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How do upstream competition and supply shocks
affect investment decisions?

We study the effect of upstream competition and supply shocks on a buyer’s investment decisions, under

demand uncertainty. Imperfect upstream competition leads to double marginalization. This effect is mitigated

if the supplier pool is larger (when production costs are linear or in case of diseconomies of scale): The

resulting lower equilibrium input price ultimately benefits the buyer and makes it more likely to invest

sooner. A supply shock—that shrinks the supplier base—may increase the market power of the remaining

suppliers and exacerbate double marginalization. Such a shock may arise either exogenously (due to a sudden

external event) or endogenously (when profitability upstream is reduced). An exogenous shock, which leads

to higher input prices and lower order quantities, reduces the profitability of the buyer, which is then less

inclined to invest if more suppliers are affected by it. When the shock arises endogenously, the buyer may be

better off and invest sooner if it subsidizes its supplier base as a way to maintain more competition upstream.

Key words : Supply shock, supply chain, real options.
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1. Introduction

There are instances where demand materializes, but investments are delayed, not due to the

uncertainty inherent to the end market, but due to inefficiencies in how the supplier market

is organized. Within the agribusiness, the overall adoption of alternative proteins is affected

by such upstream inefficiencies: While the market for alternative proteins is expected to

grow an annual 3.7% compound rate from 2022 to 2027, producers face challenges “securing

enough high-quality raw materials at competitive prices” and mitigating “shortages [. . . ]

caused by extreme weather conditions and soil degradations as well as more recently by

COVID-19 and war-related supply chain disruptions.”1 More generally, global supply chains

face new challenges due to climate change and other major developments such as rising

protectionism, the weaponization of trade, regional conflicts, sanctions, and the erosion of

global institutions. Understanding the functioning of these supply chains and anticipating

changes that affect them are essential, also from an investment perspective.

We propose a stylized modeling framework to study these issues expanding the classical

real options theory (e.g., Dixit and Pindyck 1994, Trigeorgis 1996) by microfounding firm

profits that reflect imperfect upstream competition and by considering the impact of supply

shocks—besides end demand uncertainty—on a firm’s investment decisions. Our framework

contributes to the literature at the interface of finance, operations, and risk management

(iFORM) and explains how supply uncertainties lead to delayed investments. We stress two

key mechanisms at play. First, reduced upstream competition can lead to increased input

prices for buyers and eventually to higher prices for finished goods, which depresses the

demand of the end customers and consequently affects the entire supply chain. As a conse-

quence, downstream companies may face lower profitability and reconsider their investment

decisions altogether. These effects are expected to be particularly severe for inputs that are

already in limited supply. For instance, the current fertilizer shortage has strongly affected

the alternative protein market.2 Second, firms may be subject to supply shocks—that may

arise exogenously due to operational contingencies, natural hazards (e.g. lockdowns during

Covid 19, 2021 Suez canal obstruction, Panama canal drought), terrorism (e.g., Houthi

attacks on commercial vessels in Nov. 2023) and political instability (Kleindorfer and Saad

1 www.ey.com/en_gl/insights/strategy/how-alternative-proteins-are-reshaping-meat-industries

2 www.ey.com/en_gl/insights/strategy/how-alternative-proteins-are-reshaping-meat-industries

www.ey.com/en_gl/insights/strategy/how-alternative-proteins-are-reshaping-meat-industries
www.ey.com/en_gl/insights/strategy/how-alternative-proteins-are-reshaping-meat-industries
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2005) or endogenously if certain suppliers face financial distress and become unreliable. As

firms face challenges in adjusting their sourcing strategy after supply shocks (Cohen et al.

2018), the upstream market becomes less competitive and the remaining suppliers exploit

the new circumstances to wield more market power.

Our framework helps us articulate key, novel managerial insights based on a set of stylized

models, all solved analytically (with proofs provided in an e-companion).

We first study how the degree of imperfect upstream competition affects the equilibrium

profit of a monopsonic buyer, assuming uncertainty about end demand. If suppliers and

buyers make pricing or quantity decisions in a decentralized supply chain, they pursue

their own interests to achieve higher margins, typically leading to double marginalization

(Spengler 1950, Tirole 1988). In our setting, the effects brought about by more upstream

competition (understood as an increase in the number of suppliers) critically depend on

the degree of (dis)economies the suppliers can achieve. In the cases where the suppliers

(i) have linear production costs or (ii) face scale diseconomies, more upstream competition

improves the buyer’s profitability (see Propositions 1 and 3). Intuitively, as upstream com-

petition intensifies, the effect of double marginalization is mitigated as suppliers collectively

lose market power, to the buyer’s benefit. In contrast, if (iii) economies of scale can be

achieved, one supplier monopolizes the input market (see Proposition 2). If (ii) there are

diseconomies of scale, the buyer may actually prefer to source from a large set of suppliers,

despite reduced but still significant double marginalization, than to vertically integrate (see

Proposition 4). Essentially, despite the markups charged by the suppliers onto the buyer,

dispatching production among a large set of suppliers makes it possible for the buyer to

avoid the diseconomies of scale that would arise if the buyer were vertically integrated.

For (i) linear costs or (ii) scale diseconomies, more upstream competition makes the buyer

invest earlier (see Propositions 5 and 6), while the buyer is effectively indifferent about the

(potential) size of the supplier base if there are (iii) economies of scale, investing above a

cutoff demand level corresponding to a setting with a monopolistic supplier.

If the input market is not already monopolized (i.e., if there are no economies of scale), a

supply shock may exacerbate double marginalization, as the suppliers who remain after the

event wield more market power and charge a higher markup. We consider and model two

cases: A supply shock can either result from some exogenous event affecting a subset of one’s
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supplier base (e.g., a disease affecting crops) or be the outcome of an endogenous decision by

some suppliers to temporarily cease operations should the changing economic environment

invalidate current operations (e.g., farmers deciding to stop operations in view of current low

produce prices and high fixed costs). The buyer develops rational expectations about these

shocks, internalizes the fragility of supply, and revises its investment strategy accordingly.

If more suppliers may be affected by the exogenous supply shock, the value of operating

in this market decreases for the buyer (see Proposition 7). The buyer will decide based on

whether the shock has or will arrive and how many suppliers have been or are likely to be

impacted (see Proposition 8). The buyer will invest if the end demand exceeds a cutoff level

(see Proposition 9), sufficiently large to compensate for the additional supply risk. If more

suppliers may be affected by the exogenous disruption, the buyer will increase this cutoff

level (see Proposition 10). Again, a supply shock can have endogenous roots when a supplier

faces a profitability challenge. In this case, regardless of any fair trade considerations,

the downstream firm may have an incentive to financially support weaker suppliers (see

Proposition 11): It does so under certain circumstances but not at all times—to sustain more

competition upstream and to mitigate double marginalization. This potential intervention

generates value and makes the buyer invest earlier (see Proposition 12).

2. Literature review

The optimal time at which to make (partly) irreversible decisions is at the core of real

options theory (Dixit and Pindyck 1994, Trigeorgis 1996). Following Chevalier-Roignant

et al. (2011, Sect. 3.2) and Trigeorgis and Tsekrekos (2018, Theme D), supply-chain inter-

actions are, however, often ignored in this literature. Exceptions include Moon et al. (2011)

(who determine the times at which to sell and buy in a supply chain subject to uncertain

revenues and costs), Billette De Villemeur et al. (2014) (who study the timing decision

of the buyer who purchases a key equipment from a supplier at its investment time), and

Chevalier-Roignant et al. (2025) (who study the mechanism through which a supplier and

a buyer reach a time at which to invest concomitantly). Contributing to this literature, our

paper provides a microfoundation to the equilibrium profits across the supply chain and

studies the impact of more intense horizontal competition at the suppliers’ echelon and of

supply shocks on a buyer’s investment decision.

Our manuscript also relates to two streams of the literature on operations management:
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Supplier-buyer relationships. Spengler (1950) introduced a simple model of supply chain

relationship with “double marginalization,” which has become seminal. Greenhut and Ohta

(1979), Salinger (1988), Corbett and Karmarkar (2001), and Huang et al. (2016) (to name a

few) have generalized this supply chain model, modeling successive Cournot oligopolies with

deterministic demand, while Huberts et al. (2025) consider double marginalization arising in

an investment context with a financier wielding market power. De Wolf and Smeers (1997)

and DeMiguel and Xu (2009) consider variants in which the inverse demand function in the

downstream market is subject to randomness and in which firms taking the role of Stack-

elberg leader or follower compete over quantities. In a related spirit, Gurnani and Gerchak

(2007) consider the downstream firm as a Stackelberg leader, while multiple component

suppliers act as Stackelberg followers and compete among themselves in a Cournot fashion.

We consider a Cournot-Nash game among suppliers nested in a two-echelon supply chain

game (with suppliers as leaders and a monopsonic buyer as follower). We leverage tractable

demand and cost specifications and study the impact of a change in the size of the supplier

base on the buyer’s equilibrium profit, an impact which critically depends on the degree of

(dis)economies of scale of the suppliers’ production technology. We allow for uncertainty

in demand in the output market and focus on the impact of changes in the supplier chain

configurations (e.g., in terms of numbers of suppliers and supply shock) on a buyer’s invest-

ment timing decision. We also briefly discuss the buyer’s incentive to vertically integrate,

in that respect modestly contributing to the rich literature on vertical integration (e.g.,

Salinger 1988, Corbett and Karmarkar 2001, Fang et al. 2023, Jullien et al. 2023).

Supply shocks. Supply shocks have dramatically affected global trade and have become

topical in scholarly research of late (see the reviews by Gurnani et al. 2013 and Lücker et al.

2024). This research theme has been understood and studied from various perspectives

(Sodhi et al. 2012). For example, the literature has studied the incentive to diversify one’s

supplier base in the context of a newsvendor problem subject to “yield risk,” i.e., when the

buyer is likely to experience a default by at least one supplier during lead time. This issue

has been investigated in the context of a two-tier supply chain (Dada et al. 2007, Babich

et al. 2007, Swinney and Netessine 2009, Federgruen and Yang 2009, Tang et al. 2014) or

multiple-tier supply networks (Osadchiy et al. 2016, Ang et al. 2017, Bimpikis et al. 2018,

2019, Birge et al. 2023). Multisourcing helps diversify away upstream (e.g., Tomlin 2006,
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Allon and Van Mieghem 2010) or downstream risk (e.g., Chod et al. 2019). Our baseline

model differs from a newsvendor problem, specifically (i) the product prices adjust to ensure

that the input and output markets clear (as in Wadecki et al. 2013, Bimpikis et al. 2019)

and (ii) lead times are assumed away, the suppliers being able to satisfy current orders but

possibly disappearing from the input market in subsequent periods, which is another form

of supply shock, relevant in a dynamic setup. Our model views multisourcing differently, as

a way to allow more competition upstream and mitigate double marginalization. Supplier

shocks in our case lead to more market power being wielded at an earlier echelon, with

consequences across the supply chain. Yang et al. (2015) and Huang et al. (2016) also look

at the effect of firm defaults (due to exogenous factors) on supply chains, with Huang et al.

(2016) and Yang et al. (2015) focusing on defaults upstream and downstream, respectively.

As in Wadecki et al. (2013) and Tang et al. (2014), we discuss the incentive of a buyer to

subsidize suppliers to mitigate supply shocks.

3. Does a larger supplier base make buyers better off?

We consider an imperfect upstream market in which the price set by suppliers for a homo-

geneous nonstorable good depends on the purchase order of a monoposonic buyer, with

monopoly market power downstream. This buyer’s purchase order reflects the current level

of demand in the output market, which may change over time due to demand uncertainty.

This modeling framework is motivated by the current state of the agribusiness, for instance

(i) the US poultry sector, where an integrator like Tyson Foods wields quasi-monopsony

control over numerous small-scale contract growers raising perishable chickens, (ii) coffee

cooperatives in Ethiopia that supply a dominant multinational, Nestlé, or (iii) the UK

dairy industry, where hundreds of independent farms provide raw milk to a limited number

of purchasers, which are either major supermarket chains (Tesco, Sainsbury’s, Morrisons,

etc.) or processors (Arla Foods, Müller, etc.).

3.1. Baseline supply chain model

As in Babich et al. (2007), Demirel et al. (2018) and Bimpikis et al. (2019), the suppliers

compete against each other. Here, the suppliers infer the downstream demand and collec-

tively converge (in a Cournot-equilibrium fashion) to a market-clearing price (see Spengler,

1950 or pp. 174-175 in Tirole, 1988).
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Upstream demand. The monopsonic downstream firm faces a produce price P (q, y)≥ 0,

which decreases with respect to the supply quantity q and depends on a state of demand

y > 0 observable at each time t ≥ 0. For instance, we may consider—as Chod and Rudi

(2006, Section 3)—isoelastic demand, with

q 7→ P (q, y) = yq−δ for δ ∈ (0,1), (1a)

where y is the realization of the (multiplicative) random demand shock and the constant

δ is the reciprocal of the price elasticity of demand |dQ
Q
/dP

P
|. Up to a renormalization, we

assume that the buyer needs q units of input to produce q units of output. The buyer buys

each unit at a price w> 0, determined endogenously by the suppliers.

