

WORKING PAPERS

N° 1709

February 2026

“Robust Trust”

Piotr Dworczak and Alex Smolin

Robust Trust^{*}

Piotr Dworczak (r) Alex Smolin

February 9, 2026

Abstract

An agent chooses an action using her private information combined with recommendations from an informed but potentially misaligned adviser. With a known alignment probability, the adviser reports his signal truthfully; with remaining probability, the adviser can send an arbitrary message. We characterize the decision rule that maximizes the agent's worst-case expected payoff. Every optimal rule admits a trust region representation in belief space: advice is taken at face value when it induces a posterior within the trust region; otherwise, the agent acts as if the posterior were on the trust region's boundary. We derive thresholds on the alignment probability above which the adviser's presence strictly benefits the agent and fully characterize the solution in binary-state as well as binary-action environments.

Keywords: information design, misalignment, human-AI interactions.

JEL Codes: C72, D81, D83

^{*}Dworczak: Department of Economics, Northwestern University and Group for Research in Applied Economics, piotr.dworczak@northwestern.edu. Smolin: Toulouse School of Economics, alexey.v.smolin@gmail.com. We thank Nageeb Ali, Ricardo Alonso, Laura Doval, Tan Gan, Alexis Ghersengorin, Marina Halac, Jason Hartline, Nicole Immorlica, Emir Kamenica, David Levine, Annie Liang, Stephen Morris, Jacopo Perego, and Balázs Szentes for helpful conversations. Alex Smolin gratefully acknowledges funding from the French National Research Agency (ANR) under the Investments for the Future program (grant ANR-17-EURE-0010) and the AI Interdisciplinary Institute ANITI (grant ANR-23-IACL-0002). Part of the analysis in this paper was conducted while Alex Smolin was visiting Northwestern University and Columbia Business School, and we thank both institutions for their hospitality.

1 Introduction

Modern AI systems increasingly influence decisions with large and sometimes irreversible consequences, including autonomous driving, medical triage, hiring, and credit or security screening (see, e.g., [Maslej et al. \(2025\)](#)). Their appeal is straightforward: they can synthesize information at scale and provide recommendations that exceed unaided human performance in many tasks. The central risk is also well-recognized: when a system is opaque, complex, and trained or deployed under imperfect objectives, users may not be able to tell whether a recommendation is merely noisy, systematically biased, or actively harmful. The misalignment problem is a particularly serious concern in high-stakes environments, and its mitigation is key to ensure safe adoption of AI-aided decision making (see, e.g., [Russell \(2019\)](#)).

In this paper, we study how an agent should use AI when the system may be misaligned. Taking the AI’s information structure and an exogenous alignment probability as given, we characterize the agent’s optimal robust decision rule, which maximizes her payoff under the assumption of worst-case AI behavior in case of misalignment.

Our model features an agent who chooses an action under uncertainty about the state of the world. The agent has access to a private signal—reflecting her expertise or contextual information—but she can additionally rely on reports from an adviser (e.g., an AI system). The adviser observes complementary information about the state and sends a message to the agent.

Crucially, the adviser is aligned and reports his information truthfully only with some known alignment probability. With remaining probability, the adviser is misaligned and can send an arbitrary message. In practice, misalignment could take several distinct forms with ambiguous implications for the agent’s decision (see, e.g., [Amodei et al. \(2016\)](#)). We assume that the agent adopts a robust approach: she chooses a policy mapping her private information and the adviser’s message into a (possibly random) action that maximizes her expected payoff against the worst-case scenario—conceptualized as one in which the misaligned adviser is actively attempting to minimize her payoff. The robust criterion reflects the safety concerns in applications: an optimal decision rule provides the highest payoff guarantee for the agent in the absence of any assumptions about the form of misalignment.

Our main structural result shows that optimal robust policy for the agent can be summarized by a single, interpretable object that we call the “trust region.” The trust region is a connected set of reported beliefs about the state that the agent is willing to take at face value. When the adviser’s reported belief falls inside this region, the agent behaves as if the adviser were truthful: she combines the reported belief with her private information using Bayes’ rule and chooses the corresponding Bayes-optimal action. When the reported belief lies outside the trust region, the agent replaces it with the “closest safe interpretation,” formalized by the notion of Bregman distance, which is a belief lying on the boundary of the trust region; she then behaves as if that belief had been reported. Operationally, this is an endogenous form of clipping: moderate recommendations are followed while extreme recommendations are discounted and converted into boundary recommendations that the agent is still willing to accept.

Intuitively, if the agent reacted sharply to extreme reports, the misaligned adviser could exploit that sensitivity to induce large losses. The robust policy responds by limiting how far any recommendation can push behavior. The trust region identifies exactly which recommendations are safe to act upon without additional skepticism, and the boundary mapping formalizes how skepticism should be applied outside that set. On one extreme, a trust region equal to the entire belief simplex corresponds to applying the Bayes-optimal response to all reports; on the other extreme, a trust region only containing the prior corresponds to ignoring the adviser’s reports. Thus, the shape and size of the trust region yields a disciplined answer to a practical design question: when an AI system outputs highly confident or highly unusual recommendations, optimal robust use requires treating those outputs as “too informative to be trusted” and translating them into safer boundary inputs before acting.

An implication of the characterization is that the optimal robust action rule used by the agent must be defensible as optimal for some coherent set of beliefs about the state of the world—the agent never benefits from distorted use of her own private information. An optimal robust rule simply restricts the set of Bayes-optimal action rules that the agent uses. A further consequence is that implementing the optimal trust region policy does not require commitment. Under mild technical assumptions, we prove a minimax theorem which implies existence of a *trust region equilibrium* (TRE) in the zero-sum game between the agent and

the misaligned adviser. In a TRE, the agent’s policy and the misaligned adviser’s strategy form a saddle point: after every on-path recommendation, the agent’s chosen action is Bayes-optimal given the belief induced by the adviser’s strategy, and the misaligned adviser’s strategy minimizes the agent’s expected payoff. Substantively, this means that robust optimal behavior provides the same payoff guarantee that the agent could obtain had she perfectly known the misaligned adviser’s strategy. Practically, this result provides a certification tool: to verify that a proposed policy is optimal, it suffices to exhibit a corresponding adversarial reporting strategy that makes that policy a best response at every recommendation.

We then ask when consulting a potentially misaligned adviser is worthwhile for the agent. We formalize this question by defining “minimal viable alignment”—the threshold alignment probability above which the agent can guarantee a strictly higher payoff than the one she could achieve by only relying on her own information. We derive sharp bounds on this threshold that depend only on the richness of the state space and the adviser’s signal distribution. As long as information is useful to the agent, alignment probability exceeding half is sufficient for the agent to benefit from the presence of the adviser. This bound is tight in binary-state problems, but minimal viable alignment may be much lower—sometimes as low as one over the number of states—in multi-dimensional settings. Thus, for problems with a rich state space, robustly valuable use of AI advice may be profitable even when alignment is very unlikely.

Our general characterization becomes particularly sharp when the state space is binary, so that the ground truth is whether a given statement is true or false. In this setting, an adviser’s message can be summarized by the implied probability of the statement being true. The trust region is an interval around the prior probability. Recommendations inside the interval are trusted and acted upon as reported. Recommendations outside the interval are mapped into the nearest endpoint. The misaligned adviser sends messages that push beliefs to the interval endpoint in the direction that is most damaging to the agent’s action choice. This structure delivers a sharp phase transition. If the alignment probability is below one half, the optimal interval collapses to the prior and the agent ignores the adviser. If alignment is above one half, there is a unique nontrivial trust interval, and, if the agent’s decision problem is rich in the sense that she benefits from any piece of information, it expands monotonically with

alignment, approaching full trust as alignment approaches certainty. We further demonstrate that the location of the trust region (whether it is skewed towards high or low beliefs) depends on the relative curvature of the agent’s indirect utility function—interpreted as a measure of sensitivity of the agent’s optimal action to information.

Our characterization also yields a closed-form solution when the agent’s downstream choice is binary (e.g., to accept or reject an application) and the agent has no private information. In such problems, the optimal robust use of advice is generically all-or-nothing: either the trust region is the entire belief simplex or it collapses to the prior. Which regime obtains is determined by an alignment threshold that depends only on the relative value of the adviser’s information across the two actions. In particular, if alignment is below one half, the agent cannot robustly benefit from the adviser.

Finally, we examine environments where uncertainty concerns many possible states and actions. Here, the geometry of the trust region plays a major role: some directions of belief change are far more consequential than others because they trigger actions whose payoffs are highly sensitive to the true state. In a robust solution, the misaligned adviser chooses recommendations that are farthest from the truth within the trusted set in an incentive-based sense, again formalized by Bregman distance. In general, the trust region may take a complex shape, i.e., it need not even be convex. In symmetric environments, however, the trust region inherits the symmetry of incentives and information and can be tractably characterized.

1.1 Literature review

Our model is closely related to two foundational models in information economics: the cheap talk model (Crawford and Sobel (1982)) and the Bayesian-persuasion model (Kamenica and Gentzkow (2011)). Relative to the cheap-talk model, our framework effectively assumes that the Sender maximizes the Receiver’s utility with some probability α and minimizes the Receiver’s utility with the complementary probability $1 - \alpha$.¹ Our characterization of trust region equilibria shows that equilibrium behavior is very different from the one arising in the more standard constant-bias case; in particular, information transmission is perfect

¹Strictly speaking, we assume that with probability α the Sender reveals his signal truthfully, but this can be shown to be optimal for the Receiver.

for intermediate beliefs of the Sender but completely blocked for extreme beliefs. Relative to the Bayesian-persuasion model—due to the minimax theorem which we prove in our setting—our framework is equivalent to the case in which the Sender tries to minimize the Receiver’s payoff but is committed to revealing his signal truthfully with probability α . One of our contributions is to provide a characterization of threshold levels of α above which the adversarial Sender cannot prevent the Receiver from learning some information.

Within a more recent literature in information economics, several papers study models in which the Sender is truthful (or committed) with some probability but the messages may be fake (or manipulated) otherwise. To the best of our knowledge, none of these papers consider the case (motivated for us by the AI alignment problem) in which the non-aligned Sender is adversarial—typically, the non-aligned Sender is modeled as having state-independent preferences. [Lipnowski et al. \(2022\)](#) and [Min \(2021\)](#) analyze a setting in which the Sender is committed to the information structure with some probability and sends a cheap-talk message otherwise. [Glazer et al. \(2020\)](#) and [Lahr and Winkelmann \(2019\)](#) study equilibria of communication games in which some reports are truthful and some may be fake. [Alonso and Padró i Miquel \(2025\)](#) model competitive capture of public opinion by assuming that informative signals about a binary state may be manipulated (i.e., replaced by an arbitrary message) by two opposed “interested parties,” one of which wants the induced beliefs to be as high as possible and the other one as low as possible. They characterize a *communication equilibrium* in which citizens correctly update beliefs given the equilibrium strategies of the interested parties. Interestingly, the structure of their communication equilibria shares similarities with our trust region equilibria in the special case of a binary state: messages in some intermediate interval are interpreted at face value, while messages outside of that interval induce beliefs at the endpoints of the interval.

Our modeling of uncertainty about the behavior of the adviser is inspired by the classical *Hurwicz criterion*, also known as the alpha-max-min approach ([Hurwicz \(1951\)](#)), under which the decision maker maximizes a weighted sum of her best-case and worst-case payoffs. We interpret α as the probability of alignment. A similar criterion has recently been applied in the context of information design by [Dworczak and Pavan \(2022\)](#).

The version of our model in which the agent does not have private information is related

to the delegation literature in that the agent effectively chooses which decisions to delegate to an informed adviser. Within that literature, the closest paper is [Frankel \(2014\)](#) who adopts a worst-case approach with respect to the adviser’s preferences, assumed to lie in a known set. Our setting differs both in primitives and in methods: we require robustness to the adviser’s behavior in case of misalignment and the resulting optimization problem has a different structure.

Regarding the AI alignment problem, a few approaches have recently been proposed in the microeconomic theory literature. [Chen et al. \(2024\)](#) develop a model of screening for alignment in an environment in which the decision maker can simulate the task and impose imperfect recall on AI, obscuring whether the task is real or part of a test. Closer to our approach, [Fudenberg and Liang \(2025\)](#) assume that the AI system is aligned with some known probability and that it performs adversarially in case of misalignment. Unlike us, [Fudenberg and Liang \(2025\)](#) assume that the decision maker can impose the true unconditional distribution of optimal actions but faces non-Bayesian uncertainty about the *correlation* of the optimal action with a set of co-variates she controls. Correspondingly, their focus is different: they ask which co-variates should be revealed to AI. In our framework, the decision maker knows the distribution of AI’s signals (uncertainty is only about AI’s *behavior* in case of misalignment) but has no way of verifying the truthfulness of the report; we focus on how the decision-maker should combine AI’s report with her private information (which would never be optimally disclosed to AI in our framework).

More broadly, our framework is part of a rapidly growing literature trying to understand optimal human-AI interactions. Closest to our paper are [Dreyfuss and Hoong \(2025\)](#) and [Agarwal et al. \(2026\)](#) who also adopt an information-design approach; [Agarwal et al. \(2026\)](#) ask how AI advice interacts with human decision-making in the presence of potential biases and when the decision-maker’s effort in acquiring information is endogenous.

2 Model

Our formal model allows certain spaces to be infinite (which is useful for constructing tractable examples). Whenever we work with an infinite space, we endow it with the Borel σ -algebra,

and require all sets and functions that we define to be measurable; statements involving “for all” should be interpreted as “for almost all” with respect to the underlying distributions.

A state ω is drawn from a finite state space Ω , $|\Omega| = N$, according to a full-support prior distribution $\mu_0 \in \Delta(\Omega)$. An adviser observes partial information about ω , captured by a signal s whose distribution is pinned down by a signal function $\pi : \Omega \rightarrow \Delta(S)$. We will identify the adviser’s information with the posterior about the state that a signal realization induces; let $S = \Delta(\Omega)$ and renormalize so that s is equal to the posterior about ω induced by s . Let τ denote the unconditional distribution of the adviser’s posteriors s , with $M = \text{supp}(\tau)$.

An agent takes an action $a \in A$, where A is a compact metric set. The agent observes a private type $\theta \in \Theta$, where Θ is a compact metric set, that captures the agent’s own information about ω and her preferences, distributed according to a signal function $f : \Omega \rightarrow \Delta(\Theta)$. We assume that, conditional on the state, s and θ are distributed independently. The agent’s ex-post payoff is given by a utility function $u(a, \omega, \theta)$, assumed bounded and continuous in a .

The adviser can send messages $m \in \Delta(\Omega)$ to the agent (without loss of generality, we set the message space to be the space of posteriors about the state). The agent can choose any strategy σ that prescribes how to act for any combination of the adviser’s message and the agent’s type, $\sigma : \Delta(\Omega) \times \Theta \rightarrow \Delta(A)$. Denote the set of all such strategies by Σ .

The adviser’s strategy maps his posterior beliefs into distributions over messages sent to the agent. With probability α , the adviser is *aligned* and non-strategically reports his belief according to the identity function $\text{id} : M \rightarrow M$ such that $\text{id}(m) = m$ for all $m \in M$.² With probability $1 - \alpha$, the adviser is *misaligned* and sends a message according to some strategy $\beta : M \rightarrow \Delta(\Delta(\Omega))$. Denote the set of all such strategies by \mathcal{B} .

