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Abstract

An agent chooses an action using her private information combined with recommen-
dations from an informed but potentially misaligned adviser. With a known alignment
probability, the adviser reports his signal truthfully; with remaining probability, the
adviser can send an arbitrary message. We characterize the decision rule that maxi-
mizes the agent’s worst-case expected payoff. Every optimal rule admits a trust region
representation in belief space: advice is taken at face value when it induces a posterior
within the trust region; otherwise, the agent acts as if the posterior were on the trust
region’s boundary. We derive thresholds on the alignment probability above which
the adviser’s presence strictly benefits the agent and fully characterize the solution in
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1 Introduction

Modern AT systems increasingly influence decisions with large and sometimes irreversible
consequences, including autonomous driving, medical triage, hiring, and credit or security
screening (see, e.g., Maslej et al. (2025)). Their appeal is straightforward: they can synthesize
information at scale and provide recommendations that exceed unaided human performance
in many tasks. The central risk is also well-recognized: when a system is opaque, complex,
and trained or deployed under imperfect objectives, users may not be able to tell whether a
recommendation is merely noisy, systematically biased, or actively harmful. The misalignment
problem is a particularly serious concern in high-stakes environments, and its mitigation is
key to ensure safe adoption of Al-aided decision making (see, e.g., Russell (2019)).

In this paper, we study how an agent should use AI when the system may be misaligned.
Taking the Al’s information structure and an exogenous alignment probability as given, we
characterize the agent’s optimal robust decision rule, which maximizes her payoff under the
assumption of worst-case Al behavior in case of misalignment.

Our model features an agent who chooses an action under uncertainty about the state of
the world. The agent has access to a private signal—reflecting her expertise or contextual
information—but she can additionally rely on reports from an adviser (e.g., an Al system).
The adviser observes complementary information about the state and sends a message to the
agent.

Crucially, the adviser is aligned and reports his information truthfully only with some
known alignment probability. With remaining probability, the adviser is misaligned and can
send an arbitrary message. In practice, misalignment could take several distinct forms with
ambiguous implications for the agent’s decision (see, e.g., Amodei et al. (2016)). We assume
that the agent adopts a robust approach: she chooses a policy mapping her private information
and the adviser’s message into a (possibly random) action that maximizes her expected payoff
against the worst-case scenario—conceptualized as one in which the misaligned adviser is
actively attempting to minimize her payoff. The robust criterion reflects the safety concerns
in applications: an optimal decision rule provides the highest payoff guarantee for the agent

in the absence of any assumptions about the form of misalignment.



Our main structural result shows that optimal robust policy for the agent can be summa-
rized by a single, interpretable object that we call the “trust region.” The trust region is a
connected set of reported beliefs about the state that the agent is willing to take at face value.
When the adviser’s reported belief falls inside this region, the agent behaves as if the adviser
were truthful: she combines the reported belief with her private information using Bayes’ rule
and chooses the corresponding Bayes-optimal action. When the reported belief lies outside
the trust region, the agent replaces it with the “closest safe interpretation,” formalized by
the notion of Bregman distance, which is a belief lying on the boundary of the trust region;
she then behaves as if that belief had been reported. Operationally, this is an endogenous
form of clipping: moderate recommendations are followed while extreme recommendations
are discounted and converted into boundary recommendations that the agent is still willing
to accept.

Intuitively, if the agent reacted sharply to extreme reports, the misaligned adviser could
exploit that sensitivity to induce large losses. The robust policy responds by limiting
how far any recommendation can push behavior. The trust region identifies exactly which
recommendations are safe to act upon without additional skepticism, and the boundary
mapping formalizes how skepticism should be applied outside that set. On one extreme, a trust
region equal to the entire belief simplex corresponds to applying the Bayes-optimal response
to all reports; on the other extreme, a trust region only containing the prior corresponds
to ignoring the adviser’s reports. Thus, the shape and size of the trust region yields a
disciplined answer to a practical design question: when an Al system outputs highly confident
or highly unusual recommendations, optimal robust use requires treating those outputs as
“too informative to be trusted” and translating them into safer boundary inputs before acting.

An implication of the characterization is that the optimal robust action rule used by
the agent must be defensible as optimal for some coherent set of beliefs about the state of
the world—the agent never benefits from distorted use of her own private information. An
optimal robust rule simply restricts the set of Bayes-optimal action rules that the agent uses.
A further consequence is that implementing the optimal trust region policy does not require
commitment. Under mild technical assumptions, we prove a minimax theorem which implies

existence of a trust region equilibrium (TRE) in the zero-sum game between the agent and



the misaligned adviser. In a TRE, the agent’s policy and the misaligned adviser’s strategy
form a saddle point: after every on-path recommendation, the agent’s chosen action is
Bayes-optimal given the belief induced by the adviser’s strategy, and the misaligned adviser’s
strategy minimizes the agent’s expected payoff. Substantively, this means that robust optimal
behavior provides the same payoff guarantee that the agent could obtain had she perfectly
known the misaligned adviser’s strategy. Practically, this result provides a certification tool:
to verify that a proposed policy is optimal, it suffices to exhibit a corresponding adversarial
reporting strategy that makes that policy a best response at every recommendation.

We then ask when consulting a potentially misaligned adviser is worthwhile for the agent.
We formalize this question by defining “minimal viable alignment” —the threshold alignment
probability above which the agent can guarantee a strictly higher payoff than the one she could
achieve by only relying on her own information. We derive sharp bounds on this threshold
that depend only on the richness of the state space and the adviser’s signal distribution. As
long as information is useful to the agent, alignment probability exceeding half is sufficient
for the agent to benefit from the presence of the adviser. This bound is tight in binary-state
problems, but minimal viable alignment may be much lower—sometimes as low as one over
the number of states—in multi-dimensional settings. Thus, for problems with a rich state
space, robustly valuable use of Al advice may be profitable even when alignment is very
unlikely.

Our general characterization becomes particularly sharp when the state space is binary,
so that the ground truth is whether a given statement is true or false. In this setting, an
adviser’s message can be summarized by the implied probability of the statement being true.
The trust region is an interval around the prior probability. Recommendations inside the
interval are trusted and acted upon as reported. Recommendations outside the interval are
mapped into the nearest endpoint. The misaligned adviser sends messages that push beliefs to
the interval endpoint in the direction that is most damaging to the agent’s action choice. This
structure delivers a sharp phase transition. If the alignment probability is below one half, the
optimal interval collapses to the prior and the agent ignores the adviser. If alignment is above
one half, there is a unique nontrivial trust interval, and, if the agent’s decision problem is rich

in the sense that she benefits from any piece of information, it expands monotonically with



alignment, approaching full trust as alignment approaches certainty. We further demonstrate
that the location of the trust region (whether it is skewed towards high or low beliefs) depends
on the relative curvature of the agent’s indirect utility function—interpreted as a measure of
sensitivity of the agent’s optimal action to information.

Our characterization also yields a closed-form solution when the agent’s downstream choice
is binary (e.g., to accept or reject an application) and the agent has no private information.
In such problems, the optimal robust use of advice is generically all-or-nothing: either the
trust region is the entire belief simplex or it collapses to the prior. Which regime obtains is
determined by an alignment threshold that depends only on the relative value of the adviser’s
information across the two actions. In particular, if alignment is below one half, the agent
cannot robustly benefit from the adviser.

Finally, we examine environments where uncertainty concerns many possible states and
actions. Here, the geometry of the trust region plays a major role: some directions of belief
change are far more consequential than others because they trigger actions whose payoffs
are highly sensitive to the true state. In a robust solution, the misaligned adviser chooses
recommendations that are farthest from the truth within the trusted set in an incentive-based
sense, again formalized by Bregman distance. In general, the trust region may take a complex
shape, i.e., it need not even be convex. In symmetric environments, however, the trust region

inherits the symmetry of incentives and information and can be tractably characterized.

1.1 Literature review

Our model is closely related to two foundational models in information economics: the cheap
talk model (Crawford and Sobel (1982)) and the Bayesian-persuasion model (Kamenica and
Gentzkow (2011)). Relative to the cheap-talk model, our framework effectively assumes
that the Sender maximizes the Receiver’s utility with some probability @ and minimizes
the Receiver’s utility with the complementary probability 1 — . Our characterization of
trust region equilibria shows that equilibrium behavior is very different from the one arising

in the more standard constant-bias case; in particular, information transmission is perfect

IStrictly speaking, we assume that with probability o the Sender reveals his signal truthfully, but this
can be shown to be optimal for the Receiver.



for intermediate beliefs of the Sender but completely blocked for extreme beliefs. Relative
to the Bayesian-persuasion model-—due to the minimax theorem which we prove in our
setting—our framework is equivalent to the case in which the Sender tries to minimize the
Receiver’s payoff but is committed to revealing his signal truthfully with probability «. One
of our contributions is to provide a characterization of threshold levels of o above which the
adversarial Sender cannot prevent the Receiver from learning some information.

Within a more recent literature in information economics, several papers study models in
which the Sender is truthful (or committed) with some probability but the messages may be
fake (or manipulated) otherwise. To the best of our knowledge, none of these papers consider
the case (motivated for us by the Al alignment problem) in which the non-aligned Sender
is adversarial—typically, the non-aligned Sender is modeled as having state-independent
preferences. Lipnowski et al. (2022) and Min (2021) analyze a setting in which the Sender
is committed to the information structure with some probability and sends a cheap-talk
message otherwise. Glazer et al. (2020) and Lahr and Winkelmann (2019) study equilibria
of communication games in which some reports are truthful and some may be fake. Alonso
and Padré i Miquel (2025) model competitive capture of public opinion by assuming that
informative signals about a binary state may be manipulated (i.e., replaced by an arbitrary

)

message) by two opposed “interested parties,” one of which wants the induced beliefs to be
as high as possible and the other one as low as possible. They characterize a communication
equilibrium in which citizens correctly update beliefs given the equilibrium strategies of
the interested parties. Interestingly, the structure of their communication equilibria shares
similarities with our trust region equilibria in the special case of a binary state: messages
in some intermediate interval are interpreted at face value, while messages outside of that
interval induce beliefs at the endpoints of the interval.

Our modeling of uncertainty about the behavior of the adviser is inspired by the classical
Hurwicz criterion, also known as the alpha-max-min approach (Hurwicz (1951)), under which
the decision maker maximizes a weighted sum of her best-case and worst-case payoffs. We
interpret a as the probability of alignment. A similar criterion has recently been applied in

the context of information design by Dworczak and Pavan (2022).

The version of our model in which the agent does not have private information is related



to the delegation literature in that the agent effectively chooses which decisions to delegate to
an informed adviser. Within that literature, the closest paper is Frankel (2014) who adopts
a worst-case approach with respect to the adviser’s preferences, assumed to lie in a known
set. Our setting differs both in primitives and in methods: we require robustness to the
adviser’s behavior in case of misalignment and the resulting optimization problem has a
different structure.