Production cost upstream. Suppliers face symmetric costs driven by a monotone increas-

ing cost function C(·), which may be nonlinear in the output to account for (dis)economies

of scale. For instance, the function

C(q) =
c

v
qv where c > 0 and v > 0, (1b)

which increases from 0 to ∞, fits these specifications. If v= 1, it is linear and c corresponds

to a unit production cost. Because C ′′(q) = c(v−1)qv−1, the marginal cost decreases (resp.,

increases) with the output q ∈ (0,∞) and each supplier benefits from economies of scale

(resp., faces scale diseconomies) if 0< v < 1 (resp., v > 1). Diseconomies of scale are a com-

mon feature across various agricultural commodities (Alizamir et al. 2019), often explaining

the relative small sizes of farms depending on nature of the crops.

Equilibrium conditions. Many markets are not vertically integrated, which may be well

justified (cf. Section 3.2). We consider n symmetric suppliers (e.g., farmers) deciding on

their output levels. To determine the Cournot-Nash equilibrium price w̄n ≥ 0, we first

build the buyer’s demand for an arbitrary input price w. Rationally, the buyer selects an

output level q̄(y,w) that maximizes its profit π(q;y,w) := qP (q, y)−wq.3 For suitable model

specifications, the buyer’s optimal output is determined from a first-order condition:

πq (y, q̄(y,w)) = 0. (2)

3 We use πq, πy, and πqq to denote the partial derivatives.
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From the suppliers’ perspective, w 7→ q̄(y,w) can be interpreted as the demand function.

Under standard specifications, the order quantity q̄(y,w) in eq. (2) increases with demand

(as q̄y =−πqy/πqq ≥ 0) and decreases with the input price.

To determine a symmetric Cournot-Nash equilibrium upstream, we use the inverse

demand function Q 7→ q̄(y, ·)−1(Q), which maps the total demand by the buyer Q to a price.

We then compute the supplier i’s best-reply function:

z ∈R+ 7→R(z) := argmax
qi≥0

{
qi q̄(y, ·)−1(qi + z)︸ ︷︷ ︸

Inverse demand
function=input price︸ ︷︷ ︸

individual supplier’s
revenues

− C(qi)︸ ︷︷ ︸
supplier’s

cost

}
∈R+, (3)

where the term z is understood as the aggregate output of rivals, z =
∑

j ̸=i qj.

We consider a symmetric equilibrium for which each upstream firm i supplies an amount

qi = q̄n(y)≥ 0. In equilibrium, this amount solves the fixed-point equation

q̄n(y) =R
(
(n− 1)q̄n(y)

)
, (4)

with the total output given by

Q̄n(y) := nq̄n(y), (5)

and prices in the upstream and downstream markets are

w̄n(y) :=q̄(y, ·)−1
(
Q̄n(y)

)
, (6)

and P̄n(y) :=P
(
Q̄n(y), y

)
, (7)

respectively. Clearly, these prices are not decoupled, with changes in the end demand (driven

by y) also affecting the equilibrium price w̄n(y) in the upstream market. The buyer’s equi-

librium profit is given by

π̄n(y) := π
(
Q̄n(y);y, w̄n(y)

)
, y > 0, (8)

for Q̄n(·) and w̄n(·) given in eqs. (5) and (6) respectively, while a supplier’s profit reads

πn(y) := w̄n(y)q̄n(y)−C
(
q̄n(y)

)
. (9)

The proposition below specifies equilibrium firm profits:4

4 Proposition 1 presumes one buyer and multiple suppliers. Our e-companion also considers a setup with two
successive Cournot oligopolies.
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Proposition 1 (Supply-chain equilibrium with n suppliers) For the specifications

in eq. (1) with v ≥ 1, there exists a symmetric Cournot-Nash equilibrium upstream, with

each supplier providing the quantity

q̄n(y) = n− δ
δ+v−1

(
1−δ
c
y
[
1− δ

n

]) 1
δ+v−1 . (10)

In this equilibrium, the input and output prices in eqs. (6) and (7) satisfy P̄n > w̄n(y), while

the buyer’s and suppliers’ profits in eqs. (8) and (9) are given by

π̄n(y) =any
ϵ, an := δ

(
nv−1 1−δ

c

[
1− δ

n

]) 1−δ
δ+v−1 ≥ 0,

πn(y) =νny
ϵ, νn := n− δ

δ+v−1v
(
1−δ
c

[
1− δ

n

]) 1−δ
δ+v−1 1−δ

v

[
v− 1+ δ

n

]
,

respectively, with ϵ := v/[δ+ v− 1].

This proposition helps us derive numerous managerial insights, some of which are dis-

cussed in the following section. Proposition 1 embeds the linear-cost benchmark obtained

by setting v = 1. In this case, each supplier charges an input price w̄n(y) =
c

1−δ/n
and the

buyer charges to the end customer a unit output price P̄n(y) =
1

1−δ
c

1−δ/n
. Classically, the

vertical relationship features double marginalization, with P̄n(y)> w̄n(y)> c. The supplier’s

and buyer’s profits are given by

πn(y) =
δ(1−δ)

n2

(
1−δ
c

[
1− δ

n

]) 1−δ
δ y

1
δ and π̄n(y) = δ

(
1−δ
c

[
1− δ

n

]) 1−δ
δ y

1
δ ,

respectively. Proposition 1 goes beyond the linear-cost benchmark. If v > 1 in eq. (1), the

suppliers face diseconomies of scale as common for farms. Following Proposition 1, suppliers

collectively receives a fixed share of the downstream equilibrium price. The profit functions

are proportional to yϵ. Furthermore, if v≥ 1, the buyer and suppliers are risk seeking with

respect to the level of demand in the output market: They can expand (resp., contract)

production if demand builds up (resp., shrinks).

Proposition 1 disregards the strategic interactions that take place in the case where

suppliers face economies of scale (with 1− δ < v < 1). This case is more involved. In par-

ticular, under such circumstances, symmetric suppliers may end up playing an asymmetric

equilibrium among themselves:
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Proposition 2 (Economies of scale) In case of economies of scale (1− δ < v < 1), for

n suppliers and one buyer, there is no symmetric pure-strategy Cournot-Nash equilibrium.

The n asymmetric strategy profiles {q̄1(y),0, . . . ,0}, {0, q̄1(y), . . . ,0},. . . and {0, . . . ,0, q̄1(y)},

for q̄1(y) given in eq. (10), are pure-strategy Cournot-Nash equilibria. For each of these

equilibria, the input and output markets clear respectively at the prices w̄1(y) given in eq. (6)

and P̄1(y) given in eq. (7), while the buyer’s profit is π̄1(y) = a1y
ϵ, given in Proposition 1.

3.2. Benefits of a large supply base?

For the linear-cost benchmark (obtained by setting v = 1), more upstream competition

(n≥ 1) leads to lower equilibrium input and output prices, c
1−δ/n

and 1
1−δ

c
1−δ/n

respectively.

However, this development causes the buyer to buy and sell more, with its order quan-

tity/output Q̄n(y) =
(
1−δ
c
y (1− δ/n)

)1/δ
increasing with n. The buyer earns more (π̄1 ≤ π̄2 ≤

. . . ), while each supplier earns less (π1 ≥ π2 ≥ . . . ). This result suggests a “shift in market

power” to the benefit of the buyer, at the expense of the suppliers. The buyer’s purchase

order increases with end demand (as ∂Q̄n/∂y > 0), but decreases with the suppliers’ unit

cost (as ∂Q̄n/∂c < 0).5 The double-marginalization effect vanishes if competition in the

input market becomes perfect, with the input price now corresponding to the marginal cost

(w̄n → c as n→∞) and the suppliers making no profit (πn → 0).

When considering nonlinear production costs, two effects must be acknowledged. First, as

in the linear-cost benchmark, each supplier has a natural tendency to respond strategically

to more intense rivalry (indexed by n≥ 1) by reducing output. Second, if the production

costs are nonlinear, an output reduction affects marginal costs, an effect that feeds back into

the equilibrium price-setting mechanism. Specifically, a lower output leads to a lower (resp.,

larger) marginal production cost when a supplier faces diseconomies of scale (resp., benefits

from scale economies). So, if suppliers benefit from scale economies (1 − δ < v < 1), the

(monopsonic) buyer faces a tradeoff: Spreading production among a larger set of suppliers

leads to a larger marginal cost. Again, according to our Proposition 2, in this case, the

production is not equally split among suppliers, with either supplying the buyer as if it

were a monopolistic supplier, while the other supplier leaves out the game altogether. If

suppliers face diseconomies of scale, then there is no tradeoff for the buyer: Because of

5 For the setup with m buyers of Proposition 13 in the appendix, we also have π̄m,1 ≤ π̄m,2 ≤ . . . , again
implying that buyers are better off if the supplier base is larger.
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competitive pressures, the suppliers reduce their outputs, each being less subject to scale

diseconomies. Proposition 3 summarizes the net effect on the buyer’s profit (m= 1):

Proposition 3 (Effect of supplier base size) In case of linear cost (v = 1) or of

scale diseconomies (v > 1), a buyer that can source from a larger set of suppliers orders and

sells more items (i.e., Q̄n+1 ≥ Q̄n), items which it purchases at a lower input price (i.e.,

w̄n+1 ≤ w̄n). This buyer is better off (with an+1 ≥ an) despite offering a lower price to the

end customers (with P̄n+1 ≤ P̄n). In case of scale economies (1− δ < v < 1), a larger set of

potential suppliers (n+1>n≥ 1) does not affect the equilibrium conditions for the buyer.

We focus on the cases where suppliers have linear costs (v = 1) or where they face scale

problems (v > 1). Following Proposition 3, the buyer can then source its input at a lower

price w̄n(y) if the supplier base is more competitive, as indexed by n. In the case with

diseconomies of scale (v > 1), sourcing from a larger set of suppliers has two benefits. First,

suppliers compete with one another, which tends to depress the equilibrium price upstream

(due to strategic substitution among the suppliers’ strategic choices). However, each of

them also produces less, so the marginal production cost decreases, which has a positive

feedback effect on the equilibrium input price. Because the input cost decreases for the

buyer, it produces more (Q̄n+1 ≥ Q̄n) and earns more (an+1 ≥ an). Another consequence

is that end customers benefit from more upstream competition, with P̄n+1 ≤ P̄n. This last

result is consistent with the general property (see Tirole 1988, p. 67) that a monopoly price

(here, set by the buyer and charged to the end customers) increases in the marginal cost

(here, the equilibrium input price).

3.3. Vertical integration

Proposition 4 briefly discusses the benefit of upstream competition (despite double

marginalization) compared to being vertically integrated:

Proposition 4 (Vertical integration) We take the specifications in eq. (1).

For linear costs (v = 1), the buyer’s profit given vertical integration Π(y) :=

maxq≥0{qP (y, q)−C(q)} exceeds the profit the buyer would achieve given upstream

competition, π̄n in Proposition 1, independently of the number n of suppliers. However, in

the case with diseconomies of scale (v > 1), there exists a unique finite integer ñ > 1 such

that Π(y)≥ π̄n(y) for 1≤ n≤ ñ and Π(y)< π̄n(y) otherwise.
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A particular supply chain setup, covered by Proposition 4, is when the buyer purchases

from a single supplier (n= 1). In this case, we recover the classical double marginalization

result (Spengler 1950): After both the supplier and the buyer charged a markup onto the

next echelon of the chain, the end price ends up larger than the price the centralized supply

chain would optimally set. This inefficiency arises because the upstream firms do not take

into account the externality exerted on the upstream firm by changing the wholesale price.

Under linear costs (v = 1), spreading production over a larger set of suppliers mitigates

double marginalization, but a certain degree always remains. However, if v > 1 the buyer

faces diseconomies of scale when it is vertically integrated, an additional cost that can offset

the benefit of avoiding double marginalization, especially if the suppliers are numerous

(n> ñ) and collectively wield limited market power.

4. Buyer’s investment if there are no supply shocks

We first study the effect of upstream competition on a buyer’s investment decision.

Buyer’s long-term value (after investment). As Chod and Rudi (2006), we assume that

the demand shock in eq. (1a) is lognormal:

Y0 = y > 0 and dYt = µYt dt+σYt dWt, with σ > 0. (11)

These dynamics model demand shifts due to changes in consumer tastes and the arrival of

substitute products over time (see, e.g., Li and Kouvelis 1999).

We assume the buyer’s discount rate, r > 0, to be constant over time (Dixit and Pindyck

1994, Li and Kouvelis 1999) and let Ey = E
[
·
∣∣Y0 = y

]
denote the conditional expectation.

