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Abstract

Inference procedures for dyadic data based on two-way clustering rely on the data
being exchangeable and dissociated. In particular, observations must be independent
if they have no index in common. In an effort to relax this we consider, instead,
data where Y;; and Y, can be dependent for all index pairs, with the dependence
vanishing as the distance between the indices grows large. We establish limit theory
for the sample mean and propose analytical and bootstrap procedures to perform
inference.
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1 Introduction

Consider dyadic data Y;; arising from the pairwise interaction between units 1 <7 < j <n.
Such data arise naturally in the analysis of networks. A concern that arises when dealing
with such data is how to take into account the potential dependence between observations
when performing statistical inference. Independence across all dyads, i.e., all pairs of units,
will often feel too strong to impose. An early contribution where this issue was raised

is Fafchamps and Gubert (2007). They proposed what has become known as a two-way
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clustering approach to constructing standard errors. The key assumption underlying the
appropriateness of such a procedure is that Y;; and Y, are independent unless they have
an index in common.

This dependency structure is a natural generalization of the one-way error-component
formulation (Moulton 1986, 1990). It holds generally for a dyadic data array provided that
it is exchangeable and dissociated. In that case, by well-known results of Aldous (1981),

Hoover (1979), and Kallenberg (1989), the data have a nonparametric representation as in
Yij = MZi, Zj, Qij)

for some function h and (latent) random variables {Z;} and {Q;;} that are independent and
identically distributed across units and dyads, respectively, and independent of each other.
This representation is a two-way random-effect model and forms the basis for many popular
models of pairwise interaction. Limit theorems and inference procedures that account for
the two-way dependence in such data have been formalized in early work by Silverman
(1976) and, more recently, Menzel (2021) and Davezies, D’Haultfceuille and Guyonvarch
(2021).

Dissociatedness means that dependence is restricted to be within the same column and
row of the data array along which, by exchangeability, it is necessarily constant. This
may be too severe in many applications. This is particularly clear in a spatial context,
for example, but Thompson (2011) has made essentially the same point in a panel data
setting featuring random effects for both units and time. As a response to this we consider
a generalized version of the representation above by allowing for {Z;} to be a stationary
strong-mixing process. To see how this is helpful suppose that the random effect is a
moving-average process of order one. Then a given observation will correlate not only with
all observations in its own row and column, but also with all observations in the rows
right above and below, and the column immediately to the left and right. Furthermore,
along the row and diagonal, the correlation is different for the observations immediately
adjacent and those further away. Other types of processes, such as autoregressive processes

or processes with both an autoregressive and a moving-average component allow for richer



forms of dependence.

Within this setup we first establish the limit distribution of the sample mean. The form
of the asymptotic variance suggests the construction of a standard error by first clustering
observations by unit and then constructing a HAC-type estimator as in the time-series
literature. Such an estimator is straightforward to implement and we give conditions under
which it is consistent. We also propose a bootstrap procedure that takes into account all
forms of dependence. Our proposal takes the form of a (circular) resampling procedure over
the units to construct a new index set to which dyadic observations are then attributed.
For this procedure we give two results. The first is the consistency of the variance of the
bootstrap distribution (conditional on the data) for the long-run variance of the sample
mean. The second is the consistency of the bootstrap distribution for the distribution
of the sample mean. The latter can be used to perform inference directly, bypassing the
construction of a standard error. Some results from Monte Carlo experiments are reported
on before concluding remarks discuss various generalizations and extensions. All proofs are

collected in the Appendix.

2 Limit behavior of the sample mean

For 1 <i # j < n we observe the dyadic variable
Yij = WZi, Z;, Qi),
where the sequence {Z;} is stationary and strong mixing, the sequence {Q;;} is independent
and identically distributed, and the sequences {Q;;} and {Z;} are independent of one
another. The data are undirected and so h is symmetric in its first two arguments, but
is otherwise unspecified. Because all its arguments are latent it is without any loss of
generality to impose that the marginal distribution of Z; and of @;; is uniform on the
interval [0, 1].
We are interested in the behavior of the sample mean,
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We will derive its large-sample distribution under a set of regularity conditions. To state
them, introduce

ha(Zi, Z;) = B(Yy|Zs, Z5),
and let

ar, = sup sup |[P(ANB)—P(A)P(B)],
A€A; BEB; 4+~

for A; and B; the sigma algebras generated by the sequences Z;, Z;_1,... and Z;, Z;\1, .. ..
Assumption 1.
(i) There is a finite constant ¢ > 0 so that

\ha(2',2) — ha(2",2)] < ¢l — 2"
for all z, 2, 2".
(ii) There is a § > 0 and a finite constant ¢ so that E(|Y;;]|?) < ¢ and

E(ho(Zi, Zir)IPT0) < c

for all T.
(11i) The mizing coefficients satisfy o, = O(17P) for p > 30+5/25 with § > 0 as given in (ii).

