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Abstract

The European Union designates 26% of its landmass as protected areas, limiting economic

development for biodiversity. We use the staggered introduction of protected areas between

1985 and 2019 to study the selection of protected land and the causal effect of protection on

vegetation cover and nightlights. We find no meaningful impacts on either outcome across four

decades, countries, protection cohorts, or land characteristics. These null effects are consistent

with the political economy of EU land protection: weak incentives to internalize biodiversity

gains, green-glow motives, and area-based targets shape local siting and stringency choices. In

practice, strict protection is applied where development pressure is low–so that protection has

little bite—while in high-pressure regions, protection is typically weak, imposing only limited

constraints on economic activity.
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1 Introduction

How effective are protected area policies at restoring vegetation cover, constraining economic activ-

ity, and improving biodiversity more broadly? These questions are central to assessing the pledge of

196 countries to protect 30% of the earth’s land and waters by 2030. This ‘30x30 target’, which was

the main outcome of the COP 15 Kunming-Montreal global biodiversity conference and sometimes

referred to as the ‘Paris Agreement for Nature’, was ratified in December 2022 (Einhorn 2022). How

ambitious is this 30% target? This depends strongly on how policymakers select land to protect

and if protection successfully limits economic activity.

We study these questions with a focus on the European Union (EU), the region that is closest

to reaching the target. As of 2023, the EU had protected over 26% of its total landmass (Eurostat

2022). As one of the world’s largest coordinated land-protection networks (Oceana Europe 2022),

the EU’s flagship Natura 2000 policy may offer insights into how the global 30x30 commitment

might perform.

We evaluate the causal effect of Europe’s protected area policies on an important dimension

of biodiversity—vegetation cover—and on human presence in protected areas—measured by night-

lights. We make three primary contributions. First, we provide unique estimates of the long-term

impact of one of the world’s largest land-protection policies over four decades. Second, we combine

theory and recent econometric advances to study the gradual staggered introduction of more than

100,000 protected areas over the course of many decades. We contrast how a social planner and the

EU’s policy procedure could lead to different protection allocations and empirically test how the

effect of protection varies across countries, over time since protection, and across earlier and later

protected areas. We also estimate treatment-effect heterogeneity with unprecedented granularity

across observable land, soil and climate characteristics. Finally, we provide evidence on the envi-

ronmental impacts of land protection in advanced economies, which has been virtually non-existent

to date.

We assemble a high-resolution remote-sensing dataset that spans the entirety of the European

Union from 1985-2020. Our data include key outcome variables (vegetation cover, nightlights) at

the 300x300 meter or 1x1 km level, treatment variables (location of protected areas and date of

first protection), and a wide range of control variables that measure climate, weather, land, and

soil characteristics. We use a continuous measure of vegetation greenness, Landsat Normalized

Difference Vegetation Index (NDVI), as it reflects gradual changes in vegetation cover not captured

by discrete land-use measures; it is also an imperfect yet reasonable indicator of other measures of

biodiversity. We also collect alternative outcomes—discrete land use classes and species counts—for

use in robustness analysis.

The data reveal four key facts about Europe’s land use and protection policies. First, large

parts of Europe have undergone land-use change over the last 40 years. We find that some parts

of Europe have been greening and reforesting, while other parts of Europe have seen vegetation
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degradation (Winkler, Fuchs, Rounsevell, et al. 2021).1 Second, forest loss and degradation take

place on more populated and agriculturally suitable land. Agriculture and urbanization continue

to cause deforestation, and grasslands across Europe have been converted into monocultures of

high-yield rye. Indeed, the EU reports 81% of listed protected species and habitats have poor

conservation status (European Environment Agency 2020). Third, EU land-protection targets

greener areas and extends across both sparsely and densely populated regions. Fourth, protection

is strictest on sparsely populated, initially green land, whereas most protected areas are subject to

less strict protection when land is more populated and initially less green. Overall, Europe exhibits

different land-use dynamics compared to heavily studied illegal deforestation in the tropics (Burgess

et al. 2012; Balboni, Burgess, and Olken 2023; Burgess, Costa, and Olken 2023). In this context,

it is an open question whether protection efforts have been effective in safeguarding nature under

pressure or have contributed to expanding natural areas where land-use pressures have lessened.

Based on these observations, we model a decision maker who can protect new plots each year

by restricting economic activity to increase ecological value. Contributing to existing models of

optimal siting of protection (Weitzman 1998; Assunção et al. 2022), we first focus on the gradual

increase in the protected surface and examine the treatment effects we expect if a social planner were

to implement an optimal protection policy over time. The solution to the dynamic optimization

problem yields four predictions. First, a social planner should protect only when biodiversity gains

are present, thereby yielding positive treatment effects. Second, treatment effects could increase or

decrease across successive cohorts of protection. Third, we contrast the social planner benchmark

with a setting in which the EU delegates siting decisions to local policymakers. In our framework,

the EU sets an area-based protection target, while local policymakers choose the location and the

stringency of protection.2 When the local policymaker places little weight on ecological outcomes

but either derives green-glow benefits from designation itself or faces a binding quantity target

for protected land, the model can generate protection paths with small or near-zero ecological

treatment effects. Fourth, when protection stringency is a choice variable, a local policymaker

facing these same incentives may optimally implement weak protection on many plots, resulting in

near-zero ecological treatment effects.

To test these predictions, we employ a staggered difference-in-differences design. Because of

selection into treatment, treated and untreated areas differ on several dimensions. Moreover, time-

varying selection can cause treatment effects to vary by cohort (the calendar year in which land first

gets protected) and event time (years relative to treatment). Typical two-way fixed effects estima-

tors are biased in such settings (Chaisemartin and D’Haultfœuille 2020; Goodman-Bacon 2021; Sun

and Abraham 2021). To overcome this challenge, we apply the doubly-robust estimator of Callaway

1. Forests have expanded by more than 30% since 1900, an area the size of Portugal (Eurostat 2021); an example of
the “forest transition” (Barbier, Burgess, and Grainger 2010). Yet, this greening trend has slowed down substantially
in more recent decades.

2. In practice, member states often further delegate implementation to provinces or municipalities. Our model ab-
stracts from these layers and treats the local decision maker as a single entity representing all national and subnational
authorities.
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and Sant’Anna (2021). This estimator combines cohort-specific inverse probability matching with

an outcome regression adjustment to compare protected areas with observably similar unprotected

land and to control for time-varying differences in observable plot attributes.

In addition to time variation in treatment effects, previous literature—described below—has

revealed that the effect of land protection is highly context specific. This underscores the importance

of testing for treatment-effect heterogeneity along many dimensions of our covariate space, such

as land, soil, and climate attributes; the degree of local economic pressures from agriculture and

forestry; and economic, political, and institutional factors. Using our expansive data, we use

the non-parametric causal random forest method of Wager and Athey (2018) to estimate highly-

granular conditional average treatment effects (CATEs).

The results are sobering. First, the Europe-wide average treatment effect (ATE)—aggregated

across countries, cohorts, and event time—is statistically and economically close to zero. We do

not find evidence for a statistically precise, meaningful causal contribution of protection to our

first measure—vegetation cover—in any of the five largest EU member states; a few, mostly small,

countries show moderate treatment effects on either side of zero. Second, up to three decades after

treatment, event-time treatment effects indicate a zero effect of protection on vegetation cover.

Third, we find no trend in cohort-level ATEs. Land protected later in time does not contribute

more to vegetation cover than land protected early in our sample. Fourth, these three findings are

identical for our second measure—nightlights. Fifth, the treatment effects are not meaningfully

heterogeneous across the covariate space such as initial greenness, population density, or measures

of agricultural land productivity; the zero effect is stable and pervasive across a wide range of

CATEs. Additionally, modest differences in treatment effects between countries do not correlate

with political or land endowment variables and treatment effects are small for all levels of strictness.

Sixth, we show that our conclusions hold up when using discrete land-use data. The limited species

count data do not suggest a relationship between protection and biodiversity either.

These findings provide new insights into the limitations of area-based protection targets. Our

model explains how the observed siting and stringency choices arise from the political economy of

EU land protection. The EU delegates the implementation of its 30% area target to local authorities

who might place less weight on ecological benefits than a social planner. Participatory procedures,

whereby local constituents can object to costly sitings, together with green-glow benefits from

designation, create incentives to protect the least contentious land first. Due to the delegation issue,

current policy does not seem to weigh the full societal economic benefits and losses. Addressing

that would require a substantial change in how the regulation is implemented, for example using

cost-benefit analysis where costs and benefits beyond the local constituents are accounted for, and

decision making at higher levels of government.

The absence of detectable ecological effects can be explained by two siting patterns. First, strict

protection is predominantly applied to infra-marginal land where development pressure is low and

protection has little bite. We find that 4% of protected areas are under strict protection and on land
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facing low development pressure. Although such protection may safeguard against very long-run

development threats, we find no evidence of such risks in areas that have been protected for several

decades. Second, land facing substantial pressure can be designated a weak protection regime that

imposes only limited constraints on economic activity. We find that 54% of protected areas are

weakly protected and on higher-pressure land.

Finally, we note an important caveat regarding our outcome measure. Our primary indicator,

NDVI, captures vegetation cover—an important dimension of biodiversity at scale—and is corre-

lated with key animal species such as birds, but it is unlikely to reflect all aspects of biodiversity

that land-protection policies intend to preserve.

The field of economics is increasingly interested in the decline of forests and biodiversity because

of species extinction risk (Taylor and Weder 2024), ecoservice losses (Druckenmiller and Taylor 2022;

Frank 2024), and financial risks (Kedward, Ryan-Collins, and Chenet 2023). Protected area policies

are the primary policy instrument today to limit biodiversity declines and the EU’s flagship nature

protection strategy. They are expected to affect 30% of global landmass by 2030. It is essential to

understand the contribution of protected areas to mitigating vegetation and biodiversity loss, as

well as their land-use impacts, which could impact economic performance and growth (Herrendorf,

Rogerson, and Valentinyi 2014). While the EU’s policy has impressive scale, our results indicate

the impact on vegetation cover and economic performance is likely to be minimal.

There are a handful of global studies on the effect of land protection that include Europe (Joppa

and Pfaff 2009; Joppa and Pfaff 2010; Abman 2018; Maxwell et al. 2020; Wolf et al. 2021) and a

large literature on protected-area policies in tropical forests (e.g., Andam et al. 2008; Sims 2010;

Pfaff et al. 2015; Sims and Alix-Garcia 2017; Souza-Rodrigues 2019; Assunção et al. 2022; Keles,

Pfaff, and Mascia 2022; Cheng, Sims, and Yi 2023; Rico-Straffon et al. 2023). This literature

has generally found a modest impact on forest cover, but stronger positive effects are observed

in well-enforced areas experiencing economic development pressure (Börner et al. 2020; Assunção,

Gandour, and Rocha 2023; Reynaert, Souza-Rodrigues, and van Benthem 2023). Our study is

unique in that our data span four decades at high frequency and has fine geographic resolution,

allowing us to study the staggered introduction of land-protection policies using recent econometric

advances that yield unbiased estimates in such settings and allow for unprecedented opportunities to

study how treatment effects evolve over event time and cohorts. Prior studies of land protection—

both global and national—have lacked one or more of these elements, typically covering relatively

short time periods (about a decade or less), leveraging cross-sectional or limited panel variation

through standard matching estimators, and/or lacking a causal research design.

A rapidly-growing literature studies the economics of conservation related to the political econ-

omy (Harstad and Mideksa 2017; Harstad 2023), trade policy (Hsiao 2021), and mechanism design

of US conservation markets (Aronoff and Rafey 2023; Aspelund and Russo 2024). Our paper con-

tributes to this literature by focusing on the environmental outcomes of a large-scale, regulation-

based conservation program in Europe, highlighting that weak regulation and site selection in
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areas with low opportunity costs are also issues in advanced economies, despite many EU coun-

tries ranking among the top for effective governance. Such evidence from advanced economies has

been lacking despite their importance for meeting the global 30x30 target and their land-use and

enforcement dynamics being different from tropical forest countries.3 The implementation of the

EU’s policy and its follow-up framework, the Nature Restoration Law, was heavily contested by

member states and is expected to be at the center of political tensions over land use in the EU in

the coming decade (Hancock and Jones 2024). Our theoretical and empirical results suggest that

local political economy factors undermine the ambitious international targets ratified by the EU.

Decentralized decision making by local jurisdictions whose conservation preferences do not align

with the EU results in poor siting, weak protection, and negligible biodiversity improvements. Even

so, the EU often conditions trade tariff reductions on nature protection efforts in other parts of the

world without a critical assessment of its own contributions.

The rest of the paper proceeds as follows. Section 2 provides details about the EU’s land-

protection policies. In Section 3, we offer a conceptual framework and develop testable predictions.

Section 4 describes the data sources and Section 5 describes four facts from the data. Section 6

outlines the empirical methodology and Section 7 presents results. Section 8 concludes.

2 Protected-area policy in the European Union

The EU specifies biodiversity strategies for each decade that translate the ratification of interna-

tional agreements into specific EU goals.4 The 2010 and 2020 strategies progressively increased the

scope of the EU’s protected area policy, which will continue into the next decade. Europe’s Green

Deal and Nature Restoration Law aim to protect 30%, and rehabilitate at least 20%, of its land

by 2030 (European Parliament 2023) in line with the ratification of COP 15.5 The member states

adhere to these targets by assigning areas under the Natura 2000 policy (European Union 2009).

This policy combines two earlier EU directives: the habitat directive (The Council of the European

Communities 1992) and the birds directive (The Council of the European Communities 1997). The

directives describe a list of species and habitats requiring conservation measures. The list is split

into annexes based on the extent to which species and habitats are threatened. The directives list

a set of restrictions for each annex, such as a restriction on land use to preserve the habitat of

endangered species. The directive requests member states to take measures to maintain the animal

population’s size and habitat’s territorial presence while considering economic requirements. Every

six years, all EU member states report on the state of listed species and habitats.

The directive requires countries to submit a standardized report on their protected areas to the

3. The Auffhammer et al. (2021) and Bahrami, Gustafson, and Steiner (2024) studies of the effect of protection
on land-market impacts in the US are rare exceptions.

4. See, for example, the communication on the 2020 strategy in European Commission (2011).
5. The Nature Restoration Law officially entered into force on August 18, 2024, marking a significant milestone in

the EU’s environmental policy. Many member states oppose the 2030 measure because of the agricultural restrictions
embedded in the legislation.
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European Commission, following International Union for Conservation of Nature (IUCN) guidelines.

The Commission evaluates member state proposals and may amend them. This could lead to a

back-and-forth between the Commission and member states over revisions to protection proposals.

Member states then ratify their plans into national laws that specify the legal status of protected

areas.

While the EU directives describe species and habitats needing protection, member states are

responsible for translating these guidelines into actual policy. First and foremost, member states

decide on the siting of protected areas. In line with the EU list of species and habitats, they identify

territorial regions contributing to improving listed species and habitats. The member states then

draw the boundaries of the areas in cooperation with ecologists, local communities, and farmers,

and specify restrictions on different economic activities. Finally, they implement national laws and

regulations and enforce the policy. The Commission oversees the member state plans and gives

feedback but has no direct regulatory or enforcement power. This legal setting leads to potential

variation in the policy’s siting, restrictions, and enforcement across member states.

When studying the siting policies of member states more closely, it is striking that the procedure

allows for a great deal of input from local communities and farmers. For example, the French

procedure is detailed in Hassan Souheil and Douillet (2011) and is titled ”Dialogue for Natura 2000.”

Under this plan, the French state contacts the prefect of a region if their experts in the Ministry of

the Environment identify a region where protection should be implemented. The local prefect then

establishes a steering committee (“comité de pilotage”) to bring together all possible stakeholders

to formulate the objectives of the protected areas and the siting. The report lists a dozen involved

official structures (such as government bodies, hydrological agencies, and sports organizations) and

two dozen stakeholders (ranging from hunters and farmers to tourists and scientists) as possible

steering committee members. For each validation of a Natura 2000 area the collective procedure

allows for participation and negotiation with local stakeholders. Participation is key; the document

advises that ”each stakeholder, each inhabitant, is legitimate to be involved closely or remotely in

the Natura 2000 process simply because of their link to the area concerned. Leaving no one behind

is a good way to avoid local stakeholders feeling a lack of consideration and thus to limit opposition”

(Hassan Souheil and Douillet 2011). The regional steering committee validates a formal document

(DOCOB) that is passed up to the French government, which in turn includes it in the national

protected area plans submitted to the EU Commission.

Most member states’ procedures incorporate local participation in the siting decisions. The

Netherlands delegates the governance of protected areas to provinces in collaboration with local

stakeholders. Each siting decision is publicly available and revised after a six-week period of

public feedback.6 Similarly, the UK Department for the Environment, Food and Rural Affairs

(Defra) oversees the UK’s siting decisions after Natural England (Defra’s executive body) identifies

a possible area for siting. Natural England carries out a public consultation, to give everyone who

6. See https://www.natura2000.nl/werkwijze/aanwijzing-natura-2000-gebieden-0.
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might be affected by the designation or who has relevant scientific information an opportunity to

comment. This includes landowners and occupiers, local planning authorities, and other interested

organizations. The results of the consultation are reported back to Defra, which may ask Natural

England to try and resolve any remaining objections to the designation or provide more scientific

information to support the proposal.7 Participation of local stakeholders seems to be the key

unifying element of the procedure across EU member states.

Because the actual implementation is delegated to lower government bodies, the member states

report many types of protected areas to the EU Commission. The policy thereby covers municipal,

regional, and national protected areas. Some areas restrict all or most human activity (e.g., strict

nature reserves and national parks; 7.6% of the EU’s protected landmass), while others allow some

industrial and agricultural activities (e.g., habitat or species management areas; 47% of the EU’s

protected landmass). We discuss the breakdown of these categories in Appendix A.3. Member

states have different policies regarding protection and land ownership.8 Furthermore, the policy

encompasses protected areas beyond merely aiming to improve biodiversity. Some are protected

cultural heritage, and others serve recreational goals such as ecotourism.

Our analysis studies protected areas under the early EU directives or member state policies

before 2009 and the complete EU Natura 2000 program after 2009. In 2020, the EU released an

evaluation of the Natura 2000 network (European Environment Agency 2020). The report describes

the difficulty of such an evaluation: “Measuring the ecological effectiveness of a network of protected

areas is difficult, as baseline data are scarce and the data have many limitations, such as the lack of

data enabling comparison of the conservation status of and trends in species and habitats inside and

outside of the Natura 2000 network.” The evaluation is based on expert opinion and member state

surveys from the recurring six-year reporting requirement. However, none of the member states

collect high-quality quantitative data that allow causal evaluation. Our study aims to provide

large-scale, long-term causal evidence for the effectiveness of the EU’s land-protection policy.

The EU’s evaluation states that, between 2013 and 2018, the proportion of species listed in

the birds directive with poor and bad status increased by 7%, corresponding to 81% of habitat

assessments having a poor or bad conservation status, and only 15% of habitats having a good

status. The main pressures that deteriorate the status of habitats are agricultural activities and

urbanization. Agriculture is reported to affect habitats through changes in grassland management,

landscape fragmentation, land-use conversion, and drainage. Member states reported more than

20,000 areas under severe pressure, confirming that the protection policy encompasses land where

nature could potentially expand.

The report ends with actions that could improve the performance of the network. The first rec-

ommendation is to improve site selection: “Inefficient site selection has been linked to politically-

motivated selection and giving low priority to conservation objectives compared with economic

7. See https://consult.defra.gov.uk/natural-england/crouch-roach-estuaries/supporting documents/European%
20leaflet%20Natura%202000.pdf.

8. Unfortunately, comprehensive ownership data across European countries are not available to us.
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objectives.” Furthermore, the report states that management and monitoring could be more effec-

tive and that authorities should prioritize ecological performance. The poor evaluation report of the

Natura 2000 network led the EU to formulate a more ambitious policy in the Nature Restoration

Law of the EU Green Deal in 2024.

3 The policymaker’s objective function

We formalize a policymaker’s decision to protect land to state testable predictions. Consider a

choice over protecting grids i ∈ I, where I = {1, 2, . . . , I}. Treated areas are protected at t = g(i)

so that g indicates the treatment cohort. Control areas are never protected. The decision maker

selects sites i for protection, and we denote the treatment status of each plot with Dit ∈ {0, 1}.
Protection is irreversible: Dit = 1 ∀t ≥ g. Below, we generalize to a discrete-continuous decision:

a decision maker selects the protection location as well as its stringency.

Land has economic use value vit and ecological value eit, including biodiversity, carbon capture,

and other ecosystem services. Generating economic use value vit requires human activity, denoted

by land-use intensity ait. Land use before protection, ait(0), is chosen by private actors to maximize

their private payoffs. We assume that vit(ait) is continuous in land-use intensity and that economic

use value is zero in the absence of human activity, vit(ait = 0) = 0. For each plot i, economic

use value has a fixed sign for all relevant levels of land-use intensity: land use on a given plot

either generates positive economic value or negative economic value, but not both.9 The absolute

economic value increases with land-use intensity: |vit(ait)| rises with ait. Ecological value equals

eit = eit(ait), where e′it(a) < 0: more intensive land use reduces ecological value.

