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1. INTRODUCTION

In many economic transactions, particularly in procurement, construction, and inter-

national trade, buyers must commit funds before goods or services are delivered. This

temporal gap creates a fundamental enforcement problem: the seller may accept the

prepayment but fail to deliver, opting instead to “take the money and run.” This risk

is particularly acute in developing economies where legal institutions are frail, and the

cost of recovering damages often exceeds the value of the transaction.

Empirical evidence highlights the severity of this friction. Antràs and Foley (2015)

document that in environments with weak contractual enforcement, exporters often

demand cash-in-advance terms, shifting the risk entirely to the importer. Conversely,

in the Kenyan rose export sector, Macchiavello and Morjaria (2015) show that when for-

mal contracts are unenforceable, trade relies heavily on the value of future relationships,

with reliability increasing as the relationship matures. Similarly, in the construction in-

dustry, statutory bonds and adjudication mechanisms are often required to prevent con-

tractors from absconding with funds, yet these mechanisms are imperfect substitutes for

robust legal enforcement.1

In this paper, we develop a model of repeated interaction between a buyer (princi-

pal) and a seller (agent) with persistent private information regarding production costs.

We analyze how the strength of the legal system, modeled as the magnitude of an enforce-

able penalty for breach, shapes the optimal contract. We depart from the assumption

of perfect commitment found in standard dynamic mechanism design (Baron and Be-

sanko (1984)) by introducing a one-sided enforcement constraint: the seller can breach

the contract after receiving payment but before delivery, paying a penalty Π and termi-

nating the relationship.

Our analysis reveals that the optimal stationary contract depends critically on the

magnitude of Π relative to the seller’s information rents and the value of future trade.

We identify three contractual regimes:

(i) Strong Enforcement (Π≥Πos): When the penalty for breach is sufficiently large, the

legal system provides a complete deterrent. The enforcement constraint is slack,

1See, for example, Civil Mining & Construction Pty Ltd v Isaac Regional Council (2014), where adjudi-

cation provided interim cash flow during a dispute, effectively preventing a total breakdown of the trade

relationship.
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and the optimal contract is the infinite repetition of the optimal static contract de-

rived by Baron and Myerson (1982). Here, statutory penalties alone suffice to sup-

port second-best efficiency.

(ii) Weak Enforcement (Π∗ ≤Π<Πos): When penalties are moderate, they cannot sup-

port the high transfers required to elicit truthful revelation from efficient types in

the standard second-best contract. To prevent the seller from taking the payment

and paying the fine, the principal must cap the transfer to the most efficient type

at exactly Π. Because incentive compatibility links transfers across types, this cap

forces the principal to pool the most efficient types (bunching) and distort output

downwards for less efficient types. In this regime, the contract is enforced by the

penalty, but the structure of the contract is distorted by the legal system’s limita-

tions.

(iii) Very Weak Enforcement (Π < Π∗): In environments where the legal penalty is neg-

ligible, the monetary fine is insufficient to deter breach. Enforcement must rely on

the “shadow of the future” (the discount factor δ). The seller complies only to pre-

serve the value of future rents. The optimal contract involves bunching and severe

output distortions to generate sufficient continuation value to prevent breach. This

aligns with the findings of Berglöf and Claessens (2006), who argue that in transi-

tion economies, private ordering must substitute for public enforcement, often at

the cost of restricted trade volumes or exclusion of new market entrants.

Our results provide a theoretical foundation for policy interventions in weak insti-

tutional environments. We show that improvements in the legal system (increasing Π)

and mechanisms that enhance the visibility of reputation (effectively increasing δ) are

complementary. By increasing the penalty for breach, policymakers do not just punish

deviance; they relax the constraints on screening, allowing for more sophisticated con-

tracts that reduce information rents and increase aggregate welfare, even though distri-

butional effects may be non-monotonic.

LITERATURE REVIEW. The paper is related to two actively developing areas of incentive

theory: dynamic mechanism design and relational contracts. In dynamic adverse selec-

tion models, the agent commits to the contract. This literature generally assumes that
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the agent’s type is constant over time.2 Under such full commitment and costless en-

forcement, Baron and Besanko (1984) show that the optimal contract is stationary and

it can be implemented by the optimal static contract. By assuming that the parties can

commit to the contract but not to continuing the relationship, our model weakens the

full commitment assumption in long-run contracting with fixed types. Laffont and Ti-

role (1993) study dynamic contracting with short-term contracts. The optimal contract

involves some pooling where the “ratchet effect” leads to bonuses to the efficient agent,

but it creates incentives for the take-the-money-and-run strategy. We show that the en-

forcement constraint alone may involve some pooling.

In contrast, the relational contracts literature mostly focuses on self-enforcing in-

centive contracts with independent types (Levin (2003), Wolitzky (2010), and Halac

(2012)). In his important contribution, Levin (2003) considers an enforcement con-

straint which balances the incentives to benefit from the current contracting terms with

the present value of the relationship. The optimal contract is stationary, and as in our pa-

per has partial pooling for efficient types and exhibits more distortion than the second-

best solution. Malcomson (2016) considers a variant of Levin’s model with persistent

types. In his model bunching arises because of the ratchet effect.

Martimort et al. (2017b) analyze a similar environment with two-sided enforce-

ment and the restriction to stationary contracts, where both the principal and agent

can breach. They show that the relevant constraint depends on the aggregate penalty of

both parties. While they identify the existence of strong and weak enforcement regimes

involving bunching, their aggregation of penalties masks the specific strategic role of

the agent’s "take-the-money-and-run" option when legal penalties are negligible. The

current paper complements that work by isolating the one-sided enforcement problem.

