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Abstract

An agent chooses an action using her private information combined with recommen-

dations from an informed but potentially misaligned adviser. With a known alignment

probability, the adviser reports his signal truthfully; with remaining probability, the

adviser can send an arbitrary message. We characterize the decision rule that maxi-

mizes the agent’s worst-case expected payoff. Every optimal rule admits a trust region

representation in belief space: advice is taken at face value when it induces a posterior

within the trust region; otherwise, the agent acts as if the posterior were on the trust

region’s boundary. We derive thresholds on the alignment probability above which

the adviser’s presence strictly benefits the agent and fully characterize the solution in

binary-state as well as binary-action environments.

Keywords: information design, misalignment, human-AI interactions.

JEL Codes: C72, D81, D83

∗Dworczak: Department of Economics, Northwestern University and Group for Research in Applied Eco-
nomics, piotr.dworczak@northwestern.edu. Smolin: Toulouse School of Economics, alexey.v.smolin@gmail.com.
We thank Nageeb Ali, Ricardo Alonso, Laura Doval, Tan Gan, Alexis Ghersengorin, Marina Halac, Jason
Hartline, Nicole Immorlica, Emir Kamenica, David Levine, Annie Liang, Stephen Morris, Jacopo Perego,
and Balázs Szentes for helpful conversations. Alex Smolin gratefully acknowledges funding from the French
National Research Agency (ANR) under the Investments for the Future program (grant ANR-17-EURE-0010)
and the AI Interdisciplinary Institute ANITI (grant ANR-23-IACL-0002). Part of the analysis in this paper
was conducted while Alex Smolin was visiting Northwestern University and Columbia Business School, and
we thank both institutions for their hospitality.



1 Introduction

Modern AI systems increasingly influence decisions with large and sometimes irreversible

consequences, including autonomous driving, medical triage, hiring, and credit or security

screening (see, e.g., Maslej et al. (2025)). Their appeal is straightforward: they can synthesize

information at scale and provide recommendations that exceed unaided human performance

in many tasks. The central risk is also well-recognized: when a system is opaque, complex,

and trained or deployed under imperfect objectives, users may not be able to tell whether a

recommendation is merely noisy, systematically biased, or actively harmful. The misalignment

problem is a particularly serious concern in high-stakes environments, and its mitigation is

key to ensure safe adoption of AI-aided decision making (see, e.g., Russell (2019)).

In this paper, we study how an agent should use AI when the system may be misaligned.

Taking the AI’s information structure and an exogenous alignment probability as given, we

characterize the agent’s optimal robust decision rule, which maximizes her payoff under the

assumption of worst-case AI behavior in case of misalignment.

Our model features an agent who chooses an action under uncertainty about the state of

the world. The agent has access to a private signal—reflecting her expertise or contextual

information—but she can additionally rely on reports from an adviser (e.g., an AI system).

The adviser observes complementary information about the state and sends a message to the

agent.

Crucially, the adviser is aligned and reports his information truthfully only with some

known alignment probability. With remaining probability, the adviser is misaligned and can

send an arbitrary message. In practice, misalignment could take several distinct forms with

ambiguous implications for the agent’s decision (see, e.g., Amodei et al. (2016)). We assume

that the agent adopts a robust approach: she chooses a policy mapping her private information

and the adviser’s message into a (possibly random) action that maximizes her expected payoff

against the worst-case scenario—conceptualized as one in which the misaligned adviser is

actively attempting to minimize her payoff. The robust criterion reflects the safety concerns

in applications: an optimal decision rule provides the highest payoff guarantee for the agent

in the absence of any assumptions about the form of misalignment.



Our main structural result shows that optimal robust policy for the agent can be summa-

rized by a single, interpretable object that we call the “trust region.” The trust region is a

connected set of reported beliefs about the state that the agent is willing to take at face value.

When the adviser’s reported belief falls inside this region, the agent behaves as if the adviser

were truthful: she combines the reported belief with her private information using Bayes’ rule

and chooses the corresponding Bayes-optimal action. When the reported belief lies outside

the trust region, the agent replaces it with the “closest safe interpretation,” formalized by

the notion of Bregman distance, which is a belief lying on the boundary of the trust region;

she then behaves as if that belief had been reported. Operationally, this is an endogenous

form of clipping: moderate recommendations are followed while extreme recommendations

are discounted and converted into boundary recommendations that the agent is still willing

to accept.

Intuitively, if the agent reacted sharply to extreme reports, the misaligned adviser could

exploit that sensitivity to induce large losses. The robust policy responds by limiting

how far any recommendation can push behavior. The trust region identifies exactly which

recommendations are safe to act upon without additional skepticism, and the boundary

mapping formalizes how skepticism should be applied outside that set. On one extreme, a trust

region equal to the entire belief simplex corresponds to applying the Bayes-optimal response

to all reports; on the other extreme, a trust region only containing the prior corresponds

to ignoring the adviser’s reports. Thus, the shape and size of the trust region yields a

disciplined answer to a practical design question: when an AI system outputs highly confident

or highly unusual recommendations, optimal robust use requires treating those outputs as

“too informative to be trusted” and translating them into safer boundary inputs before acting.

An implication of the characterization is that the optimal robust action rule used by

the agent must be defensible as optimal for some coherent set of beliefs about the state of

the world—the agent never benefits from distorted use of her own private information. An

optimal robust rule simply restricts the set of Bayes-optimal action rules that the agent uses.

A further consequence is that implementing the optimal trust region policy does not require

commitment. Under mild technical assumptions, we prove a minimax theorem which implies

existence of a trust region equilibrium (TRE) in the zero-sum game between the agent and
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the misaligned adviser. In a TRE, the agent’s policy and the misaligned adviser’s strategy

form a saddle point: after every on-path recommendation, the agent’s chosen action is

Bayes-optimal given the belief induced by the adviser’s strategy, and the misaligned adviser’s

strategy minimizes the agent’s expected payoff. Substantively, this means that robust optimal

behavior provides the same payoff guarantee that the agent could obtain had she perfectly

known the misaligned adviser’s strategy. Practically, this result provides a certification tool:

to verify that a proposed policy is optimal, it suffices to exhibit a corresponding adversarial

reporting strategy that makes that policy a best response at every recommendation.

We then ask when consulting a potentially misaligned adviser is worthwhile for the agent.

We formalize this question by defining “minimal viable alignment”—the threshold alignment

probability above which the agent can guarantee a strictly higher payoff than the one she could

achieve by only relying on her own information. We derive sharp bounds on this threshold

that depend only on the richness of the state space and the adviser’s signal distribution. As

long as information is useful to the agent, alignment probability exceeding half is sufficient

for the agent to benefit from the presence of the adviser. This bound is tight in binary-state

problems, but minimal viable alignment may be much lower—sometimes as low as one over

the number of states—in multi-dimensional settings. Thus, for problems with a rich state

space, robustly valuable use of AI advice may be profitable even when alignment is very

unlikely.

Our general characterization becomes particularly sharp when the state space is binary,

so that the ground truth is whether a given statement is true or false. In this setting, an

adviser’s message can be summarized by the implied probability of the statement being true.

The trust region is an interval around the prior probability. Recommendations inside the

interval are trusted and acted upon as reported. Recommendations outside the interval are

mapped into the nearest endpoint. The misaligned adviser sends messages that push beliefs to

the interval endpoint in the direction that is most damaging to the agent’s action choice. This

structure delivers a sharp phase transition. If the alignment probability is below one half, the

optimal interval collapses to the prior and the agent ignores the adviser. If alignment is above

one half, there is a unique nontrivial trust interval, and, if the agent’s decision problem is rich

in the sense that she benefits from any piece of information, it expands monotonically with
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alignment, approaching full trust as alignment approaches certainty. We further demonstrate

that the location of the trust region (whether it is skewed towards high or low beliefs) depends

on the relative curvature of the agent’s indirect utility function—interpreted as a measure of

sensitivity of the agent’s optimal action to information.

Our characterization also yields a closed-form solution when the agent’s downstream choice

is binary (e.g., to accept or reject an application) and the agent has no private information.

In such problems, the optimal robust use of advice is generically all-or-nothing: either the

trust region is the entire belief simplex or it collapses to the prior. Which regime obtains is

determined by an alignment threshold that depends only on the relative value of the adviser’s

information across the two actions. In particular, if alignment is below one half, the agent

cannot robustly benefit from the adviser.

Finally, we examine environments where uncertainty concerns many possible states and

actions. Here, the geometry of the trust region plays a major role: some directions of belief

change are far more consequential than others because they trigger actions whose payoffs

are highly sensitive to the true state. In a robust solution, the misaligned adviser chooses

recommendations that are farthest from the truth within the trusted set in an incentive-based

sense, again formalized by Bregman distance. In general, the trust region may take a complex

shape, i.e., it need not even be convex. In symmetric environments, however, the trust region

inherits the symmetry of incentives and information and can be tractably characterized.

1.1 Literature review

Our model is closely related to two foundational models in information economics: the cheap

talk model (Crawford and Sobel (1982)) and the Bayesian-persuasion model (Kamenica and

Gentzkow (2011)). Relative to the cheap-talk model, our framework effectively assumes

that the Sender maximizes the Receiver’s utility with some probability α and minimizes

the Receiver’s utility with the complementary probability 1− α.1 Our characterization of

trust region equilibria shows that equilibrium behavior is very different from the one arising

in the more standard constant-bias case; in particular, information transmission is perfect

1Strictly speaking, we assume that with probability α the Sender reveals his signal truthfully, but this
can be shown to be optimal for the Receiver.
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for intermediate beliefs of the Sender but completely blocked for extreme beliefs. Relative

to the Bayesian-persuasion model—due to the minimax theorem which we prove in our

setting—our framework is equivalent to the case in which the Sender tries to minimize the

Receiver’s payoff but is committed to revealing his signal truthfully with probability α. One

of our contributions is to provide a characterization of threshold levels of α above which the

adversarial Sender cannot prevent the Receiver from learning some information.

Within a more recent literature in information economics, several papers study models in

which the Sender is truthful (or committed) with some probability but the messages may be

fake (or manipulated) otherwise. To the best of our knowledge, none of these papers consider

the case (motivated for us by the AI alignment problem) in which the non-aligned Sender

is adversarial—typically, the non-aligned Sender is modeled as having state-independent

preferences. Lipnowski et al. (2022) and Min (2021) analyze a setting in which the Sender

is committed to the information structure with some probability and sends a cheap-talk

message otherwise. Glazer et al. (2020) and Lahr and Winkelmann (2019) study equilibria

of communication games in which some reports are truthful and some may be fake. Alonso

and Padró i Miquel (2025) model competitive capture of public opinion by assuming that

informative signals about a binary state may be manipulated (i.e., replaced by an arbitrary

message) by two opposed “interested parties,” one of which wants the induced beliefs to be

as high as possible and the other one as low as possible. They characterize a communication

equilibrium in which citizens correctly update beliefs given the equilibrium strategies of

the interested parties. Interestingly, the structure of their communication equilibria shares

similarities with our trust region equilibria in the special case of a binary state: messages

in some intermediate interval are interpreted at face value, while messages outside of that

interval induce beliefs at the endpoints of the interval.

Our modeling of uncertainty about the behavior of the adviser is inspired by the classical

Hurwicz criterion, also known as the alpha-max-min approach (Hurwicz (1951)), under which

the decision maker maximizes a weighted sum of her best-case and worst-case payoffs. We

interpret α as the probability of alignment. A similar criterion has recently been applied in

the context of information design by Dworczak and Pavan (2022).

The version of our model in which the agent does not have private information is related
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to the delegation literature in that the agent effectively chooses which decisions to delegate to

an informed adviser. Within that literature, the closest paper is Frankel (2014) who adopts

a worst-case approach with respect to the adviser’s preferences, assumed to lie in a known

set. Our setting differs both in primitives and in methods: we require robustness to the

adviser’s behavior in case of misalignment and the resulting optimization problem has a

different structure.

Regarding the AI alignment problem, a few approaches have recently been proposed in

the microeconomic theory literature. Chen et al. (2024) develop a model of screening for

alignment in an environment in which the decision maker can simulate the task and impose

imperfect recall on AI, obscuring whether the task is real or part of a test. Closer to our

approach, Fudenberg and Liang (2025) assume that the AI system is aligned with some

known probability and that it performs adversarially in case of misalignment. Unlike us,

Fudenberg and Liang (2025) assume that the decision maker can impose the true unconditional

distribution of optimal actions but faces non-Bayesian uncertainty about the correlation of

the optimal action with a set of co-variates she controls. Correspondingly, their focus is

different: they ask which co-variates should be revealed to AI. In our framework, the decision

maker knows the distribution of AI’s signals (uncertainty is only about AI’s behavior in case

of misalignment) but has no way of verifying the truthfulness of the report; we focus on how

the decision-maker should combine AI’s report with her private information (which would

never be optimally disclosed to AI in our framework).