Our framework assumes that vit, eit, and ait are constant over time except when treatment oc-

curs, implying that their values before and after treatment only vary cross-sectionally: ait<g = ai(0),

vit<g = vi(ai(0)), eit<g = ei(ai(0)) and ait≥g = ai(1), vit≥g = vi(ai(1)), eit≥g = ei(ai(1)). The source

of cross-sectional variation in vit and eit are differences in land’s economic and ecological produc-

tivity. Our empirical predictions below generalize to time-varying vit and eit, and the empirical

analysis explicitly accounts for this by modeling rich time-varying treatment heterogeneity.

As long as a plot is not protected (Dit = 0), the resulting policy-maker–relevant economic use

value vi(ai(0)) can be positive or negative depending on the plot. The unrestricted land use reduces

ecological value below its maximum: ei(ai(0)) ≤ ei(ai = 0).

After protection (Dit = 1), the policy prohibits all land use for all t ≥ g(i), setting ait≥g(1) = 0

and vi(ai(1)) = 0. The ecological outcome of plot i attains its maximum value, ei(ai(1)) = ei(ai =

0), after protection.10 This same ecological value would arise if the land had been idle even in the

absence of protection (i.e., if ai(0) = 0).

9. An example of inefficient land use is activity that generates private profits but yields negative economic use value
from the policymaker’s perspective once the costs of road construction, maintenance, and other public provisions are
accounted for.

10. We consider e to include any gains in tourism value from protection.
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3.1 Planner solution

In each period t, a unit of land generates payoffs to a planner. The planner’s present value (at time

t = s) of a non-protected unit of land, Vit(0), and of a protected unit, Vit(1), equal:

Vit(0) =
∞∑
t=s

δt−s[vi(ai(0)) + ei(ai(0))] and Vit(1) =
∞∑
t=s

δt−s[vi(ai(1)) + ei(ai(1))− c(1)] (1)

where δ equals the discount factor and vi(ai(1)) = 0. Protection comes with an administrative,

monitoring, and enforcement cost of c(1).11 The difference in the present value (at time t = g) of

a plot i that is protected at t = g relative to the no-protection counterfactual equals:

Vig(1)− Vig(0) =
∞∑
t=g

δt−g[vi(ai(1))− vi(ai(0)) + ei(ai(1))− ei(ai(0))− c(1)], (2)

which shows how land protection is a trade-off between changes from restricted economic activity,

ecological gains, and implementation costs. We define the ecological treatment effect of protection

as ∆ei = ei(ai(1))− ei(ai(0)), which will function as our primary empirical object of interest.12

Objective function: In the data, we witness gradual protection over several decades. Therefore,

we assume the planner has a resource constraint that limits the maximum amount of plots that

can be treated in each period to equal Ī. The planner faces the dynamic discrete choice problem

of where and when to apply protection:

max
{Dit}Ii=1

∞∑
0

δt
I∑

i=1

[
vi
(
ai(Dit)

)
+ ei

(
ai(Dit)

)
− c

(
Dit

)]
(3)

s.t. #{ i | Dit = 1, Dit−1 = 0} ≤ Ī for all t ≥ 0. (4)

Here, (4) is the constraint capturing that the decision maker cannot protect all the land at the

same time—no more than Ī of the Dit can switch from zero to one for each treatment cohort g.

Characterizing the solution: The planner finds the optimal allocation according to the following

algorithm:

Step 0: Each period t starts with the remaining unprotected land St ⊆ I.

Step 1: The decision maker computes each plot’s net present value change from protection

defined as:

φi =
∆ei − vi(ai(0))− c

1− δ
11. We present a model with homogeneous implementation costs, but extensions to heterogeneous implementation

costs could be interesting in settings where researchers can access data on such costs.
12. Note that the empirical analysis allows for time-varying ∆eit as we account for temporal changes in eit and vit

before and after treatment.
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Step 2: Define the set S∗ with the Ī most positive φi values in the set St, breaking ties

arbitrarily:

S∗ =
{
i1, i2, . . . , iĪ

}
such that φi1 ≥ φi2 ≥ · · · ≥ φiĪ ≥ φj for all j /∈ S∗.

Step 3: For each i ∈ S∗, set Dit = 1. For all other units j /∈ S∗, keep Djt = 0.

Step 4: The stock of untreated land updates: St+1 = St\S∗.

Repeat Step 0-4 until no land is left with φi > 0.

We now use this characterization of an optimal protection policy to formulate testable pre-

dictions to connect the theoretical framework of optimal siting to the empirical framework that

estimates the treatment effects of the EU’s protected area policy.

Prediction 1: positive ecological effects for optimally protected land

A planner protects plots with φi > 0, which implies that ∆ei−vi(ai(0)) > c. Under strict protection,

any plot with positive baseline activity ai(0) > 0 necessarily exhibits a strictly positive treatment

effect, ∆ei > 0.

For plots with negative economic use value, vi(ai(0)) < 0, protection reduces a loss-making

use and raises ecological value, implying positive ecological treatment effects; but it is beneficial

only if these gains are sufficient to offset the implementation and enforcement cost c. For plots

with positive economic use value, vi(ai(0)) > 0, protection involves a trade-off between foregone

economic use and improved ecological outcomes, and protection occurs only when the ecological

gain ∆ei is sufficiently large to compensate for both lost economic value and implementation costs.

Furthermore, the planner would not engage in the protection of land that is not under any

economic pressure—i.e., plots with no baseline activity (ai(0) = 0) for which vi(ai(0)) = vi(ai(1)) =

0 and hence ∆ei = 0—as long as c(1) > 0; such efforts would be considered a wasteful allocation

of resources.

Our framework assumes vi constant over time except when treatment occurs. However, our

prediction generalizes to the settings where vit is time-varying beyond treatment. For example,

land at risk of future economic development (ait(0) increases over time) may warrant protection as

soon as the net present value of ecological savings outweighs the costs of preventing development.

Even in areas where economic activity has previously declined and nature has regrown, a protection

policy that further restricts ait could have meaningful effects by choosing a path of vit(ait(1)) that

declines faster than vit(ait(0)), accelerating natural regrowth beyond what we would see without

protection. This is particularly relevant in Europe, where we observe reforestation in some areas

but increased pressure in others. A protection policy can accelerate greening and reforestation in

certain areas and prevent the loss of vegetation in other areas that come under economic pressure.

We might also expect that ei adjusts gradually after treatment, resulting in heterogeneity in the

treatment effect over time. Nature may require time to regenerate after protection, or, conversely,
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untreated (control) plots might experience gradual degradation. These dynamics will manifest as

event-time heterogeneity in our treatment effects.

Prediction 2: heterogeneity in treatment effects across protection cohorts

The data allow us to examine heterogeneity in treatment effects across cohorts. Under the planner’s

solution, plots are protected in decreasing order of the net gain from protection, φi. Plots with

the highest values of φi are protected first, while plots with lower net gains are protected in later

cohorts. The evolution of average ecological effects across cohorts depends on how ecological gains

∆ei covary with baseline economic use value vi(ai(0)).

To illustrate how cohort-specific treatment effects may rise or fall under the planner’s solution,

suppose that baseline economic use value is positive on all plots, vi(ai(0)) > 0. Assume further

that baseline land-use intensity ai(0) is monotonically increasing in baseline economic use value

vi(ai(0)), and that ecological value ei(a) is monotonically decreasing in a both within and across

plots. Under these assumptions, ecological gains from protection, ∆ei, are increasing when plots

are ranked by their baseline economic use value vi(ai(0)). We can then characterize the planner’s

protection path by evaluating:

∂φi
∂vi(ai(0))

=
1

1− δ

(
∂∆ei

∂vi(ai(0))
− 1

)
.

The derivative captures how the net present value of protection changes when we vary lost economic

production, allowing us to see if ecological gains or economic losses dominate the order of protection

and the associated treatment effects across cohorts.

If ∂∆ei/∂vi(ai(0)) > 1, ecological gains rise more than one-for-one with baseline economic

value and the planner protects high-v plots earlier, so average ecological treatment effects tend to

be larger in early cohorts. If instead ∂∆ei/∂vi(ai(0)) < 1, foregone economic use dominates and the

planner protects low-v plots earlier; in that case, average ecological treatment effects may increase

across cohorts as protection expands to more valuable (and more ecologically responsive) land.

The cross-sectional monotonicity assumption is strong, and in general, we cannot assign a strict

order for the treatment effect size across cohorts. The optimal path of protection depends on the

correlation between vit and eit across i.13

3.2 Siting under delegation

As described in Section 2, the EU establishes quantity targets based on international agreements;

however, the actual siting decisions are largely delegated to national or local authorities. We discuss

the potential impact of such delegation and quantity targets on treatment effects.

13. See Weitzman (1998) and Metrick and Weitzman (1998) and the subsequent literature for theoretical models of
optimal siting.
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We define the problem of the local decision maker as follows:

max
{Dit}Ii=1

∞∑
0

δt
I∑

i=1

[
vi
(
ai(Dit)

)
+ (1− α1)ei

(
ai(Dit)

)
− c

(
Dit

)
+ α2

(
Dit

)]
(5)

s.t. #{ i | Dit = 1, Dit−1 = 0} ≤ Ī for all t ≥ 0 (6)

s.t. #{i|Dit = 1} ≥ Ĩ before t > ttarget (7)

with 0 ≤ α1 ≤ 1, α2 ≥ 0 when Dit = 1, and ttarget the date by which the EU requires Ĩ to

be protected. There are two differences between the local authority’s problem and the planner’s

problem. First, there might be preference misalignment. When α1 > 0, local authorities place less

weight on ecological benefits, while α2 > 0 implies a green-glow effect capturing political benefits

from implementing an environmentally friendly policy (even if its impact might be limited). Second,

the local decision maker might face quantity targets. Under international agreements such as the

30-by-30 target, the optimization problem changes because the EU delegates the protection of vast

amounts of land to local authorities. The quantity agreement introduces an additional constraint

(7): the number of protected areas must reach the level Ĩ by t = ttarget.

Absent a binding quantity target, a higher degree of preference misalignment (i.e., as α1 ap-

proaches one) leads the local policymaker to protect less land than the planner. As α1 increases,

the net present value of protection for the local authority places less weight on ecological gains, so

that the local valuation of protection is strictly lower than the planner’s φi for any given plot. The

local decision maker still protects land that has negative vi(ai(0)) or high enough ecological value,

and we expect positive treatment effects whenever land is protected, but the ranking of plots φi will

be increasingly driven by the economic loss vi(0) rather than the ecological gain. When α1 = 1, the

local policymaker will only protect land with negative vi(ai(0)) (as long as it warrants spending c).

There could be two reasons why α1 > 0. First, local politicians may not internalize biodiversity

externalities as much as EU-level politicians because the benefits of biodiversity are not necessarily

local, whereas the economic losses of protection are—as a result, they may want to “un-do” the

EU policy to some extent. Second, local stakeholder participation might favor the representation

of those affected by the losses from protection. As described in Section 2, stakeholder participation

seems to be the norm in siting policies. While NGOs and environmental organizations usually par-

ticipate in siting discussions, local economic stakeholders often succeed in exerting pivotal influence

on siting decisions.

In the case of green-glow benefits, local decision makers may protect infra-marginal plots that are

not at risk of economic development and, therefore, without ecological gains (vi(ai(0)) = 0,∆ei =

0), as they now gain α2 with each protection that otherwise leaves the land unchanged. However,

whenever land is available with vi(ai(0)) ≤ (1−α1)∆ei, a green-glow decision maker will protect this

land before land without any land use, regardless of how large α2 is (this is also trivially satisfied

for land with negative vi(ai(0))). The net gain from protection is larger than for infra-marginal
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land and such protection has positive treatment effects. Hence, we would witness zero effects after

the protection of land with higher φi. Once the local policymaker runs out of infra-marginal land

to protect, we could even see protection where economic costs outweigh ecological benefits, which

would be associated with positive treatment effects again.

Under the additional constraint of a quantity target, a decision maker may protect a number of

plots even if their marginal net benefit of protection is negative. In this case, once the optimal set

of plots (with φi > 0) is exhausted, additional protection is applied merely to meet the quantity

target, and the local policymaker selects the least costly plots to satisfy the quantity constraint.

Initially, plots with 0 ≤ ∆ei− vi(ai(0)) ≤ c will be protected and treatment effects will be positive.

Next, protection happens on land for which ∆ei = vi(ai(0)). This includes infra-marginal plots

where ai(0) = 0; their net cost of protection is c. Whenever the decision maker runs out of cheap,

infra-marginal land to protect, as could be the case with ambitious quantity targets, treatment

effects may gradually become larger again as the decision maker must start protecting plots with

vi(ai(0)) > ∆ei > 0.

So far, all the scenarios we discussed—preference misalignment, green glow, and quantity

targets—lead to a protection policy where we initially expect the treatment effects to be posi-

tive as the local policymaker selects the land with the most positive φi first, but eventually could

lead the local authority to select infra-marginal land for protection.

Prediction 3: null effects from strict protection on land with low land-use intensity

When green-glow benefits (α2 > 0) or area-based targets are combined with limited internalization

of ecological gains (α1 close to one), protection decisions on land with zero or very low baseline

activity can become optimal from the local policymaker’s perspective, even in early cohorts.14 In

this case, protection decisions are driven primarily by the green-glow benefit or by the need to

satisfy the quantity constraint, rather than by realized ecological gains—the local authority places

low value on these yet faces foregone economic use costs v(a) that increase with the reduction

in human activity. Optimal implementation then targets plots with very low baseline land-use

intensity ai(0) ≈ 0, for which strict protection implies little change in activity and foregone economic

use value is low. Such protection induces only negligible changes in ecological value, ∆ei ≈ 0, despite

formally binding restrictions on land use. Moreover, if the administrative and enforcement costs

of protection are increasing in the baseline land-use intensity—so that it is particularly costly to

limit activity on highly used plots—this selection toward low-intensity land is further reinforced,

leading to an even larger share of protected plots with null ecological effects.

In contrast to the planner benchmark—under which strict protection is targeted toward plots

with substantial baseline activity and therefore yields strictly positive ecological gains—a local

policymaker who places little weight on ecological outcomes, and who is motivated by green-glow

benefits or quantity targets, may instead direct strict protection toward low-intensity land, gener-

ating widespread null ecological effects.

14. Note that the policymaker would protect areas with (v < 0, a > 0,∆ei > 0) before protecting land with a = 0.
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3.3 Siting and strictness under delegation

Until now, we have modeled protection as a discrete decision, but in practice the strictness of

protection is also a policy choice. For each protected plot, the local policymaker can restrict

only certain economic activities rather than prohibit all use. We therefore introduce a continuous

protection stringency parameter di ∈ [0, 1], which is constant over time after treatment. Protection

affects land-use intensity according to ai(1) = (1 − di) ai(0), where di = 1 corresponds to strict

protection with no remaining human activity, and values of di close to zero correspond to weak

protection imposing few economic restrictions. Such low-stringency protection may be particularly

relevant for certain categories of EU conservation areas, such as species management areas (see

Appendix A).

This discrete-continuous optimization problem provides further flexibility to local policymakers

in implementing a protection policy, as the protection level di can be chosen to optimize the

protection payoff φi for each plot and thereby increases the number of plots with a positive net

present protection payoff φi.

Prediction 4: null effects from weak protection on land with high land-use intensity

When protection stringency is a choice variable, a local policymaker who places little weight on

ecological outcomes (α1 close to one), but derives benefits from designation itself (α2 > 0) or faces

binding quantity targets, may optimally implement weak protection on many plots. In addition

to protecting infra-marginal land with low baseline activity, the policy can now apply dit ≈ 0 to

prevent steep protection cost. Hence, the set of land to which inconsequential cheap protection can

be applied expands.

Under variable stringency, post-treatment land-use intensity equals ai(1) = (1− di)ai(0). Eco-

logical gains therefore depend on the reduction in activity induced by protection:

∆ei(di) = ei((1− di)ai(0))− ei(ai(0)) .

For low stringency levels (di ≈ 0), the reduction in land-use intensity is small even on plots with high

baseline activity, implying ∆ei(di) ≈ 0. As a result, variable protection stringency expands the set

of circumstances under which protection generates null or near-null ecological effects, including on

land with substantial baseline use. Compared to strict protection, weak protection thus provides

an additional channel through which delegated implementation can yield widespread ecological

inframarginality.

Overall, our framework highlights the conditions under which land-protection policies may

generate null ecological treatment effects. Such zero or near-zero effects arise when protection

decisions are driven by preference misalignment—specifically, when local policymakers place little

weight on ecological outcomes (high α1)—together with incentives to designate land for political

or administrative reasons, such as green-glow benefits or binding area-based targets. In this case,

they optimally select land with low baseline use or apply weak protection stringency in order to
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limit economic and enforcement costs, resulting in little or no change in ecological outcomes.

Although our empirical focus is on Europe, the mechanisms highlighted by the model are likely

to be even more salient in low-income, forest-rich countries, where local authorities often face

limited enforcement capacity and severe budget constraints. In such settings, local decision makers

may strongly under-value broader societal ecological benefits (high α1) and, when faced with area-

based protection targets, may rationally implement land-protection policies that have little or no

ecological impact.

4 Data

We collect six types of data to assemble two remote-sensing datasets spanning the entirety of the

European Union between 1985-2019.15 The most granular dataset (to analyze vegetation cover)

divides Europe into 117 million equal-sized grids of 300 by 300 meters. The second dataset (to

analyze nightlights) has grids of one square kilometer. Our data deliver comparable and consistent

measures across space and time (see Appendix A for details):

Policy rollout. For every protected area in the EU, we assign the date of its initial protection

based on data from the Common Database on Designated Areas (CDDA), consolidating land-

protection policies across 39 European countries. Focusing solely on terrestrial protection and

excluding marine reserves, our dataset includes details on 118,511 distinct areas that were protected

between 1800 and 2019.16,17 We establish a grid cell as protected if any non-zero fraction of its

land area falls under a conservation agreement.

Vegetation cover. We aggregate satellite images from the Landsat 5, 7, and 8 data to construct

a continuous normalized difference vegetation index (NDVI) at a bi-annual frequency, with higher

values on a 0-100 scale indicating denser and richer vegetation. We rescale NDVI indices to be

between 0-100 instead of the [-1,1] range standard in the remote-sensing literature. We focus on

the [0-1] range and scale the index to 0-100. We drop observations with NDVI less than 0, as

this range corresponds to snow, water, and clouds.18 The remote-sensing measures start in 1985.

We use biennial aggregation to reduce missing data problems caused by cloud coverage and focus

on the summer months when perennial vegetation is most visible. We use NDVI because we can

construct the measure with early Landsat data, allowing us to obtain a panel that is four decades

15. We use the term EU, but the data include the 27 member states as well as Albania, Bosnia, Montenegro,
Macedonia, Norway, Switzerland, and Serbia. We exclude Iceland, Malta, and Liechtenstein due to missing data
issues.

16. France has missing foundation dates for 1,447 areas, representing only 0.3% of the protected area surface in
France. We add the foundation years for the 127 largest French areas with missing foundation dates from internet
sources.

17. See Villasenor-Derbez, Costello, and Plantinga (2024) and McDonald et al. (2024) for an analysis of the impacts
of marine protected areas under the 30x30 target.

18. We also present robustness to samples with NDVI above 40 to focus on land with vegetation and exclude urban
grids, bare soil, and rocky landscapes. See Appendix D and the discussion in Section 7 for details and evidence that
our results are robust to the chosen NDVI threshold.
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long. Alternative measures such as Vegetation Cover Fields (VCF) are only available since 2000.19

Previous research has shown that NDVI correlates equally well as other vegetation measures with

the frequently-used biodiversity marker bird species richness (Nieto, Flombaum, and Garbulsky

2015; Hobi et al. 2017). The finding that NDVI is an excellent predictor for bird diversity is

replicated in our study area for French (Bonthoux et al. 2018) and Mediterranean landscapes

(Ribeiro et al. 2019). NDVI has shown to be effective in measuring the treatment effect of policies

targeting land use across different sensors (Lassiter 2022). Nevertheless, it is important to mention

that the EU’s protection policies have multiple biodiversity objectives which are not perfectly

captured by NDVI. NDVI will not be able to detect certain types of biodiversity improvements,

and will be at best positively correlated with others. For example, species management areas may

lead to improved animals counts, including insects, but we lack evidence on how vegetation cover

correlates with many animal species other than birds. However, as we discuss below, direct species

count data availability is limited.

Furthermore, we think it is helpful to focus on continuous measures. First, it allows us to

capture gradual changes in vegetation that do not necessarily lead to land use re-categorization.