If there are n firms that supply at all times (“reliable suppliers”), the buyer’s present value

(PV) is given by

ūn(y) =Ey

∫ ∞

0

e−rtπ̄n(Yt)dt, (12)

where π̄n(·) denotes the buyer’s equilibrium profit in eq. (8). Proposition 5 expresses this

PV in closed form for the specifications of eq. (1).6 To state the result, we introduce γ+ the

positive solution of equation Q(x) = 0, where

Q(x) :=
1

2
σ2x(x− 1)+µx− r. (13)

6 Proposition 5 can be generalized to accommodate for m buyers based on the equilibrium profit expression
of Proposition 13 in the e-companion.
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A classical assumption for linear payoffs is r > µ (e.g. Dixit and Pindyck 1994), which is

not sufficient here. More restrictively, we assume ϵ < γ+ throughout the manuscript, which

is equivalent to Q(ϵ)< 0. If this is not satisfied, then the PV explodes (ūn(y)→∞) because

the profits grow exponentially but at a rate too strong compared to the discount rate.

Buyer’s optimal investment time. Given the PV in eq. (12), we study the buyer’s propen-

sity to invest by solving the real-options problem:

ψ̄n(y) := sup
τ

Ey
[
e−rτ

{
ūn(Yτ )− I

}]
, (14)

where the investment time τ is selected by the buyer and the parameter I ≥ 0 is a known

investment cost. Proposition 5 solves this problem:

Proposition 5 (Buyer’s real-options problem) For the specifications in eq. (1), the

PV in eq. (12) is

ūn(y) = αny
ϵ, where αn :=− an

Q(ϵ)
, (15)

for an given in Proposition 1. The buyer’s investment problem in eq. (14) has a solution:

ψ̄n(y) =


[
αnȳ

ϵ
n − I

](
y
ȳn

)γ+
, y < ȳn :=

(
γ+

γ+−ϵ
I
αn

) 1
ϵ

,

αny
ϵ − I, y≥ ȳn.

Its optimal investment time is τ̄n := inf
{
t≥ 0

∣∣Yt ≥ ȳn
}
.

In line with our earlier results about the impact of upstream competition on the buyer’s

profit in Proposition 3, we find that the buyer is better off if upstream competition is more

intense in case of (i) linear costs (v= 1) or (ii) if these suppliers face diseconomies of scale

(v > 1). If (iii) there are economies of scale to be achieved (1−δ < v < 1), having the ability

to source from more suppliers effectively is of no value to the buyer because the market is

monopolized (see Proposition 2). In all cases, the buyer invests if the price exceeds a level

(obtained by smooth fit), higher than the NPV and Marshallian thresholds (see Dixit and

Pindyck 1994, Ch. 5). The buyer thus requires extra profitability from its project before

undertaking investment.

The next proposition summarizes a main managerial insight on the impact of upstream

competition on the buyer’s investment decision:
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Proposition 6 (Impact of upstream competition on investment) Assume v ≥ 1.

We have αn ≤ αn+1 and ūn ≤ ūn+1. Furthermore, the buyer’s value function increases with

the intensity of upstream competition (ψ̄n ≤ ψ̄n+1 for n≥ 1), while the optimal investment

time decreases (τ̄n ≥ τ̄n+1). Moreover, the value of delay flexibility decreases with the inten-

sity of upstream competition (ψ̄n − (ūn − I)≥ ψ̄n+1−(ūn+1 − I)).

From Proposition 3, we know that, in case of linear costs and diseconomies of scale (v≥ 1),

more upstream competition makes the buyer earn more. Proposition 6 establishes that,

under these circumstances, the buyer is also more prone to invest (earlier) because it can

extract more value from its operations.

5. Buyer’s investment under exogenous supply shock

Supply shocks may be caused by exogenous events, including natural disasters, the COVID-

19 pandemic, strikes crippling economies, nuclear incidents (Fukushima), terrorist attacks,

or embargoes (e.g., Iran, Russia) (Kleindorfer and Saad 2005, Babich et al. 2007, Lücker

et al. 2024). In particular, the agribusiness is subject to such supply shocks. For instance,

in 2023/2024, Brazil, the world’s largest Arabica coffee producer and exporter, experienced

dry weather conditions and frost events in Mina Gerais, which caused a production short-

fall, while Vietnam and Indonesia were afflicted by prolonged dry weather conditions and

excessive rainfalls, respectively.7 These supply shocks may have temporary effects (e.g.,

droughts, floods, frosts), while others (e.g., coffee leaf rust, coffee wilt disease, coffee berry

disease) have a long-term impact causing some suppliers to drop out.

If the buyer has n suppliers when demand is y, it receives a profit π̄n(y) = any
ϵ given

in Proposition 1. If the state of upstream competition remains unchanged with n reliable

suppliers, the buyer’s present value of eq. (12) is given by ūn(y) = αny
ϵ in eq. (15). How-

ever, supply chains may be subject to major shocks, a stylized fact that challenges our

previous assumption (used in Proposition 5) that the supplier base remains constant over

time. In contrast to the literature, which often considers a shock occurring between the

times of ordering and receiving goods, we consider repeated relationships with some sup-

pliers disappearing permanently at some future time. Specifically, at time 0, the buyer has

7 openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/

content

openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/content
openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/content
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identified a set of n potential suppliers it can source from. Yet, when a sudden shock arises

at a random time, some suppliers disappear altogether, while a subset survives. In line with

Proposition 3, the shock that occurs at that time leads to an upward jump in the equilib-

rium input price (because fewer upstream rivals ultimately harm the buyer), a sudden drop

in the order quantity and sales volume, as well as a significant drop in the buyer’s profit.

End customers are also affected as the equilibrium output price increases abruptly.8 In our

model, exogenous supply shocks are assumed to be independent of demand uncertainty. For

simplicity, we model one shock, not a sequence. Furthermore, as we consider nonstorable

goods, the buyer cannot stock up inventory to mitigate supply shocks. At any rate, inven-

tory buildup can help mitigate the effect of supply shocks in the short to mid term at best,

but not in the long term.

Present value. The present value received if the buyer invests at time 0,

ũn(y) :=E
[∫ T

0

e−rsπ̄n(Ys)ds+ e−rT ūN(YT )

]
, (16)

embeds the effect of a supply shock at time T , after which the buyer can only source from

N suppliers. This shock occurs at a time T believed by the buyer to be exponentially

distributed with parameter λ (e.g., Kouvelis and Xu 2021), while the random variable N

takes values in the set {0, . . . , n−1}. We recall the definition of the parameter αn in eq. (15)

and set α0 = 0 by convention. The proposition below expresses the PV of eq. (16) in closed

form and provides comparative statics on the impact of the supply shock characteristics

on this value. To state these comparative statics, we use the notation N2 ⪯ N1 to mean

that the random variable N2 is stochastically dominated by N1 in the first-order sense.

In our context, N2 ⪯N1 implies that more suppliers are likely to disappear following the

supply shock at time T if we consider the random variable N2 instead of N1. For instance,

the random variable N2 may reflect a situation where the supplier base is concentrated

around ‘patient zero’ of a disease affecting crops permanently, while N1 captures a more

geographically diversified supplier base. We have:

8 openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/

content

openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/content
openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/content
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Proposition 7 (Present value for exogenous supply disruption) Take v ≥ 1. At

time 0, prior to the shock, the present value of the buyer in eq. (16) is given by

ũn(y) = ηny
ϵ, where ηn = ηλ,Nn := αn +

λ

λ−Q(ϵ)

{
EαN −αn

}
. (17)

A supply shock destroys value with ηn ≤ αn. Furthermore, if the disruption is likely to occur

sooner or affect more suppliers, then value is also destroyed (with λ2 ≥ λ1 and N2 ⪯ N1

implying ηλ2,N
n ≤ ηλ1,N

n and ηλ,N2
n ≤ ηλ,N1

n , respectively).

Under rational expectations, the buyer anticipates the supply shock. When it happens,

the remaining suppliers will exercise greater collective market power. As a consequence,

the equilibrium price upstream will increase, at the buyer’s expense. A likely supply shock

then leads to a downward adjustment of the buyer’s present value, from ηny
ϵ in eq. (15)

in the case with n reliable suppliers to ηny
ϵ in case of a supplier base prone to downward

change. The factor ηλ,Nn in eq. (17) depends on the arrival of a supply shock, through the

parameter λ, as well as on the impact of this disruption on the supplier base through the

distribution of N . In the absence of supply shock (i.e., λ= 0), the factor η0,Nn in eq. (17),

which drives the buyer’s present value, simplifies to the factor αn obtained in eq. (15). As

the factor ηλ,Nn decreases with respect to λ, a higher arrival rate for the disruption depresses

the present value of a buyer with rational expectations. The sensitivity of the supplier base

to the disruptive event at time T is another metric the buyer may want to consider. If the

buyer expects more suppliers to be affected by the disruption (in the sense that N2 ⪯N1),

then its present value will again be negatively affected.

The investment problem supτ Ee−rτ
{
ũn(Yτ )− I

}
, for ũn(·) in eq. (17) has a closed-form

solution similar in form to ψ̄n(y) in Proposition 5. Yet, this investment problem is not

time consistent because the investment decision is made solely in view of shifts in demand,

ignoring the dynamics of the supply shock; It essentially presupposes that the shock can

only occur after the buyer’s investment decision. A time-consistent formulation of the prob-

lem (which can be solved using dynamic programming) involves three state processes: (i)

demand (Yt)t in eq. (11) as before, (ii) the state (Ht)t of the supplier base, which takes the

value 1 if the shock took place and 0 otherwise, and (iii) the number (Nt)t of suppliers,

which drops from the initial number of identified suppliers n to N following the shock.
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The buyer may face two situations. If the shock already happened (H0 = h = 1), the

buyer observes which suppliers survived, i.e., the realization of the random variable N , k ∈

{0, . . . , n−1}, and receives the present value ūk(·) in eq. (12) upon investing. Alternatively,

if no shock took place (H0 = h= 0), the buyer forms rational expectations and anticipates

a future shock, thus receiving the present value of eq. (16). The time-consistent formulation

of the buyer’s real-options problem is9

ψ̃(y,h,n) := sup
τ≥0

E
[
e−rτ {ũn(Yτ )(1−Hτ )+ ūN(Yτ )Hτ − I} |Y0 = y,H0 = h,N0 = n

]
, (18)

for the ‘state of disruption’ h∈ {0,1} and the number of surviving suppliers N . We denote

by j(·) the distribution of the random variable N over the set {0, . . . , n−1}. We first rewrite

the investment problem in eq. (18) in a more classical form:

Proposition 8 (Problem under exogenous supply shock) If the shock took place

(h= 1) and k suppliers have survived, the buyer’s investment problem in eq. (18) reduces

to ψ̃(·,1, k)≡ ψ̄k(·) solved in Proposition 5 for k= 1, . . . , n−1. If the disruption did not yet

take place (h= 0), the value function takes the form

ψ̃(y,0, n) =ERN(y)+ sup
τ∈T

Ee−(r+λ)τ
{
ηnY

ϵ
τ − I −RN(Yτ )

}
, (19)

for ηn defined by eq. (17) and Rk(y) :=Ee−(r+λ)T ψ̄k(YT )dt≥ 0.

Proposition 8 rewrites the real-options problem in eq. (18), which depends on three state

variables, into a usual optimal stopping problem with one state variable y. Compared to

the problem in eq. (14), we consider a new problem (the second RHS term in eq. (19)) with

(i) a higher discount rate r+λ accounting for the risk of arrival of a supply shock and (ii)

an extra term accounting for the consequence of that arrival on the buyer’s supplier base.10

We want to determine the solution of that new investment problem:

9 In eq. (18), the buyer’s investment τ is assumed to be adapted to an augmented filtration that accounts
for the additional source of uncertainty with respect to the supplier base.

10 Rk(y) can be interpreted as the value of a compound option, specifically the value of a European option
written on an American call, with an exponentially distributed maturity date T for the European option.
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Proposition 9 (Buyer’s real-options problem under exogenous disruption) If

the shock did not yet occur (h= 0), it is optimal for the buyer to wait for demand to exceed

a threshold ỹ, with its value function given by

ψ̃(y,0, n) =

{[
ηnỹ

ϵ − I](y
ỹ
)γ +ϕ(y), 0< y≤ ỹ,

ηny
ϵ − I, y≥ ỹ,

where

γ :=
−(µ− 1

2
σ2)+

√(
µ− 1

2
σ2
)2

+2σ2(λ+ r)

σ2
≥ γ+, (20)

and ϕ(·) is positive and solves
ϕ(0) = 0,
1
2
σ2y2ϕ′′(y)+µyϕ′(y)− (r+λ)ϕ(y)+λ

∑n−1

k=0 j(k)ψ̄k(y) = 0, on (0, ỹ),
ϕ(y) = 0, for y≥ ỹ.