This allows us to identify a third regime (very weak enforcement), where legal penalties

are insufficient to deter breach, forcing the contract to rely entirely on relational rents

(the discount factor) and necessitating positive rents for the least efficient type.

Martimort et al. (2017a) present a dynamic adverse selection model with two-sided

enforcement. Type is drawn from a binary distribution and it is fixed. The optimal con-

tract is non-stationary: transfers are increasing for the most efficient type in order to

2Baron and Besanko (1984), Laffont and Tirole (1996), and Battaglini (2005) extend this literature and

consider types that are correlated over time. The general result with correlated types is that the optimal

long-term contract is non-stationary and has a memory.
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prevent opportunistic behavior by the seller in the initial rounds. Penalties for breach of

contract for the buyer and seller are aggregated and it is only the aggregated penalty that

matters. Thus if there is only an agent’s enforcement problem, as in our paper, then the

contract is enforced at no cost.

ORGANIZATION OF THE PAPER. Section 2 presents the model and discusses the enforce-

ment constraint. In Section 3, we present the principal’s problem and formulate the

main result. In Section 4, we solve the model using the reduction to two simple pro-

grams. Section 5 introduces some possible extensions and discusses assumptions of the

model. Proofs are relegated to the Appendix.

2. MODEL

• PREFERENCES AND INFORMATION. We consider a long-term relationship between a

buyer (the principal) and a seller (the agent). In each period, the buyer purchases a

(non-durable) good q from the seller and pays a transfer t.3 The seller and the buyer

have per-period utility functions given respectively by

V (q, t) = S(q)− t, U(q, t, θ) = t− θq,

where θ is the seller’s marginal cost: the agent’s type. Assume that the agent’s type is

drawn once and for all at the beginning of the relationship. The agent privately learns his

cost parameter θ which is drawn from the atomless distribution F (·) on the interval Θ=

[θ, θ] with density f(·). The distribution F (·) is common knowledge. The gross surplus

function S(·) is increasing and strictly concave (S′(·)> 0>S′′(·)) and satisfies the Inada

conditions S′(0) = +∞, S(0) = 0. These assumptions ensure that the first-best surplus is

always positive (i.e., maxq≥0 S(q)− θq ≥ 0).

The time horizon is infinite, discrete, and the parties have a common discount factor

δ ∈ [0,1].

Output is observable each period. At the beginning of the relationship the buyer of-

fers a contract to the seller which runs for all periods. The seller, after learning the pa-

rameter θ, accepts or rejects this contract. Up to this point the framework is identical

to Baron and Besanko (1984). The main differences with Baron and Besanko (1984) and

Battaglini (2005) are the focus on stationary mechanisms and imperfect commitment.

3The good q can be interpreted as quantity, or quality in the case of a single unit.
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At each period, the agent, after receiving payment from the buyer, may decide not to

deliver the good, in which case he pays for the breach of contract a (financial) penalty

Π. This penalty is exogenously specified and is part of the contractual environment.

• TIMING. Without loss of generality we consider a direct mechanism {t(θ̂), q(θ̂)}
θ̂∈Θ

(see, for example, Baron and Besanko (1984)). The contracting game unfolds as follows:

(i) The agent learns the value of θ, which is his private information;

(ii) The principal offers a contract C = {t(θ̂), q(θ̂)}
θ̂∈Θ

that runs for all periods of the

relationship;

(iii) The agent accepts or rejects the contract, and if he accepts he reports his type θ̂,

which may be different from the true type θ;

(iv) In each period τ , the agent, after receiving the per-period payment t(θ̂), decides to

stay in the relationship or to walk away. In the latter case the agent pays Π for breach

of contract and the relationship ends.4

By restricting attention to stationary mechanisms we avoid dependence of mecha-

nisms on the history of play.5

• INCENTIVE COMPATIBILITY AND PARTICIPATION CONSTRAINTS. Because of full commit-

ment, the Revelation Principle applies to our setting. We thus focus on direct, stationary

mechanisms of the form {t(θ̂), q(θ̂)}
θ̂∈Θ

. We denote the seller’s per period-rent as

U(θ) = t(θ)− θq(θ).

His (ex post) participation constraint can be written as

U(θ) ≥ 0 ∀θ ∈Θ. (2.1)

LEMMA 2.1 (Incentive compatibility and monotonicity). Suppose the mechanism is

truthful. Then q is non-increasing and a.e. differentiable with q̇(θ)≤ 0, and at any point

where q and t are differentiable,

ṫ(θ) = θ q̇(θ) a.e. on Θ. (2.2)

4Here the penalty Π is included in the formal description of the contract. Importantly, this amount is
enforceable by courts. Thus, even if a large penalty is stipulated in the contract but cannot be enforced,
we assume that the legal system is weak and the actual amount of Π is considerably smaller than the one
designated in the formal contract.

5We comment on the stationarity assumption in Section 5.
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This lemma can equivalently be expressed as saying that U is absolutely continuous

with U̇(θ) =−q(θ) a.e., and U is convex.

DEFINITION 2.2 (Admissible contracts). A pair (t, q) is admissible if: (i) q is piecewise

continuous and of bounded variation with q̇(θ) ≤ 0 a.e.; (ii) t is absolutely continuous

and (2.2) holds a.e.; and (iii) (2.1) is satisfied.

REMARK 2.3 (Continuity of the optimal schedule). Although admissibility allows for dis-

continuities, under Assumption 3.2 every optimal stationary quantity schedule is in fact

continuous (and weakly decreasing); see Proposition 6.1 in Appendix 6. Thus, the struc-

tural statements in the main text (e.g., a single bunching interval) can be interpreted for

continuous schedules without loss.

