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Abstract

We revisit the tension between the legal doctrine of renegotiation and economic
efficiency. We introduce self-revealing mechanisms that combine bidirectional com-
munication (the agent sends and receives information) with conditional disclosure
(communication remains private during renegotiation but becomes verifiable at con-
tract execution). In the canonical Fudenberg and Tirole (1990) framework, we
design a self-revealing mechanism that fully mitigates the renegotiation threat by
uniquely implementing the second-best allocation. Thus, the construction achieves
the full-commitment outcome while satisfying renegotiation-proofness. Our optimal
mechanism is structurally simple, and exploits signal disclosures to the agent to
construct incentive-compatible off-path punishments, which she activates after ob-
serving a renegotiation offer. It verifies standard commitment assumptions by only
conditioning decisions on public information, without requiring any third-party en-
forcement. In practical terms, it can be implemented with existing smart-contract
techniques. Our results extend to general settings of renegotiation. (JEL D43, D82,
D86)
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1 Introduction

The threat of renegotiation is ubiquitous in contracting, embodying the problem of col-
lective opportunism that inherently emerges when dealing with incentive problems. As
first pointed out by Dewatripont| (1989), this opportunism arises because contracts that
optimally resolve incentive problems typically do so by implementing allocations that
prove inefficient ex post. Consequently, when contracting parties are unable to credibly
commit to refraining from renegotiating away ex post inefficiencies, they find themselves
at a disadvantage from an ex-ante perspective.

The inability to prevent renegotiation reflects a conflict between economic efficiency
and legal doctrine (Jolls, |1997; Davis, 2006). Courts generally refuse to enforce no-
renegotiation clauses, viewing them as violations of the freedom of contract principle!T]
This refusal prevents direct contractual solutions to the renegotiation problem, requiring
economic solutions that work within existing legal frameworks.

We provide a novel solution through mechanisms that combine two features. First,
bidirectional communication: a mechanism determines final allocations through the re-
ports it receives from the agent and the signals it sends back to her. Second, conditional
disclosure: communication within a mechanism remains private over the course of the
interaction but becomes verifiable at the contract execution stage. We show that a simple
architecture of communication, which only involves a binary message and a coin flip, allows
to retrieve the full-commitment allocation without any third-party commitment device.
By implementing the second-best allocation via design, we thus overturn the conventional
wisdom that the inability to prevent renegotiation in contractual terms fundamentally
constrains incentive provision under asymmetric information.

We illustrate our approach in the canonical model of |[Fudenberg and Tirole| (1990))
(FT), in which a risk-neutral principal contracts with a risk-averse agent who privately
chooses a binary effort level. In this moral hazard setup, the incentive-compatible transfers
for high effort entail ex-post inefficient risk sharing, creating scope for Pareto-improving
renegotiation. F'T show that this renegotiation threat prevents achieving second-best ef-
ficiency when the principal is restricted to using revelation mechanisms. We show that
self-revealing mechanisms—which incorporate both bidirectional communication and con-

ditional disclosure—fully mitigate this threat.

'For instance, the US Code on contract law under Title 42,§1981 declares the right of all persons to
“the making, performance, modification, and termination of contracts”. [Jolls| (1997)) and |Davis| (2006])
cite multiple applications of this code voiding contractual clauses limiting collective renegotiation. A
notable example is Beatty v. Guggenheim Exploration Co. 225 N.Y. 380, 1919, where in his judgment
Justice Cardozo voided an explicit contractual clause forbidding future modification stating that “Those
who make a contract, may unmake it. The clause which forbids a change, may be changed like any
other.”



Specifically, we construct a self-revealing mechanism which uniquely implements the
second-best allocation: high effort is chosen deterministically in the unique equilibrium
outcome. While F'T analyze the renegotiation game using revelation mechanisms, which
only require the agent to report her private information, we set up an alternative mode of
communication to prevent renegotiation. Our approach draws on the dynamic mechanism
design principles of |[Forges| (1986 and [Myerson| (1986 but uses signals for a distinct
purpose: rather than correlating players’ behaviors, our mechanism exploits private signals
to the agent to generate off-equilibrium punishments that deter renegotiation.

Thus, enriching the structure of communication allows to reconcile the conflict between
renegotiation-proofness and economic efficiency: our optimal mechanism successfully pre-
vents renegotiation while implementing the same allocation that would obtain under full
commitment.

The mechanism’s structure is straightforward. After observing a renegotiation offer,
the agent privately submits one of two reports: status quo or renegotiation. The mecha-
nism then privately reveals to the agent the outcome of a fair coin toss, committing to the
following payment rule: (i) if she reports status quo, it executes the second-best transfers;
(i) if she reports renegotiation, it modifies the contract by either improving or worsening
her expected utility depending on the coin toss.

Intuitively, reporting renegotiation enables the agent to trigger a random automated
counter-offer, whose outcome is privately revealed to the agent. Thus, when a renegoti-
ation is proposed, and the agent reports this event, she accepts the new offer only when
the randomization implemented by the original mechanism is unfavorable to her. This
makes any attempt to renegotiate prohibitively costly to the principal. In equilibrium,
the agent’s self-enforcing punishment fully prevents renegotiation, leading to a unique
implementation of the second-best allocation. The random counter-offer is key to our
result: it requires the mechanism to send private signals to the agent, creating crucial
informational asymmetries.

While bidirectional communication is necessary, it is not sufficient for eliminating rene-
gotiation threats. Our mechanism must also resolve a werifiability paradox. The mech-
anism’s communication cannot be publicly verifiable when renegotiation is proposed—
otherwise the principal could condition his renegotiation offer on it, undermining the
punishment. Yet this communication must become verifiable for enforcement when the
original contract executes. Our mechanism resolves this paradox through its self-revealing
property: bidirectional communication remains private during renegotiation but becomes
verifiably disclosed if the original contract is executed.

Our mechanism also verifies standard commitment requirements under renegotiation.

By only conditioning decisions on public information, it requires no external enforcement



from a third-party. Moreover, the timing of the agent’s communication need not be
monitored: her self-interest ensures she finds strategically optimal to communicate in
accordance with our construction.

In practical terms, our optimal mechanism is directly implementable through existing
smart contract technologies. Using off-the-shelf commit-and-reveal cryptographic tools,
a contracting party can privately encode a message on a blockchain and later disclose
it publicly: this directly mirrors the self-revealing functionality of keeping bidirectional
communication private and revealing it verifiably upon contract execution. We provide
a proof-of-concept implementation in Solidity (v0.8.0), demonstrating compatibility with
current smart-contract toolkits.

Our approach extends beyond the FT framework. The key insight—bidirectional
communication with strategically timed information disclosure generates self-enforcing
punishments against renegotiation—applies wherever ex-post inefficiencies create renego-
tiation incentives. To support this view, we extend our approach to other settings of
contract renegotiation.

We first consider alternative extensive forms for the renegotiation game, focusing,
in particular, on the case of infinite rounds of renegotiation. We hence model, in the
spirit of Strulovici (2017)), an infinite-horizon setting where renegotiation breaks down
with positive probability in each round, in which case the last accepted contract exe-
cutes. In our moral hazard context, second-best efficiency involves imperfect risk sharing,
which leaves in principle room for renegotiation after each round. We instead construct
a self-revealing mechanism, offered at the ex-ante stage, which implements the second-
best allocation thereby suggesting that backward induction reasoning is not key to our
approach.

We next argue that self-revealing mechanisms retain their power under alternative
specification of the renegotiation process. We consider, in particular, the situations in
which renegotiation may also complement, and need not necessarily replace, the original
mechanism. This gives rise to a richer set of renegotiation opportunities: a new offer
may exploit the observability of the original mechanism’s transfers to undo any potential
punishment. We show, however, that a modified self-revealing revealing mechanism can
be designed to prevent these additional effects, and implement the second-best allocation
even under this supplementary view of renegotiation.

The broader implication of our analysis is therefore that mechanism design is flexible
enough to accommodate legal constraints on renegotiation. By exploiting bidirectional
communication and strategically timed information disclosure, contracting parties can
achieve full commitment outcomes within existing contract law, without requiring courts

to enforce no-renegotiation clauses.



Related literature. Our work contributes to the literature on contract renegotiation
which, starting with Dewatripont| (1989), focuses on optimal renegotiation-proof mecha-
nisms. The renegotiation threat has been typically assessed under different informational
assumptions: while Fudenberg and Tirole (1990) and Ma (1994) consider a moral haz-
ard scenario, renegotiation under incomplete information is analyzed by Hart and Tirole
(1988)), Laffont and Tirole (1990)), and, more recently, by Maestri (2017)). |Strulovici| (2017)
establishes a non-cooperative foundation for Coasian outcomes in an infinite-horizon rene-

gotiation game.

Bolton! (1990)) points out that optimally preventing renegotiation requires introducing
private information at the renegotiation stage. Without mechanisms that send signals to
agents, this information can only be generated through agent randomization over reports
or efforts at equilibrium. Such randomization implies allocative costs, making second-best
efficiency unattainable.

Instead, our self-revealing mechanism generates private information through signals
sent to the agent, eliminating these randomization costs. Critically, this uncertainty
matters only off-equilibrium: following a renegotiation offer, the mechanism’s signals
enable the agent to punish renegotiation attempts, uniquely implementing the second-
best allocation.

Formally, our approach draws on the dynamic mechanism design tradition initiated
by |Forges| (1986]) and [Myerson| (1986)). In contrast with these early works, we explicitly
consider an extensive form game in which a player, i.e. the principal, has commitment
power. This allows us to exploit the signals privately sent by the mechanism to target
a new objective: generating off-equilibrium punishments rather than correlating players’
strategies.

Rahman and Obara| (2010) achieve virtual implementation through mediated contracts
conditioning on private communication, but do not address contractual enforceability.
By contrast, we achieve full implementation and our conditional revelation—disclosing
communication only when the original contract executes—provides explicit enforcement
power so that they are implementable without a trusted third party (mediator).

Bester and Strausz (2007) are the first to develop the idea that, in the absence of
full commitment, mechanisms featuring private communication with an agent may have a
welfare-enhancing role. The subsequent literature has mainly focused on the class of pure
limited-commitment settings, in which contracts can be unilaterally voided by the princi-
pal. In this context, Doval and Skreta (2022) and |Lomys and Yamashita| (2022)) establish
different versions of a revelation principle under noisy communication. Recent works by
Brzustowski et al.| (2023) and |Doval and Skretal (2024) focus on the Coase-conjecture en-

vironment and characterize optimal allocations under different contracting assumptions



(long-term vs short-term contracts). Yet, they typically do not achieve second-best effi-
ciency.

We analyze mechanism design under the threat of renegotiation, providing a new
rationale for private communication. Key to our construction is a defining feature of
renegotiation environments: until both parties agree on new terms, the agent retains ac-
cess to the options available in the original mechanism. This enables mechanisms sending
private signals to generate a new set of punishments and, ultimately, to achieve unique
(Perfect Bayesian equilibrium) implementation of the second-best allocation.

The renegotiation problem can be rationalized as the competition taking place between
the principal at the ex-ante stage and his future self at the renegotiation stage to trade
with the agent. This suggests a close relationship with common agency games, which
analyze the competition among several principals who post mechanisms to deal with a
common agent. In line with common agency, we let a mechanism delegate the implemen-
tation of any punishment —against renegotiation— to the agent. In our construction, such
punishments correspond to (random) options that are offered but not activated by the
agent on the equilibrium path. They hence serve the same role of the latent contracts,
which are used to deter principals’ deviation in common agencyf]

Finally, our work contributes to literature on implementing mechanisms through smart
contracts (Townsend, 2020, Chapter 6; Akbarpour and Li, 2020; Roughgarden, 2021)).
Brzustowski et al| (2023) appeal to smart contracts for implementing mechanisms that
receive private messages without sending signals. We extend this idea by explicitly show-
ing that smart contracts can also implement the reverse: mechanisms sending private
signals to agents. This extension is crucial for demonstrating how current technologies en-
able full implementation of self-revealing mechanisms without mediators or third parties.
This eliminates potential manipulation risks and achieves practical feasibility, bridging

our theoretical innovation with real-world applicability.

The paper proceeds as follows. Section [2| presents the Fudenberg-Tirole framework
and identifies its methodological limitations. Section [3| constructs the self-revealing mech-
anism and establishes unique implementation of the second-best allocation. Section
addresses enforcement requirements and demonstrates practical implementation through
smart contracts. Section [5| extends the analysis to other contracting environments. Sec-

tion [0] concludes. Proofs are in Appendix [A]

2See Bisin and Guaitoli, |2004; |Attar and Chassagnonl, [2009; |Attar et al., [2011} |Attar et al., 2019.



2 The Benchmark

We consider the canonical framework of Fudenberg and Tirole| (1990) (FT, henceforth), in
which a risk-neutral principal (he) contracts with a risk-averse agent (she), who chooses
an unobservable effort. There are two outputs w € {g,b}, a good one g and a bad one b,
where g > b > 0. The probability distribution over outputs depends on the binary effort
e e E={L H}. Letp. =P(gle) represent the probability of the good output given
effort e € E with pg > pr, so that Ap = py —pr, > 0. The effort e yields expected output
Ye = peg + (1 — pe)b.

Payoffs and Allocations. The agent’s utility is additively separable in income w € R
and effort e € E, expressed as u(w) — D(e). The utility function u exhibits u/(w) > 0
and u”(w) < 0 for each w € R, and is unbounded over its domain, i.e., lim wu(w) = —o0

wW——00
1

and lim u(w) = co. Consequently, the inverse ® = u~' is well-defined on the range of

u, stzrui:ﬁy increasing, ®'(u) > 0, and strictly convex, ®”(u) > 0. The low effort cost is
normalized to D(e = L) = 0 and the high effort cost is D(e = H) = d > 0[]

Final payoffs are determined by the output-contingent transfers that the principal
makes to the agent. A contract is a pair (wy, wy) € R? of such transfers. For notational
convenience, we also write a contract as ¢ = (ug, up), with u, = u(w,) and u, = u(wy).
A (deterministic) allocation is a pair (e,c) € E x R? of payoff-relevant decisions, with ¢
represented in utility space unless noted.

The agent’s expected payoff from (e, ¢) is
Ue(c) = peug + (1 — pe)up — D(e),
where U is her reservation payoff.ﬁ The principal’s expected payoff from (e, c) is

Ve(e) = Ye = pe®(ug) — (1 = pe) P (up).

Efficient and Incentive-Compatible Allocations. Because the agent is risk-averse,
while the principal is risk-neutral, efficient risk-sharing between the parties requires full
insurance. For any e € E, let ¢Z7(U) = (U + D(e),U + D(e)) denote the full-insurance
contract that yields the agent the expected payoff U € R. We also define, for each e € F,
the function V7 : R — R where

VI(U) = Vele'(U)) = Ye = @(U + D(e))

3These assumptions are all directly taken from FT. As we explicitly show in Appendix FT’s
unboundedness assumption is not crucial to our results.
4In FT, it holds U° = 0. Writing the outside option as U is more insightful for interpreting results.



identifies the principal’s payoff associated to the full-insurance contract leaving an ex-
pected payoff U to the agent. Since ® > 0, VI is strictly decreasing in U for any
ecb.

With observable effort, the principal’s optimal contract induces efficient risk-sharing
while guaranteeing the agent her reservation payoff U°. We refer to ¢f'? = cEI(U?) as
the first-best contract. The first-best allocation (H,cB) yields VI'B = VII(U°) to the
principal, and U = U" to the agentﬁ

If, instead, effort is unobservable, any feasible allocation must be incentive-compatible.
Then, the optimal contract for the principal, which we denote the second-best contract,
is the unique solution of:

argmax  Vir(c) = pu (g — ®(ug)) + (1 = pr)(b — (up))

s.t. prug+ (1 —pa)uy —d > prug + (1 — pr)up (IC)
prg + (1 — pp)uy, —d > U, (PC)

At the solution, the agent’s incentive constraint binds. Accordingly, let ¢/¢(U) =
(uf€(U),u{€(U)) denote the contract leaving expected payoff U to the agent, while sat-
isfying the incentive constraint with equality:

1 —pr
0 — IC(I7\ — 77 _
u,”(U)=U + Ap d and w, (U)=U A (1)

Hence, u)¢(U) > u/“(U) for all U € R. It is convenient to define, for each e € E,

the function V!¢ : R — R, which denotes the principal’s payoff from the allocation
(e, (U)):

VIC(U) = V(O(U)) = Yo — po® (U . ;]Z;Ld) (1= p)d (U - ) |

Since VEC is decreasing in U, the agent’s participation constraint binds at
the solution, implying that the second-best contract is ¢ = ¢/¢(U°). The second-
best, ex-ante efficient, allocation (H,c*P) yields Vo = VIC(U°) to the principal, and
Un(c'9(U%)) = U° to the agent.

