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Abstract

Inference procedures for dyadic data based on two-way clustering rely on the data
being exchangeable and dissociated. In particular, observations must be independent
if they have no index in common. In an effort to relax this we consider, instead,
data where Yij and Ypq can be dependent for all index pairs, with the dependence
vanishing as the distance between the indices grows large. We establish limit theory
for the sample mean and propose analytical and bootstrap procedures to perform
inference.
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1 Introduction

Consider dyadic data Yij arising from the pairwise interaction between units 1 ≤ i < j ≤ n.

Such data arise naturally in the analysis of networks. A concern that arises when dealing

with such data is how to take into account the potential dependence between observations

when performing statistical inference. Independence across all dyads, i.e., all pairs of units,

will often feel too strong to impose. An early contribution where this issue was raised

is Fafchamps and Gubert (2007). They proposed what has become known as a two-way
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clustering approach to constructing standard errors. The key assumption underlying the

appropriateness of such a procedure is that Yij and Ypq are independent unless they have

an index in common.

This dependency structure is a natural generalization of the one-way error-component

formulation (Moulton 1986, 1990). It holds generally for a dyadic data array provided that

it is exchangeable and dissociated. In that case, by well-known results of Aldous (1981),

Hoover (1979), and Kallenberg (1989), the data have a nonparametric representation as in

Yij = h(Zi, Zj, Qij)

for some function h and (latent) random variables {Zi} and {Qij} that are independent and

identically distributed across units and dyads, respectively, and independent of each other.

This representation is a two-way random-effect model and forms the basis for many popular

models of pairwise interaction. Limit theorems and inference procedures that account for

the two-way dependence in such data have been formalized in early work by Silverman

(1976) and, more recently, Menzel (2021) and Davezies, D’Haultfœuille and Guyonvarch

(2021).

Dissociatedness means that dependence is restricted to be within the same column and

row of the data array along which, by exchangeability, it is necessarily constant. This

may be too severe in many applications. This is particularly clear in a spatial context,

for example, but Thompson (2011) has made essentially the same point in a panel data

setting featuring random effects for both units and time. As a response to this we consider

a generalized version of the representation above by allowing for {Zi} to be a stationary

strong-mixing process. To see how this is helpful suppose that the random effect is a

moving-average process of order one. Then a given observation will correlate not only with

all observations in its own row and column, but also with all observations in the rows

right above and below, and the column immediately to the left and right. Furthermore,

along the row and diagonal, the correlation is different for the observations immediately

adjacent and those further away. Other types of processes, such as autoregressive processes

or processes with both an autoregressive and a moving-average component allow for richer
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forms of dependence.

Within this setup we first establish the limit distribution of the sample mean. The form

of the asymptotic variance suggests the construction of a standard error by first clustering

observations by unit and then constructing a HAC-type estimator as in the time-series

literature. Such an estimator is straightforward to implement and we give conditions under

which it is consistent. We also propose a bootstrap procedure that takes into account all

forms of dependence. Our proposal takes the form of a (circular) resampling procedure over

the units to construct a new index set to which dyadic observations are then attributed.

For this procedure we give two results. The first is the consistency of the variance of the

bootstrap distribution (conditional on the data) for the long-run variance of the sample

mean. The second is the consistency of the bootstrap distribution for the distribution

of the sample mean. The latter can be used to perform inference directly, bypassing the

construction of a standard error. Some results from Monte Carlo experiments are reported

on before concluding remarks discuss various generalizations and extensions. All proofs are

collected in the Appendix.

2 Limit behavior of the sample mean

For 1 ≤ i ̸= j ≤ n we observe the dyadic variable

Yij = h(Zi, Zj, Qij),

where the sequence {Zi} is stationary and strong mixing, the sequence {Qij} is independent

and identically distributed, and the sequences {Qij} and {Zi} are independent of one

another. The data are undirected and so h is symmetric in its first two arguments, but

is otherwise unspecified. Because all its arguments are latent it is without any loss of

generality to impose that the marginal distribution of Zi and of Qij is uniform on the

interval [0, 1].

We are interested in the behavior of the sample mean,

Ȳn =
2

n(n− 1)

n∑
i=1

∑
i<j

Yij.
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We will derive its large-sample distribution under a set of regularity conditions. To state

them, introduce

h2(Zi, Zj) = E(Yij|Zi, Zj),

and let

ατ = sup
A∈Ai

sup
B∈Bi+τ

|P(A ∩B)− P(A)P(B)|,

for Ai and Bi the sigma algebras generated by the sequences Zi, Zi−1, . . . and Zi, Zi+1, . . ..

Assumption 1.

(i) There is a finite constant c > 0 so that

|h2(z
′, z)− h2(z

′′, z)| ≤ c |z′ − z′′|

for all z, z′, z′′.

(ii) There is a δ > 0 and a finite constant c so that E(|Yij|2) < c and

E(|h2(Zi, Zi+τ )|2+δ) < c

for all τ .

(iii) The mixing coefficients satisfy ατ = O(τ−ρ) for ρ > 3δ+5/2δ with δ > 0 as given in (ii).

Assumption 1 collects a Lipschitz-continuity condition along with conventional moment

conditions and an associated rate of decay on the strong-mixing coefficients of the latent

process {Zi}.

The smoothness requirement concerns the kernel h2, and not the link function h. To

illustrate the difference, consider the baseline model for non-cooperative network formation

Yij = {Zi > Qij} {Zj > Qij},

where {·} denotes the indicator function. Then h2(z, z
′) = min(z, z′), which is Lipschitz

continuous. Similarly, typical specifications for cooperative link formation are variations of

Yij = {|Zi − Zj| < Qij}.
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Integrating out Qij thus leads to h2(z, z
′) = 1− |z − z′|, which again satisfies Assumption

1(i).

