therefore essential for

deterrence.

Starting with Bester and Strausz (2007), the idea that a principal may benefit by

making his decision rule contingent on the realizations of some endogenous signal has

been extensively employed in mechanism design without full commitment. Yet, the off-

equilibrium role of signals we document crucially exploits the features of the renegotiation

problem and cannot in general be reproduced under other forms of limited commitment.

For instance, in settings where parties can unilaterally withdraw contracts, a new of-

fer forces withdrawal of the original one (e.g., Doval and Skreta, 2022; Brzustowski et

al., 2023). The agent cannot then communicate within the original mechanism or so-

licit counter-offers, narrowing the strategic role of signals. In this context, Doval and

Skreta (2022) show that signals only provide Bayes-plausible updates of the principal’s

beliefs about the agent’s type rather than generating new private information as in our

approach. Thus, our construction establishes an entirely novel application for endogenous

information disclosures under commitment frictions.

To conclude, observe that, in line with FT, we have taken the agent’s utility over

monetary transfers u to be defined on the entire real line and unbounded. These features

are key to establish Lemma 1, and, ultimately, to identify the relevant punishments against

renegotiation, which we exploit in the Proof of Proposition 1. Although this approach

greatly simplifies presentation, it does not allow us to consider a range of situations of

economic relevance, most notably those in which the agent is subject to limited liability,

and her monetary transfers are therefore bounded. To cope with this issue, we show

in Appendix C that Proposition 1 extends to cases where the agent’s utility is CRRA,

12The result is formally established in Appendix C. We show, in particular, that stochastic mechanisms
do not play any strategic role in the FT construction either.
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accommodating limited liability constraints that bound transfers below.

3.3 Unique Implementation of the Second Best

Proposition 1 shows that the self-revealing mechanism γ∗ induces a subgame supporting

the second-best allocation at equilibrium. Because this outcome yields the agent the

payoff U0, it is also incentive-compatible for her to accept γ∗ at stage (ii), as she cannot

strictly gain by rejecting it. Moreover, the principal cannot attain a payoff greater than

V SB in the benchmark without renegotiation. Thus, the game GΓ, which includes the

principal’s design of the mechanism γ ∈ Γ at stage (i), admits an equilibrium yielding the

second-best allocation.

Under the standard selection convention in mechanism design where the designer can

target an equilibrium of the chosen mechanism, existence suffices for implementability.

The stricter notion of unique implementation requires ruling out other equilibrium out-

comes. Indeed, γ∗ makes the agent indifferent over her messages as well as over her effort

choices, implying that the subgame GΓ(γ
∗) supports a continuum of equilibria. For in-

stance, any x ∈ [0, 1] can be supported in an equilibrium of GΓ(γ
∗) where the principal

does not renegotiate and the agent reports m = R following any off-path renegotiation

offer. Yet, although GΓ(γ
∗) admits multiple equilibrium allocations, the next proposition

shows that only the second-best one is supported at equilibrium in the overall game GΓ.

Proposition 2 The game GΓ has a unique equilibrium allocation, which coincides with

the second-best one (H, cSB).

The proof of Proposition 2 in Appendix A constructs a mechanism γε by perturbing

γ∗ in a way that allows us to break all the agent’s indifferences at the root of equilibrium

multiplicity. Specifically, γε penalizes low effort while preserving incentives for high effort.

Thus, in the subgame GΓ(γε) the agent strictly prefers to choose e = H with probability

x = 1, and to report m = N in γε as long as no renegotiation attempt is made. As for the

principal, for any belief x ∈ [0, 1], choosing not to renegotiate turns out to be the unique

best response to any sequentially rational behavior of the agent.

By offering a perturbed mechanism γε at the initial stage, the principal can hence

guarantee himself a payoff arbitrarily close to V SB, which obtains under full commitment.

Since V SB is also an upper bound, uniqueness of the equilibrium allocation follows.

4 A New Approach to Renegotiation Proofness

In Section 3, we constructed a renegotiation-proof mechanism that uniquely implements

the allocation (H, cSB) which obtains under full commitment. This contrasts with the
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approach followed by FT: they apply the renegotiation-proofness principle to characterize

an equilibrium allocation, which fails to be second-best efficient. This failure arises be-

cause FT restrict to revelation mechanisms, which do not incorporate private signals to

the agent. By contrast, our construction exploits the interaction between the agent’s re-

ports and the signals she receives, to generate a new set of punishments which successfully

deter renegotiation.

In this section, we examine two central properties of our optimal mechanism: its

enforceability by external courts and the commitment power required to implement it.

4.1 The Self-Revealing Mechanism γ∗: Enforcement

The mechanism γ∗ ∈ Γ combines a communication protocol with a decision rule that

maps a pair of messages and signals to transfers. Its enforceability relies on two fea-

tures: conditional disclosure of private communication and delegation of punishments

to the agent. Together, these ensure contractability—courts can verify compliance with

contractual obligations.

A verifiability paradox. The dynamic mechanisms we consider face an apparent ten-

sion. On one hand, communication must remain private during renegotiation: if the

principal observes the agent’s message and signal, he can condition his renegotiation offer

on them, undermining the punishment mechanism. On the other hand, communication

must be verifiable at enforcement: courts need to verify that transfers match the contrac-

tually specified rule τ(m, s).

The mechanism γ∗ resolves this verifiability paradox through its self-revealing property.

Communication remains private throughout the renegotiation stage but becomes publicly

revealed if the original contract executes (i.e. if ρ = n at stage (vi)). This conditional

disclosure satisfies both requirements simultaneously. First, privacy during renegotiation:

If the principal attempts to renegotiate and the agent accepts (ρ = y), the original

mechanism does not execute, so (m, s) are never revealed.

Second, verifiability at enforcement: whenever the original mechanism executes (ρ =

n)—either because no renegotiation was attempted or because the agent rejected it—

the mechanism publicly reveals (m, s), allowing courts to verify that actual transfers

correspond to τ(m, s) as contractually specified.

In our construction, privacy guarantees that any profitable renegotiation offer is re-

jected with probability 1/2. In such cases, the self-revelation requirement applies, and

communication can be made public at no cost. That is, we require no trusted third party

to observe communication and execute transfers on behalf of the parties. In particular,

there is no need for any multilateral payment system, which would itself be susceptible
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to renegotiation by additional parties. The optimal mechanism γ∗ only requires standard

contract enforcement by courts.

A self-enforcing communication protocol. The mechanism γ∗ is structurally simple,

featuring a binary message space {N,R} and a binary signal {h, t} generated by a fair

coin toss. This matches the complexity of FT’s revelation mechanisms, which rely on

binary reports {H,L} but do not involve signals.

Our approach differs from FT in the specific protocol we adopt. The construction in

FT is, in principle, compatible with several communication protocols, since the stage at

which the agent sends her message is immaterial.13 Our construction, instead, exploits

the agent communicating at stage (v), after receiving a potential renegotiation offer but

before accepting it. This raises a question: does our mechanism effectively require courts

to verify adherence to this communication protocol?

The mechanism itself ensures compliance through the agent’s strategic incentives.

Even if courts cannot verify when the agent communicates, she finds it optimal to com-

municate at stage (v) rather than earlier or later. Communicating after observing γr

allows her to condition her message on whether renegotiation was attempted, maximizing

the information she can exploit. We formalize this intuition in Appendix C by construct-

ing a protocol that delegates to the agent the choice of her communication timing: in any

pure strategy equilibrium, she communicates after the principal’s renegotiation offer and

before her participation decision, i.e., exactly at stage (v).

This self-enforcing property has practical implications. Courts need only verify that

executed transfers match τ(m, s) for the revealed (m, s), not when communication oc-

curred. The protocol operates under the shadow of the court : by delegating timing choice

to the agent, the mechanism aligns her strategic interests with the required protocol.

4.2 The Commitment Requirements of γ∗

Our approach is rooted in the mechanism design tradition. Like FT, we take as given the

sequence of events (i)–(vi) and let the principal design a self-revealing mechanism γ ∈ Γ.

The optimal mechanism γ∗ makes its transfers and disclosure policy conditional on both

the contractible variables in (i)–(vi) and the communication privately exchanged with the

agent.

The renegotiation game GΓ reveals the specific commitment assumptions we exploit.

As noted in Section 3, restricting attention to deterministic revelation mechanisms at the

renegotiation stage involves no loss of generality. For a given self-revealing mechanism

γ ∈ Γ offered at stage (i), making a renegotiation offer that conditions on the content

13See Fudenberg and Tirole (1990, p. 1283)
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or occurrence of the agent’s communication in γ is infeasible by construction. At the

renegotiation stage, the principal therefore has the same commitment power as in FT.

When designing a mechanism γ at stage (i), the principal is bound by the legal doctrine

of renegotiation. As in FT, he cannot commit to the features or occurrence of a renegoti-

ation offer. Furthermore, replacing the initial offer requires mutual consent. This mutual

consent has an important implication: the principal cannot circumvent the mechanism

through “exploding offers” that demand immediate acceptance. Even if such offers were

legally permissible, they cannot prevent the agent from communicating within γ∗ before

responding. The mechanism grants the agent an explicit right to send message m and

receive signal s before deciding on any renegotiation offer. Because renegotiation requires

mutual consent, the principal cannot unilaterally revoke this right. Moreover, because the

agent’s communication is private, the principal cannot condition his offer on the agent not

having communicated. By committing to a mechanism that makes the agent privately

informed of counter-offers, the principal completely offsets the renegotiation threat.

4.3 From Theory to Practice: Smart Contracts Implementation

We next show how current smart contract technologies provide the natural tool—the

“commit-and-reveal” technique—to implement our optimal mechanism in practice. By

design, conditional transfers become enforceable by standard means, once the mechanism

self-reveals its private information. Hence, the implementation challenge centers entirely

on the communication protocol.

Indeed, current smart contract technologies cannot send private signals to players,

which may conflict with the privacy requirements of our mechanism γ∗.14 We solve this

issue by modifying γ∗ to work with public signals, while keeping the agent’s message

private. The key idea is to give the agent multiple (private) message options that interact

differently with the public coin flip, allowing her to effectively choose which version of

randomness to face.

Formally, consider the modified mechanism γ∗∗ = (M∗∗,S∗, σ∗∗, τ ∗∗) with three private

messages M∗∗ = {N,R1, R2}, and let the signal s ∈ S∗ remain representing a fair coin

toss: σ∗∗(h|m) = σ∗∗(t|m) = 1/2 for all m ∈ M∗∗.15 However, we let the signal s be

publicly observable, with the implication that a renegotiating offer can condition on its

14Note that if the signal s were public rather than private, the principal could make signal-conditional
renegotiation offers that undermine the effectiveness of γ∗ as follows: provide attractive terms only when
s = t but terrible terms when s = h. This would induce the agent to send message m = N and accept
renegotiation when s = t, allowing the principal to avoid the punishment mechanism and gain from
renegotiation.

15In practice, s can be instantiated via a verifiable on-chain randomness source (e.g., a VRF or reputable
randomness oracle); the choice determines trust and liveness assumptions. If the randomness source fails,
a two-party commit-and-reveal coin toss between principal and agent can serve as a fallback.

21



realizations, and define its decision rule τ ∗∗ as

τ ∗∗(N, h) = τ ∗∗(N, t) = cIC(U0) = cSB;

τ ∗∗(R1, t) = cIC
(
U0 +∆U

)
; τ ∗∗(R1, h) = cIC(U0 −∆U);

τ ∗∗(R2, t) = cIC
(
U0 −∆U

)
; τ ∗∗(R2, h) = cIC(U0 +∆U).

Effectively, γ∗∗ allows the agent the option between two random counter-offers, which

only differ by the face of the coin flip that leads to the better or worse contract. Thus

γ∗∗ requires only (i) privacy for a 3-symbol message and (ii) a public fair coin; it does not

rely on contract-provided private randomness.

The modified mechanism γ∗∗ still implements the second-best allocation.16 When

facing a renegotiation offer, the agent selects between the private messages R1 and R2,

each creating a different lottery over favorable and unfavorable terms. Regardless of her

choice, she faces a 50-50 chance of receiving highly favorable terms (payoff U0+∆U) that

make rejecting renegotiation optimal. This random rejection punishes the principal in

expectation, deterring renegotiation just as in the original mechanism γ∗. For instance,

in the intermediate region, the principal’s expected payoff under renegotiation equals

V FI
H (Û r)/2 + V IC

H (U0 +∆U)/2,

which remains strictly below V SB by Lemma 1. Thus, implementation also obtains with

an observable signal, yet at the complexity cost of adding an extra message.

To circumvent the verifiability paradox, the modified mechanism γ∗∗ must require that

the agent’s messages initially remain private. If messages were public, the principal could

make message-conditional renegotiation offers that defeat the mechanism. For instance, he

could offer attractive terms only for message N while making R1 and R2 lead to terrible

outcomes. This would induce the agent to send message N and accept renegotiation,

eliminating the punishment mechanism entirely.

We now show that, despite its dependence on private messages, γ∗∗ can be imple-

mented via smart contracts that are self-executing programs on transparent blockchains.17

While this may seem paradoxical given that blockchain transactions are publicly recorded,

cryptographic techniques allow us to achieve the required privacy within this transparent

environment.

16This is shown formally in Appendix C.
17For an extensive definition of a smart contract see Szabo (1996) and Catalini and Gans (2020) for

a discussion of potential economic applications for smart contracts. We here emphasize however that,
in general, an enforcement of smart contracts depends on the shadow of the law. To see this in our
specific context of γ∗∗, note that because its transfers condition on the realized output value Y ∈ {g, b},
the realized output value must somehow be reported to the smart contract. This can be done by, for
instance, the principal, but only the verifiability by a court ensures that the principal will do so truthfully,
anticipating its prohibitively large punishment when misreporting.
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In particular, the commit-and-reveal technique solves this privacy challenge by allow-

ing parties to record information that remains hidden initially but can be publicly verified

later. Technically, the technique is a cryptographic protocol with two phases. In the com-

mit phase, a party uses a hash function to create a cryptographic commitment to her

message without revealing it. In the reveal phase, she can publicly disclose the original

message, which others can verify matches the earlier commitment.18

The technique relies on hash functions that are one-way and collision-resistant, mak-

ing it impossible to derive the original message from the commitment or to create fake

commitments. This ensures the message remains secret until revealed while preventing

later manipulation. This enables us to implement self-revealing mechanisms on transpar-

ent blockchains by emulating their defining property: recording secret messages that are

revealed only later. During the commit phase, the agent’s message remains hidden while

the commitment is publicly recorded. During the reveal phase, the agent discloses her

message, which the smart contract verifies against the stored commitment. This process

maintains message secrecy until the designated reveal time while ensuring the message

cannot be altered after commitment.