Assumption 1 collects a Lipschitz-continuity condition along with conventional moment
conditions and an associated rate of decay on the strong-mixing coefficients of the latent
process {Z;}.

The smoothness requirement concerns the kernel hy, and not the link function h. To

illustrate the difference, consider the baseline model for non-cooperative network formation
Yij ={Zi > Qi;}{Z; > Qij},

where {-} denotes the indicator function. Then hy(z,2") = min(z, 2’), which is Lipschitz

continuous. Similarly, typical specifications for cooperative link formation are variations of
Yij ={lZi = Zj] < Qy}-
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Integrating out ();; thus leads to ho(z,2') =1 — |z — 2|, which again satisfies Assumption

1(1).

The key step in obtaining the asymptotic behavior of the sample mean is showing that
Vi, =) = == 3" X+ on(1)
nY, —0)=— i top(l),
Vi

where 0 = E(hi(Z;)) and X; = hy(Z;) — 6 for hi(z) = E(h2(z, Z;)). Under Assumption 1

the long-run variance

o’= Y w, w=EXXy,)

is well defined. The following theorem, whose proof is given in the Appendix, is then

obtained.

Theorem 1. Let Assumption 1 hold and suppose that 0® > 0. Then
V¥, —0) 5 N(0,46?)

asn — o0

2 > 0 rules out the degenerate case, which would yield a different convergence

Having o
rate and limit distribution; see, e.g., Leucht (2012) and Menzel (2021) for results in related

settings.

3 Inference

We now move to performing inference. We consider two approaches. The first approach
operationalizes the limit result in Theorem 1 by combining it with an estimator of the
asymptotic variance. Here, we propose two such variance estimators, a plug-in estimator
and a bootstrap estimator. The second approach uses the bootstrap to directly construct

critical values or confidence intervals.



3.1 HAC variance estimator

To estimate o2 one option is to use a truncation-based estimator in the spirit of Newey and

West (1987), i.e.,

where m is a chosen bandwidth parameter and @, is an estimator of w, = E(X;X;,,). As

the X; are unobserved we need to replace them by an estimator. We will use the estimator

1 n—r

(DT - n_ 7t Z(Z - Yn)(z—&—’r - Yn)a
=1

which amounts to using the centered sample mean (Y; — ;) = /n-1) > izi(Yij — Y,) as an
estimator of X;.

To show consistency of this variance estimator we impose a further moment condition.
Assumption 2. There is an r > 2 so that E(|X;|*") < oo and p > 2r/(r—2).
The next theorem states the result.

Theorem 2. Let Assumption 1 and Assumption 2 hold and suppose that m — oo with n
so that mn~="* — 0. Then
~2 P 9
0" =0

as n — 0.

Selection of the bandwidth parameter in the construction of this estimator can be done by

following the procedure in Newey and West (1994).

3.2 Bootstrap

The dyadic nature and complex dependency structure of the data imply that there is no
bootstrap scheme available in the literature that is applicable to our problem. We take

inspiration from Green and Shalizi (2022) (see also Owen 2007 for a closely-related proposal)



and devise a circular version of the moving block bootstrap (Politis and Romano 1992) for
dyadic data.

To state the bootstrap scheme we introduce the notation
imodn =i —n|[(=D/n].

For a chosen integer b, let wy, ... w;, be independent draws from the uniform distribution
on the index set {1,2,...,n}. For each 1 < u < b, we then construct the block of m

consecutive indices starting at w,,
{wy, (w, + 1)modn, ..., (w, + m —1)modn},

and concatenate the b blocks to form a reshuffled index set. We will maintain for notational
simplicity that bm = n and note that, here, we re-use the notation m to indicate the block
length. We do so as it plays a similar role to the bandwidth parameter in the previous
subsection. Thus, the approach is to randomly draw b blocks of length m from the index
set {1,2,...,n}, wrapping around in a circle. Each 1 < i < n in the bootstrapped index

set maps to the original index set via
¢i = (@Wrifm) + 7 — ([{/m] —1)m —2)modn + 1.
We then generate a bootstrap sample as

Y¢i¢j if ¢z 7& ¢j

V= |
0 if ¢ =g,

from which the bootstrap sample mean,
2 n
) /A — Y
PN
may then be constructed.