Faced with non-Bayesian uncertainty about the form of misalignment, the agent adopts a cautious posture and aims to maximize her guaranteed payoff. Concretely, she evaluates each possible strategy σ according to its worst-case payoff

$$U(\sigma) \triangleq \alpha \mathbb{E}_{\text{id}, \sigma}[u(a, \omega, \theta)] + (1 - \alpha) \inf_{\beta \in \mathcal{B}} \mathbb{E}_{\beta, \sigma}[u(a, \omega, \theta)], \quad (1)$$

²It can be shown that the assumption of truthful reporting of the belief is equivalent (in terms of equilibrium payoff consequences) to assuming that the aligned adviser is attempting to maximize the agent’s expected payoff. However, the assumption of truthful reporting is natural for an aligned AI system and useful, as it provides a natural meaning to each message (see [Sobel \(2020\)](#)).

where the expectations are taken with respect to the underlying distributions of the primitive variables ω , s , and θ , as well as the respective adviser's and agent's strategies. We will call any misaligned adviser's strategy β that attains the infimum in expression (1) (for a fixed strategy σ of the agent) an *adversarial strategy* (against σ).³

Our main goal is to characterize the agent's *optimal* strategy σ^* that attains:

$$U^* \triangleq \sup_{\sigma \in \Sigma} U(\sigma). \quad (2)$$

3 Main Results

3.1 Trust Region Strategies

In what follows, it will be convenient to separate dependence of the agent's strategy on the adviser's message and the agent's private information. To this end, we call a *private strategy* $\hat{\sigma}$ the mapping from types to actions $\hat{\sigma} : \Theta \rightarrow \Delta(A)$ that specifies how the agent uses her private information. If the agent has belief μ about the state and uses a private strategy $\hat{\sigma}$, then her expected payoff is:

$$U(\hat{\sigma}, \mu) \triangleq \mathbb{E}_{\omega \sim \mu, \hat{\sigma}}[u(a, \omega, \theta)], \quad (3)$$

where the expectation is taken with respect to the conditional distribution of θ and the distribution of agent's actions induced by $\hat{\sigma}$. A private strategy $\hat{\sigma}$ is called Bayes-optimal for belief $\mu \in \Delta(\Omega)$ if it maximizes the agent's expected payoff when she holds that belief: $\hat{\sigma} \in \arg \max_{\hat{\sigma}} U(\hat{\sigma}, \mu)$. The strategy can be viewed as a specification of a private strategy for each possible message received from the adviser, $\sigma \sim (\hat{\sigma}(m))_{m \in \Delta(\Omega)}$.

Definition 1. $\sigma \sim (\hat{\sigma}(m))_{m \in \Delta(\Omega)}$ is a trust region strategy (TRS) if there exists a compact set $T \subset \Delta(\Omega)$ such that

1. if $m \in T$, $\hat{\sigma}(m)$ is Bayes-optimal for m ,

³Without loss of generality, adversarial strategies only use messages in M , since any message $m \notin M$ cannot be sent by an aligned adviser and hence reveals that the adviser is misaligned.

2. if $m \notin T$, $\hat{\sigma}(m)$ is Bayes-optimal for $P(m)$, where $P(m) \in \arg \max_{m' \in T} U(\hat{\sigma}(m'), m)$.

Intuitively, under a TRS, the agent treats messages m reported within the trust region T “at face value,” i.e., she takes an optimal action treating m as her correct posterior about the state. If a message m does not belong to the trust region T , the agent maps m to the trust region by acting *as if* her belief about the state were $P(m) \in T$; $P(m)$ is chosen to maximize—over all beliefs in the trust region—the agent’s expected payoff under distribution m when the action is taken to be optimal for $P(m)$.

To provide further intuition, with slight abuse of notation, let $U(\mu) \triangleq \max_{\hat{\sigma}} U(\hat{\sigma}, \mu)$ be the payoff to the agent when she takes a Bayes-optimal action at belief μ . Note that $U(\mu)$ is a convex function on $\Delta(\Omega)$; moreover, it is differentiable on the interior of the belief simplex if there exists a unique Bayes-optimal private strategy $\hat{\sigma}_0(\mu)$ at every belief μ . In that case, we can define $\nabla U(\mu)$ —the gradient of the indirect payoff function treated as a function on \mathbb{R}^N —which maps each belief μ into the N -dimensional vector of state-contingent payoffs (associated with the Bayes-optimal strategy).⁴ In particular, $U(\mu) = \nabla U(\mu) \cdot \mu$, where \cdot denotes the standard dot product in \mathbb{R}^N . Moreover, for a TRS σ and any $m' \in T$, $U(\hat{\sigma}(m'), m) = \nabla U(m') \cdot m$. Thus,

$$\arg \max_{m' \in T} U(\hat{\sigma}(m'), m) = \arg \min_{m' \in T} \underbrace{U(m) - U(m') - \nabla U(m') \cdot (m - m')}_{D_U(m, m')}.$$

The expression $D_U(m, m')$ is called the *Bregman distance* (associated with function U) between beliefs m and m' . Thus, under a TRS, messages outside of the trust region T are mapped into the “closest safe interpretation”—the belief in the trust region T that is closest in the Bregman distance. In particular, $P(m)$ always lies on the visible part (from the perspective of point m) of the boundary of T .⁵

⁴Formally, to define the gradient, we extend the function U beyond the probability simplex by assuming that, for any non-negative measure μ , $U(\mu) = \mu(\Omega) U(\mu/\mu(\Omega))$.

⁵Point $m' \in T$ is visible from m if the line segment connecting m' and m does not intersect $T \setminus \{m'\}$.

3.2 Optimality of Trust Region Strategies

We call two agent's strategies *equivalent* if, together with some corresponding adviser's adversarial strategies, they induce the same joint distribution over states, types, messages, and actions. The importance of TRSs stems from the following key result.

Theorem 1 (Trust Region Solution). *Any optimal strategy σ^* is equivalent to a trust region strategy with a connected trust region T .*

Proof. See Appendix A.1. □

Theorem 1 states that any optimal strategy can be interpreted as a TRS for some connected trust region T . This result provides a sharp characterization of optimal robust behavior under misalignment risk. Messages in the trust region are taken at face value while messages outside the trust region are mapped into the closest safe interpretation within the trust region. Thus, the agent's problem reduces to choosing the trust region T .

If the adviser is always aligned, a TRS with the trust region equal to the entire belief space is trivially optimal. On the other extreme, if the adviser is always misaligned, the optimal TRS has a trust region equal to the prior—the agent always ignores the message of the adviser. In Section 3.4, we explore conditions under which the trust region can be guaranteed to be non-trivial. In general, however, it is difficult to pin down the exact shape of the optimal trust region. A trade-off is created by two opposing forces: when the trust region expands, the expected payoff of the agent weakly increases conditional on the adviser being aligned but weakly decreases conditional on the adviser being misaligned. In Section 4, we study the binary-state case, in which the trust region is an interval; in Section 5, we look at the case of multiple states but binary actions, in which the trust region is either the prior or the entire simplex.

Theorem 1 predicts that the trust region can be taken to be a connected set. However, the trust region need not be convex. Intuitively, convexifying the trust region by adding a line segment connecting two beliefs may induce certain types of the misaligned adviser to report these additional beliefs (which may outweigh the benefits coming from aligned reports). Our proof establishes that the trust region is *convex in dual coordinates*, i.e., in the space of state-contingent payoffs. Intuitively, every belief has a corresponding state-contingent payoff

induced by a Bayes-optimal action for that belief (as noted earlier, the state-contingent payoff is given by the gradient of the indirect utility function $U(\mu)$ at beliefs μ at which the optimal action is unique). The payoff of the misaligned adviser is non-linear in the reported belief but it is *linear* in the induced state-contingent payoff. In fact, the misaligned adviser with belief μ attempts to minimize $\mu \cdot w$ over all state-contingent payoffs w that some belief in the trust region induces. Thus, the set of state-contingent payoffs (induced by beliefs in the trust region) can be convexified. Convexification of the set of induced state-contingent payoffs connects the set of beliefs in the trust region.

To further understand the geometry of the optimal trust region, recall that we can think of the misaligned adviser with belief μ as choosing a message $m \in T$ to maximize Bregman distance between μ and m (see also [Section 5.2](#) for an extended discussion); in particular, the message m must lie on the boundary of the trust region. A consequence is that adding non-boundary points to a trust region can only weakly increase the agent's payoff. Formally, we say that a set $A \subset \mathbb{R}^N$ is *non-hollow* if it contains all points $x \in \mathbb{R}^N$ with the property that every line going through x intersects A on both sides of x .

Corollary 1. *[Theorem 1](#) remains true with the additional requirement that T is non-hollow.*

Note that being non-hollow is not implied by connectedness (although it is weaker than convexity). An example of a connected but hollow set is a sphere. If the trust region of some TRS is a sphere, then we can expand the trust region to the corresponding ball, since the misaligned adviser will never send messages in the interior of the ball.

The trust region is typically not unique and our results in this section emphasized that it can be taken to be a relatively large set. However, when the support M of the adviser's beliefs is finite, it is also possible to construct an optimal discrete trust region T with $|T| \leq |M|$. Intuitively, at most one belief in the trust region is needed per every possible belief of the aligned adviser.⁶ In such cases, a connected trust region can still be constructed but most beliefs in the trust region are never reported by the adviser. Uniqueness of the trust region can sometimes be established if the adviser's beliefs have full support, $M = \Delta(\Omega)$ (see [Section 4](#)).

⁶We emphasize, however, that it is not without loss of generality to assume that $T \subseteq M$.

3.3 Robust Rationalizability

Our model assumes that the agent commits to a strategy at the outset of the game, not knowing the strategy adopted by the misaligned adviser. As we show next, neither the commitment assumption nor the timing of moves matter for the value that the agent can achieve. This is because we can construct an optimal solution that is a saddle point of the zero-sum game between the agent and the misaligned adviser. For any strategy $\beta \in \mathcal{B}$ of the adversarial adviser,⁷ we let $\mathbb{P}_\beta(\cdot|m)$ denote the agent's conditional belief over the state Ω induced by message m given the adviser's strategy.

Definition 2 (Robustly Rationalizable Strategy). A strategy σ is *robustly rationalizable* if there exists an adversarial strategy β^* of the misaligned adviser against σ such that for all $m \in M$, $\hat{\sigma}(m) \in \arg \max_{\hat{\sigma}'} U(\hat{\sigma}', \mathbb{P}_{\beta^*}(\cdot|m))$.

The condition of rationalizability means that the agent does not require commitment to follow the strategy—the agent can imagine the misaligned adviser pursuing an adversarial strategy such that, after any message, the strategy prescribes behaving myopically.

Theorem 2 (Robustly Rationalizable Solution). *Any robustly rationalizable strategy is optimal. If M and Θ are finite, a robustly rationalizable strategy exists.*

Proof. See Appendix A.2. □

Assuming finite support of beliefs, Theorem 2 implies that there exists an optimal strategy β^* for the misaligned adviser such that the agent's optimal strategy is to simply best-respond to each posterior belief (computed via Bayes' rule given the strategy β^*) induced by on-path messages m .⁸ In light of Theorem 1, the agent's equilibrium strategy can still be taken to be a TRS. Treating the problem as a zero-sum game between the agent and the misaligned adviser, we will call (σ^*, β^*) a trust region equilibrium (TRE) if σ^* is a TRS that is robustly rationalizable against the adversarial strategy β^* .

⁷Without loss of generality, we assume that β uses only messages in M .

⁸The assumption of finite M and Θ is made for technical reasons; verifying the assumptions of Sion (1958)'s minimax theorem (in particular, its continuity requirements) is difficult for a cheap-talk-like game with infinite-dimensional strategy spaces since the impact of messages on payoffs is entirely endogenous.

In a TRE, messages $m \in M$ in the trust region are taken at face value because they are only reported by the aligned adviser (thus, Bayes' rule implies that $\mathbb{P}_{\beta^*}(\cdot|m) = m$). Messages $m \in M$ outside of the trust region are reported by both types of the adviser with probabilities such that $\mathbb{P}_{\beta^*}(\cdot|m) = P(m)$, where $P(m)$ is the mapping to the boundary of the trust region defined in [Theorem 1](#). Messages $m \notin M$ are sent with probability zero. In other words, the mapping from messages to beliefs induced by (i) Bayes' rule and (ii) minimizing Bregman distance to the trust region, coincide on the equilibrium path of a TRE. In [Section 4](#), we use this structural property to characterize the trust region in a binary-state setting.

[Theorem 2](#) implies that our problem is equivalent to a *constrained persuasion problem* for the misaligned adviser. When the misaligned adviser moves first, he is effectively choosing a Bayes-plausible distribution of posteriors for the agent (prior to the agent observing her own type) subject to the constraint that the signal must be truthful in every state with probability at least α (the constraint reflects the presence of the aligned adviser). Thus, the misaligned adviser is effectively attempting to “jam” the signal sent by the aligned adviser. This perspective will be useful in deriving bounds on the alignment probability α below which no information is communicated in any TRE (see [Section 3.4](#)).

[Theorem 2](#) implies that implementing the optimal strategy does not require commitment by the agent. There exists a consistent conjecture about the form of misalignment that justifies the optimal strategy *ex-post*. That is, under that conjecture, the agent can simply observe the adviser's message, update her beliefs using Bayes' rule (using the conjecture about the misaligned adviser's strategy), and then take the optimal action for the resulting posterior.

Finally, from a technical perspective, [Theorem 2](#) provides a practical way of certifying the solution optimality in applications (even with infinite belief and message spaces). To construct an optimal solution, it is sufficient to construct a saddle point of the zero sum game between the agent and the misaligned adviser—verifying the mutual best-response property is often easier than evaluating the agent's objective for every possible strategy.

3.4 Minimal Viable Alignment

In this section, we derive bounds on the alignment probability α above which informative communication can be supported between the adviser and the agent. In other words, we ask when the trust region used by the agent is non-trivial.

Formally, define the value of an adviser as

$$V \triangleq U^* - U_0,$$

where $U_0 \triangleq \sup_{\sigma \in \Sigma} \mathbb{E}_\sigma[u(a, \omega, \theta)]$ is the agent's optimal payoff in the absence of the adviser. Since the agent can always ignore the adviser's messages, this value is non-negative, $V \geq 0$. We ask when this value is strictly positive, $V > 0$ (cf. the value of information by [Blackwell \(1951\)](#)).

To answer this question, we assume that the adviser's beliefs are finitely-supported, $|M| = K < \infty$, and derive a bound on α that is independent of the agent's problem. If α is small enough, the misaligned adviser can use a strategy β that "jams" the signal created by truthful reporting of the aligned adviser. In such a case, the distribution of posteriors $\mathbb{P}_\beta(\cdot | m)$ held by the agent is degenerate: the trust region contains only the prior. However, if α is large enough, there exists no strategy for the misaligned adviser that makes the equilibrium message uninformative. In such cases, as long as information is useful to the agent ($U(\mu)$ is *strictly* convex in the relevant range), V must be strictly positive.

Definition 3 (Minimal Viable Alignment). The minimal viable alignment $MVA(\tau)$ is the smallest upper bound on α for which there exists a strategy β of the misaligned adviser such that the induced posterior satisfies $\mathbb{P}_\beta(\cdot | m) = \mu_0$ for every $m \in M$.

MVA depends on adviser's information $\tau \in \Delta(\Delta(\Omega))$. Define the rank of the matrix of adviser's posteriors $\mu_1, \dots, \mu_K \in \text{supp } \tau$:

$$R(\tau) \triangleq \text{rank} \left(\begin{bmatrix} \mu_1 & \mu_2 & \cdots & \mu_K \end{bmatrix} \right). \quad (4)$$

Roughly, $R(\tau)$ captures the richness of the adviser's information: adviser's posteriors are located in an $(R(\tau) - 1)$ -dimensional subspace of the $(N - 1)$ -dimensional belief simplex $\Delta(\Omega)$.

For any τ , $R(\tau) \leq \min\{K, N\}$. The rank weakly decreases when the adviser's information is garbled. In what follows, we assume that the adviser has some information, $K \geq 2$, so $R(\tau) \geq 2$.