• ENFORCEMENT CONSTRAINT. Accounting for the agent’s option to breach after receiv-

ing the period-τ payment,

1

1− δ
U(θ) ≥ max

θ̂∈Θ, τ≥0

{ τ−1∑
s=0

δs
(
t(θ̂)− θq(θ̂)

)
+ δτ

(
t(θ̂)−Π

)}
. (2.3)

LEMMA 2.4 (Reduction of enforcement). An admissible (t, q) is enforceable iff

t(θ)− θq(θ) ≥ (1− δ)
(
t(θ)−Π

)
∀θ ∈Θ. (2.4)

When an agent engages in non-compliant behavior, his optimal strategy involves

mimicking the most efficient type, securing the payment intended for such a type, fol-

lowed by breach of contract. This strategy is reminiscent of the well-known “take-the-

money-and-run” strategy that is found in models with spot contracting.6 As shown in

those models, deviations become a lesser concern when rewards for efficient types are

moderated. Specifically, when the penalty for breaching the contract, Π, is moderate,

the right-hand side of (2.4) is positive and the enforcement constraint significantly limits

the set of implementable allocations. Reducing the payment t(θ) facilitates enforcement

for the most efficient type. However, by incentive compatibility such distortion also re-

quires the reduction of payments for all the least efficient types, potentially hampering

production.

6See, for instance, Laffont and Tirole (1993) (Chapter 9).
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Conversely, when the penalty for breach Π is sufficiently large, the right-hand side

of (2.4) is negative and the enforcement constraint is implied by the participation con-

straint for the least efficient agent. This case essentially converges with the conventional

framework of the optimal static contract.

3. OPTIMAL CONTRACT

The principal’s problem is

(P ) : max
{(t,q) admissible}

∫ θ̄

θ
(S(q(θ))− t(θ))f(θ)dθ

subject to (2.1) and (2.4).

We extend the classical second-best problem to include the enforcement con-

straint (2.4). The results of Baron and Besanko (1984) and Laffont and Tirole (1993)

in a setting without an enforcement constraint (2.4) (or under the assumption of a

very large penalty) involve the perpetual implementation of the optimal static con-

tract (qos(θ), tos(θ)) (Baron and Myerson (1982)). Here tos(θ) = θqos(θ)+
∫ θ̄
θ q

os(x)dx, and

qos(θ) is determined by

S′(qos(θ))= θ+
F (θ)

f(θ)
∀θ ∈Θ.

This equation represents the second-best optimality criterion: the buyer’s marginal

benefit equals the seller’s virtual cost θ + F (θ)
f(θ) . This virtual cost, exceeding the actual

cost, reduces the information rent left to the agent by decreasing output. The following

definition generalizes the optimal static contract.

DEFINITION 3.1. For any r ≥ 0, define the generalized static output q(r)(θ) as the solution

to

S′ (q(r)(θ)) = θ+
r+ F (θ)

f(θ)
∀θ ∈Θ.

Note that qos(θ) = q(0)(θ). When r > 0, the resulting output is lower than that stipu-

lated by the optimal static contract. The following assumption is similar to the standard

monotone hazard rate assumption, which guarantees that qos(θ) is decreasing.

ASSUMPTION 3.2. (i) r+F (θ)
f(θ) is an increasing function of θ for all r ≥ 0.

(ii) The density function f(θ) is differentiable.
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Under this assumption, the generalized static output is decreasing. Examples of dis-

tributions satisfying this assumption include any (weakly) decreasing hazard rate, such

as uniform and exponential distributions.7

Next, we define the output which plays an important role in characterizing the opti-

mal contract.

DEFINITION 3.3. For any r ≥ 0, define the output qr(θ) by

qr(θ) =

{
q(r) (θr) if θ < θr,

q(r) (θ) if θr ≤ θ ≤ θ,
(3.1)

where θr ∈
[
θ, θ

]
is the (minimal) solution of

r =
F 2 (θr)

θrf (θr)− F (θr)
, (3.2)

if it exists, otherwise θr = θ.

When θ < θr < θ, the output exhibits bunching for types smaller than θr . For types

greater than θr , the output aligns with the generalized static output (see Figure 1). When

r = 0, the threshold θr is θ and the corresponding output qr(θ) is the optimal static con-

tract. If no solution to (3.2) exists, then the output qr(θ) consists of complete bunching

at q(r)
(
θ
)

.

The transfers required to implement the output qr(θ) are determined by

tr(θ) = θqr(θ) +

∫ θ̄

θ
qr(x)dx+

(
tr(θ̄)− θ̄qr(θ̄)

)
. (3.3)

Let r∗ = 1−δ
δ .8 The following lemma establishes the existence of the output qr(θ) for

all r ∈ [0, r∗].

LEMMA 3.4. For any r ∈ [0, r∗], either the solution θr ≤ θ̄ to (3.2) exists or there exists a

unique r̂ ∈ [0, r∗] such that r(θ̄) = r̂.

7Relaxing this assumption does not change the main findings, though it does introduce additional nota-
tion. If r+F (θ)

f(θ)
increases over certain intervals, the optimal contract could involve bunching for intermedi-

ate types, similar to Guesnerie and Laffont (1984).
8It will be shown that r∗ represents the maximal value for which the optimal output is defined.
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θr

q(r)(θr)

θ

q(θ)

qos(θ)

qr(θ)

FIGURE 1. Optimal static contracts

In the left panel of Figure 2, equation (3.2) defines the locus of thresholds θr and r

that determine the output qr(θ). The function r as a function of θr increases and inter-

sects the line r∗ at θr∗ < θ. Thus, r∗ determines the output qr∗(θ) with non-trivial bunch-

ing for θ ≤ θr∗ and separation for θ > θr∗ . Conversely, if θr∗ = θ, then qr∗(θ) = q(r∗)
(
θ
)

for

all θ.