Setting Y;* = 0 when ¢; = ¢; is done because there is no corresponding observation

J
in the original data. In the Appendix, Theorems 3 and 4 below are shown to hold when,

instead of setting the bootstrap observation to zero, one sets it to a random variable D;
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for which E(D?) < oo. The use of zero effectively means that the observation does not

contribute to Y > ;i Yo,0,, and so seems a natural choice. We show in the Appendix

E* (V) = (” - m) Y, +Op (m — 1) (3.1)

n n

that

Here, the first right-hand side term features a shrinkage factor that is due to setting the
artificial observations equal to zero. The remainder term, whose precise form is given in the
Appendix, appears only when m > 1 and does not depend on how what value we choose
for the artificial observations. Given this expression it is possible to adjust Y* to make it
(conditionally) unbiased for Y,. For the case where m = 1 this is immediate by a simple
rescaling by 7/(n—m).

The intuition for why our bootstrap scheme works is that, as we show in the Appendix,
_ 2
Vn(Yy =Y,)=—=) X7 +op(1),

where X = X, and A = op+(1) means that P(P*(|A%| > €¢*) > €) = o(1) for all ¢ > 0
and € > 0. The dominant term on the right-hand side is a (scaled) sample mean of a
stationary mixing process, for which the validity of the traditional circular block bootstrap
is well established.

A bootstrap estimator of o2 is
nvar*(Yy) = nE* (Y, — E*(Y;)))%),

that is, the variance of the bootstrap distribution, scaled by n. This estimator, too, is

2

consistent for ¢°. We show this under the following strengthening of the conditions in

Assumption 2.
Assumption 3. There is an r > 2 so that E(|X;|>") < oo and p > 37/¢r—2).
The result is as follows.

Theorem 3. Let Assumption 1 and Assumption 3 hold and suppose that m — oo with n

so that mn~! — 0. Then



as n — o0.

The choice of block length m in practice can be guided by taking the approach of Politis
and White (2004).

Theorems 2 and 3 are qualitatively similar. In conjunction with Theorem 1, either can
be used to construct test statistics that yield asymptotically size-correct inference. While
our argument for the bootstrap variance requires stronger moment conditions, it allows
for the block size to grow considerably more quickly than the bandwidth parameter in the
HAC estimator.

The next theorem shows that the bootstrap can also be used to approximate the entire

distribution of the sample mean.

Theorem 4. Let Assumption 1 and Assumption 3 hold and suppose that m — oo with n
so that mn~! — 0. Then

sup[P*(va(Y;; = V,) < a) — P(vn(Y, — ) <a)| 530

as n — Q.

There are results on selecting the optimal block length for estimation of a distribution in the
time-series literature; see Hall, Horowitz and Jing (1995). These results concern optimality
at a point or in a mean-squared error sense. The optimal choices differ depending on the
objective.

By van der Vaart (2000, Lemma 23.3), Theorem 4 implies that inference based on the
reverse-percentile bootstrap is asymptotically justified. For any a € (0,1), denote by Qa
the a-quantile of the distribution of \/n(Y* —Y,), conditional on the original data. Then,

P(\/ﬁ(?n o 9) < Qa> n—>_o>o a.

As an example, a two-sided confidence set for § with nominal coverage 1 — « is the interval

for any o < 1/2. Critical values and p-values for specific null hypotheses follow from the

same argument.



4 Numerical illustration

A simulation experiment was conducted to evaluate the performance of the various inference
techniques proposed above. Here we will restrict attention to data generating process
where {X;} is an AR(1) process with autoregressive parameter set to either 1/4 or /2, and
innovations drawn from the standard-normal distribution. Simulation results for other
designs and other distributions gave very similar results and are omitted for brevity. Table
1 contains simulations results for n = 250 and various choices for the bandwidth parameter
for the HAC estimator (mgac) and the block length for the circular bootstrap (mcg).

For each of the values for mpyac considered the table provides the average (over the
Monte Carlo simulations) of the HAC standard error, &, along with the coverage of the
associated 95% confidence interval for 8 constructed via the normal approximation implied
by Theorem 1. The same quantities are reported for the bootstrap (CB) for each of the
values of mcp. Coverage rates for two intervals based on the reverse-percentile method are
equally reported. The first, CB%, uses the quantiles of the bootstrap distribution centered
at Yy, following directly Theorem 4. The second, CCB%, instead, centers around E*(Y);
this is done by using the exact formula in the Appendix. We do this as such recentering is
known to lead to improvements in related situations (Lahiri 1991). Yet another possibility
to obtain refinements, one that we do not explore here, would be to use the double bootstrap
(Beran 1988).

First, for mgac = mcp = 1, both the analytical and the bootstrap approach mistake the
data array for being dissociated by not taking into account serial dependence. This leads
to standard errors that underestimate the Monte Carlo standard deviation of Y, (reported
in the table for each design). The standard deviation is underestimated by more than 20%
when p = /14 and by more than 40% when p = 1/4. This downward bias decreases as the
respective bandwidth parameters increase and additional covariance terms are taken into
account.