Theorem 3 (Minimal Viable Alignment). *The agent strictly benefits from the presence of the adviser, $V > 0$, in some decision problem (equivalently, in any decision problem with strictly convex U) if and only if $\alpha > \text{MVA}(\tau)$. For any τ , $\text{MVA}(\tau) \in [1/N, 1/2]$. Moreover, for any $\alpha \in [1/N, 1/2]$, there exists τ such that $\text{MVA}(\tau) = \alpha$. If $R(\tau) = K$, then $\text{MVA}(\tau) = 1/K$.*

Proof. See Appendix A.3. □

The proof of Theorem 3 shows that, for any given τ , $\text{MVA}(\tau)$ can be computed as the solution to a finite-dimensional linear program. We establish bounds on this solution and then show that these bounds are tight by explicitly constructing adviser information structures that attain every MVA within the admissible range. In fact, the proof yields the stronger statement that, for any τ , $\text{MVA}(\tau) \in [1/R(\tau), 1/2]$.

By Theorem 3, if the alignment α exceeds $1/2$ (and information is strictly useful everywhere), then the agent always benefits from the presence of the adviser. Conversely, if the state is binary and $\alpha < 1/2$, the agent cannot benefit from the adviser. In higher-dimensional problems, the adviser can be valuable at much lower alignment. In particular, if $R(\tau) = K = N$, then it suffices that $\alpha > 1/N$. Thus, when the state space is very rich, even a small amount of trust may be enough to benefit from the advice of a misaligned adviser.

4 Binary State

Consider the case of a binary state, $\Omega = \{0, 1\}$ (we can intuitively think of the state as capturing whether a given statement is false or true). The belief is effectively one-dimensional: with slight abuse of notation, let $\mu \in [0, 1]$ denote the probability of state $\omega = 1$. For expositional clarity, we further assume that the agent's indirect payoff function $U(\mu)$ is strictly convex and twice differentiable, and the adviser's posterior is distributed over $M = [0, 1]$ with

a strictly positive probability density $\tau(\mu)$.⁹ In this case, each $\mu \in [0, 1]$ can be associated with a unique Bayes-optimal private strategy $\hat{\sigma}_0(\mu)$.

Since any connected one-dimensional compact set is a closed interval, a straightforward corollary of [Theorem 1](#) is:

Corollary 2. *If $|\Omega| = 2$, any optimal strategy σ^* is characterized by a trust region $T = [\underline{\mu}, \bar{\mu}]$. If $m \in [\underline{\mu}, \bar{\mu}]$, $\hat{\sigma}(m) = \hat{\sigma}_0(m)$; if $m < \underline{\mu}$, $\hat{\sigma}(m) = \hat{\sigma}_0(\underline{\mu})$; if $m > \bar{\mu}$, $\hat{\sigma}(m) = \hat{\sigma}_0(\bar{\mu})$.*

If $\underline{\mu} = \bar{\mu}$, the agent effectively ignores the adviser, implying $\underline{\mu} = \bar{\mu} = \mu_0$. If $\underline{\mu} < \bar{\mu}$, the agent plays according to the Bayes-optimal strategy $\hat{\sigma}_0(\underline{\mu})$ if $m \leq \underline{\mu}$, and according to the Bayes-optimal strategy $\hat{\sigma}_0(\bar{\mu})$ if $m \geq \bar{\mu}$.

Recall that the adversarial strategy of the misaligned adviser induces a posterior belief from the trust region that maximizes the Bregman distance from his true posterior; when the trust region is an interval—and hence its boundary consists of the two endpoints—the adversarial strategy admits a simple threshold characterization:

Lemma 1. *When the agent commits to a TRS with the trust region $T = [\underline{\mu}, \bar{\mu}]$, the misaligned adviser with belief μ finds it optimal to send any message $m \geq \bar{\mu}$ if $\mu \leq b(\underline{\mu}, \bar{\mu})$ and any message $m \leq \underline{\mu}$ if $\mu \geq b(\underline{\mu}, \bar{\mu})$, where*

$$b(\underline{\mu}, \bar{\mu}) = \frac{\int_{\underline{\mu}}^{\bar{\mu}} \mu U''(\mu) d\mu}{\int_{\underline{\mu}}^{\bar{\mu}} U''(\mu) d\mu}. \quad (5)$$

Proof. See [Appendix A.5](#). □

[Lemma 1](#) states that the misaligned adviser with high enough beliefs μ will induce the private strategy Bayes-optimal at the lowest belief in the trust region, $\underline{\mu}$ (by reporting some message m lower than $\underline{\mu}$); similarly, the misaligned adviser with low enough beliefs μ will induce the private strategy Bayes-optimal at the highest belief in the trust region, $\bar{\mu}$ (by reporting some message m higher than $\bar{\mu}$). The threshold belief is given by the conditional expectation of a random variable whose distribution is determined by the curvature of the

⁹The strictly convex indirect payoff function can be a result of the agent having a continuum of actions or, as we show in [Appendix A.4](#), finitely many actions and a continuum of private types.

indirect utility function: $b(\underline{\mu}, \bar{\mu}) = \mathbb{E}[\nu | \nu \in [\underline{\mu}, \bar{\mu}]]$, where ν is distributed with full support over $[0, 1]$ according to probability density $U''(\cdot) / \int_0^1 U''(\mu) d\mu$.

To characterize the trust region's boundaries, we will use the observation from [Theorem 2](#) that it is sufficient to construct mutual best responses for the agent and the misaligned adviser. [Lemma 1](#) characterizes the best response of the misaligned adviser. A best response of the agent must use the Bayes-optimal action at each posterior belief induced by the adviser's strategy. A necessary condition is that the average posterior belief induced by messages $m \leq \underline{\mu}$ is exactly $\underline{\mu}$, and the average posterior belief induced by messages $m \geq \bar{\mu}$ is exactly $\bar{\mu}$.¹⁰

$$\frac{\alpha \int_0^{\underline{\mu}} \mu \tau(\mu) d\mu + (1 - \alpha) \int_{b(\underline{\mu}, \bar{\mu})}^1 \mu \tau(\mu) d\mu}{\alpha \int_0^{\underline{\mu}} \tau(\mu) d\mu + (1 - \alpha) \int_{b(\underline{\mu}, \bar{\mu})}^1 \tau(\mu) d\mu} = \underline{\mu}, \quad (6)$$

$$\frac{\alpha \int_{\bar{\mu}}^1 \mu \tau(\mu) d\mu + (1 - \alpha) \int_0^{b(\underline{\mu}, \bar{\mu})} \mu \tau(\mu) d\mu}{\alpha \int_{\bar{\mu}}^1 \tau(\mu) d\mu + (1 - \alpha) \int_0^{b(\underline{\mu}, \bar{\mu})} \tau(\mu) d\mu} = \bar{\mu}. \quad (7)$$

As it turns out, these conditions are also sufficient for a TRE:

Proposition 1 (Trust Region). *An optimal strategy exists; it is unique and robustly rationalizable. Its trust region, $T = [\underline{\mu}, \bar{\mu}]$, is equal to the prior $\{\mu_0\}$ when $\alpha \leq 1/2$; otherwise, it is defined by the unique solution to the system (6)-(7) that satisfies $\underline{\mu} \leq \mu_0 \leq \bar{\mu}$.*

Proof. See Appendix [A.6](#). □

Note that while the structure of the trust region characterized by [Proposition 1](#) is simple, the underlying strategy of the misaligned adviser is quite complex in a TRE. By [Lemma 1](#), the misaligned adviser with belief $\mu \geq b(\underline{\mu}, \bar{\mu})$ is indifferent between sending all messages $m \leq \underline{\mu}$ since they all result in the same Bayes-optimal action $\hat{\sigma}_0(\underline{\mu})$. In a commitment solution, the misaligned adviser can send any of these messages (for example, he can always send $m = \underline{\mu}$). But in a TRE, the strategy β^* of the misaligned adviser must be such that *every* message $m \leq \underline{\mu}$ induces the posterior belief $\underline{\mu}$ via Bayes' rule. Since all messages $m \leq \underline{\mu}$ are sent on equilibrium path (the aligned adviser simply reports his belief truthfully), β^* must carefully

¹⁰One way to see that is to use our observation that in a TRE, the mapping from messages to belief defined by Bayes' rule must agree with the mapping defined by minimizing the Bregman distance to the trust region.

break the misaligned adviser’s indifference over these messages so that each of them induces the same posterior belief.

Proposition 1 fully characterizes the optimal trust region. A natural next question is how the trust region depends on the problem’s parameters. We offer two comparative statics results, one related to the size of the trust region, and one related to its location.

First, higher alignment results in more trust:

Proposition 2 (Change in Alignment). *When $\alpha \geq 1/2$, $\underline{\mu}(\alpha)$ is strictly and continuously decreasing in α and $\bar{\mu}(\alpha)$ is strictly and continuously increasing in α . At $\alpha = 1/2$, $[\underline{\mu}, \bar{\mu}] = [\mu_0, \mu_0]$. At $\alpha = 1$, $[\underline{\mu}, \bar{\mu}] = [0, 1]$.*

Proof. See Appendix A.7. □

Proposition 2 shows that the trust region gradually and monotonically expands from the prior (at $\alpha \leq 1/2$) to the entire belief simplex. For any $\alpha < 1$, the trust region excludes the most extreme beliefs. Intuitively, the probability of the aligned adviser holding such extreme beliefs is small, while the probability that such beliefs are reported by the misaligned adviser (were they included in the trust region) is relatively large. This is why extreme beliefs are included in the trust region only once the probability of alignment is high.

Second, we show that the trust region tends to include beliefs at which the decision problem of the agent is less “information-sensitive.” In other words, the agent will avoid expanding the trust region to beliefs where small changes in information lead to large changes in the optimal action. We formalize this notion via the indirect utility function $U(\mu)$, noting that its curvature captures how sensitive the optimal action is to the agent’s information.

Definition 4 (Information Sensitivity). We say that the indirect utility function $U_1(\mu)$ is *less information-sensitive at higher beliefs* than the indirect utility function $U_2(\mu)$ if

$$\frac{U_1''(\mu)}{U_2''(\mu)} \text{ is decreasing in } \mu.$$

The definition states that the convexity of the indirect utility function U_1 (relative to the convexity of U_2) is smaller at higher beliefs μ . Intuitively, under U_1 , the decision of the agent

is less sensitive to new information at higher beliefs. It turns out that in this case the trust region will be skewed towards higher beliefs.

Proposition 3 (Change in Information Sensitivity). *Suppose that $U_1(\mu)$ is less information-sensitive at higher beliefs than $U_2(\mu)$. Then, the trust region T_1 corresponding to U_1 is higher (in the strong set order) than the trust region T_2 corresponding to U_2 .*

Proof. See Appendix A.8. □

Proposition 3 shows that the trust region skews towards beliefs at which the agent's optimal action is less sensitive to new information. For example, suppose that the agent minimizes mean-squared error $(a - \omega)^2$ over $a \in [0, 1]$ under $\mu_0 = 1/2$ and symmetric τ , resulting in a trust region that is symmetric around the prior 1/2. Suppose that we now modify the utility function by multiplying the loss in state 1 by a constant $\gamma > 1$. It is easy to show, by computing indirect payoff functions and using Proposition 3, that the asymmetric decision problem with a higher weight on the loss in state 1 is less information-sensitive for higher beliefs; as a result the trust region shifts to the right. While this may seem counter-intuitive at first, this is because the objective function already makes the agent effectively overweigh state 1, and thus the agent reacts less strongly to new information when she believes the state is likely 1 (e.g., as γ goes to infinity, the agent will take an action very close to 1 except when she believes that state 0 is very likely). As a result, the trust region is skewed towards higher beliefs.

5 Multiple States

In this section, we consider the general case $|\Omega| \geq 2$. First, we provide full characterization of the robustly rationalizable solution in the case of binary private strategies. Second, we analyze the case of rich private strategies, characterize the general adversarial strategies, and develop the robustly rationalizable solution in a symmetric example.

5.1 Binary Action

Consider the setting in which the agent has only two pure private strategies, i.e., $A = \{a_1, a_2\}$ and $|\Theta| = 1$. Thus, the agent has no private information and we drop the type throughout.

Without loss of generality, we can normalize the agent's payoff from action a_1 to zero, $u(a_1; \omega) \equiv 0$, and denote the expected payoff from action a_2 when the adviser's posterior is μ by $v(\mu) \triangleq \mathbb{E}_\mu[u(a_2; \omega)]$. Denote by $\hat{\tau} \in \Delta(\mathbb{R})$ the distribution of v when μ is distributed according to $\tau \in \Delta(\Delta(\Omega))$.

It is useful to define the absolute losses and gains from taking the second action relative to the first one:

$$L(\hat{\tau}) = \int_{-\infty}^0 (-v) \hat{\tau}(dv), \quad G(\hat{\tau}) = \int_0^{+\infty} v \hat{\tau}(dv). \quad (8)$$

Also, define the following threshold:

$$\hat{\alpha}(\hat{\tau}) = \frac{\max\{L(\hat{\tau}), G(\hat{\tau})\}}{L(\hat{\tau}) + G(\hat{\tau})}. \quad (9)$$

To rule out trivial cases and to simplify the exposition of the optimal strategy, we make the following assumption that holds in generic environments.

Assumption 1 (Genericity). $L(\hat{\tau}) > 0$, $G(\hat{\tau}) > 0$, $L(\hat{\tau}) \neq G(\hat{\tau})$, $\tau(\{\mu : v(\mu) = 0\}) = 0$.

Proposition 4 (Binary Action Solution). *Suppose that [Assumption 1](#) holds. If $\alpha \neq \hat{\alpha}(\hat{\tau})$, then the optimal solution exists, is unique, and is robustly rationalizable. In particular, if $\alpha > \hat{\alpha}(\hat{\tau})$, then all messages are trusted, $T = \Delta(\Omega)$; if $\alpha < \hat{\alpha}(\hat{\tau})$, then no messages are trusted, $T = \{\mu_0\}$. If $\alpha = \hat{\alpha}(\hat{\tau})$, both full trust and no trust are optimal and robustly rationalizable.*

By [Proposition 4](#), generically, the optimal solution is remarkably stark: either all or none of the adviser's messages are trusted. This is in contrast to the binary-state case with a rich strategy space, where the trust region expanded continuously with the alignment probability ([Proposition 2](#)).

Notably, only the aggregate quantities $L(\hat{\tau})$ and $G(\hat{\tau})$ enter the definition of the trust region; the detailed distribution of relative payoffs $\hat{\tau}$ is irrelevant. The threshold $\hat{\alpha}(\hat{\tau})$ is

minimized at $L(\hat{\tau}) = G(\hat{\tau})$, in which case $\hat{\alpha}(\hat{\tau}) = 1/2$. Hence, if $\alpha < 1/2$, the agent never trusts the adviser, regardless of $\hat{\tau}$. This is driven by the coarseness of the strategy space: by [Theorem 3](#), for any $\alpha > 0$, the agent can sometimes trust the adviser when the number of actions is unbounded. By contrast, for a given $\alpha > 1/2$, the trust condition $\hat{\alpha}(\hat{\tau}) < \alpha$ is equivalent to $(L(\hat{\tau}), G(\hat{\tau}))$ lying in the cone defined by the two linear inequalities

$$(1 - \alpha)L(\hat{\tau}) \leq \alpha G(\hat{\tau}), \quad (1 - \alpha)G(\hat{\tau}) \leq \alpha L(\hat{\tau}).$$

Thus, in binary decision problems, the adviser is beneficial only when the expected gains and losses of one action relative to the other are not too far apart.