Regarding the AI alignment problem, a few approaches have recently been proposed in
the microeconomic theory literature. Chen et al. (2024) develop a model of screening for
alignment in an environment in which the decision maker can simulate the task and impose
imperfect recall on Al, obscuring whether the task is real or part of a test. Closer to our
approach, Fudenberg and Liang (2025) assume that the AI system is aligned with some
known probability and that it performs adversarially in case of misalignment. Unlike us,
Fudenberg and Liang (2025) assume that the decision maker can impose the true unconditional
distribution of optimal actions but faces non-Bayesian uncertainty about the correlation of
the optimal action with a set of co-variates she controls. Correspondingly, their focus is
different: they ask which co-variates should be revealed to Al In our framework, the decision
maker knows the distribution of AI’s signals (uncertainty is only about Al's behavior in case
of misalignment) but has no way of verifying the truthfulness of the report; we focus on how
the decision-maker should combine AI’s report with her private information (which would
never be optimally disclosed to Al in our framework).

More broadly, our framework is part of a rapidly growing literature trying to understand
optimal human-Al interactions. Closest to our paper are Dreyfuss and Hoong (2025) and
Agarwal et al. (2026) who also adopt an information-design approach; Agarwal et al. (2026)
ask how AI advice interacts with human decision-making in the presence of potential biases

and when the decision-maker’s effort in acquiring information is endogenous.

2 Model

Our formal model allows certain spaces to be infinite (which is useful for constructing tractable

examples). Whenever we work with an infinite space, we endow it with the Borel o-algebra,



and require all sets and functions that we define to be measurable; statements involving “for
all” should be interpreted as “for almost all” with respect to the underlying distributions.

A state w is drawn from a finite state space Q, |Q2] = N, according to a full-support prior
distribution pg € A(£2). An adviser observes partial information about w, captured by a signal
s whose distribution is pinned down by a signal function 7 : Q — A(S). We will identify the
adviser’s information with the posterior about the state that a signal realization induces; let
S = A(Q2) and renormalize so that s is equal to the posterior about w induced by s. Let 7
denote the unconditional distribution of the adviser’s posteriors s, with M = supp(7).

An agent takes an action a € A, where A is a compact metric set. The agent observes a
private type 6 € O, where O is a compact metric set, that captures the agent’s own information
about w and her preferences, distributed according to a signal function f: Q — A(0O). We
assume that, conditional on the state, s and 6 are distributed independently. The agent’s
ex-post payoff is given by a utility function u(a,w, ), assumed bounded and continuous in a.

The adviser can send messages m € A()) to the agent (without loss of generality, we set
the message space to be the space of posteriors about the state). The agent can choose any
strategy o that prescribes how to act for any combination of the adviser’s message and the
agent’s type, o : A(Q2) x © — A(A). Denote the set of all such strategies by 3.

The adviser’s strategy maps his posterior beliefs into distributions over messages sent to
the agent. With probability «, the adviser is aligned and non-strategically reports his belief
according to the identity function id : M — M such that id(m) = m for all m € M.?> With
probability 1 — «, the adviser is misaligned and sends a message according to some strategy
B M — A(A(Q2)). Denote the set of all such strategies by B.

Faced with non-Bayesian uncertainty about the form of misalignment, the agent adopts a
cautious posture and aims to maximize her guaranteed payoff. Concretely, she evaluates each
possible strategy o according to its worst-case payoff

U(o) 2 a Eigelu(a,w, )]+ (1 — a) érelgEB’U[u(a,w, 0)], (1)

It can be shown that the assumption of truthful reporting of the belief is equivalent (in terms of
equilibrium payoff consequences) to assuming that the aligned adviser is attempting to maximize the agent’s
expected payoff. However, the assumption of truthful reporting is natural for an aligned AT system and useful,
as it provides a natural meaning to each message (see Sobel (2020)).



where the expectations are taken with respect to the underlying distributions of the primitive
variables w, s, and 0, as well as the respective adviser’s and agent’s strategies. We will call
any misaligned adviser’s strategy [ that attains the infimum in expression (1) (for a fixed
strategy o of the agent) an adversarial strategy (against o).

Our main goal is to characterize the agent’s optimal strategy o* that attains:

U* 2 supUl(o). (2)

oceEY

3 Main Results

3.1 Trust Region Strategies

In what follows, it will be convenient to separate dependence of the agent’s strategy on the
adviser’s message and the agent’s private information. To this end, we call a private strategy
¢ the mapping from types to actions ¢ : © — A(A) that specifies how the agent uses her
private information. If the agent has belief 1 about the state and uses a private strategy &,

then her expected payoft is:
U(6—7 ,U) = EWNM,(}[U(CL, w, 9)]7 (3)

where the expectation is taken with respect to the conditional distribution of # and the
distribution of agent’s actions induced by . A private strategy ¢ is called Bayes-optimal
for belief p € A(Q) if it maximizes the agent’s expected payoff when she holds that belief:
o € argmax; U(a, u). The strategy can be viewed as a specification of a private strategy for

each possible message received from the adviser, o ~ (6(m))mea(@)-

Definition 1. 0 ~ (6(m))mea(o) is a trust region strategy (TRS) if there exists a compact

set ' C A(2) such that

1. if m € T, 6(m) is Bayes-optimal for m,

3Without loss of generality, adversarial strategies only use messages in M, since any message m ¢ M
cannot be sent by an aligned adviser and hence reveals that the adviser is misaligned.



2. if m ¢ T, 6(m) is Bayes-optimal for P(m), where P(m) € argmax,ycr U(G(m’), m).

Intuitively, under a TRS, the agent treats messages m reported within the trust region
T “at face value,” i.e., she takes an optimal action treating m as her correct posterior about
the state. If a message m does not belong to the trust region 7', the agent maps m to the
trust region by acting as if her belief about the state were P(m) € T; P(m) is chosen to
maximize—over all beliefs in the trust region—the agent’s expected payoff under distribution
m when the action is taken to be optimal for P(m).

To provide further intuition, with slight abuse of notation, let U(u) = max, U(6, i) be
the payoff to the agent when she takes a Bayes-optimal action at belief . Note that U(u)
is a convex function on A(f2); moreover, it is differentiable on the interior of the belief
simplex if there exists a unique Bayes-optimal private strategy do(u) at every belief p. In
that case, we can define VU (u)—the gradient of the indirect payoff function treated as a
function on RY—which maps each belief & into the N-dimensional vector of state-contingent
payoffs (associated with the Bayes-optimal strategy).* In particular, U(u) = VU(u) - u,
where - denotes the standard dot product in RY. Moreover, for a TRS ¢ and any m’ € T,

U(a(m’),m) =VU(m') - m. Thus,

argmax U(6(m'),m) = arg min U(m) — U(m') — VU(m') - (m —m/).

m/eT m/'eT

DU (mzm/)

The expression Dy(m,m’) is called the Bregman distance (associated with function U)
between beliefs m and m’. Thus, under a TRS, messages outside of the trust region T’
are mapped into the “closest safe interpretation”—the belief in the trust region T' that is
closest in the Bregman distance. In particular, P(m) always lies on the visible part (from

the perspective of point m) of the boundary of T'.°

4Formally, to define the gradient, we extend the function U beyond the probability simplex by assuming
that, for any non-negative measure p, U(p) = p(Q) U (p/p(£2)).

°Point m’ € T is visible from m if the line segment connecting m’ and m does not intersect 7'\ {m’}.



3.2 Optimality of Trust Region Strategies

We call two agent’s strategies equivalent if, together with some corresponding adviser’s
adversarial strategies, they induce the same joint distribution over states, types, messages,

and actions. The importance of TRSs stems from the following key result.

Theorem 1 (Trust Region Solution). Any optimal strategy o* is equivalent to a trust

region strateqy with a connected trust region T .
Proof. See Appendix A.1. n

Theorem 1 states that any optimal strategy can be interpreted as a TRS for some
connected trust region T'. This result provides a sharp characterization of optimal robust
behavior under misalignment risk. Messages in the trust region are taken at face value while
messages outside the trust region are mapped into the closest safe interpretation within the
trust region. Thus, the agent’s problem reduces to choosing the trust region 7.

If the adviser is always aligned, a TRS with the trust region equal to the entire belief
space is trivially optimal. On the other extreme, if the adviser is always misaligned, the
optimal TRS has a trust region equal to the prior—the agent always ignores the message
of the adviser. In Section 3.4, we explore conditions under which the trust region can be
guaranteed to be non-trivial. In general, however, it is difficult to pin down the exact shape
of the optimal trust region. A trade-off is created by two opposing forces: when the trust
region expands, the expected payoff of the agent weakly increases conditional on the adviser
being aligned but weakly decreases conditional on the adviser being misaligned. In Section 4,
we study the binary-state case, in which the trust region is an interval; in Section 5, we look
at the case of multiple states but binary actions, in which the trust region is either the prior
or the entire simplex.

Theorem 1 predicts that the trust region can be taken to be a connected set. However,
the trust region need not be convex. Intuitively, convexifying the trust region by adding a
line segment connecting two beliefs may induce certain types of the misaligned adviser to
report these additional beliefs (which may outweigh the benefits coming from aligned reports).
Our proof establishes that the trust region is convex in dual coordinates, i.e., in the space of

state-contingent payoffs. Intuitively, every belief has a corresponding state-contingent payoff
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induced by a Bayes-optimal action for that belief (as noted earlier, the state-contingent payoff
is given by the gradient of the indirect utility function U(u) at beliefs p at which the optimal
action is unique). The payoff of the misaligned adviser is non-linear in the reported belief
but it is linear in the induced state-contingent payoff. In fact, the misaligned adviser with
belief © attempts to minimize p - w over all state-contingent payoffs w that some belief in the
trust region induces. Thus, the set of state-contingent payoffs (induced by beliefs in the trust
region) can be convexified. Convexification of the set of induced state-contingent payoffs
connects the set of beliefs in the trust region.

To further understand the geometry of the optimal trust region, recall that we can think
of the misaligned adviser with belief i1 as choosing a message m € T to maximize Bregman
distance between p and m (see also Section 5.2 for an extended discussion); in particular,
the message m must lie on the boundary of the trust region. A consequence is that adding
non-boundary points to a trust region can only weakly increase the agent’s payoff. Formally,
we say that a set A C RY is non-hollow if it contains all points z € RY with the property

that every line going through z intersects A on both sides of x.
Corollary 1. Theorem 1 remains true with the additional requirement that T' is non-hollow.