To demonstrate the practical feasibility concretely, we present in Appendix B a com-

plete Solidity smart contract that implements γ∗∗ using the commit-and-reveal technique

for a fully parameterized version of our framework. The implementation shows that self-

revealing mechanisms can indeed be deployed on current blockchain technologies, bridging

the gap between theoretical mechanism design and real-world contracting.

While smart contracts are often seen as immune to renegotiation,19 in practice they

commonly include functions allowing termination or modification. For instance, DeFi

protocols often feature emergency stop or circuit breaker functions that automatically

freeze execution when pre-set risks are met. Others, such as OpenZeppelin’s Pausable

module or MakerDAO’s Emergency Shutdown, allow authorized parties to manually halt

operations through governance control. Modules allowing built-in modification rights are

also common: for example, proxy-based upgrades used by Compound and OpenZeppelin

allow preserving the state while replacing the contract’s code logic (see Ebrahimi et al.,

2024).

By explicitly allowing both contract termination and modification, these adaptability

functions reintroduce classic time-consistency concerns in the smart contracts paradigm.20

We regard our results as relevant in this respect: the finding that blockchain-compatible

18See Narayanan et al. (2016, Chapter 1) for a more in-depth introduction to cryptographic hash
functions and the reveal-and-commit technique.

19See, for example, the discussion in Chapter 6 in Townsend (2020).
20See also, on this topic, Salehi et al. (2022); Wang et al. (2025) and the Ethereum guide on upgrading

smart contracts.
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mechanisms can replicate full-commitment outcomes under a traditional renegotiation

constraint suggests that, by careful structuring of the smart contract’s transfers, one can

preserve contractual flexibility while neutralizing the inefficient modification incentives

that adaptability functions create.

This connects our work to concrete efforts to design governance mechanisms deter-

ring harmful upgrades while preserving adaptability in smart contracts, such as: multi-

signature authorization, DAO voting systems,21 and timelocks between the approval and

implementation of upgrades, which give users time to assess and exit the contract before

changes take effect.22

5 The Power of Self-Revealing Mechanisms

Traditional approaches to renegotiation design, as summarized by Bolton (1990), share a

common principle: optimal renegotiation-proof mechanisms require private information

for the agent at the renegotiation stage, leaving the principal uncertain when he attempts

to renegotiate the original mechanism.

In the FT context, this is achieved by having the agent randomize over her efforts at

equilibrium. Such randomization requires making the agent indifferent over several alter-

natives. This imposes an allocative cost for incentive-compatibility reasons. By contrast,

our optimal mechanism avoids these incentive-compatibility costs, fully mitigating the

renegotiation threat without sacrificing second-best efficiency.

In this section, we show that these insights extend to other settings of contract rene-

gotiation, reinforcing the general relevance of our approach. We first consider extensions

to standard renegotiation frameworks with alternative extensive forms, focusing on the

case in which infinite rounds of renegotiation are allowed. We then evaluate the implica-

tions of richer renegotiation opportunities, thereby discussing the supplementary view of

renegotiation.

5.1 Alternative Extensive Forms

Since the self-revealing mechanism γ∗ operates after effort is chosen, the results in Propo-

sitions 1 and 2 naturally extend to any countable or continuous effort spaces.23 The same

observation guarantees that our approach does not exploit the principal’s specific objec-

tive function. For instance, to address the government failure emphasized by Netzer and

21See OpenZeppelin’s on-chain governance framework.
22“Timelocks give users some time to exit the system if they disagree with a proposed change (e.g.,

logic upgrade or new fee schemes). Without timelocks, users need to trust developers not to implement
arbitrary changes in a smart contract without prior notice. The drawback here is that timelocks restrict
the ability to quickly patch vulnerabilities” (source).

23This parallels the extension in Fudenberg and Tirole (1990, Section 5.A).
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Scheuer (2010), a utilitarian planner can rely on a modified version of γ∗ to implement

second-best insurance under renegotiation threats.

Propositions 1 and 2 also extend to situations in which the agent, rather than the

principal, initiates renegotiation, as analyzed by Ma (1994). Establishing these exten-

sions requires constructing a mechanism where the principal implements punishments

through his own private communication. This approach yields unique implementation

even when renegotiation threats originate from the agent, contrasting with the equilib-

rium multiplicity in Ma (1994).24

As noted in Assumption A.1, our results are robust to any finite number of renegotia-

tion rounds. However, the second-best allocation implemented by Proposition 1 involves

inefficient risk sharing, leaving room for further renegotiation after each round. This raises

the question: do our results depend on the number of rounds being finite?

To show they do not, we consider an infinite-horizon setting in the spirit of Strulovici

(2017): parties interact over rounds T = 1, 2, . . . , agreeing ex-ante on a mechanism that

can be renegotiated any number of times. Renegotiation breaks down with probability

η ∈ (0, 1) in each round T ≥ 1, at which point output ω ∈ {g, b} realizes and the last

accepted contract executes.

Thus, breakdown round T ∗ follows a geometric distribution: Pr(T ∗ = T ) = (1−η)T−1·η
and Pr(T ∗ = T ′ | T ∗ ≥ T ) = (1− η)T

′−T · η. For both players, the time-T expectation of

a unit of utility is: ∑
T ′≥T

(1− η)T
′−T · η =

η

1− (1− η)
= 1.

For a given η, we denote Gη the corresponding primitive game, which extends the game

G by allowing for infinite renegotiation rounds.

We construct a self-revealing mechanism ξ0∗, offered at the ex-ante stage, which im-

plements the second-best allocation in this context. The mechanism ξ0∗, offered by the

principal and accepted by the agent at the onset of the relationship, induces the subgame

Gη
Ξ(ξ

0∗) (that is, the game Gη with mechanisms selected from Ξ, after ξ0∗ is chosen):

- At T = 0 : The agent privately selects the effort level e ∈ {H,L}.

- At any T ≥ 1 the following sequence of events is involved:

T.i) The principal offers ξT ∈ Ξ ∪ {∅}.

T.ii) The agent makes a report in the last accepted mechanism. Simultaneously, the

mechanism privately discloses a signal to the agent.

24Formal construction available from the authors.
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T.iii) The agent accepts (ρT = y) or rejects (ρT = n) the renegotiation offer ξT , with the

convention that ρT = n if ξT = ∅.

T.iv) If ρT = y, the agent submits a report êT ∈ {H,L} to ξT . Then, if renegotiation

breaks down, ω ∈ {g, b} realizes, the last accepted mechanism publicly reveals its

communication history and executes transfers; otherwise the game continues to

T + 1.

In Gη
Ξ(ξ

0∗), after the agent chooses effort, T ∗ rounds of renegotiation take place, in

which the actions T.i) − T.iv) are iterated at each T : 1 ≤ T ≤ T ∗. The parties are

uncertain about the realization of T ∗ until renegotiation breaks down and the game ends.

The mechanism ξ0∗ requires the agent to submit a report m0∗
T ∈ {N,R} in each round

T.ii), i.e. after a renegotiation offer ξT is made and before the agent decides to accept it.

The report N maintains the status quo (inducing the transfers cSB), while R irre-

versibly triggers a lottery over full-insurance transfers at different utility levels, the out-

come of which is privately disclosed to the agent via a fair coin toss. This communication

protocol naturally extends that of γ∗ to an infinite horizon.

The principal may attempt to renegotiate ξ0∗ at any T ≥ 1, until T ∗ realizes. Observe

that the set of feasible renegotiation offers at each round ξT is taken to be Ξ. That is,

any renegotiated mechanism, once accepted, features the same communication protocol

as that relative to ξ0∗ after round T . We next show that the implementation result of

Proposition 1 extends to this setting, which suggests that backward induction reasoning

is not key to our approach. Specifically, we establish the following:

Proposition 3 The second-best allocation (H, cSB) is supported in an equilibrium of

Gη
Ξ(ξ

0∗).

The proof of Proposition 3, provided in Appendix C, exploits the idea that any rene-

gotiation offer can be simply characterized in terms of the continuation utility it yields to

the agent. Thus, there is no loss of generality in considering that any ξT features the same

communication protocol associated to ξ0∗ after round T . Any attempt to renegotiate can

hence be punished following the same logic as developed in the proof of Proposition 1.

5.2 The Supplementary View of Renegotiation

Under the primitive game G that underlies both FT and our framework, self-revealing

mechanisms uniquely implement the second-best allocation, fully mitigating renegotia-

tion at no efficiency loss. This subsection examines the robustness of this result to an

alternative specification of the renegotiation process itself.
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Thus far, we adopted the replacement view of renegotiation, following the standard

approach in the literature that a renegotiation offer replaces the original mechanism (As-

sumption A.4).25 Under this view, the agent cannot combine γ∗ with a renegotiation

offer—contracts are exclusive (Assumption A.5). We now examine supplementary renego-

tiation, where such combinations are possible. This creates new strategic considerations.

Consider the following supplementary offer. The principal proposes a mechanism γr
+

that, when combined with γ∗’s equilibrium transfers (uSB
g , uSB

b ), yields the full-insurance

contract cFI
H (U0+ε) for some ε > 0. The key feature is that γr

+ conditions on γ∗’s realized

transfers: it pays a positive amount only if γ∗ implements (uSB
g , uSB

b ). Specifically, γr
+

pays the difference between cFI
H (U0 + ε) and cSB.

Upon observing γr
+, the agent finds it optimal to report m = N in γ∗, triggering the

equilibrium transfers (as reporting m = R would trigger the punishment lottery, causing

γr
+ to pay nothing since its transfer is contingent on γ∗ implementing cSB). She then

accepts γr
+, which offsets these transfers and implements cFI

H (U0 + ε), guaranteeing her a

payoff U0 + ε > U0. The principal also gains: full insurance eliminates the risk premium

embedded in cSB, reducing expected transfers. For ε sufficiently small, both parties are

strictly better off. Thus, γ∗ is vulnerable to supplementary renegotiation: the principal

can profitably deviate by conditioning on γ∗’s realized transfers.26

However, alternative mechanisms can restore the second-best also under supplemen-

tary renegotiation. Consider a modified self-revealing mechanism with the following struc-

ture: when that pays a flat transfer if output ω = b realizes, it pays a flat (non-contingent)

transfer; when ω = g realizes, it pays an (m, s)-conditional transfer. Because the transfer

is flat when ω = b, the principal cannot infer the agent’s communication from the realized

payment in that state. This prevents the principal from inferring the agent’s message

from observing both the transfer and the realized output, eliminating the vulnerability

demonstrated above.27

This modification illustrates an important point about the relationship between sup-

plementary and replacement renegotiation. Under the replacement view, the verifiability

paradox is the primary challenge: the principal cannot observe the agent’s communication

within γ∗, creating the uncertainty that deters renegotiation. Under supplementary rene-

25As Bolton (1990, p. 304) notes: “[...] For once the contracting parties reach the point where an
inefficient outcome is suggested by the contract, they can always tear up the initial contract and write a
new Pareto-improving contract. As a result, when the contracting parties are unable to commit not to
renegotiate they will have to abandon these contracts designed to be executed without renegotiation”.

26While observability of the final transfers could in principle be exploited also under the replacement
view of renegotiation, the exclusivity assumption at the root of this view (see A.5) makes any such
conditional offer not strategically relevant. The profitability of the above renegotiation offer, indeed,
crucially hinges on the possibility to combine it with the original one.

27Formal analysis available from the authors shows that Proposition 1 extends to supplementary rene-
gotiation under CRRA preferences for the agent.
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gotiation, an additional difficulty arises: while communication remains unverifiable, the

principal can observe its consequences through the realized transfers from γ∗. The modi-

fied mechanism addresses both challenges by revealing communication through transfers

only when ω = g, not when ω = b. This selective revelation conceals the agent’s message

in the bad state while preserving the incentive structure in the good state.

To summarize, self-revealing mechanisms enable second-best implementation both un-

der the standard replacement view and under the supplementary view of renegotiation,

though the details of the required construction differ.

6 Conclusion

We revisit the tension between the legal doctrine of renegotiation and economic efficiency

(Dewatripont, 1989). We show that the threat of renegotiation can be fully mitigated

by self-revealing mechanisms with bidirectional communication that keeps messages pri-

vate at the moment of renegotiation yet verifiable at execution. The combination of

bidirectional communication and its strategically timed disclosure enables off-equilibrium

punishments that restore the full-commitment second-best without distorting on-path

incentives.

We establish these results in the canonical renegotiation framework of Fudenberg and

Tirole (1990), and we show that they extend to several settings of renegotiation under

moral hazard. We do not see any specific argument that limits the applicability of our

approach to situations in which the agent holds some private information (e.g., Laffont

and Tirole (1990)). However, a comprehensive analysis of the portability of our insights

to frameworks of renegotiation under incomplete information is beyond the scope of the

present work.

Our results carry significant implications. Self-revealing mechanisms reframe renegotiation-

proofness as a problem of communication architecture: the law’s refusal to enforce no-

renegotiation clauses need not bind efficiency once private signals and conditional revela-

tion are available.

The institutional message is that standard court enforcement suffices when contracts

embed this timing of information, aligning legal doctrine with economic efficiency rather

than requiring some external commitment devices or third-party mediation. Practically,

commit-and-reveal cryptographic tools operationalize the required conditional disclosure,

indicating that algorithmic contracting can implement the information structure that

eliminates renegotiation incentives.

