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Abstract. Environmental decisions often involve irreversibility and un-
certainty. We develop a dynamic model in which actions yield flow bene-
fits but, once an unknown tipping point is crossed, the accumulated stock
of past actions raises the risk of irreversible catastrophe. Because con-
stitutions are incomplete contracts, contingent policies cannot be fully
specified, and authority is delegated to decision-makers who observe the
current stock but hold biased beliefs, decreasing welfare. Such delegation
is thus costly. Imposing caps on early actions can limit discretion and
improve welfare, providing foundations for the Precautionary Principle as
a second-best institution.
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1. Introduction

Many economically valuable activities – fossil-fuel consumption, land conversion, etc. –

produce flow payoffs today, while simultaneously contributing to cumulative stocks that

may trigger discontinuous changes in ecological or climatic systems. Society may not know

where the relevant tipping point (thereafter TP ) lies, whether it has already been crossed,

or how close it is. The combination of irreversibility and uncertainty has long been central

to environmental economics (Arrow and Fisher, 1974). It also raises an institutional ques-

tion: who should decide, when, and under what constraints? The policy response is often

framed through the Precautionary Principle. In the absence of reliable assurances of safety,

decision-makers refrain from actions that may harm future generations.

This paper offers a mechanism-design rationale for precautionary caps in a dynamic

environment with uncertain TP s and institutional incompleteness. Building on Guillouet
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and Martimort (2025), we analyze an economy in which (i) actions generate current bene-

fits, (ii) the accumulated stock of past actions increases the probability of catastrophe once

an unknown TP is crossed, and (iii) the location of that TP is uncertain and may already

have been passed when acting.

Two economic forces organize the analysis. The optimal policy follows a stock-based

feedback rule that trades off current benefits against the shadow cost of moving the system

closer to the (maximal) threshold. This is an Irreversibility Effect: higher actions today raise

the stock, thereby increasing catastrophe exposure and lowering the value of acting. With

uncertainty about the TP location, a second force emerges. If the agent chooses higher

actions today and the system survives, then survival is more informative that the TP lies

ahead. In this sense, actions influence how future survival updates beliefs. This generates a

Pseudo-Learning Effect: taking higher actions and surviving brings “good news” and makes

DM more cautious in the future. Relative to the case where the TP is known, uncertainty

strengthens precaution even though no direct signal is observed.

Institutional frictions undermine these forces. Constitutions cannot encode fully con-

tingent plans in terms of the stock. Instead, authority is delegated to a sequence of DM s

who can commit only for a short time and who discount the future using their own biased

priors. Incoming DM s may underweight the inference from past survival—whether due

to bounded rationality, political turnover, or systematic biases—and fail to internalize the

pseudo-learning externality that current actions impose on future behavior. As a result,

delegated policy is too aggressive early on.

We study simple constitutional constraints that are feasible under incompleteness, such

as temporary caps (or floors) on early actions. These rules resemble delegation mecha-

nisms in the mechanism design literature (Holmström, 1984), but here the motivation is

dynamic and informational: constraints are most valuable when belief-driven distortions

are largest. When delegated DM s are over-pessimistic (assigning too much probability

to having crossed the TP ), an early cap is optimal under broad conditions. This result

provides a formal underpinning for precautionary restrictions as second-best institutions.

2. Model

A representative agent chooses an action (e.g. consumption, production) x(τ) at each date

τ . Time is continuous, and payoffs are discounted at rate r > 0. The flow payoff is u(x(τ)) =

ζx(τ)− x2(τ)
2 and the myopic (static) optimum is x= ζ . Actions accumulate into a stock
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X(t). An environmental catastrophe may occur at an arrival rate θ(t) that depends on

whether the stock has crossed a tipping point X̃ , θ(t) = ∆1{X(t)>X̃}, where ∆> 0 is the

hazard rate once the TP is crossed. If the TP is crossed at t < τ , the probability of surviving

until τ is e−∆(τ−t). After a catastrophe, no further payoffs are obtained.

The TP takes one of two values: X̃ = 0 (prob. q) and X̃ =X > 0 (prob. 1−q). If X̃ = 0,

catastrophe risk is present immediately; if X̃ =X , risk begins only after the stock exceeds

X . Importantly, it is never observed whether the TP has been crossed until X is passed.1

Beyond X , the TP must have been crossed, so the optimal action then equals the myopic

level ζ , yielding a payoff V∞ = u(ζ)
λ , where λ= r+ ∆ is the effective discount rate.