The Renegotiation Threat. Any contract agreed upon ex-ante can be renegotiated
at the interim stage, i.e., after effort is chosen but before output is realized. The impact
of this renegotiation threat is assessed in a non-cooperative game between the principal
at the contract design stage and his future self at the interim stage. The timing of this

game is as follows:

5Because we follow FT in focusing on the non-trivial case that e = H is optimal in the second-best,
we have that e = H is also optimal in the first-best.

8



(i) The principal publicly offers a contract ¢ € R

(i) The agent publicly accepts or rejects c. If she rejects, the game ends and the outside

options accrue. If she accepts, the game continues as follows:
(#ii) The agent privately chooses e € E.

(7v) Without observing e, the principal makes a public renegotiation offer ¢" € R*U {0},

where () represents the principal’s decision not to renegotiate.

(v) If " # (), the agent publicly accepts or rejects ¢” by declaring p € {y,n}. Acceptance

implies that c is replaced by ¢".

(vi) If ¢ =0, or p = n, transfers are determined by c. If p = y, transfers are determined
by the renegotiated ¢". Nature publicly draws the output realization ¢ or b and

payoffs are implemented.

Stages (i) — (vi) define the primitive game G, which captures the physical constraints

arising under renegotiation. The game embodies the following assumptions:

A.1. The renegotiation offer ¢" is made only once, i.e., at stage (iv). As already argued by
FT, any finite number k of renegotiation rounds does not add any strategic effect:
all bargaining would occur in the last round, making the analysis equivalent to the

single-round casef]

A.2. The original offer ¢ cannot condition on the renegotiation offer ¢" or on the agent’s
decision p at stage (v). This captures the legal doctrine that parties cannot prevent

renegotiation contractually.

A3. If ¢ = (0, both parties remain bound to the original contract c¢. This reflects the

legal doctrine requiring mutual consent for contract modification.

A4, If ¢ # (), the contract ¢" replaces contract ¢ only if the agent accepts it at stage
(v) by declaring p = y. In this case, ¢ becomes irrelevant. By contrast, if the agent

rejects ¢” in stage (v) by declaring p = n, the contract ¢ becomes irrelevant.

A.5. Contracts ¢ and ¢" # () are exclusive; at most one executes at stage (m)ﬂ

6See Section 6B in [Fudenberg and Tirole| (1990). In Section we explicitly analyze the case with
infinite rounds of renegotiation in the spirit of [Strulovici| (2017).

"This “replacement” view of renegotiation is commonly adopted in the renegotiation literature (Bolton,
1990). In Section we discuss the alternative “supplementary” view of renegotiation.



FT’s Renegotiation Game. FT show that, for any probability = € (0,1) that the
agent selects e = H at stage (7ii), the renegotiation stage (iv) corresponds to Stiglitz
(1977)’s seminal setting of a monopolistic insurer facing a privately informed consumer.
Hence, following Stiglitz (1977) and appealing to the revelation principle, FT let the
principal offer revelation mechanisms 7. : £ — R?, which map each effort report to a
contract.

Denoting by C' the set of all revelation mechanism, FT thus modify the primitive game
G into a renegotiation game G¢ that allows the principal to design revelation mechanisms
to deal with the agent’s private information and the renegotiation threat. The modified
game G is as follows. First, the principal offers a revelation mechanism v, € C at
stage (1) and may renegotiate to 7. € C' at stage (iv). Second, the agent, after taking
her participation decision at stage (v), sends a message m € FE in the mechanism she
participates in.

In G¢, any mechanism ~, accepted by the agent at stage (i7) yields a subgame G¢(7.)
starting at stage (i74). In any such subgame, choosing z = 1 is not part of a Perfect
Bayesian equilibrium. To see this, suppose the agent takes e = H with probability one.
Then, the principal’s best reply is to offer the full-insurance contract c&f(U°) in stage (iv)
that is accepted by the agent. But against this renegotiation offer, the agent would be
strictly better off choosing e = L.

When characterizing the equilibria of G, F'T exploit the renegotiation-proofness prin-
ciple, and argue it is without loss to focus on the principal offering a mechanism in stage
() that is not renegotiated on the equilibrium path. Restricting attention to revelation
mechanisms 7. € C, FT then show that, in the unique (perfect Bayesian) equilibrium
allocation of G¢, e = H is only implemented with probability 27 < 1.

FT further show that revelation mechanisms at stage (i) yield no gain over simple
contracts: the same allocation obtains irrespective of whether the principal offers a mech-
anism v, € C or a single contract ¢ (with on-path renegotiation in the latter case)ﬂ
This suggests that mechanism design cannot resolve the conflict between ex-ante and
interim efficiency. By contrast, we show that designing mechanisms with bidirectional
communication—where the mechanism both receives messages and sends signals—fully
eliminates the renegotiation threat. As we shall argue, considering this new channel of
communication allows to reconcile renegotiation-proofness of the optimal mechanism with

second-best, ex-ante, efficiency of the equilibrium allocation.

8See Section 5.B in [Fudenberg and Tirole| (1990).
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3 Self-Revealing Mechanisms and Renegotiation

In this section, we construct a simple mechanism that uniquely implements the second-
best allocation, fully mitigating the renegotiation threat. Like FT, we let the principal
design mechanisms within the event sequence (7)—(vi) of the primitive game G. Unlike FT,
we explicitly recognize the dynamic nature of this game. Thus, we introduce bidirectional
communication, as emphasized in the dynamic mechanism design frameworks of Forges
(1986)) and Myerson! (1986)).

Separating the design of communication from that of final transfers, we write a dy-
namic mechanism (C, 7) in terms of two elements. First, a communication protocol C that
specifies the (possibly bidirectional) communication exchanged at each stage ¢, including
how stage-t signals are generated following any history. Second, a decision rule T that
maps communication into final transfers.

Following dynamic mechanism design, the mechanism (C,7) is publicly observed at
stage (i), while all messages and signals exchanged through C remain private during the
communication phase. However, we design our mechanisms to publicly reveal the full
communication history at the final payout stage. This defines our notion of self-revealing
mechanisms, extending canonical dynamic mechanisms by conditioning revelation on ex-
ecution.

In our dynamic contracting framework, these self-revealing mechanisms serve two
purposes. First, they generate private information during the game that enables off-
equilibrium punishments. Second, by publicly revealing communication at execution,
they ensure that conditional transfers are contractually enforceable in standard contract-
theoretic terms and do not require third-party mediation.ﬂ Importantly, because execution
halts upon renegotiation, self-revelation occurs only if the original mechanism is retained.

Rather than considering all possible self-revealing mechanisms, we focus on a simple
class that suffices for achieving unique implementation. Specifically, we fix a communica-

tion protocol with the following features:

1. Bidirectional communication occurs only with the agent and only at the beginning

of stage (v).

2. At stage (v), the agent sends a message m from a message set M = {N, R} where

N indicates “no renegotiation proposed” and R indicates “renegotiation proposed”.

3. At stage (v), the agent also receives a signal s from the signal set S = {h,t}

representing a fair coin toss with o(h|lm) = o(t|m) = 1/2 for each m € M.

9Section explicitlly discusses how, with the use of cryptographic tools, existing “smart contracting”
technologies provide a concrete way to implement self-revelation without the need for any third-party
mediation.

11



4.

The agent sends m and receives s before her participation decision p[I]

We denote such a protocol by C = (M,S,0). The corresponding decision rule 7 :

M x 8§ — R? maps each (m, s) pair to a contract ¢ = (u,,uy). We denote the set of all

such mechanisms by I

In the remainder of this section, we let the principal design mechanisms in the class

[ under the threat of renegotiation. The design problem is structurally simple: only four

transfer pairs {7(N,h),7(N,t),7(R, h),7(R,t)} require specification. We next formalize

the induced renegotiation game Gfr.

3.1

The Self-Revealing Renegotiation Game Gt

Allowing the principal to select self-revealing mechanisms from I' modifies the primitive

game G into the extensive-form game Gr as follows:

(1)

(i)

(iid)
(iv)

The principal publicly offers a self-revealing mechanism v € I'. That is, he chooses

the four transfer pairs that determine the decision rule 7: M x & — R2.

The agent publicly accepts or rejects ~v. If she rejects, the game ends and outside

options accrue. If she accepts, the game continues as follows:
The agent privately chooses e € E.

Without observing e, the principal makes a public renegotiation offer v" € C'U {0},

where () represents the principal’s decision not to renegotiate.

The agent sends a private message m € M = {N, R} and receives a private random
signal s € {h,t}. After this bidirectional communication, if v" # (), she publicly
accepts or rejects 4" by declaring p € {y,n}. Acceptance implies that 7 is replaced

by v".

The communication (m, s) from stage (v) is publicly revealed if and only if v executes
(i.e., either 4" = () or p = n) in which case transfers are determined by 7(m,s). If
p =y, transfers are determined by a report m” € E sent by the agent in «". Nature

publicly draws the output realization g or b and conditional transfers are executed.

In Gr, the principal selects a self-revealing mechanism € I' at stage (i) but is

restricted to revelation mechanisms 7" € C' at the renegotiation stage (iv). As in FT’s

analysis, this restriction involves no loss of generality.

10Given that signal s does not condition on message m, the sequential structure of first sending m and
then receiving s is strategically equivalent to the message and the signal being exchanged simultaneously.
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To see this, note that a self-revealing mechanism 7 at stage (i) constrains feasible
renegotiation offers at stage (iv) in two ways. First, no offer can contractually condition
on the private communication (m,s): if the agent accepts 7", the original mechanism
v does not execute, so (m,s) are never publicly revealed. Second, rejected offers are
payoff-irrelevant.

Given these constraints, the renegotiation stage becomes a mechanism design problem
where the principal faces an agent with private information (e, m, s). Her preferences over
contracts within 7", however, depend solely on e: an agent with a given e but different
(m, s) evaluates any contract ¢ identically via U.(c). Consequently, for any (m,s), she
has the same set of optimal reports in any mechanism ~", regardless of its message space.
This implies that the principal cannot screen on (m,s). Although different (m,s) may
correspond to different outside options in the original mechanism v for the agent, this
heterogeneity only affects whether she accepts 4”. Thus, the information relative to (m, s)
cannot be elicited via screening. This implies that restricting a renegotiation offer to be
a revelation mechanism 7" € C' is without loss of generality.

A (pure) strategy for the principal in Gr consists of a mechanism v € T" followed by
a renegotiation offer v" € C' U {0} for any v € I". An agent’s (behavioral) strategy A
in Gr has three components. First, it associates with any v € I" a probability. Second,
for any history (v, e,7"), the strategy A specifies a probability distribution over messages
m € M. Third, for any (v, e,y # (), m, s), the strategy A specifies whether to accept or
reject by declaring p € {y,n}. Finally, for 4" # () and p = y, the strategy \ specifies a
message m” € E in the renegotiated mechanism ~".

We consider the perfect Bayesian equilibria (henceforth equilibria) of GFB We denote
Gr(7) the subgame induced by 7 € T starting at stage (7i7). In this game, A(7) represents
the agent’s continuation strategy while the principal’s strategy is a renegotiation offer
7" (v) € CU{D}. Because Gr () is an extensive form game with imperfect information, any
equilibrium of Gt must induce an equilibrium in each Gr(y). Therefore, in an equilibrium
of G, the principal chooses an optimal mechanism « anticipating that continuation play
will constitute an equilibrium of Gr(v). We say that a mechanism ~ € I is renegotiation-
proof if the continuation game Gr(y) admits an equilibrium in which renegotiation does
not occur, i.e. y"(y) = 0.

The game Gr differs from FT’s G¢ only in the mechanisms available at stage ().
Both games share the same event sequence (i)-(vi) and renegotiation threat " € C.

Mechanisms in I" add bidirectional communication: next to the agent sending messages,

UThe principal has only one information set in the game Gr, where his belief x € [0,1] is formulated
on the probability that e = H. This is unambiguously pinned down in any equilibrium by the agent’s
equilibrium strategy. Thus, off-path belief-updating rules are irrelevant, and equilibrium refinements
beyond PBE are superfluous for our analysis.
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she also receives signals. Crucially, this bidirectional communication takes place before

the agent’s acceptance decision of a renegotiation offer.

3.2 Implementing the Second Best

We next show that self-revealing mechanisms fully mitigate the renegotiation threat.
We proceed in two steps. In this subsection, we identify a specific renegotiation-proof
mechanism v* € I' that implements the second-best allocation. In the next subsection,
we show that this allocation is the unique equilibrium outcome of Gr: in any equilibrium,
the principal obtains V7 and the agent picks e = H with probability one.

We consider the self-revealing mechanism ~v* € I" with the following decision rule:
7*(N,h) = 7*(N,t) = *8; (R, h) = °(U° — AU); (R, t) = (U + AU).

Intuitively, v* sets the second-best contract ¢*? as the “default” one, which the agent
may get by sending m = N. The mechanism also allows the agent to trigger a random
“counter-offer” by sending m = R, indicating that the principal made a renegotiation
offer. The realization of this lottery may either increase the agent’s utility by AU or
decrease it by AU. For any e € FE, the counter-offer yields the agent the same expected
utility as ¢*Z but costs the principal more since ® is convex and V!¢ is concave in U.
The principal views the counter-offer as random, whereas the agent observes its realization
after sending m = R but before deciding whether to accept the principal’s renegotiation
offer.

The next lemma guarantees that we can find a AU large enough to induce an agent’s

behavior that prevents renegotiation.

Lemma 1 There exists AU € (0,00) such that for all e € E:
1 1
VIC(UY) > max {VGFI(UO + AU), 5vff(UO —AU) + §v;C(UO + AU)} : (2)

The lemma states that, for any e € F, the principal prefers the second-best contract,
B = I9UY), to a full-insurance contract that leaves an extra utility of AU to the
agent. Additionally, the principal prefers ¢°? to a 50-50 lottery between the full-insurance
contract leaving AU less to the agent, and the incentive-compatible one leaving the agent
an extra utility AU. This validates our construction: the principal attains the left-hand
side of ([2)) when he does not renegotiate. The first term in the maximum bounds his payoff
from offers the agent always accepts; the second bounds his payoff from offers accepted
only when s = h.

The lemma allows us to establish the following result.
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Proposition 1 The second-best allocation (H,c5P) is supported in an equilibrium of the

subgame Gr(~*).

Proof. For any effort e € E and renegotiation offer v" € C, let m, € E denote an agent’s

optimal report in 4" and let U . denote her corresponding payoff upon acceptance:

m? € argmax Uy (7" (m")) and U’ = U.(y" (1h)). (3)

mrelr
Consider the following strategy profile {7"(~7*), A(7*)}: The principal does not rene-
gotiate, v"(7*) = . The agent’s strategy A(v*) is as follows

1. The agent chooses e = H with probability x = 1.

2. For any e € E, her message m € {N, R} in v* depends on the principal’s offer 7"

as follows:

(7) If v" = ), the agent sends m = N in v*.
(7) If 4" # () and Ue’" < U — AU, the agent sends m = N in ~*.
(#i) If 4" # 0 and UT > U® — AU, the agent sends m = R in v*.

3. Forany e € £, v" € C, m € {N, R} and s € {h,t}, her participation decisions are
the following:

(i) If U7 < U° — AU, the agent selects p = n for any (m, s) € {N, R} x {h,t}.

(i) I UT € [U°— AU, U?), the agent selects: when m = N, p = n for all s € {h,t};
when m =R, p=yifs=hand p=nifs=t.

(i) If U € [U°, U° 4+ AU), the agent selects: when m = N, p = y for all s € {h, t};
when m =R, p=yifs=hand p=nifs=t.

(iv) If Ug > UY + AU, the agent selects p =y for any (m,s) € {N, R} x {h,t}.

4. Forany e€ E,v" € C, m € {N, R} and s € {h,t}, after p =y, the agent sends m,
to 7" as defined in (3).

We show that the strategy profile {7"(7v*), A\(7*)}, together with the principal’s belief
that the agent picked e = H with probability = = 1, constitute an equilibrium of Gr(~*),
yielding the claimed allocation (H, c¢%5).

Note first that the only non-trivial information set for the principal in Gr(v*) is at
the renegotiation stage, when he offers 4v". The only belief consistent with the strategies
{7"(v*), AM(v*)} is, indeed, x = 1, as A(7*) prescribes e = H for the agent.

We develop the remainder of our arguments in two lemmas whose formal proofs appear
in Appendix [A]
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Lemma 2 In the subgame Gr(~*), the agent’s strategy A(v*) is sequentially rational given

the principal’s strategy " (v*) = 0.