The coverage intervals constructed using either the HAC or bootstrap-based variance

estimator follow suit. The severe undercoverage observed at mygac = mcp = 1 diminishes
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Table 1: Simulation results for the AR(1) process

p=1 Std. error (0.1690)

Coverage rate (95%)

muac mcep  HAC CB HAC CB CB% CCB%
1 1 0.1298 0.1295 0.8616  0.8608  0.8576  0.8588
2 2 0.1446 0.1441 0.9002  0.8988  0.8954  0.8960
3 5 0.1513 0.1559 0.9144  0.9206 0.9170  0.9180
5 10 0.1566  0.1581 0.9238  0.9206 0.9188  0.9194
10 20 0.1591 0.1657 0.9216  0.9264  0.9450  0.9452
p=12 Std. error (0.2530) Coverage rate (95%)
muac mcep  HAC CB HAC CB CB% CCB%
1 1 0.1446  0.1442 0.7370  0.7370  0.7324 0.7346
2 2 0.1765 0.1758 0.8244  0.8208  0.8208 0.8226
3 5 0.1946 0.2121 0.8592  0.8886  0.8872 0.8884
D 10 0.2133 0.2258 0.8908  0.9076  0.9050 0.9056
10 20 0.2276 0.2421 0.9080  0.918  0.9360 0.9364

Results are based on 5000 Monte Carlo replications and 999 bootstrap replications.
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as the bandwidth and block length increase. The percentile-based bootstrap confidence
intervals both perform similar to the normal approximation. Lastly, we can observe an
improvement of CCB% relative to CB% for all values of mcp and in both tables, although

it is very modest throughout.

5 Concluding remarks

In this paper we have looked at the problem of inference with dyadic data. The conventional
setting implies that dependence between Y;; and Y, is present only when ¢ < j and p < ¢
have an index in common, and that their covariance in such a case is independent of
the indices. Such a setup can be too restrictive in a variety of practical applications.
Our framework allows for dependence between Y;; and Y,, for all values of the indices.
The dependency structure between non-overlapping index pairs is ergodic, and we stated
conditions under which this ensures the sample mean to converge to a Gaussian process at
the usual n="/? convergence rate. To perform inference, we gave a plug-in variance estimator
that generalizes the usual two-way clustering approach and devised a new bootstrap scheme
that can be used to estimate both the asymptotic variance and the quantiles of the limit
distribution.

Extensions in various directions are possible. First, a directed version of our setup can

be set up by having a pair of variables Z; = (Z?, Z?°), and then asymmetric dyadic variables
Yij = W2, Z7°, Qij).

Here, subject to suitable regularity conditions we will have a representation for the sample

mean as

Vn(Y, —0) +TZ (X2 + X2 + op(1),

where, now, X? = h{(Z;) — 6 and X?° = h{°(Z;) — 0 for functions h{(z) = E(h(z, Z;, Qij))
and h{°(z) = E(h(Z;, z,Q;j)). The asymptotic variance of the sample mean will then be
equal to the long-run variance of X? + X?°, for which a HAC or bootstrap estimator can

again be constructed.

12



Second, there is no apparent reason why our results could not be extended to multi-adic
data, where we observe Y; for tuples ¢ = (iy, is,...,4q) of size d > 2. Such data are studied
in Owen and Eckles (2012) and Davezies, D'Haultfceuille and Guyonvarch (2021), where
they are assumed to be exchangeable and dissociated. To build in additional dependence,
the same intuition as here applies. In particular, subject to regularity conditions, we should

have

Vn(Y, —0) + % iiXi +op(1),

where, now, the sample mean is computed over all unique d-tuples 2, X; = hy(Z;) — 0 as
before with h; now corresponding to the function obtained on integrating out all random
variables but Z; from the Kallenberg (1989) representation of the data array; see, e.g.,
Equation (2.1) in Davezies, D’Haultfoeuille and Guyonvarch (2021) for this representation.

Appendix

Proof of Theorem 1

We begin by defining
Vij =Yy —0—-Xi = X;
where, recall, X; = hi(Z;) — 0 for hi(z) = E(ha(z, Z;)) with ho(z,2") = E(h(z, 2/, Qij)).
Then
Yij =0+ Xi+ X; + Vi
Averaging over all observations yields

. 2 _
b=0+5"X,+V,
+n; +

for V,, = 2/nn-1) Yoy ZK]. Vij. The proof of the theorem proceeds in two steps. The
first step is to show that V,, = op(n_l/Q). The second step is to show that, as n diverges,
1wy | X; converges in distribution to a normal random variable with mean zero and

variance o2 > 0. From this

A~

Vil —6) 5 N(0,40?)
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follows, thereby completing the proof of the theorem.

