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Abstract

We show that the Lorentz Transformation, that appears in the
Einstein’s Special Relativity Theory, is necessarily linear.
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1 Introduction

The Lorentz Transformation, at the heart of the special theory of relativity
invented by Albert Einstein [2], is assumed to be linear from physical as-
sumptions. In this short note, we prove that they are also mathematically
linear, under smooth regularity assumptions.

Consider that we have two Cartesian coordinate systems, also called iner-
tial reference frames, R(x, y, z, t) (or simply R) and R′(x′, y′, z′, t′) (or simply
R′), where t and t′ denote the time coordinates, (x, y, z) and (x′, y′, z′) de-
note the spatial coordinates. The reference frame R′ moves relative to R

with the velocity v in along the x−axis. We know that the coordinates y

and z perpendicular to the velocity are the same in both reference frames:
y = y′ and z = z′. So, it is sufficient to consider only a transformation of
the coordinates (t, x) from the reference frame R to the coordinates (t′, x′)
with

t′ = F (t, x) (1)

x′ = G(t, x) (2)

in the reference frame R′.
From the translation symmetry of space and time, Physicists conclude

that the functions F and G must be linear functions. And it is now well
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known that, when the transformation is linear, we have the following rela-
tions [3] (with the additional constraint that x′ = 0 if and only if x = vt)

(

ct′

x′

)

=

(

f(ct, x)
g(ct, x)

)

=

(

γ −γβ

−γβ γ

)(

ct

x

)

. (3)

where c is a positive constant (which turns out to be the light speed), β = v
c

and γ = 1√
1−β2

. The (linear) Lorentz Transformation is equivalently given

by (1) and (2) or by (3) with

t′ = F (t, x) = γ(t− x
v

c2
) =

1

c
f(ct, x) (4)

x′ = G(t, x) = γ(−vt+ x) = g(ct, x). (5)

One way to get relations (3) is to assume the conservation of the pseudo-
norm of Minkowski, derived from the pseudo-scalar product of Minkowski,
through a linear application from R to R′.

The pseudo-scalar product of Minkowski is the non-degenerate symmetric
bilinear form η given by

η( ~P1, ~P2) = τ1τ2 − x1x2,

where ~P1 = (τ1, x1) ∈ R
2 and ~P2 = (τ2, x2) ∈ R

2.

2 Main result: the Lorentz Transformation must
be linear

The Lorentz Transfomation (f, g), given by (3), is the unique linear trans-
formation from R

2 onto R
2 that preserves the pseudo-norm of Minkowski,

that is
c2t

′2 − x
′2 = c2t2 − x2,

or
τ

′2 − x
′2 = τ2 − x2,

for all (t, x) ∈ R
2, with τ = ct, τ ′ = ct′ = f(ct, x) and x′ = g(ct, x).

In this short note, we will show that, under smooth regularity assump-
tions, a transformation L = (f, g), from R

2 to R
2, such that, for any two

points (τ1, x1) and (τ2, x2) in R
2 × R

2

f(τ1, x1)f(τ2, x2)− g(τ1, x1)g(τ2, x2) = τ1τ2 − x1x2 (6)

is linear. In other words, we will show that, under smooth regularity assump-
tions, if a transformation preserves the pseudo-scalar product of Minkowski,
it is necessarily linear. Note that we do not need to suppose that L is one
to one.

2



Benz [1] gives a more general result since he considers Lorentz Transfor-
mation defined as follows: let X be a real inner product space of arbitrary
finite or infinite dimension ≥ 2. The mapping λ : X → X is called a Lorentz
Transformation if and only if it preserves the pseudo-distance of Minkowski,
derived from the eponym pseudo-norm. Then, the Lorentz Transformation
is explicitly written by means of Lorentz boosts and orthogonal transforma-
tions.

Our result is more restrictive since we only consider the space R
2. Our

ambition and intention are just to give a simple pedagogical proof, with
differentiability arguments unlike simple geometric ones used by Benz.

Let us now give our result.

Theorem 2.1 Let L = (f, g) be a application defined on R
2 with values

in R
2. We assume that the second partial derivatives f (2,0), f (0,2), g(2,0)

and g(0,2) exist everywhere. The application L preserves the pseudo-scalar
product of Minkowski if and only if L = (f, g) is defined by

(

τ ′

x′

)

=

(

f(τ, x)
g(τ, x)

)

=

(

u k0l

k0u l

)(

τ

x

)

, (7)

for all (τ, x) ∈ R
2, where u and l are constant such that u2 = l2 = 1

1−k2
0

,

with k20 < 1.

Proof. It is easy to check that if L = (f, g) is defined by (7) then (6) is
satisfied.

It takes more “time” (relatively not absolutly!) to prove that if (6) is
satisfied by L then the latter is necessarily given by (7).

