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Abstract

We provide a novel pro-competitive rationale for resale price maintenance (RPM).

We consider a model where some consumers are fully informed about downstream

prices while other consumers are not. When an upstream manufacturer imposes a

floor on downstream prices, this qualitatively changes downstream competition—

influencing not just the level, but also the dispersion, of prices. The manufacturer

optimally imposes a price floor which just eliminates all downstream price disper-

sion, and this leads to both higher (aggregate) consumer surplus and higher total

welfare as compared to the case without RPM.
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1 Introduction

Manufacturers often distribute their products via downstream retailers, and may use

resale price maintenance (RPM) to prevent downstream prices from becoming too low.

For example, the fashion companies Chloé, Gucci, and Loewe placed restrictions on the

maximum discounts that downstream retailers in Europe could apply; the electronics

company Philips requested low-price online retailers in France to raise their prices, and

used retaliatory measures against those that refused; the leather apparel manufacturer

Leegin imposed a minimum resale price in the U.S., and refused to supply retailers that did

not adhere to it.1 Although the treatment of RPM varies across jurisdictions, antitrust

authorities usually weigh up lower downstream competition against possible efficiency

gains.2 For instance, it has been argued that RPM could improve efficiency if it leads to

higher margins which incentivize retailers to offer better pre-sales services.3

In this paper we challenge the view that RPM necessarily lowers downstream compe-

tition. Our starting point is that many downstream markets exhibit price dispersion, i.e.,

different firms charge different prices for the same product. Following the consumer search

literature, we rationalize this by the co-existence of consumers with different amounts of

information. We show that while RPM forces downstream firms with the very lowest

prices to raise them, it also encourages firms with somewhat higher prices to lower them.

As a result, RPM affects not just the level but also the dispersion of downstream prices,

and so RPM can be pro-competitive, meaning it can raise manufacturer profit, consumer

surplus, and total welfare. We emphasize that this happens despite our model abstracting

away from any possible efficiency benefits due to RPM.

In more detail, in Section 2 we introduce our framework, which builds on the clas-

sic model of sales due to Varian (1980). Specifically, two or more downstream firms

sell a homogeneous product, and some consumers are well informed about prices (“shop-

pers”) while other consumers are only able to buy from one randomly chosen firm (“non-

shoppers”). To this otherwise standard model we introduce an upstream manufacturer,

who chooses both a wholesale price at which downstream firms can buy the product, and

a floor below which these downstream firms are not allowed to price.

We begin by solving the model in Section 3 for an exogenously given wholesale price.

1The European Commission fined Chloé, Gucci, and Loewe a combined 157 million euros, and fined

Philips 30 million euros, for these and related practices; see here and here for more details. Leegin was

initially required to pay a fine, but this was overturned by the Supreme Court; see here for more details.
2In the U.S., following the Leegin case referred to in the previous footnote, “a rule-of-reason” approach

was adopted towards RPM. In the European Union, RPM is considered a “hardcore” restriction of

competition, but an efficiency defense is possible under Article 101(3); see here for more details.
3See paragraph 197 of the European Guidelines on Vertical Restraints here for further examples.
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The manufacturer’s choice of price floor affects downstream competition in a very natural

way. First, when the price floor is sufficiently low, downstream firms randomize over

prices using a continuous distribution, exactly as in Varian (1980). The price distribution

resolves downstream firms’ tension between pricing low to attract shoppers and pricing

high to exploit non-shoppers. Second, when the price floor is sufficiently high, downstream

firms’ competition for shoppers leads to a pure strategy equilibrium where they all price

exactly at the floor. Third, when the price floor is intermediate, downstream firms employ

a mixed strategy with some novel features: it has a mass point at the bottom, then a

gap, and then a continuous part at higher prices. Intuitively, competition for shoppers

induces downstream firms to price at the floor with positive probability. This makes it

unattractive to charge prices just above the floor, leading to a gap; at sufficiently high

prices downstream firms face the same trade-off as in Varian (1980), and hence they draw

prices from a continuous distribution. As the price floor increases, the size of the mass

point increases while the interval of prices with a continuous distribution shrinks—and so

the degree of price dispersion in the downstream market also changes.

Having studied downstream firms’ pricing problem, we then solve for the manufac-

turer’s optimal choice of price floor, and examine the welfare impact of RPM. This is a

complicated problem, given that downstream prices are drawn from a distribution which

depends on the price floor in a complex way. Following the approach of Armstrong and

Vickers (2019) (in a different context), we reformulate our problem as one in which down-

stream firms choose a per-consumer profit level rather than a price. We show that when

the price floor is intermediate, the distribution of per-consumer profit improves in the

sense of second order stochastic dominance as the price floor increases. We also show

that both the manufacturer and consumers are “risk averse” with respect to downstream

firms’ profit. It then follows that manufacturer profit and total consumer surplus are

both quasiconcave and maximized at the same price floor, namely the one which just

eliminates all downstream price dispersion. Hence, contrary to the prevailing view in the

literature, RPM is pro-competitive and raises consumer surplus even absent any efficiency

justification. Moreover, we show that RPM also raises total welfare. In addition, these

beneficial effects of RPM are larger in markets with a larger number of downstream firms.

Finally, Section 4 extends the above results to the case where the manufacturer chooses

both a price floor and a wholesale price. When the demand curve belongs to the “constant

curvature class” (e.g., it is linear) we show that the manufacturer optimally chooses

exactly the same wholesale price irrespective of whether it uses RPM; as a result, for this

class of demands, all the results discussed above apply immediately. When the demand

curve does not belong to this class, analytical results are unfortunately not available, but

we show via numerical examples that RPM can continue to raise consumer surplus.
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Related Literature. The existing literature shows that RPM can be either pro- or anti-

competitive, depending on the context (see, e.g., Rey and Vergé, 2008, for a survey). On

the one hand, RPM can be anti-competitive because it relaxes interbrand and intrabrand

competition (Rey and Vergé, 2010); discourages downstream firms from stocking new

products and thus deters upstream entry (Asker and Bar-Isaac, 2014); and facilitates

collusion by making it easier to detect price deviations (Jullien and Rey, 2007). On the

other hand, RPM can be pro-competitive because it incentivizes retailers to invest in

pre-sales services that are valuable to consumers, and prevents free-riding among these

retailers (see, e.g., Telser, 1960; Marvel and McCafferty, 1984; Mathewson and Winter,

1984). Different from these papers, we abstract from any investment or free-riding effect;

we show that RPM is pro-competitive in a search setting where some consumers have

better price information than others.