Note that being non-hollow is not implied by connectedness (although it is weaker than
convexity). An example of a connected but hollow set is a sphere. If the trust region of some
TRS is a sphere, then we can expand the trust region to the corresponding ball, since the
misaligned adviser will never send messages in the interior of the ball.

The trust region is typically not unique and our results in this section emphasized that it
can be taken to be a relatively large set. However, when the support M of the adviser’s beliefs
is finite, it is also possible to construct an optimal discrete trust region 7" with |T'| < |M]|.
Intuitively, at most one belief in the trust region is needed per every possible belief of the
aligned adviser.® In such cases, a connected trust region can still be constructed but most
beliefs in the trust region are never reported by the adviser. Uniqueness of the trust region can

sometimes be established if the adviser’s beliefs have full support, M = A(Q) (see Section 4).

SWe emphasize, however, that it is not without loss of generality to assume that T C M.
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3.3 Robust Rationalizability

Our model assumes that the agent commits to a strategy at the outset of the game, not
knowing the strategy adopted by the misaligned adviser. As we show next, neither the
commitment assumption nor the timing of moves matter for the value that the agent can
achieve. This is because we can construct an optimal solution that is a saddle point of the
zero-sum game between the agent and the misaligned adviser. For any strategy 8 € B of the
adversarial adviser,” we let Ps(-/m) denote the agent’s conditional belief over the state €

induced by message m given the adviser’s strategy.

Definition 2 (Robustly Rationalizable Strategy). A strategy o is robustly rationalizable
if there exists an adversarial strategy 5* of the misaligned adviser against ¢ such that for all

m € M, 6(m) € argmaxz U(6',Pg(-|m)).

The condition of rationalizability means that the agent does not require commitment to
follow the strategy—the agent can imagine the misaligned adviser pursuing an adversarial

strategy such that, after any message, the strategy prescribes behaving myopically.

Theorem 2 (Robustly Rationalizable Solution). Any robustly rationalizable strategy is

optimal. If M and © are finite, a robustly rationalizable strateqy exists.

Proof. See Appendix A.2. n

Assuming finite support of beliefs, Theorem 2 implies that there exists an optimal strategy
[5* for the misaligned adviser such that the agent’s optimal strategy is to simply best-respond
to each posterior belief (computed via Bayes’ rule given the strategy *) induced by on-path
messages m.% In light of Theorem 1, the agent’s equilibrium strategy can still be taken to
be a TRS. Treating the problem as a zero-sum game between the agent and the misaligned
adviser, we will call (¢*, 8*) a trust region equilibrium (TRE) if o* is a TRS that is robustly

rationalizable against the adversarial strategy [*.

"Without loss of generality, we assume that 3 uses only messages in M.

8The assumption of finite M and © is made for technical reasons; verifying the assumptions of Sion
(1958)’s minimax theorem (in particular, its continuity requirements) is difficult for a cheap-talk-like game
with infinite-dimensional strategy spaces since the impact of messages on payoffs is entirely endogenous.
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In a TRE, messages m € M in the trust region are taken at face value because they are
only reported by the aligned adviser (thus, Bayes’ rule implies that Pg«(-|m) = m). Messages
m € M outside of the trust region are reported by both types of the adviser with probabilities
such that Pg«(-|m) = P(m), where P(m) is the mapping to the boundary of the trust region
defined in Theorem 1. Messages m ¢ M are sent with probability zero. In other words, the
mapping from messages to beliefs induced by (i) Bayes’ rule and (4i) minimizing Bregman
distance to the trust region, coincide on the equilibrium path of a TRE. In Section 4, we use
this structural property to characterize the trust region in a binary-state setting.

Theorem 2 implies that our problem is equivalent to a constrained persuasion problem for
the misaligned adviser. When the misaligned adviser moves first, he is effectively choosing
a Bayes-plausible distribution of posteriors for the agent (prior to the agent observing her
own type) subject to the constraint that the signal must be truthful in every state with
probability at least a (the constraint reflects the presence of the aligned adviser). Thus, the
misaligned adviser is effectively attempting to “jam” the signal sent by the aligned adviser.
This perspective will be useful in deriving bounds on the alignment probability o below which
no information is communicated in any TRE (see Section 3.4).

Theorem 2 implies that implementing the optimal strategy does not require commitment
by the agent. There exists a consistent conjecture about the form of misalignment that
justifies the optimal strategy ex-post. That is, under that conjecture, the agent can simply
observe the adviser’s message, update her beliefs using Bayes’ rule (using the conjecture
about the misaligned adviser’s strategy), and then take the optimal action for the resulting
posterior.

Finally, from a technical perspective, Theorem 2 provides a practical way of certifying
the solution optimality in applications (even with infinite belief and message spaces). To
construct an optimal solution, it is sufficient to construct a saddle point of the zero sum game
between the agent and the misaligned adviser—verifying the mutual best-response property

is often easier than evaluating the agent’s objective for every possible strategy.
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3.4 Minimal Viable Alignment

In this section, we derive bounds on the alignment probability a above which informative
communication can be supported between the adviser and the agent. In other words, we ask
when the trust region used by the agent is non-trivial.

Formally, define the value of an adviser as
V 2 U* - Uy,

where Uy £ sup, 5 E,[u(a,w, )] is the agent’s optimal payoff in the absence of the adviser.
Since the agent can always ignore the adviser’s messages, this value is non-negative, V' > 0.
We ask when this value is strictly positive, V' > 0 (cf. the value of information by Blackwell
(1951)).

To answer this question, we assume that the adviser’s beliefs are finitely-supported,
|M| = K < 00, and derive a bound on « that is independent of the agent’s problem. If « is
small enough, the misaligned adviser can use a strategy 3 that “jams” the signal created by
truthful reporting of the aligned adviser. In such a case, the distribution of posteriors Ps(-|m)
held by the agent is degenerate: the trust region contains only the prior. However, if « is
large enough, there exists no strategy for the misaligned adviser that makes the equilibrium
message uninformative. In such cases, as long as information is useful to the agent (U(u) is

strictly convex in the relevant range), V' must be strictly positive.

Definition 3 (Minimal Viable Alignment). The minimal viable alignment MVA(7) is
the smallest upper bound on « for which there exists a strategy 5 of the misaligned adviser

such that the induced posterior satisfies Pg(- | m) = po for every m € M.

MVA depends on adviser’s information 7 € A(A(S2)). Define the rank of the matrix of

adviser’s posteriors i1, ..., g € SUpp 7:

R(r) = rank <[,U1 Mz o MKD - (4)

Roughly, R(7) captures the richness of the adviser’s information: adviser’s posteriors are

located in an (R(7) — 1)-dimensional subspace of the (N — 1)-dimensional belief simplex A(€2).
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For any 7, R(7) < min{K, N}. The rank weakly decreases when the adviser’s information

is garbled. In what follows, we assume that the adviser has some information, K > 2, so

R(7) > 2.

Theorem 3 (Minimal Viable Alignment). The agent strictly benefits from the presence
of the adviser, V. > 0, in some decision problem (equivalently, in any decision problem
with strictly convex U) if and only if « > MVA(7). For any 7, MVA(T) € [1/N,1/2].
Moreover, for any o € [1/N,1/2], there exists T such that MVA(7) = a. If R(1) = K, then
MVA(T) = 1/K.

Proof. See Appendix A.3. m

The proof of Theorem 3 shows that, for any given 7, MVA(7) can be computed as the
solution to a finite-dimensional linear program. We establish bounds on this solution and then
show that these bounds are tight by explicitly constructing adviser information structures
that attain every MVA within the admissible range. In fact, the proof yields the stronger
statement that, for any 7, MVA(7) € [1/R(7),1/2].

By Theorem 3, if the alignment « exceeds 1/2 (and information is strictly useful ev-
erywhere), then the agent always benefits from the presence of the adviser. Conversely,
if the state is binary and a < 1/2, the agent cannot benefit from the adviser. In higher-
dimensional problems, the adviser can be valuable at much lower alignment. In particular, if
R(7) = K = N, then it suffices that & > 1/N. Thus, when the state space is very rich, even

a small amount of trust may be enough to benefit from the advice of a misaligned adviser.

4 Binary State

Consider the case of a binary state, 2 = {0,1} (we can intuitively think of the state as
capturing whether a given statement is false or true). The belief is effectively one-dimensional:
with slight abuse of notation, let u € [0, 1] denote the probability of state w = 1. For
expositional clarity, we further assume that the agent’s indirect payoff function U(u) is strictly

convex and twice differentiable, and the adviser’s posterior is distributed over M = [0, 1] with
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a strictly positive probability density 7(u).? In this case, each p € [0,1] can be associated
with a unique Bayes-optimal private strategy o(u).
Since any connected one-dimensional compact set is a closed interval, a straightforward

corollary of Theorem 1 is:

Corollary 2. If || = 2, any optimal strategy o is characterized by a trust region T' = [y, i].

]fm € [E’ﬁ]f 5-(m) = 6-0<m>:' me < H; 6(m) - 60(&)} me > ﬁ) a-(m> - &O(ﬁ)

If 4 =T, the agent effectively ignores the adviser, implying p = 1 = po. If p <7, the
agent plays according to the Bayes-optimal strategy 6o(u) if m < p, and according to the
Bayes-optimal strategy o(zz) if m > f.

Recall that the adversarial strategy of the misaligned adviser induces a posterior belief
from the trust region that maximizes the Bregman distance from his true posterior; when
the trust region is an interval-—and hence its boundary consists of the two endpoints—the

adversarial strategy admits a simple threshold characterization:

Lemma 1. When the agent commits to a TRS with the trust region T = [u, Ti], the misaligned
adviser with belief j1 finds it optimal to send any message m > i if p < b(p, 1) and any

message m < if p > b(, ), where

L U ) dp
- rurnde

(5)

E

b(ﬂ,

Proof. See Appendix A.5. n

Lemma 1 states that the misaligned adviser with high enough beliefs p will induce the
private strategy Bayes-optimal at the lowest belief in the trust region, p (by reporting some
message m lower than p); similarly, the misaligned adviser with low enough beliefs y will
induce the private strategy Bayes-optimal at the highest belief in the trust region, @ (by
reporting some message m higher than 7). The threshold belief is given by the conditional

expectation of a random variable whose distribution is determined by the curvature of the

9The strictly convex indirect payoff function can be a result of the agent having a continuum of actions
or, as we show in Appendix A.4, finitely many actions and a continuum of private types.
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indirect utility function: b(u, 1) = E[v|v € [, ]|, where v is distributed with full support
over [0, 1] according to probability density U”(-)/ fo U"(p)dp.