Remainder term. To show that V,, = op(n~"?) it is convenient to introduce the variables
I/Vi‘ — Y;‘j - hg(Zi, Zj), Uij — hQ(ZZ', ZJ) - hl(Zz) - hl(Z]) + 9

Then V,, = W,, + U, for W,, = 2/n(n-1) > 1, > ie; Wiy and Up = -1 > 1, > ie; Uij. We
handle each of these two terms in turn.

Conditional on 7, ..., Z,, the variables W;; are independent across dyads. They have
(conditional) mean zero and variance E(W32|Z;, Z;). We therefore see that E(W,,) = 0 and

E(W?) =4E (Var (anl(nz_’?)ww Zi,. .., Zn>> _ D it 2oic; B(E(WEIZ:, Z5))

n?(n —1)2 ’

where we have used the law of total variance in the first step. Notice that, because we have

that
E(W2|Z:i, Z;) = B((Yi; — 0| Zi, Z;) — (ha(Zi, Z;) — 0)* < E((Yi; — 0)*|Zs, Z),

it holds that E(E(W73|Z;, Z;)) = E(W?) < E((Y;; — 6)?), which is uniformly bounded by

Assumption 1. Therefore,
2
n(n —1)
where, here and later, we use the notation A < B to indicate that A < ¢ B for some finite

E(W,) <

constant ¢ > 0. Consequently,

Wn = Op(n_l)

follows by Markov’s inequality.
Moving on, observe that U, is a degenerate U-statistic in the variables Zi,..., Z,.

Hence, E(U,) = 0. We now proceed by deriving an upper bound on its variance, that is,

on

B(0) = i 2 2 2 3 Bl Vs

11=111<J1 i2=112<j2
Under the conditions stated in Assumption 1, and given the rate of decay of the mixing

coefficients ., being at most of order 777, we have, letting ¢ = p2/(35+5), the upper bound

5 . . .y
|E(Ui1j1Ui2j2)| S 042 Jfos:9 S maX{Jl —11,]J2 — 7'2} ‘

~ max{j1fi1,j27i2} ~

14



by an application of Lemma 3.3 in Dehling and Wendler (2010). Introduce the shorthands
my =j1 — 1 > 1, My = Jjo — iz > 1.

For fixed m; there are n — m; choices of 7;, and for fixed ms there are n — msy choices of
5. Thus,

n—1 n-—1
_ 1

S =12 Z Z (n —myq)(n —mg) max{ms, mo}°.

mi1=1mo=1

=
B
A

By symmetry of the summand in the pair (m;,ms) we are free to presume that m; > msy

and multiply through by two to obtain

E(U?) < m Z_: Z (n—mq)(n —mg) mi®.

mi=1mao=1
Note that n — m; <n and n — my < n, and there are at most m; terms in the inner sum.

Hence, (n —mq) Y 0 (n — msy) < n*my and

n—1
_ 1 _ B
E<UT2L) f§ (n_l)g Z mi €§n 67
mi1=1

using that 31 mi~° < n?7¢. Observing that € > 1 we thus have E(U2) = o(n™!) and so

Y

U, = op(n="?)

follows by another application of Markov’s inequality. We have, therefore, shown that
Vi, = op(n="?).

Leading term. Having established that

N %ZX +op(1)

we set out to show asymptotic normality. In light of Assumption 1, the sequence {X;} is
zero mean, stationary, and strong mixing. Moreover, we have that E(|X;|**’) < oo and

that the mixing coefficients are of size —p < —(2+9)/5. These conclusions on the sequence
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{X;} follow from an application of standard results (see, e.g., White 2001, Theorem 3.49).
Therefore, provided that the long-run variance of the process { X;} is positive, that is, that,

as assumed in the theorem,

o’ =B(X}7)+2) E(XiX;,) >0,
T=1
we readily obtain that !/ya) " | X; N N(0,0%) (see, e.g., White 2001, Theorem 5.20),
thereby completing the proof. O]

Proof of Theorem 2

Introduce the infeasible estimator 62 = o + 2 3.""(1 — 7/m) @, that uses the covariance

estimators

n—rt

Wr = ! ZXZXZ+T

n—T =%
=1

By virtue of Assumption 2 and the requirement that m*/n — 0 as n — oo, Theorem 6.20
in White (2001) can be applied to obtain &2 - ¢ as n — co. We then need to show that
|52 — 2| 20 to complete the proof.

To do so we establish that (i) [&o — wo| = 0p(1) and that (i) 37" &r — @] = op(1),
which suffices in light of the fact that 0 < (1 — 7/m) < 1 for all relevant 7. To proceed, we

begin by recalling, from the proof of Theorem 1, the decomposition of the observations as
Yij=0+X,+ X, + V.