Our paper contributes to an emerging literature on consumer search and vertical re-

lations. Janssen and Shelegia (2015) introduce an upstream manufacturer into a Stahl

(1989) setting where shoppers buy at the lowest price while non-shoppers can search for

price quotes at a cost. They show that when non-shoppers do not observe the upstream

manufacturer’s wholesale price, this allows the manufacturer to squeeze downstream firms,

leading consumers to pay higher final prices. Garcia, Honda, and Janssen (2017) consider

a related setting, but assume there are competing upstream manufacturers and that both

consumers and downstream firms need to search. They show that this double layer of

search frictions can lead to a bimodal price distribution at both the upstream and down-

stream levels.4 Garcia and Janssen (2018) show that a monopoly manufacturer finds it

optimal to offer different downstream firms different wholesale prices, even when they are

completely symmetric, so as to encourage consumers to search and thus put downward

pressure on downstream margins. More generally, Janssen and Shelegia (2020) stress the

importance of whether consumers blame an unexpected price on the downstream firm

that charged it or on the manufacturer, since this affects a consumer’s belief about other

downstream prices and hence influences her decision of whether to search again.

Other papers consider the interaction between consumer search and non-RPM vertical

restraints. Asker and Bar-Isaac (2020) show that minimum advertised prices restrict

consumer information, allowing an upstream manufacturer to better screen consumers and

extract surplus from those with high valuations and high search costs. Lubensky (2017)

4Our model also predicts a novel price distribution at the downstream level, with both a mass point

at the bottom and a gap. This differs from usual symmetric environments, where firms either mix using

the same continuous distribution, or some firms employ a mass point but it is at the top of the price

distribution. An exception is Myatt and Ronayne (2025), who consider a model where firms commit to

a list price which caps their final price, which leads to an asymmetric pure strategy equilibrium where

one firm charges less than the others, even when firms are all symmetric ex ante.
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shows that a manufacturer can use non-binding recommended retail prices to inform

consumers about its production cost, and steer their search in a way that is beneficial to

both itself and to the consumers. However Janssen and Reshidi (2022) show that a policy

which forces some sales to occur at a manufacturer’s recommended retail price enables

the manufacturer to commit to offering different downstream retailers different wholesale

prices, to the detriment of final consumers.

Most closely related to our paper is the small literature on consumer search with

price restraints. Armstrong, Vickers, and Zhou (2009) show that a price ceiling reduces

consumers’ incentives to search, potentially raising prices and reducing consumer surplus.

Hamilton (1990) considers the search model of Salop and Stiglitz (1977), where consumers

observe the price set by each firm but must pay a cost to learn which firm charges which

price. He shows that RPM can induce a switch from a two-price equilibrium to a one-

price equilibrium, and that under certain conditions this can raise manufacturer profit.

However he does not analyze the welfare impact of RPM. Meanwhile, in independent

and concurrent work, Baye, Kovenock, and de Vries (2025) study RPM in an asymmetric

duopoly Varian model. They provide a condition on demand such that RPM raises

manufacturer profit, benefits non-shoppers, but harms shoppers. Different from them,

we focus on a symmetric model with a general number of firms, and we show that under

weak conditions manufacturer-optimal RPM maximizes both aggregate consumer surplus

and total welfare. We also show that the welfare impact of RPM is greater in markets

with more downstream firms.5

Finally, while there is little empirical research on RPM, there is some recent suggestive

evidence in favor of our findings. Williams (2024) studies the impact of Fixed Book Price

policies in Europe. These policies aim to prevent discounters from charging very low

prices for books, and hence play a similar role to RPM in our model. Interestingly, he

finds no evidence that such policies raise average book prices. Moreover, consistent with

our model, he finds that they lead to higher book sales. Meanwhile Xia (2024) exploits

a high-profile antitrust case in China, which banned a pharmaceutical company from

practicing RPM. He finds that RPM leads to lower and less dispersed downstream prices

and, as in the previous paper, it also leads to higher sales.

The rest of the paper proceeds as follows. Section 2 introduces our model. Section 3

takes the wholesale price as given, and solves for the manufacturer-optimal price floor

and considers its impact on consumers and total welfare. Section 4 extends those results

to the case where the manufacturer also chooses the wholesale price. Section 5 concludes.

5In a setting where firms compete over both price and quality, Yang (2024) shows that an endogenous

price floor may emerge if consumers interpret sufficiently low prices as a bad signal about product quality.
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2 Model

An upstream manufacturer supplies a homogeneous product to n ≥ 2 downstream firms.

The manufacturer charges downstream firms a wholesale price w, and also sets a price

floor pF below which downstream firms are not allowed to price. The manufacturer’s

marginal cost is normalized to zero; downstream firms also incur no additional costs

beyond the wholesale price w. There is a unit mass of consumers who are interested

in buying the product. A fraction λ ∈ (0, 1) of consumers are shoppers, who buy from

whichever firm has the lowest price (and choose a firm randomly in case of ties). The

remaining 1−λ of consumers are non-shoppers, who buy from one randomly chosen firm.

Conditional on incurring a price p, a consumer buys q(p) units of the product. For all p

satisfying q(p) > 0, we assume that q(p) is twice differentiable, that q′(p) < 0, and also

that q(p) is log-concave.

The timing is as follows. First, the manufacturer sets w and pF . Second, down-

stream firms simultaneously set prices, ensuring that they weakly exceed pF . We focus

on symmetric equilibria, where all firms draw their price from the same (potentially de-

generate) price distribution. Third, shoppers buy from a firm with the lowest price, while

non-shoppers buy from a randomly chosen firm.

3 Analysis with an Exogenous Wholesale Price

In this section we assume that the wholesale price w is exogenously fixed, such that the

manufacturer only chooses the price floor pF . (In Section 4 we allow the manufacturer to

choose both w and pF .) Denote by π(p) = q(p)(p−w) a firm’s per-consumer profit when

it sells at price p, and note that it is quasiconcave in p due to the log-concavity of q(p).