(21)

We now study how a greater sensitivity of the supplier base to the supply shock affects

the buyer’s investment decision. Again, N2 ⪯N1 signifies that more suppliers are likely to

disappear after the shock if we consider the random variable N2 in lieu of N1. The following

comparison result articulates that the buyer will invest later (and have a lower option value)

if it expects more suppliers to disappear following the shock at time T :

Proposition 10 (Larger supplier-base impact) Assume v ≥ 1 and N2 ⪯N1. Further-

more, let ψ̃i and ỹi denote the value function and optimal investment threshold in Proposi-

tion 9 for the case with Ni, i ∈ {1,2}. A larger likely negative impact on the supplier base

(N2 ⪯N1) destroys value for the buyer (ψ̃2 ≤ ψ̃1) and delays its investment (ỹ2 ≥ ỹ1).

6. Buyer’s investment under endogenous supply shock

The reliability of all n suppliers at all times may be challenged if fixed costs are significant.

For instance, while owning harvesting machines is prohibitive for small or medium-sized

coffee farms, renting them may be more affordable and overcome sunking large investment

costs.11 Other common fixed costs include shipping costs, which have been material from

2020 to 2022 and had a documented impact on coffee prices.12 To sustain more upstream

11 revistacultivar.com/news/characteristics-and-benefits-of-mechanized-coffee-harvesting

12 openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/

content

revistacultivar.com/news/characteristics-and-benefits-of-mechanized-coffee-harvesting
openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/content
openknowledge.fao.org/server/api/core/bitstreams/8135b05e-a013-4080-b8f6-a6ac5b02230a/content
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competition and mitigate double marginalization, the (monopsonic) buyer may use different

schemes to keep (weaker) suppliers afloat. For instance, the buyer may subsidize a supplier

that may disappear if its profit in Proposition 1 is not sufficient to cover its fixed cost.

6.1. Buyer’s investment decision

Consider that one (unreliable) supplier rents the productive equipment (e.g., harvesters)

at a cost K > 0 and intermittently supplies the buyer if its gross profit exceeds this rental

cost. The other (reliable) supplier, e.g., because it made a sunk investment in this equip-

ment, can supply the buyer at all times. In the case with economies of scale (1− δ < v < 1),

which is less relevant in the context of agriculture, the buyer is indifferent if one supplier

temporarily drops because the upstream market is effectively monopolized (see Proposi-

tion 2). This, however, is not the case for linear production costs (v = 1) or if there are

diseconomies of scale (v≥ 1), which we consider now.

The factors νn and an in Proposition 1 characterize the firms’ gross profits, depending

on the intensity of upstream competition (via the state variable n). From Proposition 6,

we know that a2 ≥ a1 for linear costs (v = 1) or in case of diseconomies of scale (v > 1).

Unless the buyer intervenes, the unreliable supplier trades if and only if its gross profit ν2y
ϵ

exceeds the rental cost K > 0, i.e., if demand y exceeds (K/ν2)
1
ϵ . The buyer thus earns a

state-dependent profit,

π̆0(y) := a1y
ϵ1{ν2yϵ−K<0}︸ ︷︷ ︸

sourcing from 1 supplier

+ a2y
ϵ1{ν2yϵ−K≥0}︸ ︷︷ ︸

sourcing from 2 suppliers

, (22)

and has a PV given by

ŭ0(y) :=E
∫ ∞

0

e−rtπ̆0(Y
y
t )dt

=
2

(γ+ − γ−)σ2

{
yγ−

∫ y

0

π̆0(z)

zγ−+1
dz+ yγ+

∫ ∞

y

π̆0(z)

zγ++1
dz

}
> 0,

(23)

for γ+ (resp., γ−) again denoting the positive (resp., negative) root of Q(·) in eq. (13).

6.2. Mitigating double marginalization by subsidizing the supply chain

The support a buyer can provide can take various other forms such as cash or investment

subsidies (Babich 2010, Wadecki et al. 2013, Tang et al. 2014), buyer direct financing (Tang

et al. 2017), and purchase-order financing (Tang et al. 2017, Jain et al. 2023). Cargill,
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a US-based multinational food corporation, recognizes that sustainability is essential to

feed a rising global population: It financially supports its farmers for adopting regenera-

tive agricultural practices and partners with technology firms to develop wind-propulsed

bulk carriers meant to reduce shipping costs.13 In the same vein, Nescafé supports cof-

fee growers through the Nescafé Plan 2030 by providing agronomic training, distributing

disease-resistant plantlets, incentivizing regenerative farming, and offering other financial

tools to enhance productivity, build climate resilience, and stabilize farmers’ incomes.14

If v ≥ 1, the presence of an unreliable supplier is detrimental to the buyer in the sense

that a1y
ϵ ≤ π̆0(y) ≤ a2y

ϵ and α1y
ϵ ≤ ŭ0(y) ≤ α2y

ϵ for α1 and α2 given in Proposition 5.

This result is similar in spirit to the result obtained when considering an exogenous shock

affecting the structure of the supplier base. To mitigate the effect of an (endogenous) supply

shock, the buyer can intervene to maintain more upstream competition. For instance, the

buyer may choose to subsidize the unreliable supplier by paying a share η ∈ [0,1] of the

rental cost K. Given this intervention, this supplier trades if and only if ν2y
ϵ−(1−η)K ≥ 0.

This share is considered herein a decision variable in each period. This string of decisions

by the buyer leads to a PV given by

ŭ(y) :=E
∫ ∞

0

e−rtπ̆(Y y
t )dt

where π̆(y) := sup
η∈[0,1]

{
a1y

ϵ1{ν2yϵ−(1−η)K<0}︸ ︷︷ ︸
sourcing from 1 supplier

+
[
a2y

ϵ − ηK
]
1{ν2yϵ−(1−η)K≥0}︸ ︷︷ ︸

sourcing from 2 suppliers

}
.

(24)

The following proposition provides key results:

Proposition 11 (Subsidizing unreliable suppliers?) The buyer’s profit in eq. (24) is

given by π̆= π̆0 + ζ, where π̆0 is as in eq. (22) and ζ is given by

ζ(y) :=
{
(ν2 + a2 − a1)y

ϵ −K
}
1
[( K

ν2+a2−a1
)
1
ϵ ,( K

ν2
)
1
ϵ )
(y)≥ 0, ∀y > 0.

The PV in eq. (24) is ŭ= ŭ0 +Z, for ŭ0 in eq. (23) and

Z(y) :=
2

(γ+ − γ−)σ2

{
yγ−

∫ y

0

ζ(z)

zγ−+1
dz+ yγ+

∫ ∞

y

ζ(z)

zγ++1
dz

}
> 0, ∀y > 0.

13 impact.economist.com/sustainability/decarbonising-agriculture-and-transportation/

building-a-sustainable-resilient-global-food-system

14 www.nestle.com/media/news/nescafe-plan-2030-progress-report-2024-regenerative-agriculture

impact.economist.com/sustainability/decarbonising-agriculture-and-transportation/building-a-sustainable-resilient-global-food-system
impact.economist.com/sustainability/decarbonising-agriculture-and-transportation/building-a-sustainable-resilient-global-food-system
www.nestle.com/media/news/nescafe-plan-2030-progress-report-2024-regenerative-agriculture
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Following Proposition 11, if both suppliers are reliable (K→ 0), then the buyer’s profit

π̆(y) simplifies to the profit a2y
ϵ in Proposition 1. For a larger fixed cost K, the buyer

will not subsidize the unreliable supplier if the demand state y exceeds the level (K/ν2)
1
ϵ ,

above which each party in the supply chain generates a net profit. For low demand (i.e.

0< y ≤ ( K
ν2+a2−a1

)
1
ϵ ), subsidizing ensures more upstream competition, but there is no net

benefit from doing so and the buyer effectively prefers to source from one supplier only.

Between these two threshold levels, the buyer will subsidize a share η̆(y) := 1− ν2/Ky
ϵ of

the rental cost K. This share decreases in the demand state y, reflecting the buyer’s desire

to subsidize more if the reliable supplier is less profitable. With this contribution from the

buyer, the reliable supplier barely breaks even but supplies. This intervention is sufficient to

maintain more upstream competition. The buyer’s subsidizing effort essentially boils down

to consolidating (in the sense of its accounting treatment) the profit of the reliable supplier,

as also reflected in the buyer’s profit (a2 + ν2)y
ϵ −K. However, from an economic point

of view, this is not tantamount to a vertical integration which would help the buyer avoid

a double marginalization. Vertical integration is a commitment in all demand states. The

profit decomposition π̆= π̆0+ζ stresses the benefit for the buyer to subsidize the unreliable

supplier in times of need, as a way to maintain more upstream competition.

The NPV decomposition in Proposition 11 stresses the option-like feature of subsidiz-

ing the upstream market. Depending on the demand level, the buyer will optimally take

over a share η̆(y) > 0 of the unreliable supplier’s fixed cost, a strategy that generates

an additional benefit Z ≥ 0. The presence of an unreliable supplier upstream is unfortu-

nate for the buyer, as ŭ(y) ≤ α2y
ϵ. However, subsidizing this firm is advised, as ŭ(y) ≥

ŭ0(y):=E
∫∞
0
e−rtπ̆0(Y

y
t )dt≥ α1y

ϵ, but should be conditional on the current market circum-

stances (as η̆(y) ̸≡ 1 and ŭ(y)≥ α2y
ϵ −K).

In relation to the present values ŭ0(y) and ŭ(y) in eqs. (23) and (24), respectively, we

can consider (time-consistent) investment problems of the form

ψ̆0(y) := sup
τ

Ee−rτ [ŭ0(Y
y
τ )− I] and ψ̆(y) := sup

τ
Ee−rτ [ŭ(Y y

τ )− I]. (25)

These option values arguably differ from the benchmarks for the symmetric supplier base,

given in eq. (14) and solved in Proposition 5. We establish:
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Proposition 12 (Ranking for option values and optimal investment thresholds)

Assume v≥ 1. The real options problems in eq. (25) have (closed-form) threshold solutions

y̆0 and y̆ obtained by smooth fit. Compared to the benchmarks ψ̄i and ȳi that characterize

the case with a symmetric, reliable supplier base, solved in Proposition 5, we have

ψ̄1 ≤ ψ̆0 ≤ ψ̆≤ ψ̄2 and ȳ1 ≥ y̆0 ≥ y̆≥ ȳ2.

Here again, the buyer will invest if the state of demand is sufficiently large, that is, above

a demand value y̆0 or y̆ that depends on whether the buyer can subsidize the unreliable

supplier or not (the latter being indicated with the underscript 0). Following Proposition 12,

the intermittent presence of an unreliable firm in the supplier base destroys option value for

the buyer, as ψ̆ ≤ ψ̄2, but this presence is still useful compared to the extreme case where

the supplier base consists of a unique reliable firm, as ψ̆0 ≥ ψ̄1. Subsidizing the unreliable

supplier is also useful, as it generates more option value compared to the case where the

buyer does not intervene (ψ̆≥ ψ̆0). In this case, intermittent supply from an unreliable firm

is not ideal for the buyer as it leads to a late investment (with y̆ ≥ ȳ2), but is still better

than sourcing from a monopolistic supplier base (with ȳ1 ≥ y̆0). Subsidizing the unreliable

supplier leads to earlier investment (as y̆≥ y̆0).

7. Conclusion

We study the effect of upstream competition and supply shocks on a firm’s investment

decision. We analytically prove several key insights. If suppliers have linear costs or face dis-

economies of scale, more upstream competition mitigates double marginalization, reduces

equilibrium prices, improves a buyer’s profitability, and hastens its investment. If there

are economies of scale, the input market remains monopolized. If the upstream market is

not already monopolized, supply shocks—whether due to exogenous events or to a lack of

profitability for some suppliers who decide to cease operations—depress market conditions

for the buyer ex post as the remaining suppliers wield more market power and double

marginalization is exacerbated. A buyer anticipates such effects and postpones its invest-

ment: If more suppliers are likely to disappear following the shock, the buyer will delay its

investment even further. The buyer may subsidize suppliers for them to remain afloat, while

sustaining more competition upstream, which leads to earlier investment by the buyer.
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Like any model, ours has limitations. First, it surmises complete information, with sup-

pliers able to infer demand from the buyer and their rivals’ best-reply functions (see, e.g.,

Simchi-Levi and Zhao 2003, Shen et al. 2019, on the role of information asymmetries on the

terms of supply contracts). Second, we ignore the use of inventory which can serve opera-

tional (e.g., to circumvent backlogs due to, say, the Suez Canal Blockage, War in Ukraine,

and Panama Canal drought) or strategic purposes (see, e.g., Guan et al. 2019). Third, we

also ignored the possibility for suppliers to sell directly to end customers, which has become

easier through online stores (see, e.g., Guan et al. 2019, Liu et al. 2021, on the notion of

supplier encroachment). Fourth, a supply chain may involve more than two echelons (see,

e.g., Ang et al. 2017, Birge et al. 2023). We leave these and other topics for future research.

References
Alizamir S, Iravani F, Mamani H (2019) An analysis of price vs. revenue protection: Government

subsidies in the agriculture industry. Management Science 65(1).