More broadly, our framework is part of a rapidly growing literature trying to understand

optimal human-AI interactions. Closest to our paper are Dreyfuss and Hoong (2025) and

Agarwal et al. (2026) who also adopt an information-design approach; Agarwal et al. (2026)

ask how AI advice interacts with human decision-making in the presence of potential biases

and when the decision-maker’s effort in acquiring information is endogenous.

2 Model

Our formal model allows certain spaces to be infinite (which is useful for constructing tractable

examples). Whenever we work with an infinite space, we endow it with the Borel σ-algebra,
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and require all sets and functions that we define to be measurable; statements involving “for

all” should be interpreted as “for almost all” with respect to the underlying distributions.

A state ω is drawn from a finite state space Ω, |Ω| = N , according to a full-support prior

distribution µ0 ∈ ∆(Ω). An adviser observes partial information about ω, captured by a signal

s whose distribution is pinned down by a signal function π : Ω → ∆(S). We will identify the

adviser’s information with the posterior about the state that a signal realization induces; let

S = ∆(Ω) and renormalize so that s is equal to the posterior about ω induced by s. Let τ

denote the unconditional distribution of the adviser’s posteriors s, with M = supp(τ).

An agent takes an action a ∈ A, where A is a compact metric set. The agent observes a

private type θ ∈ Θ, where Θ is a compact metric set, that captures the agent’s own information

about ω and her preferences, distributed according to a signal function f : Ω → ∆(Θ). We

assume that, conditional on the state, s and θ are distributed independently. The agent’s

ex-post payoff is given by a utility function u(a, ω, θ), assumed bounded and continuous in a.

The adviser can send messages m ∈ ∆(Ω) to the agent (without loss of generality, we set

the message space to be the space of posteriors about the state). The agent can choose any

strategy σ that prescribes how to act for any combination of the adviser’s message and the

agent’s type, σ : ∆(Ω)×Θ → ∆(A). Denote the set of all such strategies by Σ.

The adviser’s strategy maps his posterior beliefs into distributions over messages sent to

the agent. With probability α, the adviser is aligned and non-strategically reports his belief

according to the identity function id :M →M such that id(m) = m for all m ∈M .2 With

probability 1− α, the adviser is misaligned and sends a message according to some strategy

β :M → ∆(∆(Ω)). Denote the set of all such strategies by B.

Faced with non-Bayesian uncertainty about the form of misalignment, the agent adopts a

cautious posture and aims to maximize her guaranteed payoff. Concretely, she evaluates each

possible strategy σ according to its worst-case payoff

U(σ) ≜ α Eid,σ[u(a, ω, θ)] + (1− α) inf
β∈B

Eβ,σ[u(a, ω, θ)], (1)

2It can be shown that the assumption of truthful reporting of the belief is equivalent (in terms of
equilibrium payoff consequences) to assuming that the aligned adviser is attempting to maximize the agent’s
expected payoff. However, the assumption of truthful reporting is natural for an aligned AI system and useful,
as it provides a natural meaning to each message (see Sobel (2020)).
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where the expectations are taken with respect to the underlying distributions of the primitive

variables ω, s, and θ, as well as the respective adviser’s and agent’s strategies. We will call

any misaligned adviser’s strategy β that attains the infimum in expression (1) (for a fixed

strategy σ of the agent) an adversarial strategy (against σ).3

Our main goal is to characterize the agent’s optimal strategy σ∗ that attains:

U∗ ≜ sup
σ∈Σ

U(σ). (2)

3 Main Results

3.1 Trust Region Strategies

In what follows, it will be convenient to separate dependence of the agent’s strategy on the

adviser’s message and the agent’s private information. To this end, we call a private strategy

σ̂ the mapping from types to actions σ̂ : Θ → ∆(A) that specifies how the agent uses her

private information. If the agent has belief µ about the state and uses a private strategy σ̂,

then her expected payoff is:

U(σ̂, µ) ≜ Eω∼µ, σ̂[u(a, ω, θ)], (3)

where the expectation is taken with respect to the conditional distribution of θ and the

distribution of agent’s actions induced by σ̂. A private strategy σ̂ is called Bayes-optimal

for belief µ ∈ ∆(Ω) if it maximizes the agent’s expected payoff when she holds that belief:

σ̂ ∈ argmaxσ̂ U(σ̂, µ). The strategy can be viewed as a specification of a private strategy for

each possible message received from the adviser, σ ∼ (σ̂(m))m∈∆(Ω).

Definition 1. σ ∼ (σ̂(m))m∈∆(Ω) is a trust region strategy (TRS) if there exists a compact

set T ⊂ ∆(Ω) such that

1. if m ∈ T, σ̂(m) is Bayes-optimal for m,

3Without loss of generality, adversarial strategies only use messages in M , since any message m /∈ M
cannot be sent by an aligned adviser and hence reveals that the adviser is misaligned.
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2. if m /∈ T, σ̂(m) is Bayes-optimal for P (m), where P (m) ∈ argmaxm′∈T U(σ̂(m′),m).

Intuitively, under a TRS, the agent treats messages m reported within the trust region

T “at face value,” i.e., she takes an optimal action treating m as her correct posterior about

the state. If a message m does not belong to the trust region T , the agent maps m to the

trust region by acting as if her belief about the state were P (m) ∈ T ; P (m) is chosen to

maximize—over all beliefs in the trust region—the agent’s expected payoff under distribution

m when the action is taken to be optimal for P (m).

To provide further intuition, with slight abuse of notation, let U(µ) ≜ maxσ̂ U(σ̂, µ) be

the payoff to the agent when she takes a Bayes-optimal action at belief µ. Note that U(µ)

is a convex function on ∆(Ω); moreover, it is differentiable on the interior of the belief

simplex if there exists a unique Bayes-optimal private strategy σ̂0(µ) at every belief µ. In

that case, we can define ∇U(µ)—the gradient of the indirect payoff function treated as a

function on RN—which maps each belief µ into the N -dimensional vector of state-contingent

payoffs (associated with the Bayes-optimal strategy).4 In particular, U(µ) = ∇U(µ) · µ,

where · denotes the standard dot product in RN . Moreover, for a TRS σ and any m′ ∈ T ,

U(σ̂(m′),m) = ∇U(m′) ·m. Thus,

argmax
m′∈T

U(σ̂(m′),m) = arg min
m′∈T

U(m)− U(m′)−∇U(m′) · (m−m′)︸ ︷︷ ︸
DU (m,m′)

.

The expression DU(m,m
′) is called the Bregman distance (associated with function U)

between beliefs m and m′. Thus, under a TRS, messages outside of the trust region T

are mapped into the “closest safe interpretation”—the belief in the trust region T that is

closest in the Bregman distance. In particular, P (m) always lies on the visible part (from

the perspective of point m) of the boundary of T .5

4Formally, to define the gradient, we extend the function U beyond the probability simplex by assuming
that, for any non-negative measure µ, U(µ) = µ(Ω)U (µ/µ(Ω)).

5Point m′ ∈ T is visible from m if the line segment connecting m′ and m does not intersect T \ {m′}.
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3.2 Optimality of Trust Region Strategies

We call two agent’s strategies equivalent if, together with some corresponding adviser’s

adversarial strategies, they induce the same joint distribution over states, types, messages,

and actions. The importance of TRSs stems from the following key result.

Theorem 1 (Trust Region Solution). Any optimal strategy σ∗ is equivalent to a trust

region strategy with a connected trust region T .

Proof. See Appendix A.1.

Theorem 1 states that any optimal strategy can be interpreted as a TRS for some

connected trust region T . This result provides a sharp characterization of optimal robust

behavior under misalignment risk. Messages in the trust region are taken at face value while

messages outside the trust region are mapped into the closest safe interpretation within the

trust region. Thus, the agent’s problem reduces to choosing the trust region T .

If the adviser is always aligned, a TRS with the trust region equal to the entire belief

space is trivially optimal. On the other extreme, if the adviser is always misaligned, the

optimal TRS has a trust region equal to the prior—the agent always ignores the message

of the adviser. In Section 3.4, we explore conditions under which the trust region can be

guaranteed to be non-trivial. In general, however, it is difficult to pin down the exact shape

of the optimal trust region. A trade-off is created by two opposing forces: when the trust

region expands, the expected payoff of the agent weakly increases conditional on the adviser

being aligned but weakly decreases conditional on the adviser being misaligned. In Section 4,

we study the binary-state case, in which the trust region is an interval; in Section 5, we look

at the case of multiple states but binary actions, in which the trust region is either the prior

or the entire simplex.

Theorem 1 predicts that the trust region can be taken to be a connected set. However,

the trust region need not be convex. Intuitively, convexifying the trust region by adding a

line segment connecting two beliefs may induce certain types of the misaligned adviser to

report these additional beliefs (which may outweigh the benefits coming from aligned reports).

Our proof establishes that the trust region is convex in dual coordinates, i.e., in the space of

state-contingent payoffs. Intuitively, every belief has a corresponding state-contingent payoff
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induced by a Bayes-optimal action for that belief (as noted earlier, the state-contingent payoff

is given by the gradient of the indirect utility function U(µ) at beliefs µ at which the optimal

action is unique). The payoff of the misaligned adviser is non-linear in the reported belief

but it is linear in the induced state-contingent payoff. In fact, the misaligned adviser with

belief µ attempts to minimize µ ·w over all state-contingent payoffs w that some belief in the

trust region induces. Thus, the set of state-contingent payoffs (induced by beliefs in the trust

region) can be convexified. Convexification of the set of induced state-contingent payoffs

connects the set of beliefs in the trust region.

To further understand the geometry of the optimal trust region, recall that we can think

of the misaligned adviser with belief µ as choosing a message m ∈ T to maximize Bregman

distance between µ and m (see also Section 5.2 for an extended discussion); in particular,

the message m must lie on the boundary of the trust region. A consequence is that adding

non-boundary points to a trust region can only weakly increase the agent’s payoff. Formally,

we say that a set A ⊂ RN is non-hollow if it contains all points x ∈ RN with the property

that every line going through x intersects A on both sides of x.

Corollary 1. Theorem 1 remains true with the additional requirement that T is non-hollow.

Note that being non-hollow is not implied by connectedness (although it is weaker than

convexity). An example of a connected but hollow set is a sphere. If the trust region of some

TRS is a sphere, then we can expand the trust region to the corresponding ball, since the

misaligned adviser will never send messages in the interior of the ball.

The trust region is typically not unique and our results in this section emphasized that it

can be taken to be a relatively large set. However, when the supportM of the adviser’s beliefs

is finite, it is also possible to construct an optimal discrete trust region T with |T | ≤ |M |.

Intuitively, at most one belief in the trust region is needed per every possible belief of the

aligned adviser.6 In such cases, a connected trust region can still be constructed but most

beliefs in the trust region are never reported by the adviser. Uniqueness of the trust region can

sometimes be established if the adviser’s beliefs have full support, M = ∆(Ω) (see Section 4).

6We emphasize, however, that it is not without loss of generality to assume that T ⊆ M .
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3.3 Robust Rationalizability

Our model assumes that the agent commits to a strategy at the outset of the game, not

knowing the strategy adopted by the misaligned adviser. As we show next, neither the

commitment assumption nor the timing of moves matter for the value that the agent can

achieve. This is because we can construct an optimal solution that is a saddle point of the

zero-sum game between the agent and the misaligned adviser. For any strategy β ∈ B of the

adversarial adviser,7 we let Pβ(·|m) denote the agent’s conditional belief over the state Ω

induced by message m given the adviser’s strategy.

Definition 2 (Robustly Rationalizable Strategy). A strategy σ is robustly rationalizable

if there exists an adversarial strategy β∗ of the misaligned adviser against σ such that for all

m ∈M , σ̂(m) ∈ argmaxσ̂′ U(σ̂′,Pβ∗(·|m)).

The condition of rationalizability means that the agent does not require commitment to

follow the strategy—the agent can imagine the misaligned adviser pursuing an adversarial

strategy such that, after any message, the strategy prescribes behaving myopically.