Let pm = argmaxp π(p) be the monopoly price, and let πm = π(pm) be the associated

per-consumer profit. To rule out uninteresting cases we assume that q(w) > 0, which

implies that πm > 0.

3.1 Benchmark without RPM

It is instructive to first consider the case where the manufacturer cannot use RPM. (Equiv-

alently, the price floor is so low that it is not binding, e.g., pF ≤ w.) In this case we have

the classic Varian (1980) model of sales. It is well known that there is no (symmetric) pure

strategy equilibrium: downstream firms must charge more than w since they have mar-

ket power over non-shoppers, but if all downstream firms were to hypothetically choose

the same price p > w, each one could do better by unilaterally slightly undercutting p

and winning all the shoppers. The same logic implies that downstream firms’ symmetric
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mixed strategy price distribution also has no mass points. Letting F (p) denote this mixed

strategy price distribution, we have:

1− λ

n
πm = π(p)

[
1− λ

n
+ λ[1− F (p)]n−1

]
.

In particular, a firm can charge pm and earn monopoly profits from its share (1− λ)/n of

the non-shoppers. Alternatively, if it charges p < pm, it earns π(p) from its share of the

non-shoppers, as well as from the shoppers provided each of its n − 1 competitors has a

higher price—which occurs with probability [1 − F (p)]n−1. The price distribution F (p)

then makes firms indifferent between charging pm or any lower price in the support of the

mixed strategy. Using the above indifference equation we have the standard result:

Lemma 1 (Varian, 1980). Absent RPM there exists a unique symmetric equilibrium in

which firms draw their price from [p, pm] according to

F (p) = 1−
[
1− λ

λn

(
πm

π(p)
− 1

)] 1
n−1

,

with p determined by

(1− λ)πm = π(p)[1 + λ(n− 1)].

Notice that F (p) is continuous and strictly increasing on its support, and so the equilib-

rium price distribution has no atoms (as explained above) and also no “gaps”.

3.2 Equilibrium Downstream Pricing with RPM

Henceforth suppose the manufacturer is able to use RPM. In this subsection we solve for

equilibrium downstream prices for any downstream price floor pF .

It is straightforward to see that if pF ≤ p then in equilibrium firms use the standard

Varian (1980) price distribution from Lemma 1. In the more interesting case where pF > p,

equilibrium depends on how pF compares to p∗F , where p∗F < pm solves

π(p∗F )

n
=

1− λ

n
πm. (1)

To interpret this equation, note that the left-hand side is a firm’s profit if it and all other

firms charge p∗F and hence split the market equally, while the right-hand side is a firm’s

profit if it charges pm and sells only to its share of the non-shoppers.

Lemma 2. Suppose the manufacturer imposes a price floor pF ≥ p∗F . There is a unique

symmetric equilibrium where each downstream firm charges pF .

7



Intuitively when pF ≥ p∗F the price floor is sufficiently high that downstream firms

prefer to charge pF and compete for shoppers, rather than set a higher price to potentially

exploit their non-shoppers. Hence in equilibrium downstream firms play a pure strategy

equilibrium and all charge pF .

Lemma 3. Suppose the manufacturer imposes a price floor pF ∈ (p, p∗F ). There is a

unique symmetric equilibrium where downstream firms draw their price from distribution

G(p) =


0 for p < pF

m for pF ≤ p ≤ p′

F (p) for p > p′

,

where m ∈ (0, 1) and p′ ∈ (pF , p
m) jointly and uniquely solve m = F (p′) and

π(pF )

[
λ
1− (1−m)n

mn
+

1− λ

n

]
=

1− λ

n
πm. (2)

When the price floor pF is between p and p∗F , downstream firms use a mixed strategy

price distribution G(p). Moreover G(p) has several interesting properties: it has a mass

point of size m at the price floor, then a gap up to a critical price p′, and then for all

prices p ≥ p′ it coincides with the Varian (1980) distribution F (p) from Lemma 1.

We now explain the construction of G(p) in Lemma 3 in more detail. Intuitively,

the price distribution cannot be atomless otherwise firms would use the Varian price

distribution from earlier—but some prices in the support of that distribution violate the

price floor. At the same time, the atom must be at pF , since any mass point at a higher

price could be profitably undercut. Let m denote the size of the atom at price pF . Notice

that if a downstream firm charges pF the expected number of shoppers that it sells to is

n−1∑
k=0

(
n− 1

k

)
mk(1−m)n−k−1

k + 1
=

1− (1−m)n

mn
,

because with probability
(
n−1
k

)
mk(1−m)n−k−1 exactly k = 0, 1, . . . , n− 1 other firms also

charge pF , in which case each firm gets a share 1/(k + 1) of the shoppers. It then follows

that the left-hand side of (2) is a firm’s expected profit from charging pF . There must

be a gap directly above pF : due to the mass point m > 0, slightly increasing price above

pF leads to a discrete drop in the probability of selling to shoppers, and only a small

increase in the profit earned on non-shoppers. For prices above the gap, firms face the

standard trade-off between competing for shoppers or exploiting non-shoppers, and hence

we must have the same distribution as in the Varian (1980) model, i.e., G(p) = F (p).

Since p′ is the supremum of the prices in the gap, by definition the size of the mass point
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Figure 1: The equilibrium price distribution for a low price floor (red solid curve), inter-

mediate price floor (blue dotted curve), and high price floor (green dashed curve).

must satisfy m = F (p′). Finally, to ensure that downstream firms are indifferent, their

expected profit from charging pF must equal their expected profit from charging any price

on [p′, pm], including pm, and this is ensured by equation (2).

It is straightforward to show that changes in the price floor affect equilibrium pricing

in the following way. First, as pF ↓ p, we converge to the Varian price distribution because

the size of the mass point tends to zero and p′ tends to p. Second, as pF increases, the mass

point m becomes larger and the range of prices [p′, pm] over which firms mix continuously

shrinks. Third, as pF ↑ p∗F , we converge to the pure strategy pricing equilibrium in

Lemma 2 because the size of the mass point tends to one and p′ tends to pm. Figure 1

illustrates the impact of a price floor on the equilibrium price distribution when n = 2,

λ = 1/2, w = 1/2, and q(p) = 1− p. The red solid curve depicts the case where pF ≤ p,

i.e., the price floor is sufficiently low that pricing follows Varian (1980). The blue dotted

curve depicts the case where pF ∈ (p, p∗F ), i.e., the price floor is intermediate so the price

distribution has a mass point, a gap, and a continuous part. The green dashed curve

depicts the case where pF ≥ p∗F , i.e., the price floor is high enough that all firms charge

it with probability one.