For example, new construction such as housing or large-scale solar panel installation, or agricultural

expansion, will result in decreases in a plot’s NDVI score even when the discrete land-use category

might be unaffected. Using discrete land-use data from the Historical Land Dynamics Assessment

Program (HILDA), we verify that NDVI, on average, is highest for forested land (62, and more than

25% of forested grids have NDVI above 73), 53 for grassland, and 49 for cropland. Additionally, the

continuous measure avoids classification errors that plague categorical land-use classifiers (see Alix-

Garcia and Millimet 2022; Torchiana et al. 2023). Continuous measures are critical because our

data encompass various protected areas. In 93% of the protected areas some economic exploitation

of the land is allowed for and we might expect some of these areas to have gradual greening rather

than discrete land-use changes.

Nightlights. We rely on Li et al. (2020) for a 1992-2018 one square kilometer panel of remotely-

sensed nightlights. Here, our goal is to measure human presence on a granular scale. If protected

areas limit economic activity, we expect outward migration from the area and reduced traffic,

which could reduce nightlights. Nightlights have been used as a proxy for economic development

and GDP in remote areas (Donaldson and Storeygard 2016) and urban/settled areas alike (Gibson

et al. 2021), but this approach has also received criticism about unstable relationships and data

inconsistencies (Chen and Nordhaus 2011; Bickenbach et al. 2016). We do not aim to interpret

nightlights as a GDP/economic development measure. Still, we think it is useful as a measure

complementary to NDVI, capturing the degree of human presence in the area.

HILDA. We obtain discrete land-use data via HILDA dating back to 1900 at a decadal fre-

quency and a resolution of one square kilometer (Fuchs et al. 2015). HILDA classifies each grid as

settlement, cropland, forest, grassland, other land, or water. The data are constructed by harmo-

19. The Enhanced Vegetation Index (EVI) targets the measurement of tropical forests not present in the EU.
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nizing historical land cover information such as national inventories, maps, and aerial photographs

with remote-sensing data. HILDA allows us to investigate long-term trends in EU land use. We

are mainly interested in forests, grassland (which includes pastures), and cropland. Appendix Fig-

ure A.4 shows land-use shares between 1900 and 2010, and Appendix Table A.5 reports the EU’s

land-use transition matrix for that period.

Species counts. We use the BioTIME dataset, which is the largest available aggregation of

species count studies across space and time, see also Liang, Rudik, and Zou (2023). Species count

data allow for more direct measures of biodiversity. However, many count data suffer from one or

all of the following issues: nonrandom location of counts, short panels with recent coverage only,

a low number of species, model-based projections across space instead of raw data, and limited

regional coverage. Each of these issues is problematic for the goal of our study: a comprehensive,

long-term, EU-wide evaluation of protection. None of the species count data sources, including

BioTIME, allow us to achieve a similar causal research design as with remote-sensing data.20

Control variables. Finally, we add data on bio-geographical regions from the European

Environment Agency; climate zones, soil properties, and topography from the European Soil Data

Centre; precipitation from the European Centre for Medium-Range Weather Forecasts; and solar

radiation from WorldClim. We merge these controls with the NDVI and nightlight data to control

for each grid’s natural vegetation growth propensity.

5 Descriptive evidence from 100 years of land-use data

In this section, we provide four empirical facts regarding land use in the European Union.

Fact 1. Large parts of Europe have experienced land-use transition in the last 40

years. Figure 1 maps the levels and changes in NDVI in Europe. Panel (a) shows that NDVI

indices range between 50 and 100 in many areas. Panel (b) plots changes in the NDVI index

between 1985 and 2019. We document decreasing NDVI in red and increasing NDVI in green.

The map reveals a substantial greening in certain parts of Europe, but vegetation degradation in

others. The greening is most pronounced in southeastern Europe and Scandinavia. NDVI decreases

in large parts of France, Germany, and the Baltic states. This land seems to be under pressure

from economic development, and stringent protection may prevent vegetation loss. Many parts of

the EU have seen small changes in NDVI, not larger than 5 points in absolute value.

Panels (c) and (d) replicate panels (a) and (b) but only for areas that had received protection

by 2019.21 Many protected areas have high greenness levels in 2019. Most of them experienced

20. Promising improvements in more direct measures of biodiversity include several databases of animal tracking
data, such as the Global Biodiversity Information Facility, Movebank, the PanEuropean Common Bird Monitor-
ing Scheme, eBird, eButterfly, and the European Bird Census Council. See https://www.gbif.org/, https://www.
movebank.org/cms/movebank-main, https://pecbms.info/, https://ebird.org/home, https://www.e-butterfly.org/
and https://www.ebcc.info/.

21. As visible in Panel (c), Ireland appears to have only a few, small protected areas in our data. This is an artifact
of the shapefile of the European CDDA database: Ireland has several large Special Areas of Conservation according
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Figure 1: NDVI changes inside and outside protected areas

(a) Grid-level NDVI, end of sample (b) Grid-level NDVI changes across sample

(c) CDDA-level NDVI, end of sample (d) NDVI changes 2019-1985 within CDDA’s

Notes: Panel (a) plots the NDVI across 2015-2019 for each grid. Panel (b) plots the change in NDVI between

2015-2019 and 1985-1989. Panel (c) plots NDVI within each CDDA for 2015-2019. Panel (d) plots the change in

NDVI within each CDDA between 2015-2019 and 1985-1989.
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increases in NDVI between 1985-2019, although there are also many protected areas with small

positive or negative NDVI changes. However, comparing (b) and (d), many are also situated

in areas that are greening regardless of land protection. The changes in greenness over time in

protected areas vs. non-protected areas that are similar on observables, together with the staggered

implementation of protection, form the primary identifying variation we exploit in this paper.

Fact 2. Economically valuable land continues to be deforested. Table 1 demonstrates

that economically valuable land has experienced deforestation in the EU. Compared to land that

remained forested, deforested land is more populated, more urbanized (higher nightlights), and more

agriculturally suitable (longer growing seasons and potassium-rich soil).22 The table also highlights

that the EU has protected land at risk of deforestation at a very similar rate as intact forests. The

balance table thus suggests that land protection does occur on land at risk of development.

Table 1: Average of key variables among land classified as forest in 1900 by whether that land was
deforested, 1900-2010

Not deforested, 1900-2010 Deforested, 1900-2010

Mean Std. dev. Mean Std. dev.

Nightlights in 2010 6.3 9.3 10.8 12.1
Percent of grid protected 24.2 45.9 28.7 46.0
Population density in 2000 46.7 143.4 103.8 273.8

Crop suitability 6.2 1.3 6.3 1.3
Forest suitability 3.5 1.5 4.0 1.4
Grassland suitability 5.6 1.4 5.6 1.6

Slope steepness 2.3 3.1 2.0 3.0
Solar radiance 10.7 2.2 11.4 2.0
Precipitation 767.3 266.9 791.2 261.4

Potassium 147.1 55.9 175.9 71.5
Nitrogen 2.2 1.0 2.3 1.0
Growing season length 222.5 67.0 256.0 57.1

Notes: Table presents balance of several key variables against an indicator based on the discrete land-use classifi-

cations provided by the HILDA data. Not deforested indicates 1 km × 1 km grid cells which were coded as forest

in 1900 and were still coded as forest in 2010. Deforested indicates areas which were forest in 1900 but were coded

as any other category in 2010. Percent of grid protected indicates the percent of the 1 square kilometer grid which

contains protected areas, regardless of their designation year and CDDA designation. Means of time-varying variables

are calculated in a specific cross-section, as indicated in the table. Units for all variables are indicated in Appendix

Table A.4. Appendix Table A.6 replicates the table for the years 1990-2010 and 2000-2010.

Fact 3. Land-protection targets greener areas and extends across both sparsely

settled and densely populated regions. We explore protected area siting visually in Figure

to the National Park and Wildlife Service (see https://www.npws.ie/maps-and-data) but these do not appear in the
CDDA.

22. We re-create the table for recent decades in Appendix Table A.6. Land deforested more recently tends to be
located in more populated areas, likely reflecting land pressure from urbanization, especially in the 1990s.
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2. The figure illustrates the probability of land protection since 1985, categorized by the initial

greenness and population density of each land area, as of 1985. Then, for example, among all land

that had a population density of less than 20 people per square kilometer and greenness above

80 in 1985, 22% by area received protected status after 1985. The figure shows that protection is

more targeted towards land with higher greenness, but is targeted equally across population bins.

Densely and sparsely populated land receive similar rates of protection.23

Figure 2: Share of protected areas in population density and starting greenness bins

Notes: Population density and greenness are divided into increments of 20, from [0, 160] and [40, 100], respectively.

Resolution of a grid cell is 300 × 300 meters. Grid cells are considered protected if any non-zero share of the grid

cell protected. Greenness-by-population density cells with fewer than 100 grid cells are omitted. Sample includes all

land which had a greenness of at least 40 at some point in the sample.

Fact 4. Protection is strictest on sparsely populated and initially green land, while

the majority of protected areas are subject to less strict protection. We assess if

there are spatial patterns in the stringency of protection. Figure 3 describes the likelihood that

land protection is in IUCN Categories Ia, Ib, or II by greenness and population density. These

three categories impose strict restrictions on human interaction: only scientific, ecological, and

recreational use are permitted (though in some cases, an exception is made for use by indigenous

peoples), while other categories allow for some economic use of the area.24 Then, for example,

among protected areas founded after 1985 which had 1985 population density less than 20 and

23. Appendix Table A.14 presents the results from a linear probability model of land protection. We find that more
economically valuable land, as measured by nightlight luminosity, the presence of cropland, or settled land use before
protection, has a lower probability of protection.

24. The criteria for these three categories explicitly reference “pristinity” of nature; others do not. For more
discussion of IUCN categories, see Appendix Table A.3. Adding areas of Type III (natural monuments) to the
“strict” designation does not alter the overall pattern of results.
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greenness above 80, 26% are strict. The figure reveals a stark pattern: post-1985 strict land

protection occurs on low-density or already-green land as of 1985.

Figure 3: Share of protected areas by starting greenness and population density which are strict

Notes: Figure is constructed exactly following Figure 2. Entries are populated with the area-weighted average

strictness of protected areas in each cell. Strictness is calculated using the International Union for the Conservation

of Nature (IUCN) classification, with Ia, Ib, and II areas mapping to 1, and III or below mapping to 0. Ia, Ib, and II

areas place the strictest limitations on human activity (only scientific, ecological, and recreational use, respectively).

Thus, stricter areas have high (dark orange) values of the strictness index.

These stark spatial patterns reveal that strict protection is less likely to be applied when nature

appears under pressure. As the European Environment Agency (2020) points out, urbanization

and agriculture are the main causes of nature degradation in the EU. Urbanization correlates by

definition with population density, and almost all agricultural areas have NDVI values well below

80. Therefore, Figure 3 reveals that protection is likely to be less strict where we expect pressure on

nature. Such areas are far more likely to be species management areas or other types of protection

that do not substantially restrict human activity. Yet, we acknowledge that population density and

initial greenness are not perfect proxies for pressure, and biodiversity could also be under pressure

in ways we do not measure in our analysis.

Figure 4 illustrates how protection stringency varies with development pressure, contrasting

strict protection on low-pressure land with weaker protection on land facing higher pressure. By

2019, 56% of the EU’s protected areas were located on land with relatively high population density

and middling or low initial greenness, but these areas are subject to weaker protection mandates

(IUCN Categories Ia, Ib, and IUCN Category II, national parks). In contrast, strict protection on

low-pressure land accounts for only 4% of total protected area by 2019.25

25. Strict protection is a small share of overall protection. In Appendix Table A.3, strictly protected areas account
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Figure 4: Cumulative share of land protection by strictness and land pressure

Notes: Low pressure land has initial greenness above 70 and population density below 100 people per sq. km; high

land pressure land is all other land. Strict protection is defined as IUCN category Ia, Ib, or II. Limited to foundation

years between 1985-2019.

In summary, the European Union has been experiencing a major land transition over the last

40 years (Fact 1). Significant parts of the EU are still under threat of deforestation or vegetation

degradation (Fact 2). Despite such land pressure, protected areas target greener land across the

whole population density distribution (Fact 3). Land protection is most stringent on undeveloped

land with a low population density but the majority of protected areas are not subject to strict

protection (Fact 4). The descriptive results support the hypothesis that land protection could be

useful to preserve or strengthen greenness in the EU; they also suggest that siting often occurs in

already-green, low-populated areas and that the EU applies weaker restrictions in at-risk areas.

These may inhibit positive treatment effects on vegetation growth.

6 Methodology

As in Section 3, the unit of observation is a grid, i ∈ I. We observe every grid i at a biennial

frequency. Define periods t ∈ T, where T = {1985, 1987, . . . , 2019} is the sample of years we have

data for. Treated areas correspond to areas that are protected at some time g(i) ∈ T, and control

areas are assigned g(i) = ∞ to indicate that they are not treated before or during T.26 Define G

as the group of all units treated at time g. We use subscript t for calendar time 1985 to 2019 and

we define event time e ≡ t − g as the number of years before or after treatment. We define the

treatment indicator Dit ∈ {0, 1} as equal to one after plot i is protected: Dit = 1[t ≥ g(i)].

for 8.2% of total protected areas by count and 17.9% by land area.
26. Because less than a quarter of land is treated at the end of our sample, we select control units from ‘never-treated

units’ in our sample, and report robustness with control units from ‘not-yet-treated units’ in Appendix D.
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We aim to estimate the treatment effect of protection on the plot-level outcomes of vegetation

cover and nightlights. We define the treatment effect of protection at time g on an outcome variable

Yit as:

τigt = E[Yi,t − Yi,g−1|G,Dit = 1]− E[Yi,t − Yi,g−1|G,Dit = 0], (8)

comparing the difference in outcomes of grid i between periods t and g − 1 in treatment cohort G

with the unobserved difference in counterfactual outcomes should grid i not have been treated.

6.1 Staggered difference-in-differences design

We apply the doubly-robust difference-in-differences estimator of Callaway and Sant’Anna (2021) to

obtain country, event-time, and cohort-specific average treatment effect estimates θcgt of (8).27 We

estimate average treatment effects at the country level because EU member states have jurisdiction

over the policy and differ in their site selection and enforcement. In addition, we might expect

treatment effect heterogeneity across event time e. For example, when treated plots regenerate

after protection, we expect vegetation cover to increase gradually. Finally, there is reason to expect

cohort-specific treatment effects whenever site selection differs across cohorts g when more and

more land gets protected (see Section 3 for details).

The doubly-robust estimator is a crucial improvement in our setting relative to standard two-way

fixed effects methods for two reasons. First, we observe a staggered introduction of the European

policy over a 35-year window from 1985 to 2019, where time-varying site selection could cause

cohort-specific treatment effects. In such settings, standard two-way fixed effects estimation is bi-

ased. To obtain unbiased estimates, the doubly-robust estimator allows for cohort-specific match-

ing probabilities, outcome correction models, and treatment effects.28 Cohort-specific matching

addresses time-varying selection bias stemming from the correlation between unobserved plot-level

economic activity and treatment status. The outcome correction controls for time-varying differ-

ences in observable weather-related plot attributes. This is essential because of the weather-induced

variability in NDVI. Furthermore, we can estimate specific dynamics for each cohort to explore the

policy’s potential heterogeneity across years-since-treatment and across cohorts.

We specify a model for the propensity weighting and the outcome correction procedures based

on variables that drive vegetation growth. We rely on previous literature assessing land conditions

and yields (Schlenker and Roberts 2009) to select yield-relevant variables for the inverse probability

weighting. Fixed land factors include a measure of soil suitability for agriculture, elevation, climate

zones, and biogeographical regions. Time-varying variables are rainfall, heating-degree days, and

the length of the growing season. Additionally, we include the average greenness, population density,

and growing season length, all measured in 1985, and the greenness trend between 1985-1989. To

27. We use a difference-in-differences approach instead of a regression discontinuity design (RDD) as in Turner,
Haughwout, and van der Klaauw (2014). Protected area boundaries often follow land-use breaks (field edges, roads,
villages), so land cover and protection change simultaneously at the border, invalidating the RDD identification
assumptions as the different land covers cause discrete jumps in NDVI at the border of protected areas.

28. For completeness, we also report results from standard two-way fixed effects estimation in Appendix C.2.
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test for parallel trends, we select plots treated at least three two-year periods after the first year of

our outcome measures so that the first-treated cohort is in 1991.

The outcome regression adjustment linearly projects control units’ change in outcomes between

g − 1 and t on plausibly exogenous observables, separately for every cohort group G:

mgt(X) = E[Yi,t − Yi,g−1|G,X,Dit = 0].

By subtracting the fitted values of mgt(X) from the outcome difference of treated units, the proce-

dure corrects for the confounding effects of time-varying observable differences in control variables.

The procedure involves estimating the propensity scores, outcome correction, and dynamic

average treatment effect by country-cohort. We estimate standard errors using the multiplier

bootstrap procedure. Because multiple plots are assigned to treatment simultaneously, we cluster

at the assignment level of the CDDA identifier (Bertrand, Duflo, and Mullainathan 2004) in addition

to the default plot-level clustering used by the Callaway and Sant’Anna procedure. We provide

details on the estimation in Appendix B.

The estimated average treatment effects θcgt vary across countries, over event time e = t − g,

and across treatment-assignment cohorts g. Define the set of countries as C and the set of cohorts

as G. Recall we defined T as the set of time periods in our study sample; we refer to the last year

of the sample as T . We compute country-specific treatment effects by averaging over the treated

time periods and cohorts:

θc =
∑
g∈G

wcg

T∑
t>g

weθcgt =
∑
g∈G

Ncg∑
g∈G Ncg

T∑
t>g

1

T − g + 1
θcgt, (9)

where Ncg is the number of observations in country c that were treated in foundation year g, and

w are weights. We average treatment effects across all cohorts; within each cohort, we average over

all treated periods for that cohort in our sample. Because our panel is balanced, every event time

has an equal weight we = 1
T−g+1 within its cohort.

We compute the overall treatment effect estimate across the EU as a weighted average of the

country-specific θcgt parameters where the weights depend on the number of treated observations

for each tuple {c, g, t}. Define the number of plots i treated in cohort g and observed in period t

within country c as Ncgt. Then, define the EU-wide θEU
gt as:

θEU
gt =

∑
c∈C

wcgtθcgt =
∑
c∈C

Ncgt∑
c∈C Ncgt

θcgt. (10)

Generally, such a weighted sum requires estimating the weights wcgt. In our setting, we observe

the true weights on observations because our data cover all land in the EU. As a result, we directly

adjust standard errors without calculating a separate standard error for the weights. We obtain

the overall θEU as the arithmetic mean over cohorts and their treated periods. The EU-wide
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aggregation is asymptotically valid when treatment effects are i.i.d. across countries.29

We aggregate θEU
gt over event time and cohorts. We first recast θEU

gt as θEU
ge by setting e = t−g.

Aggregating over cohorts gives an event-study type estimator θEU
e indexed by event times:

θEU
e =

∑
g∈G

wgθ
EU
ge , (11)

where wg equals the fraction of cohorts observed at event time e. Finally, aggregating over event

times gives a measure of the average effect of being treated at time g:

θEU
g =

1

T − g + 1

T−g∑
e=0

θEU
ge , (12)

where we weight each event time within cohort g the same, implying a balanced panel.

Event-study style aggregations represent multiple underlying mechanisms if the composition

of cohorts represented in each θe is different.30 To ensure that results are not driven by sample

composition alone, we construct a series of panels requiring units to be in-sample for at least

three periods before and after treatment. This functionally excludes the earliest treated and latest

treated plots from the sample. We also use an equivalent aggregation at the country level to examine

heterogeneity in the results across countries. We aggregate within-country and across event time

to obtain θcg.

6.2 Conditional average treatment estimator

In addition to differences in treatment effects across countries, event times, and protection years, we

anticipate treatment effect heterogeneity due to factors such as pre-protection greenness, population

density, varying soil characteristics, or weather conditions impacting vegetation regeneration ability.

Absent knowledge of the universe of treatment effects, we use heterogeneity to understand how

to target land protection in the context of our framework in Section 3. For example, previous

agricultural land may green differently than land that was already forested. We use the conditional

average treatment effect (CATE) framework put forward by Chernozhukov et al. (2024) and test

directly whether there is a statistically significant deviation from the average treatment effect across

the covariate space. The CATE framework estimates a high-dimensional, nonparametric function:

τigt(x) = E[Yi,t − Yi,g−1|G,Dit = 1, X = x]− E[Yi,t − Yi,g−1|G,Dit = 0, X = x] (13)

29. Our standard errors for the EU-level effects are likely smaller relative to a confidence band that would incorporate
covariance in country-level treatment effects. However, EU member states independently decide which land to protect,
and we do not observe coordination between member states in practice. The choice of aggregation technique is also
motivated by the computational cost of the doubly-robust estimator.

30. Because we aggregate across cohorts, the sample is densest close to event time zero, with fewer units used to
calculate effects in the earliest pre-periods and latest post-periods. For example, if a unit is treated in 2019, it has
only one post-period (2019) but has 17 biennial pre-periods dating back to 1985. No other cohort is represented in
the dynamic effect for the bin t− g = −34 as 2019 is the last in-sample cohort.