The proof of Lemma [2] establishes that it is optimal for the agent to report m = R in
~v* after an offer 4" with U7 € (U° — AU,U° + AU]. In so doing, she obtains U + AU
when s = ¢ by rejecting, and U? (which exceeds U° — AU) when s = h by accepting . This
dominates in expected terms the payoff associated with the report m = N. In addition,
the proof establishes the optimality of e = H. In particular, since v"(v*) = () , the agent
expects U° from either effort level.

The next lemma establishes the absence of profitable deviations for the principal.

Lemma 3 In the subgame Gr(v*), the principal’s strategy 7" (v*) = 0 is sequentially
rational given his (Bayes-consistent) belief x = 1, and the agent’s strategy A(v*).

The proof of Lemma [3| shows how the agent’s equilibrium strategy implements an
effective punishment against renegotiation. In particular, the payoff U° + AU that she
gets with probability 1/2 by reporting m = R to v* makes any attempted renegotiation
too costly to the principal.

The strategies {\(7*),7"(7*)} and the principal’s belief z = 1 therefore constitute a
perfect Bayesian equilibrium of Gr(v*). In this equilibrium, the agent chooses e = H

with probability one and the contract ¢7 is implemented, establishing Proposition . |

Since the principal cannot obtain more in a game with renegotiation than under full
commitment, and the agent receives her reservation payoff U°, Proposition [1|implies that
the game Gr has an equilibrium in which the renegotiation threat is fully mitigated.
The result stands in stark contrast to F'T, who restrict the principal to offer revelation
mechanisms at the initial stage.

The proof establishes that v* makes any renegotiation unprofitable. For offers yield-
ing payoffs in (U° — AU, U° + AUJ, the agent sends m = R, triggering the punishment
mechanism. In FT, renegotiation-proofness and second-best efficiency are incompatible:
achieving one precludes the other. We reconcile this conflict through ~*, which imple-
ments the second-best efficient allocation, and exploits signals to generate off-equilibrium
punishments that prevent any renegotiation. To see this, consider the renegotiation offer
that undermines z = 1 in FT. Against 7*, the agent effectively reveals this offer by send-
ing m = R and then rejects it with probability 1/2 (when s = t). This random rejection,
triggered by the agent’s private signal, makes renegotiation unprofitable to the principal
given the unfavorable terms associated with it.

Because this punishment hinges on the random signal s, it effectively implements a

randomized contract: the agent’s actual payoff depends on the coin flip outcome. This
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raises a natural question: could a purely stochastic mechanism — one that directly assigns
randomized contracts to any agent message — also implement the second-best allocation?
The answer is no. To see why intuitively, note that following Chade and Schlee| (2012)),
the optimal renegotiation offer against any distribution over efforts chosen by the agent is
deterministic. Anticipating such deterministic renegotiation, the principal cannot benefit
from committing ex ante to stochastic mechanisms/™

Indeed, a standard stochastic mechanism is random for both the principal and agent
— neither party can condition their decisions on the randomness realization. By contrast,
the contract implemented by ~* conditional on receiving m = R appears random only to
the principal. The agent privately observes s and conditions her acceptance on it. For
offers with U™ € (U° — AU, U + AU], acceptance occurs only when s = h, yielding the
principal an expected payoff of VF(U")/2 + VAC(U® + AU)/2, which Lemma [1] ranks
strictly below V8. The agent’s private observation of the signal is therefore essential for
deterrence.

Starting with Bester and Strausz (2007), the idea that a principal may benefit by
making his decision rule contingent on the realizations of some endogenous signal has
been extensively employed in mechanism design without full commitment. Yet, the off-
equilibrium role of signals we document crucially exploits the features of the renegotiation
problem and cannot in general be reproduced under other forms of limited commitment.
For instance, in settings where parties can unilaterally withdraw contracts, a new of-
fer forces withdrawal of the original one (e.g., |Doval and Skretal, 2022; Brzustowski et
al., [2023). The agent cannot then communicate within the original mechanism or so-
licit counter-offers, narrowing the strategic role of signals. In this context, Doval and
Skretal (2022) show that signals only provide Bayes-plausible updates of the principal’s
beliefs about the agent’s type rather than generating new private information as in our
approach. Thus, our construction establishes an entirely novel application for endogenous
information disclosures under commitment frictions.

To conclude, observe that, in line with FT, we have taken the agent’s utility over
monetary transfers u to be defined on the entire real line and unbounded. These features
are key to establish LemmalI] and, ultimately, to identify the relevant punishments against
renegotiation, which we exploit in the Proof of Proposition [I, Although this approach
greatly simplifies presentation, it does not allow us to consider a range of situations of
economic relevance, most notably those in which the agent is subject to limited liability,
and her monetary transfers are therefore bounded. To cope with this issue, we show

in Appendix [C] that Proposition [I] extends to cases where the agent’s utility is CRRA,

12The result is formally established in Appendix|C| We show, in particular, that stochastic mechanisms
do not play any strategic role in the FT construction either.
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accommodating limited liability constraints that bound transfers below.

3.3 Unique Implementation of the Second Best

Proposition (1| shows that the self-revealing mechanism ~+* induces a subgame supporting
the second-best allocation at equilibrium. Because this outcome yields the agent the
payoff UY, it is also incentive-compatible for her to accept v* at stage (ii), as she cannot
strictly gain by rejecting it. Moreover, the principal cannot attain a payoff greater than
V5B in the benchmark without renegotiation. Thus, the game Gp, which includes the
principal’s design of the mechanism € I" at stage (i), admits an equilibrium yielding the
second-best allocation.

Under the standard selection convention in mechanism design where the designer can
target an equilibrium of the chosen mechanism, existence suffices for implementability.
The stricter notion of unique implementation requires ruling out other equilibrium out-
comes. Indeed, v* makes the agent indifferent over her messages as well as over her effort
choices, implying that the subgame Gr(v*) supports a continuum of equilibria. For in-
stance, any = € [0, 1] can be supported in an equilibrium of Gr(~*) where the principal
does not renegotiate and the agent reports m = R following any off-path renegotiation
offer. Yet, although Gr(v*) admits multiple equilibrium allocations, the next proposition

shows that only the second-best one is supported at equilibrium in the overall game Gfr.

Proposition 2 The game Gr has a unique equilibrium allocation, which coincides with

the second-best one (H, ).

The proof of Proposition [2] in Appendix [A] constructs a mechanism 7. by perturbing
~v* in a way that allows us to break all the agent’s indifferences at the root of equilibrium
multiplicity. Specifically, 7. penalizes low effort while preserving incentives for high effort.
Thus, in the subgame Gr(7.) the agent strictly prefers to choose e = H with probability
x =1, and to report m = N in . as long as no renegotiation attempt is made. As for the
principal, for any belief x € [0, 1], choosing not to renegotiate turns out to be the unique
best response to any sequentially rational behavior of the agent.

By offering a perturbed mechanism 7. at the initial stage, the principal can hence
guarantee himself a payoff arbitrarily close to V8, which obtains under full commitment.

Since V7 is also an upper bound, uniqueness of the equilibrium allocation follows.

4 A New Approach to Renegotiation Proofness

In Section [3| we constructed a renegotiation-proof mechanism that uniquely implements

the allocation (H,c°P) which obtains under full commitment. This contrasts with the
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approach followed by F'T: they apply the renegotiation-proofness principle to characterize
an equilibrium allocation, which fails to be second-best efficient. This failure arises be-
cause F'T restrict to revelation mechanisms, which do not incorporate private signals to
the agent. By contrast, our construction exploits the interaction between the agent’s re-
ports and the signals she receives, to generate a new set of punishments which successfully
deter renegotiation.

In this section, we examine two central properties of our optimal mechanism: its

enforceability by external courts and the commitment power required to implement it.

4.1 The Self-Revealing Mechanism ~*: Enforcement

The mechanism v* € I' combines a communication protocol with a decision rule that
maps a pair of messages and signals to transfers. Its enforceability relies on two fea-
tures: conditional disclosure of private communication and delegation of punishments
to the agent. Together, these ensure contractability—courts can verify compliance with

contractual obligations.

A verifiability paradox. The dynamic mechanisms we consider face an apparent ten-
sion. On one hand, communication must remain private during renegotiation: if the
principal observes the agent’s message and signal, he can condition his renegotiation offer
on them, undermining the punishment mechanism. On the other hand, communication
must be verifiable at enforcement: courts need to verify that transfers match the contrac-
tually specified rule 7(m, s).

The mechanism v* resolves this verifiability paradox through its self-revealing property.
Communication remains private throughout the renegotiation stage but becomes publicly
revealed if the original contract executes (i.e. if p = n at stage (vi)). This conditional
disclosure satisfies both requirements simultaneously. First, privacy during renegotiation:
If the principal attempts to renegotiate and the agent accepts (p = y), the original
mechanism does not execute, so (m, s) are never revealed.

Second, verifiability at enforcement: whenever the original mechanism executes (p =
n)—either because no renegotiation was attempted or because the agent rejected it—
the mechanism publicly reveals (m,s), allowing courts to verify that actual transfers
correspond to 7(m, s) as contractually specified.

In our construction, privacy guarantees that any profitable renegotiation offer is re-
jected with probability 1/2. In such cases, the self-revelation requirement applies, and
communication can be made public at no cost. That is, we require no trusted third party
to observe communication and execute transfers on behalf of the parties. In particular,

there is no need for any multilateral payment system, which would itself be susceptible
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to renegotiation by additional parties. The optimal mechanism v* only requires standard

contract enforcement by courts.

A self-enforcing communication protocol. The mechanism ~* is structurally simple,
featuring a binary message space {N, R} and a binary signal {h,t} generated by a fair
coin toss. This matches the complexity of FT’s revelation mechanisms, which rely on
binary reports {H, L} but do not involve signals.

Our approach differs from FT in the specific protocol we adopt. The construction in
FT is, in principle, compatible with several communication protocols, since the stage at
which the agent sends her message is immaterial.ﬁ Our construction, instead, exploits
the agent communicating at stage (v), after receiving a potential renegotiation offer but
before accepting it. This raises a question: does our mechanism effectively require courts
to verify adherence to this communication protocol?

The mechanism itself ensures compliance through the agent’s strategic incentives.
Even if courts cannot verify when the agent communicates, she finds it optimal to com-
municate at stage (v) rather than earlier or later. Communicating after observing ~"
allows her to condition her message on whether renegotiation was attempted, maximizing
the information she can exploit. We formalize this intuition in Appendix [C| by construct-
ing a protocol that delegates to the agent the choice of her communication timing: in any
pure strategy equilibrium, she communicates after the principal’s renegotiation offer and
before her participation decision, i.e., exactly at stage (v).

This self-enforcing property has practical implications. Courts need only verify that
executed transfers match 7(m,s) for the revealed (m,s), not when communication oc-
curred. The protocol operates under the shadow of the court: by delegating timing choice

to the agent, the mechanism aligns her strategic interests with the required protocol.

4.2 The Commitment Requirements of *

Our approach is rooted in the mechanism design tradition. Like F'T, we take as given the
sequence of events (i7)—(vi) and let the principal design a self-revealing mechanism v € T'.
The optimal mechanism ~* makes its transfers and disclosure policy conditional on both
the contractible variables in (7)—(vi) and the communication privately exchanged with the
agent.

The renegotiation game G reveals the specific commitment assumptions we exploit.
As noted in Section [3] restricting attention to deterministic revelation mechanisms at the
renegotiation stage involves no loss of generality. For a given self-revealing mechanism

v € I offered at stage (i), making a renegotiation offer that conditions on the content

13See |[Fudenberg and Tirole| (1990, p. 1283)
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or occurrence of the agent’s communication in 7 is infeasible by construction. At the
renegotiation stage, the principal therefore has the same commitment power as in FT.
When designing a mechanism y at stage (i), the principal is bound by the legal doctrine
of renegotiation. As in FT, he cannot commit to the features or occurrence of a renegoti-
ation offer. Furthermore, replacing the initial offer requires mutual consent. This mutual
consent has an important implication: the principal cannot circumvent the mechanism
through “exploding offers” that demand immediate acceptance. Even if such offers were
legally permissible, they cannot prevent the agent from communicating within v* before
responding. The mechanism grants the agent an explicit right to send message m and
receive signal s before deciding on any renegotiation offer. Because renegotiation requires
mutual consent, the principal cannot unilaterally revoke this right. Moreover, because the
agent’s communication is private, the principal cannot condition his offer on the agent not
having communicated. By committing to a mechanism that makes the agent privately

informed of counter-offers, the principal completely offsets the renegotiation threat.

4.3 From Theory to Practice: Smart Contracts Implementation

We next show how current smart contract technologies provide the natural tool—the
“commit-and-reveal” technique—to implement our optimal mechanism in practice. By
design, conditional transfers become enforceable by standard means, once the mechanism
self-reveals its private information. Hence, the implementation challenge centers entirely
on the communication protocol.

Indeed, current smart contract technologies cannot send private signals to players,
which may conflict with the privacy requirements of our mechanism +*["] We solve this
issue by modifying v* to work with public signals, while keeping the agent’s message
private. The key idea is to give the agent multiple (private) message options that interact
differently with the public coin flip, allowing her to effectively choose which version of
randomness to face.

Formally, consider the modified mechanism v** = (M**, §*, o**, 7**) with three private
messages M** = {N, Ry, Ry}, and let the signal s € §* remain representing a fair coin
toss: o**(hlm) = o**(tjm) = 1/2 for all m € M*[F¥] However, we let the signal s be

publicly observable, with the implication that a renegotiating offer can condition on its

4Note that if the signal s were public rather than private, the principal could make signal-conditional
renegotiation offers that undermine the effectiveness of v* as follows: provide attractive terms only when
s =t but terrible terms when s = h. This would induce the agent to send message m = N and accept
renegotiation when s = t, allowing the principal to avoid the punishment mechanism and gain from
renegotiation.

15Tn practice, s can be instantiated via a verifiable on-chain randomness source (e.g., a VRF or reputable
randomness oracle); the choice determines trust and liveness assumptions. If the randomness source fails,
a two-party commit-and-reveal coin toss between principal and agent can serve as a fallback.
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realizations, and define its decision rule 7** as

T*(N,h) = 7*(N,t) = /9(U°) = 55;
TRy, t) = (U + AU) ;. 7*(Ry, h) = /C(U° — AU);
TRy, t) = ' (U’ — AU);  7*(Ra, h) = '“(U° + AU).

Effectively, v** allows the agent the option between two random counter-offers, which
only differ by the face of the coin flip that leads to the better or worse contract. Thus
v** requires only (i) privacy for a 3-symbol message and (ii) a public fair coin; it does not
rely on contract-provided private randomness.

The modified mechanism +** still implements the second-best allocation['] When
facing a renegotiation offer, the agent selects between the private messages R; and R,
each creating a different lottery over favorable and unfavorable terms. Regardless of her
choice, she faces a 50-50 chance of receiving highly favorable terms (payoff U° + AU) that
make rejecting renegotiation optimal. This random rejection punishes the principal in
expectation, deterring renegotiation just as in the original mechanism ~*. For instance,

in the intermediate region, the principal’s expected payoff under renegotiation equals
VELU™) )2 + V(U + AU) /2,

which remains strictly below V°2 by Lemma . Thus, implementation also obtains with
an observable signal, yet at the complexity cost of adding an extra message.

To circumvent the verifiability paradox, the modified mechanism v** must require that
the agent’s messages initially remain private. If messages were public, the principal could
make message-conditional renegotiation offers that defeat the mechanism. For instance, he
could offer attractive terms only for message N while making R; and Ry lead to terrible
outcomes. This would induce the agent to send message N and accept renegotiation,
eliminating the punishment mechanism entirely.

We now show that, despite its dependence on private messages, v** can be imple-
mented via smart contracts that are self-executing programs on transparent blockchains.ﬂ
While this may seem paradoxical given that blockchain transactions are publicly recorded,
cryptographic techniques allow us to achieve the required privacy within this transparent

environment.

16This is shown formally in Appendix

I"For an extensive definition of a smart contract see Szabo (1996)) and (Catalini and Gans| (2020) for
a discussion of potential economic applications for smart contracts. We here emphasize however that,
in general, an enforcement of smart contracts depends on the shadow of the law. To see this in our
specific context of v**, note that because its transfers condition on the realized output value Y € {g, b},
the realized output value must somehow be reported to the smart contract. This can be done by, for
instance, the principal, but only the verifiability by a court ensures that the principal will do so truthfully,
anticipating its prohibitively large punishment when misreporting.
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In particular, the commit-and-reveal technique solves this privacy challenge by allow-
ing parties to record information that remains hidden initially but can be publicly verified
later. Technically, the technique is a cryptographic protocol with two phases. In the com-
mit phase, a party uses a hash function to create a cryptographic commitment to her
message without revealing it. In the reveal phase, she can publicly disclose the original
message, which others can verify matches the earlier commitment ']

The technique relies on hash functions that are one-way and collision-resistant, mak-
ing it impossible to derive the original message from the commitment or to create fake
commitments. This ensures the message remains secret until revealed while preventing
later manipulation. This enables us to implement self-revealing mechanisms on transpar-
ent blockchains by emulating their defining property: recording secret messages that are
revealed only later. During the commit phase, the agent’s message remains hidden while
the commitment is publicly recorded. During the reveal phase, the agent discloses her
message, which the smart contract verifies against the stored commitment. This process
maintains message secrecy until the designated reveal time while ensuring the message
cannot be altered after commitment.