Along any trajectory that has not yet reached X , survival up to date t occurs with

probability Z(q, t) = 1−q+qe−∆t. Conditional on survival up to t, the posterior probability

that the TP lies at 0 is q(t) = qe−∆t

1−q+qe−∆t . Survival is “good news” since q(t)≤ q. The longer

the system survives, the less likely it is that the hazard has been active since t= 0.

Two features are worth emphasizing. First, the stock X(t) is a sufficient statistic for

the physical state of the system, but the posterior belief depends on how much time has

elapsed without catastrophe, which itself depends on past actions. Second, even though no

direct signal arrives, the absence of catastrophe is informative and affects optimal behavior.

3. The Planner’s Optimum

A planner chooses an action plan that depends on the full past history of actions and

her beliefs. At each point in time, she maximizes continuation payoff given current beliefs,

which themselves are endogenously generated by the chosen policy.2 The planner follows

a feedback rule σc mapping current stock into current action. This rule is sufficient to

reconstruct the full history of past actions and, therefore, the belief path. Given the stock

X , the time elapsed without catastrophe can be inferred as T c(X) =
∫X

0
dX̃

σc(X̃) and the

associated posterior belief is qc(X) = q(T c(X)). Accordingly, the planner’s value function

isWc(X) =
∫ +∞

0 e−rτ Z(qc(X), τ)u(σc(Xc(τ,X)))dτ. If instead the TP has in fact already

been crossed (i.e., X̃ = 0) but the planner behaves as if it may still lie ahead, her realized

payoff is ϕc(X) =
∫ +∞

0 e−λτ u(σc(Xc(τ,X)))dτ. The differenceWc(X)−ϕc(X) is the value

1Tsur and Zemel (1995) study related problems in which crossing a threshold may be detected, altering
the nature of learning and policy.

2Lemoine and Traeger (2014) analyze how environmental policies should optimally respond to tipping
points.
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of optimism: expected continuation value is higher when future payoffs are discounted at

r rather than at r+ ∆ in the event the hazard is already active.

Proposition 1. At the planner’s optimum, the feedback rule σc(X) satisfies

σc(X) = ζ + Ẇc(X) + q̇c(X)
1− qc(X)

(
Wc(X)−ϕc(X)

)
, X ∈ [0,X). (3.1)

Proposition 1 delivers a transparent decomposition. The benchmark case q = 1 (TP at

0 for sure) yields σc(X) = ζ : once the hazard is certainly active, additional stock does not

change the hazard and the optimal act is the myopic outcome. The opposite benchmark

q = 0 (TP at X for sure) reduces to a standard depletion problem. Then σc(X) = ζ +

Ẇc(X) < ζ for all X < X . As the stock rises, future exposure becomes more imminent,

and the shadow value of preserving distance increases; the planner acts more conservatively.

With uncertainty (q ∈ (0,1)), the term Ẇc(X) still reflects the irreversibility channel: a

marginal increase in today’s action raises the stock and reduces continuation value by

bringing the system closer to X . This is the standard logic in the quasi-option value and

irreversible investment traditions, adapted here to a hazard that turns on discontinuously.

The additional term, q̇c(X)
1−qc(X)

(
Wc(X)−ϕc(X)

)
, captures pseudo-learning. Because sur-

vival lowers the posterior that X̃ = 0, qc(X) declines along the optimal path. A higher

action today accelerates the accumulation of stock and therefore a given stock level is

reached after less time has elapsed. With less time for survival to “prove” safety, the pos-

terior remains more pessimistic. Conversely, a lower action slows accumulation, lengthens

the survival window, and makes the planner more optimistic about not having crossed the

TP—which changes her future incentives. Put differently, the policy affects how informa-

tive the absence of catastrophe is. This mechanism strengthens precaution relative to a

world with a known TP . A useful implication is that the optimal policy may be more

conservative early on, when little knowledge has been generated. This is exactly the region

in which institutional constraints can generate the greatest welfare benefits.

4. Delegated Decision-Making

We now introduce institutional incompleteness and delegation. Decision-making is dele-

gated over time to an infinite sequence of short-lived DM s. Each DM observes the current

stock but enters office with a fixed prior and discounts the future accordingly. Specifically,

every incoming DM believes that the TP lies at 0 (resp. X) with probability p (resp. 1−p),
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thereby ignoring the information contained in survival up to the date she takes office. Be-

cause survival is “good news" that the TP has not yet been crossed, an incoming DM

is always more pessimistic than the predecessors would be at the same stock level. When

p > q, the DM is also over-pessimistic relative to the planner in the sense that she assigns

too much probability to having already crossed the TP .3 Because all DM s begin with the

same prior, they disagree about how to discount future payoffs and thus about which future

actions should be taken. This generates a dynamic continuous-time game among successive