3.3 Manufacturer-Optimal RPM

We now solve for the manufacturer’s optimal choice of price floor pF . Note that for any

fixed wholesale price w > 0 the manufacturer seeks to maximize its expected output.

It is straightforward to see from Lemma 2 that expected output is strictly decreasing

in pF ≥ p∗F because downstream retailers all price exactly at the price floor. Now consider

the more interesting case where pF ∈ (p, p∗F ). It is useful to follow Armstrong and Vickers
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(2019) and think of downstream firms as choosing a per-consumer profit level π rather

than a price p. Denote by G̃(π) a firm’s profit distribution, and let πF ≡ π(pF ) and

π′ ≡ π(p′). It follows from Lemma 3 that G̃(π) has a mass point of size m at πF , and for

π > π′ it satisfies

G̃(π) = 1−
[
1− λ

λn

(
πm

π
− 1

)] 1
n−1

. (3)

Now consider the market-wide distribution of per-consumer profit, which we denote by

PD(π). A shopper buys from the firm with the smallest π, given that π(p) is strictly

increasing in p < pm. A non-shopper buys from a randomly drawn firm. Hence PD(π)

has a mass point of size λ[1− (1−m)n] + (1− λ)m at πF , and for π > π′ it satisfies

PD(π) = λ
[
1− [1− G̃(π)]n

]
+ (1− λ)G̃(π). (4)

We can then prove the following result:

Lemma 4. Consider a price floor pF ∈ (p, p∗F ). An increase in pF :

(i) Leaves expected per-consumer profit unchanged.

(ii) Improves the distribution of PD(π) in the sense of second order stochastic dominance.

An increase in the price floor pF induces a mean-preserving contraction of the market-

wide profit distribution. Intuitively, pm is always in the support of firms’ price distribu-

tions, so firms obtain a profit of (1 − λ)πm/n which is independent of pF ; this explains

why changes in pF do not affect expected profit. Moreover, as pF increases it becomes

more attractive for firms to settle at the price floor, leading to a higher mass point m;

this reduces the dispersion of PD(π) in the sense of second order stochastic dominance.

Let Q(π) denote output as a function of per-consumer profit. We can then write

expected manufacturer profit as w × EPD[Q(π)]. It is straightforward to show that log-

concavity of demand implies that Q(π) is a strictly concave function. Manufacturer

profit must then be strictly increasing in pF ∈ (p, p∗F ), given that higher pF on this

interval induces a mean-preserving contraction in PD(π). Since we argued earlier that

manufacturer profit is also decreasing in pF ≥ p∗F , the following is immediate:

Proposition 1. Suppose w is fixed. The manufacturer optimally chooses a price floor

pF = p∗F , where p∗F is defined by equation (1). All downstream firms then charge p∗F .

Because variability in downstream prices reduces the expected quantity that the man-

ufacturer sells, it sets the price floor at p∗F—just high enough to ensure there is no down-

stream price dispersion. Recall from equation (1) that π(p∗F ) = (1 − λ)πm, and so the

manufacturer’s optimal price floor is independent of n but is decreasing in λ. Intuitively,

when there are more shoppers firms are more willing to price at the floor, and therefore
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Figure 2: The effect of a price floor on manufacturer profit.

the manufacturer chooses a lower floor. Figure 2 depicts the effect of a higher price floor

on manufacturer profit in our running example where n = 2, λ = 1/2, w = 1/2, and

q(p) = 1− p.

3.4 The Welfare Impact of RPM

We now examine the impact of a price floor on consumer surplus and total welfare, and

then link this to the manufacturer’s optimal choice of RPM from Proposition 1.

Proposition 2. Suppose w is fixed.

(i) Consumer surplus and total welfare are quasiconcave in pF and maximized at pF = p∗F .

(ii) The surplus of non-shoppers is quasiconcave in pF and maximized at pF = p∗F .

The surplus of shoppers decreases in pF provided π′(p) is log-concave in p < pm.

Proposition 2 shows, perhaps surprisingly, that consumer and total welfare are both

maximized at the price floor chosen by the manufacturer. Intuitively, this is because

consumers also dislike variation in firms’ profit. More precisely, we need to distinguish

between whether pF is above or below p∗F . The case pF ≥ p∗F is straightforward: down-

stream firms charge pF for sure, and so a higher pF is worse for both types of consumers

and also reduces total welfare.6 The case pF ∈ (p, p∗F ) is more interesting. Let V (π) denote

a consumer’s level of surplus given that a firm earns profit π from selling to her. Recalling

the definition of PD(π), we can write expected consumer surplus as EPD[V (π)]. Arm-

strong and Vickers (2019) prove that log-concavity of q(p) implies that V (π) is concave—

6In more detail, notice that downstream firms’ profit is actually increasing in pF ∈ (p∗F , p
m), then

decreasing in pF > pm. However the sum of consumer surplus, manufacturer profit, and downstream

profit for pF > p∗F is
∫
p
Q(z)dz + pQ(p), which is always strictly decreasing in p.

11



0.55 0.56

0.088

0.089

0.090

0.091

p∗F = 0.573
pF

(a) Total consumer surplus

0.55 0.56
0.086

0.088

0.090

0.092

0.094

p∗F = 0.573
pF

(b) Surplus of shoppers and non-shoppers

Figure 3: The effect of a price floor on total consumer surplus (left panel), and on the

surpluses of shoppers and non-shoppers (green and red curves respectively, right panel).

consumers are “risk averse” with respect to firm profit. Given the result in Lemma 4 that

a higher price floor improves PD(π) in the sense of second order stochastic dominance, it

follows that expected consumer surplus is increasing in pF ∈ (p, p∗F ). Since downstream

industry profit is constant in pF ∈ (p, p∗F ) while manufacturer profit is increasing in pF

over this interval, total welfare is also increasing in pF over this interval.

Proposition 2 also shows that an increase in the price floor affects different consumers

differently. In particular, one can show that a higher price floor changes the intensity

of competition for each type: as pF ≤ p∗F increases firms place more mass at the price

floor, causing them to earn more profit from shoppers but less profit from non-shoppers.