More broadly, the analysis suggests a design principle for contract theory: when ex-

post inefficiencies create scope for opportunism, engineering when and to whom informa-
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tion is disclosed can substitute for formal commitment, with implications for environments

beyond the canonical model and for the governance of digital markets.
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A Main Proofs

This appendix collects the proofs.

Proof of Lemma 1. For a given e ∈ E, define the function Ṽe : [U
0,∞) → R as

Ṽe(U) ≡ 1

2
V FI
e (2U0 − U) +

1

2
V FI
e (U).

The function satisfies the following properties:

a) Ṽe(U) is well-defined, continuous and twice differentiable for U ∈ [U0,∞), because

Φ(U), and thus V FI
e (U), are defined for every U ∈ (−∞,+∞) and, moreover, are

continuous and twice differentiable.

b) Ṽe(U) is strictly decreasing since

∂Ṽe(U)

∂U
=

1

2

∂V FI
e (U)

∂U
− 1

2

∂V FI
e (2U0 − U)

∂U
< 0

for any U ∈ (U0,∞), where the inequality obtains since U > 2U0 −U , and because

V FI
e (U) is concave so that ∂V FI

e /∂U is decreasing.

c) Ṽe(U) is strictly concave since

∂2Ṽe(U)

∂U2
=

1

2

∂2V FI
e (U)

∂U2
+

1

2

∂2V FI
e (2U0 − U)

∂U2
< 0,

where the inequality follows because ∂2V FI
e (U)/∂U2 < 0.

d) It follows from (b) and (c) that lim
U→∞

Ṽe(U) = −∞.

e) For each e ∈ E, there is a U e ∈ (U0,∞) such that

V IC
e (U0) = Ṽe(U e) and V IC

e (U0) > Ṽe(U) ∀U ∈ (U e,∞).

This holds since Ṽe(U
0) = V FI

e (U0) > V IC
e (U0) > lim

U→∞
Ṽe(U) = −∞, where the

first inequality follows from the convexity of Φ. Because Ṽe(U) is continuous, the

intermediate value theorem guarantees that there is a U e ∈ (U0,∞): Ṽe(U e) =

V IC
e (U0). Because Ṽe(U) is strictly decreasing, we have Ṽe(U) < Ṽe(U e) = V IC

e (U0)

for all U > U e.

It follows from (e) that, for any Un > max{UH , UL}, we have

V IC
e (U0) > Ṽe(U

n). (4)
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Since Un > U0 ⇔ Un > 2U0 − Un, it follows from V FI
e (U) decreasing and Φ convex:

Ṽe(U
n) =

1

2
V FI
e (2U0−Un)+

1

2
V FI
e (Un) > max

{
V FI
e (Un),

1

2
V FI
e (2U0 − Un) +

1

2
V IC
e (Un)

}
.

(5)

Taking ∆U = Un − U0 > 0 together with both (4) and (5) imply (2). ■

Proof of Lemma 2. By (3), sending m̂r
e is sequentially rational for any (e, γr ̸= ∅,m, s, y)

with m the agent’s message m ∈ {N,R} in the original self-revealing mechanism γ. From

comparing her payoff Ue(τ
∗(m, s)) of remaining in γ∗ with her utility Û r

e of accepting

γr, it follows that, at each history (e, γr ̸= ∅,m, s), the agent’s participation behavior

is optimal. Next, consider any history (e, γr ̸= ∅). Because the agent observes s before

making her decision ρ, her continuation value under m = R equals

1

2
max

{
U0 −∆U, Û r

e

}
+

1

2
max{U0 +∆U, Û r

e },

while under m = N it equals

max{U0, Û r
e },

where Û r
e is defined in (3).

Hence, it is optimal for the agent to send m = N in γ∗ if

max{U0, Û r
e } ≥ 1

2
max

{
U0 −∆U, Û r

e

}
+

1

2
max{U0 +∆U, Û r

e }. (6)

From (6), it follows that the agent’s reporting behavior is optimal:

(i) If Û r
e ≤ U0 − ∆U , then (6) is satisfied because it reduces to U0 ≥ U0 since Û r

e ≤
U0 −∆U < U0. Sending m = N in γ∗, followed by ρ = n, as prescribed by λ(γ∗),

is hence optimal.

(ii) If Û r
e ∈ (U0 −∆U,U0 +∆U ], then, upon sending m = R, it is optimal for the agent

to choose ρ = y when s = h (as rejection leads to U0 −∆U < Û r
e ), and ρ = n when

s = t (as rejection leads to U0 + ∆U ≥ Û r
e ). We next argue that sending m = R

in γ∗, as prescribed by λ(γ∗), is optimal. That is, the the reverse of inequality (6)

holds, where we note that, due to Û r
e ∈ (U0 −∆U,U0 +∆U ], its RHS reduces to

Û r
e /2 + (U0 +∆U)/2. Reversing the inequality in (6), we only need to show that

max{U0, Û r
e } ≤ 1

2
Û r
e +

1

2
(U0 +∆U). (7)

To get the result, it is sufficient to observe that:

(a) If Û r
e < U0, then (7) rewrites as U0 −∆U ≤ Û r

e , which is satisfied by assump-

tion.
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(b) If Û r
e ≥ U0, then (7) rewrites as Û r

e ≤ U0 +∆U , which is satisfied by assump-

tion.

(iii) If Û r
e ∈ (U0 +∆U,∞), then we have U0 < U0 +∆U < Û r

e and the agent’s continu-

ation value under m = R equals Û r
e , the same obtained under m = N (followed by

ρ = y for any s ∈ {h, t}). Hence, it is rational for the agent, as prescribed by λ(γ∗),

to send m = R in γ∗, and then accepts γr for any received signal.

Therefore, in every history (e, γr ̸= ∅) , the prescribed choices in λ(γ∗)—m = N in case

(i); m = R with ρ = y when s = h and ρ = n when s = t in case (ii); and m = R with

ρ = y for any s in case (iii) —are optimal.

Consider now the agent’s behavior at each history (e, ∅) where the principal does not

renegotiate. Sending m = N is an optimal behavior of the agent since she obtains the

same payoff U0 under any report in γ∗. Finally, at her starting node, she optimally selects

e = H against γr = ∅ , since she anticipates that no renegotiation takes place on path

and cSB = cIC(U0) is eventually implemented. This completes the proof of sequential

rationality. ■

Proof of Lemma 3: In the subgame GΓ(γ
∗), the principal’s best response is either

γr = ∅ or a revelation mechanism γr ∈ C that maps the renegotiation report mr ∈ E

to a contract (ug, ub).
28 Given the principal’s belief x = 1 and the agent’s risk-aversion,

any accepted γr that maximizes the principal’s payoff yields full insurance to the agent

of type e = H: so, conditional on acceptance, his payoff equals V FI
H (Û r

H) for some scalar

Û r
H .

Given belief x = 1 and the agent’s strategy λ(γ∗), we verify that the principal’s

expected payoff does not exceed V SB = V IC
H (U0) for any Û r

H ∈ R. We distinguish three

cases:

(i) If Û r
H ≤ U0−∆U then λ(γ∗) prescribes (m = N, ρ = n) and the principal gets V SB.

(ii) If Û r
H ∈ (U0 −∆U,U0 +∆U ] then λ(γ∗) prescribes (m = R, ρ = y when s = h, and

ρ = n when s = t), and the principal gets

1

2
V FI
H (Û r

H) +
1

2
V IC
H (U0 +∆U) <

1

2
V FI
H (U0 −∆U) +

1

2
V IC
H (U0 +∆U) < V SB, (8)

where the first inequality follows from V FI
H decreasing, and the second from Lemma

1.

28γr cannot directly condition on (m, s): acceptance of γr precludes γ∗ from disclosing (m, s) publicly,
and rejection of γr makes it payoff-irrelevant.
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(iii) If Û r
H > U0 +∆U then λ(γ∗) prescribes (m = R, ρ = y) for any s ∈ {h, t}, and the

principal gets

V FI
H (Û r

H) < V FI
H (U0 +∆U) < V SB (9)

where the first inequality follows from V FI
H decreasing, and the second from Lemma

1.

Thus, the principal cannot gain by offering any γr ̸= ∅ . ■

Proof of Proposition 2. We construct a mechanism γε that uniquely implements e = H

and yields a principal’s payoff arbitrarily close to V SB.

Define for any ε ∈ (0, ε̄) with ε̄ > 0, the contract

cSBε ≡
(
U0 +

(1− pL)d+ (1− pH)ε

∆p
, U0 − pLd+ pHε

∆p

)
.

Note that cSBε yields the agent the payoff U0 if she selects e = H, and U0 − ε if e = L.

Mechanism γε = {M∗,S∗, σ∗, τε} coincides with γ∗, except for τε:

τε(N, h) = τε(N, t) = cSBε ; τε(R, t) = cIC(U0 +∆U); τε(R, h) = cIC(U0 −∆U − κε)

for any arbitrary κ > 2. We consider the subgame GΓ(γε), and construct ε̄ > 0 so that,

for any belief x ∈ [0, 1] and any ε ∈ (0, ε̄), the principal is strictly worse off from any

renegotiation offer that the agent accepts with a strictly positive probability.

Fixing an arbitrary behavior γr(γε) of the principal, we now characterize all the agent’s

behavioral strategies λ(γε) that are sequentially rational in the subgame GΓ(γε). Note

that the agent’s sequentially rational behavior depends on τε and Û r
e , but not on the

principal’s belief x. We start from the terminal nodes of GΓ(γε).

Recalling (3), note that in any history (e, γr,m, s, y) with γr ̸= ∅, the agent sends any
mr ∈ E (or distribution over reports) that satisfies the left-hand side of (3), expecting to

obtain Û r
e from accepting γr as expressed in the right-hand side of (3).

In any history (e, γr ̸= ∅,m, s), the agent’s optimal acceptance behavior (ρ(h), ρ(t))

follows from comparing the agent’s payoff Ue(τε(m, s)) of staying in γε with the utility Û r
e

of accepting γr:

(a) For (e,m) = (H,R) and (e,m) = (L,R), we have

ρ(h) ∈


{y} if Û r

e > U0 −∆U − κε;

{n} if Û r
e < U0 −∆U − κε;

{n, y} if Û r
e = U0 −∆U − κε;

and ρ(t) ∈


{y} if Û r

e > U0 +∆U ;

{n} if Û r
e < U0 +∆U ;

{n, y} if Û r
e = U0 +∆U.

(b) For (e,m) = (H,N), we have

ρ(h) ∈


{y} if Û r

H > U0;

{n} if Û r
H < U0;

{n, y} if Û r
H = U0;

and ρ(t) ∈


{y} if Û r

H > U0;

{n} if Û r
H < U0;

{n, y} if Û r
H = U0.
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(c) For (e,m) = (L,N), we have

ρ(h) ∈


{y} if Û r

L > U0 − ε;

{n} if Û r
L < U0 − ε;

{n, y} if Û r
L = U0 − ε;

and ρ(t) ∈


{y} if Û r

L > U0 − ε;

{n} if Û r
L < U0 − ε;

{n, y} if Û r
L = U0 − ε.

Fixing any optimal participation behavior as characterized above, we now derive the

agent’s optimal reporting behavior in any history (e, γr ̸= ∅), where γr yields Û r
e to the

agent if accepted. For e = H, m = N is optimal if

max{U0, Û r
H} ≥ 1

2
max

{
Û r
H , U

0 −∆U − κε
}
+

1

2
max{Û r

H , U
0 +∆U}, (10)

while m = R is optimal if the opposite weak inequality holds. For e = L, m = N is

optimal if

max{U0 − ε, Û r
L} ≥ 1

2
max

{
Û r
L, U

0 −∆U − κε
}
+

1

2
max{Û r

L, U
0 +∆U}, (11)

while m = R is optimal if the opposite weak inequality holds.

At any history (e, γr = ∅), the agent’s unique optimal report in γ∗ is m = N . To

see this, note that m = N yields U0 if e = H and U0 − ε if e = L, whereas m = R

yields U0 − κ
2
ε regardless of e. Since ε > 0 and κ > 2, we have U0 − κ

2
ε < U0 − ε < U0,

confirming that m = N strictly dominates m = R for both effort levels.

We now address the agent’s optimal effort choice. A full characterization of the agent’s

best response to every possible principal strategy γr(γε) is unnecessary. To establish

uniqueness, it suffices to show that when the principal plays the equilibrium strategy

γr(γε) = ∅, the agent’s unique optimal effort is e = H. To see this, note that given

γr = ∅, the agent’s unique optimal report is m = N regardless of e (as shown above).

This leads to the implementation of transfers cSBε , which satisfy UH(c
SB
ε ) > UL(c

SB
ε ) by

construction. Hence, e = H is strictly optimal.

We now derive the principal’s optimal behavior in the subgame GΓ(γε).

We show that for any effort probability x ∈ [0, 1] and any optimal reporting and

participation behavior of the agent (as characterized above), the principal’s best response

is γr = ∅ or equivalently, any offer that the agent rejects with probability one.

First, suppose λ(γε) specifies that the agent selects e = H with probability x ∈ {0, 1}
and the principal holds a deterministic, consistent belief x ∈ {0, 1} over the agent’s

effort. In this case, by not renegotiating, given the agent’s subsequent report m = N ,

the principal expects VH(c
SB
ε ) if x = 1 or VL(c

SB
ε ) if x = 0. Moreover, the first argument

in the proof of Lemma 3 implies that we can characterize any renegotiated offer that the

principal considers optimal by some Û r
x ∈ (−∞,+∞), representing the agent’s expected

utility from accepting it. When x = 1, the relevant utility is that of the agent who chose
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e = H; when x = 0, that of the agent who chose e = L. Using the agent’s sequentially

rational behavior as derived above by substituting Û r
H = Û r

1 and Û r
L = Û r

0 , we derive the

payoff that the principal himself expects from Û r
x :

1. For Û r
1 < U0−∆U , the principal expects payoff VH(c

SB
ε ) and for Û r

0 < U0−∆U−2ε,

the principal expects payoff VL(c
SB
ε ). This follows because the principal expects the

agent to consider her strategy (m, ρ(t), ρ(h)) = (N, n, n) uniquely optimal. To see

this, note that conditional on sending m = N , ρ(t) = ρ(h) = n is strictly optimal,

because

Û r
1 < U0 −∆U < U0 and Û r

0 < U0 −∆U − 2ε < U0 − ε.