Theorem 2 (Robustly Rationalizable Solution). Any robustly rationalizable strategy is

optimal. If M and Θ are finite, a robustly rationalizable strategy exists.

Proof. See Appendix A.2.

Assuming finite support of beliefs, Theorem 2 implies that there exists an optimal strategy

β∗ for the misaligned adviser such that the agent’s optimal strategy is to simply best-respond

to each posterior belief (computed via Bayes’ rule given the strategy β∗) induced by on-path

messages m.8 In light of Theorem 1, the agent’s equilibrium strategy can still be taken to

be a TRS. Treating the problem as a zero-sum game between the agent and the misaligned

adviser, we will call (σ∗, β∗) a trust region equilibrium (TRE) if σ∗ is a TRS that is robustly

rationalizable against the adversarial strategy β∗.

7Without loss of generality, we assume that β uses only messages in M .

8The assumption of finite M and Θ is made for technical reasons; verifying the assumptions of Sion
(1958)’s minimax theorem (in particular, its continuity requirements) is difficult for a cheap-talk-like game
with infinite-dimensional strategy spaces since the impact of messages on payoffs is entirely endogenous.
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In a TRE, messages m ∈M in the trust region are taken at face value because they are

only reported by the aligned adviser (thus, Bayes’ rule implies that Pβ∗(·|m) = m). Messages

m ∈M outside of the trust region are reported by both types of the adviser with probabilities

such that Pβ∗(·|m) = P (m), where P (m) is the mapping to the boundary of the trust region

defined in Theorem 1. Messages m /∈M are sent with probability zero. In other words, the

mapping from messages to beliefs induced by (i) Bayes’ rule and (ii) minimizing Bregman

distance to the trust region, coincide on the equilibrium path of a TRE. In Section 4, we use

this structural property to characterize the trust region in a binary-state setting.

Theorem 2 implies that our problem is equivalent to a constrained persuasion problem for

the misaligned adviser. When the misaligned adviser moves first, he is effectively choosing

a Bayes-plausible distribution of posteriors for the agent (prior to the agent observing her

own type) subject to the constraint that the signal must be truthful in every state with

probability at least α (the constraint reflects the presence of the aligned adviser). Thus, the

misaligned adviser is effectively attempting to “jam” the signal sent by the aligned adviser.

This perspective will be useful in deriving bounds on the alignment probability α below which

no information is communicated in any TRE (see Section 3.4).

Theorem 2 implies that implementing the optimal strategy does not require commitment

by the agent. There exists a consistent conjecture about the form of misalignment that

justifies the optimal strategy ex-post. That is, under that conjecture, the agent can simply

observe the adviser’s message, update her beliefs using Bayes’ rule (using the conjecture

about the misaligned adviser’s strategy), and then take the optimal action for the resulting

posterior.

Finally, from a technical perspective, Theorem 2 provides a practical way of certifying

the solution optimality in applications (even with infinite belief and message spaces). To

construct an optimal solution, it is sufficient to construct a saddle point of the zero sum game

between the agent and the misaligned adviser—verifying the mutual best-response property

is often easier than evaluating the agent’s objective for every possible strategy.
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3.4 Minimal Viable Alignment

In this section, we derive bounds on the alignment probability α above which informative

communication can be supported between the adviser and the agent. In other words, we ask

when the trust region used by the agent is non-trivial.

Formally, define the value of an adviser as

V ≜ U∗ − U0,

where U0 ≜ supσ∈Σ Eσ[u(a, ω, θ)] is the agent’s optimal payoff in the absence of the adviser.

Since the agent can always ignore the adviser’s messages, this value is non-negative, V ≥ 0.

We ask when this value is strictly positive, V > 0 (cf. the value of information by Blackwell

(1951)).

To answer this question, we assume that the adviser’s beliefs are finitely-supported,

|M | = K <∞, and derive a bound on α that is independent of the agent’s problem. If α is

small enough, the misaligned adviser can use a strategy β that “jams” the signal created by

truthful reporting of the aligned adviser. In such a case, the distribution of posteriors Pβ(·|m)

held by the agent is degenerate: the trust region contains only the prior. However, if α is

large enough, there exists no strategy for the misaligned adviser that makes the equilibrium

message uninformative. In such cases, as long as information is useful to the agent (U(µ) is

strictly convex in the relevant range), V must be strictly positive.

Definition 3 (Minimal Viable Alignment). The minimal viable alignment MVA(τ) is

the smallest upper bound on α for which there exists a strategy β of the misaligned adviser

such that the induced posterior satisfies Pβ(· | m) = µ0 for every m ∈M .

MVA depends on adviser’s information τ ∈ ∆(∆(Ω)). Define the rank of the matrix of

adviser’s posteriors µ1, . . . , µK ∈ supp τ :

R(τ) ≜ rank
([
µ1 µ2 · · · µK

])
. (4)

Roughly, R(τ) captures the richness of the adviser’s information: adviser’s posteriors are

located in an (R(τ)−1)-dimensional subspace of the (N−1)-dimensional belief simplex ∆(Ω).
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For any τ , R(τ) ≤ min{K,N}. The rank weakly decreases when the adviser’s information

is garbled. In what follows, we assume that the adviser has some information, K ≥ 2, so

R(τ) ≥ 2.

Theorem 3 (Minimal Viable Alignment). The agent strictly benefits from the presence

of the adviser, V > 0, in some decision problem (equivalently, in any decision problem

with strictly convex U) if and only if α > MVA(τ). For any τ , MVA(τ) ∈ [1/N, 1/2].

Moreover, for any α ∈ [1/N, 1/2], there exists τ such that MVA(τ) = α. If R(τ) = K, then

MVA(τ) = 1/K.

Proof. See Appendix A.3.

The proof of Theorem 3 shows that, for any given τ , MVA(τ) can be computed as the

solution to a finite-dimensional linear program. We establish bounds on this solution and then

show that these bounds are tight by explicitly constructing adviser information structures

that attain every MVA within the admissible range. In fact, the proof yields the stronger

statement that, for any τ , MVA(τ) ∈
[
1/R(τ), 1/2

]
.

By Theorem 3, if the alignment α exceeds 1/2 (and information is strictly useful ev-

erywhere), then the agent always benefits from the presence of the adviser. Conversely,

if the state is binary and α < 1/2, the agent cannot benefit from the adviser. In higher-

dimensional problems, the adviser can be valuable at much lower alignment. In particular, if

R(τ) = K = N , then it suffices that α > 1/N . Thus, when the state space is very rich, even

a small amount of trust may be enough to benefit from the advice of a misaligned adviser.

4 Binary State

Consider the case of a binary state, Ω = {0, 1} (we can intuitively think of the state as

capturing whether a given statement is false or true). The belief is effectively one-dimensional:

with slight abuse of notation, let µ ∈ [0, 1] denote the probability of state ω = 1. For

expositional clarity, we further assume that the agent’s indirect payoff function U(µ) is strictly

convex and twice differentiable, and the adviser’s posterior is distributed over M = [0, 1] with
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a strictly positive probability density τ(µ).9 In this case, each µ ∈ [0, 1] can be associated

with a unique Bayes-optimal private strategy σ̂0(µ).

Since any connected one-dimensional compact set is a closed interval, a straightforward

corollary of Theorem 1 is:

Corollary 2. If |Ω| = 2, any optimal strategy σ∗ is characterized by a trust region T = [µ, µ].

If m ∈ [µ, µ], σ̂(m) = σ̂0(m); if m < µ, σ̂(m) = σ̂0(µ); if m > µ, σ̂(m) = σ̂0(µ).

If µ = µ, the agent effectively ignores the adviser, implying µ = µ = µ0. If µ < µ, the

agent plays according to the Bayes-optimal strategy σ̂0(µ) if m ≤ µ, and according to the

Bayes-optimal strategy σ̂0(µ) if m ≥ µ.

Recall that the adversarial strategy of the misaligned adviser induces a posterior belief

from the trust region that maximizes the Bregman distance from his true posterior; when

the trust region is an interval—and hence its boundary consists of the two endpoints—the

adversarial strategy admits a simple threshold characterization:

Lemma 1. When the agent commits to a TRS with the trust region T = [µ, µ], the misaligned

adviser with belief µ finds it optimal to send any message m ≥ µ if µ ≤ b(µ, µ) and any

message m ≤ µ if µ ≥ b(µ, µ), where

b(µ, µ) =

∫ µ

µ
µU ′′(µ)dµ∫ µ

µ
U ′′(µ)dµ

. (5)

Proof. See Appendix A.5.

Lemma 1 states that the misaligned adviser with high enough beliefs µ will induce the

private strategy Bayes-optimal at the lowest belief in the trust region, µ (by reporting some

message m lower than µ); similarly, the misaligned adviser with low enough beliefs µ will

induce the private strategy Bayes-optimal at the highest belief in the trust region, µ (by

reporting some message m higher than µ). The threshold belief is given by the conditional

expectation of a random variable whose distribution is determined by the curvature of the

9The strictly convex indirect payoff function can be a result of the agent having a continuum of actions
or, as we show in Appendix A.4, finitely many actions and a continuum of private types.
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indirect utility function: b(µ, µ) = E[ν|ν ∈ [µ, µ]], where ν is distributed with full support

over [0, 1] according to probability density U ′′(·)/
∫ 1

0
U ′′(µ)dµ.

To characterize the trust region’s boundaries, we will use the observation from Theorem 2

that it is sufficient to construct mutual best responses for the agent and the misaligned adviser.

Lemma 1 characterizes the best response of the misaligned adviser. A best response of the

agent must use the Bayes-optimal action at each posterior belief induced by the adviser’s

strategy. A necessary condition is that the average posterior belief induced by messages

m ≤ µ is exactly µ, and the average posterior belief induced by messages m ≥ µ is exactly

µ:10

α
∫ µ

0
µτ(µ)dµ+ (1− α)

∫ 1

b(µ,µ)
µτ(µ)dµ

α
∫ µ

0
τ(µ)dµ+ (1− α)

∫ 1

b(µ,µ)
τ(µ)dµ

= µ, (6)

α
∫ 1

µ
µτ(µ)dµ+ (1− α)

∫ b(µ,µ)

0
µτ(µ)dµ

α
∫ 1

µ
τ(µ)dµ+ (1− α)

∫ b(µ,µ)

0
τ(µ)dµ

= µ. (7)

As it turns out, these conditions are also sufficient for a TRE:

Proposition 1 (Trust Region). An optimal strategy exists; it is unique and robustly

rationalizable. Its trust region, T = [µ, µ], is equal to the prior {µ0} when α ≤ 1/2; otherwise,

it is defined by the unique solution to the system (6)-(7) that satisfies µ ≤ µ0 ≤ µ.

Proof. See Appendix A.6.

Note that while the structure of the trust region characterized by Proposition 1 is simple,

the underlying strategy of the misaligned adviser is quite complex in a TRE. By Lemma 1, the

misaligned adviser with belief µ ≥ b(µ, µ) is indifferent between sending all messages m ≤ µ

since they all result in the same Bayes-optimal action σ̂0(µ). In a commitment solution, the

misaligned adviser can send any of these messages (for example, he can always send m = µ).

But in a TRE, the strategy β∗ of the misaligned adviser must be such that every message

m ≤ µ induces the posterior belief µ via Bayes’ rule. Since all messages m ≤ µ are sent on

equilibrium path (the aligned adviser simply reports his belief truthfully), β∗ must carefully

10One way to see that is to use our observation that in a TRE, the mapping from messages to belief defined
by Bayes’ rule must agree with the mapping defined by minimizing the Bregman distance to the trust region.
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break the misaligned adviser’s indifference over these messages so that each of them induces

the same posterior belief.

Proposition 1 fully characterizes the optimal trust region. A natural next question is how

the trust region depends on the problem’s parameters. We offer two comparative statics

results, one related to the size of the trust region, and one related to its location.

First, higher alignment results in more trust:

Proposition 2 (Change in Alignment). When α ≥ 1/2, µ(α) is strictly and continuously

decreasing in α and µ(α) is strictly and continuously increasing in α. At α = 1/2, [µ, µ] =

[µ0, µ0]. At α = 1, [µ, µ] = [0, 1].

Proof. See Appendix A.7.

Proposition 2 shows that the trust region gradually and monotonically expands from the

prior (at α ≤ 1/2) to the entire belief simplex. For any α < 1, the trust region excludes the

most extreme beliefs. Intuitively, the probability of the aligned adviser holding such extreme

beliefs is small, while the probability that such beliefs are reported by the misaligned adviser

(were they included in the trust region) is relatively large. This is why extreme beliefs are

included in the trust region only once the probability of alignment is high.