Non-shoppers then benefit from a higher price floor for two reasons—firms earn less profit

from them, and that profit is also less variable. Shoppers, on the other hand, benefit from

the reduction in profit variability, but are worse off because firms extract more surplus

from them. When π′(p) is log-concave the latter effect dominates, and so a higher price

floor harms shoppers. It is easy to prove that π′(p) is log-concave when q(p) has constant

curvature (which is true for, e.g., demands that are linear or exponential).

Figure 3 depicts the effect of a higher price floor on total consumer surplus (left panel),

and the surpluses of shoppers and non-shoppers (right panel), in our running example

where n = 2, λ = 1/2, w = 1/2, and q(p) = 1 − p. Note that demand q(p) = 1 − p has

constant curvature, so the condition in the proposition is satisfied and therefore shoppers’

surplus decreases monotonically in the price floor.

The following is a straightforward corollary of our results so far:

Corollary 1. Suppose w is fixed. Allowing the manufacturer to use RPM has no effect

on downstream firms’ profits, but it raises aggregate consumer surplus and total welfare,

benefits non-shoppers, and harms shoppers provided π′(p) is log-concave.
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Hence a ban on RPM would be detrimental to consumer surplus and total welfare, would

harm non-shoppers, but would benefit shoppers under a regularity condition. Moreover,

we can also show that these effects are larger in markets with more downstream firms:

Proposition 3. Suppose w is fixed. The effects of RPM identified in Corollary 1 are

larger in markets with larger n.

This result can be understood as follows. First, as shown earlier, under RPM the

optimal price floor is p∗F , and downstream firms charge this price with probability one.

Since p∗F is independent of n, so is manufacturer profit and the surplus of each consumer

type (and hence also aggregate consumer surplus). Second, though, as we show in the

proof of Proposition 3, absent RPM outcomes do depend on n. In particular, it is already

well-known from the literature that as n increases in a Varian (1980) model, firms adopt

more extreme pricing strategies—mainly charging high prices close to pm to exploit their

non-shoppers, but occasionally setting very low prices to compete for shoppers. We

demonstrate that greater n leads to a worse per-consumer profit distribution in the sense

of second order stochastic dominance. Since we showed earlier that consumer surplus

V (π) and output Q(π) are concave in π, it follows that in the Varian model expected

consumer surplus and expected output both decrease in n. We also demonstrate in the

proof that the tendency for firms to choose more extreme pricing strategies with higher n

is detrimental to non-shoppers (who get a random draw from a distribution with generally

high prices) but beneficial to shoppers (because they benefit from the fact that each firm

occasionally charges a very low price). Third, it then follows that the beneficial impact of

RPM on total consumer surplus, manufacturer profit (and hence also total welfare), and

non-shoppers’ surplus, as well as the negative impact of RPM on shoppers’ surplus, are

all larger when there are more firms in the industry.

Remark on asymmetric equilibria. In the above we have focused on symmetric equilibria.

However, it is well known that even symmetric models of sales have asymmetric equilibria

when n > 2. In such equilibria each firm earns the same expected profit (1− λ)πm/n as

in the symmetric equilibrium in Lemma 1, and prices and profit levels are dispersed. It

is straightforward to show that if pF = p∗F then the symmetric equilibrium studied above

is the unique equilibrium. Hence, even allowing for asymmetric equilibria, a price floor

at pF = p∗F still reduces profit volatility and so leads to higher consumer surplus and

manufacturer profit (and thus also total welfare) compared to the case with no RPM.
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4 Analysis with an Endogenous Wholesale Price

In this section we allow the manufacturer to choose both a price floor pF and a wholesale

price w. Denote by π(p;w) = (p − w)q(p) a firm’s per-consumer profit when it sells at

price p and faces a wholesale price w, and note that as usual it is quasiconcave in p. Let

pm(w) = argmaxp π(p;w) be the monopoly price, and let πm(w) = π(pm(w);w) be the

associated per-consumer profit.

Using earlier work we can immediately make two observations. First, absent RPM,

and for given wholesale price w, downstream firms use the Varian price distribution from

Lemma 1 with πm replaced by πm(w) and π(p) replaced by π(p;w). Letting p(w) denote

the lower support, firms mix continuously over the interval [p(w), pm(w)]. Secondly, with

RPM, and again for a given wholesale cost w, from Proposition 1 the manufacturer chooses

a price floor p∗F (w) that satisfies π(p∗F ;w) = (1 − λ)πm(w), and then downstream firms

set price equal to this floor with probability one.

Using the above two observations, we can then write out the manufacturer’s problem.

When RPM is not possible the manufacturer seeks to

max
w

w

∫ pm(w)

p(w)

q(p)d[λ[1− [1− F (p;w)]n] + (1− λ)F (p;w)], (5)

whereas when RPM is possible it seeks to

max
w

wq(p∗F (w)). (6)

Solving these optimization problems is challenging, especially the former one due to the

complicated way in which a change in w affects the downstream firms’ price distribu-

tion.7 Nevertheless we now show that analytical progress is possible for a certain class of

demands.

In order to solve (5) and (6), it is useful to view each downstream firm as choosing a

relative profit β, where β is the fraction of the monopoly profit πm(w) that the firm earns

on each sale. Using Lemma 1 we see that absent RPM each retailer chooses β from an

interval [β, 1] where β = 1−λ
1+(n−1)λ

using the distribution function

Ĝ(β) = 1−
[
1− λ

λn

(
1− β

β

)] 1
n−1

for β ∈
[
β, 1

]
.

Proposition 1 implies that with RPM each downstream firm chooses β = 1 − λ. Let

Q(β;w) ≡ q(p(β;w)) denote demand given relative profit β and wholesale price w, where

p(β;w) is implicitly determined by π(p;w) = βπm(w) for 0 ≤ β ≤ 1. The following

observation will prove very useful:

7For an analysis of cost pass-through in the Varian model, see Garrod, Li, Russo, and Wilson (2025).
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Lemma 5. For the class of constant curvature demands q(p) = (1 − ap)b with a, b > 0

there exists a function K(β) such that Q(β;w) = K(β)q(w).