θr∗

r∗

θ

r

Π∗ Πos

r∗

Π

r

FIGURE 2. r as a function of θr and Π

In the right panel of Figure 2, each r ∈ [0, r∗] corresponds to a penalty Π ∈ [Π∗,Πos]

according to

Π= θqr(θ) +

∫ θ̄

θ
qr(θ)dθ. (3.4)

The function r(Π) is decreasing. Furthermore, as indicated by (3.3), the right-hand

side of (3.4) equals tr(θ) provided that the rent of the least efficient type, tr(θ̄)− θ̄qr(θ̄),
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is zero. If this rent is positive, then the penalty Π is less than the transfer to the most

efficient type.

Using (3.4), define the penalties Πos and Π∗ corresponding to r = 0 and r = r∗ re-

spectively. The penalty Πos defines the threshold beyond which the enforcement con-

straint is implied by the agent’s participation constraint and, therefore, the correspond-

ing output is the optimal static contract.

The optimal contract for the agent’s enforcement problem can now be described.

THEOREM 3.5. (i) Strong enforcement. For Π≥ Πos, the optimal contract involves the

infinite repetition of the optimal static contract.

(ii) Weak enforcement. For Π∗ ≤ Π ≤ Πos, the optimal contract is
(
tr(θ), qr(θ)

)
, where

the parameter r is defined by

tr(θ) = Π. (3.5)

Here, the least efficient type has zero rent, i.e., tr(θ̄)− θ̄qr(θ̄) = 0.

(iii) Very weak enforcement. For Π≤Π∗, the optimal contract is
(
t(θ), qr∗(θ)

)
. The trans-

fers t(θ) are given by

t(θ) = tr∗(θ) +
1− δ

δ
(Π∗ −Π) .

If Π<Π∗, then the least efficient type earns a positive rent,

t(θ̄)− θ̄qr∗(θ̄) =
1− δ

δ
(Π∗ −Π)> 0.

Theorem 3.5 partitions enforcement environments according to two thresholds, Πos

and Π∗. When Π ≥ Πos, the enforcement constraint is slack and the optimal stationary

contract coincides with the repeated optimal static contract. When Π∗ ≤ Π < Πos, the

transfer cap binds at the top, forcing bunching among efficient types and generating

downward distortions relative to qos. When Π < Π∗, public enforcement is too weak to

deter breach at the top, so compliance must be supported by continuation values, and

the least efficient type earns a strictly positive rent.

WHY BUNCHING ARISES UNDER WEAK ENFORCEMENT. For Π∗ ≤Π<Πos, the enforcement

cap binds at the top, so that t(θ) = Π. Reducing t(θ) lowers the gain from a “take-the-

money-and-run” deviation, but incentive compatibility links transfers across types. As a
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result, types slightly less efficient than θ are attracted to the allocation intended for the

most efficient type. To mitigate these countervailing incentives, the principal optimally

pools the most efficient types rather than raising t(θ), which would violate enforceability.

This logic leads to bunching at the top of the type distribution.

For types above the bunching cutoff θr , the optimal allocation coincides with the

generalized static rule. Relative to the standard virtual cost θ+ F (θ)
f(θ) , enforcement intro-

duces an additional wedge r
f(θ) , which can be interpreted as a virtual enforcement cost.

This term disciplines information rents so that the induced transfers remain compatible

with the enforcement constraint.

RENT DECOMPOSITION AND DEVIATION LOGIC. Under strong and weak enforcement

(Π≥Π∗), the least efficient type earns zero rent, U(θ) = 0, and the agent’s rent is purely

informational:

U(θ) =

∫ θ

θ
qr(x)dx.

In the weak-enforcement region, a tighter cap (lower Π) compresses transfers at the

top and therefore compresses information rents, weakening the incentive to imitate the

top contract and then breach.

By contrast, when Π < Π∗, the maximal transfer exceeds the penalty, so any type

can profitably breach unless additional rents are provided. To deter such deviations, the

principal must leave a positive continuation payoff to the least efficient type, yielding

the decomposition

U(θ) =
1− δ

δ
(Π∗ −Π)︸ ︷︷ ︸

enforcement rent

+

∫ θ

θ
qr∗(x)dx︸ ︷︷ ︸

information rent

.

The first term is a compliance premium required to sustain self-enforcement when pub-

lic enforcement is weak; the second term is the standard information rent.

OPTIMALITY OF TOP POOLING. The optimality of bunching among efficient types follows

from a standard positive-variation argument. Suppose that, for θ ≤ θr , output strictly

decreases, with qr(θ)> qr(θr). Consider any positive variation dqr(θ) on [θ, θr] such that

dqr(θ) = dqr(θr) = 0 and the modified schedule remains decreasing. This variation pre-

serves incentive compatibility and leaves t(θ) unchanged, so the enforcement constraint

continues to bind. Since the variation moves the allocation closer to the optimal static



One-Sided Enforcement with Persistent Adverse Selection 13

contract, it strictly raises surplus. Hence, in the optimum, output must be flat over [θ, θr],

implying qr(θ) = qr(θr).

CONNECTION TO RELATIONAL CONTRACTING. This logic connects to Levin (2003). Lim-

ited enforceability generates additional distortions relative to the second best and can

induce pooling. In our model, public enforcement is still operative when Π∗ ≤Π<Πos,

but its limited magnitude caps transfers and triggers top pooling; when Π<Π∗, compli-

ance is sustained entirely by relational incentives through the continuation value.