The key step in obtaining the asymptotic behavior of the sample mean is showing that

√
n(Ȳn − θ) =

2√
n

n∑
i=1

Xi + oP (1),

where θ = E(h1(Zi)) and Xi = h1(Zi) − θ for h1(z) = E(h2(z, Zj)). Under Assumption 1

the long-run variance

σ2 =
∞∑

τ=−∞

ωτ , ωτ = E(XiXi+τ )

is well defined. The following theorem, whose proof is given in the Appendix, is then

obtained.

Theorem 1. Let Assumption 1 hold and suppose that σ2 > 0. Then

√
n(Ȳn − θ)

L→ N(0, 4σ2)

as n → ∞

Having σ2 > 0 rules out the degenerate case, which would yield a different convergence

rate and limit distribution; see, e.g., Leucht (2012) and Menzel (2021) for results in related

settings.

3 Inference

We now move to performing inference. We consider two approaches. The first approach

operationalizes the limit result in Theorem 1 by combining it with an estimator of the

asymptotic variance. Here, we propose two such variance estimators, a plug-in estimator

and a bootstrap estimator. The second approach uses the bootstrap to directly construct

critical values or confidence intervals.
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3.1 HAC variance estimator

To estimate σ2 one option is to use a truncation-based estimator in the spirit of Newey and

West (1987), i.e.,

σ̂2 = ω̂0 + 2
m−1∑
τ=1

(1− τ/m) ω̂τ ,

where m is a chosen bandwidth parameter and ω̂τ is an estimator of ωτ = E(XiXi+τ ). As

the Xi are unobserved we need to replace them by an estimator. We will use the estimator

ω̂τ =
1

n− τ

n−τ∑
i=1

(Ỹi − Ȳn)(Ỹi+τ − Ȳn),

which amounts to using the centered sample mean (Ỹi − Ȳn) = 1/(n−1)
∑

j ̸=i(Yij − Ȳn) as an

estimator of Xi.

To show consistency of this variance estimator we impose a further moment condition.

Assumption 2. There is an r > 2 so that E(|Xi|2r) < ∞ and ρ ≥ 2r/(r−2).

The next theorem states the result.

Theorem 2. Let Assumption 1 and Assumption 2 hold and suppose that m → ∞ with n

so that mn−1/4 → 0. Then

σ̂2 P→ σ2

as n → ∞.

Selection of the bandwidth parameter in the construction of this estimator can be done by

following the procedure in Newey and West (1994).

3.2 Bootstrap

The dyadic nature and complex dependency structure of the data imply that there is no

bootstrap scheme available in the literature that is applicable to our problem. We take

inspiration from Green and Shalizi (2022) (see also Owen 2007 for a closely-related proposal)
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and devise a circular version of the moving block bootstrap (Politis and Romano 1992) for

dyadic data.

To state the bootstrap scheme we introduce the notation

imodn = i− n ⌊(i−1)/n⌋ .

For a chosen integer b, let ϖ1, . . . ϖb be independent draws from the uniform distribution

on the index set {1, 2, . . . , n}. For each 1 ≤ u ≤ b, we then construct the block of m

consecutive indices starting at ϖu,

{ϖu, (ϖu + 1)modn, . . . , (ϖu +m− 1)modn},

and concatenate the b blocks to form a reshuffled index set. We will maintain for notational

simplicity that bm = n and note that, here, we re-use the notation m to indicate the block

length. We do so as it plays a similar role to the bandwidth parameter in the previous

subsection. Thus, the approach is to randomly draw b blocks of length m from the index

set {1, 2, . . . , n}, wrapping around in a circle. Each 1 ≤ i ≤ n in the bootstrapped index

set maps to the original index set via

ϕi = (ϖ⌈i/m⌉ + i− (⌈i/m⌉ − 1)m− 2)modn+ 1.

We then generate a bootstrap sample as

Y ∗
ij =

 Yϕiϕj
if ϕi ̸= ϕj

0 if ϕi = ϕj

.

from which the bootstrap sample mean,

Ȳ ∗
n =

2

n(n− 1)

n∑
i=1

∑
i<j

Y ∗
ij ,

may then be constructed.

Setting Y ∗
ij = 0 when ϕi = ϕj is done because there is no corresponding observation

in the original data. In the Appendix, Theorems 3 and 4 below are shown to hold when,

instead of setting the bootstrap observation to zero, one sets it to a random variable Di
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for which E(D2
i ) < ∞. The use of zero effectively means that the observation does not

contribute to
∑n

i=1

∑
i<j Yϕiϕj

, and so seems a natural choice. We show in the Appendix

that

E∗(Ȳ ∗
n ) =

(
n−m

n

)
Ȳn +OP

(
m− 1

n

)
(3.1)

Here, the first right-hand side term features a shrinkage factor that is due to setting the

artificial observations equal to zero. The remainder term, whose precise form is given in the

Appendix, appears only when m > 1 and does not depend on how what value we choose

for the artificial observations. Given this expression it is possible to adjust Ȳ ∗
n to make it

(conditionally) unbiased for Ȳn. For the case where m = 1 this is immediate by a simple

rescaling by n/(n−m).