The class of demands with constant curvature includes, amongst others, those derived

from the uniform and exponential distributions. Lemma 5 shows that for demands in this

class Q(β;w) is multiplicatively separable in β and w. This allows us to then rewrite the

manufacturer’s problem in (5) as

max
w

w

∫ 1

β

Q(β;w) dP̂D(β)
CC
= max

w
wq(w)EP̂D[K(β)], (7)

where “CC” means that demand has constant curvature, and where P̂D(β) = λ{1− [1−
Ĝ(β)]n} + (1 − λ)Ĝ(β) is the market-wide distribution of relative profit. Similarly the

manufacturer’s problem in (6) can be rewritten as

max
w

wQ(1− λ;w)
CC
= max

w
wq(w)K(1− λ). (8)

It follows by inspection that (7) and (8) have the same solution, namely argmax wq(w).

Hence, in the case of demands with constant curvature, the ability to practice RPM has

no effect on the manufacturer’s optimal wholesale price. Indeed, this optimal wholesale

price is also independent of both n and λ.8 Moreover, as we pointed out earlier, π′(p)

is log-concave for demands that have constant curvature. Our results in Section 3 then

immediately imply the following:

Proposition 4. Suppose demand has constant curvature. Allowing the manufacturer to

use RPM has no effect on downstream firms’ profits, but it raises aggregate consumer

surplus and total welfare, benefits non-shoppers, and harms shoppers.

Recall our running example with n = 2, λ = 1/2, w = 1/2, and q(p) = 1− p. Notice

that in this example argmax wq(w) = 1/2 and so, given n = 2, λ = 1/2, and q(p) = 1−p,

Figures 1-3 illustrate the impact of RPM even when w is endogenous.

Unfortunately, for demands that do not have constant curvature, it is not possible to

obtain analytical results on the impact of RPM. This is primarily due to the complexity of

the optimization problem in equation (5), which determines the optimal w absent RPM.

Nevertheless, numerical analysis confirms that RPM can benefit consumers and increase

total welfare even for demand forms that do not have constant curvature. To illustrate

this, Figure 4 depicts the impact of RPM when n = 5 and q(p) = e−p4 , for different levels

of λ. (We use this demand function because its curvature varies strongly with p.9)

8This generalizes a result from Janssen and Shelegia (2015) who show that in the Varian model with

n = 2 and linear demand the optimal wholesale price is independent of λ.
9Let σ(p) = q(p)q′′(p)

[q′(p)]2 denote demand curvature. When q(p) = e−p4

we have that σ(p) = 1− 3/(4p2),

which increases in p and satisfies, e.g., limp→0 σ(p) = −∞, σ(1) = 1/4, and limp→∞ σ(p) = 1.
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Figure 4: Outcomes with and without RPM when demand has non-constant curvature.

Panel (a) of Figure 4 plots the optimal wholesale price under the two regimes. We

observe that the optimal wholesale price is slightly higher under RPM when λ is below

around 0.53, but that otherwise RPM leads to a slightly lower wholesale price. Contrary

to our earlier results, this implies that RPM is generically not neutral for downstream

firms. In particular, since downstream industry profit is equal to πm(w)(1 − λ) (both

with and without RPM), and since πm(w) is decreasing in w, the figure implies that

RPM harms downstream firms when λ is low but benefits them when λ is higher. Panel

(b) of the figure plots manufacturer profit. As expected, RPM is unambiguously good

for the manufacturer—starting from whichever w is optimal without RPM, our analysis

in Section 3 implies that a switch to RPM improves manufacturer profit, and then the

manufacturer can do even better by re-optimizing its wholesale price. Panel (c) shows

that RPM always increases consumer surplus. Intuitively, even though RPM raises the

optimal w for low values of λ, the increase is small. Hence any resulting upward shift in the

price distribution is small, and is dominated by the reduction in profit volatility induced

by RPM. Finally, panel (d) shows that RPM also increases total welfare. Intuitively, even
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though for small λ values RPM reduces downstream industry profit, this is dominated by

the increases in both manufacturer profit and consumer surplus.

5 Conclusion

We have examined the effect of RPM in a model of sales where some consumers are well-

informed about prices while other consumers are not. The imposition of a price floor

qualitatively changes the nature of price competition. In particular, when the price floor

is sufficiently high, downstream firms employ a pure strategy and set price exactly equal

to the floor. When instead the price floor is more moderate, downstream firms employ

a mixed strategy and set price equal to the floor with positive probability, have a gap in

their price distribution, and then mix continuously over higher prices. Within this region

of moderate price floors, an increase in the price floor induces a “less risky” distribution

of market-wide profit, leading to both higher total output and higher consumer surplus.

We showed that this implies that the manufacturer’s optimal choice of price floor just

eliminates all price dispersion in the downstream market, and moreover it is the best price

floor from both a consumer and a welfare viewpoint. Nevertheless, RPM has distributional

consequences, benefiting non-shoppers but harming shoppers under a regularity condition.

Finally, the welfare impact of RPM is larger in markets with more downstream firms.

Our analysis has focused on a price floor that is chosen optimally by an upstream

manufacturer. However, in some markets policymakers may impose price floors—such as

minimum prices for alcohol and tobacco—in order to try and reduce consumption of those

goods.10 Our analysis suggests that if consumers face informational frictions, and some

are better informed than others, then price floors that are not aggressive enough could

actually backfire and lead to higher consumption of the affected products.

10For example, in Scotland there is a minimum price of 65p per unit of alcohol (link), while in

Minneapolis the city council has imposed a minimum price of $15 per pack of cigarettes (link), and in

New York City there are minimum prices for a variety of different tobacco products (link).
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A Omitted Proofs

Proof of Lemma 1. The proof is standard and so omitted.

Proof of Lemma 2. Clearly if pF ≥ pm there is a unique equilibrium where all firms charge

pF . In the remainder of the proof we therefore focus on pF ∈ [p∗F , p
m).

Any candidate pure strategy equilibrium must involve all firms charging pF . To verify

that all firms charging pF is an equilibrium, note that in this putative equilibrium each

firm earns π(pF )/n ≥ π(p∗F )/n. If a firm deviates to a price p > pF it loses all the shoppers

and so earns (1−λ)π(p)/n ≤ (1−λ)πm/n = π(p∗F )/n, where the equality uses (1). Hence

no firm has an incentive to deviate.