To see why the principal expects the agent to strictly prefer m = N over m = R,

consider the two subcases:

(a) If Û r
1 ≤ U0−∆U−κε, then (10) with Û r

H = Û r
1 becomes U0 ≥ U0− κ

2
ε; likewise,

if Û r
0 ≤ U0 − ∆U − κε, then (11) with Û r

L = Û r
0 becomes U0 − ε ≥ U0 − κ

2
ε.

Both inequalities are strictly satisfied since ε > 0 and κ > 2.

(b) If Û r
1 ∈ (U0 − ∆U − κε, U0 − ∆U), then (10) with Û r

H = Û r
1 becomes Û r

H ≤
U0 − ∆U ; likewise, if Û r

0 ∈ (U0 − ∆U − κε, U0 − ∆U − 2ε), then (11) with

Û r
L = Û r

0 becomes Û r
0 ≤ U0 −∆U − 2ε. Both inequalities are strictly satisfied

in case (b) by assumption.

2. For Û r
1 = U0 − ∆U or Û r

0 = U0 − ∆U − 2ε, the principal expects the agent to

consider only the strategies (m, ρ(h), ρ(t)) = (N, n, n) and (m, ρ(h), ρ(t)) = (R, y, n)

as optimal, because , in this case, (10) and (11) both hold with equality. For any

randomization over the agent’s decisions, the principal expects a payoff that is a

convex combination of VL(c
SB
ε ) and 1

2
V FI
L (U0 −∆U − 2ε) + 1

2
V IC
L (U0 + ∆U) for

x = 0, and of VH(c
SB
ε ) and 1

2
V FI
H (U0 −∆U) + 1

2
V IC
H (U0 +∆U) for x = 1.

3. For Û r
1 ∈ (U0 −∆U,U0 + ∆U) or Û r

0 ∈ (U0 −∆U − 2ε, U0 + ∆U), both (10) and

(11) are violated for (Û r
H , Û

r
L) = (Û r

1 , Û
r
0 ) so that the principal expects the agent to

consider only (m, ρ(h), ρ(t)) = (R, y, n) optimal. Hence, the principal expects the

payoff 1
2
V FI
H (Û r

1 )+
1
2
V IC
H (U0+∆U) for x = 1, and payoff 1

2
V FI
L (Û r

0 )+
1
2
V IC
L (U0+∆U)

for x = 0.

4. For Û r
1 = U0 + ∆U or Û r

0 = U0 + ∆U , the principal expects the agent to consider

exactly the three strategies (m, ρ(h), ρ(t)) = (N, y, y), (m, ρ(h), ρ(t)) = (R, y, y),

and (m, ρ(h), ρ(t)) = (R, y, n) optimal. For any mixture over these strategies, the

principal obtains a convex combination between V FI
H (U0 + ∆U) and 1

2
V FI
H (U0 +
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∆U) + 1
2
V IC
H (U0 + ∆U) for x = 1; and between V FI

L (U0 + ∆U) and 1
2
V FI
L (U0 +

∆U) + 1
2
V IC
L (U0 +∆U) for x = 0.

5. For Û r
e ∈ (U0+∆U,∞), the principal expects the agent to consider exactly strategies

(m, ρ(h), ρ(t)) = (N, y, y) and (m, ρ(h), ρ(t)) = (R, y, y) optimal. For any mixture

over these strategies, the principal obtains V FI
H (Û r

1 ) for x = 1 and V FI
L (Û r

0 ) for

x = 0.

The analysis above implies that, with belief x = 1, the following inequalities guarantee

that the principal expects to be strictly worse off from every renegotiation offer that the

agent accepts with a strictly positive probability:

VH(c
SB
ε )− 1

2
V FI
H (U0 −∆U)− 1

2
V IC
H (U0 +∆U) > 0, (12)

and

VH(c
SB
ε )− V FI

H (U0 +∆U) > 0. (13)

Observe that, if ε = 0, (12) and (13) are strictly satisfied because they coincide with

(8) and (9), respectively. Since VH(c
SB
ε ) is continuous in ε, there is a εH > 0 such that

(12) and (13) are strictly satisfied for any ε ∈ (0, εH). If, instead, x = 0, the principal

believes to be strictly worse off from the agent accepting a renegotiation offer with a

strictly positive probability when

VL(c
SB
ε )− 1

2
V FI
L (U0 −∆U − 2ε)− 1

2
V IC
L (U0 +∆U) > 0 (14)

and

VL(c
SB
ε )− V FI

L (U0 +∆U) > 0. (15)

Again, since VL(c
SB
ε ) is continuous in ε, there is a εL > 0 such that (14) and (15) are

strictly satisfied for any ε ∈ (0, εL). Defining ε̄ ≡ min{εL, εH} implies that if the principal

holds a degenerate belief, then, for any ε ∈ (0, ε̄), he believes that he is strictly worse off

from a renegotiation offer that the agent accepts with a strictly positive probability.

We next argue that the polar cases x ∈ {0, 1} as studied above imply that, also for

an intermediate belief x ∈ (0, 1), the principal expects to be strictly worse off from the

agent accepting a renegotiation offer with strictly positive probability. To see this, note

that the principal’s expected payoff by not renegotiating is linear in x:

Vx(c
SB
ε ) = xVH(c

SB
ε ) + (1− x)VL(c

SB
ε ),

since, regardless of her previous effort, the unique optimal report of the agent when γr = ∅
is m = N , inducing the transfers cSBε .
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Moreover, note that by offering γr ̸= ∅, fixing any sequentially rational behavior λ(γε)

by the agent and denoting V ∗
e (γ

r, λ(γε)) the principal’s expected equilibrium payoff in the

continuation of (γε, e, γ
r), he would instead get

V ∗
x (γ

r, λ(γε)) ≡ xV ∗
H(γ

r, λ(γε)) + (1− x)V ∗
L (γ

r, λ(γε)).

As the agent’s behavior is independent of the principal’s belief x, this is also linear in x.

To see why V ∗
x < Vx(c

SB
ε ) extends to intermediate beliefs, observe that under x ∈

(0, 1) the principal could offer a screening menu γr ∈ C with γr(H) ̸= γr(L). However,

screening does not improve his payoff. For any menu γr, an agent who chose effort e

and accepts renegotiation optimally reports in γr to obtain Û r
e = max

mr∈E
Ue(γ

r(mr)). Her

optimal reporting and acceptance behavior in γε depends on (τε, Û
r
e ), not on the belief

x. Since we established that, for any sequentially rational reporting and participation of

the agent, Ve(c
SB
ε ) > V ∗

e (γ
r, λ(γε)) for each e ∈ E separately, the inequality Vx(c

SB
ε ) >

V ∗
x (γ

r, λ(γε)) holds for all x ∈ [0, 1]. Thus, the suboptimality of renegotiation extends to

intermediate beliefs x ∈ (0, 1).

From the previous considerations, at any equilibrium of GΓ(γε), the agent must antici-

pate, when selecting her effort, that the principal does not make a renegotiation offer that

makes her accept it with positive probability. Therefore, e = H is her only optimal choice

as already argued. But then, at any equilibrium of GΓ(γε), the agent selects x = 1 and

no renegotiation takes place. Hence, the principal’s unique equilibrium payoff in GΓ(γε)

is VH(c
SB
ε ). Equilibrium existence in the subgame is ensured by the fact that e = H,

m = N and γr = ∅ are mutual best responses.

We now turn to the entire game GΓ. Note first that,once the principal offers γε,

the agent is indifferent between accepting it or not. Standard tie-breaking arguments,

however, guarantee that the only participation decision consistent with equilibrium is ac-

ceptance.29 Consequently, in any equilibrium of GΓ, the principal must obtain at least the

payoff V SB: any inferior payoff V ′ < V SB is not sequentially rational since the principal

could deviate to some γε and uniquely obtain VH(c
SB
ε ) ∈ (V ′, V SB). The existence of an

appropriate γε is guaranteed for any choice of V ′ since

lim
ε→0

VH(c
SB
ε ) = V SB.

Given that the principal cannot obtain more than V SB (the full-commitment upper

bound), every equilibrium of GΓ yields the principal a payoff of exactly V SB. It remains

to show that the equilibrium allocation is unique. In the static second-best problem,

V SB is achieved only when both (IC) and (PC) bind with e = H, which pins down the

29One can construct another tie-breaking mechanism identical to γε except for yielding U0 + ε to the
agent if she accepts.
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contract as cSB = cIC(U0). This characterization extends to GΓ: any mechanism γ ∈ Γ

achieving principal payoff V SB must (i) implement e = H with probability one (since

V SB = V IC
H (U0) > V FI

L (U0) by the maintained assumption that high effort is optimal in

the second-best), (ii) leave the agent exactly U0 (since V IC
H is strictly decreasing), and

(iii) execute transfers cSB on path (since cSB is the unique incentive-compatible contract

for e = H at U0). Hence the equilibrium allocation (H, cSB) is unique. ■

Proof of Proposition 3. We start by considering the transfers implemented by ξ0∗.

They are defined by the sequence of decision rules τ 0∗ = (τ 0∗T ′ )T ′≥1. Each function τ 0∗T ′

associates any history of communication between the agent and ξ0∗ from T = 1 to T = T ′,

which we denote Z0∗
T ′ ∈ {N,R}T ′ × {h, t}T ′

, to the transfers τ 0∗T ′ (Z0∗
T ′ ) ∈ R2 to be paid if

renegotiation breaks down at T ∗ = T ′. Specifically, for any Z0∗
T ′ with T ′ ≥ 1, we let sR be

the signal extracted in the first round in which R is reported by the agent. Then:

τ 0∗T (Z0∗
T ) =


cSB if R /∈ Z0∗

T ,

cFI
H (U0 −∆U − d) if R ∈ Z0∗

T and sR = h,

cFI
H (U0 +∆U − d) if R ∈ Z0∗

T and sR = t.

Where ∆U is such that:30

∆U > d and
1

2
V FI
H

(
U0 −∆U − d

)
+

1

2
V FI
H (U0 +∆U − d) < V SB. (16)

In ξ0∗, the agent can send in each round T either a status quo report N or an irre-

versible punishment report R. If R is not reported, then the second-best transfers cSB are

implemented. As soon as R is sent, all future reports become payoff-irrelevant and the

punishment outcome characterized in (16) is implemented. Observe, in addition, that the

report R induces a lottery over first-best efficient contracts, whose outcomes are therefore

not improvable by any renegotiation.

The agent’s strategies. At T = 0, the agent observes ξ0∗ and chooses e ∈ {H,L}. Then,

for any T ′ ≥ 1, the agent’s histories have a recursive structure. At round T ′.ii), she makes

a report in the last accepted mechanism, which we denote m0∗
T ′ ∈ {N,R} (if this is ξ0∗)

or mT
T ′ ∈ {N,R} (if this is ξT with T < T ′), and she hence observes either s0∗T ′ ∈ {h, t} or

sTT ′ ∈ {h, t}. Then, at stage T ′.iii), she selects ρT
′ ∈ {y, n}, and, if ρT ′

= y, she reports

êT
′ ∈ {H,L} in ξT

′
in round T ′.iv) . We denote HT ′+1

A a history of the agent up to T ′.iv).

The principal’s strategies. The principal may attempt to renegotiate the mechanism ξ0∗

at any round T ≥ 1, until T ∗ realizes. A renegotiated mechanism ξT offered at round T

requires the agent to submit a report êT ∈ {H,L} at T.iv). Further, at any T ′ > T , it

30Existence of ∆U satisfying (16) follows from continuity and the fact that, for large ∆U , the RHS
diverges to −∞ while V SB is finite. The condition ∆U > d is then satisfiable for ∆U in an appropriate
range.
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also requires her to send a report mT
T ′ ∈ {N,R} while privately disclosing the realization

sTT ′ ∈ {h, t} of a fair coin toss.31 The mechanism ξT specifies the sequence of decision

rules τT = (τTT ′)T ′≥T , with τTT ′ being the rule for round T ′ ≥ T . It associates any sequence

of reports and signals ZT
T ′ ∈ {H,L}×{N,R}T ′−T−1×{h, t}T ′−T−1 exchanged between the

agent and ξT up to round T ′ to the transfers τTT ′(ZT
T ′) ∈ R2 to be paid if renegotiation

breaks down at T ∗ = T ′. We let Ξ be the set of all such ξT mechanisms.

We denote H1
P ≡ ξ0∗ the relevant history for the principal at T = 1, which only

contains the offer ξ0∗. We then let HT
P ≡ (ξ0∗, ξ1, ρ1, . . . , ξT−1, ρT−1) be a principal’s

history at the end of stage T . Thus, a (pure) behavioral strategy for the principal in

Gη
Ξ(ξ

0∗) associates to each T ≥ 1 and to each HT
P a renegotiated mechanism ξT ∈ Ξ.

To start with, denote P0∗
T the set of principal’s histories, and A0∗

T the set of agent’s

histories, such that ρT
′
= n for all T ′ : 1 ≤ T ′ < T . At any such history, ξ0∗ is still in

place in round T . At any history HT
P ∈ P0∗

T the principal may either offer a mechanism

ξT , or decide not to renegotiate. At any history (HT
A, ξ

T ), with HT
A ∈ A0∗

T , the agent

reports m0∗
T ∈ {N,R} in ξ0∗ and privately observes the signal s0∗T ∈ {h, t}; then, at

any (HT
A, ξ

T ,m0∗
T , s0∗T ) she selects ρT ∈ {y, n} and, at any (HT

A, ξ
T ,m0∗

T , s0∗T , y), she selects

êT ∈ {H,L}.