26



While we could introduce additional heterogeneous treatment effects in the difference-in-differences

framework, we have a large set of covariates to consider. We therefore apply the honest random for-

est estimator of Wager and Athey (2018) to select statistically-relevant dimensions of heterogeneity,

avoid multiple testing problems, and return a causally-valid conditional average treatment effect.

Both Callaway and Sant’Anna (2021) and Wager and Athey (2018) are doubly-robust difference-in-

differences methods as we apply them: the first is semiparametric and the second nonparametric.

In contrast to current literature, where third differences are chosen by the researcher, a nonpara-

metric method has the advantage of choosing salient dimensions of heterogeneity directly from the

data. Thus, the data inform how to construct τx = E[τ |X = x] for covariate X.

We adapt the approach of Wager and Athey (2018) and the associated ‘grf’ software package,

which is designed for a cross-sectional comparison of treated and control means, to account for the

variability in treatment selection across cohorts. We provide a brief overview of our approach here,

with more details in Appendix B.

For each cohort, we restrict attention to a single pre-period g − 1 and a single post-period,

which we fix to the last year of the data, t = 2019. Estimation requires four steps, each involving

the calibration of a separate random forest. First, we calculate a cohort-specific propensity score

pg(X) in period g − 1 which predicts selection into treatment. Second, we calculate a regression-

adjustment, mgt(X), using a regression tree in the period g−1. These first two steps are identical to

the staggered difference-in-differences design; however, here we estimate both steps using a random

forest instead of a parametric estimator. Lastly, we use both calibrated trees to calculate a third

causal random forest in period g−1, which provides the relative pre-period expectation and a fourth

causal random forest in period t = 2019, which provides the relevant post-period expectation:

τigt(x) =

post-period︷ ︸︸ ︷
(E[Yi,t|G,Dit = 1, X = x]− E[Yi,t|G,Dit = 0, X = x])−

(E[Yi,g−1|G,Dit = 1, X = x]− E[Yi,g−1|G,Dit = 0, X = x]︸ ︷︷ ︸
pre-period

In these final steps, the random forest imputes counterfactual outcomes for each treated unit by

splitting the data into groups using controlsX (our approach is related to Knittel and Stolper 2021).

Each split is chosen to maximize the between-split heterogeneity in treatment-control differences.

Splits with excessive imbalance in (propensity-weighted) treated and control units are penalized.

As a result, the finest split of each “tree”—a leaf—grown by the random forest contains a set of

treated units and a counterfactual group comprised of their nearest neighbors. In each period,

we thus obtain a vector of treatment-control differences associated with each grid cell. We then

evaluate grid-level treatment effects by subtracting the pre-period effect from the post-period effect

to arrive at a CATE difference-in-differences estimator.
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7 Results

In this section, we present average treatment effects on NDVI and other outcomes. Next, we

investigate (the lack of) treatment effect heterogeneity and its possible explanations. Finally, we

link our empirical results to the four theoretical predictions we formulated in Section 3.

7.1 Average treatment effects

Average treatment effects on NDVI by country

Figure 5 presents the EU-wide average treatment effect θEU on vegetation greenness aggregated

across all countries, event times, and cohorts, along with the country-specific ATEs θc ordered

from small to large (red and blue bars). Detailed results for Figure 5 and all subsequent figures are

presented in Appendix C. The top panel summarizes θEU across different econometric specifications.

The preferred EU-wide ATE via the doubly-robust Callaway and Sant’Anna estimator is 0.02 with

a standard error of 0.07 for a change in the NDVI index (which ranges between 0 and 100).31

We cannot reject a zero effect of protection on vegetation greenness, and the confidence interval

is tight around zero: the EU-wide average treatment effect estimate is a precise zero. The figure

also displays the estimates from two naive, and biased, two-way fixed effects estimators (with and

without matching).32 Their EU-wide ATE of 0.5 is similarly small. In Appendix D, we conduct

several robustness checks. By looking at the first differences in greenness as an outcome, we

confirm that the null result and pre-treatment parallel trend are robust to changes in functional-

form assumption (Roth and Sant’Anna 2023). We limit the sample to NDVI between 40 and 100

to focus on greener plots and corroborate the zero result. We use not-yet-treated plots instead

of never-treated plots as controls and confirm our results. We focus on a limited high-population

sample, for which we do not find parallel trends before treatment, but find no evidence for positive

treatment effects. Finally, we estimate a spatial first difference model and also find a zero effect.33

There are some differences across countries (bottom panel). However, the size of all estimated

treatment effects in absolute terms is typically small—θc varies between -1.5 and 2.5. In 18 out

of 32 of the countries, the treatment effect is less than a 0.5 point change in the NDVI index,

which is small relative to NDVI index difference of 14 points we see on average between forest (63)

and cropland (49) or the 10 point difference between forest and grassland (53). The treatment

effects are also small relative to the standard deviation of within-country mean-adjusted greenness

31. Appendix C.1 shows balance tables with and without cohort-specific matching.
32. For the two-way fixed effects regression, we estimate a difference-in-differences model with grid- and time- fixed

effects, λi and λt: Yit = βDit + λi + λt + εit. We report the dynamic estimates from the two-way fixed effects model
in Appendix C.2.

33. Because our results indicate a zero treatment effect of protection on greenness, we are not concerned about
spillovers. Robalino, Pfaff, and Villalobos (2017) show empirically that protected areas in Costa Rica facing greater
threats of deforestation present larger spillovers on nearby land. Leite Mariante and Salazar Restrepo (2024) develop
a model to identify the general equilibrium spillovers of conservation in the Brazilian context where conservation has
positive treatment effects on forests.
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Figure 5: Treatment effects on NDVI, EU-wide and by country

Notes: Top panel reports treatment effects estimated through three distinct estimators: the Callaway and Sant’Anna

doubly-robust procedure (CSDR), two-way fixed effects (TWFE), and matched two-way fixed effects (MTWFE).

Bottom panel reports CSDR treatment effects θc aggregated by country with bootstrapped confidence intervals.

Blue bars indicate positive ATEs; red bars indicate negative ATEs. Horizontal black lines indicate 95% confidence

intervals. Greenness varies from 0 to 100. Appendix Table A.10 presents the regression results.
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(14). Save for Croatia, the Netherlands, Montenegro, Slovenia, Serbia, and Ireland, every country

has a point estimate less than 1 in absolute value. In the distribution, more than half of the

countries have small negative treatment effects, and about a third of the treatment effects are

slightly positive. Of the five largest countries by surface area (France, Spain, Sweden, Germany,

and Finland), only Germany has a positive treatment effect (0.2 NDVI points). Altogether, Figure 5

shows some meaningful treatment effects in a handful of mostly smaller EU countries, but generally

large positive treatment effects are rare, and the Europe-wide average treatment effect is small by

any standard.

Average treatment effects on NDVI across event time and cohorts

Figure 6 (left panel) shows the ATE estimates θEU
e and associated 95% confidence intervals—

aggregated across the entirety of the European Union—over event time e, with e = 0 indicating

when protected areas were established. These dynamics reveal no post-protection upward trend in

treatment effects over time. The effect of conservation on greenness is consistently close to zero—

almost all confidence intervals are contained within [−1, 1] up to 20 years post-protection. Even 30

years after treatment, we find no evidence of a positive protection effect. The lack of a pre-trend is

reassuring and suggests the matched controls are appropriate comparisons for the treated areas.34

This does not imply that vegetation greenness has been constant over time. Certain parts of Europe

have been greening, but treatment and control plots in those areas have been greening in parallel,

both before and after the establishment of land-protection policies.

Even if the average treatment effect is zero, we investigate if there is a time trend in the

treatment effects θEU
g by cohort of protection g. As discussed in Prediction 2 of Section 2, one

might expect that land with low opportunity costs is protected first (small treatment effect). As

time progresses and the land with the lowest opportunity cost has been protected, local governments

might focus on areas with higher opportunity costs (larger treatment effect). Figure 6 (right panel)

shows the EU-wide cohort-level treatment-effect estimates. There is no time trend in the treatment

effects across cohorts—the effect of land protection is close to zero regardless of when the land got

protected.

To formally establish this result, we compute two test statistics applied at the country level

in Appendix Table A.13. First, we test if there are statistically-significant linear trends in the

country-cohort level estimates θcg. Second, for each country, we split the estimate θcg in an early-

treated and late-treated group and test for a difference in the treatment effect size between the two

groups. With these two tests, we find no evidence of any meaningful positive trends across cohorts

of protection at the individual country level.

34. There are some pre-treatment coefficients that are significantly different from zero, but these are close to zero
and would likely not imply large changes to the post-treatment confidence intervals (Rambachan and Roth 2023).
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Figure 6: Treatment effects on NDVI over event time and by cohort

Notes: Treatment effects on greenness aggregated by event-study period θEU
e in the left panel, and by cohort θEU

g in

the right panel. Bottom panels indicate the number of treated grid cells for each event-time or cohort. The event-time

design duplicates observations across event periods, while the cohort design splits the sample across cohort dates.

Event-times in the left panel trimmed to [−20, 20]. Dashed blue line shows the overall EU-wide effect from Appendix

Table A.10. Greenness varies from 0 to 100. Both panels use the Callaway and Sant’Anna doubly-robust estimator

with 95% bootstrapped confidence bands. Appendix Tables A.11 and A.12 present the regression results.

Average treatment effects on other outcomes

Having established a mostly-precise zero effect of the effect of land protection on NDVI across coun-

tries, event times, and cohorts, we now present evidence on the effect of protection on nightlights.

One might hypothesize that protection reduces human activity relative to matched controls, which

would manifest itself through a decrease in the brightness of nighttime light.

Figure 7 shows that—whether broken down by event time or by cohort—there is no evidence

that land protection reduced nightlights. Nightlights vary from 0 to 68 units of luminosity, while

treatment effects are generally within 0.5 units. The EU-wide average treatment effect is -0.14

(0.05). For reference, moving from a bright country such as Belgium, with a luminosity of 30.5,

to a dark country such as Bulgaria, with a luminosity of 9.3, implies a 20-point difference in the

measure. Our results suggest a zero impact on human activity in areas set aside for protection for

at least two decades (left panel). In addition, the effect of land protection is close to zero regardless

of the year of first protection. This corroborates our NDVI results (right panel).
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Figure 7: Treatment effects on night-time lights over event time and by cohort

Notes: Treatment effects on night-time lights aggregated by event-study period θEU
e in the left panel, and by cohort

θEU
g in the right panel. Bottom panels indicate the number of treated grid cells for each event-time or cohort. Event-

times in the left panel trimmed to [−10, 20]. Night-time lights vary from 0 to 68, with all event-time estimates being

smaller than 0.5 units of luminosity. Both panels use the Callaway and Sant’Anna doubly-robust estimator with

bootstrapped 95% confidence bands. Appendix Tables A.15 and A.16 present the regression results.
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It is conceivable that land protection increased biodiversity in ways neither measured by NDVI

nor nightlights. The lack of comprehensive, granular, consistent, and reliable species count data

prevents us from testing this hypothesis causally. Appendix E contains some limited, non-causal,

descriptive results using the BioTIME data. This event-study analysis shows no clear increase in

species counts following CDDA establishments near the BioTIME study locations.

Finally, we confirm that our main results are consistent with evidence from discrete land-use

data. Despite the limitations of discrete classifications of land use (see Section 4), we use decadal

data from HILDA in Table 2 to compare land-use transition probabilities between protected and

never-protected areas. We limit the transitions to our study period, 1980 to 2010, to facilitate

comparison with our previous empirical exercises. To focus on a consistent 30-year time window,

we limit treated observations to areas protected between 1970 and 1980. Controls are matched on

1970 land-use and time-invariant observables: slope angle, slope steepness, solar radiation, long-run

precipitation, and distance to a shoreline. The forest transition shares are very similar for protected

and control units, which is consistent with our null results for continuous vegetation greenness. The

largest discrepancy is a 3% larger transition of cropland into grassland in protected areas. However,

the grassland-cropland classification is particularly difficult for discrete land-use measures and may

be confounded by pasture.

Table 2: Comparison of discrete land-use transitions in protected areas and never-protected areas,
1980-2010

1980 / 2010 Cropland Forest Grassland Other Settlement Water

Control Cropland % row 84.8 1.6 13.2 0.0 0.5 0.0
Forest % row 0.2 97.5 2.2 0.0 0.1 0.0
Grassland % row 3.8 10.8 85.1 0.0 0.3 0.0
Other % row 0.0 0.0 0.0 100.0 0.0 0.0
Settlement % row 1.1 0.3 0.5 0.0 98.2 0.0
Water % row 0.1 0.1 0.4 0.0 0.2 99.2

Treated Cropland % row 80.7 2.7 16.1 0.0 0.5 0.0
Forest % row 0.3 98.2 1.3 0.0 0.1 0.0
Grassland % row 5.4 10.1 84.3 0.0 0.2 0.0
Other % row 0.0 0.0 0.0 100.0 0.0 0.0
Settlement % row 1.3 0.4 0.4 0.0 97.9 0.0
Water % row 0.0 0.0 0.0 0.0 0.0 100.0

Total (2010) % row 27.3 35.3 28.7 1.5 4.2 2.9

Notes: Table reports land-use transitions relative to the base year of 1980 in 2010. We tabulate transitions by

treatment status: treated units are treated in 1970-80 and have at least 50% of landmass in a protected area.

Controls are matched on pre-1970 observables. Transitions are defined based on the HILDA land cover data, which

classifies land into one of six land categories in each decade from 1900 to 2010.
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Figure 8: Distribution of the conditional average treatment effect for initial greenness and popula-
tion density

(a) Starting average NDVI 1985-1989 (b) Population density in 2000

Notes: Both panels plot estimates of the conditional average treatment effect across 20 ventiles of a key explanatory

variable. Bar at ventile q ∈ {0.05, 0.1, . . . , 0.95} corresponds to the CATE of plot i conditional on a realization of

X above that quantile, e.g., E[τi|X > x(q)]. Confidence bands are 95% confidence intervals constructed through 30

bootstraps of a 1% stratified sample of the EU.

7.2 Testing for treatment-effect heterogeneity

As discussed in Section 6.2, our average null finding does not reject the existence of a (small)

tail of high-impact conservation efforts. We investigate whether there is meaningful underlying

heterogeneity in treatment effects by estimating conditional average treatment effects and by corre-

lating the country-level estimates from Figure 5 with explanatory variables related to the political

economy of our setting.

To estimate conditional average treatment effects, we apply the Wager and Athey (2018) esti-

mator on a random sample of the data (whose construction is discussed in Appendix B.2). The

sample average treatment effect on NDVI is 0.01 (0.26). Our data reject the existence of any mean-

ingful heterogeneity. While our random forest detects statistically significant heterogeneity in the

test of Chernozhukov et al. (2024), economically meaningful heterogeneity is limited. Splitting the

treatment effect distribution at the median, the CATE in the bottom half of the CATE distribution

is 1.75 (0.76) NDVI units smaller than that in the top half. We thus estimate limited heterogeneity

around zero across the whole covariate distribution, not just for average land.

In Figures 8a and 8b, we highlight two important dimensions on which we can reject meaningful

heterogeneity. These figures plot conditional average treatment effects at ventiles (percentiles in

increments of 5%) of key covariates. Figure 8a shows more sparsely (or barely) vegetated areas,
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as measured in the first years of the sample, do not green faster due to land protection than areas

with higher initial greenness. Conditional on any initial greenness, average treatment effects are

not significantly positive, except in the very last ventiles, where the CATEs equal 0.15-0.3. Figure

8b plots conditional average treatment effects across population density ventiles, a proxy for land

pressure. We find no evidence that densely populated land greens as a consequence of protection:

if anything, they green less than comparable controls without protection (this is consistent with

the evidence presented in Appendix Figure A.12). Together, Figures 8a and 8b imply that less

green, higher population density lands that likely face stronger economic development pressure—

such as areas around urban centers—are not re-greening faster after protection relative to similar,

unprotected areas. Additionally, the conditional average treatment is approximately zero across

the covariate range.

In the appendix, we also find no significant variation in treatment effects when considering

covariates linked to high-quality agricultural land. The left panel of Appendix Figure A.8 shows

CATEs along the distribution of the soil phosphorus content. Significant soil phosphorus deposits

can aid the development of “roots and shoots” and often also mark prior agricultural fertilizer

use. The findings show no notable difference in greening patterns between areas with different soil

phosphorus content. Thus, protecting observably more valuable agricultural land does not lead to

measurably richer vegetation. The right panel shows the CATE by growing season length in 1985.

Longer growing seasons indicate climatic conditions that are more conducive to growing common

field crops. If anything, protected areas with longer growing seasons saw somewhat lower treatment

effects on NDVI than comparable controls.

Next, we explore the average treatment effect as a function of the strictness of the land-

protection regime. We calculate the average treatment effect using the staggered difference-in-

differences estimator, restricting treated units to each IUCN category (see our prior discussion of

Figure 3) in Table 3.35 We find that the estimated average treatment effect is close to zero across

all IUCN categories. Estimates are significantly discernible; the largest positive effect on NDVI is

among type Ib wilderness areas, which are the second strictest group of IUCN codes. However, this

effect is 0.55 NDVI points, an economically small gain in greenness. We conclude there is no clear

gradient in treatment effects across this strictness measure.

Finally, we correlate the country-level treatment effects from Figure 5 with a range of explana-

tory variables in Table 4. While most country-level treatment effects are close to zero, the gap

between the smallest (Serbia) and the largest treatment effect (Croatia) amounts to about four

NVDI points. We explore if this heterogeneity can be explained by different economic, political,

or land endowment factors. We present correlation coefficients from a bivariate regression using a

country’s GDP per capita, a corruption perception index, environmental expenditures as a percent

of GDP and in levels, a farmland bird index, urbanized land shares, and the number of NGO

actions as controls. Overall, we find statistically noisy coefficients with unexpected signs. For

35. For memory management, controls are a 1% random sample of never-treated land.
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Table 3: ATE in each IUCN category

Code Description ATE (SE) CDDAs

Ia Strict nature reserve −0.69 (0.04) 5,829
Ib Wilderness area 0.55 (0.06) 777
II National Park 0.26 (0.07) 431
III Natural monument −0.05 (0.07) 3,669
IV Species management area −0.16 (0.02) 39,472
V Protected landscape 0.28 (0.01) 11,372
VI Protected area with sustain-

able use of natural resources
−0.43 (0.05) 1,215

Notes: Table summarizes the Callaway and Sant’anna estimator for the average treatment effect as a function of

protected area strictness. Controls are a 1% sample of untreated units within each country, while treated units

comprise the universe of each IUCN category. Excludes protected areas with missing, not assigned, or not reported

IUCN categories.

example, while enforcement of land-use policy is often imperfect, as seen in the Amazon rainforest

(Keles, Pfaff, and Mascia 2022), we expect treatment effects to vary between countries with varying

degrees of institutional strength. However, our results show small effects in the vast majority of

EU countries, and there is no clear pattern suggesting weaker effects in countries with a history

of limited enforcement. While we cannot directly measure enforcement, we test for correlation

between the country-level ATEs and an index of apparent corruption from www.transparency.org.

The linear regression of the average treatment effect on the log of this index, measured from 0 to

100, has a coefficient of 0.44 (0.46). We thus find no evidence of a relationship between a measure

of state enforcement capacity and land-protection outcomes. Likewise, we count the number of

environmental NGO campaigns targeting firms and addressing biodiversity-related issues in each

country. We find a near-zero effect of NGO pressure on protection.
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Table 4: Bivariate decomposition of country-level average treatment effects

(1) (2) (3) (4) (5) (6) (7) (8)

Log GDP per capita 0.10
(0.27)

Log corruption perceptions 0.44
(0.46)

Log environmental expenditures (%GDP) 0.74∗

(0.42)
Log environmental expenditures (m. EUR) -0.13

(0.11)
Log farmland bird index 0.24

(0.66)
Log urbanized share 0.14

(0.56)
Log num. NGO actions 0.04

(0.09)
CATE 0.09

(0.11)

R2 0.004 0.03 0.12 0.05 0.007 0.002 0.008 0.03
Observations 33 33 26 26 22 31 30 26
Independent variable mean 40,576 62 0.43 2,857 75 0.39 56 0.60

Notes: We regress country-level ATEs in levels from Table A.10 on a set of country-level variables. GDP per capita from the Penn World Table, v10.01.

Corruption perceptions index from Transparency.org data (www.transparency.org). Environmental expenditures, farmland bird index, and urbanized share are

supplied by EUROSTAT. NGO actions data come from the SigWatch database, and focus on the total biodiversity-related actions conducted 2011-2024, by

country (www.sigwatch.com). CATEs from our own estimation. All are measured in the most recent year in which there is a non-missing value for the given

country. Standard errors are IID (country-level). Regressions in (1)-(7) are weighted by the inverse standard error of country-level ATEs. Regression in (8) are

weighted by the inverse variance of country-level CATE and ATTs, assuming zero covariance.
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We also correlate the country-level CATE estimates with the country-level doubly-robust difference-

in-differences estimates. Both methods use different identification assumptions. We find that a

positive CATE is not correlated with a positive treatment effect in Figure 5, again pointing to an

absence of economically meaningful heterogeneity across countries and this limited heterogeneity

being explained by statistical noise. Our estimates support a zero effect throughout the distribution

of protection and land covariates, and we find little evidence that any of the economic, political, or

land endowment factors we include in Table 4 explain the modest differences in treatment effects

across countries.