Any candidate symmetric mixed strategy equilibrium must be atomless except possibly

at pF , and must have pm in its support. This implies that expected profit must be

(1 − λ)πm/n. However, if a firm charges pF it gets strictly more than a 1/n share of

consumers, leading to profit strictly larger than π(pF )/n ≥ π(p∗F )/n = (1 − λ)πm/n,

which is a contradiction. Hence there is no mixed strategy equilibrium.

Proof of Lemma 3. The construction of the mixed strategy was explained in the text and

so we omit further details here. It is straightforward to show that the left-hand side

of (2) is strictly increasing in pF and decreasing in m, approaches π(pF )[λ + (1− λ)/n ]

as m tends to 0, and approaches π(pF )/n as m tends to 1. Existence and uniqueness of

m ∈ (0, 1) and p′ ∈ (p, pm) then follow.

Proof of Lemma 4. To prove part (i), note that for a given “profit floor” πF expected

per-consumer profit is

[λ[1− (1−m)n] + (1− λ)m] πF +

∫ πm

π′
π dPD(π)

= mπm(1− λ) +

∫ πm

π′

[
λn[1− G̃(π)]n−1 + 1− λ

]
π dG̃(π)

= πm(1− λ),

where the second line uses (2) to substitute out πF and (4) to substitute out for dPD(π),

and the third line uses (3) to substitute out for G̃(π) and uses the fact that G̃(πm) −
G̃(π′) = 1−m. Hence expected per-consumer profit is indeed independent of πF .

To prove part (ii), consider two price floors p0F and p1F satisfying p < p0F < p1F < p∗F ,

and let π0
F = π(p0F ) and π1

F = π(p1F ). Let PD0(π) and PD1(π) be the associated per-

consumer profit distributions, with associated mass points χ0 and χ1, and associated lower
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bounds π′0 and π′1 on the continuous parts of the distributions. Let ϕ(π) be an arbitrary

concave function. We need to prove that EPD0 [ϕ(π)] < EPD1 [ϕ(π)], or equivalently that

χ0ϕ(π0
F ) +

∫ pm

π′0
ϕ(π)dPD0(π) < χ1ϕ(π1

F ) +

∫ pm

π′1
ϕ(π)dPD1(π). (9)

As a first step, note that π′0 < π′1 and PD0(π) = PD1(π) for all π ≥ π′1. Note also that

χ0ϕ(π0
F ) +

∫ π′1

π′0 ϕ(π)dPD0(π)

χ1
< ϕ

χ0π0
F +

∫ π′1

π′0 π dPD0(π)

χ1

 = ϕ(π1
F )

where the inequality uses Jensen’s inequality, and the equality uses the fact that the mean

per-consumer profits are the same.11 Hence

χ0ϕ(π0
F ) +

∫ π′1

π′0
ϕ(π)dPD0(π) < χ1ϕ(π1

F ).

Adding
∫ pm

π′1 ϕ(π)dPD0(π) to the left-hand side and
∫ pm

π′1 ϕ(π)dPD1(π) to the right-hand

side, and recalling that PD0(π) = PD1(π) for all π ≥ π′1, this simplifies to (9).

Proof of Proposition 1. First, we prove that manufacturer profit is strictly increasing in

pF ∈ (p, p∗F ). Note that manufacturer profit is proportional to EPD[Q(π)]. From Lemma 4

we know that higher πF improves PD(π) in the sense of second order stochastic domi-

nance, and so it suffices to prove that Q(π) is strictly concave. We can write

Q′(π) =
q′(p)

π′(p)
=

q′(p)/q(p)

1 + q′(p)(p− w)/q(p)
.

Given that for π < πm the denominator is positive and π′(p) > 0, and given that log-

concavity of q(p) implies that q′(p)/q(p) is negative and decreasing, it follows that Q(π) is

indeed strictly concave as required. Second, as explained in the text, manufacturer profit

is decreasing in pF ≥ p∗F , and hence it is maximized at pF = p∗F .

Proof of Proposition 2. The proof of part (i) follows from arguments in the text, especially

the concavity of V (π) as proved by Armstrong and Vickers (2019), and so the proof is

omitted. Now consider part (ii). Differentiating (2) with respect to πF (= π(pF )) we

obtain
∂m

∂πF

=
1−λ
n

+ λ1−(1−m)n

mn
λπF

m2n
[1− (1−m)n − nm(1−m)n−1]

=
mπ′

πF (π′ − πF )
,

11As mean per-consumer profits are the same we have χ0π0
F +

∫ pm

π′0 π dPD0(π) = χ1π1
F +∫ pm

π′1 π dPD0(π), which simplifies to χ0π0
F +

∫ π′1

π′0 π dPD0(π) = χ1π1
F because PD0(π) = PD1(π) for

all π ≥ π′1.
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where the second equality uses (2) to substitute out πF , and also uses the fact that

(1−λ)πm = π′ [λn(1−m)n−1 + 1− λ]. (Note that the latter is derived from the expression

for F (p) in Lemma 1 given that π′ = π(p′) and F (p′) = m.) In addition, G̃(π′) = m implies

∂π′

∂πF

=
∂m

∂πF

1

g̃(π′)
.

Next, the surplus of a non-shopper is mV (πF ) +
∫ πm

π′ V (π) dG̃(π). Its derivative with

respect to πF is

∂m

∂πF

V (πF ) +mV ′(πF )− V (π′) g̃(π′)
∂π′

∂πF

=[V (πF )− V (π′)]
mπ′

πF (π′ − πF )
+mV ′(πF )

>− V ′(πF )m

(
π′

πF

− 1

)
> 0,

where the first expression uses the fact that G̃(π) does not depend on πF for π > π′, the

first inequality follows from concavity of V (π), and the second inequality follows from

V ′(·) < 0 and πF < π′.

Finally, the surplus of a shopper is [1− (1−m)n]V (πF )+
∫ πm

π′ V (π) d[1− (1− G̃(π))n].