office-holders (Karp 2007; Ekeland and Lazrak 2010). At date t the incumbent DMt can

commit only over an infinitesimal interval and chooses the current action x(t) to maximize

welfare from that point onward, given her beliefs and the current stock. At a stock-based

equilibrium (SBE), all DM s follow a common feedback rule σ∗ mapping stock into action:

the incumbent finds no infinitesimal impulse deviation profitable, anticipating that all fu-

ture DM s will also follow σ∗. Accordingly, the payoff for a DM observing stock level X

is W∗(X) =
∫ +∞

0 e−rτZ(p, τ)u(σ∗(X∗(τ,X)))dτ, where X∗(τ,X) is the stock trajectory

under σ∗. If the TP has in fact already been crossed but the current DM wrongly believes

otherwise, her realized payoff is ϕ∗(X) =
∫ +∞

0 e−λτ u(σ∗(X∗(τ,X)))dτ.

Proposition 2. At any SBE, the feedback rule satisfies for all X ∈ [0,X):

σ∗(X) = ζ + Ẇ∗(X). (4.1)

Comparing (4.1) with (3.1) highlights the institutional wedge: delegated DM s ignore

how their actions influence future beliefs and the value of optimism. The Pseudo-Learning

Effect disappears. Delegated policy is still affected by irreversibility (since Ẇ∗(X) < 0

implies σ∗(X)< ζ), but precaution is weaker because the informational externality is not

internalized. Intuitively, each DM would like successors to behave more cautiously, because

aggressive future actions increase catastrophe risk when the TP lies ahead. Yet successors

do not share the incumbent’s more optimistic posterior formed after survival. This generates

a dynamic externality: current actions affect future behavior through the evolution of the

stock and through the information that survival would convey, but the latter channel is

severed by institutional turnover and biased priors. The equilibrium thus tends to feature

3One interpretation is bounded rationality or limited institutional memory; another is political econ-
omy, where incoming DMs cater to constituencies with systematically distorted beliefs.
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excessively high actions early on, when the planner would otherwise value the option of

learning through survival and would shade actions down.

Proposition 3. There exists a unique SBE, (W∗(X), σ∗(X)), with boundary conditions

W∗(X) = ϕ∗(X) = V∞. 1) W∗ is always decreasing. 2) ϕ∗ is increasing when X is suffi-

ciently small, and first decreasing then increasing when X is sufficiently large. 3) Whether

X is sufficiently small or sufficiently large, we have

Ẇ∗(0)− ϕ̇∗(0)< 0. (4.2)

The inequality (4.2) concerns the marginal value of optimism at the start. When X is

large, early DM s view the TP as remote and choose actions close to ζ , so bothW∗ and ϕ∗

initially decline only slightly. As X approaches X , irreversibility binds more strongly and

W∗ falls more significantly. Since ϕ∗ is discounted more heavily, it declines less quickly,

making the marginal value of optimism negative at the origin. When X is small, the

trajectory hits X quickly. The Irreversibility Effect binds early, and W∗ falls sharply while

ϕ∗ rises along the entire path because reaching X quickly resolves uncertainty and moves

the system into the “hazard-on” regime where the continuation value is pinned by V∞.

In both cases, slowing stock accumulation increases the gap between how an optimistic

planner and a pessimistic DM value continuation, a force that will shape the optimal

constitutional constraint.

5. Constraints on Early Actions

We now evaluate simple constitutional rules that are feasible under incompleteness. An

impulse regulation imposes an action x from the start of the trajectory for an infinitesimal

duration ε. Such a rigid requirement captures the idea that constitutions cannot condition

on the endogenous stock, but can impose coarse constraints at early dates. After this initial

period, the economy follows the delegated trajectory, with biased DM s applying the SBE

feedback rule σ∗. The planner’s payoff under the impulse regulation (x, ε) is

Wr(x, ε) =
(∫ ε

0
e−rτZ(q, τ)dτ

)
u(x) +

∫ +∞

ε
e−rτZ(q, τ)u(σ∗(X∗(τ − ε,xε)))dτ. (5.1)

Without any regulation, the planner receives Wr(0,0) =W∗(0) + p−q
1−p
(
W∗(0)−ϕ∗(0)

)
.

Both the planner and DM0 discount future payoffs using survival probabilities; the only

difference lies in their priors q and p. When p > q, the planner is more optimistic, values



Institutional Design for Environmental Acts 7

the future more, and therefore obtains a greater payoff than DM0 would under her own

criterion; this difference is magnified when DM0’s value of optimismW∗(0)−ϕ∗(0) is large.