Second, we show that the trust region tends to include beliefs at which the decision

problem of the agent is less “information-sensitive.” In other words, the agent will avoid

expanding the trust region to beliefs where small changes in information lead to large changes

in the optimal action. We formalize this notion via the indirect utility function U(µ), noting

that its curvature captures how sensitive the optimal action is to the agent’s information.

Definition 4 (Information Sensitivity). We say that the indirect utility function U1(µ)

is less information-sensitive at higher beliefs than the indirect utility function U2(µ) if

U ′′
1 (µ)

U ′′
2 (µ)

is decreasing in µ.

The definition states that the convexity of the indirect utility function U1 (relative to the

convexity of U2) is smaller at higher beliefs µ. Intuitively, under U1, the decision of the agent
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is less sensitive to new information at higher beliefs. It turns out that in this case the trust

region will be skewed towards higher beliefs.

Proposition 3 (Change in Information Sensitivity). Suppose that U1(µ) is less information-

sensitive at higher beliefs than U2(µ). Then, the trust region T1 corresponding to U1 is higher

(in the strong set order) than the trust region T2 corresponding to U2.

Proof. See Appendix A.8.

Proposition 3 shows that the trust region skews towards beliefs at which the agent’s

optimal action is less sensitive to new information. For example, suppose that the agent

minimizes mean-squared error (a − ω)2 over a ∈ [0, 1] under µ0 = 1/2 and symmetric τ ,

resulting in a trust region that is symmetric around the prior 1/2. Suppose that we now

modify the utility function by multiplying the loss in state 1 by a constant γ > 1. It is easy

to show, by computing indirect payoff functions and using Proposition 3, that the asymmetric

decision problem with a higher weight on the loss in state 1 is less information-sensitive

for higher beliefs; as a result the trust region shifts to the right. While this may seem

counter-intuitive at first, this is because the objective function already makes the agent

effectively overweigh state 1, and thus the agent reacts less strongly to new information when

she believes the state is likely 1 (e.g., as γ goes to infinity, the agent will take an action very

close to 1 except when she believes that state 0 is very likely). As a result, the trust region is

skewed towards higher beliefs.

5 Multiple States

In this section, we consider the general case |Ω| ≥ 2. First, we provide full characterization

of the robustly rationalizable solution in the case of binary private strategies. Second, we

analyze the case of rich private strategies, characterize the general adversarial strategies, and

develop the robustly rationalizable solution in a symmetric example.
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5.1 Binary Action

Consider the setting in which the agent has only two pure private strategies, i.e., A = {a1, a2}

and |Θ| = 1. Thus, the agent has no private information and we drop the type throughout.

Without loss of generality, we can normalize the agent’s payoff from action a1 to zero,

u(a1;ω) ≡ 0, and denote the expected payoff from action a2 when the adviser’s posterior is

µ by v(µ) ≜ Eµ[u(a2;ω)]. Denote by τ̂ ∈ ∆(R) the distribution of v when µ is distributed

according to τ ∈ ∆(∆(Ω)).

It is useful to define the absolute losses and gains from taking the second action relative

to the first one:

L(τ̂) =

∫ 0

−∞
(−v) τ̂(dv), G(τ̂) =

∫ +∞

0

v τ̂(dv). (8)

Also, define the following threshold:

α̂(τ̂) =
max{L(τ̂), G(τ̂)}
L(τ̂) +G(τ̂)

. (9)

To rule out trivial cases and to simplify the exposition of the optimal strategy, we make the

following assumption that holds in generic environments.

Assumption 1 (Genericity). L(τ̂) > 0, G(τ̂) > 0, L(τ̂) ̸= G(τ̂), τ({µ : v(µ) = 0}) = 0.

Proposition 4 (Binary Action Solution). Suppose that Assumption 1 holds. If α ̸= α̂(τ̂),

then the optimal solution exists, is unique, and is robustly rationalizable. In particular, if

α > α̂(τ̂), then all messages are trusted, T = ∆(Ω); if α < α̂(τ̂), then no messages are trusted,

T = {µ0}. If α = α̂(τ̂), both full trust and no trust are optimal and robustly rationalizable.

By Proposition 4, generically, the optimal solution is remarkably stark: either all or none

of the adviser’s messages are trusted. This is in contrast to the binary-state case with a rich

strategy space, where the trust region expanded continuously with the alignment probability

(Proposition 2).

Notably, only the aggregate quantities L(τ̂) and G(τ̂) enter the definition of the trust

region; the detailed distribution of relative payoffs τ̂ is irrelevant. The threshold α̂(τ̂) is
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minimized at L(τ̂) = G(τ̂), in which case α̂(τ̂) = 1/2. Hence, if α < 1/2, the agent never

trusts the adviser, regardless of τ̂ . This is driven by the coarseness of the strategy space:

by Theorem 3, for any α > 0, the agent can sometimes trust the adviser when the number

of actions is unbounded. By contrast, for a given α > 1/2, the trust condition α̂(τ̂) < α is

equivalent to (L(τ̂), G(τ̂)) lying in the cone defined by the two linear inequalities

(1− α)L(τ̂) ≤ αG(τ̂), (1− α)G(τ̂) ≤ αL(τ̂).

Thus, in binary decision problems, the adviser is beneficial only when the expected gains and

losses of one action relative to the other are not too far apart.

5.2 Rich Private Strategies

We now assume that the agent’s indirect utility U(µ) is twice differentiable and strictly

convex everywhere. Denote by h(µ|µ′) the value of the supporting hyperplane to the graph

of U at µ′ evaluated at µ. Fixing the agent’s TRS with trust region T , the set of beliefs that

the misaligned adviser can induce at belief µ is given by

M∗(µ) = argmin
µ′∈T

h(µ|µ′). (10)

As we have argued earlier, a simple transformation establishes the following fact:

Corollary 3 (Bregman distance). M∗(µ) is the set of maximizers of the Bregman distance

DU(µ, µ
′) between the adviser’s true belief µ and a report µ′ in the trust region.

By Corollary 3, M∗(µ) are the furthest points from µ in T with respect to Bregman

distance. Bregman distance always strictly increases along each ray from µ and thus the

misaligned adviser always chooses points on the “opposite” boundary of T . Therefore, U

determines the geometry of the trust region. For example, if U(µ) = ∥µ− b∥2 for Euclidean

norm and some vector b, then the Bregman distance between µ and µ′ coincides with the

(squared) Euclidean distance between µ and µ′. In such cases, the trust region can be taken
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to be convex.11 However, in general, Bregman distance is not a metric—it may not satisfy

triangle inequality or symmetry. Thus, the geometry of T may be quite complex, and we do

not expect a characterization of the trust region in full generality to be tractable.

The trust region can sometimes be found explicitly in symmetric environments—we

illustrate this with an example.

Example 1 (Spherical Environment). Let U(µ) = V (∥µ − b∥) for some b and V . Let

adviser’s belief be symmetrically distributed over a ball C = {µ : ∥µ − b∥ ≤ r0} with the

radial density τ(r). Then, there exists a robustly rationalizable solution with a trust region

T being a ball centered at b: T = {µ : ∥µ− b∥ ≤ r∗(α)}.

We will show this result via Theorem 2 by explicitly constructing the corresponding TRE.

The key observation—that we formalize and prove in Lemma 9 in Appendix A.10—is that the

misaligned adviser with belief µ will induce an antipodal belief on the boundary of T . The

corresponding adversarial strategy is thus analogous to the one constructed in Section A.6.

Then, the radius r∗(α) can be found via the balancing condition. Indeed, consider any

line passing through b. Put a coordinate system on it so that b is located at r = 0, and the

points on the sphere C at −r0 and r0. Then, the belief at r = r∗(α) will be induced by the

misaligned adviser only when his belief is on this line at “r < 0”, and by aligned adviser only

when his belief is on this line at “r > r∗(α).” Then, the agent’s posterior beliefs satisfy the

TRE property if and only if:

r∗ =
α
∫ r0
r∗
rτ(r)dr − (1− α)

∫ r0
0
rτ(r)dr

α
∫ r0
r∗
τ(r)dr + (1− α)

∫ r0
0
τ(r)dr

.

Rearranging, we obtain:

(2α− 1)

∫ r0

r∗
(r − r∗)τ(r)dr = (1− α)

(∫ r∗

0

(r + r∗)τ(r)dr +

∫ r0

r∗
2r∗τ(r)dr

)
. (11)

For α < α = 1/2, the equation does not admit a solution. At α = 1/2, r∗ = 0 is a solution.

For α ∈ (1/2, 1), the left-hand side is continuously and strictly decreasing in r∗, and the

11To see why, note that any trust region T can be convexified by replacing it with the intersection of sets
Tµ over all µ ∈ supp(τ), where Tµ is the (convex) set of all points that are not further away from µ than any
point in T .
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right hand-side is continuously and strictly increasing in r∗, with a derivative with respect to

r∗ that is strictly positive. Therefore, the equation admits a unique solution r∗(α). As the

left-hand side strictly increases in α and the right-hand side strictly decreases in α, r∗(α)

strictly increases in α. Furthermore, r∗(1) = r0.

This example features two notable properties. First, the MVA does not depend on U or

on N = |Ω|; we always have α = 1/2. Second, the shape of V , which captures the details of

the decision problem, does not matter for the trust region T ; the trust region is uniquely

pinned down by τ(r). For example, if τ is uniform, τ ∼ U [0, r0], then r
∗(α) = 1−

√
1+α−2α2

α
r0.

■

6 Concluding Remarks

Summary. We studied robust decision-making when an agent relies on an informed adviser

who may be misaligned. We characterized the decision rule that maximizes the agent’s

expected payoff guarantee over all possible forms of misalignment. We showed that every

optimal policy is equivalent to a trust region policy in belief space: the agent limits exposure

to manipulation while preserving value from moderately informative advice. We proved that

the optimal solution can be implemented as an equilibrium of a zero-sum game between the

agent and the misaligned adviser and derived minimal alignment probabilities required for

advice to be robustly valuable.

Implications for AI use. Our results support a cautiously optimistic view about deploying

AI in high-stakes settings. Even if misalignment is serious and plausibly frequent, there are

provably effective ways to limit the resulting harm while deriving value—provided that the

human decision maker retains final authority over actions. At the same time, our analysis

makes clear that safe deployment requires concrete, pre-specified decision protocols rather

than informal, case-by-case trust judgments.

The trust-region characterization translates into a simple design rule for AI-assisted choice

under misalignment risk. The decision maker should specify in advance a rule that maps model

outputs into actions, separating a set of outputs that will be used directly from those that will
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be treated more conservatively. In some contexts, this can be implemented as a delegation-

style guardrail. The AI can effectively control decisions within an approved operating range,

but recommendations that push toward unusually aggressive actions are automatically clipped

to the nearest admissible recommendation or escalated into a higher-friction path (additional

tests, second reads, or explicit human sign-off).

Radiology provides a concrete illustration. Suppose a model produces a malignancy

probability for triage (see, e.g., Agarwal et al. (2025)). Under a trust-region protocol,

intermediate probabilities would be used as reported, whereas extremely low or extremely

high probabilities would be replaced by the corresponding boundary values of the trusted

range. This caps the operational leverage of near-certain predictions: an output presented as

almost conclusive is treated as strong evidence, but not as decisive on its own. A conclusion

approaching certainty would instead require corroboration from other sources, such as clinical

context, follow-up testing, or additional human judgment.

More broadly, if the adviser is one component inside a larger AI system, the same idea

suggests an architectural and training choice: include an interpretable interface layer that

enforces the trust-region mapping between modules. This limits the chance that rare errors

or adversarial behavior upstream translate into extreme downstream actions, and it provides

a well-defined target for auditing and stress-testing the system as a whole.

Future research directions. Our analysis points to at least two natural next steps. First,

it would be useful to obtain comparative statics of the trust region with respect to the

agent’s decision problem, the adviser’s informativeness, and alignment probability beyond the

binary-state case, where the geometry of the trust region starts playing a central role. Second,

with an eye toward applications, it is important to develop tractable computational methods

for finding the trust region. Such methods would need to confront the fact that the value

function mapping candidate trust regions into the agent’s payoff is a convex combination of a

supermodular and a submodular function, making many standard algorithms inappropriate.

