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1 Introduction

We examine the implications of producers’ integration and disintegration for the com-

petition between systems composed of multiple complementary components. We model

asymmetric, differentiated system producers and allow for buyers’ private information.

Our analysis shows that disintegration introduces two types of distortions, at the exten-

sive margin (who purchases each system) and at the intensive margin (the quality of each

competing system).

Markets for composite goods that combine multiple complementary inputs are ubiq-

uitous in modern industries (e.g., airplane or car manufacturing, computers and server

infrastructure). Our focus is on technological and regulatory changes that facilitate the

combination of components from different producers into a single system. One interesting

application is the telecom industry where the market for mobile network infrastructures

has been historically dominated by a small number of integrated solutions. However, the

virtualization of infrastructures lowers barriers to compatibility as intelligence tasks mi-

grate from components to centralized cloud services. The introduction of OpenRAN that

defines standardized interfaces should further facilitate the combination of equipment and

software from different vendors into the same network. While OpenRAN is expected to

have a positive impact on procurement cost and quality, there could be a concern that

misalignment of sellers of components of the same system–which may result in excessive

prices and insufficient quality– undermines these benefits. This is the core question we

address in this paper.

In what follows we consider buyers who choose between two systems. Each system

involves two components that are pure complements: the overall quality of a system is

equal to the minimal quality of the components. Systems differ in their overall cost of

production and are horizontally differentiated along the Hotelling line.

In the benchmark, each system is produced by an integrated firm that produces both

components and offers a contract specifying a price for each quality level of the system.

The buyer then chooses where to buy and which quality. In the separation (or disinte-

gration) case, each component of each system is produced by a different supplier. Each

supplier then proposes a tariff for its component. Then the buyer chooses a system and

buys the two components from the two suppliers of this system. We focus on the issue of

disintegration by assuming that the market structure is technologically neutral: the cost

of providing a component of a given quality is independent of the integration or disin-

tegration of suppliers. We discuss in the conclusion the implications for a more general

setup with free entry that could lower the cost of some components under disintegration.

In the first part of the paper we assume that the buyer’s preference for quality is

public information (while his Hotelling location is private). In this case the contract

proposed by each integrated supplier induces an efficient quality choice (conditional on the
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system), which can be implemented with a standard two-part tariff. When suppliers are

disintegrated, the truthful equilibrium refinement selected an equilibrium where quality

is also efficient. In other words, separation of component producers does not generate

a distortion at the intensive margin. However, disintegration introduces a distortion at

the extensive margin. Already in the integrated case, the market power generated by

product differentiation leads to excessive sales of the costlier system. This distortion is

exacerbated by the separation of suppliers. This additional distortion follows from the

same logic as the classic Cournot effect for monopolists selling complementary goods. In

that setting, each producer fails to internalize the positive effect of its demand for the

producer of the complementary good and prices are therefore higher than what maximizes

the producers’ joint profit for each system. However, the Cournot effect can benefit rather

than harm producers in our competitive setting. Indeed, the price increase induced by

disintegration now soften competition between the two systems and can therefore raise

total industry profits. At the same time, it causes the most efficient system to further

lose market share. As a result, separation is detrimental to welfare absent other sources

of efficiency gains (e.g., entry).

We then turn to the case where the buyer has private information about his preference

for quality. Specifically, the marginal value the buyer attaches to quality is captured by

a parameter β that is privately learnt by the buyer after contracting. The model is

therefore a game of competition with ex-ante contracting. In this setting, the integrated

structure features a quality distortion if the buyer is risk-averse. We capture risk aversion

using Yaari (1987) dual theory of choice under risk which preserves the tractability of the

model. Precisely, each buyer assigns a mass to the worst possible state of the world, in

our case the ex-post realization that he has a low valuation for the quality of the product

he contracted upon ex ante. We show that quality is distorted downward and that the

magnitude of the distortion increases with risk aversion. This occurs because of a tension

for the seller between insuring the buyer against the lowest realization of his payoff and

limiting the informational rents to all the other buyer’s types. Note that the distortion

at the extensive margin–excessive sales of the costlier system–also operates, as in the

symmetric information case, in fact is now exacerbated because the welfare differential

between the cheaper and the costlier systems is reduced, due to reduced quality. The

key result in this version with asymmetric information is that separating the two supplier

pairs at each end of the Hotelling line now exacerbates quality distortions (in addition to

distortions at the extensive margin). The reason is that each supplier does not internalize

the loss of revenue of the other supplier when reducing its own quality.1

Literature Review. How to organize the supply of complementary goods in a procure-

1This effect did exist when the buyer’s preferences are known because, under the refinement of truthful
equilibrium, the marginal tariff equals the marginal cost so that suppliers are indifferent to quality choices
of the buyer.
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ment context is a key question that has only received scarce attention in the literature.

Baron and Besanko (1992) and Gilbert and Riordan (1995) have considered the scenario

where a buyer purchases perfect complements from two suppliers who are privately in-

formed on their own costs, which are independent random variables. Two organizational

forms are explored. For unbundled supply (separation), the buyer, who is endowed with

all bargaining power, design contracts with two independent suppliers. As a result of the

standard rent-efficiency trade-off familiar from the screening literature,2 marginal costs

have to be replaced by Myersonian virtual costs at the optimum.3 Because of perfect

complementarity between components, the buyer’s marginal benefit should thus be equal

to the sum of virtual costs of the suppliers; a phenomenon of compounded distortions

akin to the familiar double marginalization of IO textbooks. For bundled supply (integra-

tion), a single supplier knows both cost parameters and optimal contracting only entails

one distortion. Baron and Besanko (1992) and Gilbert and Riordan (1995) demonstrate

that, under a broad range of circumstances the virtual cost of the sum is lower than

the sum of the virtual costs, and thus integration is preferred by the buyer. Baron and

Besanko (1992), Melumad et al. (1995) and Laffont and Martimort (1998) have consid-

ered a third scenario where one supplier subcontracts with the other and those authors

have shown that such delegation entails no further agency cost in comparison with the

unbundling scenario when this subcontract is observable and inputs are complements.

Severinov (2008) highlights the limit of this result in the case of substitutable inputs. Fi-

nally, Baron and Besanko (1999) and Dequiedt and Martimort (2005) have analyzed the

suppliers’ incentives to consolidate by sharing and/or gathering cost information before

production takes place. When consolidation is costly, an extra cost of integration might

tilt the optimal organizational form towards unbundled supply.

We depart from this literature on at least three grounds. First, suppliers are no longer

privately informed on costs while, instead, the buyer might own private information on

his own preferences. Contracting frictions might thus a priori come from two sources.

First, those frictions might follow from the fact that suppliers non-cooperatively design

supply contracts when they remain non-integrated. Second, frictions might follow from

the suppliers’ concerns for screening the buyer’s willingness to pay for quality as in the

standard screening literature (Musa and Rosen, 1978; Maskin and Riley, 1984; Varian,

1989; Wilson, 1993). As a second departure from the existing literature, we thus adopt

the same allocation of bargaining power as in this screening literature. Suppliers are

ready to sell components with a wide range of possible levels of quality before the buyer

decides whose suppliers to visit and which quality target to select. Actually, giving all

bargaining power to suppliers seems the most relevant assumption if one wants to depict

more competitive scenarios where those suppliers are willing to attract buyers. Modeling

2Laffont and Martimort (2002, Chapter 2).
3Myerson (1981).
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competition as a bidding game among suppliers (those being integrated or not) is thus

the third significant departure from the existing literature.

In our context, buyers are not only vertically differentiated in terms of their willing-

ness to pay for quality but they are also horizontally differentiated. Supplier pairs selling

complementary inputs by means of nonlinear price schedules are located at both sides of

an Hotelling line as in Stole (1995). In this respect, our model belongs to the broader

literature on price discrimination in competitive environments which is exhaustively sur-

veyed in Stole (2007). Competition occurs along the line between supplier pairs willing

to attract the buyer on either side of the market but it also occurs at each sides between

suppliers under non-integration. To model those bidding games both between and within

supplier pairs, we leverage the literature on competition in bidding schedules that was

initiated by Bernheim and Whinston (1986). Building on the techniques developed in

Martimort and Stole (2012) and Martimort, Semenov and Stole (2017), we characterize

important and meaningful contract equilibria. Those equilibria satisfy the well-known

refinement of truthfulness under complete information on the buyer’s vertical preference

parameter and the (admittedly less well known) requirement of maximality as defined in

Martimort, Semenov and Stole (2017) under asymmetric information.

Under complete information on vertical preferences, suppliers at each end of the mar-

ket provide efficient quality even when those suppliers remain independent and do not

coordinate pricing. Competition between suppliers selling complementary goods at each

end of the market thus does not suffer from the multiple monopolies fallacy. At first

glance, this result may be surprising. Yet, a closer look shows that it is completely in

lines with the complete information menu auction literature initiated by Bernheim and

Whinston (1986). At a truthful equilibrium, each upstream supplier offers a two-part

tariff where each additional unit of quality is sold at marginal cost. This schedule reflects

truthfully the seller’s preferences across feasible trades. Given those tariffs, the buyer then

perfectly coordinates upstream sellers when making her purchases and efficiency along

the whole supply chain immediately follows. Competition on the horizontal dimension

between suppliers pairs then just erodes fixed fees.

Under asymmetric information on vertical preferences, quality at both sides of the

market is reduced in response to standard screening considerations. Now, the maximal

equilibrium features the familiar flavor of double marginalization. Quality distortions

are compounded along the supply chain when suppliers of complement goods do not

cooperate; a result that echoes findings in Martimort and Stole (2009)’s model of compe-

tition with nonlinear pricing but which is here also embedded into a broader competition

environment that also entails horizontal differentiation. Competition at each sides of

the market between complement suppliers then weakens horizontal competition between

pairs.
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Biglaiser and Ma (2003) is probably the paper which is closest to ours. Those au-

thors also analyze a model where suppliers (integrated or not) compete for the buyer’s

purchases. Our analysis is in some sense complementary to theirs. In Biglaiser and Ma

(2003), goods are substitutes, the buyer’s marginal rate of substitution between those

goods is her private information which is binary, and transportation costs depend on

whether suppliers are integrated or not. Instead, we analyze the case of perfect comple-

ments, together with a modeling of the buyer’s vertical preferences which is a piece of

private information on vertical continuously distributed. Finally, we do not make any

restriction on the set of feasible contracts.

Organization of the paper. Section 2 presents the model. Section 3 discusses the

simple scenario where the buyer’s vertical preference parameter is known by the sellers

on both sides of the market, whether they are integrated or not. Section 4 addresses the

case where this vertical preference parameter is the buyer’s private information. Section 5

briefly concludes and discusses possible extensions. Proofs are relegated to an Appendix.