5.2 Rich Private Strategies

We now assume that the agent's indirect utility $U(\mu)$ is twice differentiable and strictly convex everywhere. Denote by $h(\mu|\mu')$ the value of the supporting hyperplane to the graph of U at μ' evaluated at μ . Fixing the agent's TRS with trust region T , the set of beliefs that the misaligned adviser can induce at belief μ is given by

$$M^*(\mu) = \arg \min_{\mu' \in T} h(\mu|\mu'). \quad (10)$$

As we have argued earlier, a simple transformation establishes the following fact:

Corollary 3 (Bregman distance). *$M^*(\mu)$ is the set of maximizers of the Bregman distance $D_U(\mu, \mu')$ between the adviser's true belief μ and a report μ' in the trust region.*

By [Corollary 3](#), $M^*(\mu)$ are the furthest points from μ in T with respect to Bregman distance. Bregman distance always strictly increases along each ray from μ and thus the misaligned adviser always chooses points on the “opposite” boundary of T . Therefore, U determines the *geometry* of the trust region. For example, if $U(\mu) = \|\mu - b\|^2$ for Euclidean norm and some vector b , then the Bregman distance between μ and μ' coincides with the (squared) Euclidean distance between μ and μ' . In such cases, the trust region can be taken

to be convex.¹¹ However, in general, Bregman distance is not a metric—it may not satisfy triangle inequality or symmetry. Thus, the geometry of T may be quite complex, and we do not expect a characterization of the trust region in full generality to be tractable.

The trust region can sometimes be found explicitly in symmetric environments—we illustrate this with an example.

Example 1 (Spherical Environment). Let $U(\mu) = V(\|\mu - b\|)$ for some b and V . Let adviser's belief be symmetrically distributed over a ball $C = \{\mu : \|\mu - b\| \leq r_0\}$ with the radial density $\tau(r)$. Then, there exists a robustly rationalizable solution with a trust region T being a ball centered at b : $T = \{\mu : \|\mu - b\| \leq r^*(\alpha)\}$.

We will show this result via [Theorem 2](#) by explicitly constructing the corresponding TRE. The key observation—that we formalize and prove in [Lemma 9](#) in [Appendix A.10](#)—is that the misaligned adviser with belief μ will induce an antipodal belief on the boundary of T . The corresponding adversarial strategy is thus analogous to the one constructed in [Section A.6](#).

Then, the radius $r^*(\alpha)$ can be found via the balancing condition. Indeed, consider any line passing through b . Put a coordinate system on it so that b is located at $r = 0$, and the points on the sphere C at $-r_0$ and r_0 . Then, the belief at $r = r^*(\alpha)$ will be induced by the misaligned adviser only when his belief is on this line at “ $r < 0$ ”, and by aligned adviser only when his belief is on this line at “ $r > r^*(\alpha)$.” Then, the agent's posterior beliefs satisfy the TRE property if and only if:

$$r^* = \frac{\alpha \int_{r^*}^{r_0} r \tau(r) dr - (1 - \alpha) \int_0^{r_0} r \tau(r) dr}{\alpha \int_{r^*}^{r_0} \tau(r) dr + (1 - \alpha) \int_0^{r_0} \tau(r) dr}.$$

Rearranging, we obtain:

$$(2\alpha - 1) \int_{r^*}^{r_0} (r - r^*) \tau(r) dr = (1 - \alpha) \left(\int_0^{r^*} (r + r^*) \tau(r) dr + \int_{r^*}^{r_0} 2r^* \tau(r) dr \right). \quad (11)$$

For $\alpha < \underline{\alpha} = 1/2$, the equation does not admit a solution. At $\alpha = 1/2$, $r^* = 0$ is a solution. For $\alpha \in (1/2, 1)$, the left-hand side is continuously and strictly decreasing in r^* , and the

¹¹To see why, note that any trust region T can be convexified by replacing it with the intersection of sets T_μ over all $\mu \in \text{supp}(\tau)$, where T_μ is the (convex) set of all points that are not further away from μ than any point in T .

right hand-side is continuously and strictly increasing in r^* , with a derivative with respect to r^* that is strictly positive. Therefore, the equation admits a unique solution $r^*(\alpha)$. As the left-hand side strictly increases in α and the right-hand side strictly decreases in α , $r^*(\alpha)$ strictly increases in α . Furthermore, $r^*(1) = r_0$.

This example features two notable properties. First, the MVA does not depend on U or on $N = |\Omega|$; we always have $\underline{\alpha} = 1/2$. Second, the shape of V , which captures the details of the decision problem, does not matter for the trust region T ; the trust region is uniquely pinned down by $\tau(r)$. For example, if τ is uniform, $\tau \sim U[0, r_0]$, then $r^*(\alpha) = \frac{1-\sqrt{1+\alpha-2\alpha^2}}{\alpha} r_0$.

■

6 Concluding Remarks

Summary. We studied robust decision-making when an agent relies on an informed adviser who may be misaligned. We characterized the decision rule that maximizes the agent’s expected payoff guarantee over all possible forms of misalignment. We showed that every optimal policy is equivalent to a trust region policy in belief space: the agent limits exposure to manipulation while preserving value from moderately informative advice. We proved that the optimal solution can be implemented as an equilibrium of a zero-sum game between the agent and the misaligned adviser and derived minimal alignment probabilities required for advice to be robustly valuable.

Implications for AI use. Our results support a cautiously optimistic view about deploying AI in high-stakes settings. Even if misalignment is serious and plausibly frequent, there are provably effective ways to limit the resulting harm while deriving value—provided that the human decision maker retains final authority over actions. At the same time, our analysis makes clear that safe deployment requires concrete, pre-specified decision protocols rather than informal, case-by-case trust judgments.

The trust-region characterization translates into a simple design rule for AI-assisted choice under misalignment risk. The decision maker should specify in advance a rule that maps model outputs into actions, separating a set of outputs that will be used directly from those that will

be treated more conservatively. In some contexts, this can be implemented as a delegation-style guardrail. The AI can effectively control decisions within an approved operating range, but recommendations that push toward unusually aggressive actions are automatically clipped to the nearest admissible recommendation or escalated into a higher-friction path (additional tests, second reads, or explicit human sign-off).

Radiology provides a concrete illustration. Suppose a model produces a malignancy probability for triage (see, e.g., [Agarwal et al. \(2025\)](#)). Under a trust-region protocol, intermediate probabilities would be used as reported, whereas extremely low or extremely high probabilities would be replaced by the corresponding boundary values of the trusted range. This caps the operational leverage of near-certain predictions: an output presented as almost conclusive is treated as strong evidence, but not as decisive on its own. A conclusion approaching certainty would instead require corroboration from other sources, such as clinical context, follow-up testing, or additional human judgment.

More broadly, if the adviser is one component inside a larger AI system, the same idea suggests an architectural and training choice: include an interpretable interface layer that enforces the trust-region mapping between modules. This limits the chance that rare errors or adversarial behavior upstream translate into extreme downstream actions, and it provides a well-defined target for auditing and stress-testing the system as a whole.

Future research directions. Our analysis points to at least two natural next steps. First, it would be useful to obtain comparative statics of the trust region with respect to the agent’s decision problem, the adviser’s informativeness, and alignment probability beyond the binary-state case, where the geometry of the trust region starts playing a central role. Second, with an eye toward applications, it is important to develop tractable computational methods for finding the trust region. Such methods would need to confront the fact that the value function mapping candidate trust regions into the agent’s payoff is a convex combination of a supermodular and a submodular function, making many standard algorithms inappropriate. We leave these directions for future research.

References

AGARWAL, N., A. MOEHRING, P. RAJPURKAR, AND T. SALZ (2025): “Combining Human Expertise with Artificial Intelligence: Experimental Evidence from Radiology,” Working paper.

AGARWAL, N., A. MOEHRING, AND A. WOLITZKY (2026): “Designing Human-AI Collaboration: A Sufficient-Statistic Approach,” Working paper.

ALONSO, R. AND G. PADRÓ I MIQUEL (2025): “Competitive Capture of Public Opinion,” *Econometrica*, 93, 1265–1297.

AMODEI, D., C. OLAH, J. STEINHARDT, P. CHRISTIANO, J. SCHULMAN, AND D. MANÉ (2016): “Concrete Problems in AI Safety,” Working paper.

BLACKWELL, D. (1951): “Comparison of Experiments,” in *Proceedings of the Second Berkeley Symposium on Mathematical Statistics and Probability*, ed. by J. Neyman, Berkeley and Los Angeles: University of California Press, 93–102.

CHEN, E. O., A. GHERSENGORIN, AND S. PETERSEN (2024): “Imperfect Recall and AI Delegation,” Working paper.

CRAWFORD, V. P. AND J. SOBEL (1982): “Strategic Information Transmission,” *Econometrica*, 50, 1431–51.

DOVAL, L. AND A. SMOLIN (2024): “Persuasion and Welfare,” *Journal of Political Economy*, 132, 2451–2487.

DREYFUSS, B. AND R. HOONG (2025): “Calibrated Coarsening: Designing Information for AI-Assisted Decisions,” Working paper.

DWORCZAK, P. AND A. PAVAN (2022): “Preparing for the Worst but Hoping for the Best: Robust (Bayesian) Persuasion,” *Econometrica*, 90, 2017–2051.

FRANKEL, A. (2014): “Aligned Delegation,” *American Economic Review*, 104, 66–83.

FUDENBERG, D. AND A. LIANG (2025): “Friend or Foe: Delegating to an AI whose Alignment is Unknown,” Working paper.

GALE, D. AND H. NIKAIDO (1965): “The Jacobian Matrix and Global Univalence of Mappings,” *Mathematische Annalen*, 159, 81–93.

GERSHKOV, A., B. MOLDOVANU, AND X. SHI (2025): “Order Independence in Sequential, Issue-by-Issue Voting,” *Mathematics of Operations Research*, 50, 1635–1653.

GLAZER, J., H. HERRERA, AND M. PERRY (2020): “Fake Reviews,” *The Economic Journal*, 131, 1772–1787.

HURWICZ, L. (1951): “Optimality Criteria for Decision Making Under Ignorance,” *Cowles Commission Discussion Paper*.

KAMENICA, E. AND M. GENTZKOW (2011): “Bayesian Persuasion,” *American Economic Review*, 101, 2590–2615.

LAHR, P. AND J. WINKELMANN (2019): “Fake Experts,” Working paper.

LIPNOWSKI, E., D. RAVID, AND D. SHISHKIN (2022): “Persuasion via Weak Institutions,” *Journal of Political Economy*, 130, 2705–2730.

MASLEJ, N., L. FATTORINI, R. PERRAULT, Y. GIL, V. PARLI, N. KARIUKI, E. CAPSTICK, A. REUEL, E. BRYNJOLFSSON, J. ETCHEMENDY, K. LIGETT, T. LYONS, J. MANYIKA, J. C. NIEBLES, Y. SHOHAM, R. WALD, T. WALSH, A. HAMRAH, L. SANTARLASCI, J. B. LOTOFO, A. ROME, A. SHI, AND S. OAK (2025): “The AI Index 2025 Annual Report,” Tech. rep., AI Index Steering Committee, Institute for Human-Centered AI, Stanford University, Stanford, CA.

MIN, D. (2021): “Bayesian Persuasion under Partial Commitment,” *Economic Theory*, 72, 743–764.

RUSSELL, S. (2019): *Human Compatible: AI and the Problem of Control*, Penguin UK.

SION, M. (1958): “On General Minimax Theorems,” *Pacific Journal of Mathematics*, 8, 171–176.

SOBEL, J. (2020): “Lying and Deception in Games,” *Journal of Political Economy*, 128, 907–947.

WOJTASZCZYK, P. (1991): *Banach Spaces for Analysts*, vol. 25 of *Cambridge Studies in Advanced Mathematics*, Cambridge, UK: Cambridge University Press.

A Proofs

A.1 Proof of Theorem 1

We begin with a key lemma.

Lemma 2. *Any optimal solution σ^* is equivalent to an optimal solution that uses Bayes-optimal private strategies for all $m \in \Delta(\Omega)$.*

Proof. Consider the set of state-contingent payoff profiles that are feasible for the agent (cf. Doval and Smolin (2024)):

$$W = \{w \in \mathbb{R}^N : \exists \hat{\sigma}, w(\omega) = \mathbb{E}_{\hat{\sigma}}[u(a, \omega, \theta)|\omega], \forall \omega \in \Omega\}.$$

Since θ and s are conditionally independent, if the adviser has posterior s and the agent plays a private strategy that corresponds to payoff profile w , the resulting agent's expected payoff is $w \cdot s$.

The set W is convex, because a convex combination of the private strategies delivers a convex combination of their respective payoff profiles. The set W is compact, because for any $\lambda \in \mathbb{R}^{|\Omega|}$, $\max_{w \in W} \lambda \cdot w$ exists and attained by some $w \in W$ by the boundedness and continuity of u in a and the measurable maximum theorem.

Denote the (weak) Pareto frontier of W by W^P :

$$W^P = \{w \in W : \nexists w' \in W, \forall \omega \in \Omega, w'(\omega) > w(\omega)\}.$$

Since W is convex and compact, by the supporting hyperplane theorem, a private strategy $\hat{\sigma}$ is Bayes-optimal (for some belief) if and only if it delivers a payoff profile in W^P . Therefore, if $\hat{\sigma}$ is not Bayes-optimal, there exists a dominating $\hat{\sigma}'$ (which can be taken to be Bayes-optimal itself) such that for all $\omega \in \Omega$, $\mathbb{E}_{\hat{\sigma}'}[u(a, \omega, \theta)|\omega] > \mathbb{E}_{\hat{\sigma}}[u(a, \omega, \theta)|\omega]$.

Take σ^* and, for every message $m \in \Delta(\Omega)$, if $\hat{\sigma}^*(m)$ is not Bayes-optimal for some belief, replace it with a Bayes-optimal dominating strategy $\hat{\sigma}'(m)$. The new strategy must still be

optimal. Indeed, the agent's payoff is

$$\mathbb{E}_{\mu \sim \tau} [\alpha w(\hat{\sigma}(\mu)) \cdot \mu + (1 - \alpha) \inf_{m \in \Delta(\Omega)} \{w(\hat{\sigma}(m)) \cdot \mu\}],$$

which pointwise increases after the change.

Hence, the new strategy σ_0 is also optimal. Moreover, the expected payoff must stay the same since σ^* was optimal to begin with; in particular, σ_0 makes changes to the strategy only for messages m that have joint probability zero in equilibrium. Thus, σ^* is equivalent to σ_0 . \square

We can now finish the proof of [Theorem 1](#). Pick any optimal solution σ^* . By [Lemma 2](#), σ^* is equivalent to an optimal strategy that uses only Bayes-optimal private strategies. Denote by Σ_0 the set of those private strategies, and let T_0 be the closure of the set of beliefs at which those private strategies are Bayes-optimal. (By continuity, taking the closure does not affect the expected payoff of the strategy σ^* in the worst-case scenario.)

Observe that the agent's payoff coming from the misaligned adviser depends only on the set Σ_0 . Thus, the mapping from messages to the private strategies in Σ_0 must maximize the expected payoff conditional on the adviser being aligned. Since the aligned adviser is non-strategic, maximization can be performed pointwise, message by message (without loss of optimality, also for messages that are sent with probability zero by the aligned adviser). In particular, for $m \in T_0$, we can set $\hat{\sigma}^*(m)$ to be the Bayes-optimal strategy for m ; for $m \notin T_0$, we can set $\hat{\sigma}^*(m) = \hat{\sigma}^*(P(m))$ where $P(m) \in \arg \max_{m' \in T_0} U(\hat{\sigma}^*(m'), m)$. This way we have constructed a TRS (with the trust region T_0) that is equivalent to σ^* —and is hence optimal.¹²

We now show that for any optimal TRS σ^* , the trust region T_0 can be enlarged (while preserving the payoffs) to a connected trust region T_1 . Assume that T_0 is not connected and take any $m_1, m_2 \in T_0$ that belong to different connected components of T_0 : $m_1 \in T_0^1$ and $m_2 \in T_0^2$. Consider the welfare profiles $w_1 \triangleq w(\hat{\sigma}^*(m_1))$ and $w_2 \triangleq w(\hat{\sigma}^*(m_2))$ induced by those messages in the considered solution. Define the subset of Pareto optimal welfare

¹²It is equivalent to σ^* because it is weakly better than σ^* and σ^* was optimal.

profiles that dominate some weighted average of those profiles $w(\gamma) \triangleq \gamma w_1 + (1 - \gamma) w_2$:

$$W^D(m_1, m_2) = \{w \in W^P : \exists \gamma \in [0, 1], w \geq w(\gamma)\}.$$

Consider any $w \in W^D(m_1, m_2)$ that dominates $w(\gamma)$ for some γ . Since $w \in W^P$, w is generated by a private strategy $\hat{\sigma}(w)$ Bayes-optimal at a set of beliefs $M_1(w)$. We enlarge T_0 by adding to it the messages in $M_1(w) \setminus T_0$ (together with the prescription to play $\hat{\sigma}(w)$ at those messages). Doing so does not decrease the payoff from the misaligned adviser (because he could already send messages m_1 and m_2), and it weakly increases the payoff from the aligned adviser (because the trust region gets bigger).