To determine whether an impulse regulation should constrain delegated DM s—and in

which direction—we expandWr(x, ε) for small ε:Wr(x, ε) =Wr(0,0) + ε ∂W
r

∂ε (x,0) +o(ε).

Let xr denote the action that maximizes the linear term in ε. Regulation imposes a cap

(resp. floor) when xr < σ∗(0) (resp. xr > σ∗(0)).

Proposition 4. Suppose p > q. An impulse regulation optimally imposes a cap xr on early

actions when X is either sufficiently small or sufficiently large, where

xr = σ∗(0) + p− q
1− p

(
Ẇ∗(0)− ϕ̇∗(0)

)
< σ∗(0). (5.2)

The planner’s continuation payoff following the impulse regulation is always greater

than that of the biased DMε who inherits stock xε, by δ(x, ε) = p−q(ε)
1−p

(
W∗(xε)−ϕ∗(xε)

)
.

This difference again reflects the value of optimism. For small ε, q(ε) ≈ q < p, so the

planner remains more optimistic than DMε. When the delegated DM0’s marginal value

of optimism at zero is negative, Ẇ∗(0) − ϕ̇∗(0) < 0, capping early actions below σ∗(0)

increases the planner’s gain. Intuitively, slowing the evolution of the stock makes survival

more informative over the relevant horizon and raises the value of policy caution that future

DM s would otherwise fail to adopt. Proposition 3 establishes that this situation arises

robustly when X is either sufficiently large (learning is slow and valuable) or sufficiently

small (irreversibility binds immediately and early mistakes are hard to undo).

These circumstances rationalize a Precautionary Principle: overly pessimistic delegated

DM s should be forced to keep early actions low when meaningful learning and welfare-

relevant information accumulation occur only over time, and when institutional turnover

prevents DM s from internalizing the informational consequences of early policy choices.

Conversely, when p < q (delegated DM s are over-optimistic), the same formula (5.2)

implies that the planner may benefit from a floor rather than a cap: pushing early actions

above σ∗(0) is welfare-improving when delegated DM s would otherwise be too conservative

relative to society’s true objective. In that case, accelerating stock accumulation can reduce

disagreement between the planner and delegated DM s. This scenario motivates a reverse

Precautionary Principle, in which early minimum standards (rather than caps) correct

excessive conservatism.



8 L. Guillouet, D. Martimort

6. Discussion and Extensions

Several extensions preserve the core logic and can strengthen the case for early constraints.

First, allowing catastrophe to impose a fixed loss at the moment it occurs (in addition

to terminating payoffs) strengthens the irreversibility force and increases the welfare gain

from caps that curb early excesses under delegation. Second, the result is robust to a

noisy mapping between stock and information (e.g., imperfect measurement of cumulative

emissions or uncertain climate response). Third, richer structures (multiple thresholds or

a continuum of possible TP s) would increase the appeal of early constraints, since fully

contingent plans become even less implementable. The model suggests that institutions that

preserve informational continuity across political turnovers (e.g., independent agencies with

long horizons, or legally mandated learning protocols) should behave more like the planner

and rely less on blunt caps. Conversely, environments with high turnover and contested

information should exhibit stronger demand for simple, early, rule-like constraints.
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8. Appendix

Proof of Proposition 1. Consider an impulse deviation in which the planner chooses action
x for an infinitesimal time ε, raising the stock by εx, after which σc is resumed. The planner’s
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deviation payoff is

Ŵc(x, ε,X) =
(∫ ε

0
Z(qc(X), τ)e−rτ dτ

)
u(x)+

∫ +∞

ε

e−rτZ(qc(X), τ)u(σc(Xc(τ−ε,X+εx)))dτ.

(8.1)
Observe that qc(X) = qe−∆Tc(X)

1−q+qe−∆Tc(X) evolves according to

σc(X)q̇c(X) =−∆qc(X)(1− qc(X)), with qc(0) = q. (8.2)

Observe now that the survival probability satisfies the simple rule

Z(qc(X), τ + ε) = Z(qc(X), τ)− qc(X)
(

1− e−∆ε
)
e−∆τ .

Equipped with this condition and changing variables, we rewrite the benefit of a deviation as

Ŵc(x, ε,X) =
∫ ε

0
Z(qc(X), τ)e−rτu(x)dτ

+e−rε
(
Wc(X + xε) +

∫ +∞

0
e−rτ

(
Z(qc(X), τ)−Z(qc(X + xε), τ)

)
u(σc(Xc(τ,X + xε)))dτ

−qc(X)
(

1− e−∆ε
)
ϕc(X + xε)

)
.