7.3 Discussion of the results

We now offer several potential explanations for the zero treatment effect of land protection. We first

interpret our empirical results in the context of the model and predictions in Section 3. Our model

can rationalize the zero results from the empirical analysis under a specific set of circumstances.

Prediction 1 says that a social planner will only protect land when the ecological treatment

effect is positive and outweighs the economic losses; infra-marginal land not under pressure of

development would never be protected. Our empirical results in Figure 5 contradict this setting of

a social planner engaging in unconstrained, optimal protection. Prediction 2 does not rule out that

treatment effects may be constant across cohorts (as in our empirical results) but, by Prediction 1,

the cohort-level treatment effects should be positive—this is not the case in our empirics (Figure

6).

The presence of preference misalignment, green glow, or a binding quantity target by itself,

covered in Prediction 3, does not explain our results either. Each of these deviations from the plan-

ner’s problem would imply that we observe positive treatment effects before the local policymaker

resorts to protecting infra-marginal land. Yet, we find zero effects from the first to the final cohort.

A combination of preference misalignment and delegated implementation can rationalize the

observed null treatment effects in the EU. Consistent with Prediction 3, when local decision makers

place little weight on ecological outcomes but derive benefits from designation itself (green glow)

or are required to meet area-based targets, they optimally select land with very low baseline land-

use intensity. Protecting such infra-marginal land minimizes economic and enforcement costs, but

generates little or no change in land use and hence null ecological effects, even in early protection

cohorts.

Prediction 4 highlights a complementary channel through which local authorities comply with

EU mandates, operating via protection stringency. Even when protected areas are designated on

land facing substantial development pressure, local authorities may choose weak protection regimes

that impose only limited restrictions on economic activity. This expands the set of plots on which

protection is effectively of little impact, allowing local policymakers to meet area-based targets

while avoiding large local economic losses.

Empirically, Figure 4 shows that strict protection on low pressure land accounts for only about
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4% of protected areas. In contrast, 54% of protected areas are subject to weaker protection and are

located on land facing higher development pressure. Taken together, these patterns suggest that

local authorities respond to the EU’s push for expanded protection primarily by designating areas

and choosing protection regimes that do not severely restrict local economic activity.

We also consider explanations for the absence of a protection effect outside of our model. One

possibility is that protected plots were under threat of future development rather than contempo-

raneous economic activity. Another is that authorities do not enforce the restrictions of economic

activity. Empirically, these explanations seem implausible. Our long panel allows us to identify

treatment effects up to 30 years after the first treatment in 1991. Even for the earliest cohorts,

we do not see any positive treatment effects decades later. As we discussed in Section 7.2, there

is no evidence of treatment-effect heterogeneity that lines up with enforcement heterogeneity. Any

alternative explanation needs to explain that treatment effects are close to zero across every period,

country, and the whole covariate space.

We conclude that the explanations underlying Predictions 3 and 4 in our model are the most

likely: the zero effect can be explained by a combination of targeting land not at risk of economic

development and choosing weak protection levels for land in areas that face development pressure.

Our descriptive evidence in Section 5 confirms that land protection targets greener areas across

both sparsely and densely populated regions, and that strict protection is more likely on sparsely

populated and initially green land. The latter aligns with the political economy of the EU setting.

EU countries use a multi-stakeholder process by which new protected areas are added—consensus

will be easier to reach when economic opportunity costs are low. The EU Commission is explic-

itly imposing area-based protection targets on member states, yet protection decisions are often

delegated to local jurisdictions whose preferences for biodiversity protection are much weaker and

who might engage in protection for green-glow reasons more so than to increase broader ecological

value.

When interpreting our results, it is important to mention that NDVI has important strengths as

well as limitations. As discussed in Section 4, NDVI has been found to correlate well with measures

of biodiversity beyond vegetation cover, such as bird diversity. That said, NDVI will not be able

to detect other types of biodiversity improvements. For example, species management areas may

improve insect counts, which may not always correlate with vegetation cover. However, our overall

zero result is quite pervasive—across almost all countries, time periods, areas of different greenness

and land use types—and provides compelling evidence that land protection has not generally been

effective, even if we cannot rule out potential improvements in certain biodiversity measures on

particular types of land. One would need much higher-resolution data on species counts over long

periods of time to test the causal effects on biodiversity beyond vegetation.
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8 Conclusions

Policies to protect a quarter of the EU’s landmass have not led to a change in vegetation cover mea-

sured by NDVI or human activity measured by nightlights. We find no meaningful heterogeneity

in treatment effects across event time, protection cohorts, strictness of protection, population den-

sity, land, soil, or climate characteristics. Modest differences in treatment effects across countries

cannot be explained by political economy variables. Overall, control plots show equal vegetation

cover trends as treated plots. This finding is new and important, as it helps evaluate whether the

siting decisions and stringency of protected areas are preventing land development and ecosystem

degradation. It also provides the first large-scale evidence of the effects of land protection in ad-

vanced economies, which are critically important to meet global protection targets but exhibit very

different land-use and enforcement dynamics than in tropical forest countries, which is where the

literature has focused until now.

We attribute the absence of detectable treatment effects to the political economy of EU land

protection, in particular to the interaction between area-based protection targets and the delega-

tion of siting and implementation decisions to local authorities who place limited weight on broader

ecological benefits. In practice, strict protection has been disproportionately directed toward land

facing little development pressure, while land under substantial pressure has typically been desig-

nated under weak protection regimes that impose few constraints on economic activity. Although

policy debates in the EU and beyond emphasize achieving area-based targets—such as protecting

30% of land area—it is the choice of specific sites and their counterfactual trajectories in the ab-

sence of protection that ultimately determine policy effectiveness. Our findings do not imply that

protection will never restrict economic activity in the long run, but it does suggest that Europe’s

current land-protection regime has been poorly targeted and has favored low-impact designations

in economically contested areas.
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Appendix

A Data

In this data appendix, we describe how we consolidate a variety of publicly available data sources

to create country-level data files containing outcome and control variables. Table A.1 lists all data

sources.

Table A.1: Data sources

Name Description Data source

[1] CDDA Location and foundation date of PAs Link to source
[2] Eurostat National boundaries Link to source
[3] EEA Shorelines of Europe Link to source
[4] Landsat 5, 7, 8 NDVI/Greenness Link to source
[5] EEA Biogeographical regions of Europe Link to source
[6] EOBS (Cornes et al. 2018) European climate surface observations Link to source
[7] ESDAC (Ballabio et al. 2019) Soils and topography Link to source
[8] ESDAC (Günther et al. 2014) Climate-physical regions Link to source
[9] SEDAC (Warszawski et al. 2017) Gridded population data Link to source
[10] ECMWF Annual total precipitation Link to source
[11] HILDA (Winkler et al. 2020) Discrete land-use data Link to source
[12] World Clim (Fick and Hijmans 2017) Solar radiation and precipitation Link to source
[13] Li et al. 2020a, Li et al. 2020b Harmonized global night time lights Link to source
[14] BioTIME (Dornelas et al. 2018) Species count data Link to source
[15] ESDAC (Panagos et al. 2015) Slope steepness and elevation Link to source
[16] ESDAC (Tóth and Hermann 2016) Soil suitability Link to source

A.1 Creation of grids

We define a unit of observation as a square grid cell. Grid cells divide geographic areas into evenly

spaced areas with corners given by latitude and longitude coordinates. The grids are constant

across time. For our vegetation greenness sample, the grid cell is 300 meters by 300 meters in

resolution. We also generate a 1km by 1km grid for the nightlights analysis.

Grids are spatially joined with vector data that are spatially explicit (e.g., data that come in

the form of a shapefile or other geodatabase) using ArcGIS. Grids which intersect more than one

geometry are assigned the characteristics of the geometry with the largest intersection.

A.2 Bio-geographical regions and climate zones

We add bio-geographical regions and climate-physical zones from the European Environment Agency

(EEA) and the European Soil Data Centre (ESDAC). Bio-geographical regions describe distribu-

tions and patterns of terrestrial life. The EEA data delineate these bio-geographical regions to show
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distinct habitats across Europe. ESDAC produces climate-physical regions.1 Climate-physical re-

gions are essentially Köppen climate zones with adjustments for high mountains.

By nature, the 300m by 300m grids are not spatially fine enough to pick up on complex ge-

ographies. When merging with bio-geographical data and climate-physical regions, the grids miss

craggy islands or coastlines of countries such as Norway and Finland. See Figure A.1 for an ex-

ample. Of the 3,777,950 grids in Finland, fewer than 0.05% were null for bio-geographical regions

and 0.5% were null for climate-physical regions. There are similar numbers for Norway. Simpler

coastlines have fewer missings. For example, of Poland’s 3,473,457 grids, only 114 are null for

bio-geographical regions and 3,594 for climate-physical zones. Table A.2 summarizes the different

bio-geographical regions and climate zones in Europe.

Figure A.1: Example of grids outside the climate-physical region boundary (Finland)

Notes: The grids highlighted in cyan are null for climate-physical zones. The country geometry for Finland is more

complicated than the climate-physical zone geometry. It captures more islands and coast edges. Grids were generated

over these more complex geometries. These grids do not intersect with the more simplified climate-physical regions,

so therefore are null.

A.3 Protected sites

We add spatial data on the protected sites from the Common Database on Designated Areas

(CDDA), an inventory of European protected areas for 38 nations. The database, maintained by

the EEA, includes the location and foundation dates of protected areas established as early as 1800.

The foundation dates of 1,447 designated areas in France are missing. We manually search for

the dates of the 127 largest CDDAs with missing foundation dates. We list the dates here with a

URL source and notes. The remaining CDDAs with missing foundation dates did not return search

1. The climate-physical regions are based on an intersection of Köppen climate zones with NORDREGIO mountain
classification deduced from GTOPO30 information.

A2

https://github.com/tristangrupp/EUForests/blob/main/ProtectedSites_France_MissingFoundationDates.csv


Table A.2: Distribution of bio-geographical regions and climate zones in Europe

Bio-geographical region Land coverage percentage

Continental 28
Mediterranean 18
Boreal 18
Atlantic 17
Alpine 13
Pannonian 3
Arctic 2
Steppic 1
Black Sea 0.2

Climate zone Land coverage percentage

Cold climate, warm summer 29
Temperate climate without dry period 22
Arid/temperate climate 14
Cold climate, cold summer 13
Polar/cold climate 12
Arid/temperate climate, dry summer 9
Coastal area 2

results. We mainly retrieve the missing foundation dates from site management documents, the

conservation pages of provinces, press articles of site establishment or purchase, on the ”reserves

naturelles” directory, on EEA site factsheets, and tourism pages for CDDAs with recreational and

educational uses. The links provide examples to each of these different types of sources. Modern

CDDAs may have been the result of multiple staggered land acquisitions rather than a single act of

protection. We assign treatment year based on the largest additional acquisition. As a tiebreaker,

we assign the average of the purchase dates. See the notes here for detail.2

Many of the protected area polygons provided by the EEA have topology errors. Self-intersections

are common in the CDDA dataset. These are corrected in ArcGIS.

After these additions and corrections, we relate the CDDA information to the grids via a spatial

join in ArcGIS. For each CDDA we add the foundation year and unique CDDA ID so that we can

match non-spatial information of the CDDA below. We will also calculate the area of overlap of

each CDDA with the grid(s) it covers. Some grids do not fall entirely within CDDAs. Such partial

coverage of grids is important when determining which grids are protected vs. treated. We define

any plot that overlaps a CDDA as treated.

Our large data collection effort gives us the unique opportunity to collate novel descriptive

statistics, both about vegetation growth and conservation policy. Our data in Figure A.2 show

2. One example is Les Pelouses de Blere. In 2003, 14.34 hectares were acquired by Le Conservatoire d’Espaces
Naturels Centre-Val de Loire. In 2005, the municipality gave the conservatory 63.58 hectares to manage. The
second land acquisition was more than four times greater than the original land acquisition. Because the second land
acquisition was larger than the first, we chose the date of the second acquisition for the foundation year. Another
site, Les Friches Des Parterres, was acquired “par le Conservatoire de 22.87 ha entre 1995 et 1999” For this site, we
chose 1997 for the foundation date.
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Figure A.2: Fraction of landmass in the study area which was protected in or before a given year

Notes: Data aggregate up from the 300 meter grid-cell level. Any 300 meter grid cell with non-zero overlap of a

protected area is defined as treated. The y-axis thus reports the percent of grid cells which overlap any protected

area founded on or after the year reported on the x-axis.

that in the study period, by 2020, around 20% of European landmass was protected (as of 2023,

this percentage had increased to 26%). Further, relative to the start of our study period in 1985,

this is a 300% increase in protected landmass. Our sample period thus captures the epoch with a

large percentage point increase in protected area growth.

There is variation in protection regimes. Some areas restrict all human access, while others allow

industrial and agricultural activities. While we do not observe the realized level of enforcement,

the IUCN categorizes protected areas by their relative strictness. For example, categories Ia and

Ib indicate the strictest level of protection, where due to wildlife preservation human activity is

strictly limited to either indigenous communities with prior claims to that land or approved research

activities. Table A.3 shows that these strict reserves comprise around 8.7% of treated land mass

and 7.7% of protected areas. 47% of protected areas by count are habitat and species management

areas, though these are a small share of protected area. 14% of parks are protected landscapes,

12% are nature reserves, national parks, and natural monuments, and 26% lack an IUCN category.

Species management areas (IUCN category IV) are designed to encourage the propagation of a

particular species in the region but are not necessarily as limited in their economic uses. Notably,

areas which are protected but are not assigned an IUCN category are on average greener than the

areas with the strictest protection.
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Table A.3: Average greenness in 1985 by IUCN protected area category

Code IUCN category Percent land Percent CDDAs Mean greenness

Ia, Ib Strict nature reserve or wilder-
ness area

8.58 7.80 59.19

II National park 9.54 0.56 53.03
III Natural monument 0.68 4.34 51.92
IV Species management area 15.57 46.70 53.98
V Protected landscape 44.87 13.65 61.98
VI Protected area with sustainable

use of natural resources
2.85 1.45 57.48

No IUCN 17.92 25.50 63.30

Ia, Ib, II Total strict 18.12 8.36 55.95

Notes: Table summarizes the strictness of protection of CDDAs. Percent land shows the percent of total protected

areas. Percent CDDAs shows the share of total counts of protected areas. Sample restricted to terrestrial protected

areas with non-missing greenness. Excludes areas with missing (NA) IUCN data. Mean greenness is weighted by

area.

A.4 Raster-derived variables

Raster data employ a matrix-based structure, where each cell (or pixel) in the matrix stores a value

representing a particular attribute (such as NDVI, elevation, or rainfall). To relate raster data to

our grids, we use the exact extract() function in the exact-extractr R package to efficiently relate

raster data to polygons. Table A.4 gives a description of each of the raster-derived variables added

to the country-level grids data. The table provides a brief description of each variable, the units of

the data, the spatial resolution, the frequency of the time series for time-series variables (annual,

biennial, every 5 years, etc), and the source of the data.
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Table A.4: Table of variables which come from a raster format

Variable name Units Spatial resolution Time step, years Data reference year(s) URL

Climate

Long-run precipitation mm/year 0.5 degrees average, 1970-2000 WorldClim
Growing season length days 0.1 degree 1 1985-2019 Copernicus
Heating degree days degC 0.1 degree 1 1985-2019 Copernicus
Rainfall meters 11 km 1 1985-2019 Google Earth Engine

Land characteristics data

Topsoil potassium concentration g/kg 500 meters 2019 ESDAC Website
Topsoil nitrogen concentration mg/kg 500 meters 2019 ESDAC Website
Topsoil phosphorus concentration mg/kg 500 meters 2019 ESDAC Website

Terrain measures

Slope steepness combined LS-factor 100 meters 2015 ESDAC Website
Elevation meters 100 meters 2015 ESDAC website
Slope angle index 0-8 200 meters 2018 ESDAC Website
Soil suitability index 0-4 1000 meters 2016 ESDAC Website

Economic value measures

High-value farmland indicator binary 100 meters 2015 EEA Europa
Distance to shoreline meters 300 meters 2017 EEA Europa
Population density count per km2 30 arc sec 5 1985-2019 SEDAC Website

Outcome measures

Greenness, LANDSAT-5 index 300 meters 2 1985-2013 Google Earth Engine
Greenness, LANDSAT-8 percent 300 meters 2 2013-2019 Google Earth Engine
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Here we provide further information on the raster data that we use in our study.

Climate data. We obtain both a long-term average precipitation and a time-varying measure

of precipitation for each grid. We collect monthly long-term averages (long-term mean 1981-2010)

of total rainfall from WorldClim. The month’s values are an average precipitation for that month

from 1981-2010. We average the monthly data to get a total annual figure.

We generate time-varying precipitation from the total precipitation band in the ERA5-Land

Monthly Averaged - ECMWF Climate Reanalysis dataset. The climate measures in ERA-5 have

a resolution of 11,132 meters. The total precipitation band is the depth of monthly precipitation

in meters. ERA-5 total precipitation captures most precipitation but does not include fog, dew, or

precipitation which evaporates before reaching the earth.

We use annual total precipitation, rather than summer precipitation that would coincide with

our NDVI imagery, because of the importance of year-round rainfall for summer vegetation growth.

Pasho et al. (2012) found that larger tree-ring width—an indication that the tree grew more dur-

ing that year—is related to the amount of autumn and winter rain that had recharged the soils.

Dannenberg, Wise, and Smith (2019) and Vieira, Nabais, and Campelo (2021) found that trees in

the United States had decreased radial growth and higher mortality risk when winter and sum-

mer precipitation were lower. These two articles demonstrate the importance of winter rainfall in

vegetation health and justify our use of a yearly total rainfall measure.

To obtain the time-varying climate data from “cold indices” on E-OBS indices, we select “an-

nual” in growing season length and “annual” in heating degree days.

Land characteristics data. The chemical and physical land characteristics are sourced from

ESDAC. ESDAC conducted a large survey with approximately 20,000 topsoil samples of soils in

Europe to produce a coherent pan-European physical and chemical topsoil database, which can

serve as baseline information for an EU wide harmonized soil monitoring. We extract nitrogen,

potassium, and phosphorus levels from the LUCAS 2009/2012 topsoil database. We extract soil

biomass productivity variables from the EEA 2006 classification. The soil suitability score was

created in 2016. We also extract elevation, slope angle, and steepness of slopes from ESDAC.

Economic value measures. The Center for International Earth Science Information Network

(CIESIN) of NASA’s Socioeconomic Data and Applications Center (SEDAC) provides gridded

population density rasters. CIESIN estimates population density every 5 years to be consistent

with national censuses. These numbers are scaled to match UN country-level totals. The data

are available at 30 arc sec (1km x 1km) spatial resolution, slightly coarser than the grids. We

interpolate the population density data linearly across time.

We compute the distance of each grid to the closest shoreline from polyline data available from

the EEA. We compute the the Euclidean Distance in ArcGIS at 300 meter pixel resolution and

store the data as a raster.

The EEA has created a binary image of high nature value farmland (HNVF). This HNVF

measure indicates the potential biodiversity value of existing farms. A value of 1 represents farmland
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of high nature value and 0 represents low nature value farmland. We use the data as a proxy of

the counterfactual value of agricultural land.

Solar radiation data are available from WorldClim for the period 1950-2020 and is based on

ground-based on-site observations and a CERES global radiation satellite product. The data report

average monthly solar radiation levels. From these data, we compute an annual average solar

radiation raster.

A.5 NDVI

A.5.1 Background

NDVI (normalized difference vegetation index) is an index with values between -1 and 1 representing

the level of “greenness” of land cover. It is a well-established index for vegetation monitoring,

indicated level of greenness, and plant health. Negative values of the index correspond to water.

Low values (0.1 to 0.2) correspond to barren areas, settlements, snow and clouds. Values between

0.2 and 1 correspond to vegetation. NDVI is the ratio between the red (R) and near infrared (NIR)

bands:

NDV I = (NIR−R)/(NIR+R)

We use Google Earth Engine (GEE) to transform Landsat surface reflectance imagery to NDVI

and export the NDVI image. Landsat is a satellite imagery program for the entire earth. The early

versions, Landsat 1-4, are very similar, are not of sufficient quality, and do not correspond to later

versions. Landsat 5-8 have much higher resolution and contain the necessary visual information to

capture NDVI consistently across each sensor. We, therefore, use the Landsat 5 data starting in

1985.