To characterize the trust region’s boundaries, we will use the observation from Theorem 2
that it is sufficient to construct mutual best responses for the agent and the misaligned adviser.
Lemma 1 characterizes the best response of the misaligned adviser. A best response of the
agent must use the Bayes-optimal action at each posterior belief induced by the adviser’s
strategy. A mnecessary condition is that the average posterior belief induced by messages

m < p is exactly p, and the average posterior belief induced by messages m > @ is exactly

ﬁ:w
a [ pr(p)dp + ( fbw W( )du ©
= i,
ozfoﬁT(,u dp+ ( j;) () -
o [1pr(pydp+ (1 - a) [ M( )du . -
ozfﬁl T(p)dp + ( fo

As it turns out, these conditions are also sufficient for a TRE:

Proposition 1 (Trust Region). An optimal strategy exists; it is unique and robustly
rationalizable. Its trust region, T = [u, 1], is equal to the prior {uo} when o < 1/2; otherwise,

it is defined by the unique solution to the system (6)-(7) that satisfies p < po < 1.
Proof. See Appendix A.6. m

Note that while the structure of the trust region characterized by Proposition 1 is simple,
the underlying strategy of the misaligned adviser is quite complex in a TRE. By Lemma 1, the
misaligned adviser with belief p1 > b(u, 17) is indifferent between sending all messages m < p
since they all result in the same Bayes-optimal action 6o(u). In a commitment solution, the
misaligned adviser can send any of these messages (for example, he can always send m = p).
But in a TRE, the strategy * of the misaligned adviser must be such that every message
m < p induces the posterior belief u via Bayes’ rule. Since all messages m < p are sent on

equilibrium path (the aligned adviser simply reports his belief truthfully), 8* must carefully

190ne way to see that is to use our observation that in a TRE, the mapping from messages to belief defined
by Bayes’ rule must agree with the mapping defined by minimizing the Bregman distance to the trust region.
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break the misaligned adviser’s indifference over these messages so that each of them induces
the same posterior belief.

Proposition 1 fully characterizes the optimal trust region. A natural next question is how
the trust region depends on the problem’s parameters. We offer two comparative statics
results, one related to the size of the trust region, and one related to its location.

First, higher alignment results in more trust:

Proposition 2 (Change in Alignment). When o > 1/2, u(a) is strictly and continuously

decreasing in o and fi(«) is strictly and continuously increasing in o. At o = 1/2, [, ] =

[MO;MO]' At a = 17 [Haﬁ] = [07 1]
Proof. See Appendix A.7. m

Proposition 2 shows that the trust region gradually and monotonically expands from the
prior (at av < 1/2) to the entire belief simplex. For any a < 1, the trust region excludes the
most extreme beliefs. Intuitively, the probability of the aligned adviser holding such extreme
beliefs is small, while the probability that such beliefs are reported by the misaligned adviser
(were they included in the trust region) is relatively large. This is why extreme beliefs are
included in the trust region only once the probability of alignment is high.

Second, we show that the trust region tends to include beliefs at which the decision
problem of the agent is less “information-sensitive.” In other words, the agent will avoid
expanding the trust region to beliefs where small changes in information lead to large changes
in the optimal action. We formalize this notion via the indirect utility function U(u), noting

that its curvature captures how sensitive the optimal action is to the agent’s information.

Definition 4 (Information Sensitivity). We say that the indirect utility function U;(u)

is less information-sensitive at higher beliefs than the indirect utility function Us(p) if

UY' (1)
Uy (1)

is decreasing in .

The definition states that the convexity of the indirect utility function U; (relative to the

convexity of Us) is smaller at higher beliefs . Intuitively, under Uy, the decision of the agent
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is less sensitive to new information at higher beliefs. It turns out that in this case the trust

region will be skewed towards higher beliefs.

Proposition 3 (Change in Information Sensitivity). Suppose that Uy (u) is less information-
sensitive at higher beliefs than Us(u). Then, the trust region Ty corresponding to Uy is higher

(in the strong set order) than the trust region Ty corresponding to Us.
Proof. See Appendix A.8. m

Proposition 3 shows that the trust region skews towards beliefs at which the agent’s
optimal action is less sensitive to new information. For example, suppose that the agent
minimizes mean-squared error (a — w)? over a € [0, 1] under pg = 1/2 and symmetric T,
resulting in a trust region that is symmetric around the prior 1/2. Suppose that we now
modify the utility function by multiplying the loss in state 1 by a constant v > 1. It is easy
to show, by computing indirect payoff functions and using Proposition 3, that the asymmetric
decision problem with a higher weight on the loss in state 1 is less information-sensitive
for higher beliefs; as a result the trust region shifts to the right. While this may seem
counter-intuitive at first, this is because the objective function already makes the agent
effectively overweigh state 1, and thus the agent reacts less strongly to new information when
she believes the state is likely 1 (e.g., as v goes to infinity, the agent will take an action very
close to 1 except when she believes that state 0 is very likely). As a result, the trust region is

skewed towards higher beliefs.

5 Multiple States

In this section, we consider the general case |2| > 2. First, we provide full characterization
of the robustly rationalizable solution in the case of binary private strategies. Second, we
analyze the case of rich private strategies, characterize the general adversarial strategies, and

develop the robustly rationalizable solution in a symmetric example.
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5.1 Binary Action

Consider the setting in which the agent has only two pure private strategies, i.e., A = {ay, as}
and |©| = 1. Thus, the agent has no private information and we drop the type throughout.
Without loss of generality, we can normalize the agent’s payoff from action a; to zero,
u(ar;w) = 0, and denote the expected payoff from action as when the adviser’s posterior is
p by v(u) £ E,u(ag; w)]. Denote by 7 € A(R) the distribution of v when p is distributed
according to 7 € A(A(Q)).
It is useful to define the absolute losses and gains from taking the second action relative

to the first one:

Also, define the following threshold:

max{L(7), GE

7)}
L(7)+ G(r)

a(7) =

(9)

To rule out trivial cases and to simplify the exposition of the optimal strategy, we make the

following assumption that holds in generic environments.
Assumption 1 (Genericity). L(7) > 0, G(7) > 0, L(7) # G(7), 7({p : v(n) = 0}) = 0.

Proposition 4 (Binary Action Solution). Suppose that Assumption 1 holds. If o # &(7),
then the optimal solution exists, is unique, and is robustly rationalizable. In particular, if
a > &(T), then all messages are trusted, T = A(Q); if « < &(7), then no messages are trusted,

T ={uo}. If o« = &(7), both full trust and no trust are optimal and robustly rationalizable.

By Proposition 4, generically, the optimal solution is remarkably stark: either all or none
of the adviser’s messages are trusted. This is in contrast to the binary-state case with a rich
strategy space, where the trust region expanded continuously with the alignment probability
(Proposition 2).

Notably, only the aggregate quantities L(7) and G(7) enter the definition of the trust

region; the detailed distribution of relative payoffs 7 is irrelevant. The threshold &(7) is
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minimized at L(7) = G(7), in which case &(7) = 1/2. Hence, if o < 1/2, the agent never
trusts the adviser, regardless of 7. This is driven by the coarseness of the strategy space:
by Theorem 3, for any o > 0, the agent can sometimes trust the adviser when the number
of actions is unbounded. By contrast, for a given o > 1/2, the trust condition &(7) < « is

equivalent to (L(7),G(7)) lying in the cone defined by the two linear inequalities
(1 —a)L(7) <aG(7), (1—a)G(T)<aL(7).

Thus, in binary decision problems, the adviser is beneficial only when the expected gains and

losses of one action relative to the other are not too far apart.

5.2 Rich Private Strategies

We now assume that the agent’s indirect utility U(u) is twice differentiable and strictly
convex everywhere. Denote by h(u|p’) the value of the supporting hyperplane to the graph
of U at i evaluated at p. Fixing the agent’s TRS with trust region 7', the set of beliefs that

the misaligned adviser can induce at belief u is given by

M (p) = argmin h(p|p). (10)
wer

As we have argued earlier, a simple transformation establishes the following fact:

Corollary 3 (Bregman distance). M*(u) is the set of maximizers of the Bregman distance

Dy (u, 1) between the adviser’s true belief i1 and a report i’ in the trust region.

By Corollary 3, M*(u) are the furthest points from p in 7" with respect to Bregman
distance. Bregman distance always strictly increases along each ray from p and thus the
misaligned adviser always chooses points on the “opposite” boundary of 1. Therefore, U
determines the geometry of the trust region. For example, if U(u) = ||u — b||* for Euclidean
norm and some vector b, then the Bregman distance between p and p' coincides with the

(squared) Euclidean distance between p and /. In such cases, the trust region can be taken
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to be convex.!! However, in general, Bregman distance is not a metric—it may not satisfy
triangle inequality or symmetry. Thus, the geometry of 7" may be quite complex, and we do
not expect a characterization of the trust region in full generality to be tractable.

The trust region can sometimes be found explicitly in symmetric environments—we

illustrate this with an example.

Example 1 (Spherical Environment). Let U(u) = V(||u — b||) for some b and V. Let
adviser’s belief be symmetrically distributed over a ball C' = {u : ||u — b|| < 1o} with the
radial density 7(r). Then, there exists a robustly rationalizable solution with a trust region
T being a ball centered at b: T = {u : || — 0| < r*(a)}.

We will show this result via Theorem 2 by explicitly constructing the corresponding TRE.
The key observation—that we formalize and prove in Lemma 9 in Appendix A.10—is that the
misaligned adviser with belief ;4 will induce an antipodal belief on the boundary of T'. The
corresponding adversarial strategy is thus analogous to the one constructed in Section A.6.

Then, the radius r*(«) can be found via the balancing condition. Indeed, consider any
line passing through b. Put a coordinate system on it so that b is located at » = 0, and the
points on the sphere C' at —rg and ry. Then, the belief at r = r*(«) will be induced by the
misaligned adviser only when his belief is on this line at “r < 0”, and by aligned adviser only
when his belief is on this line at “r > r*(«).” Then, the agent’s posterior beliefs satisfy the

TRE property if and only if:

L_Q ;;O rr(r)dr — (1 — ) foro r7(r)dr
o f[Dr(r)dr+ (1 —a) [;°T(r)dr

r

Rearranging, we obtain:

*

a1 [ === ([ s [

* *

To

QT*T(r)dr) .1

For av < o« = 1/2, the equation does not admit a solution. At o = 1/2, r* = 0 is a solution.

For o € (1/2,1), the left-hand side is continuously and strictly decreasing in r*, and the

1To see why, note that any trust region 7' can be convexified by replacing it with the intersection of sets
T, over all p € supp(7), where T}, is the (convex) set of all points that are not further away from p than any
point in T'.
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right hand-side is continuously and strictly increasing in r*, with a derivative with respect to
r* that is strictly positive. Therefore, the equation admits a unique solution r*(«). As the
left-hand side strictly increases in « and the right-hand side strictly decreases in «, r*(«)
strictly increases in a. Furthermore, r*(1) = ry.