Taking a first-order Taylor approximation in ε yields

Ŵc(x, ε,X) =Wc(X) + ε
∂Ŵc

∂ε
(x,0,X) + o(ε).

At an optimum (Wc(X), σc(X)) of the planner’s problem, any impulse deviation must be weakly
dominated. Hence, we must have

0 = max
x∈R+

∂Ŵc

∂ε
(x,0,X)

or

0 = max
x∈R+

(
−rWc(X)−∆qc(X)ϕc(X) + u(x) + x

(
Ẇc(X) + q̇c(X)W

c(X)−ϕc(X)
1− qc(X)

))
.

The necessary conditions for optimality are then

rWc(X) + ∆qc(X)ϕc(X) = max
x∈R+

u(x) + x

(
Ẇc(X) + q̇c(X)

1− qc(X)
(
Wc(X)−ϕc(X)

))
, (8.3)

σc(X) ∈ arg max
x∈R+

u(x) + x

(
Ẇc(X) + q̇c(X)

1− qc(X)
(
Wc(X)−ϕc(X)

))
. (8.4)

Given strict concavity of the maximand above, an interior solution is given by (3.1). Inserting
(3.1) into (8.3) and using (8.2) also yields

rWc(X) + qc(X)∆ϕc(X) = u(σc(X)) + σc(X)Ẇc(X)− qc(X)∆(Wc(X)−ϕc(X)) (8.5)

with the boundary condition Wc(X) = V∞.
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Proof of Proposition 2. We define the deviation payoff Ŵ∗(x, ε,X) as

Ŵ∗(x, ε,X) =
(∫ ε

0
e−rτZ(p, τ)dτ

)
u(x) +

∫ +∞

ε

e−rτZ(p, τ)u(σ∗(X∗(τ − ε,X + xε)))dτ.

Changing variables, we rewrite this expression as

Ŵ∗(x, ε,X) =
(∫ ε

0
e−rτZ(p, τ)dτ

)
u(x) + e−rε

∫ +∞

0
e−rτZ(p, τ + ε)u(σ∗(X∗(τ,X + xε)))dτ.

Using the identity Z(p, ε+ s) = Z(p, ε)Z(p(ε), s) we have

Ŵ∗(x, ε,X) =
(∫ ε

0
e−rτZ(p, τ)dτ

)
u(x)+e−rεZ(p, ε)

(∫ +∞

0
e−rτZ(p(ε), τ)u(σ∗(X∗(τ,X+xε)))dτ

(8.6)
where p(ε) = pe−∆ε

1−p+pe−∆ε and, for ε small enough, p(ε) = p−∆p(1− p)ε+ o(ε). The deviation
payoff can actually be expressed as

Ŵ∗(x, ε,X) =
(∫ ε

0
e−rτZ(p, τ)dτ

)
u(x)

+e−rεZ(p, ε)
(
W∗(X + xε)− p(ε)− p

1− p
(
W∗(X + xε)−ϕ∗(X + xε)

))
.

Assuming W∗ differentiable, a first-order Taylor approximation in ε yields

Ŵ∗(x, ε,X) =W∗(X)+ε
(
−(r+ p∆)W∗(X) + u(x) + xẆ∗(X)− ṗ(0)

1− p
(
W∗(X)−ϕ∗(X)

))
+o(ε)

or, using ṗ(0) =−∆p(1− p),

Ŵ∗(x, ε,X) =W∗(X) + ε
(
−rW∗(X)− p∆ϕ∗(X) + u(x) + xẆ∗(X)

)
+ o(ε)

We rewrite this Taylor expansion as

Ŵ∗(x, ε,X) =W∗(X) + ε
∂Ŵ∗

∂ε
(x,0,X) + o(ε).

At a SBE (W∗(X), σ∗(X)), any impulse deviation must be weakly dominated for the current
decision-maker. We should thus have

0 = max
x∈R+

∂Ŵ∗

∂ε
(x,0,X) = max

x∈R+

(
−rW∗(X)−∆pϕ∗(X) + u(x) + xẆ∗(X)

)
. (8.7)

Given strict concavity of the maximand above, an interior solution is given by (4.1). Inserting
into the maximand of (8.7) yields

rW∗(X) + p∆ϕ∗(X) = u(σ∗(X)) + σ∗(X)Ẇ∗(X). (8.8)

Proof of Proposition 3. Inserting (4.1) into (8.8), we obtain

rW∗(X) + p∆ϕ∗(X) = (ζ + Ẇ∗(X))2

2 .
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Taking the highest root yields{
Ẇ∗(X) =−ζ +