Since W is convex, $W^D(m_1, m_2)$ is connected. Furthermore, $M_1(w)$ is upper-hemicontinuous with connected (convex) values because it is a normal-cone correspondence. Therefore, the union $\bigcup_{w \in W^D(m_1, m_2)} M_1(w)$ is connected and contains m_1 and m_2 . Therefore, adding these beliefs to the original trust region connects the components T_0^1 and T_0^2 , with the trust region weakly expanding (and remaining optimal). Since this modification can be performed for all connected components of T_0 , this modification results in a connected optimal trust region T_1 .

Finally, by continuity of payoffs, we can without loss of generality consider the closure of the set of used private strategies, and hence the trust region can be chosen to be equal to $T = \text{cl } T_1$, which is a compact and connected subset of $\Delta(\Omega)$.

By construction, the new strategy σ_1 is optimal. Moreover, the expected payoff must stay the same since σ^* was optimal to begin with; therefore, the new strategy makes changes to the strategy only for messages that have joint probability zero in equilibrium. Thus, σ^* is equivalent to σ_1 .

A.2 Proof of Theorem 2

Suppose M and Θ are finite. For any given strategy of the misaligned adviser (which was assumed to only use messages in M) and the agent, (β, σ) , the agent's payoff is, with a slight

overload of notation for U ,

$$U(\beta, \sigma) \triangleq \alpha \sum_{\mu \in M, \omega \in \Omega, \theta \in \Theta} \tau(\mu) \mu(\omega) f(\theta|\omega) \int_A u(a, \omega, \theta) \sigma(da|\mu, \theta) + \\ (1 - \alpha) \sum_{\mu, m \in M, \omega \in \Omega, \theta \in \Theta} \tau(\mu) \mu(\omega) \beta(m|\mu) f(\theta|\omega) \int_A u(a, \omega, \theta) \sigma(da|m, \theta).$$

Clearly, \mathcal{B} and Σ are convex. Since M is finite, $\mathcal{B} = \times_{m \in M} \Delta(M)$ is compact. Since, M and Θ are finite and $\Delta(A)$ can be equipped with the weak* topology, $\Sigma = \times_{m \in M, \theta \in \Theta} \Delta(A)$ is compact. $U(\beta, \sigma)$ is affine in β and in σ ; therefore it is concave-convexlike in [Sion \(1958\)](#)'s terminology. For each $\sigma \in \Sigma$, $U(\beta, \sigma)$ is continuous in β . For each $\beta \in \mathcal{B}$, $U(\beta, \sigma)$ is continuous in σ . Therefore, a minimax theorem applies in its infsup variation (e.g., Theorem 4.2', [Sion \(1958\)](#)) and

$$\sup_{\sigma \in \Sigma} \inf_{\beta \in \mathcal{B}} U(\beta, \sigma) = \inf_{\beta \in \mathcal{B}} \sup_{\sigma \in \Sigma} U(\beta, \sigma).$$

Furthermore, for any given β , $\phi(\beta) \triangleq \sup_{\sigma \in \Sigma} U(\beta, \sigma)$ is attained because Σ is compact and $U(\beta, \sigma)$ is continuous in σ . Similarly, for any given σ , $\psi(\sigma) \triangleq \inf_{\beta \in \mathcal{B}} U(\beta, \sigma)$ is attained because \mathcal{B} is compact and $U(\beta, \sigma)$ is continuous in β . Because, $U(\beta, \sigma)$ is continuous, $\phi(\beta)$ is lower-semicontinuous and $\psi(\sigma)$ is upper-semicontinuous. Thus, we can set $\sigma^* \in \arg \max_{\sigma \in \Sigma} \psi(\sigma)$ and $\beta^* \in \arg \min_{\beta \in \mathcal{B}} \phi(\beta)$ and they form a saddle point:

$$U(\beta^*, \sigma) \leq U(\beta^*, \sigma^*) \leq U(\beta, \sigma^*), \quad \forall \beta \in \mathcal{B}, \sigma \in \Sigma. \quad (12)$$

Therefore, β^* is an adversarial adviser's strategy to σ^* , whereas σ^* is a best-response of the agent to β^* . The latter implies—since $\alpha > 0$ and all $m \in M$ are on-path—that after any $m \in M$, the private strategy $\hat{\sigma}^*(m)$ is Bayes-optimal given β^* , and hence σ^* is robustly rationalizable.

Conversely, for any M and Θ , consider (β^*, σ^*) such that σ^* is robustly rationalizable and β^* is adversarial against σ^* , i.e., they form a saddle point with property (12). Then, for any

$\sigma \in \Sigma$:

$$U(\sigma) = \inf_{\beta \in \mathcal{B}} U(\beta, \sigma) \leq U(\beta^*, \sigma) \leq U(\beta^*, \sigma^*) = \min_{\beta \in \mathcal{B}} U(\beta, \sigma^*) = U(\sigma^*),$$

where the third comparison uses the saddle property and the fourth comparison uses the fact that β^* is adversarial to σ^* . Therefore, σ^* is an optimal solution.

A.3 Proof of Theorem 3

Notation: In this section, we denote by I_K a unit matrix of dimension K , by 1_K a vector of ones of dimension K , by $0_{N \times K}$ a matrix of zeros of dimension $N \times K$, by e_K^i an i th standard basis vector of dimension K , by $x_{i,k}$ a k th element of vector x_i , by $\text{diag } x$ a diagonal matrix with vector x on the main diagonal, and by X^\top a transpose of a matrix X .

Since μ_0 has full support, we can equivalently identify adviser's information with a (row) stochastic $N \times K$ matrix Π , where Π_{ij} is the probability of the j th signal observed by the adviser in the i th state. Moreover, $\text{rank } \Pi = R(\tau)$.¹³

We identify the strategy of the misaligned adviser with a stochastic $K \times K$ matrix B . Since the aligned adviser reports truthfully, the overall adviser's strategy can be written as a garbling of his information:

$$G(B) \triangleq \alpha I_K + (1 - \alpha)B. \quad (13)$$

By Blackwell (1951), the MVA is a maximal α for which there exists a stochastic matrix B such that $\Pi G(B)$ is Blackwell uninformative. (We show below that it is attained.) This also implies that MVA depends on τ only via Π , so we will write $\text{MVA}(\Pi)$.

We start with preliminary observations. First, note that $G_{kk} \geq \alpha$ and $G1_K = 1_K$. Second, note that $\Pi G(B)$ is uninformative if and only if all of its rows equal to each other, that is if

¹³A matrix of adviser's posteriors can be computed by Bayes' rule as $(\mu(s))_{s \in S} = (\text{diag}(\mu_0(\omega))_{\omega \in \Omega})\Pi(\text{diag}(\tau(s))_{s \in S})^{-1}$. The diagonal matrices are invertible and the multiplication by an invertible matrix preserves the rank.

and only if

$$D(\Pi)G(B) = D(\Pi)(\alpha I_K + (1 - \alpha)B) = 0_{(N-1) \times K}, \quad (14)$$

where $D(\Pi)$ is the row-difference matrix of Π :

$$D(\Pi) \triangleq \begin{pmatrix} (\pi_2 - \pi_1)^\top \\ \vdots \\ (\pi_N - \pi_1)^\top \end{pmatrix},$$

and π_i^\top is the i th row of Π . Consider the auxiliary finite linear program:

$$\Lambda(\Pi) = \max_{G \in \mathbb{R}^{K \times K}, \alpha \in \mathbb{R}} \alpha \quad (15)$$

$$\text{s.t. } G \geq \alpha I_K, \quad G1_K = 1_K, \quad (16)$$

$$D(\Pi)G = 0_{(N-1) \times K}. \quad (17)$$

Lemma 3. $\text{MVA}(\Pi) = \Lambda(\Pi)$.

Proof. We need to show that there exists a stochastic matrix B such that $\Pi G(B)$ is Blackwell uninformative if and only if $\alpha \leq \Lambda(\Pi)$.

\Rightarrow For any given α , if B is such that $\Pi G(B)$ is Blackwell uninformative, then we showed that $G(B)$ must satisfy conditions (16-17). By the maximization nature of the problem, if $\alpha > \Lambda(\Pi)$, those conditions cannot be satisfied.

\Leftarrow If $\alpha \leq \Lambda(\Pi)$, then there exists G that satisfies conditions (16-17) (e.g., the argmax). If $\Lambda(\Pi) = 1$, then B can be arbitrary. Otherwise, set $B = (G - \alpha I_K)/(1 - \alpha)$. It is straightforward that the so-defined B is a stochastic matrix and by construction $\Pi G(B)$ is uninformative. \square

[Lemma 3](#) provides a computationally tractable characterization of MVA for any given Π and sets the stage for the rest of the proof, which we split into two lemmas.

Lemma 4. $\text{MVA}(\Pi) \in [1/R(\Pi), 1/2]$. *If $R(\Pi) = K$, then $\text{MVA}(\Pi) = 1/K$.*

Proof. To ease notation, in the proof we omit the dependence of R on Π .

1.) $\text{MVA}(\Pi) \leq 1/2$.

If α and G satisfy (16-17), then $B = (G - \alpha I_K)/(1 - \alpha)$ is a stochastic matrix and

$$D(\Pi)B = -\frac{\alpha}{1 - \alpha}D(\Pi). \quad (18)$$

In other words, the rows of $D(\Pi)$ are left eigenvectors of B associated with eigenvalue $-\alpha/(1 - \alpha)$. Since B is stochastic, its spectral radius equals 1. Thus, $|- \alpha/(1 - \alpha)| \leq 1$ and $\alpha \leq 1/2$. It follows that $\text{MVA}(\Pi) \leq 1/2$.

2.) If $R = K$, then $\text{MVA}(\Pi) = 1/K$.

If $R = K$, then $K \leq N$ and $\text{rank } D(\Pi) = K - 1$. Thus, $\text{rank } \ker D(\Pi) = K - (K - 1) = 1$ and, because $D1_K = 1_{N-1} - 1_{N-1} = 0_{N-1}$, $\ker D = \text{span}\{1_K\}$. Thus, for (G, α) to satisfy (17), every column of G must be a multiple of 1_K . But since G is stochastic, it follows that $\sum_{k=1}^K G_{kk} = 1$ and $\min_k G_{kk} \leq 1/K$. To further satisfy (16), it must be that $\alpha \leq 1/K$. Thus, $\text{MVA}(\Pi) \leq 1/K$.

At the same time, if $\alpha \leq 1/K$, then (G, α) satisfy (16-17) for $G = 1/K1_K1_K^\top$. (In this case, G is uninformative, not only ΠG , so the misaligned adviser can make the signal to be uninformative about his estimate, not only about the state.) It follows, that $\text{MVA} \geq 1/K$ and, therefore, $\text{MVA}(\Pi) = 1/K$.

3.) $\text{MVA} \geq 1/R$.

Let $\alpha = 1/R$ (recall that $R \geq 2$). Consider the normed space $(\mathbb{R}^K, \|\cdot\|_1)$ and its linear $(R - 1)$ -dimensional subspace \mathbb{W} spanned by rows of $D(\Pi)$. By the Auerbach basis theorem, there exist vectors $w_1, \dots, w_{R-1} \in \mathbb{W}$ and $x_1, \dots, x_{R-1} \in \mathbb{R}^K$ such that¹⁴

$$\|w_i\|_1 = 1, \quad \|x_i\|_\infty = 1, \quad w_i^\top x_j = \delta_{ij}, \quad 1 \leq i, j \leq R - 1.$$

¹⁴By the Auerbach theorem, there exist $v_1, \dots, v_{R-1} \in \mathbb{W}$ and $\phi_1, \dots, \phi_{R-1} \in \mathbb{W}^*$ such that $\|v_i\|_1 = 1$, $\|\phi_i\|_{\mathbb{W}^*} = 1$, and $\phi_i(v_j) = \delta_{ij}$ (Section II.E, Lemma 11 in [Wojtaszczyk \(1991\)](#); see also [Gershkov et al. \(2025\)](#) for another recent application). By Hahn-Banach theorem, these ϕ_i , operating on \mathbb{W} , can be extended to $\tilde{\phi}_i$, operating on \mathbb{R}^K , without a change in their norm. By the duality between spaces l_1 and l_∞ , for each i , there exists $x_i \in \mathbb{R}^K$ such that $\tilde{\phi}_i(z) = z^\top x_i$ and $\|x_i\|_\infty = \|\tilde{\phi}_i\| = 1$. Then, for $w \in \mathbb{W}$, $w_i^\top x_j = \tilde{\phi}_j(w_i) = \phi_j(w_i) = \delta_{ij}$.

Define the corresponding matrices $W \triangleq (w_1, \dots, w_{R-1})$, $X \triangleq (x_1, \dots, x_{R-1})$. By construction,

$$W^\top X = I_{R-1}, \quad (19)$$

and by properties of $D(\Pi)$,

$$W^\top 1_K = 0_{R-1}. \quad (20)$$

Define the vector of weights of rows of W , $\bar{w} \in \mathbb{R}^K$, as $\bar{w}_k \triangleq \sum_{i=1}^{R-1} |w_{i,k}|$. Since $\|w_i\|_1 = 1$, we have

$$\sum_{k=1}^K \bar{w}_k = \sum_{i=1}^{R-1} \|w_i\|_1 = R-1. \quad (21)$$

We explicitly construct the desired strategy of the misaligned adviser B as:

$$B = \frac{1}{R-1} (1_K \bar{w}^\top - X W^\top). \quad (22)$$

Nonnegativity. For all j, k ,

$$B_{jk} = \frac{1}{R-1} \left(\sum_{i=1}^{R-1} |w_{i,k}| - \sum_{i=1}^{R-1} x_{i,j} w_{i,k} \right) \geq 0,$$

because $|x_{i,j}| \leq \|x_i\|_\infty = 1$.

Stochasticity. By (20) and (21):

$$B 1_K = \frac{1}{R-1} (1_K (\bar{w}^\top 1_K) - X (W^\top 1_K)) = \frac{1}{R-1} (1_K (R-1) - 0_K) = 1_K.$$

Uninformativeness. By (19) and (20):

$$W^\top B = \frac{1}{R-1} ((W^\top 1_K) \bar{w}^\top - (W^\top X) W^\top) = \frac{1}{R-1} (0_{R-1} - W^\top) = -\frac{1}{R-1} W^\top.$$

Since by construction columns of W form a basis in the row space of $D(\Pi)$, it follows that

$$D(\Pi)B = -\frac{1}{R-1}D(\Pi).$$

As $\alpha = 1/R$, this corresponds exactly to (17) (see (18)). The result follows. \square

Lemma 5. *For any $N \geq 2$ and $\alpha \in [1/N, 1/2]$, there exist K and Π such that $\text{MVA}(\Pi) = \alpha$.*

Proof. The proof is by direct construction. For $N = 2$, the result is trivial. For $N \geq 3$, consider $K \in [4, N+1]$ and, for $\delta \in [0, 1]$, the $N \times K$ matrix Π such that

$$\begin{aligned}\pi_i^\top &= \frac{1}{K}1_K^\top, \quad i = 1 \text{ or } i = K, K+1, \dots, N, \\ \pi_i^\top &= \frac{1}{K}(1_K + e_K^i - e_K^1)^\top, \quad i = 2, \dots, K-2, \\ \pi_i^\top &= \frac{1}{K}(1_K + e_K^i - \delta e_K^1 - (1-\delta)e_K^K)^\top, \quad i = K-1,\end{aligned}$$

where e_K^i is the i th basis vector of \mathbb{R}^K . By construction, Π is a stochastic matrix. Consider $\text{MVA}(\Pi)$ that solves the corresponding problem (15).