This example features two notable properties. First, the MVA does not depend on U or
on N = |Q|; we always have a = 1/2. Second, the shape of V', which captures the details of

the decision problem, does not matter for the trust region 7T; the trust region is uniquely
1—V1+a—2a2

pinned down by 7(r). For example, if 7 is uniform, 7 ~ U0, o], then 7*(«a) = =

To-

6 Concluding Remarks

Summary. We studied robust decision-making when an agent relies on an informed adviser
who may be misaligned. We characterized the decision rule that maximizes the agent’s
expected payoff guarantee over all possible forms of misalignment. We showed that every
optimal policy is equivalent to a trust region policy in belief space: the agent limits exposure
to manipulation while preserving value from moderately informative advice. We proved that
the optimal solution can be implemented as an equilibrium of a zero-sum game between the
agent and the misaligned adviser and derived minimal alignment probabilities required for

advice to be robustly valuable.

Implications for AI use. Our results support a cautiously optimistic view about deploying
AT in high-stakes settings. Even if misalignment is serious and plausibly frequent, there are
provably effective ways to limit the resulting harm while deriving value—provided that the
human decision maker retains final authority over actions. At the same time, our analysis
makes clear that safe deployment requires concrete, pre-specified decision protocols rather
than informal, case-by-case trust judgments.

The trust-region characterization translates into a simple design rule for Al-assisted choice
under misalignment risk. The decision maker should specify in advance a rule that maps model

outputs into actions, separating a set of outputs that will be used directly from those that will
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be treated more conservatively. In some contexts, this can be implemented as a delegation-
style guardrail. The Al can effectively control decisions within an approved operating range,
but recommendations that push toward unusually aggressive actions are automatically clipped
to the nearest admissible recommendation or escalated into a higher-friction path (additional
tests, second reads, or explicit human sign-off).

Radiology provides a concrete illustration. Suppose a model produces a malignancy
probability for triage (see, e.g., Agarwal et al. (2025)). Under a trust-region protocol,
intermediate probabilities would be used as reported, whereas extremely low or extremely
high probabilities would be replaced by the corresponding boundary values of the trusted
range. This caps the operational leverage of near-certain predictions: an output presented as
almost conclusive is treated as strong evidence, but not as decisive on its own. A conclusion
approaching certainty would instead require corroboration from other sources, such as clinical
context, follow-up testing, or additional human judgment.

More broadly, if the adviser is one component inside a larger Al system, the same idea
suggests an architectural and training choice: include an interpretable interface layer that
enforces the trust-region mapping between modules. This limits the chance that rare errors
or adversarial behavior upstream translate into extreme downstream actions, and it provides

a well-defined target for auditing and stress-testing the system as a whole.

Future research directions. Our analysis points to at least two natural next steps. First,
it would be useful to obtain comparative statics of the trust region with respect to the
agent’s decision problem, the adviser’s informativeness, and alignment probability beyond the
binary-state case, where the geometry of the trust region starts playing a central role. Second,
with an eye toward applications, it is important to develop tractable computational methods
for finding the trust region. Such methods would need to confront the fact that the value
function mapping candidate trust regions into the agent’s payoff is a convex combination of a
supermodular and a submodular function, making many standard algorithms inappropriate.

We leave these directions for future research.
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A  Proofs

A.1 Proof of Theorem 1

We begin with a key lemma.

Lemma 2. Any optimal solution o* is equivalent to an optimal solution that uses Bayes-

optimal private strategies for all m € A(S).

Proof. Consider the set of state-contingent payoff profiles that are feasible for the agent (cf.
Doval and Smolin (2024)):

W ={weR":36, ww)=E;u(a,w,0)|w], Yw € Q}.

Since 6 and s are conditionally independent, if the adviser has posterior s and the agent
plays a private strategy that corresponds to payoff profile w, the resulting agent’s expected
payoff is w - s.

The set W is convex, because a convex combination of the private strategies delivers a
convex combination of their respective payoff profiles. The set W is compact, because for
any A € R maxycp A - w exists and attained by some w € W by the boundedness and
continuity of u in @ and the measurable maximum theorem.

Denote the (weak) Pareto frontier of W by W7

WP ={weW:Aw e W,Vw € Q,w(w) > w(w)}.

Since W is convex and compact, by the supporting hyperplane theorem, a private strategy &
is Bayes-optimal (for some belief) if and only if it delivers a payoff profile in W¥. Therefore, if
o is not Bayes-optimal, there exists a dominating 6" (which can be taken to be Bayes-optimal
itself) such that for all w € Q, Es[u(a,w, 0)|w] > Es[u(a,w, )|w].

Take o* and, for every message m € A(S2), if 6*(m) is not Bayes-optimal for some belief,

replace it with a Bayes-optimal dominating strategy ¢’(m). The new strategy must still be
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optimal. Indeed, the agent’s payoff is

Eprlaw(d(p) - p+(1—a) méI&{EQ){W(&(m)) - pdl,

which pointwise increases after the change.

Hence, the new strategy oy is also optimal. Moreover, the expected payoff must stay the
same since ¢* was optimal to begin with; in particular, oy makes changes to the strategy
only for messages m that have joint probability zero in equilibrium. Thus, ¢* is equivalent to

aggp- ]

We can now finish the proof of Theorem 1. Pick any optimal solution ¢*. By Lemma 2, o*
is equivalent to an optimal strategy that uses only Bayes-optimal private strategies. Denote
by ¥, the set of those private strategies, and let Ty be the closure of the set of beliefs at
which those private strategies are Bayes-optimal. (By continuity, taking the closure does not
affect the expected payoff of the strategy o* in the worst-case scenario.)

Observe that the agent’s payoff coming from the misaligned adviser depends only on the
set Y. Thus, the mapping from messages to the private strategies in ¥y must maximize
the expected payoff conditional on the adviser being aligned. Since the aligned adviser is
non-strategic, maximization can be performed pointwise, message by message (without loss
of optimality, also for messages that are sent with probability zero by the aligned adviser). In
particular, for m € Tp, we can set 6*(m) to be the Bayes-optimal strategy for m; for m ¢ Ty,
we can set 6*(m) = 6*(P(m)) where P(m) € arg max,, ¢z, U(6*(m’), m). This way we have
constructed a TRS (with the trust region Tp) that is equivalent to o*—and is hence optimal.'?

We now show that for any optimal TRS ¢*, the trust region Ty can be enlarged (while
preserving the payoffs) to a connected trust region 77. Assume that Tj is not connected
and take any my, my € Ty that belong to different connected components of Ty: my € Tj
and my € TZ. Consider the welfare profiles w; = w(6*(m;)) and wy = w(6*(ms)) induced

by those messages in the considered solution. Define the subset of Pareto optimal welfare

121t is equivalent to o* because it is weakly better than o* and o* was optimal.
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profiles that dominate some weighted average of those profiles w(7y) 2 ywy; + (1 — 7)wo:
WP (my,mg) = {we W":3y€[0,1],w > w(y)}.

Consider any w € WP (m;,m,) that dominates w(v) for some . Since w € W' w is
generated by a private strategy ¢(w) Bayes-optimal at a set of beliefs M;(w). We enlarge Tj
by adding to it the messages in M;(w) \ Ty (together with the prescription to play &(w) at
those messages). Doing so does not decrease the payoff from the misaligned adviser (because
he could already send messages m; and my), and it weakly increases the payoff from the
aligned adviser (because the trust region gets bigger).

Since W is convex, WP (my, my) is connected. Furthermore, M, (w) is upper-hemicontinuous
with connected (convex) values because it is a normal-cone correspondence. Therefore, the
union (g epn iy my) M1(w) is connected and contains my and ms,. Therefore, adding these
beliefs to the original trust region connects the components Ty and T3, with the trust region
weakly expanding (and remaining optimal). Since this modification can be performed for all
connected components of Ty, this modification results in a connected optimal trust region 77.

Finally, by continuity of payoffs, we can without loss of generality consider the closure of
the set of used private strategies, and hence the trust region can be chosen to be equal to
T = cl T, which is a compact and connected subset of A(£2).

By construction, the new strategy o; is optimal. Moreover, the expected payoff must stay
the same since ¢* was optimal to begin with; therefore, the new strategy makes changes to
the strategy only for messages that have joint probability zero in equilibrium. Thus, ¢* is

equivalent to oy.

A.2 Proof of Theorem 2

Suppose M and © are finite. For any given strategy of the misaligned adviser (which was

assumed to only use messages in M) and the agent, (3, 0), the agent’s payoff is, with a slight
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overload of notation for U,

UG 2a Y rluu)f6) [ ulaw.0)0(dalu o)+

HEM WEN,HEO

(=) 3 r(u)Bml) 6l) [ ulaw,6)o(dalm.6).
1,mEM,wEN,0E0 A
Clearly, B and ¥ are convex. Since M is finite, B = X ey A(M) is compact. Since, M and ©
are finite and A(A) can be equipped with the weak™ topology, ¥ = X ,enmpc0A(A) is compact.
U(B,0) is affine in £ and in o; therefore it is concave-convexlike in Sion (1958)’s terminology.
For each 0 € X, U(f,0) is continuous in 5. For each § € B, U(f,0) is continuous in o.
Therefore, a minimax theorem applies in its infsup variation (e.g., Theorem 4.2’ Sion (1958))

and

sup inf U(f,0) = inf supU(f, o).
O’Gg BEB (ﬁ ) BEB 061;? (6 )

Furthermore, for any given 3, ¢(3) £ sup,cs. U(f, o) is attained because X is compact and

U(B,0) is continuous in o. Similarly, for any given o, () £ infses U(,0) is attained

because B is compact and U(f,0) is continuous in . Because, U(f3,0) is continuous,

¢(p) is lower-semicontinuous and (o) is upper-semicontinuous. Thus, we can set o* €

arg maxyex (o) and 5* € argmingep ¢(f) and they form a saddle point:
U(s*,0)<UB*0") <U(B,0"), VBEBoeX. (12)

Therefore, 5* is an adversarial adviser’s strategy to ¢*, whereas ¢* is a best-response of
the agent to 8*. The latter implies—since a > 0 and all m € M are on-path—that after
any m € M, the private strategy 6*(m) is Bayes-optimal given *, and hence o* is robustly
rationalizable.

Conversely, for any M and ©, consider (5*, 0*) such that o* is robustly rationalizable and

p* is adversarial against o*, i.e., they form a saddle point with property (12). Then, for any

30



o€

Ulo) = inf U(B,0) < U(B".0) < U(8",0") = minU(8,0") = U(o"),

where the third comparison uses the saddle property and the fourth comparison uses the fact

that §* is adversarial to o*. Therefore, 0* is an optimal solution.