Then, by averaging and recentering, we obtain (Y; —Y,,) = (X;— X,,)+(X; — X))+ (V;=V,,),

for

and X, = /o 3" X; and V,, = /» 321" V;. The sampling error in (Y;—Y,,) as an estimator

of X, thus equals



For any given 7, by an application of the Cauchy-Schwarz inequality and using stationarity,

E(@r — &,]) < E(XiAusr]) + E(Xisr Al) + E(|4i A, ])) < 20/E(X?) E(A2) + E(A2).

By assumption, E(X?) = O(1). Below we show that E(A?) = O(n™!). Then, by Markov’s
inequality, for any € > 0,

E (|(co — @o)|)

€

P (|(@o — @o)| > €) < =0(n""?),

which establishes (i), and, similarly,

’ (5@ ~ )| > ) < B B0 2D o

€

from which (ii) follows given that m?n~" — 0 as n — oo.
To bound E(A?) it suffices to obtain bounds on the second moment of each of the

components of A;. First, as,

n n n—1
n’E(X7) =Y ) E(X;X;)=nw+2) (n—7)w
i=1 j=1 =1

and |w,| < o/ = O(r="2"Y/") by Corollary 6.17 in White (2001) and a, = O(7°),
it follows that
E(X2) <n2Y (n—7)r " V2 =0m™)

on noting that p (*=1)/2» > 1 by Assumption 2.

Moving on to E(X?) we first expand the sum to write

(- 1?E(X2) = 3" S E(X X)) - S E(XX,) - E(X2)

j=1 k=1 ki

We note that the first term is equal to n? E(X?2), which has already been shown to be
O(n), while the third term is E(X?) = wy = O(1). The middle term, finally, behaves like
Zﬁ;} 7PV which remains bounded as n grows large given our rate condition on the

mixing coefficients. Therefore, E(X?2) = O(n~!) holds.

17



Next we note that E(V,?) = O(n~!) was already shown to hold in the proof of Theorem
1. The argument to show that E(V?) = O(n~') proceeds in the same way. Moreover,
recalling the decomposition V;; = U;; + W;; from the proof of Theorem 1 we can write that

1
n—1

‘z:

Z(U” + WZJ) = ﬁz + Wz
JFi

First, because the W;; are serially uncorrelated across dyads, it is immediate that we have
E(W?) E(Wi;Wi) E(W, ).
(W) = Gy 22 2 BWaWar) = =553 D_E )
J#T k#i J#i

Next, for the remaining part, we can again rely on Lemma 3.3 in Dehling and Wendler

(2010) to arrive at

n—1 n—1 n—1
(n —1)’RB(U?) = Z ZE Uij Uir) S Z Z max{my, ma} ° Z T =0n*),
jF£i k#i mi1=1mo=1 mi=1

for some € > 1, in light of our rate requirement on the mixing coefficients. Therefore,
E(U?) = O(n~) = o(n~"'). Taken together, the final two rates imply that E(V?) = O(n~1).
We have thus shown that E(A?) = O(n™!). Then (i) and (ii) both follow and the proof

is complete. O

Proof of Equation (3.1)

We will derive the bootstrap expectation in the slightly more general setting where we set

Y¢i¢j if G 7é gbj

Y =Y, 6 =
1] PiPj .

for chosen Dy, ..., D, which are non-random conditional on the data. We wish to compute
E*(Y,?) = Ynm-1) >0, >k IE*(Y@%). It will be useful to make the bootstrap expectation

explicit. We have

m— b
* /X% 1 * /Y, . ..
E (Yn) = N Z : Z A E (Yiwu+i) mod n (wy+j) modn) {l 7é J it u = U}u

18



where the indicator function prevents (undefined) entries Y;j from arising in the summand.
We next split up the right-hand sided into two terms; the first concerns observations within
the same block, i.e.,u = v, the second observations across blocks, i.e., u # v.

The within-block contribution is

m—1

n — 1 Z Z Yv(qurl mOdn(wu+])modn)
i

u:1 =0
Notice that this term is exactly equal to zero when m = 1. Thus take m > 1. As w, is

uniformly distributed on {1,2,...,n}, this is equal to

b Z lmon moan
o ZZ k=1 k+ nd (k+4) mod

z()j;éz

Choose a pair of indices (7, j) with j—i = d > 0. By the circularity of the bootstrap design,

n y n—d d
Zk 1 k—H) modn (k+j) modn Zkzl }/(k) mod n (k+d) modn Z Y; (i+d) Zizl }/(n—d—‘ri)z'

n n n

Y

which is the average of the (extended) dth off-diagonal of the data matrix, say Y(4). This
only depends on d. Hence, exploiting symmetry of the data, the within-block contribution

to E*(Y) equals

n_1 Z m —d) Y = Op((m — 1)(n —1)7Y);

here, the rate holds because Y5y = Op(1) uniformly in d and ZZZI (m —d) = mm=1)/s,
and we have used that bm = n.