4. PROOF OF THEOREM: REDUCTION TO TWO PROGRAMS

Rewriting constraints (2.1) and (2.4) respectively yields

t(θ)− θq(θ)≥ 0 ∀θ ∈Θ, (4.1)

t(θ)− θq(θ)≥ (1− δ)(t(θ)−Π) ∀θ ∈Θ. (4.2)

Constraint (4.2) includes, on the right-hand side, the transfer for the most efficient

type t(θ), representing the seller’s net gain in the event of breach. This right-hand side

becomes non-positive when the net gain falls below the penalty, making the enforce-

ment constraint ineffective. In this case, the problem becomes a second-best problem

with a cap Π on transfers. If the net gain from any deviation is less than the penalty, the

seller’s overall benefit from breaching the contract is non-positive. Therefore, the seller

has no incentive to breach as long as ex post rents are non-negative, which is assured if

(4.1) holds.

When the seller’s net gain from breach exceeds the penalty, the participation con-

straint follows from the enforcement constraint. The seller can breach, cover the penalty

with the gain, and leave the relationship. To prevent breach, the contract must ensure

that the seller obtains enough rent from continuation. This leads to two regimes of con-

straints:

(A) :

{
t (θ)−Π≥ 0,

t(θ)− θq(θ)≥ (1− δ)(t(θ)−Π) ∀θ ∈Θ,

and

(B) :

{
t (θ)−Π≤ 0,

t(θ)− θq(θ)≥ 0 ∀θ ∈Θ.
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We split the problem (P ) into two problems (PA) and (PB), obtained from (P ) by

replacing (4.1) and (4.2) by systems (A) and (B) respectively.

An optimal solution of (P ) is necessarily optimal for either (PA) or (PB). Conversely,

among the solutions to (PA) and (PB), the one that provides the highest payoff to the

principal is the optimal solution of (P ).

Program (PA): Consider first (PA). To eliminate t (θ) from the right-hand side of (4.2),

introduce the adjusted transfer y(θ): 9

y(θ) = t(θ)− (1− δ) (t (θ)−Π) .

Then system (A) becomes{
y (θ)−Π≥ 0,

y(θ)− θq(θ)≥ 0 ∀θ ∈Θ.

Note that the second constraint must bind at θ:

y(θ)− θq(θ) = 0. (4.3)

Indeed, if y(θ) − θq(θ) > 0, consider the contract
(
q(θ) + ε, y(θ)

)
, for ε such that y(θ) −

θ(q(θ) + ε) = 0. This change does not affect feasibility and strictly increases the princi-

pal’s payoff.

Problem (PA) can thus be written as

max
{y(·),q(·)} admissible

∫ θ

θ
(S(q(θ))− y(θ))f(θ)dθ− 1− δ

δ
(y (θ)−Π)

subject to (4.3) and

y(θ)−Π≥ 0. (4.4)

Problem (PA) depends on Π, which enters both the objective and constraint (4.4).

We treat (PA) as an optimal control problem with boundary constraints (4.3)–(4.4) and

a scrap value −1−δ
δ

(
y (θ)−Π

)
.

LEMMA 4.1. (i) When Π ∈ [Π∗,Πos], the optimal output for (PA) is qr(θ) with r deter-

mined by

θr q(r) (θr) +

∫ θ

θr

q(r) (θ)dθ =Π. (4.5)

9Notice that y (θ) = δt (θ) + (1− δ)Π and t (θ) =
y(θ)−(1−δ)Π

δ
. Thus t(θ) = Π if and only if y(θ) = Π.
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Furthermore, constraint (4.4) is binding: y(θ) = Π.

(ii) For Π<Π∗, the optimal output is qr∗(θ) and (4.4) is slack: y(θ)>Π.

In Case 1, t (θ)−Π≥ 0 is binding. Enforcement is not an issue and the optimal con-

tract does not depend on δ. Case 2, of very weak enforcement, arises when Π < Π∗. In

this case, the output is fixed at qr∗(θ). Efficiency cannot be further compromised in favor

of enforcement. Given the minimal penalty, enforcement relies on the discount factor,

reflected in r∗ = 1−δ
δ .

Program (PB): Now consider

(PB) : max
{t(·),q(·)} admissible

∫ θ̄

θ
(S(q(θ))− t(θ))f(θ)dθ

subject to (4.1) and

Π− t (θ)≥ 0. (4.6)

Problem (PB) is a second-best problem with a cap on transfers. It does not depend

on δ. There are two differences between (PB) and (PA): there is no scrap value in the ob-

jective of (PB), and constraint (4.6) is the reverse of (4.4). The optimal static contract de-

scribes the maximum payoff in the presence of the enforcement constraint. Therefore,

when Π≥Πos the optimal enforcement contract is simply the optimal static contract.

When Π≤Πos, constraint Π− t (θ)≥ 0 is binding. Thus, for Π ∈ [Π∗,Πos] the optimal

outputs and transfers are identical in (PA) and (PB).

LEMMA 4.2. (i) If Π ≤ Πos, the optimal output is qr(θ), where r is defined by (4.5); in

addition, (4.6) is binding: t(θ) = Π.

(ii) If Π > Πos, the optimal output is the static second-best contract, and (4.6) is strict:

t(θ)<Π.

COMPARISON BETWEEN (PA) AND (PB): Intuitively, for small Π, the value derived from

(PA) exceeds that of (PB), and the reverse holds as Π becomes large. Specifically, for Π≥

Πos, (PB) has the static second-best contract as its solution. For (PA), the constraint on

t(θ) distorts transfers away from the optimal static contract. The seller’s gain in the event

of breach, t(θ), must at least match the large penalty, leading to an upward distortion of

tos(θ). Consequently, for Π>Πos, the value of (PB) exceeds that of (PA) and the optimal

contract is the static second-best.
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For Π ∈ [Π∗,Πos], both (PA) and (PB) share the same necessary and sufficient con-

ditions and, therefore, the same solutions. Given that y(θ)−Π is binding, the scrap value

in the objective of (PA) is zero. Hence, both programs have the same value.