2 The Model

Technology and Preferences. A buyer (hereafter referred to as the agent, some-

times denoted by he or B) seeks to procure one unit of a composite good composed of two

perfectly complementary intermediate components (indexed by i = 1, 2). To achieve this,

B approaches pairs of suppliers who are ready to provide these essential components.

The supplier pairs are located at the two endpoints of a standard [0, 1] Hotelling line.

Supplier Si (resp. S∗i ) produces component i at location 0 (resp. 1). Let qi (resp. q∗i )

denote the quality of component i at location 0 (resp. 1). Due to perfect complementarity,

the quality q (resp. q∗) of the composite good is given by q = min {q1, q2} (resp. q∗ =

min {q∗1, q∗2}). For technical convenience, we assume that all quality levels belong to the

interval Q = [0, q], where the upper bound q is chosen to be sufficiently large to guarantee

interior solutions under all scenarios considered below.

Let denote by θi (resp. θ∗i ) Si (resp. S∗i )’s marginal cost. For future reference, we

denote by θ = θ1 + θ2 (resp. θ∗ = θ∗1 + θ∗2) the overall marginal cost at location 0

(resp. 1). In the sequel, we will be particularly interested by settings where suppliers are

asymmetric. Without loss of generality, we will denote as strong (resp. weak) suppliers,

those suppliers located at 0 (resp. 1) and assume that θ ≤ θ∗. For future reference,

we define a measure of the competitive advantage of the strong side of the market as

δθ = θ∗ − θ ≥ 0. We also define the average cost on this market as ϑ = θ+θ∗

2
.

B’s preferences entails both horizontal and vertical differentiation. First, B’s prefer-

ences are characterized by his location x ∈ [0, 1], a parameter of horizontal differentiation.
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For simplicity, we assume linear transportation costs. Buying from 0 (resp. 1) when lo-

cated at x thus costs rx (resp. r(1−x)) to the buyer. This parameter x is not observed by

suppliers and drawn from a common knowledge distribution F with density f = F ′. We

assume that the density function f is symmetric around 1
2

(which in particular implies

F
(
1
2

)
) = 1

2
). Following the screening literature,4 we also assume that the (generalized)

Monotone Hazard Rate Property holds, that is,

F − κ
f

is non-decreasing for κ ∈ {0, 1}. (2.1)

Second, B’s preferences are also characterized by a parameter β that represents his ver-

tical preferences for quality. For tractability reasons, we assume that B has quadratic

preferences on quality. His net surplus from consumption at 0 (net of transportation

costs) can thus be written as

βq − q2

2
− rx−

2∑
i=1

ti (2.2)

where ti is B’s payment to Si a component of quality qi = q. Similarly, B’s net surplus

from consumption at 1 can be expressed as

βq∗ − (q∗)2

2
− r(1− x)−

2∑
i=1

t∗i (2.3)

where t∗i is S∗i ’s price for quality q∗i = q∗.

The parameter β is drawn from a common knowledge distribution G with positive

density g = G′ on a support B =
[
β, β

]
. We will first consider that β is known to

suppliers, then we will examine the case where it is private information known only to

the buyer. Let βe = EG(β) denote the mean of this distribution. We again impose

another familiar Monotone Hazard Rate Property:

1−G
g

non-increasing. (2.4)

To ensure that a positive quality is always offered in equilibrium under all circumstances

below, we finally require that β be not too small, that is

β > θ∗ +
1

g(β)
. (2.5)

Contracts and Organizations of the Supply Chains. Supplier Si (resp. S∗i )

stands ready to provide a quality level q (resp. q∗) at prices Ti(q) (resp. T ∗i (q∗)). Those

nonlinear prices are thus commitments from the suppliers; leaving to B the choice of

4Bagnoli and Bergstrom (2005).
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which quality level he wants to procure given those schedules. A priori, no restrictions

on these price schedules are placed beyond the following weak requirements. First, those

schedules are lower semi-continuous to ensure existence of a maximizer to the buyer’s

optimization problem. Second, those schedules are defined on the full domain Q, that is,

there is a price to supply any feasible quality level.

Under Integration, S1 and S2 (resp. S∗1 and S∗2) act as a merger, say S (resp. S∗).

They jointly decide on an aggregate non-linear price T (q) =
∑2

i=1 Ti(q) (resp. T
∗
(q∗) =∑2

i=1 T
∗
i (q∗)) to maximize the overall profit of the supply chain.

Under Non-Integration, S1 and S2 (resp. S∗1 and S∗2) non-cooperatively decide of

their respective nonlinear price T1(q) and T2(q) (resp. T ∗1 (q∗) and T ∗2 (q∗)) with the sole

objective of maximizing their own profits.

Whether integrated or not, suppliers on each side of the Hotelling line still collectively

compete to satisfy the buyer’s needs. Therefore, our model involves both competition

between brands located in different venues and possibly cooperation or not depending on

the market structure under scrutiny at a given location.

Benchmark. The efficient level of quality and the overall surplus (gross of transporta-

tion costs) at 0 are respectively defined as

qfb(β) = arg max
q∈Q

(β−θ)q− q
2

2
= β−θ and W fb(β) = max

q∈Q
(β−θ)q− q

2

2
=

(β − θ)2

2
. (2.6)

Similar definitions (indexed with a star) for q∗fb(β) and W ∗fb(β) apply at location 1. We

assume that β is large enough to ensure full coverage of the market in all circumstances

below.

For future reference, we also define the surplus difference between venues as ∆W fb(β) =

W fb(β)−W ∗fb(β). This surplus difference reflects the comparative advantage of suppliers

at 0. It is always non-negative thanks to the fact that strong suppliers generate more

surplus:

∆W fb(β) = δθ (β − ϑ) > 0. (2.7)

3 Competition at the Extensive Margin

Suppose first that the buyer’s vertical preference parameter β is common knowledge and

verifiable. This informational environment might actually reflect a scenario where the

buyer and his suppliers have entertained long-lasting relationships so that suppliers have

been able to perfectly learn the buyer’s vertical preference parameter over time. Suppliers

can thus use price schedules of the form Ti(q, β) (resp. T ∗i (q∗, β)) that are contingent on

this parameter.
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3.1 Integrated Suppliers

When suppliers S and S∗ are integrated at both sides of the Hotelling line, the sole source

of competition comes from their horizontal differentiation.

3.1.1 Preliminaries

For future reference, we denoteB’s net surplus and quality choice at venue 0 as (U(β), q(β)).

Formally, we have

U(β) = max
q∈Q

βq − q2

2
− T (q, β) and q(β) = arg max

q∈Q
βq − q2

2
− T (q, β) (3.1)

where T =
∑2

i=1 Ti denotes the aggregate price schedule paid when the composite good

is purchased at location 0. When suppliers are integrated, this aggregate price schedule

is jointly chosen to maximize profits along the vertical chain. Of course, similar starred

notations and definitions apply for the allocation (U∗(β), q∗(β)) that prevails at venue 1.

Given the surplus at each location, those x such that

x ≤ X(β, T , T
∗
) =

1

2
+

1

2r
(U(β)− U∗(β)) , (3.2)

buy from S. Accordingly we identify S’s market share with the marginal buyerX(β, T , T
∗
)5.

Then S∗’s market share is 1− F (X(β, T , T
∗
)).

Equipped with this characterization of market shares, we may write S’s profit as

Π(β, T , T
∗
) = (T (q(β), β)− θq(β))F (X(β, T , T

∗
)). (3.3)

S’s profits can also be expressed in terms of the induced allocations (U(β), q(β)) and

(U∗(β), q∗(β)) reached at both sides of the market as

Π(β, T , T
∗
) =

(
(β − θ)q(β)− (q(β))2

2
− U(β)

)
F

(
1

2
+

1

2r
(U(β)− U∗(β))

)
.

By modifying the price charged for its own composite good, S can always undo the

impact of S∗’s own price on demand and thereby determine the identity of the marginal

customer X(β, T , T
∗
), indifferent between both venues. In other words, X = X(β, T , T

∗
)

becomes the relevant strategic variable in the horizontal competition between integrated

suppliers and this variable is jointly controlled. In the parlance of Martimort and Stole

(2012), the game between S and S∗ is an aggregative game, with X being the relevant

aggregate and each supplier’s objective depending on its own payment schedule and the

5Stricto sensu, S’s market share should be defined as the mass F (X(β, T , T
∗
)) but abusing terminol-

ogy raises no semantic issues thereafter.
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aggregate only. This fact is illustrated by the expression of S’s profits in (3.3) above.

Similarly, we may define S∗’s profit as

Π∗(β, T , T
∗
) = (T

∗
(q∗(β), β)− θ∗q∗(β))(1− F (X(β, T , T

∗
)))

or

Π∗(β, T , T
∗
) =

(
(β − θ∗)q∗(β)− (q∗(β))2

2
− U∗(β)

)(
1− F

(
1

2
+

1

2r
(U(β)− U∗(β))

))
.

3.1.2 Equilibrium

Under integration, an equilibrium of the game is thus entirely characterized by a pair of

aggregate price schedules (T
m
, T
∗m

) together with a market share Xm(β) that those tariffs

jointly induce. At equilibrium, neither integrated supplier wants to deviate by offering

another aggregate price schedule and, so doing, induce another market segmentation.

For future reference and slightly abusing notations, it is thus useful to express S’s

profit in terms of its own market share F (X), the quality it supplies and the surplus

profile offered by its rival S∗ as

Π(β, T , T
∗
) =

(
(β − θ)q(β)− (q(β))2

2
− U∗m(β)− r(2X − 1)

)
F (X) . (3.4)

Expressing also S∗’s profits in terms of its own market share yields

Π∗(β, T , T
∗
) =

(
(β − θ∗)q∗(β)− (q∗(β))2

2
− Um(β) + r(2X − 1)

)
(1− F (X)) . (3.5)

Quality Levels and Market Shares. Following Martimort and Stole (2012), the

Principle of Aggregate Concurrence applies in our context.6 At equilibrium, both inte-

grated suppliers should agree on which market segmentation Xm(β) should prevail. Of

course, on their respective market shares, integrated suppliers remain free to choose how

much quality to provide.

Proposition 1. Suppose that suppliers are integrated on both sides of the market and

there is complete information on the vertical differentiation parameter β. There exists a

unique equilibrium and it entails the following features.