We leave these directions for future research.
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A Proofs

A.1 Proof of Theorem 1

We begin with a key lemma.

Lemma 2. Any optimal solution σ∗ is equivalent to an optimal solution that uses Bayes-

optimal private strategies for all m ∈ ∆(Ω).

Proof. Consider the set of state-contingent payoff profiles that are feasible for the agent (cf.

Doval and Smolin (2024)):

W = {w ∈ RN : ∃ σ̂, w(ω) = Eσ̂[u(a, ω, θ)|ω], ∀ω ∈ Ω}.

Since θ and s are conditionally independent, if the adviser has posterior s and the agent

plays a private strategy that corresponds to payoff profile w, the resulting agent’s expected

payoff is w · s.

The set W is convex, because a convex combination of the private strategies delivers a

convex combination of their respective payoff profiles. The set W is compact, because for

any λ ∈ R|Ω|, maxw∈W λ · w exists and attained by some w ∈ W by the boundedness and

continuity of u in a and the measurable maximum theorem.

Denote the (weak) Pareto frontier of W by W P :

W P = {w ∈ W : ̸ ∃w′ ∈ W,∀ω ∈ Ω,w′(ω) > w(ω)}.

Since W is convex and compact, by the supporting hyperplane theorem, a private strategy σ̂

is Bayes-optimal (for some belief) if and only if it delivers a payoff profile in W P . Therefore, if

σ̂ is not Bayes-optimal, there exists a dominating σ̂′ (which can be taken to be Bayes-optimal

itself) such that for all ω ∈ Ω, Eσ̂′ [u(a, ω, θ)|ω] > Eσ̂[u(a, ω, θ)|ω].

Take σ∗ and, for every message m ∈ ∆(Ω), if σ̂∗(m) is not Bayes-optimal for some belief,

replace it with a Bayes-optimal dominating strategy σ̂′(m). The new strategy must still be
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optimal. Indeed, the agent’s payoff is

Eµ∼τ [αw(σ̂(µ)) · µ+ (1− α) inf
m∈∆(Ω)

{w(σ̂(m)) · µ}],

which pointwise increases after the change.

Hence, the new strategy σ0 is also optimal. Moreover, the expected payoff must stay the

same since σ∗ was optimal to begin with; in particular, σ0 makes changes to the strategy

only for messages m that have joint probability zero in equilibrium. Thus, σ∗ is equivalent to

σ0.

We can now finish the proof of Theorem 1. Pick any optimal solution σ∗. By Lemma 2, σ∗

is equivalent to an optimal strategy that uses only Bayes-optimal private strategies. Denote

by Σ0 the set of those private strategies, and let T0 be the closure of the set of beliefs at

which those private strategies are Bayes-optimal. (By continuity, taking the closure does not

affect the expected payoff of the strategy σ∗ in the worst-case scenario.)

Observe that the agent’s payoff coming from the misaligned adviser depends only on the

set Σ0. Thus, the mapping from messages to the private strategies in Σ0 must maximize

the expected payoff conditional on the adviser being aligned. Since the aligned adviser is

non-strategic, maximization can be performed pointwise, message by message (without loss

of optimality, also for messages that are sent with probability zero by the aligned adviser). In

particular, for m ∈ T0, we can set σ̂∗(m) to be the Bayes-optimal strategy for m; for m /∈ T0,

we can set σ̂∗(m) = σ̂∗(P (m)) where P (m) ∈ argmaxm′∈T0 U(σ̂
∗(m′),m). This way we have

constructed a TRS (with the trust region T0) that is equivalent to σ
∗—and is hence optimal.12

We now show that for any optimal TRS σ∗, the trust region T0 can be enlarged (while

preserving the payoffs) to a connected trust region T1. Assume that T0 is not connected

and take any m1,m2 ∈ T0 that belong to different connected components of T0: m1 ∈ T 1
0

and m2 ∈ T 2
0 . Consider the welfare profiles w1 ≜ w(σ̂∗(m1)) and w2 ≜ w(σ̂∗(m2)) induced

by those messages in the considered solution. Define the subset of Pareto optimal welfare

12It is equivalent to σ∗ because it is weakly better than σ∗ and σ∗ was optimal.
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profiles that dominate some weighted average of those profiles w(γ) ≜ γw1 + (1− γ)w2:

WD(m1,m2) = {w ∈ W P : ∃ γ ∈ [0, 1],w ≥ w(γ)}.

Consider any w ∈ WD(m1,m2) that dominates w(γ) for some γ. Since w ∈ W P , w is

generated by a private strategy σ̂(w) Bayes-optimal at a set of beliefs M1(w). We enlarge T0

by adding to it the messages in M1(w) \ T0 (together with the prescription to play σ̂(w) at

those messages). Doing so does not decrease the payoff from the misaligned adviser (because

he could already send messages m1 and m2), and it weakly increases the payoff from the

aligned adviser (because the trust region gets bigger).

SinceW is convex,WD(m1,m2) is connected. Furthermore,M1(w) is upper-hemicontinuous

with connected (convex) values because it is a normal-cone correspondence. Therefore, the

union
⋃

w∈WD(m1,m2)
M1(w) is connected and contains m1 and m2. Therefore, adding these

beliefs to the original trust region connects the components T 1
0 and T 2

0 , with the trust region

weakly expanding (and remaining optimal). Since this modification can be performed for all

connected components of T0, this modification results in a connected optimal trust region T1.

Finally, by continuity of payoffs, we can without loss of generality consider the closure of

the set of used private strategies, and hence the trust region can be chosen to be equal to

T = clT1, which is a compact and connected subset of ∆(Ω).

By construction, the new strategy σ1 is optimal. Moreover, the expected payoff must stay

the same since σ∗ was optimal to begin with; therefore, the new strategy makes changes to

the strategy only for messages that have joint probability zero in equilibrium. Thus, σ∗ is

equivalent to σ1.

A.2 Proof of Theorem 2

Suppose M and Θ are finite. For any given strategy of the misaligned adviser (which was

assumed to only use messages in M) and the agent, (β, σ), the agent’s payoff is, with a slight
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overload of notation for U ,

U(β, σ) ≜ α
∑

µ∈M,ω∈Ω,θ∈Θ

τ(µ)µ(ω)f(θ|ω)
∫
A

u(a, ω, θ)σ(da|µ, θ)+

(1− α)
∑

µ,m∈M,ω∈Ω,θ∈Θ

τ(µ)µ(ω)β(m|µ)f(θ|ω)
∫
A

u(a, ω, θ)σ(da|m, θ).

Clearly, B and Σ are convex. Since M is finite, B = ×m∈M∆(M) is compact. Since, M and Θ

are finite and ∆(A) can be equipped with the weak* topology, Σ = ×m∈M,θ∈Θ∆(A) is compact.

U(β, σ) is affine in β and in σ; therefore it is concave-convexlike in Sion (1958)’s terminology.

For each σ ∈ Σ, U(β, σ) is continuous in β. For each β ∈ B, U(β, σ) is continuous in σ.

Therefore, a minimax theorem applies in its infsup variation (e.g., Theorem 4.2’, Sion (1958))

and

sup
σ∈Σ

inf
β∈B

U(β, σ) = inf
β∈B

sup
σ∈Σ

U(β, σ).

Furthermore, for any given β, ϕ(β) ≜ supσ∈Σ U(β, σ) is attained because Σ is compact and

U(β, σ) is continuous in σ. Similarly, for any given σ, ψ(σ) ≜ infβ∈B U(β, σ) is attained

because B is compact and U(β, σ) is continuous in β. Because, U(β, σ) is continuous,

ϕ(β) is lower-semicontinuous and ψ(σ) is upper-semicontinuous. Thus, we can set σ∗ ∈

argmaxσ∈Σ ψ(σ) and β
∗ ∈ argminβ∈B ϕ(β) and they form a saddle point:

U(β∗, σ) ≤ U(β∗, σ∗) ≤ U(β, σ∗), ∀ β ∈ B, σ ∈ Σ. (12)

Therefore, β∗ is an adversarial adviser’s strategy to σ∗, whereas σ∗ is a best-response of

the agent to β∗. The latter implies—since α > 0 and all m ∈ M are on-path—that after

any m ∈M , the private strategy σ̂∗(m) is Bayes-optimal given β∗, and hence σ∗ is robustly

rationalizable.

Conversely, for any M and Θ, consider (β∗, σ∗) such that σ∗ is robustly rationalizable and

β∗ is adversarial against σ∗, i.e., they form a saddle point with property (12). Then, for any
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σ ∈ Σ:

U(σ) = inf
β∈B

U(β, σ) ≤ U(β∗, σ) ≤ U(β∗, σ∗) = min
β∈B

U(β, σ∗) = U(σ∗),

where the third comparison uses the saddle property and the fourth comparison uses the fact

that β∗ is adversarial to σ∗. Therefore, σ∗ is an optimal solution.

A.3 Proof of Theorem 3

Notation: In this section, we denote by IK a unit matrix of dimension K, by 1K a vector of

ones of dimension K, by 0N×K a matrix of zeros of dimension N ×K, by eiK an ith standard

basis vector of dimension K, by xi,k a kth element of vector xi, by diag x a diagonal matrix

with vector x on the main diagonal, and by X⊤ a transpose of a matrix X.

Since µ0 has full support, we can equivalently identify adviser’s information with a (row)

stochastic N ×K matrix Π, where Πij is the probability of the jth signal observed by the

adviser in the ith state. Moreover, rankΠ = R(τ).13

We identify the strategy of the misaligned adviser with a stochastic K ×K matrix B.

Since the aligned adviser reports truthfully, the overall adviser’s strategy can be written as a

garbling of his information:

G(B) ≜ αIK + (1− α)B. (13)

By Blackwell (1951), the MVA is a maximal α for which there exists a stochastic matrix B

such that ΠG(B) is Blackwell uninformative. (We show below that it is attained.) This also

implies that MVA depends on τ only via Π, so we will write MVA(Π).

We start with preliminary observations. First, note that Gkk ≥ α and G1K = 1K . Second,

note that ΠG(B) is uninformative if and only if all of its rows equal to each other, that is if

13A matrix of adviser’s posteriors can be computed by Bayes’ rule as (µ(s))s∈S =
(diag(µ0(ω))ω∈Ω)Π(diag(τ(s))s∈S)

−1. The diagonal matrices are invertible and the multiplication by an
invertible matrix preserves the rank.
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and only if

D(Π)G(B) = D(Π)(αIK + (1− α)B) = 0(N−1)×K , (14)

where D(Π) is the row-difference matrix of Π:

D(Π) ≜


(π2 − π1)

⊤

...

(πN − π1)
⊤

 ,

and π⊤
i is the ith row of Π. Consider the auxiliary finite linear program:

Λ(Π) = max
G∈RK×K , α∈R

α (15)

s.t. G ≥ αIK , G1K = 1K , (16)

D(Π)G = 0(N−1)×K . (17)

Lemma 3. MVA(Π) = Λ(Π).

Proof. We need to show that there exists a stochastic matrix B such that ΠG(B) is Blackwell

uninformative if and only if α ≤ Λ(Π).

⇒ For any given α, if B is such that ΠG(B) is Blackwell uninformative, then we showed

that G(B) must satisfy conditions (16-17). By the maximization nature of the problem, if

α > Λ(Π), those conditions cannot be satisfied.

⇐ If α ≤ Λ(Π), then there exists G that satisfies conditions (16-17) (e.g., the argmax).

If Λ(Π) = 1, then B can be arbitrary. Otherwise, set B = (G − αIK)/(1 − α). It is

straightforward that the so-defined B is a stochastic matrix and by construction ΠG(B) is

uninformative.

Lemma 3 provides a computationally tractable characterization of MVA for any given Π

and sets the stage for the rest of the proof, which we split into two lemmas.

Lemma 4. MVA(Π) ∈ [1/R(Π), 1/2]. If R(Π) = K, then MVA(Π) = 1/K.
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Proof. To ease notation, in the proof we omit the dependence of R on Π.

1.) MVA(Π) ≤ 1/2.

If α and G satisfy (16-17), then B = (G− αIK)/(1− α) is a stochastic matrix and

D(Π)B = − α

1− α
D(Π). (18)

In other words, the rows of D(Π) are left eigenvectors of B associated with eigenvalue

−α/(1− α). Since B is stochastic, its spectral radius equals 1. Thus, | − α/(1− α)| ≤ 1 and

α ≤ 1/2. It follows that MVA(Π) ≤ 1/2.