We next construct players’ equilibrium strategies, and show that there are no profitable

unilateral deviations. The proof is developed in three steps.

Step 1. Strategies and beliefs. We first describe the agent’s equilibrium behavior in

Gη
Ξ(ξ

0∗). At T = 0 she takes e = H with probability one. Then, we explicitly characterize

her reporting and participation behavior only at the histories (HT
A, ξ

T ) such that e = H

and HT
A ∈ A0∗

T . Relative to all other histories, we only require that the agent behaves

in a sequentially rationally way given the principal’s equilibrium behavior. Consider, in

particular, any history (HT
A, ξ

T ,m0∗
T , s0∗T , y), in which (m0∗

T , s0∗T ) ∈ {N,R} × {h, t} is the

communication entertained by the agent with the mechanism ξ0∗. Since the renegotia-

tion offer ξT cannot condition on such private communication, and its acceptance effec-

tively replaces any previous mechanism, the agent’s continuation payoff corresponding to

(HT
A, ξ

T ,m0∗
T , s0∗T , y) is indeed independent of (m0∗

T , s0∗T ). We denote it Û0∗
H (ξT ).

To construct the agent’s reporting and participation behavior at any (HT
A, ξ

T ), we

distinguish two mutually exclusive situations, according to the relevant round T and the

history of the communication Z0∗
T−1 between the agent and the original mechanism ξ0∗ up

to this round.

31The restriction to ξT ∈ Ξ is without loss of generality. Upon accepting ξT , the agent’s prior com-
munication (m0∗

T ′ , s0∗T ′)T ′<T within ξ0∗ becomes payoff-irrelevant: agents with the same e but different
communication histories evaluate any contract identically. Hence, as in Section 3, the principal cannot
screen on this information, and restricting the message space of ξT to effort reports involves no loss.
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1. T > 1 and R ∈ Z0∗
T−1. That is, the history of communication within ξ0∗ contains at

least a report R. In any such case, we let the agent report m0∗
T = R in ξ0∗. In addition,

her participation decision depends on the signal s0∗T received from ξ0∗. Specifically:

• If s0∗T = h, then she selects ρT = y iff Û0∗
H (ξT ) ≥ U0 −∆U − d,

• If s0∗T = t, then she selects ρT = y iff Û0∗
H (ξT ) ≥ U0 +∆U − d.

2. Either T = 1, or R /∈ Z0∗
T−1. In any such case, the agent’s report in ξ0∗, which we

denote m0∗
T , is determined as follows:

• She reports m0∗
T = N if either Û0∗

H (ξT ) ≤ U0 − (∆U − d) or ξT = ∅,

• She reports m0∗
T = R if Û0∗

H (ξT ) > U0 − (∆U − d).

Finally, at any (HT
A, ξ

T ,m0∗
T , s0∗T ), the agent participation within ξT is such that:

• If s0∗T = h, then she selects ρT = y iff Û0∗
H (ξT ) > U0 −∆U − d,

• If s0∗T = t, then she selects ρT = y iff Û0∗
H (ξT ) > U0 +∆U − d.

We next specify the principal’s equilibrium behavior in Gη
Ξ(ξ

0∗). We let the principal

choose ξT = ∅ at any history HT
P ∈ P0∗

T on the equilibrium path. Relative to all other

histories, we only require that the principal behaves in a sequentially rational way given his

beliefs and the agent’s equilibrium behavior. We assume that, at any on-the-equilibrium-

path history HT
P ∈ P0∗

T , the principal believes that e = H with probability one, and that

m0∗
T ′ = N for all T ′ < T , while he assigns probability one-half to each s0∗T ′ ∈ {h, t}. Thus,

the principal’s on-path beliefs are Bayes-consistent given the agent’s behavior. We also

require that, at any history HT
P ∈ P0∗

T which is off the equilibrium path, the principal still

believes that e = H with probability one, while holding a degenerate belief on m0∗
T ′ = R

for each T ′ < T starting with T ′ = 1. In particular, he believes that sR = t has been

disclosed by ξ0∗ to her at the initial round.

Step 2. The agent’s sequential rationality. We establish the sequential rationality of the

agent’s effort and communication behavior.

—Effort choice. Given the principal’s equilibrium behavior, choosing e = H and reporting

m0∗
T = N at any T ≥ 1 yields the agent her reservation payoff U0. Suppose, instead, that

she takes e = L at T = 0. Then, any subsequent reporting strategy yields her again U0.

Indeed, reporting m0∗
T = N in ξ0∗ at any T ≥ 1 yields the second-best transfers cSB. By

reporting R in any round T ≥ 1, the agent triggers the punishment lottery yielding her

1

2
UL(c

FI
H (U0 −∆U − d)) +

1

2
UL(c

FI
H (U0 +∆U − d)) =

1

2
(U0 −∆U) +

1

2
(U0 +∆U) = U0,
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since UL(c
FI
H (U)) = U+d. Thus, choosing e = L does not constitute a profitable deviation.

—Reporting and participation decisions. Consider any agent’s history (HT
A, ξ

T ) such that

HT
A ∈ A0∗

T and e = H. Once again, we distinguish two mutually exclusive situations,

according to the relevant round T and the history of the communication Z0∗
T−1 between

the agent and the original mechanism ξ0∗ up to this round.

1. T > 1 and R ∈ Z0∗
T−1. That is, the history of communication within ξ0∗ contains at least

a report R. In any such case, given τ 0∗, any agent’s report from round T onwards in ξ0∗

is payoff-irrelevant, guaranteeing the optimality of our constructed behavior. Concerning

participation, rejecting a renegotiated offer ξT secures the agent a continuation payoff of

either U0−∆U−d (if sR = h) or U0+∆U−d (if sR = t) given the principal’s equilibrium

behavior. This guarantees the optimality of our constructed participation behavior.

2. Either T = 1, or R /∈ Z0∗
T−1. Consider first on-path histories, that is, any agent’s history

(HT
A, ∅) such that HT

A ∈ A0∗
T and e = H. By reporting m0∗

T = N in ξ0∗ at any T ≥ 1 the

agent obtains the second-best transfers cSB, which yields her the reservation payoff U0.

By reporting R in any round T ≥ 1, the agent triggers the punishment above, and gets

the expected payoff U0 − d < U0 regardless of her subsequent communication behavior.

Thus, m0∗
T = N is the unique optimal report.

Consider next any off-path agent’s history (HT
A, ξ

T ) such that HT
A ∈ A0∗

T and e = H.

The agent’s constructed participation behavior can be straightforwardly verified to be

sequentially rational by comparing, for each (m0∗
T , s0∗T ) ∈ {N,R} × {h, t}, her payoff of

accepting ξT to that of holding ξ0∗.

max{U0, Û0∗
H (ξT )} ≥ 1

2
max{U0−∆U−d, Û0∗

H (ξT )}+1

2
max{U0+∆U−d, Û0∗

H (ξT )}. (17)

Indeed, the LHS of (17) is the agent’s payoff from reporting N and following the con-

structed participation behavior, and the RHS represents the expected payoff from report-

ing R and following again the constructed participation behavior. It is then easy to check

that the threshold reporting strategy constructed above is consistent with (17).

Step 3. The principal’s sequential rationality. We now verify the optimality of the prin-

cipal’s behavior where explicitly characterized. We start from the principal’s histories

on-the-equilibrium-path. That is, we take any history HT
P ∈ P0∗

T such that ξT
′
= ∅ for

any T ′ : 1 ≤ T ′ < T . In any such history, the principal holds the Bayes-consistent belief

that the agent has reported m0∗
T ′ = N in ξ0∗ in any T ′ < T .

To verify that the principal does not gain by offering ξT ̸= ∅ at round T , we distinguish

two cases according to the value Û0∗
H (ξT ).32

32Since the non-profitability of a deviation, given the agent’s equilibrium behavior, does not depend
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1. Û0∗
H (ξT ) ≤ U0 − (∆U − d). The agent’s equilibrium behavior prescribes to report

m0∗
T = N in ξ0∗ after observing ξT , and to reject it for any s0∗T ∈ {h, t}. Hence, any such

ξT offer is payoff-equivalent to ξT = ∅ for the principal.

2. Û0∗
H (ξT ) > U0 − (∆U − d). The agent’s equilibrium behavior prescribes to report

m0∗
T = R in ξ0∗. This guarantees her the payoff U0 −∆U − d (if s0∗T = h) or U0 +∆U − d

(if s0∗T = t), which can be achieved by selecting ρT = n in any history (HA
T , ξ

T , R, s0∗T ).

Thus, the principal’s continuation payoff is at most

1

2
V FI
H (U0 −∆U − d) +

1

2
V FI
H (U0 +∆U − d) < V SB,

where the inequality follows from (16). Hence, any such deviation is unprofitable to the

principal.

Finally, consider any off-the-equilibrium path historyHT
P ∈ P0∗

T . In any such situation,

by construction, the principal believes that m0∗
T ′ = R has been reported by the agent in

ξ0∗ at any T ′ < T , and that sR = t has been disclosed by ξ0∗ to her at T = 1. Such a

communication guarantees that ξ0∗ implements a first-best allocation, which involves full

insurance, and yields the utility U0 +∆U − d to the agent in any future rounds. Thus, it

cannot be profitable for the principal to renegotiate under this belief, and, at any T ′′ ≥ T ,

it is optimal for him to stick to his equilibrium offer ξT
′′
= ∅.

Therefore, deviations starting at any HT
P ∈ P0∗

T , on and off the equilibrium path, yield

weakly less than V SB to the principal in the continuation of (HT
P , ξ

T ), given his beliefs

and the agent’s equilibrium behavior. This guarantees that the principal’s equilibrium

strategy of offering ξT = ∅ at any such history is sequentially rational. ■

on the principal’s continuation play after offering ξT , the analysis below guarantees that all deviations
starting at HP

T are unprofitable for the principal, not only the one-shot deviations.
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B Smart Contract Implementation

We present, as a proof-of-concept, a fully specified example of a smart contract for a

parameterized version of our framework using the commit-and-reveal technique. In par-

ticular, let the normalized CRRA utility function u(w) =
√
w describe the agent’s pref-

erences over transfers, implying that the monetary equivalent is Φ(u) = u2. Let U0 = 10

be the agent’s reservation utility. The cost of high effort is d = 2 with success probability

pH = 3/4, while for low effort the probability is pL = 1/4, i.e., ∆p = 1/2. The good

output is g = 1300, while the bad output is b = 100. Hence, yH = 1000 and yL = 400.

It is easy to check that ∆U = 2 together with the parameterized example satisfies

(2), yields the self-revealing mechanism γ∗∗ with transfers (in monetary terms, i.e., w =

Φ(u) = u2)
τ ∗∗(N, h) = (169, 81); τ ∗∗(N, t) = (169, 81)
τ ∗∗(R1, h) = (121, 49); τ ∗∗(R1, t) = (225, 121)
τ ∗∗(R2, h) = (225, 121); τ ∗∗(R2, t) = (121, 49).

Figure 1 presents the smart contract that implements γ∗∗ over the Ethereum blockchain

using the commit-and-reveal technique.33 The smart contract is written in Solidity, the

most common language for Ethereum smart contracts.

To allow the agent to send a secret (hashed) message m ∈ {N,R1, R2} with a random

seed σ, the smart contract implements the commit-and-reveal technique as previously

discussed, based on the public keccak-256 hash function.

After sending the hashed message, the agent waits for the principal to report the

realized output level Y ∈ {g, b}, at which point the smart contract generates the signal

s ∈ {h, t} in a random fashion by recording the realized signal publicly on the blockchain.

Finally, the agent is to report the seed σ to the smart contract by which the smart contract

can recover the original message m so that it can make the transfers according to τ ∗∗.

We set up the contract such that if the agent does not reveal the seed σ honestly,

this is interpreted as tearing up the original contract and accepting a renegotiated one,

(ρ = y), so that the smart contract stops in that no transfers flow and message m stays

hidden. This “waiting indefinitely” behavior faithfully implements the paper’s framework,

where accepted renegotiation causes the original mechanism to simply stop executing, with

transfers flowing instead through the renegotiated contract.