1. Quality is efficient on both sides of the market:

qm(β) = qfb(β) and q∗m(β) = q∗fb(β). (3.6)

6See also Bernheim and Whinston (1986a) for an earlier example of this Principle.
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2. The market segmentation Xm(β) satisfies

∆W fb(β)

2r
+

1

2
= Xm(β) +

2F (Xm(β))− 1

f(Xm(β))
. (3.7)

Xm(β) increases with δθ and belongs to
[
1
2
, 1
]

whenever

0 ≤ δθ
2r

(β − ϑ) ≤ 1

2
+

1

f(1)
. (3.8)

On their respective market shares, suppliers offer the efficient quality level so as to

make their own venue as attractive as possible for the buyer. More quality is found at

location 0 because suppliers have a comparative advantage there. Everything happens as

if integrated suppliers were competing for the buyer’s needs by bidding the net surplus

that they can provide and the best way of doing so is not to distort the quality level that

they can respectively supply. Surplus to the buyer is shifted by means of lower prices

with no consequences on quality level on each market segment.7 The sole channel for

competition here is at the extensive margin. The size of the market that each of those

suppliers secures at equilibrium and the overall surplus reached on each market segments

are determined separately.

The choice of the market share that the integrated supplier S wants to cater follows

from a simple trade-off. Starting from the equilibrium market share Xm(β), consider

the benefits for S of raising the price charged for the efficient quality level qfb(β) by

a marginal amount dT . This perturbation increases S’s expected profit by a term of

first-order magnitude, namely

F (Xm(β))dT.

On the other hand, more consumers now prefer to visit S∗. The mass of those lost

consumers is f(Xm(β))dT
2r

and the overall profit loss for S is thus

(
W fb(β)− U∗s(β)− r(2Xm(β)− 1)

)
f(Xm(β))

dT

2r
.

At equilibrium, losses and gains should compensate each other so that

W fb(β)− U∗m(β)− r(2Xm(β)− 1) = 2r
F (Xm(β))

f(Xm(β))
. (3.9)

A similar condition applies for S∗ and thus

W ∗fb(β)− Um(β) + r(2Xm(β)− 1) = 2r
1− F (Xm(β))

f(Xm(β))
. (3.10)

7See Armstrong and Vickers (2001) for a similar insight in a related model.
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Using (3.9), (3.10) and the definition of market share Xm(β) coming from (3.2.1) finally

yields (3.7). In particular, we observe that, when suppliers on both sides of the market

are of equal strength, each caters one half of the overall demand. Instead, as suppliers at

0 enjoy a more significant competitive advantage, they also serve a greater market share.

Two-Part Tariffs and Profits. Under complete information on β, there is no loss

of generality in assuming that S (resp S∗) charges a two-part tariff of the form

Tm(q, β) = θq + Cm(β) (resp. T ∗m(q∗, β) = θ∗q∗ + C∗m(β)). (3.11)

To see why, remember that, had it acted as a monopolist with no threat of competition,

S could as well recommend to the buyer to procure the efficient quality level qfb(β) and

extract the whole buyer’s gross surplus up to the point where the buyer’s move to location

0 is no longer attractive. This solution could as well be replicated with a two-part tariff

of the form (3.11). When offered such scheme, B chooses the level of quality he wants to

procure and pays each extra unit of quality at its marginal cost. Because B is de facto

made residual claimant for the overall surplus of the relationship with S, he chooses the

first-best level of quality. Then, a fee W fb(β) is used by the monopolist to extract all the

corresponding surplus from B.

When integrated suppliers compete over the Hotelling line, the same logic applies.

Each supplier has in its best-response correspondence a two-part tariff of the form (3.11).

With those schemes, each supplier is indifferent over the quality level that might be

chosen by B. Henceforth, the fee Cm(β) (resp. C∗m(β)) corresponds to the equilibrium

profit level that S (resp. S∗) can secure.

Proposition 2. Suppose that suppliers are integrated on both sides of the market and

there is complete information on β. S and S∗’s equilibrium fees satisfy

Cm(β) = 2r
F (Xm(β))

f(Xm(β))
≥ 2r

1− F (Xm(β))

f(Xm(β))
= C∗m(β). (3.12)

Equilibrium expected profits for S and S∗ respectively also satisfy

Πm(β) = 2r
(F (Xm(β)))2

f(Xm(β))
≥ 2r

(1− F (Xm(β)))2

f(Xm(β))
= Π∗m(β). (3.13)

When integrated suppliers at both sides of the market are no longer symmetric, the

strong supplier located at 0 gets a greater market share and can charge a higher fee for

its services. Since both this fee charged and the market share are greater on the strong

side of the market, a strong integrated supplier makes more profit than its weaker rival.
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3.2 Non-Integrated Suppliers

Consider now the scenario where suppliers on both sides remain non-integrated. Those

suppliers now choose non-cooperatively their respective price schedules. There is no

competition both across and within locations. Across location, suppliers offer composite

goods which are substitutes. At each location, suppliers compete by offering components

which are complementary.

3.2.1 Preliminaries

The game played by non-integrated suppliers at a given venue is an intrinsic common

agency game, to use the expression coined by Bernheim and Whinston (1986a). Because

they supply essential components, both suppliers are needed for S to build a composite

good. Hence, both price schedules T1 and T2 should be accepted at once by B if he

considers purchasing at location 0. The sole outside option for B is thus to move to

location 1 and buy both components from non-integrated suppliers located there. In sharp

contrast with Bernheim and Whinston (1986a) who considered deterministic models of

common agency under complete information, this outside option is now stochastic thanks

to the fact that B’s decision to buy from this outside option depends on his own location

on the line which is itself a random and non-contractible variable.

Formally, we may now write Si’s profit as

Πi(β, Ti, T−i, T
∗
) = (Ti(q(β), β)− θiq(β))F (X(β, Ti + T−i, T

∗
)).

Profit can also be written in terms of the allocations obtained at each venue as

Πi(β, Ti, T−i, T
∗
) =

(
(β − θi)q(β))− (q(β))2

2
− T−i(q(β), β)− U(β)

)
F

(
1

2
+

1

2r
(U(β)− U∗(β))

)
.

The bracketed terms stands for Si’s share of the bilateral payoff that this supplier can

reach in its relationship with B when he visits location 0. The second term is the prob-

ability that B visits that location.

3.2.2 Truthful Equilibrium

An equilibrium of the game under non-integration on both sides of the market can now be

defined as an array of price schedules (T s1 , T
s
2 , T

∗s
1 , T

∗s
2 ) that induce a pair of allocations

(U s(β), qs(β)) and (U∗s(β), q∗s(β)) at both locations such that each supplier does not

find it valuable to deviate with an alternative price schedule that would induce another

allocation on his own side of the market and another market segmentation.

Again, we follow our previous approach that stresses the role of the market share as

an aggregate strategic variable. Slightly abusing notations, we now express Si’s profits

13



in terms of the market share that the choice of its own price schedule induces as

Πi(β, Ti, T
s
−i, T

∗s
) =

(
(β − θi)q(β))− (q(β))2

2
− T s−i(q(β), β)− U∗s(β)− r(2X − 1)

)
F (X) .

(3.14)

Given the conjectured schedule T s−i that is offered by the complementary supplier S−i

at equilibrium, a very similar logic to that found to compute the best response of an

integrated supplier should still apply. First, Si would like to induce the buyer to choose

a quality level qs(β) that maximizes the bilateral payoff of the coalition it forms with the

buyer, namely

qs(β) ∈ arg max
q∈Q

(β − θi)q −
q2

2
− T s−i(q, β). (3.15)

Second, Si would like to induce a market share Xs(β) that maximizes (3.14), i.e.,

(β− θi)qs(β)− (qs(β))2

2
−T s−i(qs(β), β)−U∗s(β)− r(2Xs(β)−1) = 2r

F (Xs(β))

f(Xs(β))
. (3.16)

Conditions (3.15) and (3.16) characterize Si’s best responses both at the intensive

margin (the choice of quality) and at the extensive margin (the induced choice of market

share).

As far as the intensive margin is concerned, it is straightforward to check that Si

can always implement the quality level qs(β) by using again a two-part tariff, or truthful

schedule of the form

T si (q, β) = θiq + Cs
i (β) (3.17)

and letting the buyer choose optimally the quality level he requests. In other words, such

a two-part tariff where each extra unit of quality is paid at marginal cost can always

be found within Si’s best-response correspondance. Following Bernheim and Whinston

(1986b),8 focusing on two-part/truthful schedules of the form (3.17) is thus akin to an

equilibrium refinement. We will follow most of the literature when adopting this mild

refinement.9

8The notion of truthfulness was developed by these authors in contexts where common agency is
delegated, i.e., the buyer can always refuse any single contract. This option requires that a price schedule
cannot be negative on its equilibrium range but, when positive, a truthful price schedule perfectly reflects
the supplier’s marginal cost. In our context, the buyer needs to buy complementary components from
each supplier when he visits a given location and contracts have to be jointly accepted. Common agency
is intrinsic. Still, at the margin, a trufthul price schedule again reflects the supplier’s marginal cost but
now on its full range.

9Yet, we notice that a plethora of other equilibria exists. Consider first forcing schedules such that
Ti(q) = Ti < +∞ if q = q̂ ∈ Q and Ti(q) = +∞ for q 6= q̂. By offering such a schedule, Si can essentially
force the agent to buy only quality q̂ at a finite price. It is immediate to check that any quality level q̂
can be supported at some equilibrium with such forcing contracts. Yet, only q̂ = qfb(β) turns out to be
chosen if the equilibrium set is refined with a Pareto-dominance criterion or with a coalition-proofness
criterion (Berheim et al., 1987). This dominant equilibrium is also selected with the intuitively simpler
truthfulness requirement.
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Turning to the extensive margin, we notice the similarity of (3.16) with (3.9). Again,

Si would like to raise its own price up to the point where the expected profit gain on

nearby captive customers compensates the corresponding loss of demand.

Quality and Market Shares. We summarize our findings in the next proposition.

Proposition 3. Suppose that suppliers are non-integrated on both sides of the market and

there is complete information on the vertical differentiation parameter β. There exists

a unique equilibrium where suppliers charge truthful tariffs. This equilibrium entails the

following features.

1. Quality is efficient at both locations:

qs(β) = qfb(β) and q∗s(β) = q∗fb(β). (3.18)

2. The market segmentation Xs(β) satisfies

∆W fb(β)

2r
+

1

2
= Xs(β) + 2

2F (Xs(β))− 1

f(Xs(β))
. (3.19)

Xs(β) increases with δθ and belongs to
[
1
2
, Xm(β)

]
.

The benefit of relying on the truthfulness refinement as a selection criterion is that it

implies that, as under integration, on both sides of the market non-cooperating suppliers

agree on providing the efficient quality. This similarity facilitates the comparison between

the integration and the non-integration scenarios. Intuitively, when non-integrated sup-

pliers offer two-part tariffs of the form (3.17), the buyer ends up being residual claimant

for the choice of the quality level. He thus fully internalizes the impact of this choice

on the costs of the different components. Efficiency immediately follows. As we will see,

this reasoning relies however on the fact that the preference of the buyer for quality (β)

is known.