The intuition for why our bootstrap scheme works is that, as we show in the Appendix,

√
n(Ȳ ∗

n − Ȳn) =
2√
n

n∑
i=1

X∗
i + oP ∗(1),

where X∗
i = Xϕi

and A∗
n = oP ∗(1) means that P(P∗(|A∗

n| > ϵ∗) > ϵ) = o(1) for all ϵ∗ > 0

and ϵ > 0. The dominant term on the right-hand side is a (scaled) sample mean of a

stationary mixing process, for which the validity of the traditional circular block bootstrap

is well established.

A bootstrap estimator of σ2 is

n var∗(Ȳ ∗
n ) = nE∗((Ȳ ∗

n − E∗(Ȳ ∗
n ))

2),

that is, the variance of the bootstrap distribution, scaled by n. This estimator, too, is

consistent for σ2. We show this under the following strengthening of the conditions in

Assumption 2.

Assumption 3. There is an r > 2 so that E(|Xi|3r) < ∞ and ρ ≥ 3r/(r−2).

The result is as follows.

Theorem 3. Let Assumption 1 and Assumption 3 hold and suppose that m → ∞ with n

so that mn−1 → 0. Then

n var∗(Ȳ ∗
n )

P→ σ2
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as n → ∞.

The choice of block length m in practice can be guided by taking the approach of Politis

and White (2004).

Theorems 2 and 3 are qualitatively similar. In conjunction with Theorem 1, either can

be used to construct test statistics that yield asymptotically size-correct inference. While

our argument for the bootstrap variance requires stronger moment conditions, it allows

for the block size to grow considerably more quickly than the bandwidth parameter in the

HAC estimator.

The next theorem shows that the bootstrap can also be used to approximate the entire

distribution of the sample mean.

Theorem 4. Let Assumption 1 and Assumption 3 hold and suppose that m → ∞ with n

so that mn−1 → 0. Then

sup
a
|P∗(

√
n(Ȳ ∗

n − Ȳn) ≤ a)− P(
√
n(Ȳn − θ) ≤ a)| P→ 0

as n → ∞.

There are results on selecting the optimal block length for estimation of a distribution in the

time-series literature; see Hall, Horowitz and Jing (1995). These results concern optimality

at a point or in a mean-squared error sense. The optimal choices differ depending on the

objective.

By van der Vaart (2000, Lemma 23.3), Theorem 4 implies that inference based on the

reverse-percentile bootstrap is asymptotically justified. For any α ∈ (0, 1), denote by Q̂α

the α-quantile of the distribution of
√
n(Ȳ ∗

n − Ȳn), conditional on the original data. Then,

P(
√
n(Ȳn − θ) ≤ Q̂α)

n→∞−→ α.

As an example, a two-sided confidence set for θ with nominal coverage 1−α is the interval{
ϑ : Ȳn −

Q̂1−α/2√
n

≤ ϑ ≤ Ȳn −
Q̂α/2√

n

}
for any α < 1/2. Critical values and p-values for specific null hypotheses follow from the

same argument.
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4 Numerical illustration

A simulation experiment was conducted to evaluate the performance of the various inference

techniques proposed above. Here we will restrict attention to data generating process

where {Xi} is an AR(1) process with autoregressive parameter set to either 1/4 or 1/2, and

innovations drawn from the standard-normal distribution. Simulation results for other

designs and other distributions gave very similar results and are omitted for brevity. Table

1 contains simulations results for n = 250 and various choices for the bandwidth parameter

for the HAC estimator (mHAC) and the block length for the circular bootstrap (mCB).

For each of the values for mHAC considered the table provides the average (over the

Monte Carlo simulations) of the HAC standard error, σ̂, along with the coverage of the

associated 95% confidence interval for θ constructed via the normal approximation implied

by Theorem 1. The same quantities are reported for the bootstrap (CB) for each of the

values of mCB. Coverage rates for two intervals based on the reverse-percentile method are

equally reported. The first, CB%, uses the quantiles of the bootstrap distribution centered

at Ȳn, following directly Theorem 4. The second, CCB%, instead, centers around E∗(Ȳ ∗
n );

this is done by using the exact formula in the Appendix. We do this as such recentering is

known to lead to improvements in related situations (Lahiri 1991). Yet another possibility

to obtain refinements, one that we do not explore here, would be to use the double bootstrap

(Beran 1988).

First, formHAC = mCB = 1, both the analytical and the bootstrap approach mistake the

data array for being dissociated by not taking into account serial dependence. This leads

to standard errors that underestimate the Monte Carlo standard deviation of Ȳn (reported

in the table for each design). The standard deviation is underestimated by more than 20%

when ρ = 1/4 and by more than 40% when ρ = 1/4. This downward bias decreases as the

respective bandwidth parameters increase and additional covariance terms are taken into

account.

The coverage intervals constructed using either the HAC or bootstrap-based variance

estimator follow suit. The severe undercoverage observed at mHAC = mCB = 1 diminishes

10



Table 1: Simulation results for the AR(1) process

ρ = 1/4 Std. error (0.1690) Coverage rate (95%)

mHAC mCB HAC CB HAC CB CB% CCB%

1 1 0.1298 0.1295 0.8616 0.8608 0.8576 0.8588

2 2 0.1446 0.1441 0.9002 0.8988 0.8954 0.8960

3 5 0.1513 0.1559 0.9144 0.9206 0.9170 0.9180

5 10 0.1566 0.1581 0.9238 0.9206 0.9188 0.9194

10 20 0.1591 0.1657 0.9216 0.9264 0.9450 0.9452

ρ = 1/2 Std. error (0.2530) Coverage rate (95%)

mHAC mCB HAC CB HAC CB CB% CCB%

1 1 0.1446 0.1442 0.7370 0.7370 0.7324 0.7346

2 2 0.1765 0.1758 0.8244 0.8208 0.8208 0.8226

3 5 0.1946 0.2121 0.8592 0.8886 0.8872 0.8884

5 10 0.2133 0.2258 0.8908 0.9076 0.9050 0.9056

10 20 0.2276 0.2421 0.9080 0.9186 0.9360 0.9364

Results are based on 5000 Monte Carlo replications and 999 bootstrap replications.
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as the bandwidth and block length increase. The percentile-based bootstrap confidence

intervals both perform similar to the normal approximation. Lastly, we can observe an

improvement of CCB% relative to CB% for all values of mCB and in both tables, although

it is very modest throughout.