A.3 Proof of Theorem 3

Notation: In this section, we denote by [k a unit matrix of dimension K, by 1x a vector of
ones of dimension K, by Oyxx a matrix of zeros of dimension N x K, by €% an ith standard
basis vector of dimension K, by x;; a kth element of vector z;, by diagx a diagonal matrix
with vector = on the main diagonal, and by X a transpose of a matrix X.

Since po has full support, we can equivalently identify adviser’s information with a (row)
stochastic N x K matrix II, where II;; is the probability of the jth signal observed by the
adviser in the ith state. Moreover, rank IT = R(7)."

We identify the strategy of the misaligned adviser with a stochastic K x K matrix B.
Since the aligned adviser reports truthfully, the overall adviser’s strategy can be written as a

garbling of his information:
G(B) 2 alg + (1 —a)B. (13)

By Blackwell (1951), the MVA is a maximal « for which there exists a stochastic matrix B
such that IIG(B) is Blackwell uninformative. (We show below that it is attained.) This also
implies that MVA depends on 7 only via II, so we will write MVA(II).

We start with preliminary observations. First, note that Gjp > o and G1x = 1. Second,

note that IIG(B) is uninformative if and only if all of its rows equal to each other, that is if

13A° matrix of adviser's posteriors can be computed by Bayes’ rule as (u(s))ses =
(diag(po(w))wen)II(diag(7(s))ses) L. The diagonal matrices are invertible and the multiplication by an
invertible matrix preserves the rank.
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and only if
D(IN)G(B) = D(IT)(alx + (1 — a)B) = O(n—1)x K (14)

where D(II) is the row-difference matrix of II:

(2 —7T1)T

D(II) £ : ,

(7TN—7T1)T

and 7, is the ith row of II. Consider the auxiliary finite linear program:

A1) = 15
D= B e @ (15)
st. G 2 CYIK, GlK = 1K7 (16)

D(II)G = On-1)xK (17)

Lemma 3. MVA(II) = A(ID).

Proof. We need to show that there exists a stochastic matrix B such that IIG(B) is Blackwell
uninformative if and only if v < A(II).

= For any given «, if B is such that IIG(B) is Blackwell uninformative, then we showed
that G(B) must satisfy conditions (16-17). By the maximization nature of the problem, if
a > A(II), those conditions cannot be satisfied.

< If a < A(ID), then there exists G that satisfies conditions (16-17) (e.g., the argmax).
If A(IT) = 1, then B can be arbitrary. Otherwise, set B = (G — alg)/(1 — «). It is
straightforward that the so-defined B is a stochastic matrix and by construction I[IG(B) is

uninformative. O

Lemma 3 provides a computationally tractable characterization of MVA for any given II

and sets the stage for the rest of the proof, which we split into two lemmas.

Lemma 4. MVA(II) € [1/R(I1),1/2]. If R(IT) = K, then MVA(IT) = 1/K.
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Proof. To ease notation, in the proof we omit the dependence of R on II.
1.) MVA(II) < 1/2.
If o and G satisfy (16-17), then B = (G — alk)/(1 — ) is a stochastic matrix and

D(I)B = ——2— D(II). (18)

In other words, the rows of D(II) are left eigenvectors of B associated with eigenvalue
—a/(1 — «). Since B is stochastic, its spectral radius equals 1. Thus, | — /(1 —«a)| < 1 and
a < 1/2. It follows that MVA(II) < 1/2.

2.) If R = K, then MVA(II) = 1/K.

If R =K, then K < N and rankD(II) = K — 1. Thus, rankkerD(Il) = K — (K —1) =1
and, because D1 = 1y_1 — 1x_1 = Oy_1, kerD = span{lx}. Thus, for (G, «) to satisfy
(17), every column of G must be a multiple of 1x. But since G is stochastic, it follows that
S G = 1 and ming Gy < 1/K. To further satisfy (16), it must be that o < 1/K. Thus,
MVA(IL) < 1/K.

At the same time, if « < 1/K, then (G, ) satisfy (16-17) for G = 1/K1x1}. (In this
case, G is uninformative, not only IIG, so the misaligned adviser can make the signal to be
uninformative about his estimate, not only about the state.) It follows, that MVA > 1/K
and, therefore, MVA(II) = 1/K.

3.) MVA > 1/R.

Let a = 1/R (recall that R > 2). Consider the normed space (R¥,|| - ||;) and its linear
(R — 1)-dimensional subspace W spanned by rows of D(II). By the Auerbach basis theorem,

there exist vectors wy, ..., wr_1 € W and x1,...,25_1 € R¥ such that'

Jwilli =1, ||zillo =1, w'z; =065, 1<i,j<R-1

4By the Auerbach theorem, there exist vy,...,vp_1 € W and ¢1,...,¢r_1 € W* such that |Jv;][; = 1,
losllw+ = 1, and ¢;(v;) = 6;; (Section ILE, Lemma 11 in Wojtaszczyk (1991); see also Gershkov et al.
(2025) for another recent application). By Hahn-Banach theorem, these ¢;, operating on W, can be
extended to ¢;, operating on RX | without a change in their norm. By the duality between spaces /1 and
loo, for each i, there exists x; € R such that ¢;(z) = z'2; and ||7||cc = ||¢i]| = 1. Then, for w € W,
wi vj = ¢j(wi) = ¢j(wi) = 0y
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Define the corresponding matrices W £ (w1, ..., wg_1), X = (21,...,25_1). By construction,
WX = Ipi, (19)
and by properties of D(II),
Wilg =0gp1. (20)

Define the vector of weights of rows of W, @ € RX, as Wy, 2 S0 Jwixl. Since |lwi]; = 1,

we have

K R—1
> wp =) llwilli=R-1. (21)
=1

k=1

We explicitly construct the desired strategy of the misaligned adviser B as:

- - —1 T
B= (1w —XWT), (22)

Nonnegativity. For all 7, k,
= R-1
Bjy = ﬁ(; |wi k| — ;xz]wzk) > 0,

because |z; ;| < ||z = 1.

Stochasticity. By (20) and (21):
B1 —;(1 (wW'1g) - X(W'1 ))—La (R—1)—0g) =1
K—R_l KW lg K—R_lK k)= 1lk.

Uninformativeness. By (19) and (20):

1 1
W'B=——((W'w —(W'X\W") = —— WY =—— W'
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Since by construction columns of W form a basis in the row space of D(II), it follows that

D(I)B = ———— D(II).

As a = 1/R, this corresponds exactly to (17) (see (18)). The result follows. O
Lemma 5. For any N > 2 and « € [1/N,1/2|, there exist K and II such that MVA(II) = .

Proof. The proof is by direct construction. For N = 2, the result is trivial. For N > 3,
consider K € [4, N + 1] and, for ¢ € [0, 1], the N x K matrix II such that

1

WZT:EQ, i=lori=K,K+1,....N,

1 ,
WJZ?QKJF&K_@}{)T, i=2,...,K—2,

1 .
Wj:?(1K+ek—5e}<—(1—5)e§)ﬂ i=K-—1,

where €% is the ith basis vector of RX. By construction, IT is a stochastic matrix. Consider
MVA(II) that solves the corresponding problem (15).
The constraint D(II)G = O(n_1)xx reduces to:

(et —et)TG =0, i=2,.... K -2, (eX~1 — e — (1 —d)ek) "G =0, (23)

which effectively states that the first K — 2 rows are equal to each other and the (K — 1)th
row is a convex combination of the 1st and the Kth rows with weight §. Thus, the effective
variables are the 1st and the Kth rows of the matrix G. The constraints G > alxyx and

G1g = 1k then boil down to those rows being probability vectors, such that
Gw>a, k=1,...,K -2, (0G g1+ (1-06)Ggr-1) >0, Ggxg > .
Therefore,

a <0G g1+ (1= 8)Grr-1) <61 — (K =2)a)+ (1 -6)(1—a)=1—a(l+ (K —3)).
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Rearranging yields

1
<gte -
SO oS (K — ) (24)

and thus MVA(TT) < af. Whenever § > (K —4)/(K — 3), af < 1/(K —2) and the bound af
can be attained by G with the 1st and the Kth rows being (the rest of G is pinned down by

(23)):

Gu=ao, k=1,..., K -2, Gig1=1—(K -2, Gix =0,

GKkZO,kzl,...,K—Q, GK7K_1:1—CYT7 CTy[{]{:OéT

Thus, MVA(II) = af. At 6= (K —4)/(K=3),a'=1/(K —2);at § =1, al = 1/(K — 1).
This establishes that for all K € [4, N + 1] as § spans [(K —4)/(K — 3), 1], the proposed
IT achieves MVA(II) that spans [1/(K — 1),1/(K — 2)]. Spanning K from 4 to N + 1, we

obtain the result.

A.4 On Strictly Convex Indirect Utility

In this section, we show that the indirect utility is strictly convex when the agent’s private
information induces a full-support distribution of posteriors.

Specifically, we assume that the agent’s ex-post payoff is type-independent, u(a,w) and
identify 6 with the belief it induces in the absence of any other information: © C A(Q),
0(w) = Pr(w|f). We denote by v the final posterior that the agent forms, i.e., conditional on

both the adviser’s message and the agent’s type:

p(w) f(0]w)
2 req (W) (Ol

Vo = Pr(wlp, 0) = (25)

A necessary and sufficient condition for a private strategy ¢ to be Bayes-optimal at any given

posterior u, 6 € argmaxs U(6', ), is that 6(-|0) € A(A) is an optimal best-response with
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respect to v, ¢: for all a € supp(+|0),

a € arg Iar}gi( Z;z V0 (w)u(a;w). (26)
we

Assumption 2. A is finite and there exist aj,as € A and p € int(A(§2)) such that
E,[u(a;w)] = E,[u(ag;w)] > E,yJu(a,w)] for all a & {a1,as}. In addition, for each w € 2
either u(ay;w) > u(ag;w) or u(ag;w) > u(ar;w).

Lemma 6. Suppose 0 has full support on A(QQ) and Assumption 2 holds. Then, U(u) is

strictly convex in the interior of A(S2).

Proof. A sufficient condition for strict convexity of U(u) in the interior of A(2) is that for

any (i1, g2 € int(A(Q)), 1 # pa,
arg max U (G, uy) Nargmax U (G, u2) = 0.

Fix any such py,ue. Let p € int(A(Q2)) be the belief from Assumption 2 and define
d(w) = ulay;w) — ulay;w), 7(w) 2 pa(w)/p(w). By Assumption 2 and continuity of the
expected payoff in belief, there exists an open neighborhood O C int(A(€2)) of x such that
for every v € O, action a; is uniquely optimal whenever v - d > 0, and not optimal whenever

v -d < 0, because it is outperformed by as. Define
Ri2{veO:v-d>0}, R2{veA):v-d<D0}.