The constraint $D(\Pi)G = 0_{(N-1) \times K}$ reduces to:

$$(e_K^i - e_K^1)^\top G = 0, \quad i = 2, \dots, K-2, \quad (e_K^{K-1} - \delta e_K^1 - (1-\delta)e_K^K)^\top G = 0, \quad (23)$$

which effectively states that the first $K-2$ rows are equal to each other and the $(K-1)$ th row is a convex combination of the 1st and the K th rows with weight δ . Thus, the effective variables are the 1st and the K th rows of the matrix G . The constraints $G \geq \alpha I_{K \times K}$ and $G1_K = 1_K$ then boil down to those rows being probability vectors, such that

$$G_{1k} \geq \alpha, \quad k = 1, \dots, K-2, \quad (\delta G_{1,K-1} + (1-\delta)G_{K,K-1}) \geq \alpha, \quad G_{KK} \geq \alpha.$$

Therefore,

$$\alpha \leq (\delta G_{1,K-1} + (1-\delta)G_{K,K-1}) \leq \delta(1 - (K-2)\alpha) + (1-\delta)(1-\alpha) = 1 - \alpha(1 + \delta(K-3)).$$

Rearranging yields

$$\alpha \leq \alpha^\dagger \triangleq \frac{1}{2 + \delta(K - 3)}, \quad (24)$$

and thus $\text{MVA}(\Pi) \leq \alpha^\dagger$. Whenever $\delta \geq (K - 4)/(K - 3)$, $\alpha^\dagger \leq 1/(K - 2)$ and the bound α^\dagger can be attained by G with the 1st and the K th rows being (the rest of G is pinned down by (23)):

$$\begin{aligned} G_{1k} &= \alpha^\dagger, \quad k = 1, \dots, K - 2, & G_{1,K-1} &= 1 - (K - 2)\alpha^\dagger, & G_{1K} &= 0, \\ G_{Kk} &= 0, \quad k = 1, \dots, K - 2, & G_{K,K-1} &= 1 - \alpha^\dagger, & G_{KK} &= \alpha^\dagger. \end{aligned}$$

Thus, $\text{MVA}(\Pi) = \alpha^\dagger$. At $\delta = (K - 4)/(K - 3)$, $\alpha^\dagger = 1/(K - 2)$; at $\delta = 1$, $\alpha^\dagger = 1/(K - 1)$.

This establishes that for all $K \in [4, N + 1]$ as δ spans $[(K - 4)/(K - 3), 1]$, the proposed Π achieves $\text{MVA}(\Pi)$ that spans $[1/(K - 1), 1/(K - 2)]$. Spanning K from 4 to $N + 1$, we obtain the result.

□

A.4 On Strictly Convex Indirect Utility

In this section, we show that the indirect utility is strictly convex when the agent's private information induces a full-support distribution of posteriors.

Specifically, we assume that the agent's ex-post payoff is type-independent, $u(a, \omega)$ and identify θ with the belief it induces in the absence of any other information: $\Theta \subseteq \Delta(\Omega)$, $\theta(\omega) = \Pr(\omega|\theta)$. We denote by ν the final posterior that the agent forms, i.e., conditional on both the adviser's message and the agent's type:

$$\nu_{\mu, \theta} \triangleq \Pr(\omega|\mu, \theta) = \frac{\mu(\omega)f(\theta|\omega)}{\sum_{\omega' \in \Omega} \mu(\omega')f(\theta|\omega')}. \quad (25)$$

A necessary and sufficient condition for a private strategy $\hat{\sigma}$ to be Bayes-optimal at any given posterior μ , $\hat{\sigma} \in \arg \max_{\hat{\sigma}'} U(\hat{\sigma}', \mu)$, is that $\hat{\sigma}(\cdot|\theta) \in \Delta(A)$ is an optimal best-response with

respect to $\nu_{\mu,\theta}$: for all $a \in \text{supp } \hat{\sigma}(\cdot|\theta)$,

$$a \in \arg \max_{a' \in A} \sum_{\omega \in \Omega} \nu_{\mu,\theta}(\omega) u(a'; \omega). \quad (26)$$

Assumption 2. A is finite and there exist $a_1, a_2 \in A$ and $\mu \in \text{int}(\Delta(\Omega))$ such that $\mathbb{E}_\mu[u(a_1; \omega)] = \mathbb{E}_\mu[u(a_2; \omega)] > \mathbb{E}_\mu[u(a, \omega)]$ for all $a \notin \{a_1, a_2\}$. In addition, for each $\omega \in \Omega$ either $u(a_1; \omega) > u(a_2; \omega)$ or $u(a_2; \omega) > u(a_1; \omega)$.

Lemma 6. *Suppose θ has full support on $\Delta(\Omega)$ and Assumption 2 holds. Then, $U(\mu)$ is strictly convex in the interior of $\Delta(\Omega)$.*

Proof. A sufficient condition for strict convexity of $U(\mu)$ in the interior of $\Delta(\Omega)$ is that for any $\mu_1, \mu_2 \in \text{int}(\Delta(\Omega))$, $\mu_1 \neq \mu_2$,

$$\arg \max_{\hat{\sigma}} U(\hat{\sigma}, \mu_1) \cap \arg \max_{\hat{\sigma}} U(\hat{\sigma}, \mu_2) = \emptyset.$$

Fix any such μ_1, μ_2 . Let $\mu \in \text{int}(\Delta(\Omega))$ be the belief from [Assumption 2](#) and define $d(\omega) \triangleq u(a_1; \omega) - u(a_2; \omega)$, $r(\omega) \triangleq \mu_2(\omega)/\mu_1(\omega)$. By [Assumption 2](#) and continuity of the expected payoff in belief, there exists an open neighborhood $O \subset \text{int}(\Delta(\Omega))$ of μ such that for every $\nu \in O$, action a_1 is uniquely optimal whenever $\nu \cdot d > 0$, and not optimal whenever $\nu \cdot d < 0$, because it is outperformed by a_2 . Define

$$R_1 \triangleq \{\nu \in O : \nu \cdot d > 0\}, \quad R_2 \triangleq \{\nu \in \Delta(\Omega) : \nu \cdot d < 0\}.$$

Bayes' rule implies that for every ω and θ , $\nu_{\mu_2, \theta} = \Gamma(\nu_{\mu_1, \theta})$, where $\Gamma : \text{int}(\Delta(\Omega)) \rightarrow \text{int}(\Delta(\Omega))$ is the map defined by

$$\Gamma(\nu)(\omega) \triangleq \frac{\nu(\omega)r(\omega)}{\sum_{\omega'} \nu(\omega')r(\omega')}.$$

Since $\mu_1 \neq \mu_2$, r is not constant; because $d(\omega) \neq 0$ for all ω , the hyperplanes $\{\nu : \nu \cdot d = 0\}$ and $\{\nu : \nu \cdot (r * d) = 0\}$ (where $*$ denotes the component-wise product) are distinct. As $\mu \in O \cap \{\nu : \nu \cdot d = 0\}$, we can choose $\bar{\nu} \in O$ such that $\bar{\nu} \cdot d = 0$ and $\bar{\nu} \cdot (r * d) \neq 0$. Without loss of generality, suppose $\bar{\nu} \cdot (r * d) < 0$ (otherwise swap the labels of a_1 and a_2).

By continuity, there exists a nonempty open set $A \subset R_1$ such that $\nu \cdot (r * d) < 0$ for all $\nu \in A$.

For every $\nu \in A$,

$$\Gamma(\nu) \cdot d = \frac{\nu \cdot (r * d)}{\nu \cdot r} < 0,$$

so $\Gamma(A) \subset R_2$. The map $\theta \mapsto \nu_{\mu_1, \theta}$ is continuous and onto $\text{int}(\Delta(\Omega))$. Hence $\Theta_0 \triangleq \{\theta : \nu_{\mu_1, \theta} \in A\}$ is nonempty and open; since θ has full support on $\Delta(\Omega)$, it has strictly positive probability.

For every $\theta \in \Theta_0$ we have $\nu_{\mu_1, \theta} \in R_1$ and $\nu_{\mu_2, \theta} \in R_2$. This means that the private strategies optimal at μ_1 and μ_2 must necessarily differ on $\theta \in \Theta_0$. The result follows. \square

A.5 Proof of Lemma 1

The misaligned adviser with signal realization μ minimizes $U(\hat{\sigma}(\mu'), \mu)$ over μ' in the trust region. Recall that the function $U(\hat{\sigma}(\mu'), \mu)$ is linear in μ ,

$$U(\mu) = \max_{\hat{\sigma}} U(\hat{\sigma}, \mu),$$

and we assumed that U is strictly convex and twice differentiable. This means that $U(\hat{\sigma}(\mu'), \mu)$ is the value at μ of the hyperplane supporting U at μ' . Under our convention that μ is the probability of state 1, this means that

$$U(\hat{\sigma}(\mu'), \mu) = U(\mu') + U'(\mu')(\mu - \mu').$$

By convexity of U , this function is quasi-concave in μ' , and hence for all $\mu' \in [\underline{\mu}, \bar{\mu}]$, $U(\hat{\sigma}(\mu'), \mu) \geq \min\{U(\hat{\sigma}(\underline{\mu}), \mu), U(\hat{\sigma}(\bar{\mu}), \mu)\}$. Thus, the misaligned adviser's strategy takes a threshold form. The threshold $b(\underline{\mu}, \bar{\mu})$ is the intersection point of the supporting lines to U at points $\underline{\mu}$ and $\bar{\mu}$:

$$U(\underline{\mu}) + U'(\underline{\mu})(b(\underline{\mu}, \bar{\mu}) - \underline{\mu}) = U(\bar{\mu}) + U'(\bar{\mu})(b(\underline{\mu}, \bar{\mu}) - \bar{\mu}).$$

If $\underline{\mu} = \bar{\mu} = \mu$, $b(\underline{\mu}, \bar{\mu}) = \mu$, coinciding with (5) by continuity. Otherwise, rearranging, we obtain:

$$b(\underline{\mu}, \bar{\mu}) = \frac{\bar{\mu}U'(\bar{\mu}) - \underline{\mu}U'(\underline{\mu}) - (U(\bar{\mu}) - U(\underline{\mu}))}{U'(\bar{\mu}) - U'(\underline{\mu})}.$$

Applying integration by parts, the numerator equals $\int_{\underline{\mu}}^{\bar{\mu}} \mu U''(\mu) d\mu$ and the denominator equals $\int_{\underline{\mu}}^{\bar{\mu}} U''(\mu) d\mu$. The result follows.

A.6 Proof of Proposition 1

By Lemma 1 and Corollary 2, the choice of an optimal strategy for the agent reduces to optimization over the extreme points $\underline{\mu}, \bar{\mu}$ of the trust interval with the corresponding payoff:

$$\begin{aligned} U(\underline{\mu}, \bar{\mu}) = & \alpha \left(\int_0^{\underline{\mu}} (U(\mu) + U'(\mu)(\mu - \underline{\mu})) \tau(\mu) d\mu + \int_{\underline{\mu}}^{\bar{\mu}} U(\mu) \tau(\mu) d\mu + \int_{\bar{\mu}}^1 (U(\bar{\mu}) + U'(\bar{\mu})(\mu - \bar{\mu})) \tau(\mu) d\mu \right) \\ & + (1 - \alpha) \left(\int_0^{b(\underline{\mu}, \bar{\mu})} (U(\bar{\mu}) + U'(\bar{\mu})(\mu - \bar{\mu})) \tau(\mu) d\mu + \int_{b(\underline{\mu}, \bar{\mu})}^1 (U(\underline{\mu}) + U'(\underline{\mu})(\mu - \underline{\mu})) \tau(\mu) d\mu \right). \end{aligned}$$

The function $U(\underline{\mu}, \bar{\mu})$ is continuously differentiable with partial derivatives at points with $\underline{\mu} < \bar{\mu}$:

$$\begin{aligned} \frac{\partial U}{\partial \underline{\mu}} &= U''(\underline{\mu}) \left(\alpha \int_0^{\underline{\mu}} (\mu - \underline{\mu}) \tau(\mu) d\mu + (1 - \alpha) \int_{b(\underline{\mu}, \bar{\mu})}^1 (\mu - \underline{\mu}) \tau(\mu) d\mu \right), \\ \frac{\partial U}{\partial \bar{\mu}} &= U''(\bar{\mu}) \left(\alpha \int_{\bar{\mu}}^1 (\mu - \bar{\mu}) \tau(\mu) d\mu + (1 - \alpha) \int_0^{b(\underline{\mu}, \bar{\mu})} (\mu - \bar{\mu}) \tau(\mu) d\mu \right). \end{aligned}$$

Intuitively, the first-order impact of a change in the trust boundary equals the change in the action played at that boundary, measured by $U''(\cdot)$, integrated over the posterior regions in which the aligned and misaligned advisers induce that action, weighted by the alignment parameter. (Terms involving $\partial b / \partial \underline{\mu}$ and $\partial b / \partial \bar{\mu}$ vanish because at $\mu = b(\underline{\mu}, \bar{\mu})$ the misaligned adviser is indifferent between the two messages.)

Whenever the trust region is non-singleton, $\underline{\mu} < \bar{\mu}$, at the optimal choice of $\underline{\mu}$ and $\bar{\mu}$ these

partial derivatives must equal zero, $\partial U/\partial \underline{\mu} = 0$ and $\partial U/\partial \bar{\mu} = 0$. Since $U''(\cdot) > 0$, these first-order conditions can be rearranged as follows. Define functions Ψ_1 and Ψ_2 as

$$\begin{aligned}\Psi_1(\underline{\mu}, \bar{\mu}, \alpha) &\triangleq \alpha \int_0^{\underline{\mu}} (\mu - \underline{\mu}) \tau(\mu) d\mu + (1 - \alpha) \int_{b(\underline{\mu}, \bar{\mu})}^1 (\mu - \underline{\mu}) \tau(\mu) d\mu, \\ \Psi_2(\underline{\mu}, \bar{\mu}, \alpha) &\triangleq \alpha \int_{\bar{\mu}}^1 (\mu - \bar{\mu}) \tau(\mu) d\mu + (1 - \alpha) \int_0^{b(\underline{\mu}, \bar{\mu})} (\mu - \bar{\mu}) \tau(\mu) d\mu.\end{aligned}$$

Then, $\Psi_1(\underline{\mu}, \bar{\mu}, \alpha) = \Psi_2(\underline{\mu}, \bar{\mu}, \alpha) = 0$ is equivalent to conditions (6) and (7).

First, we show that conditions (6) and (7) are incompatible with $\alpha < 1/2$. (If M was finite, this would follow directly from [Theorem 3](#).) Indeed, if those conditions hold then (for the rest of the proof, we will often omit the arguments of the function b for brevity):

$$\begin{aligned}\alpha \left(\int_0^b (b - \mu) \tau(\mu) d\mu + \int_b^1 (\mu - b) \tau(\mu) d\mu \right) &\geq \alpha \left(\int_0^{\underline{\mu}} (\underline{\mu} - \mu) \tau(\mu) d\mu + \int_{\bar{\mu}}^1 (\mu - \bar{\mu}) \tau(\mu) d\mu \right) \\ &= (1 - \alpha) \left(\int_0^{\bar{\mu}} (\bar{\mu} - \mu) \tau(\mu) d\mu + \int_b^1 (\mu - \underline{\mu}) \tau(\mu) d\mu \right) \\ &\geq (1 - \alpha) \left(\int_0^b (b - \mu) \tau(\mu) d\mu + \int_b^1 (\mu - b) \tau(\mu) d\mu \right),\end{aligned}$$

where the inequalities hold because $\underline{\mu} \leq b(\underline{\mu}, \bar{\mu}) \leq \bar{\mu}$ and the equality is a consequence of (6) and (7) (their sum). Because τ has full support, the multipliers on both sides of the inequality are strictly positive, and thus $\alpha \geq 1 - \alpha$, i.e., $\alpha \geq 1/2$.