5 Concluding remarks

In this paper we have looked at the problem of inference with dyadic data. The conventional

setting implies that dependence between Yij and Ypq is present only when i < j and p < q

have an index in common, and that their covariance in such a case is independent of

the indices. Such a setup can be too restrictive in a variety of practical applications.

Our framework allows for dependence between Yij and Ypq for all values of the indices.

The dependency structure between non-overlapping index pairs is ergodic, and we stated

conditions under which this ensures the sample mean to converge to a Gaussian process at

the usual n−1/2 convergence rate. To perform inference, we gave a plug-in variance estimator

that generalizes the usual two-way clustering approach and devised a new bootstrap scheme

that can be used to estimate both the asymptotic variance and the quantiles of the limit

distribution.

Extensions in various directions are possible. First, a directed version of our setup can

be set up by having a pair of variables Zi = (Zo
i , Z

oo
i ), and then asymmetric dyadic variables

Yij = h(Zo
i , Z

oo
j , Qij).

Here, subject to suitable regularity conditions we will have a representation for the sample

mean as
√
n(Ȳn − θ) +

1√
n

n∑
i=1

(Xo
i +Xoo

i ) + oP (1),

where, now, Xo
i = ho

1(Zi)− θ and Xoo
i = hoo

1 (Zi)− θ for functions ho
1(z) = E(h(z, Zj, Qij))

and hoo
1 (z) = E(h(Zi, z, Qij)). The asymptotic variance of the sample mean will then be

equal to the long-run variance of Xo
i +Xoo

i , for which a HAC or bootstrap estimator can

again be constructed.
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Second, there is no apparent reason why our results could not be extended to multi-adic

data, where we observe Yi for tuples i = (i1, i2, . . . , id) of size d > 2. Such data are studied

in Owen and Eckles (2012) and Davezies, D’Haultfœuille and Guyonvarch (2021), where

they are assumed to be exchangeable and dissociated. To build in additional dependence,

the same intuition as here applies. In particular, subject to regularity conditions, we should

have
√
n(Ȳn − θ) +

d√
n

n∑
i=1

Xi + oP (1),

where, now, the sample mean is computed over all unique d-tuples i, Xi = h1(Zi) − θ as

before with h1 now corresponding to the function obtained on integrating out all random

variables but Zi from the Kallenberg (1989) representation of the data array; see, e.g.,

Equation (2.1) in Davezies, D’Haultfœuille and Guyonvarch (2021) for this representation.

Appendix

Proof of Theorem 1

We begin by defining

Vij = Yij − θ −Xi −Xj

where, recall, Xi = h1(Zi) − θ for h1(z) = E(h2(z, Zj)) with h2(z, z
′) = E(h(z, z′, Qij)).

Then

Yij = θ +Xi +Xj + Vij.

Averaging over all observations yields

θ̂ = θ +
2

n

n∑
i=1

Xi + V̄n

for V̄n = 2/n(n−1)
∑n

i=1

∑
i<j Vij. The proof of the theorem proceeds in two steps. The

first step is to show that V̄n = op(n
−1/2). The second step is to show that, as n diverges,

1/√n
∑n

i=1Xi converges in distribution to a normal random variable with mean zero and

variance σ2 > 0. From this
√
n(θ̂ − θ)

L→ N(0, 4σ2)

13



follows, thereby completing the proof of the theorem.

Remainder term. To show that V̄n = oP (n
−1/2) it is convenient to introduce the variables

Wij = Yij − h2(Zi, Zj), Uij = h2(Zi, Zj)− h1(Zi)− h1(Zj) + θ.

Then V̄n = W̄n + Ūn for W̄n = 2/n(n−1)
∑n

i=1

∑
i<j Wij and Ūn = 2/n(n−1)

∑n
i=1

∑
i<j Uij. We

handle each of these two terms in turn.

Conditional on Z1, . . . , Zn, the variables Wij are independent across dyads. They have

(conditional) mean zero and variance E(W 2
ij|Zi, Zj). We therefore see that E(W̄n) = 0 and

E(W̄ 2
n) = 4E

(
var

(∑n
i=1

∑
i<j Wij

n(n− 1)

∣∣∣∣∣Z1, . . . , Zn

))
= 4

∑n
i=1

∑
i<j E(E(W 2

ij|Zi, Zj))

n2(n− 1)2
,

where we have used the law of total variance in the first step. Notice that, because we have

that

E(W 2
ij|Zi, Zj) = E((Yij − θ)2|Zi, Zj)− (h2(Zi, Zj)− θ)2 ≤ E((Yij − θ)2|Zi, Zj),

it holds that E(E(W 2
ij|Zi, Zj)) = E(W 2

ij) ≤ E((Yij − θ)2), which is uniformly bounded by

Assumption 1. Therefore,

E(W̄ 2
n) ≲

2

n(n− 1)

where, here and later, we use the notation A ≲ B to indicate that A ≤ cB for some finite

constant c > 0. Consequently,

W̄n = OP (n
−1)

follows by Markov’s inequality.