Bayes’ rule implies that for every w and 6, v,, 9 = I'(v,, ¢), where I' : int(A(2)) — int(A(£2))

is the map defined by

v(w)r(w)

D V(W) (W)

L(v)(w) £

Since 1 # pg, r is not constant; because d(w) # 0 for all w, the hyperplanes {v : v-d = 0}
and {v : v (rxd) = 0} (where % denotes the component-wise product) are distinct. As
we ON{r:v-d= 0}, we can choose 7 € O such that 7-d = 0 and 7 - (r xd) # 0.

Without loss of generality, suppose 7 - (7 * d) < 0 (otherwise swap the labels of a; and as).
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By continuity, there exists a nonempty open set A C Ry such that v - (r*d) < 0 for all v € A.

For every v € A,

so I'(A) C Ry. The map 6 ~— v,, 4 is continuous and onto int(A(Q2)). Hence Oy = {6 :
Vi 9 € A} is nonempty and open; since 6 has full support on A(), it has strictly positive
probability.

For every 6 € © we have v, y € Ry and v, 9 € Ry. This means that the private strategies

optimal at p; and g must necessarily differ on 8 € ©y. The result follows. m

A.5 Proof of Lemma 1

The misaligned adviser with signal realization p minimizes U (6 (y'), ) over i/ in the trust
region. Recall that the function U(6(y'), p) is linear in p,

U(p) = maxU(a, p),

g

and we assumed that U is strictly convex and twice differentiable. This means that U (o (1), i)
is the value at p of the hyperplane supporting U at y/. Under our convention that p is the
probability of state 1, this means that

U((p), 1) =U) +U' (W) (1 — 1),

By convexity of U, this function is quasi-concave in y', and hence for all p' € [u, 7],
Ue(u'), p) = min{U (6 (), ), U(6 (), 1) }. Thus, the misaligned adviser’s strategy takes a
threshold form. The threshold b(u, f7) is the intersection point of the supporting lines to U at
points p and 7

U(p) + U () (b 1) — ) = U(m) + U (@) (b, 12) — 7).

38



If p =7 = p, b(pu, ) = p, coinciding with (5) by continuity. Otherwise, rearranging, we

(. 1) = U () — pU'(p) — (U() — U(p))
= U'(m) —U'(p)

Applying integration by parts, the numerator equals ff pU” (1)dp and the denominator

equals f R U"()dp. The result follows.

A.6 Proof of Proposition 1

By Lemma 1 and Corollary 2, the choice of an optimal strategy for the agent reduces to

optimization over the extreme points p, @ of the trust interval with the corresponding payoff:

Ulp, m) =

o (/OM(U(E) + U () (1 = )7 (p)dp + /MU(M)T(u)du + / U @) + U'() (1 — ﬁ))T(M)du>

© w

1

b(p,1t)
+(1-a) (/0 (U(ﬁ)+U’(ﬁ)(u—ﬁ))7(u)du+/

(1)

(U(p) + U () (e — g))T(u)du) :

The function U(u, ) is continuously differentiable with partial derivatives at points with

po<p

@ =U"(p) (a /Ou(,u — )T (p)dp + (1 — a)/ (1 — E)T(M)dﬂ> ;

b(p,1)

1 b(p,m)
o = U (a [ =m0 -y [ ﬁ)T(u)du) .

Intuitively, the first-order impact of a change in the trust boundary equals the change in the
action played at that boundary, measured by U”(-), integrated over the posterior regions in
which the aligned and misaligned advisers induce that action, weighted by the alignment
parameter. (Terms involving 9b/0u and 0b/0ft vanish because at p1 = b(u, 1i) the misaligned
adviser is indifferent between the two messages.)

Whenever the trust region is non-singleton, p < 7, at the optimal choice of p and 1z these
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partial derivatives must equal zero, OU/du = 0 and 0U/df = 0. Since U"(-) > 0, these

first-order conditions can be rearranged as follows. Define functions ¥; and ¥, as

Wilpgn) 2o [ g+ (=0 [ (= el

(112 o

1 b(p,m)
Valpgn) 2o [ (= rodn+ (1 =a) [ (=@

Then, Wy (u, i, o) = Wa(p, @1, ) = 0 is equivalent to conditions (6) and (7).

First, we show that conditions (6) and (7) are incompatible with a < 1/2. (If M was
finite, this would follow directly from Theorem 3.) Indeed, if those conditions hold then (for
the rest of the proof, we will often omit the arguments of the function b for brevity):

o oy [ - i) 2 o [“= i+ [ 0 -mraa)

I

=(1-qa) (/Ob(ﬁ = wT(p)dp + /bl(u - g)T(u)du>
> =) ([0 mrtdic+ [ G- vriin),

where the inequalities hold because p < b(u, ) < i and the equality is a consequence of
(6) and (7) (their sum). Because 7 has full support, the multipliers on both sides of the
inequality are strictly positive, and thus o > 1 — «, i.e., a > 1/2.

Now we argue that for o > 1/2 the solution to (6) and (7) such that p < 7 exists.
(Note that at o = 1/2, [u, i] = [po, o] is a solution.) For the rest of this proof, we omit the
dependence of ¥; on a. By Lemma 1 and direct inspection, b(y, z) is strictly and continuously
increasing in its arguments, so Wy (u, ) is strictly and continuously decreasing in p for each
7. Furthermore,

1

Ui (0,7) = (1 - a)/ pr(p)dp > 0,
b(0.7)

Ty(L7) = o / (1 — D)r(u)dp < 0.

Therefore, for each [, a best-response by (fz) such that W (b;(), ) = 0 exists and is unique.

40



Since Wy (u, ;1) strictly decreases in 7z, by (f) strictly decreases in 7. Finally, for any 7,

1

1 b1 (1)
[ e=nrde= [ = n@rGode = [ @) = el

1(7) b(b1 (1))

where the second inequality holds because o > 1/2 and ¥y (by(z), #) = 0. Thus, for any f,
bi(1z) < po-

Analogously, for each p, a best-response by (1) such that Wy(u, bo) = 0, exists, is unique,
strictly decreases in p, and is everywhere greater than yg.

Therefore, a solution to (6) and (7) is any p € [0, po] and i = ba(u) € [po, 1] such that
bi(bz(p)) = p. By the established properties of by and by, by(by(j2)) is continuous in y with
bi(ba(p)) € [0, po] for all p € [0, po]; hence, by(b2(0)) — 0 > 0 and by (bz(p0)) — po < 0. By the
intermediate value theorem, there exists u € [0, ug] such that by(ba(p)) = p.

So far, we showed that for @ > 1/2, a solution exists and belongs to a closed rectangular
set D = {(p, 1) : p € [0, o], @ € [po,1]}. To establish uniqueness, consider the function
—VU = (=¥, —V,) on D. Any solution must satisfy —W(u, ) = (0,0). Observe that for any

(u.11) € D,

3[52’1] - a/ONT(M)du (1= a) S ()b - ) + (1 - a) /b1 m()dp > 0,
- e -w 20,

3[53’2] = (1= ) S )b~ ) > 0,

8[5;2] = oé/ul T(p)dp + (1 — @)g—;T(b)(ﬁ —b)+(1-a) /Obf(u)du > 0.

Moreover, for all (u, 1) € D, the Jacobian of [—V] is a P-matrix, i.e., it has strictly positive

principal minors:

O[—4]
op

O=V,] [y  O[=V,] I[-Vy]
ou o  O§ Ou

> 0, > 0.

By the Gale-Nikaido Theorem, (Theorem 4, Gale and Nikaido (1965)), it follows that [—¥] is

injective on D, and thus there exists at most one solution to the equation —W(u, ) = (0,0).
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Finally, we show that the proposed trust region strategy is robustly rationalizable by
explicitly constructing a TRE. For a@ > 1/2, we need to construct a measurable strategy of
the misaligned adviser § : [0, b] — [g, 1] such that for every set X C [, 1] with a7(X)+ (1 —
a)7(B7H(X)) > 0,

a [ pr(p)dp+ (1 =) [50 nr(p)du
a [y r(wdp+(1—-a) fgfl(x) 7(p)dp

= TI. (27)

(The construction of 8 : (b,1] — [0, u] is analogous.) To this end, define two finite atomless

nonnegative measures:

/Y) 2 (1=a) [ (= e, Y 0.1
002 a [ (=Rl X € 1)

Observe that condition (7) is precisely n([g, 1]) = v(]0,b]) whereas condition (27) is the
pushforward identity:

n(X) =v(B(X)), XC[m1].

In other words, we need to find § that transports v to 7. It is always possible. For a canonical
quantile construction, define the cumulative mass functions F,(u) = v([0, u]) for p € [0, ]

and F,(u) £ n([f, p]) for p € [, 1]. The transport map can then be set:

Bp) = E;H(E(), 1€ (0,0,

where F,7'(-) is the generalized inverse: F,"*(q) = inf{u € [f, 1] : F(u) > q}.
For a < 1/2, T = {po}, so the misaligned adviser is indifferent between all messages

and it suffices to construct a strategy 5 : [0,1] — [0, 1] such that for all X C [0, 1] with
a [y T(w)dp+ (1= a) f5i 0 (p)dp > 0,

a [y pr(p)dp+ (1 —a) [5x nr(p)du
a [y T(wdu+ (1= a) [y T(1)dp

= Mo, (28)
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which is equivalent to:

o [ =)l + (1= ) /ﬁ g 0 =0

To do that, observe that fol(u — po)7(p)dp = 0 and [ (o — p)7(p)dp = f:o(u -
po)7(p)dp > 0. Since a € (0,1/2), a/(1 — ) € (0,1) and by the intermediate value theorem,

there exist puz € (0, o) and py € (po, 1) such that

«

/OM (o = m)7(R)dp = —— /O“O (ko = p)7(p)dps,
| = moyrtwdn = 2 [ = poyrindn

l—« o

By construction,

/O#L po — w)T(H)dp = - - /M: (= o) (1), (29)
/ i o)T(p)dp = 1 - o /O“O(Mo = w7 (p)dp, (30)
/uH = po)7(p)dp = 0. (31)

We can set S(u) = Br(p) when p € [0,ur], B(n) = po, when p € (ur, p), and
B(p) = Bu(p), when u € [pg, 1]. Here, By, is a quantile transport map that transports measure
vi(Y) = (1= ) fy (o — ) ()dps on [0, ) to measure np(X) = a [y (1 — io)7 ()l on
(140, 1], just like in the case of v > 1/2; it ensures that (28) holds for all X C (o, 1]. Similarly,
By is a quantile transport map that transports measure vy (Y) = (1 — ) [, (1 — po)7(p)dp
on (g, 1] to measure 1 (X) = o [, (o — p)7()dpe on [0, yig]; it ensures that (28) holds for
all X C [0, uo). (The transported masses match the targets by (29) and (30).) Finally, by
(31), (28) holds for = pg. The result follows.