We use two-year periods for obtaining NDVI images. Annual data suffer greater missing data

issues related to cloud cover. Because accurate NDVI measurement requires leaf-on conditions, we

limit the sample of images to summer months. We center our search for images around July as

it is the height of summer greenness (Peled et al. 2010; Van Oijen et al. 2014). Ideally, we would

produce a single cloudless image using only a two week period—corresponding to the complete

earth imaging time of 16 days of the Landsat satellites—in July. However, clouds are often present,

requiring that the range of months to search for images be extended to either June through August

or, in exceptional circumstances, May through September, until the percentage of missing images

falls below 5 percent. We discuss the details of the procedure for producing a cloud-free mosaic in

our data repository.

When we compute average NDVI by the discrete land use categories in HILDA, we find that

forests are the greenest land use category with an average NDVI of 63 in 1985. More than 25% of

grids classified as forest have an NDVI above 73. Grassland has a somewhat lower NDVI that is

mostly between 43 and 69. Cropland has the lowest NDVI, with an average value of 49 in 1985.

NDVI variation thus matches our priors about land use, but we also find differences between biomes
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and climate regions to be important. Forests in arid regions of Spain are characterized by shrubs

and greater spacing of vegetation and have lower NDVI. The 25th percentile of the distribution of

NDVI on forested land is 58 (still higher than most cropland, but lower than the median of grassland

at 59). We estimate treatment effects separately by country and include climate, weather, and soil

controls to ensure valid treatment-control pairs.

A.5.2 Landsat 7 scan line correction

The Landsat 7 satellite was launched on April 15, 1999. It collected quality images until May 31,

2003 when the Scan Line Corrector (SLC) in the Enhanced Thematic Mapper (ETM+) instrument

failed. Landsat 7 images after this date are not usable for our analysis. The 1999-2003 Landsat 7

operation period overlaps with Landsat 5 (April 1, 1984 - June 5, 2013). During this time frame,

we use Landsat 7 images and fill in any missing pixels with Landsat 5 data.

A.5.3 Landsat 8 OLI to Landsat 5 ETM+ spectral response correction

Landsat 8 and Landsat 5/7’s sensors are largely comparable; they have the same spatial resolution

and 16-day revisit time. However, the spectral response functions of the two sensors differ. Land-

sat 8’s Operational Land Imager (OLI) is an improvement on Landsat 5/7’s Enhanced Thematic

Mapper Plus (ETM+). However, we need to correct the spectral response function of Landsat 8

to make NDVI directly comparable throughout the panel.

The differences in the spectral response functions of the two sensors lead to a “brighter” NDVI

for Landsat 8 imagery than for Landsat 5. This is clear from the histogram of NDVI for all

European grids in 2011 (Landsat 5 ETM+) and in 2013 (Landsat 8 OLI) in Figure A.3. There is a

noticeable skewing towards higher values of the Landsat 8 NDVI in a brief period of just two years.

Because the differences in NDVI in Figure A.3 appear to come largely from measurement, we use

a correction to harmonize the NDVI measure across each satellite. Roy et al. (2016) provide the

coefficients to apply to each band to harmonize Landsat 8 to Landsat 5. We chose to harmonize

OLI to ETM+ because the thematic mapper makes up the majority of our NDVI imagery (1985

to 2011, 13 two-year images).

A.6 Discrete land-use data

The HILDA dataset provides over 100 years of land-cover maps at a 1 kilometer grid cell resolution.

As we discuss in Section 4, it has severe limitations as a main outcome variable for measurement

of biodiversity. However, HILDA does provide descriptive insights into long-run land-cover trends

since 1900. HILDA omits a subset of countries which are included in our analysis sample. These

are Albania, North Macedonia, Montenegro, Croatia, Bosnia and Herzegovina, Serbia, Norway, and

Iceland. We omit HILDA reporting on several smaller nations which are not in our main analysis

sample: Andorra, Monaco, Jersey, Guernsey, Isle of Man, and Faroes.
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Figure A.3: Spectral response affecting NDVI 2011-2013

Notes: The histogram shows a strong skewing towards higher NDVI values from 2011 to 2013 across all of Europe.

This is not attributable to large scale land cover shifts; this is the result of the difference in the spectral response

functions of ETM+ and OLI. Between 2011 and 2013, Landsat 5 was decomissioned and Landsat 8 became operational.

HILDA categorizes land into one of six discrete classes: cropland, forest, grassland, other (such

as mountains or barren land surface), settlement, and water. In Figure A.4 we plot the share of

each land use in the HILDA data. The data are at a decadal frequency since 1900. The data

confirm a century-long growth in forest cover across the EU. HILDA reports a forest share in the

EU of around 22% in 1900 and a 29% forest share in 2010.

In Table A.5, we report a transition matrix over the full breadth of the HILDA data. Looking at

the diagonal entries, it is clear that cropland and grassland experienced the greatest land-cover shifts

in percentage terms: 30% and 40% point of the 1900 landcover has transitioned to other land uses.

The chief beneficiary of both appears to have been forest, though there is non-negligible transition

between grassland and cropland. This latter transition can be both a true return of cropland to

natural use (or vice versa), or can encompass measurement error as cropland and grassland are less

readily discerned by classifiers, or finally can also indicate conversion between crop and pasture

(which is not a dimension of biodiversity we are particularly interested in). However, overall,

Europe became more forested over this long time horizon: 10% of cropland in 1900 appears to be

forest in 2010, and 27% of grassland in 1900 is forest by 2010. This outweighs the 9% conversion

from forests to grasslands. Settled areas also transition to forest—some subset of land returned to

natural use.

Finally, we re-create Table 1 in two other time periods in Table A.6. The top panel shows a

balance table across land deforested and not deforested 1990-2010, and the bottom does the same

for land across 2000-2010. Compared to full-sample deforestation, land deforested more recently
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Figure A.4: Land share in the EU by decade and land use category

Notes: The HILDA landcover data classify land into one of six land areas in each decade from 1900 to 2010. We

omit a small percentage of areas which are classified as NA or missing values.

Table A.5: Discrete land use transitions for the entirety of Europe between 1900-2010

Land-use transition probabilities
Land use in 1900 / 2010 Cropland Forest Grassland Other Settlement Water

Cropland % row 68.5 9.6 17.7 0.0 4.1 0.0
Forest % row 0.8 89.7 8.8 0.0 0.8 0.0
Grassland % row 11.7 27.2 58.8 0.0 2.3 0.0
Other % row 0.0 0.0 0.0 100.0 0.0 0.0
Settlement % row 7.4 5.0 6.8 0.0 80.8 0.0
Water % row 1.2 0.2 0.9 0.0 0.4 97.2

Land-use shares
Land use in 2010 Cropland Forest Grassland Other Settlement Water
Total (2010) % row 27.7 35.2 28.4 1.6 4.2 2.9

Notes: Table reports land use transitions relative to base year of 1900 in 2010. Transitions are defined based on the

HILDA landcover data, which classifies land into one of 6 land areas in each decade from 1900 to 2010. We omit a

small percentage of areas which are classified as NA or missing values.
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tends to be on more populated land, corroborated by a slightly higher measure of luminosity in

the nightlights data. Deforested land is less likely to be in protected areas than the full-sample

case, Deforested land also has more potassium in the soil: in Europe, this is likely to be driven by

agricultural or urban water runoff.

B Econometrics

B.1 Estimation details: Staggered difference-in-differences design

We use the ‘did’ package in the R programming language.3 We select all observations for which there

are no missing variables and keep grids that cross the greenness threshold of NDVI 40 at least once in

the sample. Plots that fully or partially overlap a CDDA are considered treated units for our results

on NDVI. We construct our estimator in the syntax of the ‘att gt’ command. We treat the data

as a panel, using the rounded year of protection as the cohort definition. The command constructs

bootstrapped confidence intervals. We keep all computational defaults regarding bootstrap size

and sampling procedures. Our estimator is calculated separately for each country.

For large countries, the did package is too slow to produce estimates in a reasonable timeframe.

Therefore, we conduct a subsampling procedure of the estimator, where we draw a 5% stratified sub-

sample at the cohort-identifier level. While not strictly necessary for the estimator, we also stratify

at the biogeographical region level to maintain a consistent set of matching covariates relative to

small countries. We do this for Finland, France, Germany, Italy, Poland, Romania, Spain, Sweden,

and the United Kingdom. The subsampling procedure mirrors the bootstrap of the estimator by

ensuring that every cohort and event time is represented in each subsample, so that the full set of

θgt is estimable for each subsample. We subsample with replacement and define new plot identifiers

(e.g., a new grid cell-level ID) to ensure the command runs with potential duplicates in the data.

We sample 50 clustered 5% draws for each country, bootstrapping the entire matrix θcgt, θce, θcg,

and θc as well, obtaining bootstrapped standard errors. Because we already find the estimator to be

slow with this bootstrapping scheme, we do not apply the Callaway and Sant’Anna wild bootstrap

to compute uniform confidence bands. These could, in principle, widen our standard errors as they

account for covariance between dynamic treatment effects, but given the level of precision at which

our treatment effects are computed, we do not anticipate these change the interpretation of our

results.

Estimates for Cyprus, Malta, and Liechtenstein are not computed due to missing data in the

time-varying weather patterns. There are significant missing shares of time-invariant variables for

Switzerland, Luxembourg, and Montenegro. A subset of countries have a very high (> 99%) share

of one or more matching variables: these are matched on the remaining covariates. Countries

lacking slope sleepness and soil suitability measures are Switzerland, Serbia, Bosnia, Albania, and

3. See: https://www.rdocumentation.org/packages/did/versions/2.1.2).
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Table A.6: Average of key variables among land classified as forest in 1900 (top) and 2000 (bottom)
by whether that land was deforested

Not deforested, 1990-2010 Deforested, 1990-2010

Mean Std. dev. Mean Std. dev.

Nightlights in 2010 6.6 9.8 11.9 15.3
Percent of grid protected 24.1 46.6 18.2 41.0
Population density in 2000 50.8 169.2 179.0 659.4

Crop suitability 6.1 1.4 6.3 1.4
Forest suitability 3.6 1.5 4.0 1.6
Grassland suitability 5.4 1.5 5.6 1.5

Slope steepness 2.2 3.0 2.0 2.6
Solar radiance 11.1 2.5 11.4 2.2
Precipitation 759.2 271.8 763.8 243.1

Potassium 157.5 67.1 164.2 61.3
Nitrogen 2.1 0.9 2.2 0.8
Growing season length 236.4 72.5 262.1 61.1

Not deforested, 2000-2010 Deforested, 2000-2010

Mean Std. Dev. Mean Std. Dev.

Nightlights in 2010 6.8 10.0 11.8 14.9
Percent of grid protected 24.0 46.6 13.6 36.3
Population density in 2000 52.0 169.3 110.5 384.2

Crop suitability 6.1 1.4 5.9 1.4
Forest suitability 3.6 1.5 3.8 1.5
Grassland suitability 5.4 1.5 5.4 1.6

Slope steepness 2.2 2.9 1.1 1.8
Solar radiance 11.1 2.5 12.0 29.2
Precipitation 757.7 270.8 652.6 168.5

Potassium 159.0 69.3 192.2 100.1
Nitrogen 2.1 0.9 1.8 0.7
Growing season length 237.9 72.9 265.9 77.3

Notes: Table presents balance of several key variables against an indicator based on the discrete land-use classifica-

tions provided by the HILDA data. Top panel: not deforested indicates 1 km × 1 km grid cells which were coded as

forest in 1990 and were still coded as forest in 2010. Deforested indicates areas which were forest in 1990 but were

coded as any other category in 2010. Bottom panel does the same for grid cells coded as forest in 2000. Percent of

grid protected indicates the percent of the 1 square kilometer grid which contains protected areas, regardless of their

designation year and CDDA designation. Means of time-varying variables are calculated in a specific cross-section,

as indicated in the table. Units for all variables are indicated in Appendix Table A.4.
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Montenegro. Malta lacks rainfall data on 60% of its landmass. We report results for estimators

that omit time-invariant variables from the matching procedure.

The ‘did’ package computes clustered standard error at default by clustering at the plot level,

allowing for serial correlation in the error terms at the observation level. Additionally, we cluster at

the protected area unit level (CDDA number) to account for potential spatial correlation. This two-

way clustering makes standard errors robust to correlation in the time and cross-sectional (spatial)

dimensions.

We maintain the same matching variables and technical specifications for our nightlights anal-

ysis. There are two key exceptions. Rather than matching on pre-period greenness, we match on

pre-period nightlights. We require a single pre-period of 1992 as the nightlights data do not cover

the same breadth of data as the greenness data. Because nightlight imagery is taken at night,

it is less frequently missing than greenness and we obtain an annual panel. We therefore have

treated cohorts from 1993 through 2019 (27 total potential values of g). Our nightlights data are

also collected at a lower spatial resolution (1 km grid cells, see Appendix A), so we reconsider our

treatment definition. As our second deviation from the greenness strategy, treated grid cells must

overlap at least 50% (in area terms) with a protected area.

B.2 Estimation details: Conditional average treatment effects (CATE)

We use the CATE estimator provided in the R package ‘grf’, generalized random forest.4. Our data

match the package’s description of a medium-sized dataset. We follow the package documentation to

construct a suitable estimator for our dataset. Computationally, we target an accurate calibration

that passes the test in Chernozhukov et al. (2024) and precisely separates the top and bottom

quartiles of estimated CATEs. This latter point ensures heterogeneity is rejected with precision if

no significant heterogeneity exists.

We apply the Wager and Athey (2018) estimator to a sample of plots. Samples are stratified

at the country-foundation year-biogeoregion-climate zone level. Samples are taken if and only if a

stratum has at least 30 units to allow for inference on CATES. In addition to never-treated land,

our sample consists of treated land which enters protection after 1991 to ensure sufficient variation

in matching variables. Each sample consists of two periods: a pre-period g − 1 and 2019 (the

universal post-period as it is the last period in our data).

We supply all potential exogenous variables to compute the forest. We include rich interactions

and third-order splines in continuous variables as well as differences in slopes across categorical

variables. Exogenous variables are used for matching classification trees and heterogeneity regres-

sion trees, but each tree is trained on separate sub-samples (“honesty”, in the language of Wager

and Athey (2018)). We omit missing observations. Categorical variables are converted to indicator

variables. Soil classes, continuously graded from 0 to 4, are rounded to increments of 0.1.

4. See: grf-labs.github.io/grf/
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With a matrix of observables, an outcome vector of greenness, and a treatment indicator, we

split the data into a training and a test dataset. We retain 30% of the data for training, and

the remainder for testing. Training data are used to calibrate the random forest. The algorithm

statistically tests the calibrated random forest on a separate, withheld test dataset.

Propensity scores and the outcome regression adjustment are calibrated using package default

parameters. In our final step, we change some computational parameters from package defaults to

maintain accuracy: we grow 10,000 trees per cohort, with a larger sample fraction of 0.5 to avoid

cutting the dataset too finely, and we require 50 observations for the random forest to generate

a new leaf. This last step prevents the forest from slicing the data too finely, which can lead to

overfitting.

We report the results of the Chernozhukov et al. (2024) test of meaningful heterogeneity using

the ‘test calibration’ command. For all computed conditional average treatment effects, we ensure

that they are estimated on the subsample of data with overlap (the ‘target.sample’ parameter).

Reported values are doubly robust. CATEs are thus calculated using the ‘average treatment effect’

command, subsetting to the portion of data of interest.

C Additional tables and figures

C.1 Propensity score weighting and balance tables

The main identification challenge we face is the nonrandom selection of land for treatment. While

the aggregate picture in the EU suggests (Table A.7) that there may be overlap between treated

and never-treated units, zooming into countries suggests significant imbalances. We demonstrate

this imbalance in Table A.8 for the case of France (chosen because it is relatively large and has

highly-heterogeneous protected areas). Protected areas are in less populated areas (lower popu-

lation density), and steeper and less accessible areas (elevation and slope). To obtain balance,

the algorithm of Callaway and Sant’Anna (2021) applies cohort-specific propensity score weighting.

This is important in our setting as we expect that later-treated cohorts consist of different land than

early-treated cohorts. In each cohort, the procedure develops a propensity weight based on variables

that appear in the vegetation greenness production function: elevation, slope steepness, soil qual-

ity, solar radiance, growing season length, heating degree days, rainfall, and starting greenness. In

each cohort, the resulting estimator weighs control units by their similarity on vegetation-relevant

observables to treated protected areas. Table A.9 shows an example of how the inverse propensity

weighting shrinks the difference in means of variables between treated and untreated units in the

year before treatment, in France and for the cohort treated in 2005.

C.2 Treatment effect estimates: NDVI

Here we report the results of the Callaway and Sant’Anna estimators in more detail. Table A.10

lists the average treatment effect aggregated over both event time and cohort for each country in
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Table A.7: Balance table for the entire European Union

Never-treated Treated

N Mean (Std. dev.) N Mean (Std. dev.)

Greenness 41, 964, 510 56.77 (17.57) 7, 958, 603 59.49 (16.97)
Growing season length 41, 964, 510 247.98 (66.12) 7, 958, 603 235.23 (66.69)
Heating degree days 41, 964, 510 3, 035.79 (1, 667.98) 7, 958, 603 3, 331.62 (1, 679.45)
High-value farmland fraction 41, 964, 510 0.17 (0.33) 7, 958, 603 0.21 (0.36)
Population density 41, 964, 510 109.66 (446.32) 7, 958, 603 102.61 (310.24)
Rainfall (mm) 41, 964, 510 740.51 (280.68) 7, 958, 603 771.78 (304.12)
Slope angle 41, 964, 510 2.13 (1.52) 7, 958, 603 2.53 (1.80)
Elevation (m) 41, 964, 510 348.07 (378.37) 7, 958, 603 449.48 (488.35)
Solar radiance 41, 964, 510 11, 839.17 (2, 537.39) 7, 958, 603 11, 434.40 (2, 552.27)
Distance to shore (m) 41, 964, 510 151, 739.42 (136, 316.84) 7, 958, 603 156, 095.52 (143, 080.76)
Soil phosphorus (mg/kg) 41, 279, 623 26.72 (13.12) 7, 928, 447 26.66 (13.52)
Soil nitrogen (mg/kg) 41, 279, 623 2.08 (0.94) 7, 928, 447 2.28 (1.07)
Soil potassium (mg/kg) 41, 279, 623 198.79 (95.35) 7, 928, 447 173.17 (85.24)

Notes: Table compares observables for ever- vs. never-treated units. We enforce that land has non-missing values of

controls to be included in the table. Plots which were protected before 1990 are trimmed to ensure we can compare

several periods’ worth of pre-trends. Time-varying variables (heating degree days, rainfall, and growing season length)

are averaged over 1985-1989 levels. Statistics are weighted by the number of observations in each country.

Table A.8: Balance table for France

Never-treated Treated Diff. in Means

N = 4883391 N = 584464

NDVI, 1991 56.82 (14.41) 61.50 (14.51) -4.68 (0.02)
NDVI, 1985 60.25 (13.13) 63.75 (14.33) -3.5 (0.02)
NDVI change, 1985-1989 -0.05 (11.61) 1.13 (10.45) -1.18 (0.01)
Population density, 1985 111.79 (525.22) 59.36 (189.36) 52.43 (0.34)
Heating degree days, 1985 2,268.47 (661.06) 2,409.66 (712.05) -141.19 (0.98)
Growing season length, 1985 286.10 (33.73) 280.54 (37.02) 5.56 (0.05)
Soil suitability index 3.66 (0.75) 3.39 (0.89) 0.27 (0)
Slope angle 1.93 (1.36) 2.67 (1.80) -0.74 (0)
Slope steepness 1.38 (2.25) 2.45 (3.11) -1.07 (0)
Solar radiance 12,288.29 (1133.66) 12,851.02 (1356.51) -562.73 (1.85)
High nature-value farmland (%) 12.20 (28.67) 23.82 (36.97) -11.62 (0.05)

Notes: Treated data are aggregated across all cohorts. The sample selection procedure for this table is the same as

the rest of the paper. Plots which were protected before 1990 are trimmed to ensure we can compare several periods’

worth of pre-trends. Plots with a missing covariate are omitted. Time-varying variables are captured in 1989, the

last pre-period year in the sample. Standard errors computed assuming independent populations.
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Table A.9: Balance table for France, specific to the cohort treated in 2005 after propensity-score
matching

Never-treated Treated Diff. in Means IPW Diff. in Means

N = 1301749 N = 53017

Growing season length, 1985 286.10 (33.73) 257.05 (38.39) 29.05 (0.17) 11.17 (0.05)
Heating degree days, 1985 2,268.47 (661.06) ,2966.42 (623.52) -697.95 (2.77) -241.99 (0.83)
High nature-value farmland (%) 12.20 (28.67) 31.68 (37.94) -19.48 (0.17) -18.75 (0.05)
NDVI change, 1985-1989 -0.05 (11.61) 2.50 (7.46) -2.55 (0.03) -3.21 (0.01)
NDVI, 1985 60.25 (13.13) 70.25 (11.76) -10 (0.05) 0.61 (0.01)
NDVI, 1991 53.89 (16.02) 68.74 (11.66) -14.85 (0.05) -2.3 (0.01)
Population density, 1985 111.79 (525.22) 40.59 (121.71) 71.2 (0.7) 16.04 (0.12)
Slope angle 1.93 (1.36) 2.95 (1.64) -1.02 (0.01) 0.22 (0)
Slope steepness 1.38 (2.25) 2.72 (3.09) -1.34 (0.01) 0.63 (0)
Soil suitability index 3.66 (0.75) 3.38 (0.89) 0.28 (0) -0.23 (0)
Solar radiance 12,288.29 (1133.66) 12,964.72 (1242.97) -676.43 (5.49) -233.44 (1.39)

Notes: Balance table calculated in first pre-treatment panel year, 2003. IPW = inverse probability weight matching.