Importantly, when suppliers remains non-integrated, the market is more balanced;

Xs(β) comes closer to 1
2

than Xm(β). Strong suppliers restrict their market share when

acting non-cooperatively while weak suppliers expand their own. To understand this

phenomenon, we have to come back on the well-known double-marginalization problem

à la Cournot (1838).10 In this textbook model, a monopolist selling one component does

not take into account the loss of profit incurred by the firm selling the complementary

component when it raises its own price. Monopolists selling complementary goods end

up each charging a unit price for their component higher than the joint profit maximizing

level so that they excessively contract the overall demand for their products. The first

10See Linnemeur (2022) for the correct intellectual origins of the double-marginalization effect.
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difference is that, in our setting suppliers are using tariffs with marginal cost-pricing.

Hence, conditionally on buying, there is no inefficiency in the level of quality offered

at equilibrium whether suppliers are integrated or not. Yet, distortions come at the

extensive margin. Under integration, suppliers would increase their joint fee up to the

point where the gain of increased joint profit conditionally on selling is offset by the

corresponding loss of profit coming with lower demand. Under non-integration, a given

supplier does not take into account the impact of raising its own fee on the loss of profit

of the complementary supplier. Each supplier thus charges too high a fee and demand

is excessively restricted. Given that suppliers do not coordinate on the fees they charge,

we may want to refer to this phenomenon as a double-surplus extraction instead of the

more common wording of double-marginalization.

Had the market not been fully covered, adopting these non-cooperative strategies at

both sides of the Hotelling line would lead to restricted services. A greater share of the

market around that would remain uncovered. When the market is instead fully covered,

B reacts to the higher fees non-cooperatively charged by suppliers on the strong side

of the market by switching to the weak side. Although suppliers also do not cooperate

on the weak side of the market, the so expanded demand for their products more than

compensate for the double-surplus extraction at that mere location.

Profits and Welfare. Next proposition further investigates the consequences of

non-integration on profits.

Proposition 4. Suppose that suppliers are non-integrated on both sides of the market

and there is complete information on the vertical differentiation parameter β. Suppliers

at a given location charge the same fee

Cs
i = Cs(β) (resp. C∗si = C∗s(β)), i = 1, 2

where

Cs(β) = 2r
F (Xs(β))

f(Xs(β))
≥ 2r

1− F (Xs(β))

f(Xs(β))
= C∗s(β), i = 1, 2 (3.20)

and make the same equilibrium profits

Πs
i (β) = Πs(β) (resp. Π∗si (β) = Π∗s(β)), i = 1, 2

where

Πs(β) = 2r
(F (Xs(β)))2

f(Xs(β))
≥ 2r

(1− F (Xs(β)))2

f(Xs(β))
= Π∗s(β). (3.21)

According to the proposition, the buyer of type β procuring from suppliers S1 and S2

ends up paying

T
s (
qfb(β)

)
= 2Cs(β) + θqfb(β).
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With a truthful schedule, Si’s profit amounts to the fee Cs
i that it charges to each

possible buyer it caters times the demand that it serves. Raising this fee by a marginal

amount dC thus raises profit per capita by dC and thus increases overall profit by

F (Xs(β))dC.

At the same time, the loss from that demand being shifted towards the other location

becomes

Csf(Xs(β))
dC

2r
.

At equilibrium, those gains and losses compensate each other and both suppliers on the

strong side of the market, since they agree on which market share to induce, charge the

same fee. The left-hand (resp. right-hand) side equality of (3.20) immediately follows.

It turns out that, when suppliers are non-integrated, the market is more balanced than

with integration. Non-integrated suppliers on the strong side of the market lose market

share while the reverse occurs for suppliers on the weak side of the market. Intuitively,

because strong suppliers have a higher market share, they are more inclined to raise prices

when de-integration causes suppliers on the weak side to increase their own prices. Our

next result shows that this combination of higher prices and shift in market shares results

in higher overall profit for suppliers.

Proposition 5. Assume that δθ = θ∗ − θ is not too large. Then total profit is higher

when suppliers are non-integrated: 2Πs(β) + 2Π∗s(β) > Πm(β) + Π∗m(β).

To understand the intuition underlying Proposition 5 consider the case where suppliers

have equal strengths on both sides of the market. Under integration, suppliers would

share equally the market and thus charge Cm(β) = r

f( 1
2)

on both sides. Since demand

is equally shared accross locations, the overall profit that accrues to the industry is thus

worth Πm(β) = 2 × r

2f( 1
2)

. Under non-integration, the market is still split evenly and

each supplier on both side charges the very same fee Cs(β) = Cm(β), which implies that

the profit of the industry doubles: Πs(β) = 2Πm(β). That is, non-integration soften

competition, which shifts surplus from the buyer to the suppliers. It follows that this

result extends to cases where the asymmetry δθ between suppliers is not too large. In the

case where F is uniform, Proposition 5 holds for any δθ.

To address more broadly the welfare consequences of organizational choices, we now

define the total welfare when the market is fully covered but split between suppliers at

some X ∈ [0, 1] as

W(X) =

∫ X

0

(
W fb(β)− rx

)
f(x)dx+

∫ 1

X

(
W ∗fb(β)− r(1− x)

)
f(x)dx. (3.22)
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In particular,W(Xm(β)) stands for welfare under integration whileW(Xs(β)) is reached

under non-integration. These expressions take into account the fact, that in both scenar-

ios, quality is efficiently provided on both sides of the market.

Next Proposition addresses more generally the comparison between organizational

forms from an overall welfare viewpoint.

Proposition 6. Total welfare are higher under integration:

W(Xm(β)) ≥ W(Xs(β)). (3.23)

The logic behind this result is straightforward. Efficiency would require that the

market be split at Xfb(β) that maximizes (3.22) and we find

∆W fb(β)

2r
+

1

2
= Xfb(β). (3.24)

When suppliers have unequal strengths on each side of the market, Xfb(β) is greater

than one half. It is also greater than Xm(β) and a fortiori Xs(β). Hence, the strong side

of the market restricts too much its market share under integration but it does so even

more under separation; which increases inefficiency.

Finally notice that, as prices increase and efficiency decreases under separation, the

buyer surplus decreases with separation (at least for θ∗ − θ not too large).

Running Example. Suppose that F is uniform on Θ. It is straightforward to compute

Xm(β) and Xs(β) when interior as

Xm(β) =
1

2
+

∆W fb(β)

6r
and Xs(β) =

1

2
+

∆W fb(β)

10r
.

Similarly, the equilibrium fees under integration and non-integration respectively satisfy

Cm(β) = r +
∆W fb(β)

3
≥ r − ∆W fb(β)

3
= C∗m(β)

and

Cs(β) = r +
∆W fb(β)

5
≥ r − ∆W fb(β)

5
= C∗s(β).

Equilibrium profits under integration are finally given by

Πm(β) = 2r

(
1

2
+

∆W fb(β)

6r

)2

≥ 2r

(
1

2
− ∆W fb(β)

6r

)2

= Π∗m(β)

Under non-integration, each supplier on the strong side of the market gets Πs(β) while it
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gets Π∗s(β) on the weak side of the market with those profit levels being given by

Πs(β) = 2r

(
1

2
+

∆W fb(β)

10r

)2

≥ 2r

(
1

2
− ∆W fb(β)

10r

)2

= Π∗s(β).

4 Competition at Both the Intensive and Extensive

Margins

We now consider a scenario where B has private information on his vertical preference

parameter β. This implies that prices can no longer be contingent on the vertical dif-

ferentiation parameter β as this parameter is non-observable. In line with seminal work

by Musa and Rosen (1978), Maskin and Riley (1984) and Wilson (1993) among others,

non-linear pricing finds a theoretical foundation as a mechanism through which sellers

screen buyers.

4.1 Incentive Compatibility

Consider the case where B visits the strong side of the market. We may rewrite his payoff

from choosing within the offered aggregate tariff T that suppliers offer on that location

as

U(β) = max
q∈Q

βq − q2

2
− T (q).11 (4.1)

Accordingly, we define B’s quality choice at venue 0 as

q(β) ∈ arg max
q∈Q

βq − q2

2
− T (q). (4.2)

We use similar starred notation for the allocation (U∗(β), q∗(β)) reached on the weak side

of the market (location 1).

Standard results12 show that B’s net payoff U(β) should be absolutely continuous,

satisfy the following integral representation

U(β) = U(β) +

∫ β

β

q(β̃)dβ̃, (4.3)

11Because T is lower semi-continuous and Q is compact, the buyer’s maximization problem has always
a solution.

12See Rochet (1987) and Milgrom and Segal (2002) among others Lemma A.1 in the Appendix for
details.

19



and be convex, a condition that can be written as

q non-decreasing. (4.4)

The integral representation (4.3) is a fundamental result in the mechanism design

literature. It relates any non-decreasing quality profile q to the buyer’s payoff U(β) that

such profile induces. This result is the basis for the trade-off between efficiency and rent

extraction that pervades the nonlinear pricing literature. We will see that in our context,

this trade-off will bite.

To understand the envelope condition (4.3), it is useful to consider the benefits that

a buyer with preference parameter β gets by adopting the lower quality q(β − dβ) that

is chosen by a marginally lower type β̂ = β − dβ. By doing so, the buyer with type β

would pay less and overall obtain a payoff that is above the payoff of a buyer of type β̂

by approximately q(β − dβ)dβ ≈ q(β)dβ . A buyer with type β should thus receive an

extra marginal rent worth q(β)dβ beyond what is already given to a type β − dβ. The

integral representation (4.3) shows how those rents offered to all infra-marginal types end

up being compounded.

4.2 Market Shares

B decides to procure at either location 0 or 1 ex ante, i.e., before knowing the exact

realization of his vertical preference parameter β. Following Yaari (1987) and Gershkov

et al. (2023), we shall assume that the buyer’s preferences for risky lotteries satisfy dual

risk aversion, i.e., the buyer overweights low realizations of β in his assessment of the

benefits of procuring at either location. Formally, assuming (weak) dual risk aversion

amounts to considering that B located at x evaluates his expected utility from consuming

at 0 (resp. 1) with the following criterion:

EH(U(β))− rx (resp. EH(U∗(β))− r(1− x))

where the distribution G first-order stochastically dominates the distribution H used to

compute this expectation.