√
2 (rW∗(X) + p∆ϕ∗(X)) if X ∈ [0,X),

W∗(X) = V∞ if X ≥X.
(8.9)

Finally, we obtain

σ∗(X) =

{√
2 (rW∗(X) + p∆ϕ∗(X)) if X ∈ [0,X),

ζ if X ≥X.
(8.10)

Backwards and Forwards System of Ordinary Differential Equations. We now form a
system of ODEs for ϕ∗(X) and W∗(X). Studying its properties provides existence and unique-
ness of a solution. Observe that, for X ∈ [0,X), ϕ∗ is differentiable when σ∗ is, with

ϕ̇∗(X) =
∫ +∞

0
e−λτu′(σ∗(X∗(τ,X))σ̇∗(X∗(τ,X))∂X

∗

∂X
(τ,X)dτ

where ∂X∗

∂X (τ,X) = σ∗(X∗(τ,X))
σ∗(X) . Manipulating and integrating by parts yields the ODE for ϕ∗:

σ∗(X)ϕ̇∗(X) = λϕ∗(X)− u(σ∗(X)). (8.11)

Using (8.10), we rewrite this condition as

ϕ̇∗(X) = λϕ∗(X)− u(σ∗(X))√
2 (rW∗(X) + p∆ϕ∗(X))

. (8.12)

Together with the definition of σ∗ in (8.10), (8.9) and (8.12) define a system of ODEs whose
trajectories may be represented in the (ϕ,W) plan. The terminal conditions for this system are

W∗(X) = ϕ∗(X) = V∞ (8.13)

where equalities follow from the fact that uncertainty is resolved for all decision-makers once the
stock reaches X .
Existence and Unicity. The locus L1 of points such that ϕ̇∗(X) = 0 is defined as λϕ= u(σ∗)
or

σ∗ = ζ ±
√

2λ(V∞ −ϕ).

Using the expression of σ∗ from (8.10), we find that L1 is made of two branches:

2(rW + p∆ϕ) =
(
ζ ±

√
2λ(V∞ −ϕ)

)2
. (8.14)

It turns out that ϕ̇∗(X)> 0 (resp. < 0) when the trajectory lies below (resp. above) this locus.
Observe also that W∗(X) = ϕ∗(X) = V∞ lies below L1 since 2(r+ p∆)V∞ < ζ2 = 2λV∞.

Similarly, the locus L2 of points such that Ẇ∗(X) = 0 is, from (8.9),

2(rW + p∆ϕ) = ζ2. (8.15)

We have Ẇ∗(X)< 0 (resp. > 0) when the trajectory lies below (resp. above) this locus.
Observe that L1 and L2 intersect at

W∞ =
(

1 + 1− p
r

∆
)
V∞ and ϕ∞ = V∞. (8.16)
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Consider now the backward trajectories of the system (8.9)-(8.12). Accordingly, letW∗(Y ) =
W∗(X − Y ) and ϕ∗(Y ) = ϕ∗(X − Y ) be the solution to the backward system; thus considering
values of the stock X = X − Y ≤X for Y ≥ 0 and viewing Y = 0 as the initial point of those
backward trajectories. For this backward system, the initial conditions are the same as the
terminal conditions (8.13) of the forward system, i.e.,

W∗(0) = ϕ∗(0) = V∞. (8.17)

Using (8.9)-(8.12), we can write this backward system as

Ẇ∗(Y ) = ζ −
√

2 (rW∗(Y ) + p∆ϕ∗(Y )) (8.18)

ϕ̇∗(Y ) = u(σ∗(Y ))− λϕ∗(Y )√
2 (rW∗(Y ) + p∆ϕ∗(Y ))

(8.19)

where, from (8.10), we define

σ∗(Y ) = σ∗(X − Y ) =
√

2 (rW∗(Y ) + p∆ϕ∗(Y )). (8.20)

Trajectories of the backward system, if they converge when Y goes to infinity (or equivalently, con-
sidering X going to infinity in the forward system), do so towards the stationary point (ϕ∞,W∞)
where L1 and L2 intersect.

