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Abstract

We show that the Lorentz Transformation, that appears in the
Einstein’s Special Relativity Theory, is necessarily linear.
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1 Introduction

The Lorentz Transformation, at the heart of the special theory of relativity
invented by Albert Einstein [2]|, is assumed to be linear from physical as-
sumptions. In this short note, we prove that they are also mathematically
linear, under smooth regularity assumptions.

Consider that we have two Cartesian coordinate systems, also called iner-
tial reference frames, R(z,y, z,t) (or simply R) and R'(2/,y/, 2/, t’) (or simply
R’), where ¢t and t' denote the time coordinates, (x,y, z) and (2/,y',2") de-
note the spatial coordinates. The reference frame R’ moves relative to R
with the velocity v in along the x—axis. We know that the coordinates y
and z perpendicular to the velocity are the same in both reference frames:
y =1y and z = 2/. So, it is sufficient to consider only a transformation of
the coordinates (¢,z) from the reference frame R to the coordinates (¢, 2’)
with

' = F(t,z) (1)
¥ =G(t, ) (2)
in the reference frame R'.

From the translation symmetry of space and time, Physicists conclude
that the functions F' and G must be linear functions. And it is now well
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known that, when the transformation is linear, we have the following rela-
tions [3] (with the additional constraint that 2’ = 0 if and only if x = vt)

()-Gen) -G - o

where ¢ is a positive constant (which turns out to be the light speed), 8 = 2

(&
and v = \/117? The (linear) Lorentz Transformation is equivalently given

by (1) and (2) or by (3) with

Y = F(t,2) =2t — wg) = - f(ct,2) (4)
¥ = G(t,z) = y(—vt +z) = g(ct, x). (5)

One way to get relations (3) is to assume the conservation of the pseudo-
norm of Minkowski, derived from the pseudo-scalar product of Minkowski,
through a linear application from R to R'.

The pseudo-scalar product of Minkowski is the non-degenerate symmetric
bilinear form 7 given by

77(131,162) =T1T2 — 2122,

where P| = (11,21) € R? and P, = (12, 72) € R

2 Main result: the Lorentz Transformation must
be linear

The Lorentz Transfomation (f,g), given by (3), is the unique linear trans-
formation from R? onto R? that preserves the pseudo-norm of Minkowski,
that is

/ /
At? g2 = 22 2

or
R R g R
for all (t,z) € R? with 7 =ct, 7/ = ct’ = f(ct,x) and 2’ = g(ct,x).
In this short note, we will show that, under smooth regularity assump-
tions, a transformation L = (f,g), from R? to R? such that, for any two
points (71, 21) and (72, z2) in R? x R?

fr,x1) f(m2, 22) — g(11,21)g(72, 2) = T1T2 — 122 (6)

is linear. In other words, we will show that, under smooth regularity assump-
tions, if a transformation preserves the pseudo-scalar product of Minkowski,
it is necessarily linear. Note that we do not need to suppose that L is one
to one.



Benz [1] gives a more general result since he considers Lorentz Transfor-
mation defined as follows: let X be a real inner product space of arbitrary
finite or infinite dimension > 2. The mapping A : X — X is called a Lorentz
Transformation if and only if it preserves the pseudo-distance of Minkowski,
derived from the eponym pseudo-norm. Then, the Lorentz Transformation
is explicitly written by means of Lorentz boosts and orthogonal transforma-
tions.

Our result is more restrictive since we only consider the space R2. Our
ambition and intention are just to give a simple pedagogical proof, with
differentiability arguments unlike simple geometric ones used by Benz.

Let us now give our result.

Theorem 2.1 Let L = (f,g) be a application defined on R? with values
in R2. We assume that the second partial derivatives f20), f(0:2) = 4(2.0)

and g% ezist everywhere. The application L preserves the pseudo-scalar
product of Minkowski if and only if L = (f,g) is defined by

™\ (f(r,x)\ [ u kol [T (7
) \g(r,z))  \kou I x)’
for all (7,2) € R?, where u and [ are constant such that u? = [? =
with k2 < 1.

1-k32°

Proof. 1t is easy to check that if L = (f,g) is defined by (7) then (6) is
satisfied.

It takes more “time” (relatively not absolutly!) to prove that if (6) is
satisfied by L then the latter is necessarily given by (7).