Allon G, Van Mieghem JA (2010) Global dual sourcing: Tailored base-surge allocation to near-and
offshore production. Management Science 56(1):110–124.

Ang E, Iancu DA, Swinney R (2017) Disruption risk and optimal sourcing in multitier supply
networks. Management Science 63(8):2397–2419.

Babich V (2010) Independence of capacity ordering and financial subsidies to risky Suppliers. Man-
ufacturing and Service Operations Management 12(4):583–607.

Babich V, Burnetas AN, Ritchken PH (2007) Competition and diversification effects in supply chains
with supplier default risk. Manufacturing and Service Operations Management 9(2):123–146.

Billette De Villemeur E, Ruble R, Versaevel B (2014) Investment timing and vertical relationships.
International Journal of Industrial Organization 33(1):110–123.

Bimpikis K, Candogan O, Ehsani S (2019) Supply disruptions and optimal network structures.
Management Science 65(12):5504–5517.

Bimpikis K, Fearing D, Tahbaz-Salehi A (2018) Multisourcing and miscoordination in supply chain
networks. Operations Research 66(4):1023–1039.

Birge JR, Capponi A, Chen PC (2023) Disruption and rerouting in supply chain networks.Operations
Research 71(2):750–767.

Chevalier-Roignant B, Flath CM, Huchzermeier A, Trigeorgis L (2011) Strategic investment under
uncertainty: A synthesis. European Journal of Operational Research 215(3):639–650.

Chevalier-Roignant B, Villeneuve S, Delpech F, Grapotte ML (2025) Coinvestment game under
uncertainty. Journal of Economic Dynamics and Control 175(105098).

Chod J, Rudi N (2006) Strategic investments, trading, and pricing under forecast updating. Man-
agement Science 52(12):1913–1929.

Chod J, Trichakis N, Tsoukalas G (2019) Supplier diversification under buyer risk. Management
Science 65(7).



: Supply chain tensions
24 00(0), pp. –, © 0000 INFORMS

Cohen MA, Cui S, Ernst R, Huchzermeier A, Kouvelis P, Lee HL, Matsuo H, Steuber M, Tsay AA
(2018) Benchmarking global production sourcing decisions: Where and why firms offshore and
reshore. Manufacturing and Service Operations Management 20(3):389–402.

Corbett CJ, Karmarkar US (2001) Competition and structure in serial supply chains with determin-
istic demand. Management Science 47(7):966–978.

Dada M, Petruzzi NC, Schwarz LB (2007) A newsvendor’s procurement problem when suppliers are
unreliable. Manufacturing and Service Operations Management 9(1):9–32.

De Wolf D, Smeers Y (1997) A stochastic version of a Stackelberg-Nash-Cournot equilibrium model.
Management Science 43(2):190–197.

DeMiguel V, Xu H (2009) A stochastic multiple-leader Stackelberg model: Analysis, computation,
and application. Operations Research 57(5):1220–1235.

Demirel S, Kapuscinski R, Yu M (2018) Strategic behavior of suppliers in the face of production
disruptions. Management Science 64(2):533–551.

Dixit AK, Pindyck RS (1994) lnvestment under Uncertainty (Princeton University Press).

Fang F, Jiang B, Sun J (2023) Partial vertical ownership in the presence of downstream competition.
Production and Operations Management 32(6):1692–1704.

Federgruen A, Yang N (2009) Optimal supply diversification under general supply risks. Operations
Research 57(6):1451–1468.

Greenhut ML, Ohta H (1979) Vertical integration of successive oligopolists. American Economic
Review 69(1):137–141.

Guan H, Gurnani H, Geng X, Luo Y (2019) Strategic inventory and supplier encroachment. Manu-
facturing and Service Operations Management 21(3):536–555.

Gurnani H, Gerchak Y (2007) Coordination in decentralized assembly systems with uncertain com-
ponent yields. European Journal of Operational Research 176(3):1559–1576.

Gurnani H, Mehrotra A, Ray S (2013) Supply chain disruptions: Theory and practice of managing
risk, volume 9780857297785 (Springer-Verlag London Ltd).
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Mathematical proofs

A. Proof of Proposition 1

We show the existence of a symmetric equilibrium below, when v ≥ 1. For the inverse

demand function in eq. (1) and an arbitrary input price w, we get the buyer’s profit

π(q;y,w) = yq1−δ −wq. It follows from the definition in eq. (2) that (1− δ)yq̄(y,w)−δ =w.

The supplier i’s optimization problem in eq. (3) now reads

max
qi≥0

J(qi, z), where J(q, z) := q (1− δ)y(q+ z)−δ︸ ︷︷ ︸
market price

− c
v
qv. (26)

The map from a z ≥ 0 to the solution(s) of that parametrized optimization problem is called

“best-reply correspondence” (resp., “best-reply function” if the solution is unique for each

z). We recall that δ ∈ [0,1]. The partial derivatives of q 7→ J(q, z) in eq. (26) with respect

to q are:
∂J

∂q
(q, z) = y(1− δ)(q+ z)−δ−1

[
(1− δ)q+ z

]
− cqv−1,

∂2J

∂q2
(q, z) =−y(1− δ)δ(q+ z)−δ−2

[
(1− δ)q+2z

]
− c(v− 1)qv−2.

(27)

Under the condition v ≥ 1 and 0 ≤ δ ≤ 1, the function q 7→ J(q, z) is concave on R+ and

attains its maximum value at q̄(z) solution of ∂J
∂q
(q̄(z), z) = 0. We conjecture the existence

of a symmetric equilibrium, that is, a quantity level qn such that

zn = (n− 1)qn and q̄(zn) = qn.

If this conjecture holds, then the individual supplier’s output q̄n solves ∂J
∂q
(q̄(zn), zn) = 0 or

equivalently,

y(1− δ)[nqn]
−δ−1(n− δ)qn − cqv−1

n = 0. (28)

This gives eq.eq. (10) the result for v≥ 1.

From eq. (10), we get the aggregate quantity:

Q̄n(y) = nq̄n(y) = n
v−1

δ+v−1
(
1−δ
c
y
[
1− δ

n

]) 1
δ+v−1 .
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It follows that the equilibrium price in the input market in eq. (6) is given by

w̄n(y) =(1− δ)yQ̄n(y)
−δ

=(1− δ)y
[
n

v−1
δ+v−1

(
1−δ
c
y
[
1− δ

n

]) 1
δ+v−1

]−δ

=[(1− δ)y]
v−1

δ+v−1 n−δ v−1
δ+v−1

(
1
c

[
1− δ

n

])− δ
δ+v−1 ,

=(1− δ)y
v−1

δ+v−1n−δ v−1
δ+v−1

(
1−δ
c

[
1− δ

n

])− δ
δ+v−1 , (29)

while the equilibrium price in the output market in eq. (7) is

P̄n(y) = yQ̄n(y)
−δ

= y
v−1

δ+v−1n−δ v−1
δ+v−1

(
1−δ
c

[
1− δ

n

])− δ
δ+v−1 .

Clearly, w̄n = (1− δ)P̄n < P̄n. The buyer’s equilibrium profit in eq. (8) now reads

π̄n(y) =
[
P̄n(y)− w̄n(y)

]
Q̄n(y)

= (1− 1+ δ)P̄n(y)Q̄n(y)

= δyQ̄1−δ
n

= δy
[
n

v−1
δ+v−1

(
1−δ
c
y
[
1− δ

n

]) 1
δ+v−1

]1−δ

= δ
(
nv−1 1−δ

c

[
1− δ

n

]) 1−δ
δ+v−1 y

v
δ+v−1 . (30)

The profit of one supplier in eq. (9) is here given by

πn(y) =w̄nq̄n(y)−C(q̄n)

=(1− δ)y
v−1

δ+v−1n−δ v−1
δ+v−1

(
1−δ
c

[
1− δ

n

])− δ
δ+v−1 ×n− δ

δ+v−1
(
1−δ
c
y
[
1− δ

n

]) 1
δ+v−1

− c
v

[
n− δ

δ+v−1
(
1−δ
c
y
[
1− δ

n

]) 1
δ+v−1

]v
=(1− δ)y

v
δ+v−1n− δ

δ+v−1 v
(
1−δ
c

[
1− δ

n

]) 1−δ
δ+v−1 − c

v
n− δ

δ+v−1v
(
1−δ
c
y
[
1− δ

n

]) v
δ+v−1

=y
v

δ+v−1n− δ
δ+v−1v

(
1−δ
c

[
1− δ

n

]) 1−δ
δ+v−1

[
1− δ− c

v

(
1−δ
c

[
1− δ

n

]) δ+v−1
δ+v−1

]
=y

v
δ+v−1n− δ

δ+v−1v
(
1−δ
c

[
1− δ

n

]) 1−δ
δ+v−1 1−δ

v

[
v− 1+ δ

n

]
. (31)

This completes the proof of Proposition 1.
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Successive Cournot oligopolies with m buyers. Take v ≥ 1. In the case with m ∈N buy-

ers, the demand function in the input market obtains from a symmetric Cournot-Nash

equilibrium in the output market, i.e., from solving the fixed-point equation

q =R((m− 1)q) , where R(z) := argmax
qi≥0

{qiP (qi + z, y)−wqi} , (32)

where m∈N denotes the number of buyers and z =
∑m

j=1 qi ≥ 0.

We solve the fixed-point (32) for the specifications in eq. (1) and readily obtain that the

suppliers face the inverse demand function

q 7→ y

[
1− δ

m

]
q−δ.

Following the same methodology as earlier, we get that the output of one of the buyers is

given by

q̄m,n =
n

v−1
δ+v−1

m

(
1− δ

m

c
y

[
1− δ

n

]) 1
δ+v−1

That buyer’s profit is given by

π̄m,n =
n

v−1
δ+v−1

m

(
1− δ

m

c
y

[
1− δ

n

]) 1
δ+v−1

︸ ︷︷ ︸
output

y

[
1− 1+

δ

m

]
n−δ v−1

δ+v−1

(
1− δ

m

c
y

[
1− δ

n

])− δ
δ+v−1

︸ ︷︷ ︸
margin

=
δ

m2

(
nv−1

1− δ
m

c

[
1− δ

n

]) 1−δ
δ+v−1

y
v

δ+v−1 .

We note that

q̄1,n = n
v−1

δ+v−1

(
1− δ

c
y

[
1− δ

n

]) 1
δ+v−1

π̄1,n = δ
(
nv−1 1−δ

c

[
1− δ

n

]) 1−δ
δ+v−1 y

v
δ+v−1 ,

which confirms results in Proposition 1.

We have

∂π̄m,n

∂m
=− 2

δ

m3

(
nv−1

1− δ
m

c

[
1− δ

n

]) 1−δ
δ+v−1

y
v

δ+v−1

− δ2

m3

1− δ

δ+ v− 1

(
nv−1

1− δ
m

c

[
1− δ

n

]) 1−δ
δ+v−1−1

y
v

δ+v−1

=−
(
nv−1

1− δ
m

c

[
1− δ

n

]) 1−δ
δ+v−1−1

y
v

δ+v−1
δ

m3

{
2nv−1

1− δ
m

c

[
1− δ

n

]
+ δ

1− δ

δ+ v− 1

}
< 0.

Hence,
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Proposition 13 (Supply-chain equilibrium with n suppliers and m buyers)

Given the specifications of eq. (1) with v ≥ 1, where there are m buyers sourcing from n

suppliers, the profit of each buyer, π̄m,n, satisfies

0≤ π̄m,n(y) :=
δ

m2

(
nv−1 1−δ/m

c

[
1− δ

n

]) 1−δ
δ+v−1

y
v

δ+v−1 ≤ π̄n(y), ∀m∈N.

As expected, horizontal competition among buyers depresses the individual profit of each

buyer compared to the monopsonic benchmark of Proposition 1. Our paper focuses on

the strategic interactions along the supply chain, not at one specific echelon. From that

perspective, we leverage the supply chain model with 1 buyer in Proposition 1, rather than

a setup with m buyers.

B. Proof of Proposition 2

For notational simplicity, the dependence on the variable y is suppressed hereafter. First,

using the notation of Proposition 1, a supplier, who anticipates that its competitors will

not produce, faces the following problem:

max
q
J(q,0).

By computing the derivatives of this function up to the third order, we show that J(·,0) is
concave and attains its maximum at q̄1, which corresponds to the best reply of 0.

Take a z > 0. It thus remains to check that q 7→ J1(q) := J(q, z) = (1−δ)y(z+q)−δq− c
v
qv

in eq. (26) attains a maximum on [0,∞) at 0. Similarly, as in the proof of Proposition 1,

we have

J ′
1(q) = qv−1

[
(1− δ)y(z+ q)−(1+δ)(z+(1− δ)q)q1−v − c

]
.

Thus, the function J ′
1 has the same sign as the function

θ(q) = (1− δ)y(z+ q)−(1+δ)
{
z+(1− δ)q

}
q1−v − c.

Because 1−v > 0 and α= v− (1− δ)> 0 under the economies of scale assumption, we have

lim
q→0+

θ(q) = lim
q→∞

θ(q) =−c.