For any Π<Π∗, consider the optimal contract
(
t(θ), q(θ)

)
for (PB). By construction,

t(θ) = Π, so this contract is feasible for (PA) and attains the same objective value as in

(PB). Therefore the solution to (PA) is also optimal for (P ).

PROPOSITION 4.3. (i) For Π<Π∗, the solution to (PA) specified in Lemma 4.1 is optimal

for (P ).

(ii) For Π ∈ [Π∗,Πos], both programs have the same value and yield the same optimal

contract.

(iii) For Π>Πos, the solution to (PB) specified in Lemma 4.2 is optimal for (P ).

5. DISCUSSION

We have characterized the optimal stationary contract when the agent can commit ex

ante but cannot commit not to default ex post. The optimal allocation is pinned down

by the interaction between public enforcement (the breach penalty Π) and private en-

forcement (the continuation value governed by δ).

The model delivers regime-dependent comparative statics that map naturally into

observable contract terms in procurement, construction, and trade (e.g., cash-in-

advance, progress payments, retention, performance bonds, and relationship-based en-

forcement). Two primitives have empirical counterparts: public enforcement Π (court

effectiveness, recoverability of damages, enforceable penalties) and private enforce-

ment δ (relationship value driven by repeat trade, reputational capital, switching costs,

or platform ratings).

DECOMPOSITION OF RENTS. As discussed after Theorem 3.5, incentive compatibility im-

plies the envelope condition U̇(θ) =−q(θ) a.e., hence

U(θ) = U(θ̄) +

∫ θ̄

θ
q(x)dx. (5.1)

The regime-dependent term is U(θ̄).
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• Strong and Weak Enforcement (Π ≥ Π∗). In these regimes the least efficient type

earns zero rent, U(θ̄) = 0. Thus the agent’s rent is purely informational:

U(θ) =

∫ θ̄

θ
qr(x)dx,

with r = 0 under strong enforcement (Π≥Πos) and r = r(Π) ∈ (0, r∗(δ)] under weak

enforcement (Π∗ ≤ Π ≤ Πos). A higher penalty Π relaxes the transfer cap and re-

duces distortions (lower r), thereby increasing information rents.

• Very Weak Enforcement (Π<Π∗). Here public enforcement is insufficient to deter

breach at the top; compliance must be supported by relational incentives. The op-

timal quantity schedule is qr∗(θ) with r∗(δ) = 1−δ
δ , and the principal must leave a

strictly positive enforcement rent to the least efficient type:

U(θ̄) =
1− δ

δ

(
Π∗ −Π

)
> 0.

Using (5.1), the agent’s rent decomposes into

U(θ) =
1− δ

δ

(
Π∗ −Π

)
︸ ︷︷ ︸
Enforcement rent

+

∫ θ̄

θ
qr∗(x)dx︸ ︷︷ ︸

Information rent

.

Holding δ fixed, raising Π reduces the enforcement rent one-for-one while leaving

qr∗ unchanged; thus the agent is strictly worse off as Π increases within this regime,

until Π reaches Π∗.

This yields the following comparative statics.10

COROLLARY 5.1 (Institutional improvements and surplus). Consider the optimal station-

ary contract at (Π, δ).

(i) (Output and bunching.) For Π ≥ Πos, q = qos (no bunching) and is independent of

δ. For Π∗(δ)≤Π≤Πos, the optimal contract is (tr, qr) with r = r(Π) decreasing in Π,

so bunching weakly decreases with Π. For Π < Π∗(δ), the optimal quantity is qr∗(δ),

independent of Π, and r∗(δ) = 1−δ
δ decreases in δ, implying less distortion as δ rises.

Moreover, Π∗(δ) is increasing in δ.

(ii) (Principal payoff.) The principal’s expected payoff is weakly increasing in Π and

weakly increasing in δ.

10Recall that Π∗ depends on δ through r∗ = 1−δ
δ

. We write Π∗ =Π∗(δ) emphasizing this dependence.
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(iii) (Agent payoff.) Holding δ fixed, the agent’s expected payoff is non-monotone in Π:

it strictly decreases with Π on Π < Π∗(δ) (reduced enforcement rents), and weakly

increases with Π on Π∗(δ)≤ Π≤ Πos (higher information rents), and is constant for

Π≥Πos. Holding Π fixed, the effect of δ on the agent’s expected payoff is locally zero

in the Strong and Weak regimes (i.e., for changes in δ that do not move the economy

across the threshold Π∗(δ)), and is generically ambiguous in the Very Weak regime.11

Parts (1)–(2) follow because increasing Π or δ relaxes the enforcement constraint, ex-

panding the feasible set and allowing the principal to do weakly better. For the agent,

(5.1) implies that changes in U(θ̄) shift all rents pointwise. In the very weak regime,

q = qr∗ is independent of Π while U(θ̄) = 1−δ
δ (Π∗(δ)−Π), so increasing Π reduces U(θ̄)

and hence U(θ) for all types. In the weak regime, U(θ̄) = 0 and increasing Π lowers r,

increasing qr pointwise and therefore increasing information rents
∫ θ̄
θ qr(x)dx.

Finally, our analysis focuses on stationary contracts. Future research might relax this

assumption. Yet stationarity is a robust benchmark: when enforcement is costless, Baron

and Besanko (1984) obtain a stationary optimum, and stationary terms are also preva-

lent in practice (e.g., franchising royalties; Lafontaine and Shaw (1999)).