The between-block contribution is

m—1 m—1

1 .
m Z Z Z E*(Yr(wu—&-z) modn (wwy+7) modn>7

u=1 =0 v#u j=0
observing that the indicator function will always take the value one for observations across

different blocks. Here, w, and w, are independent draws from the uniform distribution on

{1,2,...,n, and so

n n y
Zkl 1 ZI@ 1 k1+z) modn (k2+j) modn Zklzl Zk2:1 Yk1 ko
n? n?

E* (}/(wu-‘ri) mod n (twy+j) mod n) -
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for each pair of blocks u # v. The independence of this expectation on the pair (i, j) again
follows from the circularity of the bootstrap scheme. The between-block contribution,
therefore, is
b(b—1)m 221@1 12@ 1Yk1kz _n—m (n—l
n(n—1) n? n—1 n

as long as D,, = 1/n> " | D; = Op(1). In the case that D; = 0 for all 1 <i < n we arrive

B =(1-2) Yt 0p (mT_l)

n
which is Equation (3.1). O

Y, + 1D > =Y, +Op(mn™")

at

Proof of Theorems 3 and 4

As in the derivation of Equation (3.1) we will work under the more general setting where

we set
. . Ys.6. if &; ;
V=V = 00 ¢i 7 ¢;
D¢i lf QZS, = ¢j
for Dy,..., D, that are non-random conditional on the data. We will only require that

E(D?) < oco. As in the proof of Theorem 1 we begin by setting up a Hoeffding-type
decomposition for the bootstrap data. This can be done by defining

Yoo, — hal(Zy,, Zy;) it ¢5 # &;
D¢i _h2(Z¢i7Z¢i) if (bz :(bj

and U;; = U¢i¢j = h2(Z¢i7Z¢j) — h1(Zy;) — h1(Zy,) + 0. Here, the D; only appear in the

VV;; = W¢i¢j =

construction of the artificial ‘diagonal’ variables W;;. Let W and U} be the corresponding

averages over all observations. Then,

2 -
Yi=0+—-> X +U,+W,.
) M; PO W

We next recenter this expression by using the decomposition for Y,, from before and multiply

through by /n to arrive at

V(Y =Y,) \/—Z (X7 = X,) + VU, = U,) +Vn(W; = W,),
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which is the starting point of our analysis.

Remainder term. We first set out to show that

\/E(U; - Un) = op+(1), \/E(W; - V_Vn) = op«(1),

where, for a random variable A%, A* = op.(1) means that P(P*(|A%| > €*) > €) = o(1)
for all ¢ > 0 and ¢ > 0. It was already established in the proof of Theorem 1 that
U, = op(n~"?) and that W,, = op(n~"?). Further, by Lemma 3.7 in Dehling and Wendler
(2010) we have that nE(E*(U;:Q)) = 0(1). From this U* = op-(n~"?) follows by repeated
application of Markov’s inequality. It then only remains to verify that W* = op-(n="?).
We turn to doing so next.

As in the proof of Equation (3.1), we begin by writing out the sample average in full as

- 1 . .
Wn = N Z Z W(wu+i) mod n(wy+7) modn {Z # J if u= U}'

Hence, E*(W*?) is the (normalized) sum of

{il %]1 lf Uy = Ul}

E* (W(wul +i1) mod n(wy, +j1)moan(zUU2+i2)modn(wU2 +7j2) mod n) ) o
{ia # jo if ug = v}

over all b* combinations of blocks w1, us, v1, v9 and all m* combinations of indices i1, j1, 72, jo.
The form of this bootstrap expectation depends on whether some of the indices coincide
and, if so, which ones.

First consider the situation where all four blocks wuq,v1,us, vy are distinct. Then the
Wy, Wy Ty, Wy, are all independent uniform random variables on {1,2,...,n} and so

(again exploiting cyclicality of the bootstrap scheme) the bootstrap expectation is equal to

n n n?

2
IR n—1_ 1_\" (n-12_, (-1 - 1_,
(;ZZ%) :( anHn) = oW b+ o,

i=1 j=1
where (relative to the proof of Equation (3.1)) we redefine D,, = V> 1" | D; — ho(Zi, Z;).