To maintain tractability without losing any economic insight, we suppose that H is a

simple transformation of G that we write as

H(β) =

ε if β = β,

ε+ (1− ε)G(β) if β ∈ (β, β]
(4.5)

where ε ∈ (0, 1). In other words, B assigns a Dirac mass ε to the worst possible realization

of his preference parameter. With the complementary probability 1− ε, other types are
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accounted for based on the prior beliefs G. In the polar case ε = 1, the buyer bases his

purchases decision on the worst possible realization of his type β. The other polar case

ε = 0 amounts to assuming that the buyer is risk neutral.

Equipped with the specification (4.5) and the integral representation (4.3), a simple

integration by parts yields

EH(U(β)) = U(β) + (1− ε)
∫ β

β

q(β)(1−G(β))dβ.

B will thus decide to move to location 0 for his purchases whenever

EH(U(β))− rx ≥ EH(U∗(β))− r(1− x).

This condition can be expressed in terms of B’s location x as

x ≤ X(T , T
∗
) =

1

2
+

1

2r

(
U(β)− U∗(β) + (1− ε)EG

(
(q(β)− q∗(β))

1−G(β)

g(β)

))
.

(4.6)

4.3 Equilibrium Under Integration

Under integration, S’s expected profits can now be expressed as

Π(T , T
∗
) = EG(T (q(β))− θq(β))F (X(T , T

∗
)).

Following previous steps, this expression can be written in terms of the allocations

(U(β), q(β)) and (U∗(β), q∗(β)) as13

Π(T , T
∗
) = EG

((
β − θ − 1−G(β)

g(β)

)
q(β)− (q(β))2

2
− U(β)

)
× F

(
X(T , T

∗
)
)
.

We may finally express S’s profit in terms of its own market share F (X) (using 4.6) as

Π(T , T
∗
) =EG

((
β − θ − ε1−G(β)

g(β)

)
q(β)− (1− ε)1−G(β)

g(β)
q∗(β)− (q(β))2

2

− U∗(β)− r(2X − 1)
)
F (X) . (4.7)

13Using EG
(
T (q(β))

)
= EG

(
βq(β)− q(β)2

2 − U(β)
)

and EG (U(β)) = EG
(
U(β) + 1−G(β)

g(β) q(β)
)

.
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A similar expression is obtained for S∗’s profit under integration:

Π∗(T , T
∗
) =EG

((
β − θ∗ − ε1−G(β)

g(β)

)
q∗(β)− (1− ε)1−G(β)

g(β)
q(β)− (q∗(β))2

2

− U(β) + r(2X − 1)
)

(1− F (X)). (4.8)

Quality Distortions. To screen the buyer’s preferences, integrated suppliers on both

sides of the market distort the quality they offer. As in Mussa and Rosen (1978)’s

monopolistic scenario, those distortions help extracting surplus from buyers with the

highest willingness to consume quality. Reducing the quality offered to buyers with lower

realizations of the vertical preference parameter β makes it less attractive for buyers with

higher such vertical types to adopt the behavior of the latters and save on the price they

pay for the composite good. Horizontal competition along the Hotelling line does not

affect this basic insight. Competition determines the market shares that strong and weak

suppliers respectively cover but, on a given market share, distortions are very much like

in a monopolistic setting.

Yet, there is a first significant modeling difference between our setting and the mo-

nopolistic screening environment à la Mussa and Rosen (1978). In that paper, like in

most of the nonlinear pricing literature, the buyer knows his type before contracting with

the monopolist. Contracting takes place ex post. In contrast, in our model, the buyer

ignores his type before choosing which suppliers to visit and thus contracting takes place

ex ante. Had the buyer been risk neutral, the suppliers located at 0 could just offer a

two-part tariff of the form

T (q) = θq + C (4.9)

as under complete information on β. With such a scheme, the buyer would always choose

the efficient level of quality when contracting at that venue. The fixed part of the tariff

could be chosen by suppliers so as to optimally trade off the gains in profits obtained on

all demand served when raising this fee against the corresponding loss of demand that

follows such raise. The difficulty with this scheme is that the buyer may find paying this

fee too costly in case his preference parameter turns out to be close to β. This type would

prefer leaving S when aware of his type. Our preference specification where the buyer

overweights the probability that type β realizes (under H(.)) makes that risk costly ex

ante for the buyer. Because the seller does not perceive this realization as very likely

(under G(.)) it is efficient to increase the utility of the buyer in that adverse state to

boost his demand. The cost of doing so is that this utility rise at the bottom transmits

to all higher types β through incentive-compatibility constraints, as is apparent in (4.3).

To limit that transmission which is governed by the quality level q(β), S benefits from

distorting quality downwards, all the more so for lower types. As a result, with a (dual)

risk-averse buyer, there should now be a positive wedge between supplier S’s marginal
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cost θ and the marginal price T ′(q) this supplier charges for each extra unit.

The second significant difference between this scenario and the monopolistic screening

environment studied in Mussa and Rosen (1978) comes from the fact that, in our context,

suppliers compete over the real line. Raising his own tariff certainly induces a loss of

demand for S’s goods but that demand can still be served by the rival supplier S∗ at

the other end of the line. Intuition built in earlier work by Stole (1995), Armstrong

and Vickers (2001) and Rochet and Stole (2002) might suggest that such competition

would reduce marginal prices towards marginal costs, eroding discriminatory power on

both sides of the market. In contrast with ours, those papers consider models where

competing suppliers wants to attract an already informed buyer. The above intuition

turns out to be incorrect in our context where competition takes place ex ante, i.e.,

before the buyer learns his own type. Competing suppliers find it optimal to reduce the

overall level of their own tariffs to attract buyers but still, they charge the same marginal

price as if they were monopolists. In short, competition affects the extensive margin (the

market shares) but not the intensive margin (the quality level).

These findings are presented in the next proposition.

Proposition 7. Suppose that suppliers are integrated on both sides of the market and

the buyer has private information on his demand parameter β. There exists a unique

equilibrium between suppliers that entails the following features.

1. Quality is downward distorted below the first-best level on both sides of the market:

qm(β) = qfb(β)− ε1−G(β)

g(β)
and q∗m(β) = q∗fb(β)− ε1−G(β)

g(β)
. (4.10)

2. The market segmentation Xm satisfies

∆W as

2r
+

1

2
= Xm +

2F (Xm)− 1

f(Xm)
(4.11)

where

∆W as = δθ
(
(1− ε)βe + εβ − ϑ

)
. (4.12)

Xm decreases with ε and belongs to
[
1
2
, 1
]

whenever

0 ≤ δθ
2r

(
(1− ε)βe + εβ − ϑ

)
≤ 1

2
+

1

f(1)
. (4.13)

Some comments are in order. First, both suppliers distort the quality of the good they

respectively offer below its first-best level. By reducing the whole spectrum of quality

offered (and adjusting U(β) accordingly), each supplier reduces the risk borne by B and
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makes it more attractive for B to visit its own location. From the point of view of sellers,

everything happens as if the demand parameter β was now replaced by a lower virtual

demand parameter equal to

β̃m = β − ε1−G(β)

g(β)
≤ β. (4.14)

In the extreme case where ε tends to 1, the buyer’s decision is solely based on what

each supplier offers to the worst realization of the buyer’s type β. Therefore suppliers

compete to attract this low type, understanding that buyers with β ≥ β then become

de facto captive. Suppliers’ incentives to extract rents from these higher types are then

maximal, which generates the highest quality distortions.

Instead, when ε decreases towards 0, everything happens as if B was almost risk

neutral. S offers a tariff which is almost of the form (4.9) and thus B, once informed on

his vertical type, chooses an efficient quality level. The same applies on S∗’s side.

Because suppliers at both sides of the market charge the same marginal price and

distort quality similarly, the difference in quality levels between both venues remain un-

changed and only reflects the suppliers’ comparative advantage, as under complete infor-

mation on β. Yet, quality levels on both sides are lower because of screening distortions.

Market Shares. Under complete information on β, market shares depended on the

difference in surplus across the two locations (see Equation (3.7)). A similar intuition

applies here (Equation (4.11)) but the difference is now in the expected virtual surpluses

that account for the downward adjustment in Equation (4.14).

Tariffs and Profits. As discussed above, under asymmetric information, each sup-

plier charges a marginal price above its marginal cost. The resulting tariffs are charac-

terized in the next Proposition.

Proposition 8. Suppose that suppliers are integrated on both sides of the market and

there is asymmetric information on the vertical parameter β. S and S∗’s equilibrium

tariffs satisfy

Tm(q) = θq + ε

∫ q

qm(β)

1−G(γm(q̃))

g(γm(q̃))
dq̃ + Cm (4.15)

and

T ∗m(q) = θ∗q + ε

∫ q

qm(β)

1−G(γ∗m(q̃))

g(γ∗m(q̃))
dq̃ + C∗m (4.16)

where γm(q) and γ∗m(q) are respectively the inverse functions for qm(β) and q∗m(β) de-

fined in (4.3) and where fees are given by

Cm = 2r
F (Xm)

f(Xm)
− ε

∫ β

β

(1−G(β))2

g(β)

(
1− ε d

dβ

(
1−G(β)

g(β)

))
dβ (4.17)
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and

C∗m = 2r
1− F (Xm)

f(Xm)
− ε

∫ β

β

(1−G(β))2

g(β)

(
1− ε d

dβ

(
1−G(β)

g(β)

))
dβ. (4.18)

The comparison of (4.15) and (4.16) with their complete information counterparts

(3.11) shows two effects of asymmetric information. First, marginal prices are above

marginal costs at both sides of the market as suppliers exert discriminatory power on

their captive demand. Second, fixed fees, although similar to their complete information

counterparts (3.12), are now lowered. However, the variable part of tarif is higher under

asymmetric information.

Next proposition turns to equilibrium profits. Remarkably, those profits take the

same expressions as under complete information and they only depend on the respective

market shares of the suppliers.

Proposition 9. Suppose that suppliers are integrated on both sides of the market and

there is asymmetric information on β. Equilibrium profits for S and S∗ are respectively

such that

Πm = 2r
(F (Xm))2

f(Xm)
≥ 2r

(1− F (Xm))2

f(Xm)
= Π∗m. (4.19)

Running Example. It is straightforward to compute Xm when interior as

Xm =
1

2
+

∆W as

6r
.

Asymmetric information reduces the attractiveness of the strong side of the market. More

precisely, we have

∆W as ≤ EG
(
∆W fb(β)

)
= δθ(β

e − ϑ)

and thus

Xm ≤ EG (Xm(β)) .

In other words, asymmetric information weakens the strong suppliers’ comparative ad-

vantage and make suppliers on both sides more alike. In fact, asymmetric information

dampens quality as shown above and, at lower quality levels, virtual surpluses on both

sides of the market are more alike. To illustrate, suppose that G is uniform on [1, 2]. We

compute

qm(β) = (1 + 2ε)β − 2ε− θ and q∗m(β) = (1 + 2ε)β − 2ε− θ∗.