A straightforward but tedious computation shows that the function θ′ has the same sign

as the polynomial function of degree 2 given by

pol(q) = (1− δ)αq2 +(2α+ δ(1− v))zq− (1− v)z2.
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Because pol(0)< 0, θ′ changes sign only once on (0,∞) which implies that θ and thus J ′
1 are

nonpositive. As a consequence, the function J1 decreases attaining its maximum on [0,∞)

at 0. A strategy profile where more than one supplier produces a nonzero quantity thus

cannot be a Nash equilibrium.

The results for the equilibrium input and output prices, as well as for the buyer’s profit,

are immediate.

C. Proof of Proposition 3

Case 1− δ≤ v < 1. The result is immediate from Proposition 2.

Case v≥ 1. We note that n 7→ 1− δ/n is increasing. We get from Proposition 1 that

Q̄n+1

Q̄n

=
(
1+

1

n︸ ︷︷ ︸
≥1

) v−1
δ+v−1

( 1− δ
n+1

1− δ
n︸ ︷︷ ︸

≥1

) 1
δ+v−1 ≥ 1 (both exponents are positive),

w̄n+1

w̄n

=

(
1+

1

n

)−δ v−1
δ+v−1

(
1− δ

n+1

1− δ
n

)− δ
δ+v−1

≤ 1 (both exponents are negative)

P̄n+1

P̄n

=

(
1+

1

n

)−δ v−1
δ+v−1

(
1− δ

n+1

1− δ
n

)− δ
δ+v−1

≤ 1 (both exponents are negative)

an+1

an
=

(
1+

1

n

)v−1

×

(
1− δ

n+1

1− δ
n

) 1−δ
δ+v−1

≥ 1 (both exponents are positive).

This concludes the proposition.

D. Proof of Proposition 4

We first consider the case of a vertically integrated firm where the buyer profit is given by

Π(y) :=max
q≥0

{
qP (y, q)−C(q)

}
∈R+. (33)

Given the specifications in eq. (1), we want to maximize q 7→ J(q) := yq1−δ− cqv

v
over [0,∞).

For v ≥ 1, we have J ′′(q) =−(1− δ)δyq−δ−1 − c(v− 1)qv−2 ≤ 0 for all q > 0. So q 7→ J ′(q) =

(1− δ)yq−δ − cqv−1 decreases on (0,∞) from ∞ to −c (if v = 1) and −∞ (if v > 1). The

maximizer obtains from the first-order condition and is explicitly given by
(
1−δ
c
y
) 1

δ+v−1 .

After simplifications, we obtain

J
([

1−δ
c
y
] 1
δ+v−1

)
=
δ+ v− 1

v

(
1− δ

c

) 1−δ
δ+v−1

y
v

δ+v−1 ,
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which gives the following expression for Π(y)

Π(y) :=
1

ϵ

(
1− δ

c

) 1−δ
δ+v−1

yϵ.

We introduce

χ :=
Π(y)

π̄n(y)
, (34)

which captures whether the buyer is better off vertically integrating (if χ > 1) or not (if

χ≤ 1). Given the expressions for Π(y) in Proposition 4 and π̄n(y) in Proposition 1, we get

χ(n,v) =
1
ϵ

(
1−δ
c

) 1−δ
δ+v−1

δ
(
nv−1 1−δ

c

[
1− δ

n

]) 1−δ
δ+v−1

from the expressions for Π(y) and Proposition 1

= δ+v−1
δv

(
nv−1

[
1− δ

n

]) δ−1
δ+v−1 from the definition of ϵ.

After simplifications,

∂χ

∂n
(n,v) =− 1− δ

δv
nv−3

(
nv−1[1− δ

n
]
)− v

v+δ−1

{
n(v− 1)− δ(v− 2)

}
.

In the case with v= 1, we have

∂χ

∂n
(n,1) =− (1− δ)n−2

(
1− δ

n

)− 1
δ < 0

lim
n→∞

χ(n,1) = lim
n→∞

[
1− δ

n

]1− 1
δ = 1.

Hence χ(1,1)>χ(2,1)> · · ·> 1.

In the case with v > 1,

∂χ

∂n
(n,v) =− v−1

v
1−δ
δ
nv−3

(
nv−1[1− δ

n
]
)− v

v+δ−1︸ ︷︷ ︸
≥0

{
n− δ v−2

v−1

}
,

χ(1, v) =
δ+ v− 1

δv
(1− δ)

δ−1
δ+v−1 > 1

lim
n→∞

χ(n,v) = 0.

Define n⋆ := inf{n∈N
∣∣n≥ δ v−2

v−1
}. It follows from the above that n 7→ χ(n,v) is above 1 for

any n∈ {1, . . . , n⋆}. Furthermore, there exists a finite ñ∈ {n⋆, . . .} such that 1>χ(n,v)> 0

for all n≥ ñ. This completes the proof. □
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E. Proof of Proposition 5

Step 0 – Present value. The term ūn(y) in eq. (12) then becomes

ūn(y) = anEy

∫ ∞

0

e−rtY ϵ
t dt.

We now consider the stochastic process (Y ϵ
t )t. By the Itô-Döblin formula,

dY ϵ
t =

[
1
2
σ2Y 2

t ϵ(ϵ− 1)Y ϵ−2
t +µYtϵY

ϵ−1
t

]
dt+σYtϵY

ϵ−1
t dZt

=m(ϵ)Y ϵ
t dt+σϵY ϵ

t dZt,

where

m(ϵ) := 1
2
σ2ϵ(ϵ− 1)+µϵ. (35)

So (Y ϵ
t )t follows a GBM. It follows by standard properties of GBMs that

EyY ϵ
t = yϵem(ϵ)t and Ey

∫ ∞

0

e−rtY ϵ
t dt= yϵ

∫ ∞

0

eQ(ϵ)tdt, (36)

for Q(·) given in eq. (13), converges to

Ey

∫ ∞

0

e−rtY ϵ
t dt=− yϵ

Q(ϵ)
iff Q(ϵ)< 0.

Step 1 – Dynamic programming equation. Equation (14) describes the classical prob-

lem of McDonald and Siegel (1986). We drop the index n in the notation αn and introduce

the differential operator

L :=
1

2
σ2y2

∂2

∂y2
+µy

∂

∂y
− rI, (37)

with I denoting the identity operator. The dynamic programming equation for the problem

in eq. (14) is a variational inequality (VI), namely
max

{
αyϵ − I − ψ̄(y);Lψ̄(y)

}
= 0, a.e. y > 0,

lim
y↓0

ψ̄(y) = 0,

lim
y↑∞

ψ̄(y)

αyϵ
= 1.

(38)

We have

L(α ·ϵ −I)(y)≡−[r−m(ϵ)]αyϵ + rI (39)

for m(·) given in eq. (35). If r >m(ϵ), y 7→ L(α ·ϵ −I)(y) is monotone decreasing on (0,∞)

from rI > 0 to −∞, so it has a unique root, denoted y⋆. We conjecture that {ψ̄ > α ·ϵ−I}=
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(0, ȳ)⊂ (0, y⋆), where ȳ obtains by smooth fit. If this conjecture holds, then ψ̄(·) solves the

free-boundary problem (FBP)

ψ̄(0+) = 0,

Lψ̄(y) = 0, ∀y ∈ (0, ȳ),

ψ̄(ȳ) = αȳϵ − I,

ψ̄′(ȳ) = αϵyϵ−1.

The function Q(·) in eq. (13) is convex, attains its minimum at the point γ⋆ :=−µ− 1
2σ

2

σ2 , and

satisfies Q(±∞) =∞. Further, because Q(1) = m(ϵ)− r < 0, the minimum is necessarily

a negative minimum and Q(·) has a positive root γ+, which is unique because Q(·) is

monotone increasing on (max{1;γ⋆},∞). Standard computations lead us to conclude that

the function ψ̄(·) given in Proposition 5 solves the FBP.

It remains to verify that this ψ̄(·) solves the variational ineq. (38). We look at the two

intervals.

(ȳ,∞). For ψ̄ to solve the VI in this interval, we must have Lψ̄=L(α ·ϵ −I)(y)≤ 0. From

eq. (39) and the expression for ȳ,

L(α ·ϵ −I)(ȳ) == I[r−m(ϵ)]
[ 1

1− ϵ
γ+

− 1

1− m(ϵ)

r

]
=−I[r−m(ϵ)]︸ ︷︷ ︸

<0

∫ ϵ
γ+

m(ϵ)

r

1

(1− ζ)2︸ ︷︷ ︸
>0

dζ.

But, it follows from eq. (13) after simplifications that

Q
(

rϵ
m(ϵ)

)
=

1

2

r−m(ϵ)

[µ+ 1
2
σ2(ϵ− 1)]2

rσ2 > 0 because r >m(ϵ).

Because Q(·) is monotone increasing on (max{1;γ⋆},∞) and Q(∞) =∞, the root γ satisfies

γ < rϵ
m(ϵ)

. It immediately follows ϵ
γ+
> m(ϵ)

r
. Hence, L(α ·ϵ −I)(ȳ)< 0. So the FBP’s solution

ψ̄(·) verifies the VI in the interval (ȳ,∞).

(0, ȳ). We want to verify that ψ̄(y)≥ αyϵ − I. We note that ψ̄(·) also reads

ψ̄(y) =
αϵ

γ
yγ ȳϵ−γ in the interval (0, ȳ).
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We define

Ψ̄(y) := ψ̄(y)−αyϵ + I, (40)

In the interval (0, ȳ),

Ψ̄′(y) =αϵ
[
yγ−1ȳϵ−γ − yϵ−1

]
= αϵyϵ−1

[(
y
ȳ

)γ−ϵ

− 1

]
.

We note that

Q(ϵ) =
1

2
σ2ϵ(ϵ− 1)+µϵ− r=−[r−m(ϵ)],

for m(·) given in eq. (35). Given the assumption r >m(ϵ), it follows that Q(ϵ)< 0 and, so,

given the behavior of Q(·), we have γ+ > ϵ. It follows that

Ψ̄′(·)< 0 on (0, ȳ). (41)

Further, Ψ̄(ȳ) = 0 by value matching. Hence, Ψ̄(·) necessarily decreases on (0, ȳ) from a

positive value and vanishes at the right boundary. It follows that ψ̄(y)≥ αyϵ − I and, so,

that the FBP’s solution ψ̄(·) solves the VI in this interval as well.

Step 2 – Verification theorem. We conclude with the verification theorem. Let ψ̄ be a

supersolution of the variational ineq. (38). For an arbitrary stopping time τ , it follows from

Dynkin’s formula that

ψ̄(y) =Ey
[
e−rτ ψ̄(Yτ )︸ ︷︷ ︸

≥αY ϵ
τ −I

−
∫ τ

0

e−rtLψ̄(Yt)︸ ︷︷ ︸
≤0

dt
]

≥Eye−rτ
{
αY ϵ

τ − I
}
.

Then, a supersolution of the VI exceeds the value function. Let ψ̄(·) denote the classical

solution of the VI and take τ̄ := inf
{
t≥ 0

∣∣ψ̄(Yt)≥ αYt−I
}
. Proceeding similarly, we obtain

that the solution of the VI is the smallest supersolution and coincides with the value function

in eq. (14).

The result for ϕ̄n(·) follows from standard results on first-stopping times and GBMs. This

concludes the proof of Proposition 5.
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F. Proof of Proposition 6

Assume that the conditions in Proposition 5 are met. If an+1 ≥ an, it follows from eq. (15)

that αn+1Y
ϵ
τ − I ≥ αnY

ϵ
τ − I and, so, that

ψ̄n+1(y)≥Eye−rτ̄n
[
αn+1Y

ϵ
τ̄n

− I
]
≥Eye−rτ̄n

[
αnY

ϵ
τ̄n

− I
]
= ψ̄n(y),

where the last equality comes from the optimality of the stopping time τ̄n for the value

function ψ̄n. Furthermore, ȳN ≤ ȳn by monotonicity of the map a 7→
( γ+
γ+−ϵ

I
a

) 1
ϵ .

On the other hand, let us define Ψ̄n(y) = ψ̄n(y)− (ūn(y)− I). Clearly, Ψ̄n(y)≥ Ψ̄n+1(y)

for y≥ ȳn+1 because ȳn+1 < ȳn. If we define ∆ := Ψ̄n− Ψ̄n+1, we thus have ∆(yn+1)≥ 0 and

∆(0) = 0. Moreover, we have for y ∈ [0, ȳn+1]

L∆(y) =L(ūn+1 − ūn)

=−
[
r−m(ϵ)

][
αn+1 −αn

]
yϵ from eq. (39)

≤ 0 from Proposition 3 and eq. (15).

Applying Dynkin’s formula, we obtain upon defining τ0 (resp. τȳn+1
) the hitting times of 0

(resp. ȳn+1),

0≤E
[
e−r(τ0∧τȳn+1 )∆(Yτ0∧τȳn+1

)
]

=∆(y)+E
[∫ τ0∧τȳn+1

0

e−rsL∆(Ys)ds

]
≤∆(y).