2.) If R = K, then MVA(Π) = 1/K.

If R = K, then K ≤ N and rankD(Π) = K − 1. Thus, rank kerD(Π) = K − (K − 1) = 1

and, because D1K = 1N−1 − 1N−1 = 0N−1, kerD = span{1K}. Thus, for (G,α) to satisfy

(17), every column of G must be a multiple of 1K . But since G is stochastic, it follows that∑K
k=1Gkk = 1 and minkGkk ≤ 1/K. To further satisfy (16), it must be that α ≤ 1/K. Thus,

MVA(Π) ≤ 1/K.

At the same time, if α ≤ 1/K, then (G,α) satisfy (16-17) for G = 1/K1K1
⊤
K . (In this

case, G is uninformative, not only ΠG, so the misaligned adviser can make the signal to be

uninformative about his estimate, not only about the state.) It follows, that MVA ≥ 1/K

and, therefore, MVA(Π) = 1/K.

3.) MVA ≥ 1/R.

Let α = 1/R (recall that R ≥ 2). Consider the normed space (RK , ∥ · ∥1) and its linear

(R− 1)-dimensional subspace W spanned by rows of D(Π). By the Auerbach basis theorem,

there exist vectors w1, . . . , wR−1 ∈ W and x1, . . . , xR−1 ∈ RK such that14

∥wi∥1 = 1, ∥xi∥∞ = 1, w⊤
i xj = δij, 1 ≤ i, j ≤ R− 1.

14By the Auerbach theorem, there exist v1, . . . , vR−1 ∈ W and ϕ1, . . . , ϕR−1 ∈ W∗ such that ∥vi∥1 = 1,
∥ϕi∥W∗ = 1, and ϕi(vj) = δij (Section II.E, Lemma 11 in Wojtaszczyk (1991); see also Gershkov et al.
(2025) for another recent application). By Hahn-Banach theorem, these ϕi, operating on W, can be
extended to ϕ̃i, operating on RK , without a change in their norm. By the duality between spaces l1 and
l∞, for each i, there exists xi ∈ RK such that ϕ̃i(z) = z⊤xi and ∥xi∥∞ = ∥ϕ̃i∥ = 1. Then, for w ∈ W,
w⊤

i xj = ϕ̃j(wi) = ϕj(wi) = δij .
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Define the corresponding matricesW ≜ (w1, . . . , wR−1), X ≜ (x1, . . . , xR−1). By construction,

W⊤X = IR−1, (19)

and by properties of D(Π),

W⊤1K = 0R−1. (20)

Define the vector of weights of rows of W , w ∈ RK , as wk ≜
∑R−1

i=1 |wi,k|. Since ∥wi∥1 = 1,

we have

K∑
k=1

wk =
R−1∑
i=1

∥wi∥1 = R− 1. (21)

We explicitly construct the desired strategy of the misaligned adviser B as:

B =
1

R− 1
(1Kw

⊤ −XW⊤). (22)

Nonnegativity. For all j, k,

Bjk =
1

R− 1
(
R−1∑
i=1

|wi,k| −
R−1∑
i=1

xi,jwi,k) ≥ 0,

because |xi,j| ≤ ∥xi∥∞ = 1.

Stochasticity. By (20) and (21):

B1K =
1

R− 1
(1K(w

⊤1K)−X(W⊤1K)) =
1

R− 1
(1K(R− 1)− 0K) = 1K .

Uninformativeness. By (19) and (20):

W⊤B =
1

R− 1
((W⊤1K)w

⊤ − (W⊤X)W⊤) =
1

R− 1
(0R−1 −W⊤) = − 1

R− 1
W⊤.
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Since by construction columns of W form a basis in the row space of D(Π), it follows that

D(Π)B = − 1

R− 1
D(Π).

As α = 1/R, this corresponds exactly to (17) (see (18)). The result follows.

Lemma 5. For any N ≥ 2 and α ∈ [1/N, 1/2], there exist K and Π such that MVA(Π) = α.

Proof. The proof is by direct construction. For N = 2, the result is trivial. For N ≥ 3,

consider K ∈ [4, N + 1] and, for δ ∈ [0, 1], the N ×K matrix Π such that

π⊤
i =

1

K
1⊤K , i = 1 or i = K,K + 1, . . . , N,

π⊤
i =

1

K
(1K + eiK − e1K)

⊤, i = 2, . . . , K − 2,

π⊤
i =

1

K
(1K + eiK − δe1K − (1− δ)eKK)

⊤, i = K − 1,

where eiK is the ith basis vector of RK . By construction, Π is a stochastic matrix. Consider

MVA(Π) that solves the corresponding problem (15).

The constraint D(Π)G = 0(N−1)×K reduces to:

(eiK − e1K)
⊤G = 0, i = 2, . . . , K − 2, (eK−1

K − δe1K − (1− δ)eKK)
⊤G = 0, (23)

which effectively states that the first K − 2 rows are equal to each other and the (K − 1)th

row is a convex combination of the 1st and the Kth rows with weight δ. Thus, the effective

variables are the 1st and the Kth rows of the matrix G. The constraints G ≥ αIK×K and

G1K = 1K then boil down to those rows being probability vectors, such that

G1k ≥ α, k = 1, . . . , K − 2, (δG1,K−1 + (1− δ)GK,K−1) ≥ α, GKK ≥ α.

Therefore,

α ≤ (δG1,K−1 + (1− δ)GK,K−1) ≤ δ(1− (K − 2)α) + (1− δ)(1− α) = 1− α
(
1 + δ(K − 3)

)
.
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Rearranging yields

α ≤ α† ≜
1

2 + δ(K − 3)
, (24)

and thus MVA(Π) ≤ α†. Whenever δ ≥ (K − 4)/(K − 3), α† ≤ 1/(K − 2) and the bound α†

can be attained by G with the 1st and the Kth rows being (the rest of G is pinned down by

(23)):

G1k = α†, k = 1, . . . , K − 2, G1,K−1 = 1− (K − 2)α†, G1K = 0,

GKk = 0, k = 1, . . . , K − 2, GK,K−1 = 1− α†, GKK = α†.

Thus, MVA(Π) = α†. At δ = (K − 4)/(K − 3), α† = 1/(K − 2); at δ = 1, α† = 1/(K − 1).

This establishes that for all K ∈ [4, N + 1] as δ spans [(K − 4)/(K − 3), 1], the proposed

Π achieves MVA(Π) that spans [1/(K − 1), 1/(K − 2)]. Spanning K from 4 to N + 1, we

obtain the result.

A.4 On Strictly Convex Indirect Utility

In this section, we show that the indirect utility is strictly convex when the agent’s private

information induces a full-support distribution of posteriors.

Specifically, we assume that the agent’s ex-post payoff is type-independent, u(a, ω) and

identify θ with the belief it induces in the absence of any other information: Θ ⊆ ∆(Ω),

θ(ω) = Pr(ω|θ). We denote by ν the final posterior that the agent forms, i.e., conditional on

both the adviser’s message and the agent’s type:

νµ,θ ≜ Pr(ω|µ, θ) = µ(ω)f(θ|ω)∑
ω′∈Ω µ(ω

′)f(θ|ω′)
. (25)

A necessary and sufficient condition for a private strategy σ̂ to be Bayes-optimal at any given

posterior µ, σ̂ ∈ argmaxσ̂′ U(σ̂′, µ), is that σ̂(·|θ) ∈ ∆(A) is an optimal best-response with
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respect to νµ,θ: for all a ∈ supp σ̂(·|θ),

a ∈ argmax
a′∈A

∑
ω∈Ω

νµ,θ(ω)u(a
′;ω). (26)

Assumption 2. A is finite and there exist a1, a2 ∈ A and µ ∈ int(∆(Ω)) such that

Eµ[u(a1;ω)] = Eµ[u(a2;ω)] > Eµ[u(a, ω)] for all a ̸∈ {a1, a2}. In addition, for each ω ∈ Ω

either u(a1;ω) > u(a2;ω) or u(a2;ω) > u(a1;ω).

Lemma 6. Suppose θ has full support on ∆(Ω) and Assumption 2 holds. Then, U(µ) is

strictly convex in the interior of ∆(Ω).

Proof. A sufficient condition for strict convexity of U(µ) in the interior of ∆(Ω) is that for

any µ1, µ2 ∈ int(∆(Ω)), µ1 ̸= µ2,

argmax
σ̂

U(σ̂, µ1) ∩ argmax
σ̂

U(σ̂, µ2) = ∅.

Fix any such µ1, µ2. Let µ ∈ int(∆(Ω)) be the belief from Assumption 2 and define

d(ω) ≜ u(a1;ω) − u(a2;ω), r(ω) ≜ µ2(ω)/µ1(ω). By Assumption 2 and continuity of the

expected payoff in belief, there exists an open neighborhood O ⊂ int(∆(Ω)) of µ such that

for every ν ∈ O, action a1 is uniquely optimal whenever ν · d > 0, and not optimal whenever

ν · d < 0, because it is outperformed by a2. Define

R1 ≜ {ν ∈ O : ν · d > 0}, R2 ≜ {ν ∈ ∆(Ω) : ν · d < 0}.

Bayes’ rule implies that for every ω and θ, νµ2,θ = Γ(νµ1,θ), where Γ : int(∆(Ω)) → int(∆(Ω))

is the map defined by

Γ(ν)(ω) ≜
ν(ω)r(ω)∑
ω′ ν(ω′)r(ω′)

.

Since µ1 ̸= µ2, r is not constant; because d(ω) ̸= 0 for all ω, the hyperplanes {ν : ν ·d = 0}

and {ν : ν · (r ∗ d) = 0} (where ∗ denotes the component-wise product) are distinct. As

µ ∈ O ∩ {ν : ν · d = 0}, we can choose ν ∈ O such that ν · d = 0 and ν · (r ∗ d) ̸= 0.

Without loss of generality, suppose ν · (r ∗ d) < 0 (otherwise swap the labels of a1 and a2).
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By continuity, there exists a nonempty open set A ⊂ R1 such that ν · (r ∗ d) < 0 for all ν ∈ A.

For every ν ∈ A,

Γ(ν) · d =
ν · (r ∗ d)
ν · r

< 0,

so Γ(A) ⊂ R2. The map θ 7→ νµ1,θ is continuous and onto int(∆(Ω)). Hence Θ0 ≜ {θ :

νµ1,θ ∈ A} is nonempty and open; since θ has full support on ∆(Ω), it has strictly positive

probability.

For every θ ∈ Θ0 we have νµ1,θ ∈ R1 and νµ2,θ ∈ R2. This means that the private strategies

optimal at µ1 and µ2 must necessarily differ on θ ∈ Θ0. The result follows.

A.5 Proof of Lemma 1

The misaligned adviser with signal realization µ minimizes U(σ̂(µ′), µ) over µ′ in the trust

region. Recall that the function U(σ̂(µ′), µ) is linear in µ,

U(µ) = max
σ̂

U(σ̂, µ),

and we assumed that U is strictly convex and twice differentiable. This means that U(σ̂(µ′), µ)

is the value at µ of the hyperplane supporting U at µ′. Under our convention that µ is the

probability of state 1, this means that

U(σ̂(µ′), µ) = U(µ′) + U ′(µ′)(µ− µ′).

By convexity of U , this function is quasi-concave in µ′, and hence for all µ′ ∈ [µ, µ],

U(σ̂(µ′), µ) ≥ min{U(σ̂(µ), µ), U(σ̂(µ), µ)}. Thus, the misaligned adviser’s strategy takes a

threshold form. The threshold b(µ, µ) is the intersection point of the supporting lines to U at

points µ and µ:

U(µ) + U ′(µ)(b(µ, µ)− µ) = U(µ) + U ′(µ)(b(µ, µ)− µ).
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If µ = µ = µ, b(µ, µ) = µ, coinciding with (5) by continuity. Otherwise, rearranging, we

obtain:

b(µ, µ) =
µU ′(µ)− µU ′(µ)− (U(µ)− U(µ))

U ′(µ)− U ′(µ)
.

Applying integration by parts, the numerator equals
∫ µ

µ
µU ′′(µ)dµ and the denominator

equals
∫ µ

µ
U ′′(µ)dµ. The result follows.