To demonstrate the practical feasibility concretely, we present in Appendix [B] a com-
plete Solidity smart contract that implements +** using the commit-and-reveal technique
for a fully parameterized version of our framework. The implementation shows that self-
revealing mechanisms can indeed be deployed on current blockchain technologies, bridging
the gap between theoretical mechanism design and real-world contracting.

While smart contracts are often seen as immune to renegotiation["] in practice they
commonly include functions allowing termination or modification. For instance, DeFi
protocols often feature emergency stop or circuit breaker functions that automatically
freeze execution when pre-set risks are met. Others, such as OpenZeppelin’s Pausable
module or MakerDAO’s Emergency Shutdown, allow authorized parties to manually halt
operations through governance control. Modules allowing built-in modification rights are
also common: for example, proxy-based upgrades used by Compound and OpenZeppelin
allow preserving the state while replacing the contract’s code logic (see Ebrahimi et al.|
2024)).

By explicitly allowing both contract termination and modification, these adaptability
functions reintroduce classic time-consistency concerns in the smart contracts paradigm.[g_gl

We regard our results as relevant in this respect: the finding that blockchain-compatible

18See Narayanan et al| (2016, Chapter 1) for a more in-depth introduction to cryptographic hash
functions and the reveal-and-commit technique.

198ee, for example, the discussion in Chapter 6 in [Townsend, (2020)).

20Gee also, on this topic, Salehi et al.| (2022); Wang et al.| (2025)) and the Ethereum guide on upgrading
smart contracts.
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https://ethereum.org/en/developers/docs/smart-contracts/upgrading

mechanisms can replicate full-commitment outcomes under a traditional renegotiation
constraint suggests that, by careful structuring of the smart contract’s transfers, one can
preserve contractual flexibility while neutralizing the inefficient modification incentives
that adaptability functions create.

This connects our work to concrete efforts to design governance mechanisms deter-
ring harmful upgrades while preserving adaptability in smart contracts, such as: multi-
signature authorization, DAO voting Systems,El and timelocks between the approval and
implementation of upgrades, which give users time to assess and exit the contract before
changes take effect [

5 The Power of Self-Revealing Mechanisms

Traditional approaches to renegotiation design, as summarized by (1990)), share a
common principle: optimal renegotiation-proof mechanisms require private information
for the agent at the renegotiation stage, leaving the principal uncertain when he attempts
to renegotiate the original mechanism.

In the FT context, this is achieved by having the agent randomize over her efforts at
equilibrium. Such randomization requires making the agent indifferent over several alter-
natives. This imposes an allocative cost for incentive-compatibility reasons. By contrast,
our optimal mechanism avoids these incentive-compatibility costs, fully mitigating the
renegotiation threat without sacrificing second-best efficiency.

In this section, we show that these insights extend to other settings of contract rene-
gotiation, reinforcing the general relevance of our approach. We first consider extensions
to standard renegotiation frameworks with alternative extensive forms, focusing on the
case in which infinite rounds of renegotiation are allowed. We then evaluate the implica-
tions of richer renegotiation opportunities, thereby discussing the supplementary view of

renegotiation.

5.1 Alternative Extensive Forms

Since the self-revealing mechanism ~* operates after effort is chosen, the results in Propo-
sitions [If and [2[ naturally extend to any countable or continuous effort Spacesﬁ The same
observation guarantees that our approach does not exploit the principal’s specific objec-
tive function. For instance, to address the government failure emphasized by

21See OpenZeppelin’s on-chain governance framework.

“““Timelocks give users some time to exit the system if they disagree with a proposed change (e.g.,
logic upgrade or new fee schemes). Without timelocks, users need to trust developers not to implement,
arbitrary changes in a smart contract without prior notice. The drawback here is that timelocks restrict
the ability to quickly patch vulnerabilities” (source).

“*This parallels the extension in Fudenberg and Tirole (1990, Section 5.A).
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Scheuer] (2010), a utilitarian planner can rely on a modified version of v* to implement
second-best insurance under renegotiation threats.

Propositions (1| and [2| also extend to situations in which the agent, rather than the
principal, initiates renegotiation, as analyzed by Ma, (1994). Establishing these exten-
sions requires constructing a mechanism where the principal implements punishments
through his own private communication. This approach yields unique implementation
even when renegotiation threats originate from the agent, contrasting with the equilib-
rium multiplicity in [Mal (1994)

As noted in Assumption A.1, our results are robust to any finite number of renegotia-
tion rounds. However, the second-best allocation implemented by Proposition |1} involves
inefficient risk sharing, leaving room for further renegotiation after each round. This raises
the question: do our results depend on the number of rounds being finite?

To show they do not, we consider an infinite-horizon setting in the spirit of [Strulovici
(2017)): parties interact over rounds 7' = 1,2, ..., agreeing ex-ante on a mechanism that
can be renegotiated any number of times. Renegotiation breaks down with probability
n € (0,1) in each round T > 1, at which point output w € {g, b} realizes and the last
accepted contract executes.

Thus, breakdown round T* follows a geometric distribution: Pr(7* = T) = (1—-n)T 1
and Pr(T* =T" | T* > T) = (1 —n)T"~T - 5. For both players, the time-T expectation of

a unit of utility is:

D (=T = (717_7]) =1

T'>T
For a given 7, we denote G" the corresponding primitive game, which extends the game
G by allowing for infinite renegotiation rounds.

We construct a self-revealing mechanism &%, offered at the ex-ante stage, which im-

plements the second-best allocation in this context. The mechanism &%, offered by the
principal and accepted by the agent at the onset of the relationship, induces the subgame

GL(£%) (that is, the game G" with mechanisms selected from =, after £%* is chosen):
- At T'=0: The agent privately selects the effort level e € {H, L}.

- At any T > 1 the following sequence of events is involved:

T.i) The principal offers ¢7' € ZU {0}.

T.ii) The agent makes a report in the last accepted mechanism. Simultaneously, the

mechanism privately discloses a signal to the agent.

24Formal construction available from the authors.
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T.iii) The agent accepts (p! = y) or rejects (p! = n) the renegotiation offer €7, with the

convention that pT = n if ¢7 = ).

T.iv) If pT = y, the agent submits a report é7 € {H, L} to ¢I. Then, if renegotiation
breaks down, w € {g,b} realizes, the last accepted mechanism publicly reveals its

communication history and executes transfers; otherwise the game continues to
T+ 1.

In GL(£%), after the agent chooses effort, T* rounds of renegotiation take place, in
which the actions T.i) — T.iv) are iterated at each T': 1 < T < T*. The parties are
uncertain about the realization of 7™ until renegotiation breaks down and the game ends.
The mechanism £% requires the agent to submit a report my* € {N, R} in each round
T.ii), i.e. after a renegotiation offer (7 is made and before the agent decides to accept it.

The report N maintains the status quo (inducing the transfers ¢°P), while R irre-
versibly triggers a lottery over full-insurance transfers at different utility levels, the out-
come of which is privately disclosed to the agent via a fair coin toss. This communication
protocol naturally extends that of v* to an infinite horizon.

The principal may attempt to renegotiate €% at any 7' > 1, until T realizes. Observe
that the set of feasible renegotiation offers at each round ¢7 is taken to be =. That is,
any renegotiated mechanism, once accepted, features the same communication protocol
as that relative to £% after round 7. We next show that the implementation result of
Proposition (1] extends to this setting, which suggests that backward induction reasoning

is not key to our approach. Specifically, we establish the following:

Proposition 3 The second-best allocation (H,c%P) is supported in an equilibrium of

GL(E).

The proof of Proposition [3, provided in Appendix [C] exploits the idea that any rene-
gotiation offer can be simply characterized in terms of the continuation utility it yields to
the agent. Thus, there is no loss of generality in considering that any 7 features the same
communication protocol associated to £%* after round 7. Any attempt to renegotiate can

hence be punished following the same logic as developed in the proof of Proposition [I]

5.2 The Supplementary View of Renegotiation

Under the primitive game G that underlies both FT and our framework, self-revealing
mechanisms uniquely implement the second-best allocation, fully mitigating renegotia-
tion at no efficiency loss. This subsection examines the robustness of this result to an

alternative specification of the renegotiation process itself.
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Thus far, we adopted the replacement view of renegotiation, following the standard
approach in the literature that a renegotiation offer replaces the original mechanism (As-
sumption A.4)E Under this view, the agent cannot combine v* with a renegotiation
offer—contracts are exclusive (Assumption A.5). We now examine supplementary renego-
tiation, where such combinations are possible. This creates new strategic considerations.

Consider the following supplementary offer. The principal proposes a mechanism '
that, when combined with v*’s equilibrium transfers (u_fB, uy ), yields the full-insurance
contract i (U%+¢) for some £ > 0. The key feature is that 7, conditions on v*’s realized

transfers: it pays a positive amount only if * implements (u5?, uj”).

Specifically, v/
pays the difference between cf// (U° + ¢) and 5.

Upon observing «%, the agent finds it optimal to report m = N in ~*, triggering the
equilibrium transfers (as reporting m = R would trigger the punishment lottery, causing
7% to pay nothing since its transfer is contingent on * implementing c®B). She then
accepts 7/, which offsets these transfers and implements cEI(U + ¢), guaranteeing her a
payoff U% 4 ¢ > U°. The principal also gains: full insurance eliminates the risk premium
embedded in ¢Z, reducing expected transfers. For e sufficiently small, both parties are
strictly better off. Thus, v* is vulnerable to supplementary renegotiation: the principal
can profitably deviate by conditioning on v*’s realized transfers.@

However, alternative mechanisms can restore the second-best also under supplemen-
tary renegotiation. Consider a modified self-revealing mechanism with the following struc-
ture: when that pays a flat transfer if output w = b realizes, it pays a flat (non-contingent)
transfer; when w = g realizes, it pays an (m, s)-conditional transfer. Because the transfer
is flat when w = b, the principal cannot infer the agent’s communication from the realized
payment in that state. This prevents the principal from inferring the agent’s message
from observing both the transfer and the realized output, eliminating the vulnerability
demonstrated above 7]

This modification illustrates an important point about the relationship between sup-
plementary and replacement renegotiation. Under the replacement view, the verifiability
paradox is the primary challenge: the principal cannot observe the agent’s communication

within v*, creating the uncertainty that deters renegotiation. Under supplementary rene-

25 As Bolton (1990, p. 304) notes: “[...] For once the contracting parties reach the point where an
inefficient outcome is suggested by the contract, they can always tear up the initial contract and write a
new Pareto-improving contract. As a result, when the contracting parties are unable to commit not to
renegotiate they will have to abandon these contracts designed to be executed without renegotiation”.

26While observability of the final transfers could in principle be exploited also under the replacement
view of renegotiation, the exclusivity assumption at the root of this view (see A.5) makes any such
conditional offer not strategically relevant. The profitability of the above renegotiation offer, indeed,
crucially hinges on the possibility to combine it with the original one.

2TFormal analysis available from the authors shows that Proposition [1] extends to supplementary rene-
gotiation under CRRA preferences for the agent.
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gotiation, an additional difficulty arises: while communication remains unverifiable, the
principal can observe its consequences through the realized transfers from v*. The modi-
fied mechanism addresses both challenges by revealing communication through transfers
only when w = ¢, not when w = b. This selective revelation conceals the agent’s message
in the bad state while preserving the incentive structure in the good state.

To summarize, self-revealing mechanisms enable second-best implementation both un-
der the standard replacement view and under the supplementary view of renegotiation,

though the details of the required construction differ.

6 Conclusion

We revisit the tension between the legal doctrine of renegotiation and economic efficiency
(Dewatripont, |1989). We show that the threat of renegotiation can be fully mitigated
by self-revealing mechanisms with bidirectional communication that keeps messages pri-
vate at the moment of renegotiation yet verifiable at execution. The combination of
bidirectional communication and its strategically timed disclosure enables off-equilibrium
punishments that restore the full-commitment second-best without distorting on-path
incentives.

We establish these results in the canonical renegotiation framework of |Fudenberg and
Tirole| (1990), and we show that they extend to several settings of renegotiation under
moral hazard. We do not see any specific argument that limits the applicability of our
approach to situations in which the agent holds some private information (e.g., Laffont
and Tirole (1990)). However, a comprehensive analysis of the portability of our insights
to frameworks of renegotiation under incomplete information is beyond the scope of the
present work.

Our results carry significant implications. Self-revealing mechanisms reframe renegotiation-
proofness as a problem of communication architecture: the law’s refusal to enforce no-
renegotiation clauses need not bind efficiency once private signals and conditional revela-
tion are available.

The institutional message is that standard court enforcement suffices when contracts
embed this timing of information, aligning legal doctrine with economic efficiency rather
than requiring some external commitment devices or third-party mediation. Practically,
commit-and-reveal cryptographic tools operationalize the required conditional disclosure,
indicating that algorithmic contracting can implement the information structure that
eliminates renegotiation incentives.

More broadly, the analysis suggests a design principle for contract theory: when ex-

post inefficiencies create scope for opportunism, engineering when and to whom informa-
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tion is disclosed can substitute for formal commitment, with implications for environments

beyond the canonical model and for the governance of digital markets.
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A Main Proofs

This appendix collects the proofs.
Proof of Lemma [l For a given ¢ € E, define the function V, : [U°, 00) — R as

1
VFQUO — U) + SVEI ).
The function satisfies the following properties:

a) V.(U) is well-defined, continuous and twice differentiable for U € [U°, c0), because
®(U), and thus VII(U), are defined for every U € (—o0,+00) and, moreover, are

continuous and twice differentiable.
b) V.(U) is strictly decreasing since

oV,(U) . 18‘/6“(U) B 18V;FI(2U° —U)
ou 2 oU 2 oU

<0

for any U € (U, 00), where the inequality obtains since U > 2U° — U, and because
VFL(U) is concave so that OV.F!/OU is decreasing.

¢) V.(U) is strictly concave since

PVe(U) _1°VII(U) | 10°VF(2U° —U)
ouz 2 QU2 2 oU?

where the inequality follows because 9*VF1(U)/0U? < 0.

<0,

d) Tt follows from (b) and (c) that lim V,(U) = —cc.

U—o0

e) For each e € E, there is a U, € (U°, 00) such that
VIO(U") = VeU) and VIO(U) > Ve(U) VU € (U, 0).

This holds since V,(U°) = VFI(U) > VIU°) > Ulgx;of/e(U) = —o00, where the
first inequality follows from the convexity of ®. Because V,(U) is contmuous the
intermediate value theorem guarantees that there is a U, € (U° 00): V.(U,) =
VIC(UY). Because V,(U) is strictly decreasing, we have V,(U) < V.(U,) = V¢ (U°)
forall U > U.,.

It follows from (e) that, for any U™ > max{U,U;}, we have

VAU > Ve(U™). (4)
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Since U™ > U° & U™ > 2U° — U™, it follows from VI7(U) decreasing and ® convex:

~ 1 1 1 1
‘/'E(Un) — 5VV@F[(2(]0_(]71)_’_5‘/'6FI(U71) > max {‘/eF](UTL)’ 5‘/'EFI(2U0 o Un) + 5‘/;10((]”)} )

()
Taking AU = U™ — UY > 0 together with both and imply . |

Proof of Lemma By , sending 7!, is sequentially rational for any (e, " # 0, m, s,y)
with m the agent’s message m € { N, R} in the original self-revealing mechanism ~. From
comparing her payoff U.(7*(m, s)) of remaining in ~* with her utility Ug of accepting
v", it follows that, at each history (e,y" # (), m,s), the agent’s participation behavior
is optimal. Next, consider any history (e,y" # (). Because the agent observes s before

making her decision p, her continuation value under m = R equals
%max {UO — AU, ﬁ;} + %maX{UO + AU, U},
while under m = N it equals
max{U°,U"},
where Ug is defined in 1)

Hence, it is optimal for the agent to send m = N in ~v* if
~ 1 . 1 .
max{U°, U} > 5 max {UO — AU, U;} +3 max{U° + AU, U!}. (6)
From @, it follows that the agent’s reporting behavior is optimal:

(i) If U7 < U° — AU, then @ is satisfied because it reduces to U > U since U’ <
U — AU < U°. Sending m = N in ~*, followed by p = n, as prescribed by \(v*),

is hence optimal.