6. APPENDIX

PROOF OF LEMMA 2.4. Multiply both sides of (2.3) by (1− δ) and write U(θ̂;θ) := t(θ̂)−

θq(θ̂). For any fixed report θ̂ and any integer τ ≥ 0,

(1− δ)

τ−1∑
s=0

δsU(θ̂;θ) + (1− δ)δτ
(
t(θ̂)−Π

)
= (1− x)U(θ̂;θ) + (1− δ)x

(
t(θ̂)−Π

)
,

where x := δτ ∈ [0,1]. For fixed θ̂ this expression is affine in x, hence its maximum over

x ∈ [0,1] is attained at an endpoint x ∈ {0,1} and is worth:

max
{
U(θ̂;θ), (1− δ)

(
t(θ̂)−Π

)}
.

Taking now the maximum over θ̂ ∈Θ yields

(1− δ) · RHS of (2.3) =max
{
max
θ̂
U(θ̂;θ)︸ ︷︷ ︸

=U(θ) by IC

, (1− δ)max
θ̂
t(θ̂)︸ ︷︷ ︸

=(1−δ) t(θ)

−(1− δ)Π
}
.

11Higher δ improves efficiency but reduces enforcement rents.
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The equalitymax
θ̂
U(θ̂;θ) = U(θ)uses truthfulness (Lemma 2.1). Since q is non-increasing

and ṫ = θq̇ ≤ 0 a.e., t is weakly decreasing in θ, so max
θ̂
t(θ̂) = t(θ). Therefore, (2.3) is

equivalent to

U(θ) ≥ max
{
U(θ), (1− δ)

(
t(θ)−Π

)}
∀θ,

which is in turn equivalent to (2.4).

PROOF OF LEMMA 3.4. Note first that (3.2) yields r(θ) = 0. Second, the denominator

θf (θ) − F (θ) is positive at θ = θ. Consider an interval [θ, ε] such that this denomina-

tor is positive for all θ ∈ [θ, ε]. Differentiating (3.2) with respect to θ gives r′(θ)> 0 for all

θ ∈ [θ, ε]. Indeed,

r′(θr)

(
θr −

F (θr)

f (θr)

)
= 2F (θr)f (θr)−rθrf ′ (θr) = 2F (θr)f (θr)−

F 2 (θr) + rF (θr)

f (θr)
f ′ (θr) .

The numerator on the right-hand side is

2F (θr)f
2 (θr)−F 2 (θr)f

′ (θr)−rF (θr)f
′ (θr) = F (θr)

(
2f2 (θr)−F (θr)f

′ (θr)−rf ′ (θr)
)
> 0,

where the last inequality follows from Assumption 3.2. Proceeding by extending the in-

terval step by step, either we reach some θ′ such that θ′f (θ′) − F (θ′) = 0, or for all

θ ∈
[
θ, θ

]
we have θf (θ) − F (θ) > 0. In the first case, for all r ≥ 0 there exists a unique

θr ∈
[
θ, θ

]
such that r = F 2(θr)

θrf(θr)−F (θr)
. In the second case, we can assume that θr = θ for

all r ≥ r̂ = r(θ).

PROOF OF LEMMA 4.1. Optimality conditions for problem (PA). We explicitly incorpo-

rate monotonicity by introducing z(θ) = q̇ (θ). Problem (PA) is then formulated as an

optimal control problem with state variables y(θ) and q(θ) and control z(θ). The co-state

variables corresponding to (6.2) and (6.3) are denoted by λ1(θ) and λ2(θ) respectively.

The Hamiltonian is

H(y, q, z, λ1, λ2, θ) = (S(q)− y)f(θ) + λ1θz + λ2z,

which is concave in (y, q, z) for all θ. Let
(
y(θ), q(θ), z(θ)

)
be an admissible triplet

with continuous, a.e. differentiable y(θ), q(θ) and piecewise continuous z(θ). Then(
y(θ), q(θ), z(θ)

)
is optimal if and only if there exist continuous, piecewise differentiable
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co-state variables (λ1(θ), λ2(θ)) such that the following conditions (see Seierstad and

Sydsaeter (1986), pp. 85, 396) are satisfied:

z (θ) ∈ argmax
z
H
(
y(θ), q(θ), z, λ1(θ), λ2(θ), θ

)
∀θ, (6.1)

ẏ (θ) = θz (θ) , (6.2)

q̇ (θ) = z (θ)≤ 0, (6.3)

λ̇1(θ) = f(θ) a.e., (6.4)

λ̇2(θ) =−S′(q(θ))f(θ) a.e., (6.5)

λ1(θ) =
1− δ

δ
− β (1− δ) , λ2(θ) = 0, β ≥ 0 (= 0 if y(θ)−Π> 0), (6.6)

λ1(θ) = γ, λ2(θ) =−γθ, γ ≥ 0. (6.7)

Denote

r = λ1(θ) =
1− δ

δ
− β (1− δ) =

(1− δ) (1− βδ)

δ
. (6.8)

Conditions (6.2), (6.3) and (6.4)–(6.6) imply

λ1(θ) = r+ F (θ), (6.9)

and

λ2(θ) =−
∫ θ

θ
S′(q(u))f(u)du. (6.10)

Define ψ (θ) = λ1(θ)θ+ λ2(θ). From (6.9)–(6.10) we get

ψ (θ) =
(
r+ F (θ)

)
θ−

∫ θ

θ
S′(q(u))f(u)du.

Optimality condition (6.1) yields

ψ (θ)z (θ) = 0, ψ (θ)≥ 0 ∀θ. (6.11)

Derivation of r∗. Note that

ψ (θ) = r θ ≥ 0. (6.12)
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Thus r ≥ 0. From (6.8), the minimal value r = 0 corresponds to β = 1/δ > 0, and the

maximal value r∗ = 1−δ
δ corresponds to β = 0.