A.6 Proof of Proposition 1

By Lemma 1 and Corollary 2, the choice of an optimal strategy for the agent reduces to

optimization over the extreme points µ, µ of the trust interval with the corresponding payoff:

U(µ, µ) =

α

(∫ µ

0

(U(µ) + U ′(µ)(µ− µ))τ(µ)dµ+

∫ µ

µ

U(µ)τ(µ)dµ+

∫ 1

µ

(U(µ) + U ′(µ)(µ− µ))τ(µ)dµ

)

+ (1− α)

(∫ b(µ,µ)

0

(U(µ) + U ′(µ)(µ− µ))τ(µ)dµ+

∫ 1

b(µ,µ)

(U(µ) + U ′(µ)(µ− µ))τ(µ)dµ

)
.

The function U(µ, µ) is continuously differentiable with partial derivatives at points with

µ < µ:

∂U

∂µ
= U ′′(µ)

(
α

∫ µ

0

(µ− µ)τ(µ)dµ+ (1− α)

∫ 1

b(µ,µ)

(µ− µ)τ(µ)dµ

)
,

∂U

∂µ
= U ′′(µ)

(
α

∫ 1

µ

(µ− µ)τ(µ)dµ+ (1− α)

∫ b(µ,µ)

0

(µ− µ)τ(µ)dµ

)
.

Intuitively, the first-order impact of a change in the trust boundary equals the change in the

action played at that boundary, measured by U ′′(·), integrated over the posterior regions in

which the aligned and misaligned advisers induce that action, weighted by the alignment

parameter. (Terms involving ∂b/∂µ and ∂b/∂µ vanish because at µ = b(µ, µ) the misaligned

adviser is indifferent between the two messages.)

Whenever the trust region is non-singleton, µ < µ, at the optimal choice of µ and µ these
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partial derivatives must equal zero, ∂U/∂µ = 0 and ∂U/∂µ = 0. Since U ′′(·) > 0, these

first-order conditions can be rearranged as follows. Define functions Ψ1 and Ψ2 as

Ψ1(µ, µ, α) ≜ α

∫ µ

0

(µ− µ)τ(µ)dµ+ (1− α)

∫ 1

b(µ,µ)

(µ− µ)τ(µ)dµ,

Ψ2(µ, µ, α) ≜ α

∫ 1

µ

(µ− µ)τ(µ)dµ+ (1− α)

∫ b(µ,µ)

0

(µ− µ)τ(µ)dµ.

Then, Ψ1(µ, µ, α) = Ψ2(µ, µ, α) = 0 is equivalent to conditions (6) and (7).

First, we show that conditions (6) and (7) are incompatible with α < 1/2. (If M was

finite, this would follow directly from Theorem 3.) Indeed, if those conditions hold then (for

the rest of the proof, we will often omit the arguments of the function b for brevity):

α

(∫ b

0

(b− µ)τ(µ)dµ+

∫ 1

b

(µ− b)τ(µ)dµ

)
≥ α

(∫ µ

0

(µ− µ)τ(µ)dµ+

∫ 1

µ

(µ− µ)τ(µ)dµ

)
= (1− α)

(∫ b

0

(µ− µ)τ(µ)dµ+

∫ 1

b

(µ− µ)τ(µ)dµ

)
≥ (1− α)

(∫ b

0

(b− µ)τ(µ)dµ+

∫ 1

b

(µ− b)τ(µ)dµ

)
,

where the inequalities hold because µ ≤ b(µ, µ) ≤ µ and the equality is a consequence of

(6) and (7) (their sum). Because τ has full support, the multipliers on both sides of the

inequality are strictly positive, and thus α ≥ 1− α, i.e., α ≥ 1/2.

Now we argue that for α ≥ 1/2 the solution to (6) and (7) such that µ ≤ µ exists.

(Note that at α = 1/2, [µ, µ] = [µ0, µ0] is a solution.) For the rest of this proof, we omit the

dependence of Ψi on α. By Lemma 1 and direct inspection, b(µ, µ) is strictly and continuously

increasing in its arguments, so Ψ1(µ, µ) is strictly and continuously decreasing in µ for each

µ. Furthermore,

Ψ1(0, µ) = (1− α)

∫ 1

b(0,µ)

µτ(µ)dµ ≥ 0,

Ψ1(1, µ) = α

∫ 1

0

(µ− 1)τ(µ)dµ < 0.

Therefore, for each µ, a best-response b1(µ) such that Ψ1(b1(µ), µ) = 0 exists and is unique.
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Since Ψ1(µ, µ) strictly decreases in µ, b1(µ) strictly decreases in µ. Finally, for any µ,

∫ 1

b1(µ)

(µ− b1(µ))τ(µ)dµ ≥
∫ 1

b(b1(µ),µ)

(µ− b1(µ))τ(µ)dµ ≥
∫ b1(µ)

0

(b1(µ)− µ)τ(µ)dµ,

where the second inequality holds because α ≥ 1/2 and Ψ1(b1(µ), µ) = 0. Thus, for any µ,

b1(µ) ≤ µ0.

Analogously, for each µ, a best-response b2(µ) such that Ψ2(µ, b2) = 0, exists, is unique,

strictly decreases in µ, and is everywhere greater than µ0.

Therefore, a solution to (6) and (7) is any µ ∈ [0, µ0] and µ = b2(µ) ∈ [µ0, 1] such that

b1(b2(µ)) = µ. By the established properties of b1 and b2, b1(b2(µ)) is continuous in µ with

b1(b2(µ)) ∈ [0, µ0] for all µ ∈ [0, µ0]; hence, b1(b2(0))− 0 ≥ 0 and b1(b2(µ0))− µ0 ≤ 0. By the

intermediate value theorem, there exists µ ∈ [0, µ0] such that b1(b2(µ)) = µ.

So far, we showed that for α ≥ 1/2, a solution exists and belongs to a closed rectangular

set D = {(µ, µ) : µ ∈ [0, µ0], µ ∈ [µ0, 1]}. To establish uniqueness, consider the function

−Ψ = (−Ψ1,−Ψ2) on D. Any solution must satisfy −Ψ(µ, µ) = (0, 0). Observe that for any

(µ, µ) ∈ D,

∂[−Ψ1]

∂µ
= α

∫ µ

0

τ(µ)dµ+ (1− α)
∂b

∂µ
τ(b)(b− µ) + (1− α)

∫ 1

b

τ(µ)dµ > 0,

∂[−Ψ1]

∂µ
= (1− α)

∂b

∂µ
τ(b)(b− µ) ≥ 0,

∂[−Ψ2]

∂µ
= −(1− α)

∂b

∂µ
τ(b)(b− µ) ≥ 0,

∂[−Ψ2]

∂µ
= α

∫ 1

µ

τ(µ)dµ+ (1− α)
∂b

∂µ
τ(b)(µ− b) + (1− α)

∫ b

0

τ(µ)dµ > 0.

Moreover, for all (µ, µ) ∈ D, the Jacobian of [−Ψ] is a P-matrix, i.e., it has strictly positive

principal minors:

∂[−Ψ1]

∂µ
> 0,

∂[−Ψ1]

∂µ

∂[−Ψ2]

∂µ
− ∂[−Ψ1]

∂µ

∂[−Ψ2]

∂µ
> 0.

By the Gale-Nikaido Theorem, (Theorem 4, Gale and Nikaido (1965)), it follows that [−Ψ] is

injective on D, and thus there exists at most one solution to the equation −Ψ(µ, µ) = (0, 0).
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Finally, we show that the proposed trust region strategy is robustly rationalizable by

explicitly constructing a TRE. For α ≥ 1/2, we need to construct a measurable strategy of

the misaligned adviser β : [0, b] → [µ, 1] such that for every set X ⊆ [µ, 1] with ατ (X) + (1−

α)τ(β−1(X)) > 0,

α
∫
X
µτ(µ)dµ+ (1− α)

∫
β−1(X)

µτ(µ)dµ

α
∫
X
τ(µ)dµ+ (1− α)

∫
β−1(X)

τ(µ)dµ
= µ. (27)

(The construction of β : (b, 1] → [0, µ] is analogous.) To this end, define two finite atomless

nonnegative measures:

ν(Y ) ≜ (1− α)

∫
Y

(µ− µ)τ(µ)dµ, Y ⊆ [0, b]

η(X) ≜ α

∫
X

(µ− µ)τ(µ)dµ, X ⊆ [µ, 1].

Observe that condition (7) is precisely η([µ, 1]) = ν([0, b]) whereas condition (27) is the

pushforward identity:

η(X) = ν(β−1(X)), X ⊆ [µ, 1].

In other words, we need to find β that transports ν to η. It is always possible. For a canonical

quantile construction, define the cumulative mass functions Fν(µ) ≜ ν([0, µ]) for µ ∈ [0, b]

and Fη(µ) ≜ η([µ, µ]) for µ ∈ [µ, 1]. The transport map can then be set:

β(µ) = F−1
η (Fν(µ)), µ ∈ [0, b],

where F−1
η (·) is the generalized inverse: F−1

η (q) = inf{µ ∈ [µ, 1] : Fη(µ) ≥ q}.

For α < 1/2, T = {µ0}, so the misaligned adviser is indifferent between all messages

and it suffices to construct a strategy β : [0, 1] → [0, 1] such that for all X ⊆ [0, 1] with

α
∫
X
τ(µ)dµ+ (1− α)

∫
β−1(X)

τ(µ)dµ > 0,

α
∫
X
µτ(µ)dµ+ (1− α)

∫
β−1(X)

µτ(µ)dµ

α
∫
X
τ(µ)dµ+ (1− α)

∫
β−1(X)

τ(µ)dµ
= µ0, (28)
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which is equivalent to:

α

∫
X

(µ− µ0)τ(µ)dµ+ (1− α)

∫
β−1(X)

(µ− µ0)τ(µ)dµ = 0.

To do that, observe that
∫ 1

0
(µ − µ0)τ(µ)dµ = 0 and

∫ µ0

0
(µ0 − µ)τ(µ)dµ =

∫ 1

µ0
(µ −

µ0)τ(µ)dµ > 0. Since α ∈ (0, 1/2), α/(1− α) ∈ (0, 1) and by the intermediate value theorem,

there exist µL ∈ (0, µ0) and µH ∈ (µ0, 1) such that

∫ µL

0

(µ0 − µ)τ(µ)dµ =
α

1− α

∫ µ0

0

(µ0 − µ)τ(µ)dµ,∫ 1

µH

(µ− µ0)τ(µ)dµ =
α

1− α

∫ 1

µ0

(µ− µ0)τ(µ)dµ.

By construction,

∫ µL

0

(µ0 − µ)τ(µ)dµ =
α

1− α

∫ 1

µ0

(µ− µ0)τ(µ)dµ, (29)∫ 1

µH

(µ− µ0)τ(µ)dµ =
α

1− α

∫ µ0

0

(µ0 − µ)τ(µ)dµ, (30)∫ µH

µL

(µ− µ0)τ(µ)dµ = 0. (31)

We can set β(µ) = βL(µ) when µ ∈ [0, µL], β(µ) = µ0, when µ ∈ (µL, µH), and

β(µ) = βH(µ), when µ ∈ [µH , 1]. Here, βL is a quantile transport map that transports measure

νL(Y ) = (1 − α)
∫
Y
(µ0 − µ)τ(µ)dµ on [0, µL] to measure ηL(X) = α

∫
X
(µ − µ0)τ(µ)dµ on

[µ0, 1], just like in the case of α ≥ 1/2; it ensures that (28) holds for all X ⊆ (µ0, 1]. Similarly,

βH is a quantile transport map that transports measure νH(Y ) = (1− α)
∫
Y
(µ− µ0)τ(µ)dµ

on [µH , 1] to measure ηH(X) = α
∫
X
(µ0 − µ)τ(µ)dµ on [0, µ0]; it ensures that (28) holds for

all X ⊆ [0, µ0). (The transported masses match the targets by (29) and (30).) Finally, by

(31), (28) holds for µ = µ0. The result follows.

A.7 Proof of Proposition 2

At α = 1/2, [µ, µ] = [µ0, µ0] satisfies conditions (6) and (7). At α = 1, [µ, µ] = [0, 1] satisfies

conditions (6) and (7).
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For α ∈ (1/2, 1), denote by Ψi1, Ψi2, and Ψiα a partial derivative of Ψi with respect to µ,

µ, and α respectively. Define the Jacobian:

J(µ, µ, α) ≜

Ψ11 Ψ12

Ψ21 Ψ22

 .

As we argued in the proof of Proposition 1, for all µ, µ, α > 1/2, det J(µ, µ, α) > 0,

and therefore, by the implicit function theorem, optimal µ(α) and µ(α) are continuously

differentiable and15

dµ/dα
dµ/dα

 = −J(µ, µ, α)−1

Ψ1α

Ψ2α

 .