(id) I U7 € (U° — AU, U° + AU], then, upon sending m = R, it is optimal for the agent
to choose p = y when s = h (as rejection leads to UY — AU < Ug), and p = n when
s =t (as rejection leads to U° + AU > U’). We next argue that sending m = R
in v*, as prescribed by A(7*), is optimal. That is, the the reverse of inequality @
holds, where we note that, due to Ug e (UY— AU,U° + AUJ, its RHS reduces to
Ug /2 + (U° + AU) /2. Reversing the inequality in @, we only need to show that

A 1. 1
max{U", U’} < FUc+ 5(UO + AU). (7)
To get the result, it is sufficient to observe that:

(a) If U7 < U, then (7)) rewrites as U° — AU < U’ which is satisfied by assump-

tion.
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(b) If U7 > U, then (7)) rewrites as U7 < U° + AU, which is satisfied by assump-

tion.

(igi) If U7 € (U° + AU, 00), then we have U° < U° + AU < U’ and the agent’s continu-
ation value under m = R equals U 7. the same obtained under m = N (followed by
p =y for any s € {h,t}). Hence, it is rational for the agent, as prescribed by A(7*),

to send m = R in v*, and then accepts 4" for any received signal.

Therefore, in every history (e,7" # 0)) , the prescribed choices in A(y*)—m = N in case
(i); m = R with p = y when s = h and p = n when s =t in case (ii); and m = R with
p =y for any s in case (iii) —are optimal.

Consider now the agent’s behavior at each history (e, )) where the principal does not
renegotiate. Sending m = N is an optimal behavior of the agent since she obtains the
same payoff U? under any report in v*. Finally, at her starting node, she optimally selects
e = H against 4" = () , since she anticipates that no renegotiation takes place on path
and P = I9(U") is eventually implemented. This completes the proof of sequential

rationality. [

Proof of Lemma In the subgame Gr(v*), the principal’s best response is either
7" = ) or a revelation mechanism «" € C' that maps the renegotiation report m” € E
to a contract (ug, ub)ﬁ Given the principal’s belief x = 1 and the agent’s risk-aversion,
any accepted 7" that maximizes the principal’s payoff yields full insurance to the agent
of type e = H: so, conditional on acceptance, his payoff equals V4! ((7;1) for some scalar
U,

Given belief x = 1 and the agent’s strategy A(y*), we verify that the principal’s
expected payoff does not exceed V58 = VIC(U?) for any Uj, € R. We distinguish three

cases:
(i) If Uy, < U° — AU then A(y*) prescribes (m = N, p = n) and the principal gets V55.

(id) If U}y € (U° = AU, U + AU] then A(y*) prescribes (m = R, p = y when s = h, and
p =n when s = t), and the principal gets

1 . 1 1 1
3 FHUT) + 5véC(U0 + AU) < §V§I(U° — AU) + §V]§C(U° + AU) < V5B (8)

where the first inequality follows from V47 decreasing, and the second from Lemma
m

284" cannot directly condition on (m, s): acceptance of 4" precludes v* from disclosing (m, s) publicly,
and rejection of 4" makes it payoff-irrelevant.
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(igi) If U5 > U® + AU then A(v*) prescribes (m = R, p = y) for any s € {h,t}, and the
principal gets

VELUE) < VENU® + AU) < VB (9)

where the first inequality follows from V7 decreasing, and the second from Lemma

il

Thus, the principal cannot gain by offering any 7" # 0 . |

Proof of Proposition [2| We construct a mechanism ~. that uniquely implements e = H
and yields a principal’s payoff arbitrarily close to V55,
Define for any ¢ € (0,¢) with £ > 0, the contract
5B _ (UO N (1 —pr)d+ (1 —pp)e o _ pLd~|—pH5> '
: Ap ’ Ap
Note that ¢B yields the agent the payoff U° if she selects e = H, and U° — ¢ if e = L.

C

Mechanism . = {M* §*, 0%, 7.} coincides with 7*, except for 7.:
(N, B) = (N ) = &5, (B, 1) = O + AUY; 7.(R,h) = O(U° — AU — ke)

for any arbitrary £ > 2. We consider the subgame Gr(7.), and construct £ > 0 so that,
for any belief = € [0,1] and any € € (0,&), the principal is strictly worse off from any
renegotiation offer that the agent accepts with a strictly positive probability.

Fixing an arbitrary behavior 4" (7. ) of the principal, we now characterize all the agent’s
behavioral strategies A(7.) that are sequentially rational in the subgame Gr(~.). Note
that the agent’s sequentially rational behavior depends on 7. and Ug , but not on the
principal’s belief . We start from the terminal nodes of Gr(7.).

Recalling , note that in any history (e,~v",m, s,y) with 4" # (), the agent sends any
m” € E (or distribution over reports) that satisfies the left-hand side of , expecting to
obtain U, . from accepting 7" as expressed in the right-hand side of .

In any history (e,7" # (), m, s), the agent’s optimal acceptance behavior (p(h), p(t))
follows from comparing the agent’s payoff U.(7.(m, s)) of staying in . with the utility U”

of accepting ~":

(a) For (e,m) = (H,R) and (e,m) = (L, R), we have

{y} iU >U°— AU — ke; {y} it U7 > U+ AU;
p(h)e ¢ {n} iU <U°— AU —ke; and p(t) e {n} if U <U°+ AU;
{n,y} U =U"— AU — ke; {n,y} LU =U"+ AU.

(b) For (e,m) = (H,N), we have

{y} U >U" vy} ifU>U"
p(h) e ¢ {n} ifU;, <U% andp(t)e {n} ifUs, <U%
{n,y} it Uy =0 {n,y} UL =0".
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(c¢) For (e,m) = (L,N), we have

{y} U} >U"—¢; {y} U} >U"—¢;
p(h) e {n} fUr <U’—¢; andp(t)e {n} ifU; <U°—¢
{n,y} HUr=0U"—c¢; {n,y} U =0U"—c¢.

Fixing any optimal participation behavior as characterized above, we now derive the
agent’s optimal reporting behavior in any history (e,7" # 0)), where " yields Ug to the
agent if accepted. For e = H, m = N is optimal if

1 i 1 .
max{U°, U} > 5 max {U};, U° — AU — na} + 5 max{Up, U° + AU}, (10)

while m = R is optimal if the opposite weak inequality holds. For e = L, m = N is

optimal if
0 rr 1 e 170 1 e 770
max{U" — ¢, U]} > §max{UL,U — AU — /{5} + §max{UL,U + AU}, (11)

while m = R is optimal if the opposite weak inequality holds.

At any history (e,7" = ()), the agent’s unique optimal report in v* is m = N. To
see this, note that m = N yields U? if e = H and U° — ¢ if e = L, whereas m = R
yields U? — e regardless of e. Since € > 0 and x > 2, we have U® — e < U® —e < U°,
confirming that m = N strictly dominates m = R for both effort levels.

We now address the agent’s optimal effort choice. A full characterization of the agent’s
best response to every possible principal strategy ~"(7.) is unnecessary. To establish
uniqueness, it suffices to show that when the principal plays the equilibrium strategy
Y (v.) = 0, the agent’s unique optimal effort is e = H. To see this, note that given
7" = (), the agent’s unique optimal report is m = N regardless of e (as shown above).
This leads to the implementation of transfers ¢, which satisfy Uy (cP) > Up(c2B) by
construction. Hence, e = H is strictly optimal.

We now derive the principal’s optimal behavior in the subgame Gr(7:).

We show that for any effort probability z € [0,1] and any optimal reporting and
participation behavior of the agent (as characterized above), the principal’s best response
is " = () or equivalently, any offer that the agent rejects with probability one.

First, suppose A(7:) specifies that the agent selects e = H with probability « € {0,1}
and the principal holds a deterministic, consistent belief x € {0,1} over the agent’s
effort. In this case, by not renegotiating, given the agent’s subsequent report m = N,
the principal expects Vi (c2P) if x = 1 or Vi (¢2P) if 2 = 0. Moreover, the first argument
in the proof of Lemma (3| implies that we can characterize any renegotiated offer that the
principal considers optimal by some U; € (—o0,+00), representing the agent’s expected

utility from accepting it. When x = 1, the relevant utility is that of the agent who chose
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e = H; when x = 0, that of the agent who chose e = L. Using the agent’s sequentially
rational behavior as derived above by substituting U, = U7 and Uf = Ug, we derive the

payoff that the principal himself expects from (7;:

1. For U{ < U~ AU, the principal expects payoff Vi (c2P) and for Ug < U AU —2¢,
the principal expects payoff V7 (c22). This follows because the principal expects the
agent to consider her strategy (m,p(t), p(h)) = (N,n,n) uniquely optimal. To see
this, note that conditional on sending m = N, p(t) = p(h) = n is strictly optimal,

because
U <U'— AU <U° and U] <U°—AU -2 <U’—¢.

To see why the principal expects the agent to strictly prefer m = N over m = R,

consider the two subcases:

(a) If U7 < U°— AU — ke, then with U = U7 becomes U° > U°— %e; likewise,
if U5 < U° — AU — ke, then with Uf = U becomes U® — & > U° — %e.

Both inequalities are strictly satisfied since ¢ > 0 and x > 2.

(b) If Ul € (U° — AU — ke, U — AU), then (10) with U}, = Ul becomes U}, <
U° — AU; likewise, if U7 € (U° — AU — ke, U° — AU — 2¢), then (11) with
Ur = U7 becomes U < U° — AU — 2¢. Both inequalities are strictly satisfied

in case (b) by assumption.

2. For U{' = U% - AU or 06’ = U% — AU — 2¢, the principal expects the agent to
consider only the strategies (m, p(h), p(t)) = (N, n,n) and (m, p(h), p(t)) = (R, y,n)
as optimal, because , in this case, and both hold with equality. For any
randomization over the agent’s decisions, the principal expects a payoff that is a
convex combination of Vi (c2®) and LV (U® — AU — 2¢) + sV/9(U° + AU) for
z =0, and of Vy(cZP) and $VI1(U° — AU) + LVEC(U° + AU) for z = 1.

3. For U € (U° — AU, U® + AU) or U} € (U° — AU — 2¢,U° + AU), both (10) and
(11) are violated for (U}, Us) = (U7, Uf) so that the principal expects the agent to
consider only (m, p(h), p(t)) = (R,y,n) optimal. Hence, the principal expects the
payoff %VgI(U{)—l—%VéC(UO—i—AU) for x = 1, and payoff %VLFI(US)—F%VLIC(UO—FAU)

for x = 0.

4. For U{' =U%+ AU or Ug = U 4 AU, the principal expects the agent to consider
exactly the three strategies (m, p(h), p(t)) = (N,y,y), (m,p(h), p(t)) = (R,y,y),
and (m, p(h), p(t)) = (R,y,n) optimal. For any mixture over these strategies, the

principal obtains a convex combination between VA (U® + AU) and LVE(U° +
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AU) + VEC(U° + AU) for « = 1; and between VI (U° + AU) and 1V/H(U° +
AU) + V(U + AU) for z = 0.

5. For Ue” € (UY+AU, o), the principal expects the agent to consider exactly strategies
(m, p(h), p(t)) = (N, ,y) and (m, p(h), p(t)) = (R.y,y) optimal. For any mixture
over these strategies, the principal obtains VET(UT) for = 1 and VF(U}) for

z =0.

The analysis above implies that, with belief x = 1, the following inequalities guarantee
that the principal expects to be strictly worse off from every renegotiation offer that the

agent accepts with a strictly positive probability:
1

Vi (5B) — %v,ff(UO — AU) — 2véC(UO + AU) > 0, (12)
and
Vi (c28) = VEL(U® + AU) > 0. (13)

Observe that, if € = 0, and are strictly satisfied because they coincide with
and @D, respectively. Since Vi (cS®) is continuous in e, there is a e > 0 such that
and are strictly satisfied for any ¢ € (0,e%). If, instead, = 0, the principal
believes to be strictly worse off from the agent accepting a renegotiation offer with a
strictly positive probability when

1

VL<CSB> 5

£

1
VU — AU — 2¢) — 5VLIC(UO +AU) >0 (14)

and
V(2B = VEHU® + AU) > 0. (15)

Again, since V;(c2P) is continuous in €, there is a ¥ > 0 such that and are
strictly satisfied for any ¢ € (0, e%). Defining £ = min{e’, e} implies that if the principal
holds a degenerate belief, then, for any € € (0,¢), he believes that he is strictly worse off
from a renegotiation offer that the agent accepts with a strictly positive probability.

We next argue that the polar cases x € {0,1} as studied above imply that, also for
an intermediate belief z € (0, 1), the principal expects to be strictly worse off from the
agent accepting a renegotiation offer with strictly positive probability. To see this, note

that the principal’s expected payoff by not renegotiating is linear in x:

Va(e2P) = aVi (27) + (1 — 2)Vi(e2P),
since, regardless of her previous effort, the unique optimal report of the agent when 7" = ()

SB

is m = N, inducing the transfers c2”.
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Moreover, note that by offering 4" # (), fixing any sequentially rational behavior A(~.)
by the agent and denoting V*(7", A(+.)) the principal’s expected equilibrium payoff in the

continuation of (7., e,7"), he would instead get

VoY A(e) = 2V (0" A(e)) + (1= 2)VE(Y", M%)

As the agent’s behavior is independent of the principal’s belief x, this is also linear in z.

To see why V* < V,(c5B) extends to intermediate beliefs, observe that under x €
(0,1) the principal could offer a screening menu 1" € C with v"(H) # ~"(L). However,
screening does not improve his payoff. For any menu ~", an agent who chose effort e
and accepts renegotiation optimally reports in 4" to obtain U7 = max Ue(v"(m™)). Her
optimal reporting and acceptance behavior in 7. depends on (7, Ug ), not on the belief
x. Since we established that, for any sequentially rational reporting and participation of
the agent, V,(c5B) > V*(74", M(7.)) for each e € E separately, the inequality V,(c®P) >
VX(y", A(72)) holds for all = € [0, 1]. Thus, the suboptimality of renegotiation extends to
intermediate beliefs z € (0,1).

From the previous considerations, at any equilibrium of Gr(~.), the agent must antici-
pate, when selecting her effort, that the principal does not make a renegotiation offer that
makes her accept it with positive probability. Therefore, e = H is her only optimal choice
as already argued. But then, at any equilibrium of Gr(~.), the agent selects x = 1 and
no renegotiation takes place. Hence, the principal’s unique equilibrium payoff in Gr(7.)
is Vi (c2B). Equilibrium existence in the subgame is ensured by the fact that e = H,
m = N and 7" = () are mutual best responses.

We now turn to the entire game Gr. Note first that,once the principal offers .,
the agent is indifferent between accepting it or not. Standard tie-breaking arguments,
however, guarantee that the only participation decision consistent with equilibrium is ac-
ceptanceﬂ Consequently, in any equilibrium of G, the principal must obtain at least the
payoff VSB: any inferior payoff V' < VB is not sequentially rational since the principal
could deviate to some 7. and uniquely obtain Vi (c38) € (V/,V9B). The existence of an

appropriate . is guaranteed for any choice of V' since
li SBY _ SB.
lim Vg(cZP) =V

Given that the principal cannot obtain more than VP (the full-commitment upper
bound), every equilibrium of Gt yields the principal a payoff of exactly V5B, It remains
to show that the equilibrium allocation is unique. In the static second-best problem,
V5B is achieved only when both (IC) and (PC) bind with e = H, which pins down the

290ne can construct another tie-breaking mechanism identical to 7. except for yielding U® + ¢ to the
agent if she accepts.
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contract as ¢38 = ¢I¢(UP). This characterization extends to Gp: any mechanism v € T
achieving principal payoff V5 must (i) implement e = H with probability one (since
V5B = VIC(U®) > VEL(U?) by the maintained assumption that high effort is optimal in
the second-best), (ii) leave the agent exactly U° (since VZC is strictly decreasing), and

SB S

(iii) execute transfers ¢°® on path (since ¢°7 is the unique incentive-compatible contract

for e = H at U°). Hence the equilibrium allocation (H, ¢?) is unique. |

Proof of Proposition We start by considering the transfers implemented by &%,
They are defined by the sequence of decision rules 7% = (7% )7>;. Each function 79
associates any history of communication between the agent and £% from T'=1to T = T",
which we denote Z% € {N, R}T" x {h,t}"", to the transfers 7% (Z%) € R? to be paid if
renegotiation breaks down at T* = T". Specifically, for any Z% with 7" > 1, we let s be

the signal extracted in the first round in which R is reported by the agent. Then:

B if R¢ 2%,
TN Z9) = (U — AU —d) if R € Z% and s = h,
cENU+ AU —d) if Re Z% and s" =+t.