This does not depend on any of the indices under consideration. Furthermore, from the
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proof of Theorem 1 we know that E(W?2) = O(n~2). Provided that E(D?) < oo we also
have that E(D?) = O(1) because E(hy(Z;, Z;)) < oo by Assumption 1. We thus have that

N n 2

E (% 3 %) =0(n™?).

i=1 j=1

There are b/(p—4)! combinations of four distinct blocks and m?* different combinations of

indices i1, j1, 42, j». The total contribution of distinct-block terms to E(E*(W*?)) is then at
most of order n=2.

Next consider the opposite extreme where all observations are from the same block, i.e.,

U = v; = up = vy. For such terms to contribute we need that i; # j; and iy # js. Now

the bootstrap expectation of a representative term of this configuration has as expectation

n

1

5 Z ]E(W(k+11) modn (k+j1) modn W(k+i2) mod n (k+j2) modn)
k=1

which is non-zero only when i = iy and j; = js, in which case it equals E(me) < 00.
Therefore, for this second case, a contribution to E(E*(W**)) comes only from bm(m — 1)

3 = o(n™?)

terms. Normalized by n?(n — 1)? this then gives an order of magnitude of mn~
given that mn=! — 0.

Then there are a variety of different configurations where some but not all observations
belong to the same block. These configurations feature either (i) two pair of observations
with pairs in different blocks but observations within a pair in the same block, or (ii) a
triplet of observations in the same block and the fourth observation in a different block.
The different cases for each configuration have the same structure and so can be handled
in the same way.

For the first of these two configurations, consider the case where u; = v; and us = vo,
but u; # ve. There are b(b — 1) such group pairings. A representative configuration of
11, J1, %2, J2 has 71 # j; and iy # jo and, therefore, the bootstrap expectation here is equal

to

n n
1
ﬁ E E W(k1+i1)modn(k1+j1)moan(k2+i2) modn (k2+j2) modn-
k=1 k=1
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The summand here has zero expectation unless (i) ki + iy = ko +i9 and ky + j1 = ko + Jo
or (by symmetry) (ii) k1 + i3 = ko + j2 and ky + j1 = ko + i. Take (i), which is equivalent
to having k; = ko + d for each admissible value d = i3 — 7; = jo — j1. The bootstrap
expectation equals 1/n2 )"}, W,fk 4> Whose expectation is O(n™!) for any d. Ranging over

all d yields O(m*) index combinations. Hence, the contribution of this case to E(E*(W;Q))

5 3

is of the order v*’m*n=> = m?n=3 = o(n~!). By symmetry, the same conclusion holds for

(ii).

For the second of the configurations we can take u; = v; = us = u and vy = v for some
u # v. There are again b(b — 1) such permissible group pairs. In this case the indicator
function ensures that we will only face terms with ¢; # j;. The bootstrap expectation for a

given collection of permissible indices i1, ji, 72, jo for this type of configuration then equals

n n
1 .
ﬁ E E W(k1+i1) modn (k1+71) modn W(k1+i2) mod n (k2+j2) mod n-
k1=1ko=1

We distinguish two cases. The first case has (k; + i) modn # (k2 + j2) modn. Then
the average does not feature any artificial diagonal entries and the expectation of the
summand is zero unless (i) iy = 42 = ¢ and (k; + j1)modn = (ky + jo) modn or (ii)
(k1 + 1) modn = (kg + jo) modn and iy = jo. For Case (i), the expectation of the above

sum becomes

1 - ) -1
E Z ]E(W(kl-i-’b) modn(k1+j1)m0dn) = O(n )
k=1
Because there are at most m? such terms for each of the b(b — 1) block pairs the total
contribution of such configuration is of the order v¥*m*n=> = (mn~')n=? = o(n"?). For

Case (ii), in turn, we arrive at
1 n
E Z E<W(k1+i1)modn(k1+j1)modn (D(k‘l-‘riQ)mOdn - hQ(Z(k;1+i2)modn7 Z(k1+i2)modn>>>
k1=1

which, by Cauchy-Schwarz, is easily seen to be O(n~!). Here, for each of the b(b— 1) block

pairings there are m3 such terms yielding a total contribution to E(E*(W*?)) that is again

o(n™?) .
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Having shown that n]E(E*(WSQ)) = o(1) it follows that W = op-(n~"?) by Markov’s
inequality. This completes our analysis of the remainder term in the bootstrap version of

Hoeffding’s decomposition.

Bootstrap consistency. From the previous step,

with X7 =1/»> " | X7, and it suffices to show that

(i) var*(vnX;) = nE*((X; = X,)?) = 0%,

(if) sup, [P*(vn(X: — X)) < a) = P(v/nX, < a)] 5 0 as n — oo.

n

As {X;} is a stationary mixing process both (i) and (ii) follow readily from the bootstrap
literature on time series. Here, we use Theorem 1 in Politis and Romano (1992). This

completes the proof of both Theorem 3 and Theorem 4. O]
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