Moving on, observe that Ūn is a degenerate U-statistic in the variables Z1, . . . , Zn.

Hence, E(Ūn) = 0. We now proceed by deriving an upper bound on its variance, that is,

on

E(Ū2
n) =

4

n2(n− 1)2

n∑
i1=1

∑
i1<j1

n∑
i2=1

∑
i2<j2

E(Ui1j1Ui2j2).

Under the conditions stated in Assumption 1, and given the rate of decay of the mixing

coefficients ατ being at most of order τ−ρ, we have, letting ε = ρ 2δ/(3δ+5), the upper bound

|E(Ui1j1Ui2j2)| ≲ α
2δ/(3δ+5)

max{j1−i1,j2−i2} ≲ max{j1 − i1, j2 − i2}−ε
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by an application of Lemma 3.3 in Dehling and Wendler (2010). Introduce the shorthands

m1 = j1 − i1 ≥ 1, m2 = j2 − i2 ≥ 1.

For fixed m1 there are n −m1 choices of i1, and for fixed m2 there are n −m2 choices of

i2. Thus,

E(Ū2
n) ≲

1

n2(n− 1)2

n−1∑
m1=1

n−1∑
m2=1

(n−m1)(n−m2) max{m1,m2}−ε.

By symmetry of the summand in the pair (m1,m2) we are free to presume that m1 ≥ m2

and multiply through by two to obtain

E(Ū2
n) ≲

1

n2(n− 1)2

n−1∑
m1=1

m1∑
m2=1

(n−m1)(n−m2)m
−ε
1 .

Note that n−m1 ≤ n and n−m2 ≤ n, and there are at most m1 terms in the inner sum.

Hence, (n−m1)
∑m1

m2=1(n−m2) ≤ n2m1 and

E(Ū2
n) ≲

1

(n− 1)2

n−1∑
m1=1

m1−ε
1 ≲ n−ε,

using that
∑n−1

m1=1m
1−ε
1 ≲ n2−ε. Observing that ε > 1 we thus have E(Ū2

n) = o(n−1) and so

Ūn = oP (n
−1/2)

follows by another application of Markov’s inequality. We have, therefore, shown that

V̄n = oP (n
−1/2).

Leading term. Having established that

√
n(θ̂ − θ) =

2√
n

n∑
i=1

Xi + oP (1)

we set out to show asymptotic normality. In light of Assumption 1, the sequence {Xi} is

zero mean, stationary, and strong mixing. Moreover, we have that E(|Xi|2+δ) < ∞ and

that the mixing coefficients are of size −ρ < −(2+δ)/δ. These conclusions on the sequence
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{Xi} follow from an application of standard results (see, e.g., White 2001, Theorem 3.49).

Therefore, provided that the long-run variance of the process {Xi} is positive, that is, that,

as assumed in the theorem,

σ2 = E(X2
i ) + 2

∞∑
τ=1

E(XiXi+τ ) > 0,

we readily obtain that 1/√n
∑n

i=1Xi
L→ N(0, σ2) (see, e.g., White 2001, Theorem 5.20),

thereby completing the proof.

Proof of Theorem 2

Introduce the infeasible estimator σ̌2 = ω̌0 + 2
∑m−1

τ=1 (1 − τ/m) ω̌τ that uses the covariance

estimators

ω̌τ =
1

n− τ

n−τ∑
i=1

XiXi+τ .

By virtue of Assumption 2 and the requirement that m4/n → 0 as n → ∞, Theorem 6.20

in White (2001) can be applied to obtain σ̌2 P→ σ2 as n → ∞. We then need to show that

|σ̌2 − σ2| P→ 0 to complete the proof.

To do so we establish that (i) |ω̂0 − ω̌0| = oP (1) and that (ii)
∑m−1

τ=1 |ω̂τ − ω̌τ | = oP (1),

which suffices in light of the fact that 0 ≤ (1− τ/m) ≤ 1 for all relevant τ . To proceed, we

begin by recalling, from the proof of Theorem 1, the decomposition of the observations as

Yij = θ +Xi +Xj + Vij.

Then, by averaging and recentering, we obtain (Ỹi−Ȳn) = (Xi−X̄n)+(X̃i−X̄n)+(Ṽi−V̄n),

for

X̃i =
1

n− 1

∑
j ̸=i

Xj, Ṽi =
1

n− 1

∑
j ̸=i

Vij,

and X̄n = 1/n
∑n

i=1 X̃i and V̄n = 1/n
∑n

i=1 Ṽi. The sampling error in (Ȳi−Ȳn) as an estimator

of Xi thus equals

Ai = (Ỹi − Ȳn)−Xi = −X̄n + (X̃i − X̄n) + (Ṽi − V̄n).
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For any given τ , by an application of the Cauchy-Schwarz inequality and using stationarity,

E(|ω̂τ − ω̃τ |) ≤ E(|XiAi+τ |) + E(|Xi+τAi|) + E(|AiAi+τ |)) ≤ 2
√
E(X2

i )E(A2
i ) + E(A2

i ).

By assumption, E(X2
i ) = O(1). Below we show that E(A2

i ) = O(n−1). Then, by Markov’s

inequality, for any ϵ > 0,

P (|(ω̂0 − ω̃0)| > ϵ) ≤ E (|(ω̂0 − ω̃0)|)
ϵ

= O(n−1/2),

which establishes (i), and, similarly,

P

(
m−1∑
τ=1

|(ω̂τ − ω̃τ )| > ϵ

)
≤
∑m−1

τ=1 E (|(ω̂τ − ω̃τ )|)
ϵ

= O(mn−1/2),

from which (ii) follows given that m2n−1 → 0 as n → ∞.