This completes the proof.

G. Proof of Proposition 7

Present value. We will show that the term ũn(·) in eq. (16) has an explicit expression.

First, upon recalling the definition of m(ϵ) in eq. (35) and using independence,

E
∫ T

0

e−rsanY
ϵ
s ds=

∫ ∞

0

(∫ t

0

e−rsanE[Y ϵ
s ]ds

)
λe−λtdt

= any
ϵ

∫ ∞

0

e−(r−m(ϵ))s

∫ ∞

s

λe−λtdtds by Fubini’s theorem

= any
ϵ

∫ ∞

0

e−(r+λ−m(ϵ))sds

=
an

r+λ−m(ϵ)
yϵ.
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We note the distribution of N by j(k) := P(N = k) ∈ [0,1] with
∑n−1

k=0 j(k) = 1. For the

second term, we have by independence again,

Ee−rTαNY
ϵ
T =

n∑
k=1

∫ ∞

0

e−rtαkj(k)EY ϵ
t λe

−λtdt

=

[
λ

r+λ−m(ϵ)

n∑
k=1

αkj(k)

]
yϵ.

Combining the two terms yields

ũn(y)

yϵ
=

an
λ−Q(ϵ)

+
λ

λ−Q(ϵ)
EαN from eqs. (13) and (35)

=
an

λ−Q(ϵ)
+

λ

λ−Q(ϵ)
αn +

λ

λ−Q(ϵ)

{
EαN −αn

}
=

αn

λ−Q(ϵ)

{
−Q(ϵ)+λ

}
+

λ

λ+Q(ϵ)

{
EαN −αn

}
from eq. (15)

= ηλ,Nn given in eq. (17).

Comparative statics with respect to λ. It is immediate that ∂ηn/∂λ≤ 0. Hence, λ2 ≥ λ1

implies ηλ2,N
n ≤ ηλ1,N

n .

Comparative statics with respect to N . Consider two random variables N1 and N2 mod-

eling the number of surviving suppliers after the exogenous disruption. In the case indexed

by 2, we expect more suppliers to disappear after the disruption, in the sense that N2 is

stochastically dominated by N1 (noted N2 ⪯N1 and understood in the first-order sense).

We note that

ηλ,N2
n − ηλ,N1

n =
λ

λ−Q(ϵ)
E[αN2

−αN1
].

Because it holds from Proposition 3 and eq. (15) that αn+1 ≥ αn and because we assume

N2 ⪯N1, it follows that η
λ,N2
n ≤ ηλ,N1

n . This completes the proof.

H. Proof of Proposition 8

Step 0 – Problem setting. At time 0, the buyer would source from a (known) set

of n homogeneous suppliers. A disruption will affect the set of suppliers the buyer can

source from. The profit at the time of investment τ depends on whether the disruption

occurred before or after the investment. Let T denote the disruption date, which we assume
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exponentially distributed with parameter λ> 0 and independent of the Brownian filtration

F. We define the process H = (Ht)t by

Ht = 1{T≤t}, t≥ 0, (42)

a process which takes the value 1 is the disruption already occurred and 0 otherwise. At

time t≥ 0, the number of remaining, potentially operating suppliers is given by

Nt = n(1−Ht)+NHt, (43)

where N is a random variable with a distribution j(·) over {0, . . . , n−1}, i.e., j(k) = P(N =

k) ∈ (0,1) with
∑n−1

k=0 j(k) = 1. It follows that, at the time T of disruption, at least one

potential supplier disappears.

The progressive enlargement of F with T is defined as G := (Gt)t≥0 with

Gt =
⋂
s>t

(Fs ∨σ(T ∧ s)) .

The filtration G is the smallest right-continuous filtration such F⊂G and T is a G-stopping

time. According to (Aksamit and Jeanblanc 2017, Remark 4.41), the σ-algebra Gt coincides

with Ft ∨ σ(T ) on [T,∞). Because the random variable T is independent of the Brownian

motion B = (Bt)t≥0, B is a Brownian motion with respect to the enlarged filtration G.

Hereafter, we denote TG the set of G-stopping times. The processes (Ht)t and (Nt)t are

G-adapted.

If the buyer decides to invest at the stopping time τ ∈ TG, he receives the amount

u(Yτ ,Hτ ,Nτ ) where

u(y,h, k) := ũn(y)× (1−h)+ ūk(y)×h, (44a)

where ūk(·) is given in eq. (12)—with a closed-form expression in Proposition 5—and ũn(y),

given the strong Markov property, reads

ũn(y) :=E
[∫ T

0

e−rsπ̄n(Ys)ds+ e−rT
{ n−1∑

k=0

j(k)ūk(YT )
}]
, (44b)

which is a rewriting the expression in eq. (16), where the expectation operator in the latter

expression also account for distribution of the random variable K. By convention, we set

ū0(·)≡ 0.
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Step 1 – Value process and principle of optimality. We introduce the value process

(Ψt)t given by

Ψt = ess sup
τ∈TG(t)

E
[
e−r(τ−t){u(Yτ ,Hτ ,Nτ )− I}|Gt

]
, (45)

where TG(t) is the set of G-stopping times with values in [t,∞). We denote TG = TG(0).

According to optimal stopping theory (El Karoui 1981, Peskir and Shiryaev 2006), the

process (e−rtΨt)t is the smallest G-supermartingale that dominates the payoff process

(e−rt{un(Yt,Ht,Nt)− I})t. Furthermore, Ψt can be written as Ψt = ψ̃(Yt,Ht,Nt), where

ψ̃(y,1, k) =ψ̄k(y) in eq. (14),

ψ̃(y,0, n) = sup
τ∈TG

E

[
e−rτ

(
ũn(Yτ )− I

)
(1−Hτ )+Hτe

−rτ
( n−1∑

k=0

j(k)
{
ūk(Yτ )− I

})]
.

(46)

We are in a position to establish the following lemma:

Lemma 1 (Principle of optimality) The value function in eq. (46) can be written as

ψ̃(y,0, n) = sup
τ∈TF

E
[
e−(r+λ)τ

(
ũn(Yτ )− I

)
+Hτe

−rT

n−1∑
k=0

j(k)ψ̄k(YT )

]
. (47)

Furthermore,

ψ̃(y,0, n)≥
{
ηn(y ∨ y⋆)ϵ − I

}(
y

y∨y⋆

)γ

with y⋆ :=
(

γ

γ−1
I
ηn

) 1
ϵ

and γ given in eq. (20). (48)

Proof of Lemma 1 We write the objective functional of the value function ψ̃(y,0, n) in

eq. (46) valued at a G-stopping time τ , in two parts,

J1(τ) :=Ee−rτ
(
ũn(Yτ )− I

)
(1−Hτ )

J2(τ) :=EHτe
−rτ
( n−1∑

k=0

j(k)
{
ūk(Yτ )− I

})
and factorize the stopping time τ as

τ = σ1{σ<T} +σ(T,N, ·)1{σ≥T},

where σ and the family (σ(u,k, ·))u≥0,k≤n−1 are F-stopping times. Using independence

between T and the Brownian motion, we first have

J1(τ) =E
[
e−rσ

(
ũn(Yσ)− I

)
1{σ<T}

]
=E

[∫ ∞

σ

λe−λtdte−rσ
(
ũn(Yσ)− I

)]
=E

[
e−(r+λ)σ

(
ũn(Yσ)− I

)]
.



: Supply chain tensions
00(0), pp. –, © 0000 INFORMS 39

For the second part, it follows from the variational ineq. (38) characterizing ψ̄k that

J2(τ)≤E

[
e−rτ

n−1∑
k=0

j(k)ψ̄k(Yτ )Hτ

]
as ψ̄k ≥ ūk − I

≤E

[
e−rT

n−1∑
k=0

j(k)ψ̄k(YT )Hτ

]
because Lψ̄k ≤ 0 a.e.

We thus deduce from eq. (14) that

ψ̃(y,0, n)≤ sup
τ∈TG

E

[
e−(r+λ)τ

(
ũn(Yτ )− I

)
+Hτe

−rT

n∑
k=1

j(k)ψ̄k(YT )

]
. (49)

To show the reverse inequality, let us consider the G-stopping time

τ = σ1{σ<T} + σ̂(T,N, ·)1{σ>T},

where

σ̂(u,k, ·) = inf
{
s≥ u

∣∣∣Yu exp
(
(µ− 1

2
σ2)(s−u)+σWs−u

)
≥ ȳk

}
is optimal for the optimal stopping value ψ̄k (see Proposition 5). We thus have

J2(τ) =
n−1∑
k=0

j(k)E
[
e−rσ̂(T,k,·){ūk(Yσ̂(T,k,·))− I

}
Hτ

]
=

n−1∑
k=0

j(k)E
[
e−rT ψ̄k(YT )Hτ

]
by Proposition 5.

This proves the expression in eq. (47).

Finally, similarly to the proof of Proposition 5, we can establish that

τ⋆ := inf
{
t≥ t

∣∣Yt ≥ y⋆
}

is the optimal stopping time for the optimal stopping problem

supτ Ee−(r+λ)τ{ηnyϵ − I}. Setting τ⋆ on the right-hand side of eq. (47) and noticing that

ψ̄k ≥ 0, we get ineq. (48). □

Step 2 – Formulation as a classical optimal stopping problem. We introduce the

functions

Rk(y) :=E
∫ ∞

0

e−(r+λ)tλψ̄k(Yt)dt,

R̄k(y) :=E
∫ ∞

0

e−(r+λ)tλ
(
ūk − ūn

)
(Yt)dt,

(50)
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which can be rewritten as in Proposition 8. It follows from eq. (44) and the strong Markov

property that

ũn(y) =ūn(y)+
n−1∑
k=0

j(k)E
[
e−rT

(
ūk − ūn

)
(YT )

]
,

=ūn(y)+
n−1∑
k=0

j(k)R̄k(y) from eq. (50). (51)

Furthermore, we have

E
[
e−rT ψ̄k(YT )Hτ

]
=E

∫ τ

0

e−rtψ̄k(Yt)λe
−λtdt by independence of T and B and eq. (42),

=Rk(y)−Ee−(r+λ)τRk(Yτ ) by the strong Markov property. (52)

It then follows from Lemma 1 and eqs. (51) and (52) that

ψ̃(y,0, n) =
n−1∑
k=0

j(k)Rk(y)+G(y), (53)

where

G(y) := sup
τ∈T

Ee−(r+λ)τg(Yτ ) for g(y) := ūn(y)− I +
n−1∑
k=0

j(k)(R̄k −Rk)(y). (54)

Step 3 – Reformulation. We now want to express ψ̃(y,0, n) in a way more amenable to

an economic interpretation. We have

E
∫ ∞

0

λe−(r+λ)tūk(Yt)dt=αkλ

∫ ∞

0

e−(r+λ)tEY ϵ
t dt from Proposition 5

=αkλy
ϵ

∫ ∞

0

e−[r+λ−m(ϵ)]tdt from eq. (36)

=αky
ϵ λ

r+λ−m(ϵ)
by integration

=αk

λ

λ−Q(ϵ)
yϵ from eq. (13).

This allows us to write R̄k(y) in eq. (50) as

R̄k(y) =
{
αk −αn

} λ

λ−Q(ϵ)
yϵ.
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For the function g(·) in eq. (54), we get from Proposition 5 that

g(y) =αny
ϵ − I +

λ

λ−Q(ϵ)
yϵ

n−1∑
k=0

j(k)
{
αk −αn

}
−

n−1∑
k=0

j(k)Rk(y)

=ηny
ϵ − I −

n−1∑
k=0

j(k)Rk(y) for ηn defined by eq. (17).

This completes the proof.

I. Proof of Proposition 9

We consider the optimal stopping problem in eq. (54). We introduce the differential operator

A := 1
2
σ2y2 ∂2

∂y2
+ µy ∂

∂y
and study the differentiable function y 7→ (

[
A− (r+λ)I

]
g)(y) for g

given in eq. (54). By the Feynman-Kac theorem, the resolvents in eq. (50) solve[
A− (r+λ)I

]
Rk(y) =−λψ̄k(y), ∀y > 0,[

A− (r+λ)I
]
R̄k(y) =−λ

(
ūk − ūn

)
(y), ∀y > 0.

(55)

Hence,

[
A− (r+λ)I

][
R̄k −Rk

]
(y) = λ

(
ψ̄k − ūk

)
(y)+λūn(y).

It follows that

[
A− (r+λ)I

]
g(y) =

[
A− rI

]
ūn(y)+ (r+λ)I +λ

n−1∑
k=0

j(k)
(
ψ̄k − ūk

)
(y)

=−anyϵ + rI +λ
n−1∑
k=0

j(k)Ψ̄k(y), (56)

because of
∑n−1

k=0 j(k) = 1 and the definition of Ψ̄k in eq. (40). Hence,

([
A− (r+λ)I

]
g
)′
(y) =−ϵanyϵ−1 +λ

n−1∑
k=0

j(k)Ψ̄′
k(y).