Matching variables are long-run precipitation, elevation, solar radiance, slope steepness, a soil suitability index, slope

angle, rainfall, heating degree days, and a cubic polynomial in greenness. These variables are taken in the pre-period.

Additionally, we included a three-year average and variance of rainfall, greenness, and heating degree days between

1985-1989. The sample here is trimmed for balance: propensity scores lower than 0.01 and higher than 0.99 are

removed.

the European Union. We report bootstrapped standard errors using the Callaway and Sant’Anna

methodology. We also report the number of unique individual plot identifiers remaining in our data

for each country as well as the number of unique protected areas (CDDAs). Some countries are

under-represented due to missing data. Others are under-represented because of a lack of sufficient

overlap in some of the control variables. Most countries are very precisely estimated.

We also report examples of dynamic treatment effect plots θce here. These dynamic effects are

most useful as visual tests of the parallel trends assumption. It would be expositionally overwhelm-

ing to report visual evidence for all countries; instead, we show two examples (Poland and Spain)

that are representative of an overall absence of (trends in) treatment effects.

We start with the results for Poland, a large country with lots of standing old-growth forest.

Figure A.5 shows the estimated dynamic treatment effects θ̂ce for Poland. The treatment effect

for the base period −2 is fairly close to 0, suggesting that we have decent claim to a conditional

parallel trends assumption. We see that up to 20 years after protection, all treatment effects are

within the [-1,1] range.

We provide a second example of parallel trends. Spain is in a different bio-geographical region

and climate zone than Poland. It is also less densely vegetated. In Figure A.6, the trend up to 20

years prior to protection is flat and close to 0. We see that up to 20 years after protection, treatment

effects are around zero, and negative on average. Note that both this warmer and sunnier climate

and the densely-forested Poland demonstrate similar conclusions: no evidence for a positive impact

on greenness up to 20 years after the date of land protection. This long time horizon shows neither
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Table A.10: Estimated average treatment effect on vegetation greenness for each country, aggre-
gated over cohort and event time

ATT estimate (Std. error) Observations Num. CDDAs

CSDR 0.02 (0.07) 98, 712, 954 74, 727
MTWFE 0.49 (0.09) 35, 985, 945 74, 727
TWFE 0.52 (0.09) 36, 411, 204 74, 727

Albania −0.22 (0.04) 303, 589 53
Austria −0.00 (0.02) 757, 581 709
Belgium 0.51 (0.04) 319, 704 1, 468
Bosnia −0.65 (0.04) 554, 491 31
Bulgaria −0.25 (0.03) 1, 146, 230 387
Croatia 1.41 (0.11) 513, 541 103
Czech −0.87 (0.04) 711, 577 1, 516
Denmark −0.26 (0.03) 415, 875 303
Estonia 1.06 (0.02) 461, 819 8, 358
Finland 0.19 (0.40) 5, 562, 252 10, 669
France −0.22 (0.07) 10, 520, 352 3, 006
Germany 0.22 (0.12) 18, 593, 748 11, 128
Greece −0.11 (0.01) 1, 010, 673 520
Hungary 0.78 (0.03) 907, 934 243
Ireland −1.53 (0.08) 575, 616 172
Italy 0.58 (0.10) 4, 111, 506 695
Latvia 0.51 (0.05) 634, 185 411
Lithuania −0.21 (0.04) 669, 488 397
Luxembourg −0.75 (0.10) 26, 692 79
Macedonia −0.43 (0.06) 260, 411 45
Montenegro 1.72 (0.08) 143, 056 13
Netherlands 1.32 (0.06) 353, 777 232
Norway −1.61 (0.29) 1, 418, 454 821
Poland 0.43 (0.10) 13, 794, 318 1, 005
Portugal −0.25 (0.03) 904, 108 153
Romania 0.31 (0.15) 2, 582, 370 644
Serbia −1.45 (0.22) 933, 000 245
Slovakia 0.66 (0.08) 480, 830 977
Slovenia 1.63 (0.06) 203, 836 711
Spain −0.75 (0.06) 12, 907, 512 1, 575
Sweden −0.45 (0.09) 11, 439, 774 12, 745
Switzerland 0.81 (0.02) 402, 941 8, 904
UK −0.17 (0.26) 5, 091, 714 6, 409

Notes: Average treatment effect θc of conservation on vegetation greenness (an index varying between 0 and 100) in

Equation (9) estimated within each country in the European Union using data from 1985-2019 on a biannual basis.

Top three rows report the Callaway and Sant’anna, doubly-robust estimator (CSDR), matched two-way fixed effects

(MTWFE), and two-way fixed effects without matching (TWFE), respectively. Observations are at a 300 meter

resolution. To ensure adequate pre-period variation, treated units are limited to those units protected in or after

1991. “Non-missing, matched grid cells” represents the number of panel observations (N × T ) that were identified

with non-missing matching variables across foundation years between 1991 and 2019.
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Figure A.5: Plot of dynamic treatment effects on vegetation greenness for Poland

Notes: Top panel shows estimates and confidence bands for θce for Poland. Bottom panel shows the number of

treated grid cells for each event time. Event-times are trimmed at [−20, 20]. Confidence bands are based on a

bootstrapping procedure discussed in Appendix B.

a change in greenness nor evidence of a trend in greenness which might indicate more gradual

vegetation growth. If anything, treatment effects are negative.

The overall EU dynamic treatment effects, shown in the main text in Figure 6 (left panel),

are presented numerically here in Table A.11. There is no meaningful trend in EU-wide dynamic

treatment effects, rejecting that protection has led to long-term vegetation recovery or (re-)growth

for the average protected area.
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Figure A.6: Plot of dynamic treatment effects on vegetation greenness for Spain

Notes: Top panel plots estimates and confidence bands for θce for Spain. Bottom panel shows the number of treated

grid cells for each event time. Event-times are trimmed at [−20, 20]. Confidence bands are based on a bootstrapping

procedure discussed in Appendix B.
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Table A.11: Dynamic treatment effects on vegetation greenness across the EU

Mean (Std. error) Num. treated grids Num. CDDAs

-20 −0.62 (0.20) 2, 625, 150 39, 090
-18 −0.64 (0.16) 3, 123, 475 46, 821
-16 −0.84 (0.18) 3, 648, 715 51, 406
-14 −0.71 (0.13) 4, 203, 856 54, 414
-12 −0.88 (0.13) 4, 740, 919 57, 300
-10 −0.24 (0.12) 5, 198, 154 60, 381
-8 −0.46 (0.12) 5, 945, 125 63, 389
-6 −0.27 (0.16) 6, 571, 274 66, 144
-4 −0.13 (0.18) 6, 571, 274 68, 414
-2 0.00 (0.00) 6, 571, 274 70, 949
0 −0.12 (0.07) 6, 570, 363 73, 310
2 0.03 (0.08) 6, 175, 759 65, 964
4 −0.04 (0.09) 5, 840, 098 62, 277
6 0.27 (0.08) 5, 470, 259 59, 377
8 −0.27 (0.13) 5, 324, 282 56, 093
10 −0.14 (0.12) 5, 129, 335 49, 864
12 0.11 (0.10) 4, 840, 454 45, 746
14 0.19 (0.11) 4, 541, 966 40, 749
16 0.31 (0.15) 3, 946, 124 34, 251
18 −0.05 (0.16) 3, 447, 799 26, 520
20 0.42 (0.12) 2, 922, 559 21, 935

Notes: Dynamic treatment effect θEU
t of conservation on vegetation greenness (an index varying between 0 and

100) estimated for the entire European Union. Estimates are aggregated from country-level estimates of θc(g, t).

Underlying dataset spans 1985-2019 on a biannual basis. Observations are at a 300 meter resolution. The earliest

included foundation year period is 1991, meaning the latest event-time in the sample is 28. Similarly, the last valid

foundation year is 2019. Number of treated grids refers to the number of unique 300 square meter grid cells in our

sample which were protected at a time such that e = t− g was observed (e.g., for e = −34, this will be the number

of CDDAs founded in 2019, the last year of the data). To convert to area in square kilometers, multiply the number

of grid cells by 0.09.

A21



We also report the overall EU cohort-level effects in Figure 6 (right panel) as Table A.12 here.

There are 15 cohorts. The treatment effects again center around zero, with no discernible trend in

treatment effects moving from early- to late-treated cohorts.

Table A.12: Cohort-level treatment effects on vegetation greenness across the EU

Mean (Std. error) Num. treated grids Num. CDDAs

1991 0.63 (0.31) 626, 149 2, 755
1993 −0.72 (0.34) 746, 971 3, 008
1995 0.60 (0.55) 457, 235 3, 081
1997 0.14 (0.33) 537, 063 2, 886
1999 0.47 (0.45) 555, 141 3, 008
2001 0.07 (0.35) 525, 240 4, 585
2003 −0.37 (0.52) 498, 325 7, 731
2005 −0.07 (0.41) 595, 842 6, 498
2007 0.36 (0.43) 298, 488 4, 997
2009 −0.73 (0.40) 288, 881 4, 118
2011 0.22 (0.79) 194, 947 6, 229
2013 −0.38 (0.86) 145, 977 3, 284
2015 0.20 (0.83) 369, 839 2, 900
2017 −0.11 (0.85) 335, 661 3, 687
2019 −0.14 (1.07) 394, 604 7, 346

Notes: Cohort-level treatment effect θEU
cg of conservation on vegetation greenness (an index varying between 0 and

100) estimated for the entire European Union. Estimates are aggregated from country-level estimates of θc(g, t). We

sum across all available event-times. Underlying dataset spans 1985-2019 on a biannual basis. Observations are at a

300 meter resolution. Treated units are excluded if they had a foundation year earlier than 1991 to ensure at least 2

periods of parallel trends (3 data observations: 1985, 1987, and 1989).

Finally, Table A.13 presents cohort-level effects aggregated to the country level (rather than

at the EU level in Table A.12). We use these country-level aggregations to test for selection of

protected areas over time and to compare any potential selection across regimes. The first column

indicates the number of cohorts for which treatment effects are calculated in the range 1991-2019.

The second column reports a trendline from regressing θcg, the country-level analog of Equation

(12), on cohorts g − 1991. we difference out 1991 so changes are interpreted as the effect of being

treated two years later. Trends are economically small, suggesting that the change in treatment

effect across successive cohorts varies by as little as 0.01% of maximum NDVI. The largest positive

trends is in Estonia (0.19). Estonia’s trend suggests that on average, plots treated in the last

cohorts in 2019 experienced a treatment effect 2.7 units higher than those treated in 1991. The

third column constitutes a less parametric approach to estimating trends. These “split-difference”

estimators compare average treatment effects θcg in the back half of the study period to those in

the first half. The estimators find similar results with less extrapolation involved. Overall, these

results demonstrate that the selection of protected areas does not appear to manifest in significant
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trends in cohort-level effects of land protection on greenness.

Two-way fixed effects

For completeness, we report the dynamic effects estimated by a classic matched, two-way fixed

effects estimator. The estimating equation includes grid i and time t fixed effects:

Yit = βDit + λi + λt + εit (A.1)

Unlike the Callaway and Sant’Anna estimator, the classic matched two-way fixed effects estimator

uses a single matching function rather than cohort-specific matching functions. Thus, the TWFE

matching cannot address between-cohort variation in selection.

Figure A.7 plots the event-study coefficients. We make two remarks. First, the two-way fixed

effects estimates indicate a long-run pre-trend compared to the Callaway and Sant’Anna methodol-

ogy. This pre-trend is addressed in the Callaway and Sant’Anna methodology through (1) cohort-

specific matching and (2) avoiding forbidden comparisons (Goodman-Bacon 2021). In our setting,

absent a treatment effect after protection, we believe (1) is the primary channel through which the

conventional TWFE estimator introduces bias. Second, the two-way fixed effects estimates indicate

a minimal EU-level treatment effect of protection. Of course, this number is difficult to causally

interpret in the presence of a pre-trend and statistical imprecision.

C.3 Treatment effect estimates: nightlights

Nightlight outcomes are measured on a luminosity scale ranging from 0 to 68. Across the EU in

2021, the unconditional average luminosity is 9.9. However, 30% of our sample has 0 luminosity

(at a 1-kilometer grid cell resolution). A 0 requires neither indoor nor outdoor electricity: these 0s

correspond to clear “undisturbed” land area. Conditional on having positive luminosity, the average

luminosity is 14.3. Countries vary in average nightlights from very bright in Belgium (conditional

on a positive luminosity, mean of 30.5) and the Netherlands (26.2) to relatively less so in Ireland

(7.9) or Bulgaria (9.3).

Classically, long-run changes in nightlights have been associated with long-run GDP growth

(Donaldson and Storeygard 2016; Gibson et al. 2021). When regressing GDP growth on changes

in nightlights, Henderson, Storeygard, and Weil (2012) report that a 1% change in nightlights is

associated with a 0.3% increase in GDP growth over a 20-year panel. , but this approach has also

received criticism about unstable relationships and data inconsistencies (Chen and Nordhaus 2011;

Bickenbach et al. 2016). In this paper, we do not interpret nightlights as a measure of economics

activity; we are interested in its direct measurement of human presence.

We provide some details regarding land protection given these data. Appendix Table A.14

constructs a linear probability model of land protection during our sample years, 1992-2019. We

use the linear probability model to lend some simple interpretation to our coefficients, though the
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Table A.13: Testing for differences in treatment effects across cohorts

Number of cohorts Trend: Split difference:
Estimate (Std. error) Estimate (Std. error)

Albania 11 0.10 (0.0083) 0.99 (1.31)
Austria 15 0.01 (0.0010) −0.58 (0.85)
Belgium 15 −0.06 (0.0004) −1.06 (0.63)
Bosnia 10 0.02 (0.0082) 0.33 (2.25)
Bulgaria 8 0.11 (0.0008) 1.03 (0.63)
Croatia 12 −0.11 (0.0052) −3.43 (1.64)
Czech 15 0.01 (0.0008) −0.74 (0.93)
Denmark 8 −0.23 (0.0163) −2.36 (2.66)
Estonia 13 0.19 (0.0075) 2.47 (1.22)
Finland 14 0.01 (0.0005) 0.16 (0.36)
France 15 −0.02 (0.0006) −0.52 (0.59)
Germany 15 −0.07 (0.0006) −1.07 (0.57)
Greece 10 0.06 (0.0027) 0.67 (0.69)
Hungary 12 0.01 (0.0081) 1.24 (1.19)
Ireland 4 −0.14 (0.0075) −1.26 (1.56)
Italy 10 −0.06 (0.0097) −0.13 (1.05)
Latvia 8 −0.04 (0.0041) 0.07 (1.52)
Lithuania 8 −0.06 (0.0015) −1.88 (1.02)
Luxembourg 5 −0.03 (0.0024) −0.04 (1.30)
Macedonia 10 −0.04 (0.0093) 0.52 (1.94)
Montenegro 5 −0.22 (0.0452) −0.65 (3.09)
Netherlands 12 −0.05 (0.0168) 1.48 (2.72)
Norway 14 0.01 (0.0028) 0.56 (1.28)
Poland 13 −0.06 (0.0078) −0.93 (0.50)
Portugal 11 −0.04 (0.0007) −1.11 (0.78)
Romania 9 0.04 (0.0074) −0.82 (1.32)
Serbia 11 0.02 (0.0015) 0.68 (1.06)
Slovakia 13 −0.01 (0.0020) 0.43 (0.94)
Slovenia 12 −0.01 (0.0015) −0.35 (0.79)
Spain 15 0.09 (0.0007) 0.75 (0.67)
Sweden 15 0.04 (0.0003) 0.15 (0.52)
Switzerland 15 0.02 (0.0017) 0.66 (0.55)
UK 15 −0.04 (0.0043) 0.93 (1.10)

Notes: Table reports the number of cohorts in each country (note that the maximum number here is 15 as our sample

contains biannual cohorts from 1991-2019). The trend estimates a linear regression of the cohort level treatment effect

θcg on the cohort itself g − 1991. The split difference estimates a difference of means in θcg in the later half of the

treated cohorts relative to the first half of the treated cohorts. Countries require at least 3 cohorts’ worth of data to

be included.
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Figure A.7: Dynamic estimates from matched two-way fixed effects estimation

Notes: Figure plots estimates from Equation (A.1). Standard errors are clustered at the unit-by-foundation year

level to be comparable with Callaway and Sant’Anna results. Bottom panel shows the number of treated grid cells

for each event time. The dashed red line indicates the omitted pre-period, e = −2.
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actual propensity score is generated via a logistic regression. The outcome is an indicator variable

indicating any protection after 1992, creating a cross-sectional propensity score model. Column

(1) focuses only on the land use recorded in the most recent decade (1990). Protection tends to

occur at higher rates among land which starts out as forest, grassland, or “other,” with settled

and agricultural areas having statistically significantly fewer protected areas founded after 1992.

Columns (2) and (3) instead focus on key (logged) covariates, many of which may correlate with

underlying land use. From column (2), an apparent contradiction emerges: settlement and cropland

are less likely to get protected than “natural” land use, but nightlights and growing season length

seem to increase the probability of protection. Composition effects explain the contradiction: e.g.,

nightlights, pooled across Europe, will reflect not only comparisons between rural and urban areas

within countries but also comparisons between the more developed west and the less “luminous”

east. Thus, column (3) re-runs the exercise in (2) with a country fixed effect. Notably, these

two variables change sign, suggesting that holding fixed the protection regime, more economically

valuable land generates a lower probability of protection.

Next, we provide tables that summarize the treatment effects depicted in Figure 7. We identify

a grid cell as treated if it is at least 50% covered by a protected area. Table A.15 indicates the

average treatment effects from the dynamic aggregation θEU
e , corresponding to the left panel of

Figure 7. Standard errors are bootstrapped. At event-time 18, the estimates drop slightly, but

this effect is inconsistent over the remaining periods, rising to −0.38 in event time 20 yet dropping

to −0.07 by the last event time. This suggests that if there is a drop in nightlights, it is (1) not

sustained at its initial levels and (2) occurs 20 years after treatment, making it difficult to attribute

to protection alone.
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Table A.14: Linear probability model predicting land protection after 1992

(1) (2) (3)

Constant 0.1318∗∗∗ 0.1602∗∗∗

(0.0004) (0.0050)
Settlement in 1990 0.0047∗∗∗

(0.0009)
Cropland in 1990 -0.0377∗∗∗

(0.0005)
Forest in 1990 0.0305∗∗∗

(0.0005)
Grassland in 1990 0.0167∗∗∗

(0.0005)
Other in 1990 0.0821∗∗∗

(0.0016)
Water in 1990 0.0648∗∗∗

(0.0012)
Nighlight luminosity, 1992 0.0035∗∗∗ -0.0009∗∗∗

(0.0002) (0.0002)
Elevation -0.0054∗∗∗ 0.0050∗∗∗

(0.0002) (0.0003)
Distance to shore 0.0110∗∗∗ -0.0171∗∗∗

(0.0002) (0.0002)
Solar radiance -0.2013∗∗∗ -0.0686∗∗∗

(0.0016) (0.0035)
Growing season length in 1992 0.0637∗∗∗ -0.0105∗∗∗

(0.0011) (0.0020)

R2 0.00732 0.01289 0.10225
Observations 5,123,083 2,285,588 2,285,588

Country fixed effects X

Notes: Land protection after 1992 defined as at least 50% of a 1 square kilometer grid cell being protected by the

end of the study period in 2019. Standard errors indicate heteroskedasticity-robust errors. Land-use covariates come

from the HILDA landcover dataset. Covariates are expressed in logs, so all coefficients are interpretable as percent

changes.
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Table A.15: Dynamic treatment effects on nightlight luminosity across the EU

Mean (Std. error) Num. treated grids Num. CDDA Mean (Std. error) Num. treated grids Num. CDDAs

-28 0.66 (0.65) 105 28 1 −0.03 (0.02) 44, 801 12, 733
-27 0.35 (0.21) 1, 292 384 2 −0.03 (0.02) 44, 696 12, 705
-26 0.20 (0.16) 2, 688 799 3 −0.06 (0.03) 43, 509 12, 349
-25 0.19 (0.14) 4, 062 1, 200 4 −0.06 (0.03) 42, 113 11, 934
-24 0.09 (0.13) 5, 418 1, 532 5 −0.05 (0.04) 40, 739 11, 533
-23 −0.04 (0.12) 7, 015 1, 940 6 −0.15 (0.04) 39, 383 11, 201
-22 0.06 (0.11) 8, 514 2, 419 7 −0.17 (0.04) 37, 786 10, 793
-21 0.13 (0.10) 10, 082 2, 924 8 −0.13 (0.04) 36, 287 10, 314
-20 0.17 (0.09) 11, 525 3, 373 9 −0.08 (0.05) 34, 719 9, 809
-19 0.20 (0.09) 13, 015 3, 836 10 −0.15 (0.06) 33, 276 9, 360
-18 0.25 (0.08) 14, 497 4, 317 11 −0.12 (0.06) 31, 786 8, 897
-17 0.21 (0.08) 16, 599 4, 809 12 −0.21 (0.06) 30, 304 8, 416
-16 0.18 (0.08) 18, 088 5, 255 13 −0.23 (0.07) 28, 202 7, 924
-15 0.18 (0.07) 19, 835 5, 792 14 −0.22 (0.08) 26, 713 7, 478
-14 0.06 (0.06) 21, 597 6, 308 15 −0.20 (0.08) 24, 966 6, 941
-13 0.15 (0.06) 23, 686 6, 928 16 −0.14 (0.08) 23, 204 6, 425
-12 0.18 (0.06) 25, 893 7, 552 17 −0.12 (0.09) 21, 115 5, 805
-11 0.18 (0.05) 27, 775 8, 190 18 −0.16 (0.10) 18, 908 5, 181
-10 0.18 (0.05) 29, 611 8, 639 19 −0.29 (0.10) 17, 026 4, 543
-9 0.14 (0.04) 31, 458 9, 258 20 −0.38 (0.11) 15, 190 4, 094
-8 0.16 (0.04) 33, 101 9, 651 21 −0.39 (0.12) 13, 343 3, 475
-7 0.11 (0.03) 35, 079 10, 124 22 −0.33 (0.13) 11, 700 3, 082
-6 0.16 (0.03) 36, 816 10, 590 23 −0.36 (0.14) 9, 722 2, 609
-5 0.12 (0.03) 38, 678 10, 967 24 −0.25 (0.14) 7, 985 2, 143
-4 0.07 (0.03) 40, 382 11, 481 25 −0.34 (0.16) 6, 123 1, 766
-3 0.03 (0.02) 42, 024 11, 873 26 −0.15 (0.17) 4, 419 1, 252
-2 −0.00 (0.02) 43, 483 12, 351 27 0.36 (0.19) 2, 777 860
0 −0.02 (0.02) 44, 801 12, 733 28 −0.14 (0.26) 1, 318 382

Notes: Dynamic treatment effect θEU
t of conservation on nightlight luminosity (an index varying between 0 and 68) estimated for the entire European Union.