To bound E(A2
i ) it suffices to obtain bounds on the second moment of each of the

components of Ai. First, as,

n2 E(X̄2
n) =

n∑
i=1

n∑
j=1

E(XiXj) = nω0 + 2
n−1∑
τ=1

(n− τ)ωτ

and |ωτ | ≲ α
1/2−1/2r
τ = O(τ−ρ/2 (r−1)/r) by Corollary 6.17 in White (2001) and ατ = O(τ−ρ),

it follows that

E(X̄2
n) ≲ n−2

n−1∑
τ=1

(n− τ)τ−ρ (r−1)/2r = O(n−1)

on noting that ρ (r−1)/2r > 1 by Assumption 2.

Moving on to E(X̃2
i ) we first expand the sum to write

(n− 1)2 E(X̃2
i ) =

n∑
j=1

n∑
k=1

E(XjXk)−
∑
k ̸=i

E(XiXk)− E(X2
i ).

We note that the first term is equal to n2 E(X̄2
n), which has already been shown to be

O(n), while the third term is E(X2
i ) = ω0 = O(1). The middle term, finally, behaves like∑n−1

τ=1 τ
−ρ (r−1)/2r, which remains bounded as n grows large given our rate condition on the

mixing coefficients. Therefore, E(X̄2
n) = O(n−1) holds.
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Next we note that E(V̄ 2
n ) = O(n−1) was already shown to hold in the proof of Theorem

1. The argument to show that E(Ṽ 2
i ) = O(n−1) proceeds in the same way. Moreover,

recalling the decomposition Vij = Uij +Wij from the proof of Theorem 1 we can write that

Ṽi =
1

n− 1

∑
j ̸=i

(Uij +Wij) = Ũi + W̃i.

First, because the Wij are serially uncorrelated across dyads, it is immediate that we have

E(W̃ 2
i ) =

1

(n− 1)2

∑
j ̸=i

∑
k ̸=i

E(WijWik) =
1

(n− 1)2

∑
j ̸=i

E(W 2
ij) = O(n−1).

Next, for the remaining part, we can again rely on Lemma 3.3 in Dehling and Wendler

(2010) to arrive at

(n− 1)2E(Ũ2
i ) =

∑
j ̸=i

∑
k ̸=i

E(Uij Uik) ≲
n−1∑
m1=1

n−1∑
m2=1

max{m1,m2}−ϵ = 2
n−1∑
m1=1

m1−ϵ
1 = O(n2−ϵ),

for some ϵ > 1, in light of our rate requirement on the mixing coefficients. Therefore,

E(Ũ2
i ) = O(n−ϵ) = o(n−1). Taken together, the final two rates imply that E(Ṽ 2

i ) = O(n−1).

We have thus shown that E(A2
i ) = O(n−1). Then (i) and (ii) both follow and the proof

is complete.

Proof of Equation (3.1)

We will derive the bootstrap expectation in the slightly more general setting where we set

Ẏ ∗
ij = Ẏϕiϕj

=

 Yϕiϕj
if ϕi ̸= ϕj

Dϕi
if ϕi = ϕj

for chosen D1, . . . , Dn which are non-random conditional on the data. We wish to compute

E∗(Ȳ ∗
n ) = 1/n(n−1)

∑n
i=1

∑
j ̸=i E∗(Ẏϕiϕj

). It will be useful to make the bootstrap expectation

explicit. We have

E∗(Ȳ ∗
n ) =

1

n(n− 1)

b∑
u=1

m−1∑
i=0

b∑
v=1

m−1∑
j=0

E∗(Ẏ(ϖu+i)modn (ϖv+j)modn) {i ̸= j if u = v},
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where the indicator function prevents (undefined) entries Ẏ ∗
ii from arising in the summand.

We next split up the right-hand sided into two terms; the first concerns observations within

the same block, i.e.,u = v, the second observations across blocks, i.e., u ̸= v.

The within-block contribution is

1

n(n− 1)

b∑
u=1

m−1∑
i=0

∑
j ̸=i

E∗(Ẏ(ϖu+i)modn (ϖu+j)modn).

Notice that this term is exactly equal to zero when m = 1. Thus take m > 1. As ϖu is

uniformly distributed on {1, 2, . . . , n}, this is equal to

b

n(n− 1)

m−1∑
i=0

∑
j ̸=i

∑n
k=1 Ẏ(k+i)modn (k+j)modn

n
.

Choose a pair of indices (i, j) with j−i = d > 0. By the circularity of the bootstrap design,∑n
k=1 Ẏ(k+i)modn (k+j)modn

n
=

∑n
k=1 Ẏ(k)modn (k+d)modn

n
=

∑n−d
i=1 Yi(i+d) +

∑d
i=1 Y(n−d+i)i

n
,

which is the average of the (extended) dth off-diagonal of the data matrix, say Ȳ(d). This

only depends on d. Hence, exploiting symmetry of the data, the within-block contribution

to E∗(Ȳ ∗
n ) equals

2
b

n(n− 1)

m−1∑
d=1

(m− d) Ȳ(d) = OP ((m− 1)(n− 1)−1);

here, the rate holds because Ȳ(d) = OP (1) uniformly in d and
∑m−1

d=1 (m − d) = m(m−1)/2,

and we have used that bm = n.