A.7 Proof of Proposition 2

At o =1/2, [, 71] = [po, pto] satisfies conditions (6) and (7). At o = 1, [u, 1] = [0, 1] satisfies
conditions (6) and (7).
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For o € (1/2,1), denote by W;;, W5, and ¥,, a partial derivative of ¥; with respect to i,

7, and « respectively. Define the Jacobian:

\Ijll \1[12

J(p, By )
Wy Wy

As we argued in the proof of Proposition 1, for all u, @, o > 1/2, det J(u, @i, o) > 0,
and therefore, by the implicit function theorem, optimal p(a) and 7i(a) are continuously

differentiable and!'®

dp/do 1 [ Ve
o = - (Ha M, Oé)
dii/do Uy,
Consequently,
dp _ VonWia — ¥ipVa, <0
do \Dlﬁlpzﬁ \111M\II2H ’
dﬁ \IIZM\Dla - \IIIH\IJZa 0

where the inequalities hold because, as we already showed, ¥y, < 0, U1z < 0, Wy, < 0,

Vor < 0, and

The result follows.

A.8 Proof of Proposition 3

Throughout, fix a > 1/2 (the proposition is trivially true otherwise). We begin with a simple

lemma.

. .. . -, . . d d
5 Differentiating the optimality conditions with respect to @ we obtain \Illlﬁ + \Illgd—ﬁ; 4+ Wi, =0, \Ilglﬁ +
Wop 4 4 Ty, = 0.
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Lemma 7. Let Uy, Uy be twice differentiable and strictly convex on [0,1]. Assume that the
ratio Uy (u)/UY (1) is decreasing. Then, with b; defined for each Uy, i € {1, 2}, by equation
(5), we have that by(p, 11) < ba(p, ;1) for all p <.

Proof. By (5), for i € {1,2}, bj(u, i) = Epy,[p], where fi(p) is a density of a probability

measure on [y, 71| defined as

U/' (1)

U

By assumption, fi(u)/f2(p) is decreasing, and hence f likelihood-ratio dominates f;. This
implies that the probability distribution f; is first-order stochastically dominated by fs; in

particular, it has a lower mean. The result follows. O]

We now take the second step by showing a monotone relationship between the cutoff

function b and the trust region.

Lemma 8. Consider two decision problems U;, i € {1,2}, and let (u.,11;) € D denote the

(unique) solution to the system

‘Pll(/'%ﬁ7 a) = 07 q”é(ﬁ?ﬁ? a) = 07

where Wi, s and D are defined as in the proof of Proposition 1 for each U;. If bi(p, 1) <

ba(p, 1) for all p < T, then By < py and iy <.

Proof. For any h € [0, 1], define the auxiliary functions

@mmh»éazﬁu—uwmwm+u—wwl<u—MﬂMdm

Uy(1i, h) £ a/

I

1

(b —m)7(p) dp+ (1 — ) /0 (1= m)7(p) dp.

For each h, let uu(h) be the unique solution to \Afll(ﬁ, h) =0 in [0, o), and let 7(h) be the
unique solution to {Ivlg(ﬁ, h) =0 in [ug, 1]. (Existence and uniqueness follow from an argument

analogous to that used in the proof of Proposition 1).
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For each i € {1,2} define the scalar map

pi(h) = bi(p(h), 7i(h)).

Let h; = b, (1., B;) be the cutoff evaluated at the optimal endpoints of problem 4. Then (u , ;)
solves W} = W4 = 0 if and only if p. = p(hi), 7i; = fi(hi), and h; = @;(h;). By the assumption

by < by pointwise, for every h,

p1(h) = bi(p(h), f(h)) < ba(p(h), 1i(h)) = @a(h).

Define a region H = {h € [0,1] : u(h) < h < f(h)}. Note that H is an interval and
hi,hs € H. For h € H, implicit differentiation yields

= 0T

T /0h _ _OWs/Oh _
- 8\111/8E

2

Thus, ¢; is weakly decreasing in h on H: both u(h) and fi(h) are weakly decreasing in h,
while b;(p, z) is weakly increasing in each endpoint, so the composition h +— ¢;(h) is weakly
decreasing.

It follows that hy > hy: if hy < hq, then, since ¢, is decreasing on H,
hy = @2(ha) = 2(h) = ¢1(h1) = ha,
which is a contradiction. Since () and 7i(-) are weakly decreasing,
py = plh2) < p(ha) =, i =Hlhe) < (b)) =7y,

completing the proof. O

By Lemma 7, UY /Uy decreasing implies by (u, 1) < ba(p, 7z) for all p < 7. Lemma 8 then
yields Ky S 1y and 1, < ;. This proves Proposition 3.
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A.9 Proof of Proposition 4

With a small abuse of notation, we can parameterize each private strategy by ¢ = Pr(a = as).
We also drop the dependence of G and L on 7 in the notation. Then, by the arguments
behind Theorem 1, if the agent employs the set of private strategies S = {6(m)}mea);
the payoffs coming from both aligned and misaligned adviser depend only on ¢, £ inf Yo
and 6y = sup f)o, and the optimal payoffs from using 33y are the same as if the agent plays

d(m) = o1, when v(m) < 0 and 6(m) = 6 when v(m) > 0. This payoff is:

/ (o + (1 —a)og)v7(dv) + /0 Oo(ozc3H + (1 — a)ér)v7(dv)

—00

= 61((1— )G — aL) + 65(aG — (1 — a)L). (32)

The optimal choice of 67, and 65 must maximize (32) subject to 6,64 € [0,1] and 6, < 6y.
This is a linear optimization subject to (6, y) being in a triangle with vertices (0, 0), (0, 1),
and (1,1). A straightforward calculation gives the following solution:

If G=L:if « <&=1/2, then any 6, = 6 is optimal; if @« > & = 1/2, then 6, = 0 and
og =1;if a = & =1/2, then any (6,0y) is optimal. If G > L: if « < &, then 6, = 65 = 1;
if « > &, then 6, =0 and 6y = 1; if @ = @, then 65 = 1 and any &, is optimal. If G < L:
if « < &, then 6, =6y =0; if @ > &, then 6, =0 and 65 = 1; if « = &, then 6;, = 0 and
any oy is optimal.

The cases 05, = oy correspond to not trusting any message and always acting in the
same way, optimal at the prior, so T'= {uo}. The cases 6, = 0 and 6y = 1 correspond to
trusting all messages, so "= A(£2). Since we assumed that the probability of v(px) =01is 0
and G # L, the corresponding optimal strategy is uniquely determined.

It is left to show that those strategies are robustly rationalizable. Define My = {u :
v(p ) =0}, M_ = {u cv(p) < 0}, and M+ = {u s o(p ) > 0}. Define probability measures

= [y v(u)7(dp)/G for X C My, q-(Y) = [, (— 7(dp)/L for Y C M_.

For a > &, the agent fully trusts the adviser. Consider the following strategy of the

misaligned adviser. If u € My, then 5(u) = p. If p € M_, then § randomizes over messages

m € M, according to q,. If p € M,, then g randomizes over messages m € M_ according
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to g_. This strategy is clearly adversarial. Furthermore, since a > &, after any message
m € M, the posterior expected payoff from action as is strictly positive: for any X C M,

with 7(X) > 0,

o /X v(m)r(dm) + (1 - a) /A P () = G (X) ~ (1 - )L, (X) >0

Analogously, after any message m € M_, the posterior expected payoff from action a, is

strictly negative: for any Y C M_ with 7(Y) > 0,

o /Y v(m)r(dm) + (1 - o) /A L PB0 )r(d) = ~oLg () + (1~ )G (¥) <0

And by construction, after any message m € M, the posterior expected payoff from action
ao is zero.

For a < &, the agent doesn’t trust the adviser so any adviser’s strategy is adversarial.
Consider the case G > L (the complementary case is analogous). We need to construct
the misaligned adviser strategy that makes communication not valuable. To do so, define
v =aL/((1 —«a)G) € [0,1]. Consider the following strategy of the misaligned adviser. If
i€ M_, then  randomizes over messages m € M, according to ¢,. If u € M, then with
probability ~, 8 randomizes over messages m € M_ according to ¢_ and with probability
(1 —~), 8 randomizes over messages m € M, according to ¢.. This strategy makes the
posterior expected payoff from action as zero after every message m € M_: for any Y C M_

with 7(Y) > 0,

o /Y v(m)r(dm) + (1 - o) /A P80 A7) = ~oLg (V) + (1~ @G (¥) =0

After any message m € M, , the posterior expected payoff from action as is strictly positive:

for any X C M, with 7(X) > 0,
o [ vtmyr(am) + (1= a) [ o(BX W = (G - Lg.(X) > 0.
X A(Q)

Thus, this 8 robustly rationalizes the strategy.
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Finally, at & = &, both full trust and no trust are optimal (along a continuum of other

strategies) and robustly rationalizable by the same s as above.

A.10 Supporting calculations for Example 1

The key step in the construction of the optimal trust region in Example 1 comes from the

following simple lemma.

Lemma 9 (Spherical U). Let U(u) = V(|| — b||) for some vector b and function V. Let
W (r,n) =b+rn, where n € RN with ||n|]| =1 and r € R. Then, (i) Dy(u, ' (r,n)) is strictly
increasing in n - (b — p) whenever r # 0, and (i) Dy (p, t'(r,n)) is a unimodal function in r

with a minimum at r =n - (p —b).

Proof. In this case, VU (y/(r,n)) = V'(r)n, and thus

Dy (p, ' (r,n)) = V[l = bl) = V(r) = V'(r)(n- (u—b) — 7).

Since U () is strictly convex, V'(r) > 0 whenever r # 0 and V" (r) > 0. Thus Dy (u, /'(r,n))

is strictly increasing in n - (b — p). Furthermore,

aDU(:ua :u/(T’ n))
or

= V() =V(r)(n- (p=0) =r) + V'(r) =V"(r)(r —n- (n—b)).

Because V”(r) > 0, the unimodality follows. O

Suppose that the misaligned adviser holds belief . By Corollary 3, the adviser will try to
maximize Dy (u, 1) over p on (the boundary of) the trust region. Parameterizing p/ = b+1rn
and applying Lemma 9 yields that n is optimally chosen to be (b — u)/||b — p||, whereas r is

chosen maximal within the trust region, r = r*(a). Thus, the optimal x’ is given uniquely by

b+ r(a)(b—p)/l[b—pll-
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