Consequently,

dµ

dα
= −Ψ2µΨ1α −Ψ1µΨ2α

Ψ1µΨ2µ −Ψ1µΨ2µ

< 0,

dµ

dα
=

Ψ2µΨ1α −Ψ1µΨ2α

Ψ1µΨ2µ −Ψ1µΨ2µ

> 0,

where the inequalities hold because, as we already showed, Ψ1µ < 0, Ψ1µ ≤ 0, Ψ2µ ≤ 0,

Ψ2µ < 0, and

Ψ1α =

∫ µ

0

(µ− µ)τ(µ)dµ−
∫ 1

b

(µ− µ)τ(µ)dµ < 0,

Ψ2α =

∫ 1

µ

(µ− µ)τ(µ)dµ−
∫ b

0

(µ− µ)τ(µ)dµ > 0.

The result follows.

A.8 Proof of Proposition 3

Throughout, fix α > 1/2 (the proposition is trivially true otherwise). We begin with a simple

lemma.

15Differentiating the optimality conditions with respect to α we obtain Ψ11
dµ

dα +Ψ12
dµ
dα +Ψ1α = 0,Ψ21

dµ

dα +

Ψ22
dµ
dα +Ψ2α = 0.
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Lemma 7. Let U1, U2 be twice differentiable and strictly convex on [0, 1]. Assume that the

ratio U ′′
1 (µ)/U

′′
2 (µ) is decreasing. Then, with bi defined for each Ui, i ∈ {1, 2}, by equation

(5), we have that b1(µ, µ) ≤ b2(µ, µ) for all µ ≤ µ.

Proof. By (5), for i ∈ {1, 2}, bi(µ, µ) = Eµ∼fi [µ], where fi(µ) is a density of a probability

measure on [µ, µ] defined as

fi(µ) ≜
U ′′
i (µ)∫ µ

µ
U ′′
i (µ) dµ

.

By assumption, f1(µ)/f2(µ) is decreasing, and hence f2 likelihood-ratio dominates f1. This

implies that the probability distribution f1 is first-order stochastically dominated by f2; in

particular, it has a lower mean. The result follows.

We now take the second step by showing a monotone relationship between the cutoff

function b and the trust region.

Lemma 8. Consider two decision problems Ui, i ∈ {1, 2}, and let (µ
i
, µi) ∈ D denote the

(unique) solution to the system

Ψi
1(µ, µ, α) = 0, Ψi

2(µ, µ, α) = 0,

where Ψi
1,Ψ

i
2 and D are defined as in the proof of Proposition 1 for each Ui. If b1(µ, µ) ≤

b2(µ, µ) for all µ ≤ µ, then µ
2
≤ µ

1
and µ2 ≤ µ1.

Proof. For any h ∈ [0, 1], define the auxiliary functions

Ψ̃1(µ, h) ≜ α

∫ µ

0

(µ− µ)τ(µ) dµ+ (1− α)

∫ 1

h

(µ− µ)τ(µ) dµ,

Ψ̃2(µ, h) ≜ α

∫ 1

µ

(µ− µ)τ(µ) dµ+ (1− α)

∫ h

0

(µ− µ)τ(µ) dµ.

For each h, let µ(h) be the unique solution to Ψ̃1(µ, h) = 0 in [0, µ0], and let µ(h) be the

unique solution to Ψ̃2(µ, h) = 0 in [µ0, 1]. (Existence and uniqueness follow from an argument

analogous to that used in the proof of Proposition 1).
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For each i ∈ {1, 2} define the scalar map

φi(h) ≜ bi
(
µ(h), µ(h)

)
.

Let hi ≜ bi(µi
, µi) be the cutoff evaluated at the optimal endpoints of problem i. Then (µ

i
, µi)

solves Ψi
1 = Ψi

2 = 0 if and only if µ
i
= µ(hi), µi = µ(hi), and hi = φi(hi). By the assumption

b1 ≤ b2 pointwise, for every h,

φ1(h) = b1(µ(h), µ(h)) ≤ b2(µ(h), µ(h)) = φ2(h).

Define a region H ≜ {h ∈ [0, 1] : µ(h) ≤ h ≤ µ(h)}. Note that H is an interval and

h1, h2 ∈ H. For h ∈ H, implicit differentiation yields

µ′(h) = −∂Ψ̃1/∂h

∂Ψ̃1/∂µ
≤ 0, µ′(h) = −∂Ψ̃2/∂h

∂Ψ̃2/∂µ
≤ 0.

Thus, φi is weakly decreasing in h on H: both µ(h) and µ(h) are weakly decreasing in h,

while bi(µ, µ) is weakly increasing in each endpoint, so the composition h 7→ φi(h) is weakly

decreasing.

It follows that h2 ≥ h1: if h2 < h1, then, since φ2 is decreasing on H,

h2 = φ2(h2) ≥ φ2(h1) ≥ φ1(h1) = h1,

which is a contradiction. Since µ(·) and µ(·) are weakly decreasing,

µ
2
= µ(h2) ≤ µ(h1) = µ

1
, µ2 = µ(h2) ≤ µ(h1) = µ1,

completing the proof.

By Lemma 7, U ′′
1 /U

′′
2 decreasing implies b1(µ, µ) ≤ b2(µ, µ) for all µ ≤ µ. Lemma 8 then

yields µ
2
≤ µ

1
and µ2 ≤ µ1. This proves Proposition 3.
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A.9 Proof of Proposition 4

With a small abuse of notation, we can parameterize each private strategy by σ̂ = Pr(a = a2).

We also drop the dependence of G and L on τ̂ in the notation. Then, by the arguments

behind Theorem 1, if the agent employs the set of private strategies Σ̂0 = {σ̂(m)}m∈∆(Ω),

the payoffs coming from both aligned and misaligned adviser depend only on σ̂L ≜ inf Σ̂0

and σ̂H ≜ sup Σ̂0, and the optimal payoffs from using Σ̂0 are the same as if the agent plays

σ̂(m) = σ̂L when v(m) < 0 and σ̂(m) = σ̂H when v(m) ≥ 0. This payoff is:

∫ 0

−∞
(ασ̂L + (1− α)σ̂H)v τ̂(dv) +

∫ +∞

0

(ασ̂H + (1− α)σ̂L)v τ̂(dv)

= σ̂L((1− α)G− αL) + σ̂H(αG− (1− α)L). (32)

The optimal choice of σ̂L and σ̂H must maximize (32) subject to σ̂L, σ̂H ∈ [0, 1] and σ̂L ≤ σ̂H .

This is a linear optimization subject to (σ̂L, σ̂H) being in a triangle with vertices (0, 0), (0, 1),

and (1, 1). A straightforward calculation gives the following solution:

If G = L: if α < α̂ = 1/2, then any σ̂L = σ̂H is optimal; if α > α̂ = 1/2, then σ̂L = 0 and

σ̂H = 1; if α = α̂ = 1/2, then any (σ̂L, σ̂H) is optimal. If G > L: if α < α̂, then σ̂L = σ̂H = 1;

if α > α̂, then σ̂L = 0 and σ̂H = 1; if α = α̂, then σ̂H = 1 and any σ̂L is optimal. If G < L:

if α < α̂, then σ̂L = σ̂H = 0; if α > α̂, then σ̂L = 0 and σ̂H = 1; if α = α̂, then σ̂L = 0 and

any σ̂H is optimal.

The cases σ̂L = σ̂H correspond to not trusting any message and always acting in the

same way, optimal at the prior, so T = {µ0}. The cases σ̂L = 0 and σ̂H = 1 correspond to

trusting all messages, so T = ∆(Ω). Since we assumed that the probability of v(µ) = 0 is 0

and G ̸= L, the corresponding optimal strategy is uniquely determined.

It is left to show that those strategies are robustly rationalizable. Define M0 = {µ :

v(µ) = 0}, M− = {µ : v(µ) < 0}, and M+ = {µ : v(µ) > 0}. Define probability measures

q+(X) =
∫
X
v(µ)τ(dµ)/G for X ⊆M+, q−(Y ) =

∫
Y
(−v(µ))τ(dµ)/L for Y ⊆M−.

For α > α̂, the agent fully trusts the adviser. Consider the following strategy of the

misaligned adviser. If µ ∈M0, then β(µ) = µ. If µ ∈M−, then β randomizes over messages

m ∈M+ according to q+. If µ ∈M+, then β randomizes over messages m ∈M− according
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to q−. This strategy is clearly adversarial. Furthermore, since α > α̂, after any message

m ∈M+, the posterior expected payoff from action a2 is strictly positive: for any X ⊆M+

with τ(X) > 0,

α

∫
X

v(m)τ(dm) + (1− α)

∫
∆(Ω)

v(µ)β(X|µ)τ(dµ) = αGq+(X)− (1− α)Lq+(X) > 0.

Analogously, after any message m ∈ M−, the posterior expected payoff from action a2 is

strictly negative: for any Y ⊆M− with τ(Y ) > 0,

α

∫
Y

v(m)τ(dm) + (1− α)

∫
∆(Ω)

v(µ)β(Y |µ)τ(dµ) = −αLq−(Y ) + (1− α)Gq−(Y ) < 0.

And by construction, after any message m ∈M0, the posterior expected payoff from action

a2 is zero.

For α < α̂, the agent doesn’t trust the adviser so any adviser’s strategy is adversarial.

Consider the case G > L (the complementary case is analogous). We need to construct

the misaligned adviser strategy that makes communication not valuable. To do so, define

γ = αL/((1 − α)G) ∈ [0, 1]. Consider the following strategy of the misaligned adviser. If

µ ∈M−, then β randomizes over messages m ∈M+ according to q+. If µ ∈M+, then with

probability γ, β randomizes over messages m ∈ M− according to q− and with probability

(1 − γ), β randomizes over messages m ∈ M+ according to q+. This strategy makes the

posterior expected payoff from action a2 zero after every message m ∈M−: for any Y ⊆M−

with τ(Y ) > 0,

α

∫
Y

v(m)τ(dm) + (1− α)

∫
∆(Ω)

v(µ)β(Y |µ)τ(dµ) = −αLq−(Y ) + (1− α)γGq−(Y ) = 0.

After any message m ∈M+, the posterior expected payoff from action a2 is strictly positive:

for any X ⊆M+ with τ(X) > 0,

α

∫
X

v(m)τ(dm) + (1− α)

∫
∆(Ω)

v(µ)β(X|µ)τ(dµ) = (G− L)q+(X) > 0.

Thus, this β robustly rationalizes the strategy.
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Finally, at α = α̂, both full trust and no trust are optimal (along a continuum of other

strategies) and robustly rationalizable by the same βs as above.

A.10 Supporting calculations for Example 1

The key step in the construction of the optimal trust region in Example 1 comes from the

following simple lemma.

Lemma 9 (Spherical U). Let U(µ) = V (∥µ− b∥) for some vector b and function V . Let

µ′(r, n) = b+ rn, where n ∈ RN with ∥n∥ = 1 and r ∈ R. Then, (i) DU (µ, µ
′(r, n)) is strictly

increasing in n · (b− µ) whenever r ̸= 0, and (ii) DU(µ, µ
′(r, n)) is a unimodal function in r

with a minimum at r = n · (µ− b).

Proof. In this case, ∇U(µ′(r, n)) = V ′(r)n, and thus

DU(µ, µ
′(r, n)) = V (∥µ− b∥)− V (r)− V ′(r)(n · (µ− b)− r).

Since U(µ) is strictly convex, V ′(r) > 0 whenever r ̸= 0 and V ′′(r) > 0. Thus DU (µ, µ
′(r, n))

is strictly increasing in n · (b− µ). Furthermore,

∂DU(µ, µ
′(r, n))

∂r
= −V ′(r)− V ′′(r)(n · (µ− b)− r) + V ′(r) = V ′′(r)(r − n · (µ− b)).

Because V ′′(r) > 0, the unimodality follows.

Suppose that the misaligned adviser holds belief µ. By Corollary 3, the adviser will try to

maximize DU (µ, µ
′) over µ′ on (the boundary of) the trust region. Parameterizing µ′ = b+ rn

and applying Lemma 9 yields that n is optimally chosen to be (b− µ)/∥b− µ∥, whereas r is

chosen maximal within the trust region, r = r∗(α). Thus, the optimal µ′ is given uniquely by

b+ r∗(α)(b− µ)/∥b− µ∥.
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