33The contract is a minimal proof-of-concept only. It is intentionally not security-hardened. Concretely,
it uses a placeholder public coin S (not a verifiable randomness source), does not gate reveal on a recorded
renegotiation outcome, does not escrow funds or enforce deadlines/liveness, and accepts Y from the
principal without authenticated reporting (relying instead on off-chain legal enforceability). The numeric
transfer constants represent wages w = u2 consistent with the utility table, expressed in Ether units.
These simplifications are deliberate and solely for illustrating the interface and timing pattern (commit
privately; reveal only at enforcement). A production deployment would replace each placeholder with
its standard counterpart (verifiable randomness or two-party coin-toss, renegotiation-gated reveal/state
machine, escrow with deadlines and fallbacks, authenticated Y reporter or explicit legal backstop).
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1 pragma s o l i d i t y ˆ 0 . 8 . 0 ;
2 contract CommitRevealTransfer {
3 address constant AddressP = 0x362CbcC7a9955332e61d47c107543398C3D25261 ;
4 address constant AddressA = 0x818CbcC8de183AED16f850B17c300DB40a4544Eb ;
5 uint256 constant TG=169; uint256 constant TGH=121; uint256 constant TGT=225;
6 uint256 constant TB=81; uint256 constant TBH=49; uint256 constant TBT=121;
7 bytes32 public HASHCOMMIT; string public S ; string public Y;
8 bool public isCommitted ; bool public i sRevea l ed ; bool public i sYSent ;
9 con s t ruc to r ( ) {

10 require (msg . sender==AddressP , "Only AddressP can deploy" ) ;}
11 function commit (bytes32 hashCommit ) ex t e rna l {
12 require (msg . sender==AddressA , "Only AddressA can commit" ) ;
13 require ( ! isCommitted , "Already committed" ) ;
14 HASHCOMMIT = hashCommit ; isCommitted = true ; }
15 function generateS ( ) i n t e r n a l {
16 require ( isCommitted , "Waiting for commit" ) ;
17 S = block . timestamp % 2==0?"Head" : "Tail" ; }
18 function sendY ( string c a l l d a t a Y) ex t e rna l {
19 require (msg . sender==AddressP , "Only AddressP can send Y" ) ;
20 require ( isCommitted , "Waiting for commit" ) ;
21 require (keccak256 ( abi . encodePacked ( Y) )==keccak256 ( abi . encodePacked ( "G" ) ) | |

keccak256 ( abi . encodePacked ( Y) )==keccak256 ( abi . encodePacked ( "B" ) ) , "Only G/B" ) ;
22 Y = Y ; isYSent = true ; generateS ( ) ;
23 }
24 function r e v e a l ( string c a l l d a t a message , string c a l l d a t a s a l t ) ex t e rna l {
25 require (msg . sender==AddressA , "Only AddressA can reveal" ) ;
26 require ( isYSent , "Waiting for Y" ) ;
27 require ( ! i sRevea led , "Already revealed" ) ;
28 require (keccak256 ( abi . encodePacked ( message , s a l t ) )==HASHCOMMIT, "Invalid" ) ;
29 require (keccak256 ( abi . encodePacked ( message ) )==keccak256 ( abi . encodePacked ( "N" ) ) | |

keccak256 ( abi . encodePacked ( message ) )==keccak256 ( abi . encodePacked ( "R1" ) ) | |
keccak256 ( abi . encodePacked ( message ) )==keccak256 ( abi . encodePacked ( "R2" ) ) , "

Invalid message" ) ;
30 i sRevea l ed = true ; uint256 transferAmount = determineTransferAmount ( message ) ;
31 payable (AddressA ) . t r a n s f e r ( transferAmount ) ; }
32 function determineTransferAmount ( string memory message ) i n t e r n a l view r e tu rn s (uint256

) {
33 i f (keccak256 ( abi . encodePacked ( message ) )==keccak256 ( abi . encodePacked ( "N" ) ) ) {
34 return keccak256 ( abi . encodePacked (Y) )==keccak256 ( abi . encodePacked ( "G" ) ) ?TG : TB;
35 } e l s e i f (keccak256 ( abi . encodePacked ( message ) )==keccak256 ( abi . encodePacked ( "R1" ) ) )

{
36 i f (keccak256 ( abi . encodePacked (Y) )==keccak256 ( abi . encodePacked ( "G" ) ) ) {
37 return keccak256 ( abi . encodePacked (S) )==keccak256 ( abi . encodePacked ( "Head" ) ) ? TGH

: TGT;
38 } e l s e {
39 return keccak256 ( abi . encodePacked (S) )==keccak256 ( abi . encodePacked ( "Head" ) ) ? TBH

: TBT;
40 }
41 } e l s e {
42 i f (keccak256 ( abi . encodePacked (Y) )==keccak256 ( abi . encodePacked ( "G" ) ) ) {
43 return keccak256 ( abi . encodePacked (S) )==keccak256 ( abi . encodePacked ( "Head" ) ) ? TGT

: TGH;
44 } e l s e {
45 return keccak256 ( abi . encodePacked (S) )==keccak256 ( abi . encodePacked ( "Head" ) ) ? TBT

: TBH;
46 }
47 }
48 }
49 r e c e i v e ( ) ex t e rna l payable {require (msg . sender==AddressP , "Only AddressP can send" ) ;}
50 }

Figure 1: The smart contract implementing the self-revealing mechanism γ∗∗ with a reveal-
and-commit technique based on the keccak-256 hash function in Solidity. Importantly,
the contract is a minimal proof-of-concept only. It is intentionally not security-hardened
and should not be interpreted as a production implementation. Concretely, it uses a
placeholder public coin S (not a verifiable randomness source), does not gate reveal on a
recorded renegotiation outcome, does not escrow funds or enforce deadlines/liveness, and
accepts Y from the principal without authenticated reporting (relying instead on off-chain
legal enforceability). The numeric transfer constants represent wages w = u2 consistent
with the utility table and are expressed directly in Ether units. These simplifications are
deliberate and solely for illustrating the interface and timing pattern (commit privately;
reveal only at enforcement). A production deployment would replace each placeholder
with its standard counterpart (verifiable randomness or two-party coin-toss, renegotiation-
gated reveal/state machine, escrow with deadlines and fallbacks, authenticated Y reporter
or explicit legal backstop)
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C Additional Results

This appendix develops several extensions.

Irrelevance of RandomMechanisms in Fudenberg and Tirole (1990)

We here formalize the claim that random mechanism play no role in the FT construction.

To achieve this task, we let GC̃ be a game that enlarges the set of available mechanisms

C to C̃ to include all stochastic mechanisms γ̃ : E → ∆(R2).

Lemma 4 GC̃ has only one equilibrium allocation, which coincides with that in GC.

Proof. For any γ̃ ∈ C̃, define γ̃(e) = c̃e and let

Ũe ≡ peE[ug|c̃e] + (1− pe)E[ub|c̃e]

be the agent’s expected payoff after taking the effort e ∈ E, and truthfully reporting it

in γ̃. Consider the subgame GC̃(γ̃), and suppose that e = H is chosen with probability

x ∈ [0, 1]. The revelation principle guarantees that the maximal payoff attainable by the

principal by a renegotiation offer γ̃r ∈ C̃ is the value of the program P (x, ŨH , ŨL):

V ∗(x, ŨH , ŨL) = max
γ̃∈C̃

Y (x)− x[pHE(Φ(ug)|c̃rH) + (1− pH)E(Φ(ub)|c̃rH)]
− (1− x)[pLE(Φ(ug)|c̃rL) + (1− pL)E(Φ(ub)|c̃rL)]

(18)

s.t.: pHE(ug|c̃rH) + (1− pH)E(ub|c̃rH) ≥ ŨH (IRCH)

pLE(ug|c̃rL) + (1− pL)E(ub|c̃rL) ≥ ŨL (IRCL)

pHE(ug|c̃rH) + (1− pH)E(ub|c̃rH) ≥ pHE(ug|c̃rL) + (1− pH)E(ub|c̃rL) (ICCH)

pLE(ug|c̃rL) + (1− pL)E(ub|c̃rL) ≥ pLE(ug|c̃rH) + (1− pL)E(ub|c̃rH) (ICCL)

where Y (x) = xYH + (1− x)YL. The following two results hold:

Claim 1 P (x, ŨH , ŨL) admits a unique solution, which is deterministic.

Proof. See Chade and Schlee (2012, Proposition 1). ■

Denote γr(γ̃, x) the unique solution of P (x, ŨH , ŨL).

Claim 2 For any γ̃ ∈ C̃ and x ∈ [0, 1] there is a γγ̃ ∈ C such that γr(γ̃, x) = γr(γγ̃, x).

Proof. Given γ̃ ∈ C̃, we take the mechanisms γγ̃ ∈ C yielding the transfers U e
ω = E(uω|c̃e)

for each (e, ω) ∈ E × {g, b}. Thus, for any x ∈ [0, 1], the optimal renegotiation offer in

GC(γγ̃) obtains again from solving P (x, ŨH , ŨL). ■

Given γγ̃, the following holds:
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Claim 3 The subgames GC̃(γ̃) and GC(γγ̃) have the same equilibrium allocations.

Proof. Consider GC̃(γ̃), and let x ∈ [0, 1] be the equilibrium effort distribution. Given

Claim 2, the optimal renegotiation offer is γr(γ̃, x) = γr(γγ̃, x), which is accepted by the

agent, who truthfully reports her effort.34 Furthermore, the transfers corresponding to the

unique solution of P (x, ŨH , ŨL) are implemented. Thus, playing e = H with probability

x ∈ [0, 1] is sequentially rational for the agent in GC̃(γ̃) if and only if it is sequentially

rational in GC(γγ̃). This guarantees that the two subgames have the same equilibrium

allocations. ■

To conclude the proof, denote xFT the equilibrium probability of e = H characterized

by FT, and UFT the equilibrium rent of the agent. Claim 3 implies that the upper bound

V FT = V ∗(xFT , UFT , UFT ) of the principal’s payoffs characterized by FT in GC is also

an upper bound in GC̃ . In the latter game, the principal can achieve V FT as the unique

continuation payoff by offering any of the mechanisms characterized in Fudenberg and

Tirole (1990, Proposition 3.4). Thus, the unique equilibrium’s payoff of the principal in

GC̃ is V FT , and the same distributions over efforts and transfers are implemented. ■

The Case of Bounded Transfers

Let the agent’s utility over monetary transfers exhibit constant relative risk aversion

(CRRA) structure:

u(w) =
wα

α
,

with CRRA parameter α ∈ (0, 1). The function u has domain [0,∞) and range [0,∞);

hence, its inverse Φ(u) = (αu)
1
α has domain [0,∞) coinciding with the range of u. The

requirement that monetary transfers be non-negative imposes a form of limited liability

for the agent. At the same time, this assumption renders unfeasible those mechanisms

that rely on “extreme” transfers to punish the principal’s attempts to renegotiate, as it

may be the case for the mechanism γ∗ constructed in Section 3.

We now show that our implementation result also obtains in this context. Specifically,

we first establish an analogue of Lemma 1 for CRRA preferences, and then exploit it

to argue that a slightly modified version of the mechanism γ∗ allows to implement the

second-best allocation. In developing our analysis, we focus on situations in which the

restriction on transfers does not affect the agent’s incentives to undertake her efficient

level of effort. That is, we let

U0 > U ℓ ≡ pL
∆p

d, (19)

34See Fudenberg and Tirole (1990, p. 1295).
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which is necessary and sufficient to guarantee that the second-best allocation involves

strictly positive transfers in each state.35 Given (1), we therefore have cSB =
(
U0 + 1−pL

∆p
d, U0 − pL

∆p
d
)
.

We can now establish the following:

Lemma 5 If the agent’s preferences are such that Φ(u) = (αu)
1
α with α ∈ (0, 1) and (19)

holds, then there is a π ∈ (0, 1) such that, for all e ∈ E:

V SB > max

{
V FI
e

(
U0 − U ℓ

π
+ U ℓ

)
, (1− π)V FI

e (U ℓ) + πV IC
e

(
U0 − U ℓ

π
+ U ℓ

)}
. (20)

Proof. For a given e ∈ E, define the function V̂e : (0, 1) → R as

V̂e(π) ≡ (1− π)V FI
e (U ℓ) + πV FI

e

(
U0 − U ℓ

π
+ U ℓ

)
.

Note that V̂e is defined and continuous for all π ∈ (0, 1). We now argue that:

lim
π→0

V̂e(π) = Ye − Φ(U ℓ +D(e))− lim
π→0

Φ
(

U0−Uℓ

π
+ U ℓ +D(e)

)
1
π

= −∞. (21)

To see why (21) holds, simplify the last term as:

lim
π→0

Φ
(

U0−(1−π)Uℓ

π
+D(e)

)
1
π

= lim
π→0

Φ
(

U0−Uℓ

π
+ U ℓ +D(e)

)
U0−Uℓ

π
+ U ℓ +D(e)

·
U0−Uℓ

π
+ U ℓ +D(e)

1
π

= lim
u′→∞

Φ (u′)

u′ ·(U0−U ℓ)

under the change of variable u′ ≡ U0−Uℓ

π
+ U ℓ +D(e). Since U0 > U ℓ by (19), and since

α ∈ (0, 1),

lim
u′→∞

Φ(u′)

u′ · (U0 − U ℓ) = lim
u′→∞

(u′)
1−α
α · (U0 − U ℓ) = ∞,

which implies (21). Thus, for each e ∈ E and each constant κ ∈ R, there exist δe(κ) ∈
(0, 1) such that V̂e(π) < κ for all π ∈ (0, δe(κ)). Let πe ≡ δe(V

IC
e (U0)) for all e ∈ E.

Then,

V IC
e (U0) > V̂e(π) ∀π ∈ (0, πe).

It follows that for any choice of π ∈ (0,min{πH , πL}), we have

V IC
e (U0) > V̂e(π) ∀e ∈ E. (22)

From U0 > U ℓ, V FI
e strictly decreasing and Φ strictly convex, it also holds that:

V̂e(π) > max

{
V FI
e

(
U0 − U ℓ

π
+ U ℓ

)
, (1− π)V FI

e (U ℓ) + πV IC
e

(
U0 − U ℓ

π
+ U ℓ

)}
.

(23)

35If (19) is violated, then there is no pair of nonnegative transfers such that both (IC) and (PC)
simultaneously bind in the second-best problem, and corner solutions emerge.

47



Inequalities (22) and (23) together yield V IC
e (U0) > RHS of (20) for all e ∈ E. Since

V SB = V IC
H (U0) > V IC

L (U0) by the maintained assumption that high effort is optimal in

the second-best, it follows that (20) holds for all e ∈ E. ■

The proof of the lemma shows how to construct a set of punishments against renegoti-

ation when the monetary transfers received by the agent in each state are constrained to

be nonnegative. The result obtains by appropriately designing the transfers’ distribution

(π, 1− π).

Indeed, the distribution (π, 1 − π) characterized in the proof is key to define the

mechanism γb = {Mb,Sb, σb, τ b}, with Mb = M∗ and Sb = S∗, σb(h) = 1 − π and

σb(t) = π, and transfers

τ b(N, h) = τ b(N, t) = cSB; τ b(R, h) = cIC(U ℓ); τ b(R, t) = cIC
(
U0 − U ℓ

π
+ U ℓ

)
.

This mechanism shares with γ∗ the idea that the message m = R activates a (random)

counter-offer, which activates the relevant punishment. By sending m = R in γb the agent

receives a “low” transfer with probability 1− π and a “high” one with probability π. At

the same time, the distribution is designed to guarantee the agent an expected utility of

U0:

(1− π)U ℓ + π

(
U0 − U ℓ

π
+ U ℓ

)
= U0,

which makes incentive-compatible to report m = N on path. The same logic devel-

oped in the proof of Proposition 1 then guarantees that γb implements the second-best

allocation.