But we know from eq. (41) that Ψ̄′
k < 0 on (0, ȳk) and = 0 on (ȳk,∞). So, the function y 7→([

A− (r+λ)I
]
g
)
(y) decreases on (0,∞). It follows from Proposition 1 that π̄n(·) vanishes

at 0 and diverges to ∞ at ∞. Furthermore, it follows from Proposition 5 that Ψ̄k vanishes at

0 and ∞. Hence, y 7→
([
A− (r+λ)I

]
g
)
(y) is strictly positive at 0 and goes to −∞ at ∞. As

it is continuous and monotone, there exists a unique y† such that
([
A− (r+λ)I

]
g
)
(y†) = 0.
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Because of the behavior of y 7→ (
[
A− (r + λ)I

]
g)(y), it follows from Villeneuve (2007)

that the optimal stopping strategy is a threshold strategy. We now introduce the parameter

γ in eq. (20). We obtain, as usual, that the function y 7→H(y,λ) := g(y,λ)y−γ(λ) attains a

local maximum at the free boundary ỹ(λ) ∈ (y†,∞). The value function in eq. (46) is thus

of the form

ϕ(y,0, n) =
n−1∑
k=0

j(k)Rk(y)+ g
(
y ∨ ỹ

)(
y

y∨ỹ

)γ

, (57)

for g(·) defined in eq. (54) and ỹ the argmax of y 7→ g(y)y−γ in (y†,∞).

It also follows from eq. (57) that

ψ̃(y,0, n) =
{
ηn(y ∨ ỹ)ϵ − I

}(
y

y∨ỹ

)γ

+
n−1∑
k=0

j(k)
{
Rk(y)−Rk(y ∨ ỹ)

(
y

y∨ỹ

)γ}
.

We define τ̃(y) := inf
{
t ≥ 0

∣∣Yt ≥ ỹ
}
. The second right-hand term has the probabilistic

representation

Rk(y)−Rk(y ∨ ỹ)
(

y
y∨ỹ

)γ

=Rk(y)−Ee−(r+λ)τ̃Rk(Yτ̃ )

=−E
∫ τ̃

0

e−(r+λ)t
[
A− (r+λ)I

]
Rk(Yt)dt by Dynkin’s formula

=+λE
∫ τ̃

0

e−(r+λ)tψ̄k(Yt)dt from eq. (55)

=: ϕk(y).

The function ϕ(·) :=
∑n−1

k=0 j(k)ϕk(·) solves the second-order, linear ordinary differential

eq. (21). Because ψ̄k ≥ 0, it follows from the maximum principle that ϕk(·)≥ 0 and so ϕ≥ 0.

We can thus write the value function as

ψ̃(y,0, n) =

{[
ηnỹ

ϵ − I](y
ỹ
)γ +ϕ(y), 0< y≤ ỹ,

ηny
ϵ − I, y≥ ỹ,

This completes the proof.

J. Proof of Proposition 11

Step 0 - Case without intervention by the buyer. The derivatives of ŭ0(·) in eq. (23)

are

ŭ′
0(y) =

2

(γ+ − γ−)σ2

{
γ−y

γ−−1

∫ y

0

π̆0(z)

zγ−+1
dz+ γ+y

γ+−1

∫ ∞

y

π̆0(z)

zγ++1
dz

}
,



: Supply chain tensions
00(0), pp. –, © 0000 INFORMS 43

ŭ′′
0(y) =

2

(γ+ − γ−)σ2

{
γ−(γ− − 1)yγ−−2

∫ y

0

π̆0(z)

zγ−+1
dz+ γ+(γ+ − 1)yγ+−2

∫ ∞

y

π̆0(z)

zγ++1
dz

}
− 2

σ2

π̆0(y)

y2
.

The function ŭ′
0(·) is continuous. However, because π̆0(·) in eq. (22) has a positive jump

at (K/ν2)
1
ϵ , the function ŭ′′

0(·) and consequently Lŭ0 have negative jumps at (K/ν2)
1
ϵ . By

substitution, we have Lŭ0 + π̆0 = 0 almost everywhere. The probabilistic representation in

eq. (23) obtains by the Feymann-Kac theorem.

Step 1 - Profit. We can rewrite the profit expression in eq. (24) as

π̆(y) = sup
η∈[0,1]

{
a1y

ϵ1{η<1− ν2y
ϵ

K } +
[
a2y

ϵ − ηK
]
1{η≥1− ν2y

ϵ

K }

}
=max

{
a1y

ϵ; sup
η∈[

1−ν2y
ϵ

K ,∞)∩[0,1]

{
a2y

ϵ − ηK
}}

=max
{
a1y

ϵ;a2y
ϵ −
(
1− ν2y

ϵ

K

)+

K
}

=max
{
a1y

ϵ;a2y
ϵ − (ν2y

ϵ −K)−
}

=

{
max

{
a1y

ϵ; (a2 + ν2)y
ϵ −K

}
, 0< y < (K

ν2
)
1
ϵ ,

max
{
a1y

ϵ;a2y
ϵ
}
, y≥ (K

ν2
)
1
ϵ .

But we know from Proposition 1 that a2 ≥ a1. Hence, max
{
a1y

ϵ;a2y
ϵ
}
=max

{
a1;a2

}
yϵ =

a2y
ϵ. Consequently,

π̆(y) =

{
max

{
a1y

ϵ; (a2 + ν2)y
ϵ −K

}
, 0< y < (K

ν2
)
1
ϵ

a2y
ϵ, y≥ (K

ν2
)
1
ϵ .

This function π̆(·) is continuous everywhere including at
(

K
ν2+a2−a1

) 1
ϵ

and at (K
ν2
)
1
ϵ . Now,

using eq. (22), we write

(π̆− π̆0)(y) =


[
(ν2 + a2 − a1)y

ϵ −K
]+
, 0< y < (K

ν2
)
1
ϵ ,

0, y≥ (K
ν2
)
1
ϵ .

Hence, the expression for π̆(y) in Proposition 11. We note that π̆(·) is continuous, while

both π̆0 and ζ are discontinuous at (
K
ν2
)
1
ϵ . Indeed, ζ vanishes at (K

ν2
)
1
ϵ and is strictly positive

at the left of (K
ν2
)
1
ϵ . This is a negative jump for Z, so by differentiating the closed-form

expression for Z, we get that Z ′′ (and hence LZ) has a negative jump at (K
ν2
)
1
ϵ .
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Step 2 - Profit estimates. There are several estimates. First, taking η = 1 arbitrarily

in the optimization problem of eq. (24) is suboptimal, whence π̆(y) ≥ a2y
ϵ −K. Second,

taking η= η̆, where η̆ is the level at which the supremum is attained, and using the result

in Proposition 1 that a2 ≥ a1, we get that

π̆(y) = a1y
ϵ1{ν2yϵ−(1−η̆)K<0} +

[
a2y

ϵ − η̆K
]
1{ν2yϵ−(1−η̆)K≥0}

≤ a1y
ϵ1{ν2yϵ−(1−η̆)K<0} + a2y

ϵ1{ν2yϵ−(1−η̆)K≥0}

≤ a2y
ϵ1{ν2yϵ−(1−η̆)K<0} + a2y

ϵ1{ν2yϵ−(1−η̆)K≥0}

= a2y
ϵ.

Third, setting η= 0 arbitrarily in eq. (24) yields π̆ ≥ π̆0 for π̆0 defined in eq. (22). Because

a2 ≥ a1, we clearly have π̆0 ≥ a1y
ϵ. In summary,

a1y
ϵ ≤ π̆0(y)≤ π̆(y)≤ a2y

ϵ, ∀y > 0. (58)

Step 3 - Net present value & estimates. Using classical arguments, ŭ= ŭ0+Z, where

ŭ0 and Z solve the ordinary second-order differential equation:

Lŭ0(y)+ π̆0(y) = 0 and LZ(y)+ ζ(y) = 0, ∀y > 0, (59)

respectively. From the general theory of linear ODEs, ŭ0 and Z are not C2(R+) but only

C1(R+) and have an explicit solutions, with Z given in Proposition 11.

From the results in Step 2, we get the estimates for ŭ in Proposition 11.

K. Proof of Proposition 12

Step 1 – Ranking of value functions. From (i) the profit ranking in eq. (58), (ii) the

definition of ūn in eq. (15), and (iii) the probabilistic representations of ŭ0 and ŭ in eqs. (23)

and (24), respectively, we get ū1 ≤ ŭ0 ≤ ŭ ≤ ū2. We then get from (iv) the definition of

ψ̄i in eq. (14) and (v) of ψ̆0 and ψ̆ in eq. (25) and (vi) Theorem 1a) in Appendix L that

ψ̄1 ≤ ψ̆0 ≤ ψ̆≤ ψ̄2. We note that this ranking is consistent with Proposition 6, which proved

that ψ̄n ≤ ψ̄n+1.

Step 2 – Ranking of optimal stopping times. For the benchmark cases, we get from

eqs. (15) and (59) that

L(αiy
ϵ − I) =rI +Q(ϵ)αiy

ϵ = rI − aiy
ϵ,

L(ŭ0(y)− I) =rI − π̆0(y),

and L(ŭ(y)− I) =rI − π̆(y),

(60)
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respectively. To sum up, we have

a1y
ϵ ≤ π̆0(y)≤ π̆(y)≤ a2y

ϵ from ineq. (58)

⇐⇒ rI − a1y
ϵ ≥ rI − π̆0(y)≥ rI − π̆(y)≥ rI − a2y

ϵ

⇐⇒ L(α1y
ϵ − I)≥L(ŭ0(y)− I)≥L(ŭ(y)− I)≥L(α2y

ϵ − I) from ineq. (60)

=⇒ ȳ1 ≥ y̆0 ≥ y̆≥ ȳ2 from Theorem 1c) in Appendix L,

a result consistent with Proposition 6 where we already proved that ȳn ≥ ȳn+1.

We also get from eq. (59) and Theorem 1b) closed-form expressions for ψ̆0 and ψ̆ in

Proposition 12. This completes the proof. □

L. Abstract comparison theorem

Previous results relied on a comparison theorem, which we provide and prove below. For a

payoff function ui :R+ →R with i∈ {1,2}, consider the optimal stopping problem ψi(y) :=

supτ Ee−rτui(Y
y
τ ), where (e−rtYt)t denotes a GBM with the infinitesimal operator L. Let

Si := {ψi = ui} denote the stopping set and τi be the first entrance time in Si for the GBM

(Yt)t. We make

Assumption 1 The functions ui ∈C2(R+) satisfy:

i. The function Lui ∈ C0(R+) is nonincreasing with limy↓0Lui(y) > 0 and

limy→∞Lui(y)< 0.

ii. The relationship Lu2 ≥Lu1 is satisfied everywhere.

We have:

Theorem 1 (Abstract comparison theorem for stopping times) The following

relationships hold:

a) If u2 ≥ u1 everywhere, then ψ2 ≥ψ1(y).

b) Under Assumption 1i, the stopping set Si is of the form (yi,∞) with yi satisfying

smooth fit—that is, ψi(yi) = ui(yi) and ψ
′
i(yi) = u′

i(yi). Furthermore,

ψi(y) =

{
ui(yi)

(
y
yi

)γ+ , 0< y < yi,

ui(y), otherwise.



: Supply chain tensions
46 00(0), pp. –, © 0000 INFORMS

c) Under Assumption 1ii, it holds that S2 ⊆ S1. Consequently, if Assumption 1i is also

satisfied, then the optimal thresholds satisfy y2 ≥ y1.

We now provide a proof. For Theorem 1a), we assume that u2 ≥ u1 everywhere, then

ψ2(y) :=Ee−rτ2u2(Yτ2) by definition

≥Ee−rτ1u2(Yτ1) by optimality of τ2

≥Ee−rτ1u1(Yτ1) because u2 ≥ u1

=:ψ1(y) by definition.

To obtain Theorem 1b), we make Assumption 1i. The optimality of a threshold policy is

proven in Villeneuve (2007). The regularity of ui is sufficient for the smooth-fit principle to

hold.

For Theorem 1c), we note that

(ψ2 −u2)(y)≥Ee−rτ1u2(Y
y
τ1
)−u2(y) by optimality of τ2

=E
∫ τ1

0

e−rsLu2(Y
y
s )ds by Dynkin’s formula

≥E
∫ τ1

0

e−rsLu1(Y
y
s )ds by Assumption 1ii

=ψ1(y)−u1(y) by Dynkin’s formula and optimality of τ1

≥ 0 because ψi exceeds the obstacle ui.

Consequently, if a y is in
{
y > 0

∣∣(ψ2 −u2)(y) = 0
}
=: S2, it is also in

{
y > 0

∣∣(ψ1 −u1)(y) =

0
}
=: S1 or S2 ⊆ S1. If, in addition, Si is of the form (yi,∞), then y1 ≤ y2. □
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