The between-block contribution is

1

n(n− 1)

b∑
u=1

m−1∑
i=0

∑
v ̸=u

m−1∑
j=0

E∗(Ẏ(ϖu+i)modn (ϖv+j)modn),

observing that the indicator function will always take the value one for observations across

different blocks. Here, ϖu and ϖv are independent draws from the uniform distribution on

{1, 2, . . . , n, and so

E∗(Ẏ(ϖu+i)modn (ϖv+j)modn) =

∑n
k1=1

∑n
k2=1 Ẏ(k1+i)modn (k2+j)modn

n2
=

∑n
k1=1

∑n
k2=1 Ẏk1 k2

n2
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for each pair of blocks u ̸= v. The independence of this expectation on the pair (i, j) again

follows from the circularity of the bootstrap scheme. The between-block contribution,

therefore, is

b(b− 1)m2

n(n− 1)

∑n
k1=1

∑n
k2=1 Ẏk1 k2

n2
=

n−m

n− 1

(
n− 1

n
Ȳn +

1

n
D̄n

)
= Ȳn +OP (mn−1)

as long as D̄n = 1/n
∑n

i=1 Di = OP (1). In the case that Di = 0 for all 1 ≤ i ≤ n we arrive

at

E∗(Ȳ ∗
n ) =

(
1− m

n

)
Ȳn +OP

(
m− 1

n

)
,

which is Equation (3.1).

Proof of Theorems 3 and 4

As in the derivation of Equation (3.1) we will work under the more general setting where

we set

Ẏ ∗
ij = Ẏϕiϕj

=

 Yϕiϕj
if ϕi ̸= ϕj

Dϕi
if ϕi = ϕj

for D1, . . . , Dn that are non-random conditional on the data. We will only require that

E(D2
i ) < ∞. As in the proof of Theorem 1 we begin by setting up a Hoeffding-type

decomposition for the bootstrap data. This can be done by defining

Ẇ ∗
ij = Ẇϕiϕj

=

 Yϕiϕj
− h2(Zϕi

, Zϕj
) if ϕi ̸= ϕj

Dϕi
− h2(Zϕi

, Zϕi
) if ϕi = ϕj

,

and U̇∗
ij = U̇ϕiϕj

= h2(Zϕi,Zϕj
) − h1(Zϕi

) − h1(Zϕj
) + θ. Here, the Di only appear in the

construction of the artificial ‘diagonal’ variables Ẇ ∗
ii. Let W̄

∗
n and Ū∗

n be the corresponding

averages over all observations. Then,

Ȳ ∗
n = θ +

2

n

n∑
i=1

X∗
i + Ū∗

n + W̄ ∗
n .

We next recenter this expression by using the decomposition for Ȳn from before and multiply

through by
√
n to arrive at

√
n(Ȳ ∗

n − Ȳn) =
2√
n

n∑
i=1

(X∗
i −Xi) +

√
n(Ū∗

n − Ūn) +
√
n(W̄ ∗

n − W̄n),
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which is the starting point of our analysis.

Remainder term. We first set out to show that

√
n(Ū∗

n − Ūn) = oP ∗(1),
√
n(W̄ ∗

n − W̄n) = oP ∗(1),

where, for a random variable A∗
n, A

∗
n = oP ∗(1) means that P(P∗(|A∗

n| > ϵ∗) > ϵ) = o(1)

for all ϵ∗ > 0 and ϵ > 0. It was already established in the proof of Theorem 1 that

Ūn = oP (n
−1/2) and that W̄n = oP (n

−1/2). Further, by Lemma 3.7 in Dehling and Wendler

(2010) we have that nE(E∗(Ū∗
n
2
)) = o(1). From this Ū∗

n = oP ∗(n−1/2) follows by repeated

application of Markov’s inequality. It then only remains to verify that W̄ ∗
n = oP ∗(n−1/2).

We turn to doing so next.

As in the proof of Equation (3.1), we begin by writing out the sample average in full as

W̄ ∗
n =

1

n(n− 1)

b∑
u=1

b∑
v=1

m−1∑
i=0

m−1∑
j=0

Ẇ(ϖu+i)modn(ϖv+j)modn {i ̸= j if u = v}.

Hence, E∗(W̄ ∗
n
2
) is the (normalized) sum of

E∗(Ẇ(ϖu1+i1)modn(ϖv1+j1)modnẆ(ϖu2+i2)modn(ϖv2+j2)modn)
{i1 ̸= j1 if u1 = v1}

{i2 ̸= j2 if u2 = v2}

over all b4 combinations of blocks u1, u2, v1, v2 and allm4 combinations of indices i1, j1, i2, j2.

The form of this bootstrap expectation depends on whether some of the indices coincide

and, if so, which ones.

First consider the situation where all four blocks u1, v1, u2, v2 are distinct. Then the

ϖu1 , ϖv1 , ϖu2 , ϖv2 are all independent uniform random variables on {1, 2, . . . , n} and so

(again exploiting cyclicality of the bootstrap scheme) the bootstrap expectation is equal to(
1

n2

n∑
i=1

n∑
j=1

Ẇij

)2

=

(
n− 1

n
W̄n +

1

n
H̄n

)2

=
(n− 1)2

n2
W̄ 2

n + 2
(n− 1)

n2
W̄n D̄n +

1

n2
D̄2

n,

where (relative to the proof of Equation (3.1)) we redefine D̄n = 1/n
∑n

i=1Di − h2(Zi, Zi).