L = (f, g) preserves the pseudo-scalar product of Minkowski means that,
for any two points (τ1, x1) and (τ2, x2) in R

2 × R
2, we have the following

equation

τ1τ2 − x1x2 = f(τ1, x1)f(τ2, x2)− g(τ1, x1)g(τ2, x2). (8)

We differentiate equation (8) twice with respect to τ1 to get

f (2,0)(τ1, x1)f(τ2, x2)− g(2,0)(τ1, x1)g(τ2, x2) = 0. (9)

If there exists a point (τ0, x0) such that f (2,0)(τ0, x0) 6= 0, then we get
from (9), for all (τ, x) ∈ R

2 and for (τ1, x1) = (τ0, x0)

f(τ, x) = kg(τ, x), (10)

with k =
g(2,0)(τ0, x0)

f (2,0)(τ0, x0)
, so that we must get from (8) for (τ1, x1) = (τ2, x2) =

(τ, x)
τ2 − x2 = (k2 − 1)g2(τ, x). (11)

3



which is not true for all (τ, x) in R
2, in contradiction with (8). Thus, for all

(τ, x) in R
2

f (2,0)(τ, x) = 0,

so that f (1,0)(τ, x) = u(x), where u is a function defined on R. Similarly, we
can show that g(2,0)(τ, x) = 0, so that g(1,0)(τ, x) = v(x), for all (τ, x) in R

2,
where v is a function defined on R.

Now, we differentiate equation (8) twice with respect to x1 to get

f (0,2)(τ1, x1)f(τ2, x2)− g(0,2)(τ1, x1)g(τ2, x2) = 0. (12)

Like previously, we get in a similar way

f (0,1)(τ, x) = w(τ)

g(0,1)(τ, x) = l(τ)

for all (τ, x) in R
2, where w and l are two functions defined on R.

At this step, we have the following summary: for all (τ, x) in R
2, the

Jacobian matrix J of the transformation (f, g) has the following form

J(τ, x) =

(

u(x) w(τ)
v(x) l(τ)

)

.

Now, let’s take the derivative of equation (8) with respect to τ1 to get

τ2 = f (1,0)(τ1, x1)f(τ2, x2)− g(1,0)(τ1, x1)g(τ2, x2). (13)

And we now take the derivative of equation (13) with respect to x2 to get

f (1,0)(τ1, x1)f
(0,1)(τ2, x2)− g(1,0)(τ1, x1)g

(0,1)(τ2, x2) = 0. (14)

Thus, we get for all (τ, x) in R
2

u(x)w(τ) = v(x)l(τ). (15)

Then assume that l(τ) = 0 = g(0,1)(τ, x) for all τ ∈ R, thus g is of the form
g(τ, x) = L(τ), where L is a function defined on R. Thus, we get from (8),
for all (τ, x) in R

2

τ2 − x2 = f2(τ, x)− L2(τ). (16)

Differentiating twice this last equation with respect to x gives

w2(τ) = −1

which is absurd. Thus, there exists τ0 such that l(τ0) 6= 0 for which equa-
tion (15) becomes

v(x) =
w(τ0)

l(τ0)
u(x) = k0u(x),
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for all x in R.Then, from (15), we get

u(x)w(τ) = k0u(x)l(τ). (17)

We can similarly show that there exists x0 such that u(x0) 6= 0 so that

u(x0)w(τ) = k0u(x0)l(τ), (18)

leads to
w(τ) = k0l(τ),

for all τ in R.
Now, from (8), with (τ1, x1) = (τ2, x2) = (τ, x), we have

τ2 − x2 = f2(τ, x) − g2(τ, x). (19)

Taking twice the second derivative of this last equation with respect to τ ,
we obtain

(1− k20)u
2(x) = 1,

and taking twice the second derivative of the same equation (19) with respect
to x, we get

(1− k20)l
2(τ) = 1.

Finally, if L preserves the pseudo-scalar product of Minkowski, the functions
u, l and so v and w are necessarily piecewise constant functions, and the
constant k0 is necessarily such that k20 < 1. The Jacobian matrix J of the
transformation (f, g) can be re-written as follows, for all (τ, x) in R

2

J(τ, x) =

(

u(x) k0l(τ)
k0u(x) l(τ)

)

,

with u2(x) = l2(τ) = 1
1−k2

0

.

Suppose now that for x1 6= x2 we have u(x1)u(x2) =
−1

1−k2
0

, which means
that u(x1) and u(x2) are of opposite signs. Then, from equation (8), we
get the following contradiction 1 = −1. We get the same contradiction by
considering two different τ1 and τ2 for which l(τ1) and l(τ2) are of opposite
signs.

Finally, the Jacobian matrix J of the transformation (f, g) takes neces-
sarily the following form, for all (τ, x) in R

2

J(τ, x) =

(

u k0l

k0u l

)

,

where u and l are constant such that u2 = l2 = 1
1−k2

0

, with k0 satisfying

k20 < 1. �
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3 Conclusion

At this stage, we now know that L = (f, g) is of the form
(

τ ′

x′

)

=

(

f(τ, x)
g(τ, x)

)

=

(

u k0l

k0u l

)(

τ

x

)

, (20)

where u and l are constant such that u2 = l2 = 1
1−k2

0

, with k20 < 1.
From physical considerations, in particular the symmetric role played by

the reference frames R and R′ and the same sign for τ = ct and τ ′ = ct′, we
get that u = l = +1√

1−k2
0

. In conclusion, we have

(

ct′

x′

)

=

(

f(ct, x)
g(ct, x)

)

=

(

u k0u

k0u u

)(

ct

x

)

, (21)

where u = l = 1√
1−k2

0

, with k0 such that k20 < 1.

With the additional constraint that x′ = 0 if and only if x = vt, we obtain
that k0 = − v

c
= −β, and the well known (linear) Lorentz Transformation (3).
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