Both quality levels remain non-negative when 1 ≥ θ∗ ≥ θ. From there, it also follows

that

γm(q) =
q + θ + 2ε

1 + 2ε
and γ∗m(q) =

q + θ∗ + 2ε

1 + 2ε
.
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Inserting into the expressions of marginal prices yields

dTm(q)

dq
− θ =

ε

1 + 2ε
(2 + 2ε− θ − q) ≥ ε

1 + 2ε
(2 + 2ε− θ∗ − q) =

dT ∗m(q)

dq
− θ∗.

This strong side of the market charges a lower price-cost margin than the weak side of

the market. Hence, a higher quality is supplied at that venue. Finally, equilibrium fees

satisfy

Cm = r + δθ

(
1 + ε

2
− ϑ
)
− ε(1 + ε)

3
, C∗m = r − δθ

(
1 + ε

2
− ϑ
)
− ε(1 + ε)

3
.

We notice that, for ε = 0, Cm = EG (Cm(β)), C∗m = EG (C∗m(β)) andXm = EG (Xm(β)).

In other words, when the buyer is risk neutral, suppliers still compete in two part tariffs

with no (marginal) price-cost margin but, in expectations, this competition replicates

what is achieved when β is known.

4.4 Maximal Equilibria Under Non-Integration

Under non-integration and asymmetric information, Si’s expected profits can now be

expressed as

Πi(Ti, T
s
−i, T

∗s
) = EG(Ti(q(β))− θiq(β))F (X(Ti + T s−i, T

∗s
)).

This profit can be rewritten in terms of the allocations (U(β), q(β)) and (U∗(β), q∗(β))

at both sides of the market as

Πi(Ti, T
s
−i, T

∗s
) = EG

((
β − θi −

1−G(β)

g(β)

)
q(β)− (q(β))2

2
− T s−i(q(β)))− U(β)

)

×F
(

1

2
+

1

2r

(
U(β)− U∗(β) + (1− ε)EG

(
(q(β)− q∗(β))

1−G(β)

g(β)

)))
.

We may finally express Si’s profit in terms of its own market share F (X) that its choice

of a tariff Ti induces, taking as given the other suppliers’ tariffs on both sides of the

markets, as

Πi(Ti, T
s
−i, T

∗s
) = EG

((
β − θi − ε

1−G(β)

g(β)

)
q(β)− (1− ε)1−G(β)

g(β)
q∗(β)− (q(β))2

2

− T s−i(q(β)))− U∗(β)− r(2X − 1)
)
F (X) . (4.20)
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A similar expression yields S∗i ’s profit under non-integration taking as given the other

suppliers’ tariffs on both sides of the markets:

Π∗i (Ti, T
∗s
−i, T

s
) = EG

((
β − θi − ε

1−G(β)

g(β)

)
q∗(β)− (1− ε)1−G(β)

g(β)
q(β)− (q∗(β))2

2

− T ∗s−i(q(β))− U(β) + r(2X − 1)
)

(1− F (X)). (4.21)

Here also, suppliers on a given side of the market should agree on which quality level

to induce at equilibrium. To illustrate, pointwise optimization of the maximand in (4.20)

leads Si to choose qs(β) that maximizes the bilateral virtual surplus of the coalition it

forms with the buyer, namely

qs(β) ∈ arg max
q∈Q

(
β − θi − ε

1−G(β)

g(β)

)
q − q2

2
− T s−i(q). (4.22)

Second, Si would like to induce a market segmentation Xs such that

Xs ∈ arg max
X∈[0,1]

EG
((

β − θi − ε
1−G(β)

g(β)

)
qs(β)− (1− ε)1−G(β)

g(β)
q∗s(β)− (qs(β))2

2

− T s−i(qs(β)))− U∗s(β)− r(2X − 1)
)
F (X). (4.23)

Conditions (4.22) and (4.23) again characterize Si’s best responses both at the intensive

and at the extensive margin.

Following Martimort, Semenov and Stole (2018), we observe that, if qs(β) solves the

maximization problem (4.22) for i=1, 2, it also solves a maximization problem obtained

by summing the maximands for each supplier, namely

qs(β) ∈ arg max
q∈Q

(
β − θ − 2ε

1−G(β)

g(β)

)
q − q2

2
+

(
βq − q2

2
− T s(q)

)
(4.24)

where T
s
(q) =

∑2
i=1 T

s
i (q).

The power of this aggregation procedure across best responses is to allow us to identify

the equilibrium choice of quality with the solution of a single maximization problem. Of

course, the so obtained maximization problem still encompasses a fixed-point because

the second-bracketed term on the right-hand side of (4.24) depends on the aggregated

equilibrium tariff T
s
. Everything happens as if a surrogate supplier was offering the

quality qs(β) so as to maximize this new maximand.

The similarity with the objective of an integrated supplier is twofold. First, because

the new maximization problem for this surrogate is obtained by summation, its maximand

coumpounds the distortion that each supplier would like to induce on its own. Each

supplier wants to reduce the risk borne by the buyer and thus distort quality downwards
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accordingly but when he does so it does not take into account the impact of this distortion

on the complementary supplier on its own location.

To see that, consider equation (4.22). When choosing the quality, the supplier S1

accounts for the surplus of the consumer and its own profit, but perceives the payment to

the other supplier S2 as a cost. Downward distortion of quality implies that the slope of

the tariff T s2 (q) proposed by S2 is larger than its marginal cost θ2. Hence the marginal cost

perceived by S1 is θ1 +
T s
2 (q)

dq
> θ. In addition to–and because of–the distortion induced

by the rent-efficiency trade-off, there is a tariff externality that exacerbates inefficiencies.

As a result, there is excessive quality distortion that is induced under non-integration.

This double distortion due to asymmetric information is best seen by the new expression

of the buyer’s virtual preference parameter under non-integration which becomes

β̃s = β − 2ε
1−G(β)

g(β)
≤ β̃m ≤ β. (4.25)

Second, the surrogate supplier’s objective accounts for the buyer’s surplus (the second

bracketed term on the right-hand side of (4.24)).

Martimort, Semenov and Stole (2018) show that there exists a multiplicity of equilibria

of this game which are fully characterized by the spectrum of quality Q that is available

to choose from. To illustrate, had S1 requested infinite payments for quality levels outside

some range Q, S2 would be forced to induce quality choices within that range as well

because both components they sell are needed when perfect complements.

Formally, Martimort, Semenov and Stole (2018) show that a version of the Enveloppe

Theorem applies (even for non-differentiable tariffs). Because qs(β) is also the buyer’s

choice given the equilibrium tariffs offered, it maximizes the second bracketed term in

(4.24). It follows that condition (4.24) can actually be reduced to

qs(β) ∈ arg max
q∈Q

(
β − θ − 2ε

1−G(β)

g(β)

)
q − q2

2
. (4.26)

where Q = qs(B) is a range of quality levels available at equilibrium. In other words,

(4.26) defines a set of incentive constraints for the surrogate principal. Moreover, this

equilibrium characterization is not only necessary but is is also sufficient for any Q pos-

sibly constraining the quality spectrum. Condition (4.24) determines a quality profile,

which together with the integral representation of the buyer’s payoff at location 0 and a

boundary condition that determines market shares fully characterizes the aggregate tariff

and thus completes the characterization of the equilibrium. This methodology will be

used below.

Among all equilibria, the so called maximal equilibrium is obtained when the above

maximization remains unconstrained. The maximal equilibrium entails thus a quality
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profile such that

qs(β) ∈ arg max
q∈Q

(
β − θ − 2ε

1−G(β)

g(β)

)
q − q2

2
. (4.27)

The similarity with the objective of an integrated supplier S is straightforward. The only

difference comes from the fact that now the buyer’s virtual preference parameter entails

twice the informational distortion as specified in (4.25).

We may proceed similarly when aggregating the choice of market shares induced by

non-integrated suppliers located 0. Summing (4.23) that characterizes its choices for Si

and a similar condition for S−i yields

Xs ∈ arg max
X∈[0,1]

EG
((

β − θ − ε1−G(β)

g(β)

)
qs(β)− (1− ε)1−G(β)

g(β)
q∗s(β)− (qs(β))2

2

− U∗s(β) + 2r (Xs −X)− r(2X − 1)
)
F (X). (4.28)

Proposition 10. Suppose that suppliers are non-integrated on both sides of the market

and the buyer has private information on his vertical demand parameter β. There exists

a unique maximal equilibrium between suppliers. This equilibrium entails the following

features.

1. Quality is downward distorted below the integrated solution on both sides of the

market:

qs(β) = qfb(β)− 2ε
1−G(β)

g(β)
and q∗s(β) = q∗fb(β)− 2ε

1−G(β)

g(β)
. (4.29)

2. The market segmentation Xs satisfies

∆W as

2r
+

1

2
= Xs + 2

2F (Xs)− 1

f(Xs)
. (4.30)

Xs decreases with ε and belongs to
[
1
2
, Xm

]
.

Quality Levels. Under non-integration, each supplier at a given location brings its

own informational distortion in the provision of quality. As a result, the equilibrium

quality level is twice as distorted as under integration. Competition at the intensive

margin between complementary suppliers leads to excessively low quality levels.

Market Shares. Although the separation of suppliers magnifies the quality distor-

tion, the welfare differential ∆W as in (4.30) remains the same as in the integrated case.

However, and by a reasoning similar to that arising under complete information, strong

suppliers, when non-integrated, restrict their market shares by charging too high a fee
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for their product while their weak (non-integrated) opponents a contrario gain market

shares; a second force that relies on the extensive margin of competition.

Tariffs and Profits. Next Propositions characterize tariffs and profits at the maximal

equilibrium.

Proposition 11. Suppose that suppliers are non-integrated on both sides of the market

and there is asymmetric information on the vertical preference parameter β. Si and S∗i ’s

maximal equilibrium tariffs satisfy

T si (q) = θiq + ε

∫ q

qs(β)

1−G(γs(q̃))

g(γs(q̃))
dq̃ + Cs (4.31)

and

T ∗si (q) = θ∗i q + ε

∫ q

qs(β)

1−G(γ∗s(q̃))

g(γ∗s(q̃))
dq̃ + C∗s (4.32)

where γs(q) and γ∗s(q) are respectively the inverse functions for qs(β) and q∗s(β) defined

in (4.29) and where the fees are given by

Cs = 2r
F (Xs)

f(Xs)
− ε

∫ β

β

(1−G(β))2

g(β)

(
1− ε d

dβ

(
1−G(β)

g(β)

))
dβ (4.33)

and

C∗s = 2r
1− F (Xs)

f(Xs)
− ε

∫ β

β

(1−G(β))2

g(β)

(
1− ε d

dβ

(
1−G(β)

g(β)

))
dβ. (4.34)

Next proposition turns to the expression of equilibrium profits. Remarkably, those

profits take the same expressions as under complete information and they only depend

on the respective market shares of the suppliers.