Where AU is such that£9]
1 1
AU >d and 51/151 (U°— AU —d) + §V,§I(U° + AU —d) < V55, (16)

In €%, the agent can send in each round T either a status quo report N or an irre-
versible punishment report R. If R is not reported, then the second-best transfers ¢°? are
implemented. As soon as R is sent, all future reports become payoff-irrelevant and the
punishment outcome characterized in is implemented. Observe, in addition, that the
report R induces a lottery over first-best efficient contracts, whose outcomes are therefore

not improvable by any renegotiation.

The agent’s strategies. At T = 0, the agent observes % and chooses e € {H, L}. Then,
for any 7" > 1, the agent’s histories have a recursive structure. At round 7".i7), she makes
a report in the last accepted mechanism, which we denote m%; € {N, R} (if this is £°*)
or m%, € {N, R} (if this is £7 with 7' < T"), and she hence observes either s5 € {h,t} or
st, € {h,t}. Then, at stage T".ii7), she selects p”" € {y,n}, and, if p”" = y, she reports
e € {H,L} in &7 in round T".iv) . We denote HZH a history of the agent up to 7".iv).
The principal’s strategies. The principal may attempt to renegotiate the mechanism €%
at any round 7 > 1, until 7* realizes. A renegotiated mechanism &7 offered at round T

requires the agent to submit a report é7 € {H, L} at T.iv). Further, at any 7" > T, it

30Existence of AU satisfying follows from continuity and the fact that, for large AU, the RHS
diverges to —oo while V8 is finite. The condition AU > d is then satisfiable for AU in an appropriate
range.
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also requires her to send a report ml, € {N, R} while privately disclosing the realization
st, € {h,t} of a fair coin tossﬂ The mechanism &7 specifies the sequence of decision
rules 77 = (7},)p>7, with 77, being the rule for round 7" > T'. Tt associates any sequence
of reports and signals Z% € {H, L} x {N, R}T~T=1 x {h,t}7" -7~ exchanged between the
agent and &7 up to round 7" to the transfers 77, (Z%,) € R? to be paid if renegotiation
breaks down at T* = T". We let Z be the set of all such ¢7' mechanisms.

We denote Hjp = £% the relevant history for the principal at 7" = 1, which only
contains the offer £€%*. We then let HL = (£%,& pt, ..., €071 pT~1) be a principal’s
history at the end of stage T'. Thus, a (pure) behavioral strategy for the principal in
GL(£%) associates to each T' > 1 and to each H% a renegotiated mechanism 7 € =.

To start with, denote P¥* the set of principal’s histories, and A% the set of agent’s
histories, such that p”" = n for all 77 : 1 < T' < T. At any such history, £ is still in
place in round 7. At any history H5 € P9 the principal may either offer a mechanism
¢T or decide not to renegotiate. At any history (HY%,&T), with HL € A%, the agent
reports m%* € {N,R} in &% and privately observes the signal s3* € {h,t}; then, at
any (H%, €7, m%, s%) she selects p” € {y,n} and, at any (H%, £, my*, s%,y), she selects
el e {H, L}.

We next construct players’ equilibrium strategies, and show that there are no profitable

unilateral deviations. The proof is developed in three steps.

Step 1. Strategies and beliefs. We first describe the agent’s equilibrium behavior in
GL(€%). At T = 0 she takes e = H with probability one. Then, we explicitly characterize
her reporting and participation behavior only at the histories (HZ%, &) such that e = H
and HY € A¥. Relative to all other histories, we only require that the agent behaves
in a sequentially rationally way given the principal’s equilibrium behavior. Consider, in
particular, any history (HZ%, &%, m%, s% y), in which (m%, %) € {N, R} x {h,t} is the
communication entertained by the agent with the mechanism £%. Since the renegotia-
tion offer ¢7' cannot condition on such private communication, and its acceptance effec-
tively replaces any previous mechanism, the agent’s continuation payoff corresponding to
(H%, €7, m%, s% y) is indeed independent of (m9*, s9*). We denote it U% (7).

To construct the agent’s reporting and participation behavior at any (H%,&T), we
distinguish two mutually exclusive situations, according to the relevant round 7" and the
history of the communication Z¥ | between the agent and the original mechanism £%* up

to this round.

31The restriction to ¢7 € Z is without loss of generality. Upon accepting ¢7, the agent’s prior com-
munication (m%,s%% )7 <7 within £%* becomes payoff-irrelevant: agents with the same e but different
communication histories evaluate any contract identically. Hence, as in Section |3 the principal cannot

screen on this information, and restricting the message space of ¢7 to effort reports involves no loss.
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1. T >1and R € Z¥ |. That is, the history of communication within £% contains at
least a report R. In any such case, we let the agent report m% = R in £%*. In addition,

her participation decision depends on the signal s received from £%. Specifically:
o If s9* = h, then she selects p” = y iff U% () > U° — AU —d,
o If s9* = ¢, then she selects p” = y iff U%(€7) > U° + AU —d.

2. Bither T =1, or R ¢ Z% . In any such case, the agent’s report in £%, which we

denote mY*, is determined as follows:
e She reports m%* = N if either U% (¢7) < U° — (AU —d) or &7 =
e She reports m9* = R if U%(¢7) > U° — (AU — d).
Finally, at any (H%, 7, m%, s%), the agent participation within €7 is such that:
o If s9* = h, then she selects p! = y iff U%(&T) > U° — AU —d,

o If s9* = ¢, then she selects p” = y iff U%(¢7) > U° + AU —d.

We next specify the principal’s equilibrium behavior in GZ(£%). We let the principal
choose €7 = () at any history HEL € P¥ on the equilibrium path. Relative to all other
histories, we only require that the principal behaves in a sequentially rational way given his
beliefs and the agent’s equilibrium behavior. We assume that, at any on-the-equilibrium-
path history HL € P, the principal believes that e = H with probability one, and that
mY = N for all T" < T, while he assigns probability one-half to each s € {h,t}. Thus,
the principal’s on-path beliefs are Bayes-consistent given the agent’s behavior. We also
require that, at any history H% € P2 which is off the equilibrium path, the principal still
believes that e = H with probability one, while holding a degenerate belief on m% = R
for each T" < T starting with 77 = 1. In particular, he believes that s = ¢ has been
disclosed by £ to her at the initial round.

Step 2. The agent’s sequential rationality. We establish the sequential rationality of the

agent’s effort and communication behavior.

—FEffort choice. Given the principal’s equilibrium behavior, choosing e = H and reporting
m¥ = N at any T > 1 yields the agent her reservation payoff U°. Suppose, instead, that
she takes ¢ = L at T = 0. Then, any subsequent reporting strategy yields her again U°.
Indeed, reporting m%* = N in €% at any T' > 1 yields the second-best transfers ¢52. By

reporting R in any round 7' > 1, the agent triggers the punishment lottery yielding her
1 1 1 1
EUL(CZI(UO — AU —d)) + EUL(C?(UO + AU —d)) = §(U0 —AU) + §(UO +AU) = U,
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since Ur(cff (U)) = U+d. Thus, choosing e = L does not constitute a profitable deviation.

—Reporting and participation decisions. Consider any agent’s history (H%, £T) such that
HL € A% and e = H. Once again, we distinguish two mutually exclusive situations,
according to the relevant round T and the history of the communication Z%* | between

the agent and the original mechanism £% up to this round.

1. T > 1and R € Z% ,. That is, the history of communication within £%* contains at least

O any agent’s report from round T onwards in £%*

a report R. In any such case, given 7
is payoft-irrelevant, guaranteeing the optimality of our constructed behavior. Concerning
participation, rejecting a renegotiated offer £ secures the agent a continuation payoff of
either UY — AU —d (if s = h) or U’ + AU —d (if s® = t) given the principal’s equilibrium
behavior. This guarantees the optimality of our constructed participation behavior.

2. Either T'=1,0or R ¢ Z% ,. Consider first on-path histories, that is, any agent’s history
(H%,0) such that HY, € A% and e = H. By reporting my* = N in £% at any T > 1 the
agent obtains the second-best transfers ¢, which yields her the reservation payoff U°.
By reporting R in any round 7" > 1, the agent triggers the punishment above, and gets
the expected payoff U° — d < U° regardless of her subsequent communication behavior.
Thus, m%* = N is the unique optimal report.

Consider next any off-path agent’s history (H%,£7) such that HY € AY and e = H.
The agent’s constructed participation behavior can be straightforwardly verified to be
sequentially rational by comparing, for each (m%,s%) € {N, R} x {h,t}, her payoff of
accepting ¢7 to that of holding £°%.

A 1 . 1 .
max{U°, U (7))} > 3 max{U"— AU —d, Ug*(gT)}+§ max{U+AU—d, U¥ (")}, (17)

Indeed, the LHS of is the agent’s payoff from reporting N and following the con-
structed participation behavior, and the RHS represents the expected payoff from report-
ing R and following again the constructed participation behavior. It is then easy to check
that the threshold reporting strategy constructed above is consistent with .

Step 3. The principal’s sequential rationality. We now verify the optimality of the prin-
cipal’s behavior where explicitly characterized. We start from the principal’s histories
on-the-equilibrium-path. That is, we take any history Hb5 € P such that ¢7 = () for
any 7" : 1 < T’ < T. In any such history, the principal holds the Bayes-consistent belief
that the agent has reported m%y; = N in % in any 7" < T.

To verify that the principal does not gain by offering £7° # () at round 7', we distinguish
two cases according to the value U%*(ST)

32Gince the non-profitability of a deviation, given the agent’s equilibrium behavior, does not depend
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1. U%(T) < U° — (AU — d). The agent’s equilibrium behavior prescribes to report
my* = N in £% after observing ¢7 and to reject it for any s% € {h,t}. Hence, any such
T offer is payoff-equivalent to 7 = () for the principal.

2. U%(ET) > U® — (AU — d). The agent’s equilibrium behavior prescribes to report
m% = R in £%*. This guarantees her the payoff U’ — AU —d (if s%* = h) or U + AU —d
(if s3* = t), which can be achieved by selecting p! = n in any history (H#, &7, R, s9).

Thus, the principal’s continuation payoff is at most

1 1
3 FLHUY — AU — d) + 5v;;“f(UO + AU —d) < V55,

where the inequality follows from (16]). Hence, any such deviation is unprofitable to the
principal.

Finally, consider any off-the-equilibrium path history H% € P¥*. In any such situation,
by construction, the principal believes that m% = R has been reported by the agent in
€% at any 7" < T, and that s = ¢ has been disclosed by £% to her at T'= 1. Such a
communication guarantees that £€%* implements a first-best allocation, which involves full
insurance, and yields the utility U° + AU — d to the agent in any future rounds. Thus, it
cannot be profitable for the principal to renegotiate under this belief, and, at any 7" > T,

it is optimal for him to stick to his equilibrium offer €7 = .

Therefore, deviations starting at any H% € P2, on and off the equilibrium path, yield
weakly less than V5P to the principal in the continuation of (HE%,&T), given his beliefs
and the agent’s equilibrium behavior. This guarantees that the principal’s equilibrium

strategy of offering £7 = () at any such history is sequentially rational. |

on the principal’s continuation play after offering &7, the analysis below guarantees that all deviations
starting at HZ are unprofitable for the principal, not only the one-shot deviations.
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B Smart Contract Implementation

We present, as a proof-of-concept, a fully specified example of a smart contract for a
parameterized version of our framework using the commit-and-reveal technique. In par-
ticular, let the normalized CRRA utility function u(w) = \/w describe the agent’s pref-
erences over transfers, implying that the monetary equivalent is ®(u) = u?. Let U° = 10
be the agent’s reservation utility. The cost of high effort is d = 2 with success probability
pr = 3/4, while for low effort the probability is p;, = 1/4, i.e., Ap = 1/2. The good
output is g = 1300, while the bad output is b = 100. Hence, yyz = 1000 and y; = 400.

It is easy to check that AU = 2 together with the parameterized example satisfies
(2)), yields the self-revealing mechanism ** with transfers (in monetary terms, i.e., w =
D (u) = u?)

(N, h) = (169,81);  7**(N,t) = (169, 81)
T*(Ry, h) = (121,49); 7 (Ry,t) = (225,121)
T (Ra, h) = (225,121); 7" (Rs,t) = (121,49).

Figure[I] presents the smart contract that implements v** over the Ethereum blockchain
using the commit-and-reveal techniquef?| The smart contract is written in Solidity, the
most common language for Ethereum smart contracts.

To allow the agent to send a secret (hashed) message m € {N, Ry, Rs} with a random
seed o, the smart contract implements the commit-and-reveal technique as previously
discussed, based on the public keccak-256 hash function.

After sending the hashed message, the agent waits for the principal to report the
realized output level Y € {g,b}, at which point the smart contract generates the signal
s € {h,t} in a random fashion by recording the realized signal publicly on the blockchain.
Finally, the agent is to report the seed o to the smart contract by which the smart contract
can recover the original message m so that it can make the transfers according to 7**.

We set up the contract such that if the agent does not reveal the seed o honestly,
this is interpreted as tearing up the original contract and accepting a renegotiated one,
(p = y), so that the smart contract stops in that no transfers flow and message m stays
hidden. This “waiting indefinitely” behavior faithfully implements the paper’s framework,
where accepted renegotiation causes the original mechanism to simply stop executing, with

transfers flowing instead through the renegotiated contract.

33The contract is a minimal proof-of-concept only. It is intentionally not security-hardened. Concretely,
it uses a placeholder public coin S (not a verifiable randomness source), does not gate reveal on a recorded
renegotiation outcome, does not escrow funds or enforce deadlines/liveness, and accepts Y from the
principal without authenticated reporting (relying instead on off-chain legal enforceability). The numeric
transfer constants represent wages w = u? consistent with the utility table, expressed in Ether units.
These simplifications are deliberate and solely for illustrating the interface and timing pattern (commit
privately; reveal only at enforcement). A production deployment would replace each placeholder with
its standard counterpart (verifiable randomness or two-party coin-toss, renegotiation-gated reveal /state
machine, escrow with deadlines and fallbacks, authenticated Y reporter or explicit legal backstop).
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1pragma solidity ~0.8.0;
2 contract CommitRevealTransfer {
3 address constant AddressP = 0x362CbcC7a9955332e61d47c107543398C3D25261 ;

4 address constant AddressA = 0x818CbcC8del83AED16f850B17¢300DB40a4544EDb ;

5 uint256 constant TG=169; uint256 constant TGH=121; uint256 constant TGT=225;
6 uint256 constant TB=81; uint256 constant TBH=49; uint256 constant TBT=121;

7 bytes32 public HASHCOMMIT; string public S; string public Y;

8 bool public isCommitted; bool public isRevealed; bool public isYSent;

9 constructor () {

10 require (msg. sender=—AddressP, "Only AddressP can deploy");}

11 function commit(bytes32 _hashCommit) external {

12 require (msg. sender=—=AddressA, "Only AddressA can commit");

13 require (!isCommitted, "Already committed");

14 HASHCOMMIT = _hashCommit; isCommitted = true; }
15 function generateS() internal {

16 require (isCommitted , "Waiting for commit");

17 S = block.timestamp % 2==07"Head" : "Tail"; }

18 function sendY (string calldata _Y) external {

19 require (msg. sender=—=AddressP, "Only AddressP can send Y");

20 require (isCommitted , "Waiting for commit");

21 require (keccak256 (abi.encodePacked (.Y) )==keccak256 (abi.encodePacked ("G")) ||
keccak256 (abi.encodePacked (.Y ) )=—keccak256 (abi.encodePacked ("B")),"0Only G/B");

22 Y = .Y; isYSent = true; generateS () ;

23 }

24 function reveal(string calldata _message, string calldata _salt) external {

25 require (msg. sender=—AddressA, "Only AddressA can reveal");

26 require (isYSent , "Waiting for Y");

27 require (!isRevealed , "Already revealed");

28 require (keccak256 (abi.encodePacked (_message, _salt))=—HASHCOMMIT, "Invalid");

29 require (keccak256 (abi.encodePacked (_message ) )=—keccak256 (abi.encodePacked ("N")) ||
keccak256 (abi.encodePacked (-message) )=—keccak256 (abi.encodePacked ("R1")) ||
keccak256 (abi.encodePacked (_message ) )=—keccak256 (abi.encodePacked ("R2")), "
Invalid message");

30 isRevealed = true; uint256 transferAmount = determineTransferAmount(_message);

31 payable(AddressA) . transfer (transferAmount); }

32  function determineTransferAmount(string memory _message) internal view returns (uint256

) A

33 if (keccak256(abi.encodePacked(_message))=—=keccak256(abi.encodePacked("N"))) {

34 return keccak256 (abi.encodePacked (Y))==keccak256 (abi.encodePacked("G"))?TG : TB;

35 } else if (keccak256(abi.encodePacked (-message))=—keccak256(abi.encodePacked("R1")))

{

36 if (keccak256(abi.encodePacked(Y))=—=keccak256(abi.encodePacked("G"))) {

37 return keccak256(abi.encodePacked(S))=—=keccak256 (abi.encodePacked("Head")) ? TGH
. TGT;

38 } else {

39 return keccak256(abi.encodePacked(S))=—=keccak256 (abi.encodePacked("Head")) ? TBH
. TBT;

40

41 } else {

42 if (keccak256(abi.encodePacked(Y))=—keccak256(abi.encodePacked("G"))) {

43 return keccak256 (abi.encodePacked (S))=—keccak256 (abi.encodePacked ("Head")) ? TGT
: TGH;

44 } else {

45 return keccak256(abi.encodePacked(S))==keccak256 (abi.encodePacked("Head")) ? TBT
: TBH;

46 }

47 }

48 }

49 receive () external payable {require(msg.sender=—AddressP, "Only AddressP can send");}

50 }

Figure 1: The smart contract implementing the self-revealing mechanism ~** with a reveal-
and-commit technique based on the keccak-256 hash function in Solidity.