Now we argue that for $\alpha \geq 1/2$ the solution to (6) and (7) such that $\underline{\mu} \leq \bar{\mu}$ exists. (Note that at $\alpha = 1/2$, $[\underline{\mu}, \bar{\mu}] = [\mu_0, \mu_0]$ is a solution.) For the rest of this proof, we omit the dependence of Ψ_i on α . By [Lemma 1](#) and direct inspection, $b(\underline{\mu}, \bar{\mu})$ is strictly and continuously increasing in its arguments, so $\Psi_1(\underline{\mu}, \bar{\mu})$ is strictly and continuously decreasing in $\underline{\mu}$ for each $\bar{\mu}$. Furthermore,

$$\begin{aligned}\Psi_1(0, \bar{\mu}) &= (1 - \alpha) \int_{b(0, \bar{\mu})}^1 \mu \tau(\mu) d\mu \geq 0, \\ \Psi_1(1, \bar{\mu}) &= \alpha \int_0^1 (\mu - 1) \tau(\mu) d\mu < 0.\end{aligned}$$

Therefore, for each $\bar{\mu}$, a best-response $b_1(\bar{\mu})$ such that $\Psi_1(b_1(\bar{\mu}), \bar{\mu}) = 0$ exists and is unique.

Since $\Psi_1(\underline{\mu}, \bar{\mu})$ strictly decreases in $\bar{\mu}$, $b_1(\bar{\mu})$ strictly decreases in $\bar{\mu}$. Finally, for any $\bar{\mu}$,

$$\int_{b_1(\bar{\mu})}^1 (\mu - b_1(\bar{\mu}))\tau(\mu)d\mu \geq \int_{b(b_1(\bar{\mu}), \bar{\mu})}^1 (\mu - b_1(\bar{\mu}))\tau(\mu)d\mu \geq \int_0^{b_1(\bar{\mu})} (b_1(\bar{\mu}) - \mu)\tau(\mu)d\mu,$$

where the second inequality holds because $\alpha \geq 1/2$ and $\Psi_1(b_1(\bar{\mu}), \bar{\mu}) = 0$. Thus, for any $\bar{\mu}$, $b_1(\bar{\mu}) \leq \mu_0$.

Analogously, for each $\underline{\mu}$, a best-response $b_2(\underline{\mu})$ such that $\Psi_2(\underline{\mu}, b_2) = 0$, exists, is unique, strictly decreases in $\underline{\mu}$, and is everywhere greater than μ_0 .

Therefore, a solution to (6) and (7) is any $\underline{\mu} \in [0, \mu_0]$ and $\bar{\mu} = b_2(\underline{\mu}) \in [\mu_0, 1]$ such that $b_1(b_2(\underline{\mu})) = \underline{\mu}$. By the established properties of b_1 and b_2 , $b_1(b_2(\underline{\mu}))$ is continuous in $\underline{\mu}$ with $b_1(b_2(\underline{\mu})) \in [0, \mu_0]$ for all $\underline{\mu} \in [0, \mu_0]$; hence, $b_1(b_2(0)) - 0 \geq 0$ and $b_1(b_2(\mu_0)) - \mu_0 \leq 0$. By the intermediate value theorem, there exists $\underline{\mu} \in [0, \mu_0]$ such that $b_1(b_2(\underline{\mu})) = \underline{\mu}$.

So far, we showed that for $\alpha \geq 1/2$, a solution exists and belongs to a closed rectangular set $D = \{(\underline{\mu}, \bar{\mu}) : \underline{\mu} \in [0, \mu_0], \bar{\mu} \in [\mu_0, 1]\}$. To establish uniqueness, consider the function $-\Psi = (-\Psi_1, -\Psi_2)$ on D . Any solution must satisfy $-\Psi(\underline{\mu}, \bar{\mu}) = (0, 0)$. Observe that for any $(\underline{\mu}, \bar{\mu}) \in D$,

$$\begin{aligned} \frac{\partial[-\Psi_1]}{\partial \underline{\mu}} &= \alpha \int_0^{\underline{\mu}} \tau(\mu)d\mu + (1 - \alpha) \frac{\partial b}{\partial \underline{\mu}} \tau(b)(b - \underline{\mu}) + (1 - \alpha) \int_b^1 \tau(\mu)d\mu > 0, \\ \frac{\partial[-\Psi_1]}{\partial \bar{\mu}} &= (1 - \alpha) \frac{\partial b}{\partial \bar{\mu}} \tau(b)(b - \underline{\mu}) \geq 0, \\ \frac{\partial[-\Psi_2]}{\partial \underline{\mu}} &= -(1 - \alpha) \frac{\partial b}{\partial \underline{\mu}} \tau(b)(b - \bar{\mu}) \geq 0, \\ \frac{\partial[-\Psi_2]}{\partial \bar{\mu}} &= \alpha \int_{\bar{\mu}}^1 \tau(\mu)d\mu + (1 - \alpha) \frac{\partial b}{\partial \bar{\mu}} \tau(b)(\bar{\mu} - b) + (1 - \alpha) \int_0^b \tau(\mu)d\mu > 0. \end{aligned}$$

Moreover, for all $(\underline{\mu}, \bar{\mu}) \in D$, the Jacobian of $[-\Psi]$ is a P-matrix, i.e., it has strictly positive principal minors:

$$\frac{\partial[-\Psi_1]}{\partial \underline{\mu}} > 0, \quad \frac{\partial[-\Psi_1]}{\partial \underline{\mu}} \frac{\partial[-\Psi_2]}{\partial \bar{\mu}} - \frac{\partial[-\Psi_1]}{\partial \bar{\mu}} \frac{\partial[-\Psi_2]}{\partial \underline{\mu}} > 0.$$

By the Gale-Nikaido Theorem, (Theorem 4, [Gale and Nikaido \(1965\)](#)), it follows that $[-\Psi]$ is injective on D , and thus there exists at most one solution to the equation $-\Psi(\underline{\mu}, \bar{\mu}) = (0, 0)$.

Finally, we show that the proposed trust region strategy is robustly rationalizable by explicitly constructing a TRE. For $\alpha \geq 1/2$, we need to construct a measurable strategy of the misaligned adviser $\beta : [0, b] \rightarrow [\bar{\mu}, 1]$ such that for every set $X \subseteq [\bar{\mu}, 1]$ with $\alpha\tau(X) + (1 - \alpha)\tau(\beta^{-1}(X)) > 0$,

$$\frac{\alpha \int_X \mu\tau(\mu)d\mu + (1 - \alpha) \int_{\beta^{-1}(X)} \mu\tau(\mu)d\mu}{\alpha \int_X \tau(\mu)d\mu + (1 - \alpha) \int_{\beta^{-1}(X)} \tau(\mu)d\mu} = \bar{\mu}. \quad (27)$$

(The construction of $\beta : (b, 1] \rightarrow [0, \underline{\mu}]$ is analogous.) To this end, define two finite atomless nonnegative measures:

$$\begin{aligned} \nu(Y) &\triangleq (1 - \alpha) \int_Y (\bar{\mu} - \mu)\tau(\mu)d\mu, \quad Y \subseteq [0, b] \\ \eta(X) &\triangleq \alpha \int_X (\mu - \bar{\mu})\tau(\mu)d\mu, \quad X \subseteq [\bar{\mu}, 1]. \end{aligned}$$

Observe that condition (7) is precisely $\eta([\bar{\mu}, 1]) = \nu([0, b])$ whereas condition (27) is the pushforward identity:

$$\eta(X) = \nu(\beta^{-1}(X)), \quad X \subseteq [\bar{\mu}, 1].$$

In other words, we need to find β that transports ν to η . It is always possible. For a canonical quantile construction, define the cumulative mass functions $F_\nu(\mu) \triangleq \nu([0, \mu])$ for $\mu \in [0, b]$ and $F_\eta(\mu) \triangleq \eta([\bar{\mu}, \mu])$ for $\mu \in [\bar{\mu}, 1]$. The transport map can then be set:

$$\beta(\mu) = F_\eta^{-1}(F_\nu(\mu)), \quad \mu \in [0, b],$$

where $F_\eta^{-1}(\cdot)$ is the generalized inverse: $F_\eta^{-1}(q) = \inf\{\mu \in [\bar{\mu}, 1] : F_\eta(\mu) \geq q\}$.

For $\alpha < 1/2$, $T = \{\mu_0\}$, so the misaligned adviser is indifferent between all messages and it suffices to construct a strategy $\beta : [0, 1] \rightarrow [0, 1]$ such that for all $X \subseteq [0, 1]$ with $\alpha \int_X \tau(\mu)d\mu + (1 - \alpha) \int_{\beta^{-1}(X)} \tau(\mu)d\mu > 0$,

$$\frac{\alpha \int_X \mu\tau(\mu)d\mu + (1 - \alpha) \int_{\beta^{-1}(X)} \mu\tau(\mu)d\mu}{\alpha \int_X \tau(\mu)d\mu + (1 - \alpha) \int_{\beta^{-1}(X)} \tau(\mu)d\mu} = \mu_0, \quad (28)$$

which is equivalent to:

$$\alpha \int_X (\mu - \mu_0) \tau(\mu) d\mu + (1 - \alpha) \int_{\beta^{-1}(X)} (\mu - \mu_0) \tau(\mu) d\mu = 0.$$

To do that, observe that $\int_0^1 (\mu - \mu_0) \tau(\mu) d\mu = 0$ and $\int_0^{\mu_0} (\mu_0 - \mu) \tau(\mu) d\mu = \int_{\mu_0}^1 (\mu - \mu_0) \tau(\mu) d\mu > 0$. Since $\alpha \in (0, 1/2)$, $\alpha/(1 - \alpha) \in (0, 1)$ and by the intermediate value theorem, there exist $\mu_L \in (0, \mu_0)$ and $\mu_H \in (\mu_0, 1)$ such that

$$\begin{aligned} \int_0^{\mu_L} (\mu_0 - \mu) \tau(\mu) d\mu &= \frac{\alpha}{1 - \alpha} \int_0^{\mu_0} (\mu_0 - \mu) \tau(\mu) d\mu, \\ \int_{\mu_H}^1 (\mu - \mu_0) \tau(\mu) d\mu &= \frac{\alpha}{1 - \alpha} \int_{\mu_0}^1 (\mu - \mu_0) \tau(\mu) d\mu. \end{aligned}$$

By construction,

$$\int_0^{\mu_L} (\mu_0 - \mu) \tau(\mu) d\mu = \frac{\alpha}{1 - \alpha} \int_{\mu_0}^1 (\mu - \mu_0) \tau(\mu) d\mu, \quad (29)$$

$$\int_{\mu_H}^1 (\mu - \mu_0) \tau(\mu) d\mu = \frac{\alpha}{1 - \alpha} \int_0^{\mu_0} (\mu_0 - \mu) \tau(\mu) d\mu, \quad (30)$$

$$\int_{\mu_L}^{\mu_H} (\mu - \mu_0) \tau(\mu) d\mu = 0. \quad (31)$$

We can set $\beta(\mu) = \beta_L(\mu)$ when $\mu \in [0, \mu_L]$, $\beta(\mu) = \mu_0$, when $\mu \in (\mu_L, \mu_H)$, and $\beta(\mu) = \beta_H(\mu)$, when $\mu \in [\mu_H, 1]$. Here, β_L is a quantile transport map that transports measure $\nu_L(Y) = (1 - \alpha) \int_Y (\mu_0 - \mu) \tau(\mu) d\mu$ on $[0, \mu_L]$ to measure $\eta_L(X) = \alpha \int_X (\mu - \mu_0) \tau(\mu) d\mu$ on $[\mu_0, 1]$, just like in the case of $\alpha \geq 1/2$; it ensures that (28) holds for all $X \subseteq (\mu_0, 1]$. Similarly, β_H is a quantile transport map that transports measure $\nu_H(Y) = (1 - \alpha) \int_Y (\mu - \mu_0) \tau(\mu) d\mu$ on $[\mu_H, 1]$ to measure $\eta_H(X) = \alpha \int_X (\mu_0 - \mu) \tau(\mu) d\mu$ on $[0, \mu_0]$; it ensures that (28) holds for all $X \subseteq [0, \mu_0]$. (The transported masses match the targets by (29) and (30).) Finally, by (31), (28) holds for $\mu = \mu_0$. The result follows.

A.7 Proof of Proposition 2

At $\alpha = 1/2$, $[\underline{\mu}, \bar{\mu}] = [\mu_0, \mu_0]$ satisfies conditions (6) and (7). At $\alpha = 1$, $[\underline{\mu}, \bar{\mu}] = [0, 1]$ satisfies conditions (6) and (7).

For $\alpha \in (1/2, 1)$, denote by Ψ_{i1} , Ψ_{i2} , and $\Psi_{i\alpha}$ a partial derivative of Ψ_i with respect to $\underline{\mu}$, $\bar{\mu}$, and α respectively. Define the Jacobian:

$$J(\underline{\mu}, \bar{\mu}, \alpha) \triangleq \begin{pmatrix} \Psi_{11} & \Psi_{12} \\ \Psi_{21} & \Psi_{22} \end{pmatrix}.$$

As we argued in the proof of [Proposition 1](#), for all $\underline{\mu}, \bar{\mu}, \alpha > 1/2$, $\det J(\underline{\mu}, \bar{\mu}, \alpha) > 0$, and therefore, by the implicit function theorem, optimal $\underline{\mu}(\alpha)$ and $\bar{\mu}(\alpha)$ are continuously differentiable and¹⁵

$$\begin{pmatrix} d\underline{\mu}/d\alpha \\ d\bar{\mu}/d\alpha \end{pmatrix} = -J(\underline{\mu}, \bar{\mu}, \alpha)^{-1} \begin{pmatrix} \Psi_{1\alpha} \\ \Psi_{2\alpha} \end{pmatrix}.$$

Consequently,

$$\begin{aligned} \frac{d\underline{\mu}}{d\alpha} &= -\frac{\Psi_{2\bar{\mu}}\Psi_{1\alpha} - \Psi_{1\bar{\mu}}\Psi_{2\alpha}}{\Psi_{1\underline{\mu}}\Psi_{2\bar{\mu}} - \Psi_{1\bar{\mu}}\Psi_{2\underline{\mu}}} < 0, \\ \frac{d\bar{\mu}}{d\alpha} &= \frac{\Psi_{2\underline{\mu}}\Psi_{1\alpha} - \Psi_{1\underline{\mu}}\Psi_{2\alpha}}{\Psi_{1\underline{\mu}}\Psi_{2\bar{\mu}} - \Psi_{1\bar{\mu}}\Psi_{2\underline{\mu}}} > 0, \end{aligned}$$

where the inequalities hold because, as we already showed, $\Psi_{1\underline{\mu}} < 0$, $\Psi_{1\bar{\mu}} \leq 0$, $\Psi_{2\underline{\mu}} \leq 0$, $\Psi_{2\bar{\mu}} < 0$, and

$$\begin{aligned} \Psi_{1\alpha} &= \int_0^{\underline{\mu}} (\mu - \underline{\mu})\tau(\mu)d\mu - \int_b^1 (\mu - \underline{\mu})\tau(\mu)d\mu < 0, \\ \Psi_{2\alpha} &= \int_{\bar{\mu}}^1 (\mu - \bar{\mu})\tau(\mu)d\mu - \int_0^b (\mu - \bar{\mu})\tau(\mu)d\mu > 0. \end{aligned}$$

The result follows.

A.8 Proof of [Proposition 3](#)

Throughout, fix $\alpha > 1/2$ (the proposition is trivially true otherwise). We begin with a simple lemma.