Treatment effect defined at the grid-cell observation level, 300 by 300 meters. Treatment requires grid cells overlap with a protected area over at least 50% of

their area. Estimator is detailed in Appendix B. Underlying dataset spans 1992-2019 on an annual basis. The earliest included foundation year period is 1993,

meaning the latest event time in the sample is 26.
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Table A.16 indicates the average treatment effects from the cohort-level aggregation θEU
g , cor-

responding to the right panel of Figure 7. As with the previous table, we find little evidence of

persistently-positive treatment effects, although there are some larger positive and negative esti-

mates. Compositionally, we find no heterogeneity in treatment effects across any observables in

later exercises, making these two cases outliers. Indeed, one is nearly as likely to find a positive

effect on nightlights as a negative one. There is no discernible pattern in selection that indicates

any systematic variation in these nightlights effects, either.

Table A.16: Cohort-level treatment effects on nightlight luminosity across the EU

Mean (Std. error) Num. treated grids Num. CDDAs

1993 −0.10 (0.13) 39, 540 382
1994 0.53 (0.12) 43, 770 478
1995 −0.63 (0.12) 49, 260 392
1996 −0.84 (0.09) 51, 120 514
1997 −0.17 (0.09) 55, 860 377
1998 −0.40 (0.11) 52, 110 466
1999 −0.21 (0.08) 59, 340 473
2000 −0.35 (0.13) 49, 290 393
2001 −0.38 (0.10) 55, 410 619
2002 0.30 (0.10) 55, 080 449
2003 0.59 (0.14) 56, 460 638
2004 −0.18 (0.11) 66, 210 624
2005 −0.22 (0.07) 62, 670 620
2006 −0.06 (0.10) 52, 860 516
2007 −0.21 (0.10) 52, 410 537
2008 −0.15 (0.11) 44, 670 446
2009 0.03 (0.10) 63, 060 492
2010 0.00 (0.14) 44, 460 481
2011 0.17 (0.19) 44, 700 463
2012 0.12 (0.11) 43, 290 449
2013 −0.19 (0.19) 47, 040 505
2014 −0.08 (0.17) 44, 970 479
2015 −0.05 (0.10) 47, 910 408
2016 0.01 (0.11) 40, 680 332
2017 0.18 (0.08) 41, 220 401
2018 0.13 (0.07) 41, 880 415
2019 0.10 (0.09) 35, 610 356
2020 0.20 (0.25) 3, 150 28

Notes: Cohort-level treatment effect θEU
g of conservation on nightlight luminosity (an index varying between 0 and

68) estimated for the entire European Union. Treatment effect defined at the grid-cell observation level, 300 by 300

meters. Treatment requires grid cells overlap with a protected area over at least 50% of their area. Estimator is

detailed in Appendix B. Underlying dataset spans 1992-2019 on an annual basis. The earliest included foundation

year period is 1993.
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C.4 Heterogeneous treatment effects

Here we describe in more detail the heterogeneous treatment effects obtained via the random forest

method of Wager and Athey (2018). We present results estimated on 30 different 1% stratified

random samples of the data as described in Appendix B. In the sample, the average treatment

effect is 0.01 (0.26).

The first result is a test of heterogeneity in treatment effects. We use the test in Wager and

Athey (2018), which amounts to a random forest implementation of Chernozhukov et al. (2024).

The results are shown in Table A.17. The test reports two coefficients in a regression. Observed

greenness Y is projected onto the average treatment effect estimated by the random forest and the

conditional average treatment effect estimated by the random forest:

Yit = β0ATEit + β1(CATEit −ATEit) + εit

Intuitively, the true average treatment effect should contribute a coefficient of exactly 1 as a

one-unit increase in the average treatment effect drives a 1 unit increase in expected counterfactual

outcomes. Thus, the test for the coefficient on the ATE is a two-sided test for whether the coefficient

is statistically different from 1. We find an estimate of 1.08 (0.10). Similarly, the coefficient on the

CATE should be at least 1: if the CATE changes by 1 unit, we should expect the outcome itself

to change by at least this much if the CATE is meaningful. The test on the CATE is one-sided,

determining if the coefficient is greater than 1: rejection implies that the CATE predicted by the

random forest is not driving deviations from the average treatment effect. Our results indicate our

measured CATE is meaningful with coefficient 1.54 (0.07). Thus, our random forest has picked up

on statistically significant deviations from the average treatment effect.

Table A.17: Test of the random forest model calibration

Coefficient Standard error

Mean forest prediction 1.01 (0.07)
Differential forest prediction 1.54 (0.07)

Notes: Table presents the test in Wager and Athey (2018) for heterogeneous treatment effects. Sample selection

discussed in B. The first coefficient describes whether the model captures the mean forest prediction. As it is

statistically indistinguishable from 1, the random forest appears to be fit well. The second coefficient describes

whether the model is able to find heterogeneity in calibrated treatment effects. The coefficient is robustly greater

than 1, confirming that we have found salient heterogeneity. Standard errors are bootstrapped across samples.

Despite the statistically significant heterogeneity in the data, treatment effects vary little in eco-

nomic terms. To further test the economic significance of the CATE measures, we plot conditional

average treatment effects along the distribution of selected control variables in Figure A.8.

We are interested, in particular, if variables associated with high-quality agricultural land may

change the predicted CATE. If we see, for example, that high soil phosphorus content, indicating

soil that is highly agriculturally productive, has a higher treatment effect, this suggests protection
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Figure A.8: Distribution of the conditional average treatment effect for phosphorus content in soil
and growing season length in 1985

Notes: Both panels plot estimates of the conditional average treatment effect across 20 ventiles of a key explanatory

variable. Bar at ventile q ∈ {0.05, 0.1, . . . , 0.95} corresponds to the CATE of plot i conditional on a realization of

X above that quantile, e.g., E[τi|X > x(q)]. Red dotted line highlights a zero CATE. Confidence bands are 95%

confidence intervals constructed through a doubly-robust procedure.

causes plots more suitable for agriculture to green more than plots less suitable for agriculture.

Such a result is consistent with a subset of land protection having positive treatment effects due

to a valuable counterfactual land value. We present the phosphorus CATE plot in Figure A.8 (left

panel). We reject any trend in CATEs based on the phosphorus content of soil.

As a second example, we illustrate the conditional average treatment effect as a function of the

growing season length (GSL) in 1985 in the right panel of Figure A.8. Longer growing seasons

indicate weather conditions which are more conducive to growing common fieldcrops (though not

specialty crops or horticulture). Plots in the top 25% of the sample with respect to their 1985 GSL

have a conditional average treatment effect of −0.5, which is statistically more negative than the

full-sample ATE of 0.01. Land with longer growing seasons in 1985, and thus more conductive to

field crops, was less likely to experience beneficial effects of land protection, though the difference

is small in absolute terms. Control land with similar GSL and observables greened more in the

intervening period.

D Robustness checks

In this section we discuss various robustness checks of the doubly-robust difference-in-differences

estimator discussed in Appendix B.
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Functional form: first differences. Our main specification considers differences in levels of

greenness due to land protection. Here, we test a first difference. There are two advantages to this

robustness check. First, as vegetation growth tends to be a slow process, there is an advantage to

testing for a change in the first differences of vegetation rather than the levels. Where in levels it

can take a very long time to convert to biodiversity-rich, green forest from a low-greenness land

cover like grassland, in first differences a clear change in growth rates should be easier to detect

earlier in the process of vegetation regrowth. Second, the first-differences specification allows us

to check that our levels functional form does not drive the null result. By taking a first difference,

we are removing the effect of any time-invariant contributors to greenness. This approach is thus

robust to arbitrary time-invariant heterogeneity, at the cost of correctly specifying determinants of

changes in greenness. We apply the exact same matching function with the exception of matching

on pre-period average greenness in levels and in trends. The aggregate treatment effect θEU is

−0.12 (0.11).

We report the EU-wide aggregated treatment effects in Figure A.9. The left panel illustrates

the dynamic treatment effects on changes in vegetation greenness, θEU
t . Pre-trends are balanced

around 0 for 20 years prior to treatment. There is no evidence of a kink in greenness at the time of

treatment. Importantly, while treatment effects in levels may take time to appear, we should see

an immediate kink in first differences if there is indeed vegetation growth occurring post-treatment,

which was not present in the counterfactual. The right panel of Figure A.9 illustrates the cohort-

level treatment effects. Aside from an outlier in 2001, cohort effects are flat.

Collectively, our first-difference results emphasize the main zero treatment effect finding. There

is evidence for neither a notch nor a kink in vegetation growth driven by protection.

Greenness thresholded sample. In this robustness check, we re-run our main estimator on

a greener sub-sample of the dataset. For inclusion in this robustness check, a grid cell in our data

must achieve a greenness of at least 40 at any point in the sample period 1985-2019. In this greener

sample, we are largely dropping bare areas and dirt. Rocky regions are less likely to be protected

with the intention to green, and greenness may be a less suitable metric of their ecological health.

Importantly, a threshold of 40 is unlikely to remove meadows and wetlands.

The overall treatment effect in this sub-sample is -0.05 (0.06). Figure A.10 shows the dynamic

(left) and cohort (right) effects. Both corroborate a 0 treatment effect on average. Greener grid

cells have a slight positive pre-trend, but this pre-trend if anything suggests treated areas greened

less post-protection (Rambachan and Roth 2023). We conclude our results are not driven by the

inclusion of low greenness areas.

Not-yet-treated sample. Our main approach uses never-treated grids as controls for pro-

tected grid cells. An alternate approach leverages not-yet-treated protected areas as controls for

earlier protected areas. Such an approach is desirable if there is significant selection of protected

areas, rendering never-treated units an unsuitable control. On observables, we have significant over-
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Figure A.9: Treatment effects on a first difference of vegetation greenness over event time and by
cohort

Notes: Treatment effects on a first difference of greenness aggregated by event-study period θEU
e in the left panel,

and by cohort θEU
g in the right panel. Sample trims first calendar year, 1985, due to first differencing: we match

on values from 1987 and 1989 for all cohorts treated in or after 1991. Both panels use the Callaway and Sant’Anna

doubly-robust estimator with bootstrapped confidence bands.

A33



Figure A.10: Treatment effects on NDVI: threshold 40 NDVI group

Notes: Treatment effects on greenness aggregated by event-study period θEU
e in the left panel, and by cohort θEU

g in

the right panel. Both panels use the Callaway and Sant’Anna doubly-robust estimator with bootstrapped confidence

bands. Sample includes only grid cells with NDVI ≥ 40 at least once between 1985-2019.
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lap across treated and never-treated groups: that said, if there is sharp unobservable selection, the

not-yet-treated group may be an appropriate alternative so long as protection is not anticipated.

Appendix Figure A.11 illustrates the dynamic (left) and cohort (right) effects of protection

on greenness using the not-yet-treated group as a control. Pre-trends are quite flat, and we see

no evidence of greening after treatment. Cohort effects are also similar in magnitude. There is

one cohort with a significant, positive treatment effect in 2001, but there is also an equally large

negative treatment effect in 1993. Overall, we do not conclude that not-yet-treated controls reveal

an effect of land protection.

Figure A.11: Treatment effects on NDVI: not-yet-treated control group.

Notes: Treatment effects on greenness aggregated by event-study period θEU
e in the left panel, and by cohort θEU

g in

the right panel. Both panels use the Callaway and Sant’Anna doubly-robust estimator with bootstrapped confidence

bands.

High population-density sample. Next, we test for robustness with respect to the sample

definition. We re-run the Callaway and Sant’anna estimator for the top 2% of land by population

density in the EU: land which has a population density of 913 people per sq. km. or more. These

areas are highly urbanized in comparison to the full sample. Under our framework, high-population

protected areas are likely to be protected less strictly or to yield much larger environmental divi-

dends from protection.

A concern with taking a small cut of the data is that such a cut of the data may have very

few protected areas. However, by country, we see significant protection in dense areas. Germany,
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Denmark, and the Netherlands all have at least some protection in over 30% of their most dense

grid cells. As a proportion of the total population dense sample, Germany, the UK, and Italy

collectively comprise approximately half, followed by France comprising 10% of the sample.

In Appendix Figure A.12, we conclude that our approach is less well-suited to this highest

population density land. We find that controls in populated areas are poor controls for protected

areas in populated areas. Protected areas show remarkable greening trends for at least 3 decades

prior to protection, consistent with pockets of long-run land abandonment or the elevation of

existing parks to protected status. After protection, if anything, protected areas appear to green

more slowly. This results in a negative treatment effect in aggregate. In the cohort effects, aside

from a standout cohort in 1991, we do not conclude that there is a long-run trend in vegetation

greening.

Figure A.12: Treatment effects on NDVI: top 2% of Europe by population density.

Notes: Treatment effects on greenness aggregated by event-study period θEU
e in the left panel, and by cohort θEU

g in

the right panel. Both panels use the Callaway and Sant’Anna doubly-robust estimator with bootstrapped confidence

bands. Sample includes any 300×300 grid cell with population density above the 98th percentile of population density

at the EU level measured in our 1×1 km data. Dashed vertical line on the dynamic (left) plot indicates the universal

base period e = −2.

Selection on unobservables: spatial first differences. We next present a spatial first

differences (SFD) strategy as a method to tackle selection on unobservables (Druckenmiller and

Taylor 2022). This methodology takes a first difference of the data along a given spatial axis, thus

creating comparisons between areas that are close by in space. The advantage of SFD is to elimi-

nate spatially correlated sources of unobservable selection.5 For example, agricultural productivity

5. It does not explicitly treat violations of SUTVA, where control plots nearby CDDAs may be affected by pro-
tection. A conventional method for testing for such spatial spillovers is a “donut” difference-in-differences design in
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of protected land or its unobserved development value may be unobservably lower. As long as

these sources of heterogeneity are spatially correlated, differencing across space attenuates their

importance in our treatment effect estimates. By spatially differencing the data, we compare areas

which are nearby to one another, thus indirectly controlling for these unobservable drivers. We

difference observations along the x-dimension so that areas with the same latitude are differenced

against their neighbors. Introducing the index i = (x, y) to identify a grid cell by the coordinates

of the centroid of that grid cell, the outcome variable is:

∆Y LAT
xyt = Yxyt − Yx−1,yt

The focus of the SFD is on estimating the greenness differences between treated units and their

nearest neighbors, relative to matched controls. In principle, we could re-estimate SFD for many

axes, such as a vertical or diagonal axis. When we estimate treatment effects, the SFD method

estimates the difference-in-differences on the spatially-differenced outcome variable.

When calculating the spatial first difference across the x-dimension, we obtain an EU-wide

treatment effect of −0.02 (0.14). Figure A.13 plots the event-study (left panel) and cohort-level

aggregations (right panel). The left panel demonstrates a flat trend in the post-treatment periods.

Cohort effects show no trend through 2015, with a slightly lower treatment effect in the 2017 and

2019 cohorts. Overall, the SFD estimates are an even more precise zero than our main specification.

E Biodiversity outcomes from species counts

BioTIME data consist of a panel of animal species and vegetation flora biomass studies. Studies

enter and exit the panel as they are conducted by biologists and ecologists. Records consist of a

year, a species identifier, a study identifier, and either a count of species abundance or a measure

of vegetation biomass. When focusing on the landmass of the European Union, there are a total of

58 studies, most of which focus on animal counts. We restrict our analysis in this section to species

counts of animals as a measure of biodiversity.

Of the 58 BioTIME studies in the EU, 53 are within 5 kilometers of a protected area listed in

the CDDA system. The remaining 5 studies are too few to serve as credible controls to establish

causal effects as in our core analysis of greenness and nightlights. Instead, we construct event-

study estimators of the impact of nearby CDDA openings on measured abundance. As a result,

rather than leveraging variation relative to control units, we only look at within-study variation

to determine whether structural breaks appear around the foundation of protected areas. The

potential selection of these few study sites and the lack of a valid control group in the BioTIME

which the researcher discards potentially contaminated units nearest a protected area and recomputes treatment ef-
fects. In our application, the donut approach is prohibitively expensive from a computational perspective: it requires
calculating an individual buffer for each of our over 100,000 treated areas, many of which may have overlapping
buffers. Moreover, violations of SUTVA should bias our results away from zero, as protection may push economic
activity to the area just outside of the CDDA boundary; despite that, we find zero treatment effects of protection.
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Figure A.13: Treatment effects on NDVI: spatial first differences

Notes: Treatment effects on greenness aggregated by event-study period θEU
e in the left panel, and by cohort θEU

g in

the right panel. Outcomes are spatially differenced in the x direction. Both panels use the Callaway and Sant’Anna

doubly-robust estimator with bootstrapped confidence bands.
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data limit the external validity of these results. We thus present our specification as descriptive

evidence rather than a causal design.

Our econometric specification considers a study i, species s, and year t. We construct a buffer

of distance b kilometers around the study area, the neighborhood N b
i . We assign treatment of

the study area according to the minimum foundation year g of overlapping CDDAs. That is, the

treatment indicator is Db
it = 1[t ≥ minNb

i
g] with event time eb = t−minNb

i
g. Then, the event-study

design amounts to the following regression, where λ is used to denote a fixed effect:

Yist =
10∑

eb=−10

βbebD
b
it + λi + λs + εist (A.2)

In Figure A.14 we plot the event-study coefficients βb
eb

for two buffer distances: 2.5 km and 5 km.

We estimate the regression in logs. Event-study coefficients are indistinguishable from zero in the

immediate time frame around the first foundation year in the vicinity. The average effect across

post-periods was 0.013 (0.03) and 0.012 (0.03) at the 2.5 and 5 km buffers, respectively. Overall,

we cannot reject the null of no structural break in these settings.

The BioTIME data are spatially concentrated in a few areas within Europe. This lack of spatial

variation means many sites are close to one another, and close to many potential CDDAs. When

expanding the treatment buffer from 2.5 km to 5 km, we move from 52 to 53 treated studies out

of the original pool of 58. The jump in species counts represented is much smaller, increasing by

less than 0.1%. Thus, there is a large density of species studies within the 5 km boundary. This

indicates that the biodiversity data lack spatial breadth, making valid inference difficult.
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Figure A.14: Event-study coefficients measuring species abundance with respect to nearby protected
area foundation

Notes: Estimates show the effect of founding the first protected area within 2.5 km (left) and 5 km (right) of a

BioTIME study site. Estimates are a pure event study.
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