L = (f,g) preserves the pseudo-scalar product of Minkowski means that,
for any two points (71,71) and (72,22) in R? x R2, we have the following
equation

1Ty — 2122 = f(T1,21) f (T2, 22) — g(T1,21)9(T2, X2). (8)
We differentiate equation (8) twice with respect to 71 to get
FEO (r, 21) f (12, 22) — 20 (71, 21)g(72, 22) = 0. (9)

If there exists a point (To,xo) such that f(Q’O)(TO,
from (9), for all (,2) € R? and for (1, 21) = (79, 2°

f(T,(L‘) - /{:g(T,.%’), (10)

2%) # 0, then we get
)

g(20) (70, 50

, so that we must get from (8) for (71,x1) = (72, x2) =

(r,7)
=2 = (K* - 1)g*(7, 2). (11)



which is not true for all (7,z) in R?, in contradiction with (8). Thus, for all
(1,7) in R?
FEO(r,z) =0,

so that f19) (7, 2) = u(x), where u is a function defined on R. Similarly, we
can show that ¢(>0(7,2) = 0, so that g0 (7, ) = v(z), for all (7, ) in R
where v is a function defined on R.

Now, we differentiate equation (8) twice with respect to z1 to get

FO2 (71, 20) f (2, 0) — g2 (11, 21) g (72, 2) = 0. (12)
Like previously, we get in a similar way
FOD(r ) = w(r)
9OV (r,) = 1(r)

for all (7,z) in R?, where w and [ are two functions defined on R.
At this step, we have the following summary: for all (7,z) in R?, the
Jacobian matrix J of the transformation (f,g) has the following form

oo (22 1)
Now, let’s take the derivative of equation (8) with respect to 71 to get
T2 = f(l’o)(71,331)f(7'2,332) - 9(1’0) (71, 21)9(72, ¥2). (13)
And we now take the derivative of equation (13) with respect to z2 to get
SO (r1,20) fOD (79, 20) — g0 (71, 21) 9" (73, 22) = 0. (14)
Thus, we get for all (7, ) in R?
u(@)w(r) = v(@)l(7). (15)

Then assume that I(7) = 0 = g(%V (7, z) for all 7 € R, thus g is of the form
g(1,2) = L(7), where L is a function defined on R. Thus, we get from (8),
for all (7,z) in R?
2 2 _ 2 2
T4 —x® = f(r,x) — L*(7). (16)

Differentiating twice this last equation with respect to x gives
w*(1) = -1

which is absurd. Thus, there exists 79 such that I(79) # 0 for which equa-
tion (15) becomes

v(x) = w(TO)u(x) = kou(z),




for all x in R.Then, from (15), we get
w(@)w(r) = kou()l(r). (17)
We can similarly show that there exists zp such that u(xg) # 0 so that
u(zo)w(r) = kou(xo)l(7), (18)

leads to
w(T) = kol(T),

for all 7 in R.
Now, from (8), with (71, 21) = (72,22) = (7, ), we have

722 = 21, 2) — (7, 2). (19)

Taking twice the second derivative of this last equation with respect to 7,
we obtain
(1- k(Q])UQ(x) =1,

and taking twice the second derivative of the same equation (19) with respect
to x, we get
(1—kH2(r) = 1.

Finally, if L preserves the pseudo-scalar product of Minkowski, the functions
u, | and so v and w are necessarily piecewise constant functions, and the
constant kg is necessarily such that k:g < 1. The Jacobian matrix J of the
transformation (f,g) can be re-written as follows, for all (7, ) in R?

o= (382 49)

with u?(z) = 1*(1) = ﬁ
0

Suppose now that for x; # xo we have u(x1)u(ze) = which means

ﬁ)
that w(z1) and u(za) are of opposite signs. Then, from equation (8), we
get the following contradiction 1 = —1. We get the same contradiction by
considering two different 7 and 7o for which [(71) and [(72) are of opposite
signs.

Finally, the Jacobian matrix J of the transformation (f,g) takes neces-
sarily the following form, for all (7, ) in R?

u kol
s = (o, M.

where u and [ are constant such that u? = [ = ﬁ, with ko satisfying
0

kg < 1. O



3 Conclusion

At this stage, we now know that L = (f, g) is of the form

()= () = G ) () 20)

where v and [ are constant such that u? = [? = 1jk2, with k2 < 1.
0

From physical considerations, in particular the symmetric role played by
the reference frames R and R’ and the same sign for 7 = ¢t and 7/ = ct/, we

7 41 :
get that u =1 = i In conclusion, we have

)= (en) -G W) E) @

— ] — 1 : 2
where u =1 = i with ko such that k5 < 1.

With the additional constraint that ' = 0 if and only if 2 = vt, we obtain

that kg = —2 = —f3, and the well known (linear) Lorentz Transformation (3).

References

[1] W. Benz, Classical Geometries in Modern Contexts. Geometry of Real
Inner Product Spaces, Birkhduser Verlag, Basel-Boston-Berlin, 2005.

[2] A. Einstein, Ist die Trégheit eines Korpers von seinem Energieinhalt ab-
héngig? Annalen der Physik, 18 (1905), pp. 639-643.

[3] J.M. Lévy-Leblond, One more derivation of the Lorentz transformation,
Am J Phys, 44 (3) (1976), pp. 271-277.



	modele_tse_wp1708
	lorentztransformation