Observe that the action σ∗(X−) is given by (8.10), i.e.,

σ∗(X−) = ζ

√
1− 1− p

λ
∆< ζ. (8.21)

The backward system (8.18)-(8.19) satisfies a Lipschitz condition at Y = 0 with

Ẇ∗(0) = ζ

(
1−
√

1− 1− p
λ

∆

)
> 0 and ϕ̇∗(0) = u(σ∗(X−))− λV∞

σ∗(X−)
< 0 (8.22)

where the last inequality follows from the fact that λV∞ = ζ2

2 is maximizing flow payoff. From
Cauchy-Lipschitz Theorem, locally in a right-neighborhood of Y = 0, there exists a unique solu-
tion to the backward system (8.18)-(8.19) together with the initial condition (8.17). This solution
can be extended over the whole interval

[
0,X

]
. Observe that the initial conditions (8.17) of the

backward system are the same for all possible values of X and that the derivatives Ẇ∗(0) and
Ẇ∗(0) in (8.22) are also independent of X since, from (8.21), σ∗(X−) = σ∗(0+) is itself so. For
all values of X , solutions of the forward system thus lie on the same one-dimensional locus L in
the (ϕ,W) space. Hence, fixing a particular value X amounts in fact to choosing a point along
the locus L that corresponds to the initial values (W∗(0),ϕ∗(0)) for the forward system.
Long-run behavior of the backward system. Because (ϕ∗(0),W∗(0)) lies on the diagonal,
below both L1 and L2, the trajectory of the backward system starting from ϕ∗(0) =W∗(0) = V∞
is such thatW∗ is increasing while ϕ∗ is first decreasing (and always so for all values of Y ∈

[
0,X

]
when X is small) before it eventually reaches L1 and is increasing afterwards (case where X is
large). Observe that ϕ∗, once it has already crossed L1 at some Y1 and lies above L1 cannot cross
it one more time at some finite Y2 > Y1 since when it crosses L1 , it must cross it necessarily
with ϕ̇∗(Y2) = 0 but this cannot be for a trajectory coming from above L1 unless it is at point
where L1 admits a vertical tangent; and the only such point corresponds to ϕ = V∞, which is
only reached for Y2 = +∞.
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For the forward system, we have the reverse pattern. First, W∗ is always decreasing starting
from W∗(0) and going to W∗(X) =W∗(0) = V∞. Hence Item 1. is proved.

Second, when X is large enough, (ϕ∗(0),W∗(0)) lies above L1 and thus ϕ∗ is first decreasing
starting from ϕ∗(0) before it necessarily reaches L1 and becomes increasing afterwards towards
ϕ∗(X) = V∞. When X is small enough, (ϕ∗(0),W∗(0)) lies below L1 and thus ϕ∗ is always
increasing starting from ϕ∗(0). Hence, Item 2. is proved.

That W∗ is always decreasing in the forward system, also implies that σ∗(X) < ζ, for
X ∈ [0,X). When X increases towards +∞, (ϕ∗(0),W∗(0)) converges towards (ϕ∞,W∞) which
is the stationary point of the backward system. Moreover, by definition, we have W∗(X) ≤
λV∞

∫ +∞
0 e−rτ

(
1− p+ pe−∆τ)dτ =W∞. Hence, a trajectory of the backward system crossing

L2 stays below the horizontal line W =W∞ when converging towards (ϕ∞,W∞). Moreover, in
the neighborhood of (ϕ∞,W∞), the backward system can be linearized as

Ẇ∗(Y ) =− r
ζ

(W∗(Y )−W∞)− p∆
ζ

(ϕ∗(Y )−ϕ∞) (8.23)

ϕ̇∗(Y ) =−λ
ζ

(ϕ∗(Y )−ϕ∞). (8.24)

This linear system has two negative eigenvalues χ1 =−λζ and χ2 =− rζ and (ϕ∞,W∞) is thus a
stable node. The solutions to the linearized system are of the form

W∗(Y )−W∞ = pφ0e
−λζ Y +w0e

− rζ Y (8.25)

ϕ∗(Y )−ϕ∞ = φ0e
−λζ Y (8.26)

for (φ0,w0) arbitrary constants. We can eliminate Y from those two equations to get

W∗(Y )−W∞ = p(ϕ∗(Y )−ϕ∞) +w0

(
ϕ∗(Y )−ϕ∞

φ0

) r
λ

(8.27)

When Y → +∞, ϕ∗(Y )→ ϕ∞ and W∗(Y )→W∞ and the behavior of these solutions is thus
given by the dominant terms corresponding to the highest eigenvalue χ2, i.e., W∗(Y )−W∞ ∼

w0

(
ϕ∗(Y )−ϕ∞

φ0

) r
λ . In the (ϕ,W) spaces these solutions are thus tangent to the vertical line

ϕ= ϕ∞ = V∞ but remain above loci L1 since we know that ϕ∗(Y ) do not cross L1 twice.
For X large enough, (ϕ∗(0),W∗(0)) thus lies close to the vertical line ϕ= V∞ with W∗(0)<

W∞ and ϕ∗(0)< V∞ but ϕ∗(0)−V∞ is of a much lower order of magnitude than W∗(0)−W∞.
Hence, we must have W∗(0)<

(
1 + 1−p

r ∆
)
ϕ∗(0) for X large enough.