44



C Additional Results

This appendix develops several extensions.

Irrelevance of Random Mechanisms in Fudenberg and Tirole (1990)

We here formalize the claim that random mechanism play no role in the F'T' construction.
To achieve this task, we let G be a game that enlarges the set of available mechanisms
C to C to include all stochastic mechanisms 7 : E — A(R?).

Lemma 4 G has only one equilibrium allocation, which coincides with that in Ge.
Proof. For any 7 € C, define 5(e) = & and let
U, = peElug|Ce] + (1 — pe)E[up| ]

be the agent’s expected payoff after taking the effort e € E, and truthfully reporting it
in 4. Consider the subgame G5(7%), and suppose that e = H is chosen with probability
x € [0,1]. The revelation principle guarantees that the maximal payoff attainable by the
principal by a renegotiation offer 4" & C is the value of the program P(x, Uy, U L):

V2, U, Up) = max Y (x) — 2[puB(P(uy)|&) + (1 — pr) (P (up)|E)]

< - ) E@(u)[E) + (1 — p)E@w)E)]

st puB(ugley) + (1= pr)E(w|éy) > Un (IRCh)
prE(u|) + (1 - po)E(w|) = 0 (IRCY)
puB(ug|yy) + (1 — pu)E(up|cyy) > puB(uy|cl) + (1 — pr)E(u|c}) (ICCh)
PrE(uy|) + (1 — pr)E(w|) > prEugly) + (- pr)E(wdy)  (I0Cy)

where Y (z) = 2Yy + (1 — x)Yy. The following two results hold:

Claim 1 P(z, Uy, UL) admits a unique solution, which is deterministic.

Proof. See|Chade and Schlee| (2012, Proposition 1). |
Denote 7" (%, x) the unique solution of P(z, Uy, Up).

Claim 2 For any 7 € C and x € [0,1] there is a 5 € C such that v"(3,x) = 7" (75, 7).

Proof. Given 7 € C, we take the mechanisms v; € C yielding the transfers U = E(u,|é,)
for each (e,w) € E x {g,b}. Thus, for any = € [0, 1], the optimal renegotiation offer in
G¢(75) obtains again from solving P(x, Un,Up). |

Given vz, the following holds:
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Claim 3 The subgames G&(5) and Ge(v5) have the same equilibrium allocations.

Proof. Consider G4(%), and let z € [0, 1] be the equilibrium effort distribution. Given
Claim [2] the optimal renegotiation offer is v" (¥, z) = 4"(v5, ), which is accepted by the
agent, who truthfully reports her effort | Furthermore, the transfers corresponding to the
unique solution of P(z, U ", U 1) are implemented. Thus, playing e = H with probability
x € [0,1] is sequentially rational for the agent in G(¥) if and only if it is sequentially
rational in G¢(7s). This guarantees that the two subgames have the same equilibrium

allocations. [ |

To conclude the proof, denote 7" the equilibrium probability of e = H characterized
by FT, and UFT the equilibrium rent of the agent. Claim [3|implies that the upper bound
VET = v*(2FT UFT UFT) of the principal’s payoffs characterized by FT in G¢ is also
an upper bound in G¢. In the latter game, the principal can achieve V7 as the unique
continuation payoff by offering any of the mechanisms characterized in [Fudenberg and
Tirole| (1990, Proposition 3.4). Thus, the unique equilibrium’s payoff of the principal in

Gg is VIT | and the same distributions over efforts and transfers are implemented. |

The Case of Bounded Transfers

Let the agent’s utility over monetary transfers exhibit constant relative risk aversion
(CRRA) structure:

with CRRA parameter a € (0,1). The function u has domain [0, 00) and range [0, 00);
hence, its inverse ®(u) = (au)= has domain [0, 00) coinciding with the range of u. The
requirement that monetary transfers be non-negative imposes a form of limited liability
for the agent. At the same time, this assumption renders unfeasible those mechanisms
that rely on “extreme” transfers to punish the principal’s attempts to renegotiate, as it
may be the case for the mechanism v* constructed in Section [3]

We now show that our implementation result also obtains in this context. Specifically,
we first establish an analogue of Lemma [I| for CRRA preferences, and then exploit it
to argue that a slightly modified version of the mechanism +* allows to implement the
second-best allocation. In developing our analysis, we focus on situations in which the
restriction on transfers does not affect the agent’s incentives to undertake her efficient
level of effort. That is, we let

pPL

0 t=2= 1
U’ >U At (19)

34See [Fudenberg and Tirole| (1990, p. 1295).
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which is necessary and sufficient to guarantee that the second-best allocation involves
strictly positive transfers in each state. Given (1), we therefore have ¢8 = (U 04 %d, Ul — Z—Lpd> .

We can now establish the following:

Lemma 5 If the agent’s preferences are such that ®(u) = (au)« with a € (0,1) and
holds, then there is a w € (0,1) such that, for all e € E:
UO _ UZ

™

0__ 774
V58 > max {VeFI ( + U’“’) (1= o) VI UY + 7VIC (u + Uf) } . (20)

™

Proof. For a given e € F, define the function V, : (0,1) — R as

0 71t
mwwzu—muﬁQW+wm”(Q—ii+UQ.

™

Note that V, is defined and continuous for all = € (0,1). We now argue that:

. ) (UO;UE —i—UZ—i-D(e))
lim V,(7) = Y, — ®(U* + D(e)) — lim

—0 T—0 1
T

= —00. (21)
To see why holds, simplify the last term as:

o (U pe)) (U U D)) et ey Dy
lim = lim —T = lim —=~

1 Uo—_yt YA 1 ’
m—0 - —0 — + Ut + D(@) - uw'—oco U

under the change of variable v’ = UO+UZ + U* + D(e). Since U° > U* by , and since
a € (0,1),

@ ! 1—a
jim 200 00 = g @)= 00 - 0 = e,

u’ —00 u u’ —00
which implies . Thus, for each e € F and each constant k € R, there exist d.(k) €
(0,1) such that V,(m) < & for all 7 € (0,6,(k)). Let @, = 6.(V/C(U?)) for all e € E.
Then,
VICW®) > V.(x) Yr e (0,7.).

It follows that for any choice of 7 € (0, min{7g,7.}), we have
VICU°) > Vi(r) Vee E. (22)
From U° > U*, VI strictly decreasing and @ strictly convex, it also holds that:

0__ 774 0__ 770
V() > max {vff (u + Uf> (1= mVEHUY 4+ 7V IC (u + Uf) } :
™ m
(23)

351f is violated, then there is no pair of nonnegative transfers such that both (/C) and (PC)
simultaneously bind in the second-best problem, and corner solutions emerge.
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Inequalities and together yield VI¢(U°) > RHS of for all e € E. Since
VB = VIC(U®) > VIC(U®) by the maintained assumption that high effort is optimal in
the second-best, it follows that holds for all e € E. [ |

The proof of the lemma shows how to construct a set of punishments against renegoti-
ation when the monetary transfers received by the agent in each state are constrained to
be nonnegative. The result obtains by appropriately designing the transfers’ distribution
(m, 1 —m).

Indeed, the distribution (7,1 — 7) characterized in the proof is key to define the
mechanism 7* = {M® 8% o° 7%}, with M® = M* and S* = S*, o’(h) = 1 — 7 and

ob(t) = m, and transfers

Ue—ut
(N, h) = 7°(N,t) = *8; (R, h) = C(UY); (R, t) = ¢ <— + Ue> :
T
This mechanism shares with v* the idea that the message m = R activates a (random)
counter-offer, which activates the relevant punishment. By sending m = R in 7* the agent
receives a “low” transfer with probability 1 — 7 and a “high” one with probability . At

the same time, the distribution is designed to guarantee the agent an expected utility of

UO.
’ o — gt

™

(1—7r)U4+7r< +Uf) =U"Y,

which makes incentive-compatible to report m = N on path. The same logic devel-
oped in the proof of Proposition [1| then guarantees that +* implements the second-best

allocation.

Self-Enforced Timing of Communication

We demonstrate that Proposition [If still holds if the agent can strategically select the
timing of her report in the original mechanism, and the associated disclosure.

To achieve this goal, we introduce a new class of self-revealing mechanisms I'*, with
= {MH S* ot TH} € T*. A mechanism in this class modifies the primitive game by
allowing the agent to report at stages (iii) (iv), (v) and (vi).

The space of the agent’s reports in v is hence M* = {N, R,0}*, which extends M
along two directions. First, four stages of communication are allowed. Second, in each
stage, the agent can send the empty message (), which represents her choice of not reporting
to the mechanism in that stage. Following the same intuition, we let S* = {h,t,0}* be
the set of signals. For any stage ¢t € {iii, iv,v,vi}, we denote by m; € {N, R, ()} an agent’s
report to the mechanism v#, and by s; € {h,t,0} a signal sent by the mechanism to the

agent.
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We shall construct +* € I'* to be such that the agent effectively selects the timing of
her relevant communication. This guarantees that no external enforcement is required to
verify the adherence on a specific communication protocol. In particular, we let +* be
such that:

1. The decision rule 7 : M* x §* — R? is flat over permutations of (my, s¢)%,;;.
Furthermore, it forces the agent to report only one non-empty message in the mech-

anism, by inflicting a very large punishment to her for any (my,s;)¥",;; such that

{m, = 0)] #3. :

2. Each stage-t disclosure rule oy : {N, R, 0} x {h,t,0}'"' — A({h,t,0}) shares the

following features:

o If there is a sy # (), with ¢ < t, then o; is degenerate on s; = (). That is, a

mechanism 7* discloses at most one non-empty signal.

o If sy = () for any ' < t, then two cases may occur. First my = @) for all ¢’ < t,
in which case oy is degenerate on s; = () (7" does not send any meaningful
signal). Second, there exists my # () with ¢/ < t but sy = () for all ¢/ < ¢, in
which case oy extracts the outcome s; € {h,t} of a fair coin toss. That is, a
mechanism ~* discloses a coin toss outcome to the agent when she reports a

non-empty message.

We denote by I'* the set of all such mechanisms. Thus, any optimal report of the
agent in a given v* € I'* must involve exactly one non-empty message, thereby inducing

v

the disclosure of only one non-empty signal. Let (my,s;)}",;; be any array of messages

i
and signals which exhibits this feature, and denote by (m;,s;) € {N, R} x {h,t} its only
non-empty element. We let 7#(m;, s;) be the corresponding decision implemented by 7#,
which, given (1), does not condition on the time index of the non-empty message and
signal but only on their content. Thus, a mechanism v* € I'* is completely identified by
a tuple of eight transfers (79(1;, 5;))(m,.s;)e{N,R} x{ht} € R3.

This construction guarantees that a court need not verify the exact sequence of the
communication taking place in v* to enforce its transfers, but only their effective content.
In the same vein, a court does not need to determine whether the signal is sent after an
offer is made and before its acceptance. The specific timing of disclosure is ultimately
determined by the agent, through the non-empty report she makes in *.

We now consider the overall game Gr. where the principal selects a mechanism in I'*

at the ex-ante stage. The following holds.

Lemma 6 The game Gru has a unique pure-strategy equilibrium allocation, which coin-

cides with the second-best one (H,c%P).
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Proof. We start by considering the following subgame G« ("), which starts as of stage
(iii) if the agent has accepted v

(iid)

(i)

The agent sends a private message m;; € {N,R,0} in y*. If my; # () the agent
11
202
receives the private signal s; = () with probability one. After this communication

receives a private random signal s;; € {h,t} distributed as ( ), otherwise she

phase, the agent privately chooses e € F.

If mg; # (0, the agent sends the private message m;, = 0 to v* and receives the
private signal s;,, = (. If m;; = (), the agent sends the private message m;, €
{N,R,0} to v*: then, if m;, # 0 the agent receives a private random signal s;, €
{h,t} distributed as (%, %), otherwise she receives the private signal s;, = (). After
this communication phase, without observing e nor (my;, m;,), the principal makes
a public renegotiation offer v" € C'U{0}, where () represents the principal’s decision

not to renegotiate.

If (mii, miy) # (0,0), the agent sends the private message m, = 0 to 4#, and she
privately receives s, = 0. If (my;, mi,) = (0,0), the agent sends a private message
my, € {N,R,0} to v*: then, if m, # () the agent receives a private random signal
Sy € {h,t} distributed as (%, %), otherwise she receives the private signal s, = ().
After this communication phase, if 7" # (), she publicly accepts or rejects 4" by
declaring p € {y,n}. Acceptance implies that * is replaced by ~".

Ify" =0 or p = n, and (my;, my, my,) # (0,0, 0), the agent sends the private message
my; = 0 to 4, she privately receives the private signal s,; = (), the array (mj, s;) is
publicly revealed and transfers occur according to 7#(m;, s;). If v" =0 or p = n,

and (Mg, Mgy, my,) = (0,0,0), the agent sends the private message m,; € {N, R} to
11
202
(my, 8;) = (Muyi, 84;) is publicly revealed and transfers occur according to 7 (mj, s;).

7*, she privately receives a random signal s,; € {h,t} distributed as ( ), the array

If p = y, the relevant transfers are determined by a report m” € E sent by the agent

in 4". Nature publicly draws the output realization ¢ or b, and final transfers occur.

A behavioral strategy of the principal in the subgame is a distribution over the

set of the renegotiated offers . Since communication is private, the principal can-

not strategically nor contractually condition his offer on the agent’s report’s timing,

nor on its contentm A behavioral strategy of the agent specifies a distribution over

36To streamline exposition, we incorporate in the description of Gr. the (optimal) agent’s behavior of
sending only one non-empty message in y*.

37Similar arguments to Section guarantee that revelation mechanisms not featuring disclosures of
signals are without loss of generality at the renegotiation stage.
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mii; € {N,R,0} at the initial node and an effort probability x € [0,1] at any history
(misiy s). If my; # 0, it features a distribution over participation decisions p € {y,n}
at each history (my, sii,e,0,0,7",0,0) and a distribution over m" € E at the contin-
uation where p = y. If my; = 0, it features a distribution over m;, € {N,R,(} at
each history ((,0,e). Then, one must distinguish two cases. If m;, # 0, the agent’s
behavior features a distribution over participation decisions p € {y,n} at each history
(0,0, e, m4y, Sin, v, 0,0) and a distribution over m” € E at the continuation where p = y.
If, instead, m;, = (), the agent’s behavior features a distribution over m, € {N, R, ()} at
each history (0,0,e,0,0,~4") and a distribution over participation decisions p € {y,n} at
each history (0,0,e,0,0,~4",m,, s,), followed by a distribution over m" € E if p = y and
a distribution over m,; € {N, R,0} if p =n and (m,, s,) = (0, 0).

We now show that (H, c%P) is indeed a pure-strategy equilibrium allocation of Grpu..

Consider in fact the mechanism v** € I'* that executes the same transfers as v*: i.e.,
T (my, s;) = 7(my, s;) for all (m;,s;) € {N, R} x {h,t}. This mechanism implements
the second-best allocation (H,c%P) in the subgame Grpu (y**).

To get the result, we construct a continuation equilibrium of Gr(y**) where on the
equilibrium path: the agent chooses high effort e = H; the principal makes no renegoti-
ation offer, 4" = (); the agent reports m;; = m;, = 0 and m, = N. Off the equilibrium
path, if the principal offers v" # (), the agent always selects m, # () and takes her par-
ticipation decisions p following the rules established in Proposition [l The arguments
developed in the proof of Proposition [I| guarantee that these strategies constitute an equi-
librium. In particular, since 4" = () at equilibrium, the option to report m;; or m;, early
is strategically irrelevant for the agent.