Self-Enforced Timing of Communication

We demonstrate that Proposition 1 still holds if the agent can strategically select the

timing of her report in the original mechanism, and the associated disclosure.

To achieve this goal, we introduce a new class of self-revealing mechanisms Γµ, with

γµ = {Mµ,Sµ, σµ, τµ} ∈ Γµ. A mechanism in this class modifies the primitive game by

allowing the agent to report at stages (iii) (iv), (v) and (vi).

The space of the agent’s reports in γµ is hence Mµ = {N,R, ∅}4, which extends M
along two directions. First, four stages of communication are allowed. Second, in each

stage, the agent can send the empty message ∅, which represents her choice of not reporting

to the mechanism in that stage. Following the same intuition, we let Sµ = {h, t, ∅}4 be

the set of signals. For any stage t ∈ {iii, iv, v, vi}, we denote by mt ∈ {N,R, ∅} an agent’s

report to the mechanism γµ, and by st ∈ {h, t, ∅} a signal sent by the mechanism to the

agent.
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We shall construct γµ ∈ Γµ to be such that the agent effectively selects the timing of

her relevant communication. This guarantees that no external enforcement is required to

verify the adherence on a specific communication protocol. In particular, we let γµ be

such that:

1. The decision rule τµ : Mµ × Sµ → R2 is flat over permutations of (mt, st)
vi
t=iii.

Furthermore, it forces the agent to report only one non-empty message in the mech-

anism, by inflicting a very large punishment to her for any (mt, st)
vi
t=iii such that

|{mt = ∅}| ̸= 3.

2. Each stage-t disclosure rule σt : {N,R, ∅}t × {h, t, ∅}t−1 → ∆({h, t, ∅}) shares the

following features:

• If there is a st′ ̸= ∅, with t′ < t, then σt is degenerate on st = ∅. That is, a

mechanism γµ discloses at most one non-empty signal.

• If st′ = ∅ for any t′ < t, then two cases may occur. First mt′ = ∅ for all t′ ≤ t,

in which case σt is degenerate on st = ∅ (γµ does not send any meaningful

signal). Second, there exists mt′ ̸= ∅ with t′ ≤ t but st′ = ∅ for all t′ < t, in

which case σt extracts the outcome st ∈ {h, t} of a fair coin toss. That is, a

mechanism γµ discloses a coin toss outcome to the agent when she reports a

non-empty message.

We denote by Γµ the set of all such mechanisms. Thus, any optimal report of the

agent in a given γµ ∈ Γµ must involve exactly one non-empty message, thereby inducing

the disclosure of only one non-empty signal. Let (mt, st)
vi
t=iii be any array of messages

and signals which exhibits this feature, and denote by (mj, sj) ∈ {N,R} × {h, t} its only

non-empty element. We let τµ(mj, sj) be the corresponding decision implemented by τµ,

which, given (1), does not condition on the time index of the non-empty message and

signal but only on their content. Thus, a mechanism γµ ∈ Γµ is completely identified by

a tuple of eight transfers (τµ(mj, sj))(mj ,sj)∈{N,R}×{h,t} ∈ R8.

This construction guarantees that a court need not verify the exact sequence of the

communication taking place in γµ to enforce its transfers, but only their effective content.

In the same vein, a court does not need to determine whether the signal is sent after an

offer is made and before its acceptance. The specific timing of disclosure is ultimately

determined by the agent, through the non-empty report she makes in γµ.

We now consider the overall game GΓµ where the principal selects a mechanism in Γµ

at the ex-ante stage. The following holds.

Lemma 6 The game GΓµ has a unique pure-strategy equilibrium allocation, which coin-

cides with the second-best one (H, cSB).
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Proof. We start by considering the following subgame GΓµ(γµ), which starts as of stage

(iii) if the agent has accepted γµ:36

(iii) The agent sends a private message miii ∈ {N,R, ∅} in γµ. If miii ̸= ∅ the agent

receives a private random signal siii ∈ {h, t} distributed as
(
1
2
, 1
2

)
, otherwise she

receives the private signal siii = ∅ with probability one. After this communication

phase, the agent privately chooses e ∈ E.

(iv) If miii ̸= ∅, the agent sends the private message miv = ∅ to γµ and receives the

private signal siv = ∅. If miii = ∅, the agent sends the private message miv ∈
{N,R, ∅} to γµ: then, if miv ̸= ∅ the agent receives a private random signal siv ∈
{h, t} distributed as

(
1
2
, 1
2

)
, otherwise she receives the private signal siv = ∅. After

this communication phase, without observing e nor (miii,miv), the principal makes

a public renegotiation offer γr ∈ C ∪{∅}, where ∅ represents the principal’s decision

not to renegotiate.

(v) If (miii,miv) ̸= (∅, ∅), the agent sends the private message mv = ∅ to γµ, and she

privately receives sv = ∅. If (miii,miv) = (∅, ∅), the agent sends a private message

mv ∈ {N,R, ∅} to γµ: then, if mv ̸= ∅ the agent receives a private random signal

sv ∈ {h, t} distributed as
(
1
2
, 1
2

)
, otherwise she receives the private signal sv = ∅.

After this communication phase, if γr ̸= ∅, she publicly accepts or rejects γr by

declaring ρ ∈ {y, n}. Acceptance implies that γµ is replaced by γr.

(vi) If γr = ∅ or ρ = n, and (miii,miv,mv) ̸= (∅, ∅, ∅), the agent sends the private message

mvi = ∅ to γµ, she privately receives the private signal svi = ∅, the array (mj, sj) is

publicly revealed and transfers occur according to τµ(mj, sj). If γr = ∅ or ρ = n,

and (miii,miv,mv) = (∅, ∅, ∅), the agent sends the private message mvi ∈ {N,R} to

γµ, she privately receives a random signal svi ∈ {h, t} distributed as
(
1
2
, 1
2

)
, the array

(mj, sj) = (mvi, svi) is publicly revealed and transfers occur according to τµ(mj, sj).

If ρ = y, the relevant transfers are determined by a report mr ∈ E sent by the agent

in γr. Nature publicly draws the output realization g or b, and final transfers occur.

A behavioral strategy of the principal in the subgame is a distribution over the

set of the renegotiated offers C. Since communication is private, the principal can-

not strategically nor contractually condition his offer on the agent’s report’s timing,

nor on its content.37 A behavioral strategy of the agent specifies a distribution over

36To streamline exposition, we incorporate in the description of GΓµ the (optimal) agent’s behavior of
sending only one non-empty message in γµ.

37Similar arguments to Section 3.1 guarantee that revelation mechanisms not featuring disclosures of
signals are without loss of generality at the renegotiation stage.
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miii ∈ {N,R, ∅} at the initial node and an effort probability x ∈ [0, 1] at any history

(miii, s). If miii ̸= ∅, it features a distribution over participation decisions ρ ∈ {y, n}
at each history (miii, siii, e, ∅, ∅, γr, ∅, ∅) and a distribution over mr ∈ E at the contin-

uation where ρ = y. If miii = ∅, it features a distribution over miv ∈ {N,R, ∅} at

each history (∅, ∅, e). Then, one must distinguish two cases. If miv ̸= ∅, the agent’s

behavior features a distribution over participation decisions ρ ∈ {y, n} at each history

(∅, ∅, e,miv, siv, γ
r, ∅, ∅) and a distribution over mr ∈ E at the continuation where ρ = y.

If, instead, miv = ∅, the agent’s behavior features a distribution over mv ∈ {N,R, ∅} at

each history (∅, ∅, e, ∅, ∅, γr) and a distribution over participation decisions ρ ∈ {y, n} at

each history (∅, ∅, e, ∅, ∅, γr,mv, sv), followed by a distribution over mr ∈ E if ρ = y and

a distribution over mvi ∈ {N,R, ∅} if ρ = n and (mv, sv) = (∅, ∅).
We now show that (H, cSB) is indeed a pure-strategy equilibrium allocation of GΓµ .

Consider in fact the mechanism γµ∗ ∈ Γµ that executes the same transfers as γ∗: i.e.,

τµ∗(mj, sj) = τ ∗(mj, sj) for all (mj, sj) ∈ {N,R} × {h, t}. This mechanism implements

the second-best allocation (H, cSB) in the subgame GΓµ(γµ∗).

To get the result, we construct a continuation equilibrium of GΓ(γ
µ∗) where on the

equilibrium path: the agent chooses high effort e = H; the principal makes no renegoti-

ation offer, γr = ∅; the agent reports miii = miv = ∅ and mv = N . Off the equilibrium

path, if the principal offers γr ̸= ∅, the agent always selects mv ̸= ∅ and takes her par-

ticipation decisions ρ following the rules established in Proposition 1. The arguments

developed in the proof of Proposition 1 guarantee that these strategies constitute an equi-

librium. In particular, since γr = ∅ at equilibrium, the option to report miii or miv early

is strategically irrelevant for the agent.

Thus, given this continuation equilibrium, the principal obtains V SB by offering γµ∗

at the ex ante stage. Since the principal cannot obtain more with any other offer, this is

an equilibrium payoff that she obtains in GΓµ .

Following the logic developed in the proof of Proposition 2, we now argue that this

is the only principal’s continuation payoff at GΓµ(γµ∗) compatible with a pure strategy

equilibrium of GΓµ . To establish this, we construct a perturbed version γµ
ε of γµ∗ to which

the principal can deviate and obtain a unique continuation payoff arbitrarily close to V SB,

under the restriction to pure strategies. Indeed, γµ
ε induces the same transfers as the tie-

breaking mechanism γε in the proof of Proposition 2: that is, τµε (mj, sj) = τε(mj, sj) for

all (mj, sj) ∈ {N,R}× {h, t}. Observe in particular that τµε (mj, h) = cIC(U0 −∆U − κε)

with κ > 2. We introduce the additional requirement in the construction of γµ
ε that κ is
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large enough to verify for both e ∈ E:38

1

2
V FI
e (U0 −∆U − κε) +

1

2
V IC
e (U0 +∆U) ≥ V FI

e (U0 +∆U). (24)

We now argue that every equilibrium in pure strategies of GΓµ(γµ
ε ) yields exactly

VH(c
SB
ε ) to the principal. The proof is in five steps.

—Step 1. We show that there is no pure-strategy equilibrium of GΓµ(γµ
ε ) where either

miii ̸= ∅, or miii = ∅ but miv ̸= ∅ on the equilibrium path.

Suppose first that either miii = N , or miii = ∅ but miv = N on path. For Bayes-

consistency, (miii = N,miv = ∅) or (miii = ∅,miv = N) must also be the principal’s

equilibrium belief on the agent’s on-path stage-(iii) and stage-(iv) reports. Under any of

such beliefs, the principal’s optimal renegotiation offer must be degenerate on cFI
H (U0) or

cFI
L (U0 − ε), according to the agent’s equilibrium effort decision e ∈ E. These transfers,

in fact, yield the agent her reservation payoff U0 (if e = H) or U0 − ε (if e = L) from

τµε (N, s) = cSBε , while yielding the full-insurance payoff V FI
H (U0) or V FI

L (U0 − ε) to the

principal. Then, by the principal’s sequential rationality, an offer as such must be featured

in any equilibrium as described. However, the agent, anticipating this offer, could deviate

by sending, for example, miii = ∅ followed by the same effort e ∈ E featured in her original

behavior and miv = R. This would yield to her the expected payoff U0 + ∆U
2

> U0 if

e = H, or, U0 + ∆U−ε
2

> U0 − ε if e = L, which constitutes a contradiction.

Suppose instead that miii = R or miii = ∅ but miv = R on the equilibrium path.

Again, the principal must hold the degenerate equilibrium belief that the agent’s on-path

stage-(iii) and stage-(iv) reports are (miii = R,miv = ∅) or (miii = ∅,miv = R) in

the two cases. In this scenario, the principal’s optimal renegotiation has to be either

cFI
e (U0 − ∆U − κε), or cFI

e (U0 + ∆U), where e ∈ E is the agent’s equilibrium effort

level. Indeed, the proof of Proposition 2 establishes that the principal’s optimal offer

must be a full-insurance contract, as long as he believes that the agent’s effort behavior is

degenerate. Also, the utility left to the agent by such an offer must be either (U0 +∆U),

the lowest utility level that she may accept for both sj ∈ {h, t}, or U0 − ∆U − κε, the

lowest utility she may accept when sj = h. Comparing the principal’s payoffs under the

two deviations gives the terms of (24). Hence, the inequality in (24) guarantees that

inducing cFI
e (U0 − ∆U − κε) is the best option for the renegotiating principal, for each

e ∈ E.

Then, any pure-strategy equilibrium as described must feature this offer of the princi-

pal. Since, for any equilibrium e ∈ E, this offer yields no more than Ue(τ
µ
ε (R, h)) to the

agent, her payoff at any equilibrium as such would be U0 − κ
2
, which she obtains under

38Existence of such a κ obtains by observing that lim
κ→∞

V FI
e (U0 −∆U − κε) = ∞, and that all other

terms in (24) are finite for every κ > 2.
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any optimal participation behavior, and for each level of effort, after sending m = R.

Hence, the agent can profitably deviate: for instance, she can send miii = N , obtaining

U0 in the continuation play by selecting the same e ∈ E as in the original behavior, and

rejecting γr for all siii ∈ {h, t}. This implies that the reports (miii = R,miv = ∅), as
well as miii = ∅ followed by miv = R on the equilibrium path, are incompatible with a

pure-strategy equilibrium.39

—Step 2. This step shows that the agent’s option to delay her report until after the

participation decision (i.e., choosing mv = ∅) produces no strategic effects.

To show this, we argue that all pure-strategy equilibrium allocations are also supported

in a pure-strategy equilibrium where the agent sends mv ̸= ∅ after every offer γr on or

off the equilibrium path. In particular, any pure-strategy equilibrium of GΓµ(γµ
ε ) where

mv = ∅ is taken at some history (∅, ∅, e, ∅, ∅, γr) has a corresponding equilibrium where

mv = N at every such history, supporting the same equilibrium allocation.