Proposition 12. Suppose that suppliers are non-integrated on both sides of the mar-

ket and there is asymmetric information on β. Equilibrium profits for Si and S∗i are

respectively such that

Πs = 2r
(F (Xs))2

f(Xs)
≥ 2r

(1− F (Xs))2

f(Xs)
= Π∗s. (4.35)

Running Example. If F is uniform, It is straightforward to compute Xs, when it is

interior, as

Xs =
1

2
+

∆W as

10r
.

Asymmetric information reduces the attractiveness of the strong side of the market. More

precisely, we have

Xs ≤ EG (Xs(β)) .
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In other words, asymmetric information weakens the strong suppliers’ comparative ad-

vantage and make suppliers on both sides more alike.

5 Concluding Remarks

This article highlights some potential adverse effects associated with the fragmentation

of the supply chain of competing system goods. Separating the supply of complemen-

tary system components across several producers tends to exacerbate distortions driven

by market power and informational frictions. First, mis-coordination between suppliers

within the same system raises prices. While this Cournot effect hurts suppliers when

there is a single system it can soften competition when there are competing systems.

This effect lowers welfare as the most efficient system loses market share. An additional

effect materializes under asymmetric information and (dual) risk aversion. In that case,

disintegration exacerbates the downward quality distortions introduced by sellers to lower

the cost of screening buyers. Indeed, suppliers do no internalize that quality distortions

lower the demand for the complementary product within the system.

Overall, this analysis calls for caution when assessing the likely implications of in-

terface standardization between components, which lies at the heart of Open RAN. In-

troducing this standard follows a logic where facilitating the combination of components

from different producers in a single system lowers barriers to entry, leads to lower costs

for consumers and stimulates innovation. Our analysis suggests that excessive fragmen-

tation may erode this benefits and that the overall balance will depend critically on the

structure of the market. Beyond the conclusions of this paper, the model we propose can

serve as a building block to envision several scenarios.

A first extension of our framework would be to allow for entry. For example, suppose

there are multiple potential entrants at each end of the Hotelling line, each facing a

fixed cost of entry. If firms can only offer fully integrated systems Bertrand competition

on each side of the market ensures that only the firm with the lowest cost supplies the

system. Consequently, there is at most one entrant for each system—the one with the

lowest total production cost (in the parlance of our model, the firm with the lowest θ for

system S and the lowest θ∗ for system S∗).

With Open RAN, however, components are standardized, allowing buyers to source

different components from different suppliers. The same entry logic now applies at the

component level. Ex post Bertrand competition again eliminates redundant entry, so

for each component only the lowest-cost producer remains active. Provided that the

minimum cost for the two components is not achieved by the same firm, there will be two

independent suppliers contributing to each system. In this scenario, Open RAN reduces

overall production costs, which must be weighed against the coordination inefficiencies
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highlighted in this paper. In our analysis, because of complementarity of components,

only total system costs θ and θ∗ matters (and not the repartition of the cost between

suppliers). Thus, under this scenario, Open Ran will benefit the buyer if and only if the

reduction in total cost of each system is strong enough.

To further highlight how the effect of disintegration depends on the market structure,

consider a different scenario where there exists a competitive fringe that could supply of

one component for each system at a lower cost, say θ̂1 < θ1 and θ̂∗1 < θ∗1. Absent a standard

such as Open Ran, this fringe may not operate as they cannot make their component

compatible with the systems in place on the market. Suppose now that standardization

makes this fringe component compatible. Then incumbent system suppliers should let

the buyer procure component 1 in the competitive market at prices θ̂1 and θ̂∗1 and sell

only component 2.14 Under this scenario, competition for component one eliminates

the coordination problem. Moreover each supplier of the second component, S2 and S∗2 ,

captures the full profit from its system, i.e., it is in their best interest to disintegrate. The

equilibrium would then be the same as without Open Ran but with lower costs, which

would benefits both suppliers and the buyer.

Finally we may also envision a scenario where Open Ran does not result in more

entry but allows the buyer to mix-and-match components from the two incumbents.

Implications of this scenario for markets shares and quality levels should be the object of

future investigations.
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Appendix: Proofs of the Main Results

Proof of Proposition 1. We prove each item in turn.

1. Maximizing the expression of Π(β, T , T
∗
) given in (3.4) with respect to q(β) and that of

Π∗(β, T , T
∗
) given in (3.5) with respect to q∗(β) gives (3.6).

2. Maximizing the expression of Π(β, T , T
∗
) given in (3.14) with respect to X yields the

following necessary first-order condition for an interior solution:(
(β − θ)q(β)− (q(β))2

2
− r(2Xm(β)− 1)− U∗m(β)

)
f(Xm(β)) = 2rF (Xm(β)). (A.1)
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This condition is also sufficient since the maximand in (3.14) is quasi-concave when the

Monotone Hazard Rate Property (2.1) holds.

Similarly, maximizing the expression of Π∗(β, T , T
∗
) given in (3.5) with respect toX yields

the following necessary (and also sufficient by a similar argument) first-order condition

for an interior solution:(
(β − θ∗)q∗(β)− (q∗(β))2

2
+ r(2Xm(β)− 1)− Um(β)

)
f(Xm(β)) = 2r(1− F (Xm(β))).

(A.2)

Using (3.6), we rewrite (A.1) and (A.2) respectively as(
W fb(β)− r(2Xm(β)− 1)− U∗m(β)

)
f(Xm(β)) = 2rF (Xm(β)) (A.3)

and (
W ∗fb(β) + r(2Xm(β)− 1)− Um(β)

)
f(Xm(β)) = 2r(1− F (Xm(β))). (A.4)

Substracting (A.4) from (A.3) yields (3.7).

Because 2F (X)−1
f(X) = F (X)

f(X) + F (X)−1
f(X) is non-decreasing when the Monotone Hazard Rate

Property (2.1) holds, Xm(β) as defined in (3.7) increases with ∆W fb(β). Moreover,

Xm(β) = 1
2 when ∆W fb(β) = 0 and Xm(β) remains less than one when (3.8) holds.

Proof of Proposition 2. Note that the bracketed term in (A.3) can be written as

W fb(β)− r(2Xm(β)− 1)− U∗m(β) = W fb(β)− Um(β) = T (qm(β))− θqm(β)

or

Cm(β) = 2r
F (Xm(β))

f(Xm(β))
(A.5)

Proceeding similarly for (3.5) yields the expression of C∗m(β).

Because Xm(β) ≥ 1
2 and f is symmetric, we have F (Xm(β))

f(Xm(β)) ≥
1−F (Xm(β))
f(Xm(β)) and thus the

inequality in (3.12) holds.

Observe that Πm(β) = Cm(β)F (Xm(β)) and Π∗m = C∗m(β)(1−F (Xm(β))). The inequality

in (3.13) follows from observing that, first, (F (X))2

f(X) (resp. (1−F (X))2

f(X) is non-decreasing (resp.

non-increasing) when the Monotone Hazard Rate Property (2.1) holds and second, Xm(β) ≥ 1
2 .

Proof of Proposition 3. We prove each item in turn.
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1. In any truthful equilibrium, S−i offers a tariff of the form T s−i(q) = θ−iq+Cs−i. Inserting

this expression into Si’s best-response condition (3.15) yields

qs(β) ∈ arg max
q∈Q

(β − θ)q − q2

2
− Cs−i = qfb(β).

A similar condition applies for S−i’s best response. Hence, (3.18) holds.

2. Inserting (3.18) into Si’s best-response condition (3.16) yields

W fb(β)− Cs−i − r(2Xs(β)− 1)− U∗s(β) = 2r
F (Xs(β))

f(Xs(β))
. (A.6)

This condition is also sufficient since the maximand is again quasi-concave when the

Monotone Hazard Rate Property (2.1) holds.

Similarly, S−i’s best-response condition yields

W fb(β)− Csi − r(2Xs(β)− 1)− U∗s(β) = 2r
F (Xs(β))

f(Xs(β))
. (A.7)

Observe also that

U s(β) = W fb(β)− Csi − Cs−i. (A.8)

Summing (A.6) and (A.7) and using (A.8) finally yields

W fb(β) + U s(β)− 2r(2Xs(β)− 1)− 2U∗s(β) = 4r
F (Xs(β))

f(Xs(β))
. (A.9)

Turning to suppliers located at 1 and proceeding similarly, we find

W ∗fb(β) + U∗s(β) + 2r(2Xs(β)− 1)− 2U s(β) = 4r
1− F (Xs(β))

f(Xs(β))
. (A.10)

Observe that

Xs(β) =
1

2
+

1

2r
(U s(β)− U∗s(β)). (A.11)

Substracting (A.10) from (A.9) and using (A.11) finally yields (3.19).

Because 2F (X)−1
f(X) = F (X)

f(X) + F (X)−1
f(X) is non-decreasing when the Monotone Hazard Rate

Property (2.1) holds, Xs(β) as defined in (4.3) increases with δθ. Moreover, Xs(β) = 1
2

when δθ = 0 and
∆W fb(β)

2r
+

1

2
≥ Xs(β) +

2F (Xs(β))− 1

f(Xs(β))
. (A.12)

Comparing with (3.7), we immediately deduce that Xm(β) ≥ Xs(β).
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Proof of Proposition 4. The only important point is to check that suppliers on the same end of

the market charge the same fee and make the same profit. To this end, observe that (A.6) and

(A.7) immediately imply Cs1(β) = Cs2(β). A similar proof would go for suppliers located at 1.

Finally, the proof of the ranking between fees and profits is similar to the Proof of Proposition

2 and is thus left to the reader.

Proof of Proposition 5. Consider first the case of integration. The overall profit of the industry

in this scenario is

Πm(β) + Π∗m(β) = 2r

(
(F (Xm(β)))2

f(Xm(β))
+

(1− F (Xm(β)))2

f(Xm(β))

)
. (A.13)

Consider now the case of non-integration. Because all suppliers on a given side of the market

get the same profit, the overall profit of the industry writes then as

2Πs(β) + 2Π∗s(β) = 4r

(
(F (Xs(β)))2

f(Xs(β))
+

(1− F (Xs(β)))2

f(Xs(β))

)
. (A.14)

When θ and θ∗ are close than both Xm(β) and Xs(β) are close to 1/2, so that the total

profit under separation is almost the double of the total profit under integration.