ForX small enough, (ϕ∗(0),W∗(0)) lies close to (V∞,V∞) and againW∗(0)<
(
1 + 1−p

r ∆
)
ϕ∗(0).

Using (8.8) and (8.12) at X = 0, we now compute

σ∗(0)
(
Ẇ∗(0)− ϕ̇∗(0)

)
= r
(
W∗(0)−

(
1 + 1− p

r
∆
)
ϕ∗(0)

)
. (8.28)

Hence, whether X is large or small enough, we have Ẇ∗(0)− ϕ̇∗(0)< 0 which proves Item 3.
Phase Diagram Illustration. This section illustrates the phase–plane analysis of the backward
system defined in equations (8.25)-(8.26).We fix parameters

ζ = 1, λ= 1.01, ∆ = 1, r = 0.01, p= 0.5, V∞ = 1
2.02 .
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Figure 1 displays the loci

L1 : 2(rW + p∆ϕ) =
(
ζ −

√
2λ(V∞ −ϕ)

)2
, L2 : 2(rW + p∆ϕ) = ζ2,

together with backward trajectories (ϕ∗(Y ),W∗(Y )) for X ∈ {1,10,100}. All trajectories start
from (V∞,V∞) and initially move to the right. When X is sufficiently large, the trajectory crosses
the lower branch of L1 once and thereafter remains strictly above it.

The horizontal axis on Figure 1 is zoomed around ϕ= V∞, while the vertical axis is extended
to display convergence toward the stationary point (ϕ∞,W∞). All trajectories start on the right
of the lower branch of L1, cross it and converge monotonically without further crossings.

0.42 0.43 0.44 0.45 0.46 0.47 0.48 0.49 0.50
phi

5

10

15

20

25

W

L1 (lower)
L2
Xbar=1
Xbar=10
Xbar=100
asymptotic tail

Figure 1. Backward trajectories (ϕ∗(Y ),W∗(Y )) for X ∈ {1,10,100} together with the lower
branch of L1 and locus L2.

Proof of Proposition 4. Using the identity Z(q, ε+ s) = Z(q, ε)Z(q(ε), s), the planner’s ex-
pected payoff in (5.1) writes also as

Wr(x, ε) =
(∫ ε

0
e−rτZ(q, τ)dτ

)
u(x) + e−rεZ(q, ε)

∫ +∞

0
e−rτZ(q(ε), τ)u(σ∗(X∗(τ,xε)))dτ

(8.29)
First, we rewrite (8.29) and obtain

Wr(x, ε) =
(∫ ε

0
e−rτZ(q, τ)dτ

)
u(x) + e−rεZ(q, ε)

(
W∗(xε) + p− q(ε)

1− p
(
W∗(xε)−ϕ∗(xε)

))
.

(8.30)
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We observe that q(ε) admits the following Taylor approximation when ε is close to zero q(ε) =
q −∆q(1− q)ε+ o(ε). We obtain a first-order Taylor approximation of Wr(x, ε) for ε close to
zero:

Wr(x, ε) =Wr(0,0) + ε

(
u(x) + x

(
Ẇ∗(0) + p− q

1− p
(
Ẇ∗(0)− ϕ̇∗(0)

)))
(8.31)

−ε
(

(r+ q∆)Wr(0,0)− q(1− q)∆
1− p

(
W∗(0)−ϕ∗(0)

))
+ o(ε).

UsingWr(0,0) =W∗(0)− q−p
1−p
(
W∗(0)−ϕ∗(0)

)
and (8.8) for X = 0, namely rW∗(0)+p∆ϕ∗(0) =

u(σ∗(0)) + σ∗(0)Ẇ∗(0), and (8.28), we obtain

Wr(x, ε) =Wr(0,0)+ε
(
u(x)− u(σ∗(0)) + (x− σ∗(0))

(
Ẇ∗(0) + p− q

1− p
(
Ẇ∗(0)− ϕ̇∗(0)

)))
+o(ε).

(8.32)
It follows from (8.32) that the optimal impulse regulation entails

xr ∈ arg max
x∈R+

u(x) + x

(
Ẇ∗(0) + p− q

1− p
(
Ẇ∗(0)− ϕ̇∗(0)

))
.

An interior solution thus satisfies (5.2). For p > q, we have

xr < σ∗(0)⇔Ẇ∗(0)− ϕ̇∗(0)< 0

Using (4.2), we conclude that, for X large (resp. small) enough and p > q, a cap on actions is
optimal and (5.2) immediately follows.
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