¹⁵Differentiating the optimality conditions with respect to α we obtain $\Psi_{11}\frac{d\underline{\mu}}{d\alpha} + \Psi_{12}\frac{d\bar{\mu}}{d\alpha} + \Psi_{1\alpha} = 0$, $\Psi_{21}\frac{d\underline{\mu}}{d\alpha} + \Psi_{22}\frac{d\bar{\mu}}{d\alpha} + \Psi_{2\alpha} = 0$.

Lemma 7. Let U_1, U_2 be twice differentiable and strictly convex on $[0, 1]$. Assume that the ratio $U_1''(\mu)/U_2''(\mu)$ is decreasing. Then, with b_i defined for each U_i , $i \in \{1, 2\}$, by equation (5), we have that $b_1(\underline{\mu}, \bar{\mu}) \leq b_2(\underline{\mu}, \bar{\mu})$ for all $\underline{\mu} \leq \bar{\mu}$.

Proof. By (5), for $i \in \{1, 2\}$, $b_i(\underline{\mu}, \bar{\mu}) = \mathbb{E}_{\mu \sim f_i}[\mu]$, where $f_i(\mu)$ is a density of a probability measure on $[\underline{\mu}, \bar{\mu}]$ defined as

$$f_i(\mu) \triangleq \frac{U_i''(\mu)}{\int_{\underline{\mu}}^{\bar{\mu}} U_i''(\mu) d\mu}.$$

By assumption, $f_1(\mu)/f_2(\mu)$ is decreasing, and hence f_2 likelihood-ratio dominates f_1 . This implies that the probability distribution f_1 is first-order stochastically dominated by f_2 ; in particular, it has a lower mean. The result follows. \square

We now take the second step by showing a monotone relationship between the cutoff function b and the trust region.

Lemma 8. Consider two decision problems U_i , $i \in \{1, 2\}$, and let $(\underline{\mu}_i, \bar{\mu}_i) \in D$ denote the (unique) solution to the system

$$\Psi_1^i(\underline{\mu}, \bar{\mu}, \alpha) = 0, \quad \Psi_2^i(\underline{\mu}, \bar{\mu}, \alpha) = 0,$$

where Ψ_1^i, Ψ_2^i and D are defined as in the proof of [Proposition 1](#) for each U_i . If $b_1(\underline{\mu}, \bar{\mu}) \leq b_2(\underline{\mu}, \bar{\mu})$ for all $\underline{\mu} \leq \bar{\mu}$, then $\underline{\mu}_2 \leq \underline{\mu}_1$ and $\bar{\mu}_2 \leq \bar{\mu}_1$.

Proof. For any $h \in [0, 1]$, define the auxiliary functions

$$\begin{aligned} \tilde{\Psi}_1(\underline{\mu}, h) &\triangleq \alpha \int_0^{\underline{\mu}} (\mu - \underline{\mu}) \tau(\mu) d\mu + (1 - \alpha) \int_h^1 (\mu - \underline{\mu}) \tau(\mu) d\mu, \\ \tilde{\Psi}_2(\bar{\mu}, h) &\triangleq \alpha \int_{\bar{\mu}}^1 (\mu - \bar{\mu}) \tau(\mu) d\mu + (1 - \alpha) \int_0^h (\mu - \bar{\mu}) \tau(\mu) d\mu. \end{aligned}$$

For each h , let $\underline{\mu}(h)$ be the unique solution to $\tilde{\Psi}_1(\underline{\mu}, h) = 0$ in $[0, \mu_0]$, and let $\bar{\mu}(h)$ be the unique solution to $\tilde{\Psi}_2(\bar{\mu}, h) = 0$ in $[\mu_0, 1]$. (Existence and uniqueness follow from an argument analogous to that used in the proof of [Proposition 1](#)).

For each $i \in \{1, 2\}$ define the scalar map

$$\varphi_i(h) \triangleq b_i(\underline{\mu}(h), \bar{\mu}(h)).$$

Let $h_i \triangleq b_i(\underline{\mu}_i, \bar{\mu}_i)$ be the cutoff evaluated at the optimal endpoints of problem i . Then $(\underline{\mu}_i, \bar{\mu}_i)$ solves $\Psi_1^i = \Psi_2^i = 0$ if and only if $\underline{\mu}_i = \underline{\mu}(h_i)$, $\bar{\mu}_i = \bar{\mu}(h_i)$, and $h_i = \varphi_i(h_i)$. By the assumption $b_1 \leq b_2$ pointwise, for every h ,

$$\varphi_1(h) = b_1(\underline{\mu}(h), \bar{\mu}(h)) \leq b_2(\underline{\mu}(h), \bar{\mu}(h)) = \varphi_2(h).$$

Define a region $H \triangleq \{h \in [0, 1] : \underline{\mu}(h) \leq h \leq \bar{\mu}(h)\}$. Note that H is an interval and $h_1, h_2 \in H$. For $h \in H$, implicit differentiation yields

$$\underline{\mu}'(h) = -\frac{\partial \tilde{\Psi}_1/\partial h}{\partial \tilde{\Psi}_1/\partial \underline{\mu}} \leq 0, \quad \bar{\mu}'(h) = -\frac{\partial \tilde{\Psi}_2/\partial h}{\partial \tilde{\Psi}_2/\partial \bar{\mu}} \leq 0.$$

Thus, φ_i is weakly decreasing in h on H : both $\underline{\mu}(h)$ and $\bar{\mu}(h)$ are weakly decreasing in h , while $b_i(\underline{\mu}, \bar{\mu})$ is weakly increasing in each endpoint, so the composition $h \mapsto \varphi_i(h)$ is weakly decreasing.

It follows that $h_2 \geq h_1$: if $h_2 < h_1$, then, since φ_2 is decreasing on H ,

$$h_2 = \varphi_2(h_2) \geq \varphi_2(h_1) \geq \varphi_1(h_1) = h_1,$$

which is a contradiction. Since $\underline{\mu}(\cdot)$ and $\bar{\mu}(\cdot)$ are weakly decreasing,

$$\underline{\mu}_2 = \underline{\mu}(h_2) \leq \underline{\mu}(h_1) = \underline{\mu}_1, \quad \bar{\mu}_2 = \bar{\mu}(h_2) \leq \bar{\mu}(h_1) = \bar{\mu}_1,$$

completing the proof. \square

By [Lemma 7](#), U_1''/U_2'' decreasing implies $b_1(\underline{\mu}, \bar{\mu}) \leq b_2(\underline{\mu}, \bar{\mu})$ for all $\underline{\mu} \leq \bar{\mu}$. [Lemma 8](#) then yields $\underline{\mu}_2 \leq \underline{\mu}_1$ and $\bar{\mu}_2 \leq \bar{\mu}_1$. This proves [Proposition 3](#).

A.9 Proof of Proposition 4

With a small abuse of notation, we can parameterize each private strategy by $\hat{\sigma} = \Pr(a = a_2)$. We also drop the dependence of G and L on $\hat{\tau}$ in the notation. Then, by the arguments behind [Theorem 1](#), if the agent employs the set of private strategies $\hat{\Sigma}_0 = \{\hat{\sigma}(m)\}_{m \in \Delta(\Omega)}$, the payoffs coming from both aligned and misaligned adviser depend only on $\hat{\sigma}_L \triangleq \inf \hat{\Sigma}_0$ and $\hat{\sigma}_H \triangleq \sup \hat{\Sigma}_0$, and the optimal payoffs from using $\hat{\Sigma}_0$ are the same as if the agent plays $\hat{\sigma}(m) = \hat{\sigma}_L$ when $v(m) < 0$ and $\hat{\sigma}(m) = \hat{\sigma}_H$ when $v(m) \geq 0$. This payoff is:

$$\begin{aligned} & \int_{-\infty}^0 (\alpha \hat{\sigma}_L + (1 - \alpha) \hat{\sigma}_H) v \hat{\tau}(dv) + \int_0^{+\infty} (\alpha \hat{\sigma}_H + (1 - \alpha) \hat{\sigma}_L) v \hat{\tau}(dv) \\ &= \hat{\sigma}_L((1 - \alpha)G - \alpha L) + \hat{\sigma}_H(\alpha G - (1 - \alpha)L). \end{aligned} \quad (32)$$

The optimal choice of $\hat{\sigma}_L$ and $\hat{\sigma}_H$ must maximize (32) subject to $\hat{\sigma}_L, \hat{\sigma}_H \in [0, 1]$ and $\hat{\sigma}_L \leq \hat{\sigma}_H$. This is a linear optimization subject to $(\hat{\sigma}_L, \hat{\sigma}_H)$ being in a triangle with vertices $(0, 0)$, $(0, 1)$, and $(1, 1)$. A straightforward calculation gives the following solution:

If $G = L$: if $\alpha < \hat{\alpha} = 1/2$, then any $\hat{\sigma}_L = \hat{\sigma}_H$ is optimal; if $\alpha > \hat{\alpha} = 1/2$, then $\hat{\sigma}_L = 0$ and $\hat{\sigma}_H = 1$; if $\alpha = \hat{\alpha} = 1/2$, then any $(\hat{\sigma}_L, \hat{\sigma}_H)$ is optimal. If $G > L$: if $\alpha < \hat{\alpha}$, then $\hat{\sigma}_L = \hat{\sigma}_H = 1$; if $\alpha > \hat{\alpha}$, then $\hat{\sigma}_L = 0$ and $\hat{\sigma}_H = 1$; if $\alpha = \hat{\alpha}$, then $\hat{\sigma}_H = 1$ and any $\hat{\sigma}_L$ is optimal. If $G < L$: if $\alpha < \hat{\alpha}$, then $\hat{\sigma}_L = \hat{\sigma}_H = 0$; if $\alpha > \hat{\alpha}$, then $\hat{\sigma}_L = 0$ and $\hat{\sigma}_H = 1$; if $\alpha = \hat{\alpha}$, then $\hat{\sigma}_L = 0$ and any $\hat{\sigma}_H$ is optimal.

The cases $\hat{\sigma}_L = \hat{\sigma}_H$ correspond to not trusting any message and always acting in the same way, optimal at the prior, so $T = \{\mu_0\}$. The cases $\hat{\sigma}_L = 0$ and $\hat{\sigma}_H = 1$ correspond to trusting all messages, so $T = \Delta(\Omega)$. Since we assumed that the probability of $v(\mu) = 0$ is 0 and $G \neq L$, the corresponding optimal strategy is uniquely determined.

It is left to show that those strategies are robustly rationalizable. Define $M_0 = \{\mu : v(\mu) = 0\}$, $M_- = \{\mu : v(\mu) < 0\}$, and $M_+ = \{\mu : v(\mu) > 0\}$. Define probability measures $q_+(X) = \int_X v(\mu) \tau(d\mu)/G$ for $X \subseteq M_+$, $q_-(Y) = \int_Y (-v(\mu)) \tau(d\mu)/L$ for $Y \subseteq M_-$.

For $\alpha > \hat{\alpha}$, the agent fully trusts the adviser. Consider the following strategy of the misaligned adviser. If $\mu \in M_0$, then $\beta(\mu) = \mu$. If $\mu \in M_-$, then β randomizes over messages $m \in M_+$ according to q_+ . If $\mu \in M_+$, then β randomizes over messages $m \in M_-$ according

to q_- . This strategy is clearly adversarial. Furthermore, since $\alpha > \hat{\alpha}$, after any message $m \in M_+$, the posterior expected payoff from action a_2 is strictly positive: for any $X \subseteq M_+$ with $\tau(X) > 0$,

$$\alpha \int_X v(m) \tau(dm) + (1 - \alpha) \int_{\Delta(\Omega)} v(\mu) \beta(X|\mu) \tau(d\mu) = \alpha G q_+(X) - (1 - \alpha) L q_+(X) > 0.$$

Analogously, after any message $m \in M_-$, the posterior expected payoff from action a_2 is strictly negative: for any $Y \subseteq M_-$ with $\tau(Y) > 0$,

$$\alpha \int_Y v(m) \tau(dm) + (1 - \alpha) \int_{\Delta(\Omega)} v(\mu) \beta(Y|\mu) \tau(d\mu) = -\alpha L q_-(Y) + (1 - \alpha) G q_-(Y) < 0.$$

And by construction, after any message $m \in M_0$, the posterior expected payoff from action a_2 is zero.

For $\alpha < \hat{\alpha}$, the agent doesn't trust the adviser so any adviser's strategy is adversarial. Consider the case $G > L$ (the complementary case is analogous). We need to construct the misaligned adviser strategy that makes communication not valuable. To do so, define $\gamma = \alpha L / ((1 - \alpha)G) \in [0, 1]$. Consider the following strategy of the misaligned adviser. If $\mu \in M_-$, then β randomizes over messages $m \in M_+$ according to q_+ . If $\mu \in M_+$, then with probability γ , β randomizes over messages $m \in M_-$ according to q_- and with probability $(1 - \gamma)$, β randomizes over messages $m \in M_+$ according to q_+ . This strategy makes the posterior expected payoff from action a_2 zero after every message $m \in M_-$: for any $Y \subseteq M_-$ with $\tau(Y) > 0$,

$$\alpha \int_Y v(m) \tau(dm) + (1 - \alpha) \int_{\Delta(\Omega)} v(\mu) \beta(Y|\mu) \tau(d\mu) = -\alpha L q_-(Y) + (1 - \alpha) \gamma G q_-(Y) = 0.$$

After any message $m \in M_+$, the posterior expected payoff from action a_2 is strictly positive: for any $X \subseteq M_+$ with $\tau(X) > 0$,

$$\alpha \int_X v(m) \tau(dm) + (1 - \alpha) \int_{\Delta(\Omega)} v(\mu) \beta(X|\mu) \tau(d\mu) = (G - L) q_+(X) > 0.$$

Thus, this β robustly rationalizes the strategy.

Finally, at $\alpha = \hat{\alpha}$, both full trust and no trust are optimal (along a continuum of other strategies) and robustly rationalizable by the same β s as above.

A.10 Supporting calculations for Example 1

The key step in the construction of the optimal trust region in [Example 1](#) comes from the following simple lemma.

Lemma 9 (Spherical U). *Let $U(\mu) = V(\|\mu - b\|)$ for some vector b and function V . Let $\mu'(r, n) = b + rn$, where $n \in \mathbb{R}^N$ with $\|n\| = 1$ and $r \in \mathbb{R}$. Then, (i) $D_U(\mu, \mu'(r, n))$ is strictly increasing in $n \cdot (b - \mu)$ whenever $r \neq 0$, and (ii) $D_U(\mu, \mu'(r, n))$ is a unimodal function in r with a minimum at $r = n \cdot (\mu - b)$.*

Proof. In this case, $\nabla U(\mu'(r, n)) = V'(r)n$, and thus

$$D_U(\mu, \mu'(r, n)) = V(\|\mu - b\|) - V(r) - V'(r)(n \cdot (\mu - b) - r).$$

Since $U(\mu)$ is strictly convex, $V'(r) > 0$ whenever $r \neq 0$ and $V''(r) > 0$. Thus $D_U(\mu, \mu'(r, n))$ is strictly increasing in $n \cdot (b - \mu)$. Furthermore,

$$\frac{\partial D_U(\mu, \mu'(r, n))}{\partial r} = -V'(r) - V''(r)(n \cdot (\mu - b) - r) + V'(r) = V''(r)(r - n \cdot (\mu - b)).$$

Because $V''(r) > 0$, the unimodality follows. \square

Suppose that the misaligned adviser holds belief μ . By [Corollary 3](#), the adviser will try to maximize $D_U(\mu, \mu')$ over μ' on (the boundary of) the trust region. Parameterizing $\mu' = b + rn$ and applying [Lemma 9](#) yields that n is optimally chosen to be $(b - \mu)/\|b - \mu\|$, whereas r is chosen maximal within the trust region, $r = r^*(\alpha)$. Thus, the optimal μ' is given uniquely by $b + r^*(\alpha)(b - \mu)/\|b - \mu\|$.