Moreover, in the case of a uniform distribution we have

3Xm(β)− 1 = 5Xs(β)− 2 (A.15)

so that the difference in profit is

2Πs(β) + 2Π∗s −Πm(β)−Π∗m(β) = 2r

(
−14Xm(β)2 + 14Xm(β) + 9

25

)
. (A.16)

This is concave in Xm(β) with values 0.5 and 9
25 at Xm(β) = 0.5 and Xm(β) = 1 respectively.

Hence it is positive for all Xm(β). We thus have for F uniform:

2Πs(β) + 2Π∗s > Πm(β) + Π∗m(β) (A.17)

which ends the proof.

Proof of Proposition 6. Observe that

W ′(X) = (∆W fb(β)− r(2X − 1))f(X) and
d

dX

(
W ′(X)

f(X)

)
= −2r.

In other words, W(X) is quasi-concave and maximized at Xfb such that

Xfb =
∆W fb(β)

2r
+

1

2
.
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From Proposition 3
1

2
≤ Xs(β) ≤ Xm(β) ≤ Xfb.

Using that W is quasi-concave then yields (3.23).

Lemma A.1. The buyer’s payoff U is convex, absolutely continuous and satisfies the integral

representation (4.3). Reciprocally, any allocation (U(β), q(β)) such that U(β) is absolutely

continuous and convex and satisfies (4.3), is such that (4.1) holds.

Proof of Lemma A.1. Necessity. First, observe that U defined in (4.1) is convex as a max-

imum of linear functions of θ. Second, it immediately follows from Theorem 2 and Corollary

1 in Milgrom and Segal (2002), that U is absolutely (in fact Lipschitz) continuous and almost

everywhere differentiable with

U̇(β) = q(β) (A.18)

holding at any point of differentiability. From there, the integral representation (4.3) follows.

Sufficiency. Reciprocally, any allocation (U(β), q(β)) such that U(β) is absolutely continuous

and convex, with (4.3), q(β) ∈ ∂U(β)15 is such that (4.1) holds. To prove this, consider any

pair (β, β̂) ∈ B2. We may then rewrite the integral representation (4.3) as

U(β) = U(β̂) +

∫ β

β̂
q(β̃)dβ̃.

Because U is convex, it admits a sub-differential ∂U and, since q(β̂) ∈ ∂U(β̂), we have

U(β) ≥ U(β̂) + q(β̂)(β − β̂).

From there and the definition of U as in (4.3), (4.1) follows.

Proof of Proposition 7. We now prove each item of the Proposition in turn.

1. Maximizing the expression of Π(T , T
∗
) given in (4.7) with respect to q(β) pointwise and

that of Π∗(T , T
∗
) given in (4.8) with respect to q∗(β) also pointwise gives (4.3).

Thanks to the Monotone Hazard Rate Property (2.4), qm and q∗m so defined both satisfy

the monotonicity condition (4.4).

15∂U(β) denotes the subdifferential of the convex function U at β, namely ∂U(β) ={
q such that U(β̂)− U(β) ≥ q(β̂ − β) ∀β̂ ∈ B

}
.
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2. Maximizing the expression of Π(T , T
∗
) given in (4.7) with respect to X yields the following

necessary first-order condition for an interior solution:

EG
((

β − θ − ε1−G(β)

g(β)

)
qm(β)− (1− ε)1−G(β)

g(β)
q∗m(β)− (qm(β))2

2
− U∗(β)

)
= r(2Xm − 1) + 2r

F (Xm)

f(Xm)
. (A.19)

This condition is also sufficient since the maximand in (4.7) is quasi-concave when the

Monotone Hazard Rate Property (2.1) holds.

Similarly, maximizing the expression of Π∗(T , T
∗
) given in (4.8) with respect to X yields

the following necessary (and also sufficient by a similar argument) first-order condition

for an interior solution:

EG
((

β − θ − ε1−G(β)

g(β)

)
q∗m(β)− (1− ε)1−G(β)

g(β)
qm(β)− (q∗m(β))2

2
− U(β)

)
= −r(2Xm − 1) + 2r

1− F (Xm)

f(Xm)
. (A.20)

Substracting (A.20) from (A.19) and simplifying using (4.6) yields

∆W as

2r
+

1

2
= Xm +

2F (Xm)− 1

f(Xm)
. (A.21)

where

∆W as = EG
((

β − θ − ε1−G(β)

g(β)

)
qm(β)− (qm(β))2

2

)
−EG

((
β − θ∗ − ε1−G(β)

g(β)

)
q∗m(β)− (q∗m(β))2

2

)
.

Observe that

∆W as = EG
(

(qm(β))2

2
− (q∗m(β))2

2

)
= δθEG

(
qfb(β) + q∗fb(β)

2
− ε1−G(β)

g(β)

)
,

which eventually yields (4.12).

Because 2F (X)−1
f(X) = F (X)

f(X) + F (X)−1
f(X) is non-decreasing when the Monotone Hazard Rate

Property (2.1) holds, Xm as defined in (4.11) decreases with ε. Moreover, Xm(β) = 1
2

when δθ = 0 and Xm(β) remains less than one when (4.13) holds.

Proof of Proposition 8. By definition, we have

Um(β) = βqm(β)− (qm(β))2

2
− Tm(qm(β)) = max

q∈Q
βq − q2

2
− Tm(q).
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By a simple duality argument, we deduce that Tm(q) that implements the allocation (Um(θ), qm(θ))

can be defined as

Tm(q) = max
β∈B

βq − q2

2
− Um(β) and γm(q) = arg max

β∈B
βq − q2

2
− Um(β). (A.22)

Hence, Tm(q) + q2

2 is the max of linear functions of q and is thus convex in q. From there, it

follows that Tm(q) is differentiable in q at any point where the correspondence γm is single-

valued, but this last point follows from the fact that qm satisfying (4.10), is strictly increasing

since (2.1) holds. Hence, we may differentiate (A.22) and compute

Tm
′
(qm(β)) = β − qm(β).

Using (4.10), we finally obtain for q = qm(β) (or, equivalently γm(q) = β):

Tm
′
(q) = γm(q)− q = θ + ε

1−G(γm(q))

g(γm(q))
. (A.23)

Integrating yields (4.15). A similar proof yields (4.16).

Using (4.6), we can rewrite (A.19) as

EG
((

β − θ − 1−G(β)

g(β)

)
qm(β)− (qm(β))2

2
− Um(β)

)
= 2r

F (Xm)

f(Xm)
.

Further simplifying using the integral representation (4.3) and an integration by parts yields

EG
(

(β − θ) qm(β)− (qm(β))2

2
− Um(β)

)
= EG (Tm(qm(β))− θqm(β))) = 2r

F (Xm)

f(Xm)
.

(A.24)

Using (4.15), we simplify further (A.24) as

Cm + εEG

(∫ qm(β)

qm(β)

1−G(γm(q̃))

g(γm(q̃))
dq̃

)
= 2r

F (Xm)

f(Xm)
. (A.25)

We compute

EG

(∫ qm(β)

qm(β)

1−G(γm(q̃))

g(γm(q̃))
dq̃

)
= EG

(∫ β

qm(β)

1−G(β̃))

g(β̃)
q̇m(β̃)dβ̃

)
=

∫ β

β

(1−G(β))2

g(β)
q̇m(β)dβ

(A.26)

where the first equality follows from a change of variables and the second from integrating by

parts. Inserting (A.26) into (A.25) yields

Cm = 2r
F (Xm)

f(Xm)
− ε

∫ β

β

(1−G(β))2

g(β)
q̇m(β)dβ (A.27)
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Similarly, we would find

C∗m = 2r
1− F (Xm)

f(Xm)
− ε

∫ β

β

(1−G(β))2

g(β)
q̇∗m(β)dβ. (A.28)

Using (4.10) and differentiating with respect to β yields

q̇m(β) = q̇∗m(β) = 1− ε d
dβ

(
1−G(β)

g(β)

)
(A.29)

Inserting (A.29) into (A.27) and (A.28) yields (4.17) and (4.18).

Proof of Proposition 9. Finally, using (A.24) and observing that

Πm = EG (Tm(qm(β))− θqm(β))F (Xm)

yields the left-hand side equality in (4.19). The right-hand side equality is obtained by a similar

proof. The comparison is the same as in the Proof of Proposition 2.

Proof of Proposition 10. We now prove each item of the Proposition in turn.

1. Maximizing the objective (4.26 ) also pointwise gives qs (4.29). A similar condition applies

for suppliers located at 1 which yields q∗s .

Thanks to the Monotone Hazard Rate Property (2.4), qs and q∗s so defined both satisfy

the monotonicity condition (4.4).

2. Maximizing (4.28) with respect to X yields the following necessary first-order condition

for an interior solution that is Xs itself yields:

EG
((

β − θ − ε1−G(β)

g(β)

)
qs(β)− (1− ε)1−G(β)

g(β)
q∗s(β)− (qs(β))2

2
− U∗s(β)

)
= r(2Xs − 1) + 4r

F (Xs)

f(Xs)
. (A.30)

This condition is also sufficient since the maximand in (4.28) is quasi-concave in X when

the Monotone Hazard Rate Property (2.1) holds.

Maximizing a similar expression for S∗i with respect to X yields the following necessary

(and also sufficient by a similar argument) first-order condition for an interior solution:

EG
((

β − θ − ε1−G(β)

g(β)

)
q∗s(β)− (1− ε)1−G(β)

g(β)
qs(β)− (q∗s(β))2

2
− U s(β)

)
= −r(2Xs − 1) + 4r

1− F (Xs)

f(Xs)
. (A.31)
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Substracting (A.31) from (A.30) and simplifying using (4.6) yields

∆W ass

2r
+

1

2
= Xs + 2

2F (Xs)− 1

f(Xm)
. (A.32)

where

∆W ass = EG
((

β − θ − ε1−G(β)

g(β)

)
qs(β)− (qs(β))2

2

)

−EG
((

β − θ∗ − ε1−G(β)

g(β)

)
q∗s(β)− (q∗s(β))2

2

)
.

Observe that

∆W ass = δθEG
(
qfb(β) + q∗fb(β)

2
− ε1−G(β)

g(β)

)
= ∆W as

Because 2F (X)−1
f(X) = F (X)

f(X) + F (X)−1
f(X) is non-decreasing when the Monotone Hazard Rate

Property (2.1) holds, Xs as defined in (4.30) decreases with ε. Moreover, Xs = 1
2 when

δθ = 0 and Xs remains less than Xm.

Proofs of Propositions 11 and 12. The proofs are similar to those of Propositions 8 and 9 and

thus omitted.
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