The form of optimal q(θ). If ψ (θ) > 0 over a non-degenerate interval, then z (θ) = 0 on

this interval, rendering both state variables q (θ) and y (θ) constant due to (6.2) and (6.3).

Conversely, if ψ (θ) = 0 over a non-degenerate interval Θ′ it follows that ψ̇ (θ) = 0, leading

to

S′(q(θ))= θ+
F (θ) + r

f(θ)
for all θ ∈Θ′.

This condition implies that q(θ) = q(r)(θ) for all θ ∈Θ′.

We now show that there can be at most one bunching interval. Suppose, to the

contrary, that there are two disjoint bunching intervals, denoted Θ1 = [θ, θ1) and Θ3 =(
θ2, θ

]
.12

Within the intermediate interval Θ2 = (θ1, θ2), we have ψ (θ) = 0, so q(θ) = q(r)(θ) for

all θ ∈Θ2. For all θ ∈Θ1, q(θ) = q(r) (θ1) = q1, and for all θ ∈Θ3, q(θ) = q(r) (θ2) = q3. If Θ3

were nonempty, then q3 > q(r) (θ) for all θ ∈Θ3, and hence S′(q3)<S′(q(r) (θ) ). Thus,

ψ̇ (θ) = r+ F (θ) + f(θ)θ− S′(q3)f(θ)> r+ F (θ) + f(θ)θ− S′(q(r) (θ) )f(θ) = 0

for all θ ∈Θ3. Since ψ(θ2) = 0 and, by the boundary condition, ψ(θ) = 0, this is a contra-

diction. Thus there may be only one bunching interval [θ, θ1].

Derivation of (3.2). The first equation to determine θ1 and r is ψ(θ1) = 0:

0 =
(
r+ F (θ1)

)
θ1 −

∫ θ1

θ
S′(q(u))f(u)du. (6.13)

Since q(u) = q1 = q(r)(θ1) for u ∈ [θ, θ1], and S′(q1) = θ1 +
r+F (θ1)
f(θ1)

, we obtain

rθ1 =
(
r+ F (θ1)

)F (θ1)

f (θ1)
, (6.14)

which is equivalent to (3.2).

Construction of the optimal contract. We have established that the optimal output has

the form in Figure 1 with θ1 = θr .

12Note that θ1 may coincide with θ.
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For all Π≥Πos we have r = 0. Hence (4.5) has only the trivial solution θr = θ and the

optimal output is the static second-best contract. In this case, β = 1
δ > 0, so (4.4) binds

and y(θ) = Πos.

For all Π ∈ [Π∗,Πos], constraint (4.4) binds so y (θ) = Π and t (θ) = Π. Define r via

θrq
(r)(θr) +

∫ θ

θr

q(r)(θ)dθ =Π.

Differentiating with respect to r gives Π′ (r) < 0, so r is uniquely determined for Π ∈

[Π∗,Πos].

For Π<Π∗, constraint (4.4) is slack and the solution is the same as at Π∗.

PROOF OF LEMMA 4.2. Modulo the change of variables, the optimality conditions (6.1)–

(6.5) are the same as for (PA). The transversality condition (6.6) is replaced by

λ1(θ) = β′ (1− δ) , λ2(θ) = 0, β′ ≥ 0 (= 0 if Π− t (θ)> 0).

In this case the parameter r = β′ (1− δ) is unbounded. If r = 0, then the optimal out-

put is the static second-best contract and the corresponding transfers are t0(θ) defined

by (3.3) with zero rent for θ. If r > 0, then the optimal output is qr(θ) and transfers are

given by (3.3) with zero rent for θ.

PROPOSITION 6.1 (Continuity). Under Assumption 3.2, every optimal stationary solution

(t, q) has a quantity schedule q : Θ→R+ that is continuous and weakly decreasing.

PROOF. Let (t, q) be an optimal stationary admissible contract.

Step 1 (Weak decrease). By Lemma 2.1, truthfulness implies that q is weakly decreas-

ing (and a.e. differentiable with q̇(θ)≤ 0 a.e.).

Step 2 (Continuity). We prove that q has no jumps. Consider Program (PA) (the only

case in which the pointwise constraint is potentially binding over a nontrivial set of

types). Recall the adjusted transfer

y(θ) = t(θ)− (1− δ)
(
t(θ)−Π

)
,

so that the per-type feasibility constraint in (PA) is

y(θ)− θq(θ)≥ 0 ∀θ ∈Θ. (6.15)
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Define the associated (adjusted) rent

Ũ(θ) := y(θ)− θq(θ).

Since y differs from t by a constant, Lemma 2.1 implies that Ũ is absolutely continuous

and satisfies the envelope condition

˙̃
U(θ) =−q(θ) a.e. on Θ. (6.16)

Moreover, (6.15) is a linear (hence concave) pointwise mixed constraint in (Ũ , q), while

the objective integrand in (PA),

(S(q(θ))− y(θ))f(θ) = (S(q(θ))− θq(θ)− Ũ(θ))f(θ),

is concave in q (because S is strictly concave) and linear in Ũ . The remaining term in the

objective of (PA) is a linear endpoint (scrap-value) term in y(θ) and therefore does not

affect the local concavity argument.

Thus (PA) is a concave optimal control problem with a pointwise concave (mixed)

constraint of exactly the form studied in Simons (2025). In particular, Simons (2025)

prove that, under concavity of the objective and pointwise concavity of the mixed con-

straint, optimal solutions cannot exhibit jumps in the quantity schedule. Therefore, the

optimal q(·) is continuous on Θ.
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