To see this note first that, in γµ
ε , the agent obtains U0 (if e = H) or U0 − ε (if e = L)

from mj = N . Instead, from mj = R, she obtains in expectation U0− κ
2
ε regardless of her

effort decision. Since ε > 0 and κ > 2, the unique optimal report of the agent at every

history (e, ∅, ∅, γr, ∅, ∅, n) is thus mvi = N .

Furthermore, observe that, by construction of γµ
ε , we have τµε (N, s) = cSBε for all

sj ∈ {h, t}. Hence, the realization of sj is payoff-irrelevant when mj = N . Starting from

an equilibrium behavior where mv = ∅ in some history off the equilibrium path, the agent

can therefore adopt the following equivalent behavior: send mv = N rather than mv = ∅
at every such history and select, for each payoff-irrelevant realization of sv ∈ {h, t}, the
same participation decision taken at (e, ∅, ∅, γr, ∅, ∅) in the original equilibrium. Since the

rejection payoff Ue(c
SB
ε ) and acceptance payoff Û r

e are both independent of the signal, this

participation decision remains optimal. Hence, the newly constructed strategy is featured

in an equilibrium supporting the same allocation.

—Step 3. We show that any pure-strategy equilibrium of GΓµ(γµ
ε ) involves either γ

r = ∅
or any alternative offer that the agent rejects. Observe that, as established in Step 1, the

principal believes in any equilibrium that miii = miv = ∅ with probability one. Also, fix

without loss of generality an equilibrium as constructed in Step 2: in any equilibrium as

39In Step 1 we cover explicitly the case that the agent, after reporting miii ̸= ∅, selects the same effort
at each history (miii, siii), thereby not exploiting the random signal siii ∈ {h, t} to introduce stochasticity
in her choice of effort. Although we do not include the full argument for parsimony, the reasoning in Step
1 extends to such case. The argument extends immediately to the case that miii = N since this report
renders the signal siii payoff-irrelevant in γµ

ε . In case the agent reports miii = R and selects different
effort levels ê(h), ê(t) as siii ∈ {h, t}, for ∆U large enough, a condition analogue to (24) guarantees that
cFI
ê(h)(U

0 −∆U − κε) is still the principal’s optimal offer for any combination of (ê(h), ê(t)) ∈ E2. Once
established that the principal makes this offer in any equilibrium as such, the remainder of the argument
in Step 1 follows directly.
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such, the agent always reports in γµ
ε only after observing an offer γr indexed by a utility

level Û r
e , but before taking her participation decision. Thus, the principal anticipates that

her optimal reporting and participation behavior will coincide with that characterized in

the proof of Proposition 2 where the agent’s reports exhibit this timing by construction

of γε. But then, as shown there, any offer accepted with positive probability by the agent

yields to the principal a payoff strictly below Ve(c
SB
ε ) for all e ∈ E. This guarantees

that only γr = ∅ or any offer not accepted by agent are compatible with the principal’s

sequential rationality.

—Step 4. Given Step 3, the agent anticipates at her initial decision node that the principal

will offer γr = ∅. Consequently, she also anticipates her unique optimal report to be

mj = N , which leads with probability one to the execution of the strictly incentive-

compatible transfers cSBε . Therefore, she is strictly better off choosing e = H.

Taken together, Steps 1–4 imply that every pure-strategy equilibrium of GΓµ(γµ
ε ) in-

duces the allocation (H, cSBε ), yielding to the principal VH(c
SB
ε ). Equilibrium existence

in the subgame is ensured by the fact that e = H, miii = miv = mvi = ∅ , mv = N

and γr = ∅ are mutual best responses. Since lim
ε→0

VH(c
SB
ε ) = V SB, the logic developed in

the proof of Proposition 2 guarantees that V SB is the unique equilibrium payoff for the

principal in GΓµ . Thus, following again Proposition 2, (H, cSB) is the unique equilibrium

allocation. ■

Importantly, Lemma 6 shows that, when the agent is delegated the enforcement of

the communication protocol, the principal can neither push the agent to accept an offer

without reporting in γ∗ (i.e., induce miii = miv = mv = ∅), nor strategically wait until a

report is sent by the agent before making an offer (i.e., induce miii ̸= ∅ or miv ̸= ∅). While

the proof of Lemma 6 focuses on pure strategies for parsimony, the argument naturally

extends to mixed strategies. In particular, following again the proof of Proposition 2,

any renegotiation that is unprofitable when the agent plays a pure strategy, is a fortiori

unprofitable when effort is mixed. Thus, γr = ∅ is still optimal for the principal in this

richer scenario.

Renegotiation with Public Signals

We here show that privacy of the signals is not needed to achieve our efficiency result.

Specifically, we show that the mechanism γ∗∗ as defined in Section 4.3 supports the

second-best allocation (H, cSB) at equilibrium. To argue this, first consider the subgame

GPub(γ
∗∗), which starts after γ∗∗ is offered and accepted:

(iii) The agent privately chooses e ∈ E.
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(iv) Without observing e, the principal makes a public renegotiation offer γr = {Mr, τ r}
or γr = ∅, where Mr = E and τ r : Mr × S → ∆C, allowing to condition on the

realization of s ∈ S.

(v) The agent sends a private message m ∈ M∗∗ = {N,R1, R2}. The signal s ∈
S∗∗ = {h, t} distributed as σ∗∗ =

(
1
2
, 1
2

)
is realized and publicly revealed. After this

communication phase, if γr ̸= ∅, the agent publicly accepts or rejects γr by declaring

ρ ∈ {y, n}. Acceptance implies that γ∗∗ is replaced by γr.

(vi) The message m is publicly revealed if and only if γ∗∗ executes (i.e. either γr = ∅ or

ρ = n) in which case transfers are determined by τ ∗∗(m, s). If ρ = y, transfers are

determined by a reportmr ∈ Mr sent by the agent in γr and the previous realization

of s. Nature publicly draws the output realization g or b, and conditional transfers

are executed.

A pure behavior for the principal in GPub(γ
∗∗) is a signal-contingent renegotiated offer

γr.40 An agent’s behavioral strategy λ consists of a randomization (1− x, x) over e ∈ E

at her initial history, a randomization over messages in M∗∗ at each history (e, γr), a

randomization over participation decisions ρ ∈ {y, n} at each history (e, γr,m, s) where

γr ̸= {∅} and a randomization over messages in Mr at the continuation history where

ρ = y. The following holds:

Lemma 7 The allocation (H, cSB) is supported in an equilibrium of GPub(γ
∗∗).

Proof. For any signal s ∈ S∗∗ extracted in γ∗∗, let m̂r
e(s) = argmaxmr∈Mr Ue(τ

r(m̂r
e(s), s))

be an optimal message that the agent may send after accepting γr, having chosen the ef-

fort e ∈ E and observed the public realization of s ∈ S∗∗. Following (3), we denote Û r
e (s)

the agent’s corresponding optimal payoff Û r
e (s) ≡ Ue(τ

r(m̂r
e(s), s)).

We now construct a PBE of GPub(γ
∗∗) which implements the allocation (H, cSB).

The principal’s equilibrium behavior prescribes not to renegotiate, i.e., γr = ∅. We

now construct the agent’s equilibrium behavior starting from the terminal histories. At

each history (e, γr ̸= {∅},m, s, y), she sends an optimal message m̂r
e(s) to γr, which she

has accepted. At each history (e, γr ̸= {∅},m, s) the agent’s participation decisions are

the following:

(i) If m = N , for all s ∈ {h, t}, the agent selects ρ = y iff Û r
e (s) ≥ U0;

(ii) If (m = R1, s = h) or (m = R2, s = t), the agent selects ρ = y iff Û r
e (s) ≥ U0 −∆U ;

40Similar arguments to Section 3.1 guarantee that revelation mechanisms not featuring disclosures of
signals are without loss of generality at the renegotiation stage.

55



(iii) If (m = R1, s = t) or (m = R2, s = h), the agent selects ρ = y iff Û r
e (s) ≥ U0 +∆U .

At each history (e, γr = ∅), the agent sends m = N to γ∗∗. At each history (e, γr ̸= ∅)
the agent’s messages in γ∗∗ look as follows:

(i) For any e ∈ E and for any γr such that

1

2
max{U0, Û r

e (h)}+
1

2
max{U0, Û r

e (t)} ≥

max
{1

2
max{U0 −∆U, Û r

e (h)}+
1

2
max{U0 +∆U, Û r

e (t)},
1

2
max{U0 +∆U, Û r

e (h)}+
1

2
max{U0 −∆U, Û r

e (t)}
}
,

(25)

the agent sends m = N in γ∗∗. Observe that the LHS of (25) corresponds to the

agent’s expected payoff of reporting m = N in γ∗∗, followed by her signal-contingent

participation decisions. The RHS of (25) characterizes the payoff corresponding to

the best alternative report.

(ii) For any e ∈ E, and for any γr ̸= {∅} such that (25) is not satisfied, the agent sends

m = R1 in γ∗∗ whenever

1

2
max{U0 −∆U, Û r

e (h)}+
1

2
max{U0 +∆U, Û r

e (t)} ≥
1

2
max{U0 +∆U, Û r

e (h)}+
1

2
max{U0 −∆U, Û r

e (t)}.
(26)

(iii) For any e ∈ E, and for any γr ̸= {∅} such that (25) and (26) are not satisfied, the

agent sends m = R2 in γ∗∗

To complete the description of the agent’s behavior, at her initial history she takes the

effort decision e = H with probability x = 1. Finally, the principal belief attributes

probability one to e = H at his only information sets, consistently with the agent’s

behavior.

We next verify the sequential rationality of our construction. It is immediate to check

that the agent’s strategy is sequentially rational. In particular, the threshold participation

behavior simply compares the agent’s continuation payoff of accepting γr versus retaining

γ∗∗; the reporting behavior is also described by comparing the agent’s continuation payoff

after sending each report, without further elaboration. The effort choice e = H is optimal

since, on the equilibrium path, the incentive-compatible transfers cSB = cIC(U0) are

executed.

To conclude the proof, it remains to check that there is no renegotiated offer γr ̸= {∅}
yielding the principal a strictly higher payoff than V SB, which he obtains in equilibrium.
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To verify it, we partition the set of available renegotiated offers according to the reports

that λ(γ∗∗) induce in the mechanism γ∗∗.

Observe first that, for any γr such that the agent reports m = R1 in γ∗∗, the principal’s

payoff cannot exceed

V R ≡ 1

2
V FI
H (U0 −∆U) +

1

2
V FI
H (U0 +∆U),

that is, the payoff providing full insurance to the agent conditional on each realized signal.

In this case, Lemma 1 guarantees that V SB > V R. Thus, the principal prefers not to

renegotiate than renegotiating an offer which induces the report m = R1.

A symmetric argument applies to any γr such that the agent reports m = R2 in γ∗∗.

In any such case, one can also check that the principal cannot achieve a payoff greater

than V R.

Thus, any profitable renegotiation γr must be such that the agent’s equilibrium strat-

egy prescribes to report m = N in γ∗∗. That is, given (25), and since e = H, one should

have:
1

2
max{U0, Û r

H(h)}+
1

2
max{U0, Û r

H(t)} ≥

max
{1

2
max{U0 −∆U, Û r

H(h)}+
1

2
max{U0 +∆U, Û r

H(t)},
1

2
max{U0 +∆U, Û r

H(h)}+
1

2
max{U0 −∆U, Û r

H(t)}
}
.

(27)

We now argue that (27) is satisfied only if one of the following two conditions is met:

Û r
H(s) < U0, ∀s ∈ S∗∗ or Û r

H(s) ≥ U0 +∆U, ∀s ∈ S∗∗. (28)

To see this, suppose that (28) does not hold, which leads to consider three cases.

(i) If Û r
H(t) < U0 and Û r

H(h) ≥ U0, then the LHS of (27) is 1
2
Û r
H(h)+

1
2
U0 and its RHS

is at least 1
2
Û r
H(h) +

1
2
(U0 +∆U), which obtains for m = R1. The latter is strictly

greater than the former, which violates (27).

(ii) If U0 ≤ Û r
H(t) < U0 + ∆U , then the LHS of (27) is 1

2
max{U0, Û r

H(h)} + 1
2
Û r
H(t).

Suppose now that Û r
H(h) < U0+∆U : the value of the RHS is at least 1

2
(U0+∆U)+

1
2
Û r
H(t), which obtains for m = R2. The latter is strictly greater than the former,

which violates (27). In the mutually exclusive case Û r
H(h) ≥ U0 +∆U , the value of

the RHS is at least 1
2
Û r
H(h) +

1
2
(U0 +∆U), which obtains for m = R1, which leads

to violate (27) again.

(iii) If Û r
H(t) ≥ U0+∆U , and Û r

H(h) < U0+∆U , the LHS of (27) is 1
2
max{U0, Û r

H(h)}+
1
2
Û r
H(t), and the RHS is at least 1

2
(U0 +∆U) + 1

2
Û r
H(t), which obtains for m = R2.

The latter is strictly greater than the former, which violates (27)
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Thus, following a renegotiation γr, λ(γ∗∗) prescribes m = N and only if (28) holds. Two

cases must then be considered:

(i) If Û r
H(s) < U0 ∀s ∈ S∗∗, then (27) rewrites U0 ≥ U0, and is thus satisifed with

equality. Thus, λ(γ∗∗) prescribes to report m = N in γ∗∗ and to choose ρ = n,

which yields the principal the same profit V SB obtained without renegotiation.

(ii) If Û r
H(s) ≥ U0 +∆U ∀s ∈ S∗∗, then (27) rewrites U0 +∆U ≥ U0 +∆U , and is thus

satisfied with equality. Thus, λ(γ∗∗) prescribes to report m = N in γ∗∗. In addition,

for any such γr, the agent is guaranteed the payoff U0 + ∆U in the continuation

play, which implies that the principal’s payoff cannot exceed V FI
H (U0 +∆U), which

is strictly less than V SB as shown in Lemma 1.

Thus, the principal’s strategy γr = ∅ is sequentially rational. ■
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