Thus, given this continuation equilibrium, the principal obtains V°? by offering ~v**
at the ex ante stage. Since the principal cannot obtain more with any other offer, this is
an equilibrium payoff that she obtains in Gru.

Following the logic developed in the proof of Proposition 2, we now argue that this
is the only principal’s continuation payoff at Gr.(y**) compatible with a pure strategy
equilibrium of Gru. To establish this, we construct a perturbed version v# of v** to which
the principal can deviate and obtain a unique continuation payoff arbitrarily close to V5B,
under the restriction to pure strategies. Indeed, v# induces the same transfers as the tie-
breaking mechanism ~. in the proof of Proposition [2t that is, 7/(m;, s;) = 7.(m;, s;) for
all (m;, s;) € {N, R} x {h,t}. Observe in particular that 7/(m;, h) = /9(U° — AU — ke)

with £ > 2. We introduce the additional requirement in the construction of * that s is
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large enough to verify for both e € @
1 1
5veFf(UO — AU — ke) + 5VJC(UO + AU) > VFI(U° + AU). (24)

We now argue that every equilibrium in pure strategies of Gr.(v*) yields exactly

Vi (c2B) to the principal. The proof is in five steps.

—Step 1. We show that there is no pure-strategy equilibrium of Gru(v*) where either
My 7 0, or my; = 0 but my, # 0 on the equilibrium path.

Suppose first that either m;; = N, or m;; = 0 but m;, = N on path. For Bayes-
consistency, (mg; = N,my = 0) or (my; = 0,m;, = N) must also be the principal’s
equilibrium belief on the agent’s on-path stage-(iii) and stage-(iv) reports. Under any of
such beliefs, the principal’s optimal renegotiation offer must be degenerate on c£!(U°) or
cFI(U® — €), according to the agent’s equilibrium effort decision e € E. These transfers,
in fact, yield the agent her reservation payoff U° (if e = H) or U° — ¢ (if e = L) from
TH(N, s) = 2B, while yielding the full-insurance payoff VA1(U?) or V/1(U° — €) to the
principal. Then, by the principal’s sequential rationality, an offer as such must be featured
in any equilibrium as described. However, the agent, anticipating this offer, could deviate
by sending, for example, m;; = () followed by the same effort e € E featured in her original
behavior and m;, = R. This would yield to her the expected payoff U° + % > U0 if
e=H,or, U’ + % > UY — ¢ if e = L, which constitutes a contradiction.

Suppose instead that m;; = R or my; = @ but my, = R on the equilibrium path.
Again, the principal must hold the degenerate equilibrium belief that the agent’s on-path
stage-(iit) and stage-(iv) reports are (m;; = R,my = 0) or (my; = 0,m;, = R) in
the two cases. In this scenario, the principal’s optimal renegotiation has to be either
cFL(U° — AU — ke), or I'(U° + AU), where e € E is the agent’s equilibrium effort
level. Indeed, the proof of Proposition [2| establishes that the principal’s optimal offer
must be a full-insurance contract, as long as he believes that the agent’s effort behavior is
degenerate. Also, the utility left to the agent by such an offer must be either (U° 4+ AU),
the lowest utility level that she may accept for both s; € {h,t}, or U’ — AU — ke, the
lowest utility she may accept when s; = h. Comparing the principal’s payoffs under the
two deviations gives the terms of . Hence, the inequality in guarantees that
inducing cf*
ec k.

Then, any pure-strategy equilibrium as described must feature this offer of the princi-

(U° — AU — ke) is the best option for the renegotiating principal, for each

pal. Since, for any equilibrium e € E, this offer yields no more than U.(7#(R, h)) to the

agent, her payoff at any equilibrium as such would be U° — 5, which she obtains under

38Existence of such a & obtains by observing that lim V1 (U° — AU — ke) = oo, and that all other
K—r 00
terms in (24)) are finite for every x > 2.
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any optimal participation behavior, and for each level of effort, after sending m = R.
Hence, the agent can profitably deviate: for instance, she can send m;; = N, obtaining
U? in the continuation play by selecting the same e € E as in the original behavior, and
rejecting ~" for all s;; € {h,t}. This implies that the reports (m;; = R,m;, = 0), as
well as m;; = () followed by m;, = R on the equilibrium path, are incompatible with a
pure-strategy equilibriumﬂ

—Step 2. This step shows that the agent’s option to delay her report until after the
participation decision (i.e., choosing m, = §)) produces no strategic effects.

To show this, we argue that all pure-strategy equilibrium allocations are also supported
in a pure-strategy equilibrium where the agent sends m, # () after every offer 4" on or
off the equilibrium path. In particular, any pure-strategy equilibrium of Gru(y#) where
m, = ) is taken at some history (0,0, e,d,(,~") has a corresponding equilibrium where
m, = NN at every such history, supporting the same equilibrium allocation.

To see this note first that, in v#, the agent obtains U° (if e = H) or U’ —¢ (if e = L)
from m; = N. Instead, from m; = R, she obtains in expectation U° — 5¢€ regardless of her
effort decision. Since € > 0 and xk > 2, the unique optimal report of the agent at every
history (e, 0,0,~",0,0,n) is thus m,; = N.

Furthermore, observe that, by construction of 7#, we have 74(N,s) = 2P for all
s; € {h,t}. Hence, the realization of s; is payoff-irrelevant when m; = N. Starting from
an equilibrium behavior where m, = () in some history off the equilibrium path, the agent
can therefore adopt the following equivalent behavior: send m, = N rather than m, = ()
at every such history and select, for each payoff-irrelevant realization of s, € {h,t}, the
same participation decision taken at (e, ), (,~", 0, () in the original equilibrium. Since the
rejection payoff U, (c28) and acceptance payoff Ug are both independent of the signal, this
participation decision remains optimal. Hence, the newly constructed strategy is featured

in an equilibrium supporting the same allocation.

—Step 3. We show that any pure-strategy equilibrium of Gr.(+*) involves either 4" = ()
or any alternative offer that the agent rejects. Observe that, as established in Step 1, the
principal believes in any equilibrium that m;; = m;, = () with probability one. Also, fix

without loss of generality an equilibrium as constructed in Step 2: in any equilibrium as

39Tn Step 1 we cover explicitly the case that the agent, after reporting my; # 0, selects the same effort
at each history (mi;;, ii;), thereby not exploiting the random signal s;;; € {h,t} to introduce stochasticity
in her choice of effort. Although we do not include the full argument for parsimony, the reasoning in Step
1 extends to such case. The argument extends immediately to the case that m;;; = N since this report
renders the signal s;; payoff-irrelevant in v#. In case the agent reports m;; = R and selects different
effort levels é(h), é(t) as s;i; € {h,t}, for AU large enough, a condition analogue to guarantees that
cg(i)(UO — AU — ke) is still the principal’s optimal offer for any combination of (¢(h),é(t)) € E2. Once
established that the principal makes this offer in any equilibrium as such, the remainder of the argument
in Step 1 follows directly.
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such, the agent always reports in 7* only after observing an offer 4" indexed by a utility
level U 7, but before taking her participation decision. Thus, the principal anticipates that
her optimal reporting and participation behavior will coincide with that characterized in
the proof of Proposition [2| where the agent’s reports exhibit this timing by construction
of 7.. But then, as shown there, any offer accepted with positive probability by the agent
yields to the principal a payoff strictly below V,(cP) for all e € E. This guarantees
that only v" = () or any offer not accepted by agent are compatible with the principal’s

sequential rationality.

—Step 4. Given Step 3, the agent anticipates at her initial decision node that the principal
will offer 4" = (). Consequently, she also anticipates her unique optimal report to be
m; = N, which leads With probability one to the execution of the strictly incentive-
compatible transfers ¢2. Therefore, she is strictly better off choosing e = H.

Taken together, Steps 1-4 imply that every pure-strategy equilibrium of Gru(y#) in-
duces the allocation (H,cS?), yielding to the principal Vi (c2P). Equilibrium existence
in the subgame is ensured by the fact that e = H, my; = mi, = my; = 0, my = N
and 7" = () are mutual best responses. Since hm Vi (c2B) = V9B the logic developed in
the proof of Proposition I guarantees that VSB is the unique equilibrium payoff for the
principal in Gru.. Thus, following again Proposition I, H,c%P) is the unique equilibrium

allocation. [ |

Importantly, Lemma [6] shows that, when the agent is delegated the enforcement of
the communication protocol, the principal can neither push the agent to accept an offer
without reporting in v* (i.e., induce m;; = m;, = m, = ), nor strategically wait until a
report is sent by the agent before making an offer (i.e., induce m;; # 0 or my, # (). While
the proof of Lemma [6] focuses on pure strategies for parsimony, the argument naturally
extends to mixed strategies. In particular, following again the proof of Proposition
any renegotiation that is unprofitable when the agent plays a pure strategy, is a fortior:
unprofitable when effort is mixed. Thus, v" = () is still optimal for the principal in this

richer scenario.

Renegotiation with Public Signals

We here show that privacy of the signals is not needed to achieve our efficiency result.
Specifically, we show that the mechanism ~+** as defined in Section supports the
second-best allocation (H,c°P) at equilibrium. To argue this, first consider the subgame

Gpuw(7*™), which starts after v** is offered and accepted:

(ii1) The agent privately chooses e € E.
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(iv) Without observing e, the principal makes a public renegotiation offer 4" = {M" 7"}
or v" = (), where M" = E and 7" : M" x § — AC, allowing to condition on the

realization of s € S.

(v) The agent sends a private message m € M*™ = {N, Ry, Ry}. The signal s €
S** = {h,t} distributed as o** = (3, 1) is realized and publicly revealed. After this
communication phase, if v # (), the agent publicly accepts or rejects v by declaring

*

p € {y,n}. Acceptance implies that v** is replaced by ~".

(vi) The message m is publicly revealed if and only if v** executes (i.e. either 4" = ) or
p = n) in which case transfers are determined by 7"*(m,s). If p = y, transfers are
determined by a report m” € M" sent by the agent in 4" and the previous realization
of s. Nature publicly draws the output realization g or b, and conditional transfers

are executed.

A pure behavior for the principal in Gp,,(7**) is a signal-contingent renegotiated offer
7”.@ An agent’s behavioral strategy A consists of a randomization (1 — z,z) over e € F
at her initial history, a randomization over messages in M** at each history (e,7"), a
randomization over participation decisions p € {y,n} at each history (e,7",m,s) where
7" # {0} and a randomization over messages in M" at the continuation history where

p = y. The following holds:
Lemma 7 The allocation (H,c%P) is supported in an equilibrium of Gpu(7*).

Proof. For any signal s € §* extracted in v**, let 1/ (s) = arg max,,repr Ue (77 (ML(S), 5))
be an optimal message that the agent may send after accepting ~", having chosen the ef-
fort e € E and observed the public realization of s € §**. Following , we denote U’ (s)
the agent’s corresponding optimal payoff U7 (s) = U.(7" (1% (s), s)).

We now construct a PBE of Gpy,(7**) which implements the allocation (H, ¢5).

The principal’s equilibrium behavior prescribes not to renegotiate, i.e., 7" = 0. We
now construct the agent’s equilibrium behavior starting from the terminal histories. At
each history (e,y" # {0}, m, s, y), she sends an optimal message m’(s) to 4", which she
has accepted. At each history (e,y" # {0}, m,s) the agent’s participation decisions are

the following:

(i) If m = N, for all s € {h,t}, the agent selects p = y iff U7(s) > U";

(i) If (m = Ry, s = h) or (m = Ry, s = t), the agent selects p = y iff U7(s) > U° — AU;

40Gimilar arguments to Section guarantee that revelation mechanisms not featuring disclosures of
signals are without loss of generality at the renegotiation stage.
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(i4i) If (m = Ry,s =t) or (m = Ry, s = h), the agent selects p = y iff U7 (s) > U+ AU.

At each history (e,7" = 0), the agent sends m = N to v**. At each history (e,y" # )

the agent’s messages in v** look as follows:
(i) For any e € E and for any 7" such that
1 0 frr 1 0 Frr
5 max{U", Ul (h)} + 3 max{U", Ul (t)} >
max {% max{U° — AU, U’ (h)} + % max{U° + AU, U’ (1)}, (25)
%maX{UO + AU, U (h)} + %max{Uo — AU, Ug(t)}},

the agent sends m = N in v**. Observe that the LHS of corresponds to the
agent’s expected payoff of reporting m = N in v**, followed by her signal-contingent
participation decisions. The RHS of characterizes the payoff corresponding to

the best alternative report.

(i) For any e € E, and for any 4" # {0} such that is not satisfied, the agent sends

m = Ry in v** whenever

1 . 1 .
3 max{U° — AU, U’ (h)} + 5 max{U" + AU, U!(t)} >
26)

| : | : (
3 max{U" + AU, U’ (h)} + 3 max{U° — AU, U’ (t)}.

(#1) For any e € E, and for any " # {0} such that and are not satisfied, the

agent sends m = Ry in y**

To complete the description of the agent’s behavior, at her initial history she takes the
effort decision e = H with probability x = 1. Finally, the principal belief attributes
probability one to e = H at his only information sets, consistently with the agent’s
behavior.

We next verify the sequential rationality of our construction. It is immediate to check
that the agent’s strategy is sequentially rational. In particular, the threshold participation
behavior simply compares the agent’s continuation payoff of accepting 4" versus retaining
~v**; the reporting behavior is also described by comparing the agent’s continuation payoff
after sending each report, without further elaboration. The effort choice e = H is optimal
since, on the equilibrium path, the incentive-compatible transfers ¢°2 = c/©(U°) are
executed.

To conclude the proof, it remains to check that there is no renegotiated offer 4" # {0}
yielding the principal a strictly higher payoff than VB, which he obtains in equilibrium.
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To verify it, we partition the set of available renegotiated offers according to the reports
that A\(7**) induce in the mechanism ~**
Observe first that, for any 4" such that the agent reports m = Ry in v**, the principal’s

payoff cannot exceed

VR

%v;“f(UO — AU) + %ng(UO + AU),
that is, the payoff providing full insurance to the agent conditional on each realized signal.
In this case, Lemma |l guarantees that V5% > V. Thus, the principal prefers not to
renegotiate than renegotiating an offer which induces the report m = R;.

A symmetric argument applies to any 4" such that the agent reports m = Ry in v**
In any such case, one can also check that the principal cannot achieve a payoff greater
than VE,

Thus, any profitable renegotiation 4" must be such that the agent’s equilibrium strat-
egy prescribes to report m = N in v**. That is, given , and since e = H, one should

have:

1 1 .
max {5 maX{UO — AU, UL (h)} + 5 max{U° + AU, Uy (1)}, (27)
1 - 1 .
5 max{U° + AU, Uy (h)} + 5 max{U° — AU, U;;,(t)}}.

We now argue that is satisfied only if one of the following two conditions is met:
Ur(s) <U° Vs e S* or Uh(s) > U’ + AU, Vs € S**. (28)
To see this, suppose that does not hold, which leads to consider three cases.

(i) If Uy (t) < U° and Uy (k) > U°, then the LHS of is %U}}(h) +1U° and its RHS
is at least %U}}(h) + 2(U° + AU), which obtains for m = R;. The latter is strictly
greater than the former, which violates .

(id) If U° < Up(t) < U° + AU, then the LHS of is %maX{UO,U}}(h)} + %U}}(t)
Suppose now that U%(h) < U4 AU: the value of the RHS is at least LU+ AU)+
%U}}(t), which obtains for m = Ry. The latter is strictly greater than the former,
which violates . In the mutually exclusive case U%(h) > U° 4+ AU, the value of
the RHS is at least %U}}(h) + (U° + AU), which obtains for m = Ry, which leads

to violate again.

(iii) I Ug(t) > U°+ AU, and Uy (h) < U+ AU, the LHS of (27) is £ max{U°, Uy (h)} +
%U}}(t), and the RHS is at least £(U° + AU) + %UH( ), which obtains for m = Rs.
The latter is strictly greater than the former, which violates
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Thus, following a renegotiation 7", A(v**) prescribes m = N and only if holds. Two

cases must then be considered:

(i) If Un(s) < U Vs € &, then (27) rewrites U° > U°, and is thus satisifed with
equality. Thus, A\(v**) prescribes to report m = N in v** and to choose p = n,

which yields the principal the same profit V°2 obtained without renegotiation.

(ii) If Uz (s) > UY+ AU Vs € S**, then (27) rewrites U° + AU > U° 4+ AU, and is thus
satisfied with equality. Thus, A\(7**) prescribes to report m = N in v**. In addition,
for any such 4", the agent is guaranteed the payoff U + AU in the continuation
play, which implies that the principal’s payoff cannot exceed VA!(U° + AU), which

is strictly less than V5% as shown in Lemma 1]

Thus, the principal’s strategy 7" = ) is sequentially rational. [ |
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