This does not depend on any of the indices under consideration. Furthermore, from the
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proof of Theorem 1 we know that E(W̄ 2
n) = O(n−2). Provided that E(D2

i ) < ∞ we also

have that E(D̄2
n) = O(1) because E(h2(Zi, Zi)

2) < ∞ by Assumption 1. We thus have that

E

( 1

n2

n∑
i=1

n∑
j=1

Ẇij

)2
 = O(n−2).

There are b!/(b−4)! combinations of four distinct blocks and m4 different combinations of

indices i1, j1, i2, j2. The total contribution of distinct-block terms to E(E∗(W̄ ∗
n
2
)) is then at

most of order n−2.

Next consider the opposite extreme where all observations are from the same block, i.e.,

u1 = v1 = u2 = v2. For such terms to contribute we need that i1 ̸= j1 and i2 ̸= j2. Now

the bootstrap expectation of a representative term of this configuration has as expectation

1

n

n∑
k=1

E(W(k+i1)modn (k+j1)modnW(k+i2)modn (k+j2)modn)

which is non-zero only when i1 = i2 and j1 = j2, in which case it equals E(W 2
i1j1

) < ∞.

Therefore, for this second case, a contribution to E(E∗(W̄ ∗
n
2
)) comes only from bm(m− 1)

terms. Normalized by n2(n− 1)2 this then gives an order of magnitude of mn−3 = o(n−2)

given that mn−1 → 0.

Then there are a variety of different configurations where some but not all observations

belong to the same block. These configurations feature either (i) two pair of observations

with pairs in different blocks but observations within a pair in the same block, or (ii) a

triplet of observations in the same block and the fourth observation in a different block.

The different cases for each configuration have the same structure and so can be handled

in the same way.

For the first of these two configurations, consider the case where u1 = v1 and u2 = v2,

but u1 ̸= v2. There are b(b − 1) such group pairings. A representative configuration of

i1, j1, i2, j2 has i1 ̸= j1 and i2 ̸= j2 and, therefore, the bootstrap expectation here is equal

to
1

n2

n∑
k1=1

n∑
k2=1

W(k1+i1)modn (k1+j1)modnW(k2+i2)modn (k2+j2)modn.
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The summand here has zero expectation unless (i) k1 + i1 = k2 + i2 and k1 + j1 = k2 + j2

or (by symmetry) (ii) k1 + i1 = k2 + j2 and k1 + j1 = k2 + i2. Take (i), which is equivalent

to having k1 = k2 + d for each admissible value d = i2 − i1 = j2 − j1. The bootstrap

expectation equals 1/n2
∑n

k=1 W
2
k,k+d, whose expectation is O(n−1) for any d. Ranging over

all d yields O(m4) index combinations. Hence, the contribution of this case to E(E∗(W̄ ∗
n
2
))

is of the order b2m4n−5 = m2n−3 = o(n−1). By symmetry, the same conclusion holds for

(ii).

For the second of the configurations we can take u1 = v1 = u2 = u and v2 = v for some

u ̸= v. There are again b(b − 1) such permissible group pairs. In this case the indicator

function ensures that we will only face terms with i1 ̸= j1. The bootstrap expectation for a

given collection of permissible indices i1, j1, i2, j2 for this type of configuration then equals

1

n2

n∑
k1=1

n∑
k2=1

W(k1+i1)modn (k1+j1)modn Ẇ(k1+i2)modn (k2+j2)modn.

We distinguish two cases. The first case has (k1 + i2)modn ̸= (k2 + j2)modn. Then

the average does not feature any artificial diagonal entries and the expectation of the

summand is zero unless (i) i1 = i2 = i and (k1 + j1)modn = (k2 + j2)modn or (ii)

(k1 + i1)modn = (k2 + j2)modn and i2 = j2. For Case (i), the expectation of the above

sum becomes
1

n2

n∑
k1=1

E(W 2
(k1+i)modn (k1+j1)modn) = O(n−1).

Because there are at most m3 such terms for each of the b(b − 1) block pairs the total

contribution of such configuration is of the order b2m3n−5 = (mn−1)n−2 = o(n−2). For

Case (ii), in turn, we arrive at

1

n2

n∑
k1=1

E(W(k1+i1)modn (k1+j1)modn (D(k1+i2)modn − h2(Z(k1+i2)modn, Z(k1+i2)modn)))

which, by Cauchy-Schwarz, is easily seen to be O(n−1). Here, for each of the b(b− 1) block

pairings there are m3 such terms yielding a total contribution to E(E∗(W̄ ∗
n
2
)) that is again

o(n−2) .
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Having shown that nE(E∗(W̄ ∗
n
2
)) = o(1) it follows that W̄ ∗

n = oP ∗(n−1/2) by Markov’s

inequality. This completes our analysis of the remainder term in the bootstrap version of

Hoeffding’s decomposition.

Bootstrap consistency. From the previous step,

√
n(Ȳ ∗

n − Ȳn) = 2
√
n(X̄∗

n − X̄n) + oP ∗(1),

with X̄∗
n = 1/n

∑n
i=1X

∗
i , and it suffices to show that

(i) var∗(
√
nX̄∗

n) = nE∗((X̄∗
n − X̄n)

2)
P→ σ2,

(ii) supa |P∗(
√
n(X̄∗

n − X̄n) ≤ a)− P(
√
nX̄n ≤ a)| P→ 0 as n → ∞.

As {Xi} is a stationary mixing process both (i) and (ii) follow readily from the bootstrap

literature on time series. Here, we use Theorem 1 in Politis and Romano (1992). This

completes the proof of both Theorem 3 and Theorem 4.
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