Its derivative with respect to πF is

n(1−m)n−1V (πF )
∂m

∂πF

+
[
1− (1−m)n

]
V ′(πF )− n g̃(π′)

[
1− G̃(π′)

]n−1
V (π′)

∂π′

∂πF

= n(1−m)n−1
[
V (πF )− V (π′)

] mπ′

πF (π′ − πF )
+
[
1− (1−m)n

]
V ′(πF )

=
m(1− λ)

λπF

[
(πm − π′)

V (πF )− V (π′)

π′ − πF

+ (πm − πF )V
′(πF )

]
,

where the third line uses (2) and (1 − λ)πm = π′ [λn(1−m)n−1 + 1− λ] (which we

explained how to derive earlier in the proof). Since concavity of V (π) implies that
V (πF )−V (π′)

π′−πF
< −V ′(π′), and since −V ′(π′) =

q(p′)
π′(p′)

and −V ′(πF ) = q(pF )
π′(pF )

, a sufficient

condition for the square-bracketed term to be negative is that

q
(
p′
) ∫ pm

p′
π′ (z) dz

π′
(
p′
) <

q (pF )
∫ pm

pF
π′ (z) dz

π′ (pF )
.

This inequality holds because p′ > pF implies that q
(
p′
)
< q (pF ), and because log-

concavity of π′(p) implies that
∫ pm

x
π′(z)dz/π′(x) is decreasing in x. (Specifically, note

that π′′(x)
π′(x)

∫ pm

x
π′(z)dz ≤

∫ pm

x
π′′(z)dz = −π′(x), where the inequality uses log-concavity

of π′(p). This inequality implies that
∫ pm

x
π′(z)dz/π′(x) is decreasing in x.)
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Proof of Proposition 3. Let F̃ (π;n) be the distribution of a firm’s profit in the Varian

model from Lemma 1, and let P̃D(π;n) be the associated distribution of per-consumer

profit. Note that they satisfy respectively

F̃ (π;n) = 1−
[
1− λ

λn

(
πm

π
− 1

)] 1
n−1

,

and

P̃D(π;n) = λ
[
1− [1− F̃ (π;n)]n

]
+ (1− λ)F̃ (π;n).

We will prove that under this Varian distribution, higher n reduces total consumer surplus

and total output (and hence manufacturer profit), decreases the surplus of non-shoppers,

and increases the surplus of shoppers whenever π′(p) is log-concave. Since each consumer’s

surplus is independent of n under RPM, the result in the proposition then follows.

First, consider total consumer surplus and total output under the Varian distribution.

It suffices to show that an increase in n worsens P̃D(π;n) in the sense of second order

stochastic dominance or, equivalently, that
∫ π

−∞ P̃D(t;n)dt increases in n. Letting π(n)

be the lowest per-consumer profit in the support of the distribution, and noting that

P̃D(π(n);n) = 0, it is sufficient to prove that H(π;n) ≥ 0 where

H(π;n) ≡
∫ π

π(n)

∂P̃D(t;n)

∂n
dt.

Clearly H(π(n);n) = 0. Moreover H(πm;n) = 0. To see the latter, note that using the

same steps as in the proof of Lemma 4 per-consumer profit is πm(1− λ), and so

(1− λ)πm =

∫ πm

π(n)

π dP̃D(π;n) = πm −
∫ πm

π(n)

P̃D(π;n) dπ,

where the second equality uses integration by parts. Differentiating with respect to n,

the above implies that H(πm;n) = 0. We now demonstrate that H(π;n) > 0 for all

π ∈ (π(n), πm). To do this, use the change of variables

u =
1− λ

λn

(
πm

π
− 1

)
,

and write

F̃ (π;n) = 1− u
1

n−1 and
∂F̃ (π;n)

∂n
=

u
1

n−1

(n− 1)2

(
lnu+

n− 1

n

)
.

We then find that

∂P̃D(π;n)

∂n
= −λ[1− F̃ (π;n)]n ln(1− F̃ (π;n)) +

[
λn[1− F̃ (π;n)]n−1 + (1− λ)

] ∂F̃ (π;n)

∂n

=
(λu+ 1− λ)u

1
n−1

(n− 1)2

[
lnu+

n− 1

n

λun+ 1− λ

λu+ 1− λ

]
.
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Notice that as π increases from π(n) to πm, u decreases from 1 to 0. Notice also that

the square-bracketed term in the second line of the above expression is increasing in u,

is negative as u → 0 but positive as u → 1. Hence ∂P̃D(π;n)/∂n > 0 if and only if

π < π̌(n) for some π̌(n) ∈ (π(n), πm). This implies that H(π;n) first increases and then

decreases in π; given that H(π(n);n) = H(πm;n) = 0 this means that H(π;n) > 0 for all

π ∈ (π(n), πm).

Second, consider the surplus of non-shoppers for the Varian distribution, which equals∫ πm

π(n)

V (π) dF̃ (π;n) = V (πm)−
∫ πm

π(n)

V ′(π) F̃ (π;n) dπ,

where the equality uses integration by parts. Its derivative with respect to n is

−
∫ πm

π(n)

V ′(π)
∂F̃ (π;n)

∂n
dπ =

nλ(1− λ)πm

(n− 1)2

∫ 1

0

tns(u)wns(u) du, (10)

where the equality uses the same change of variables as earlier in the proof, as well as the

fact therefore that dπ = −du[nλ(1− λ)πm]/(1− λ+ λnu)2, and where

tns(u) = u
1

n−1

(
lnu+

n− 1

n

)
and wns(u) = −

V ′(πm 1−λ
1−λ+λnu

)
(1− λ+ λnu)2

.

Define Tns(u) =
∫ u

0
tns(z)dz, and note that Tns(0) =

∫ 0

0
tns(z)dz = 0, and also that

Tns(1) =

∫ 1

0

u
1

n−1 lnu du+
n− 1

n

∫ 1

0

u
1

n−1 du = 0,

where the second equality follows from integrating
∫ 1

0
u

1
n−1 lnudu by parts. Since tns(u) <

0 if and only if u < e−(n−1)/n, we then conclude that Tns(u) < 0 for all u ∈ (0, 1). It is also

easy to verify that w′
ns(u) < 0. Therefore integrating the right-hand side of equation (10)

by parts gives

−nλ(1− λ)πm

(n− 1)2

∫ 1

0

w′
ns(u)Tns(u)du < 0.

Third, consider the surplus of shoppers for the Varian distribution, which equals∫ πm

π(n)

V (π) d
[
1− [1− F̃ (π;n)]n

]
= V (πm)−

∫ πm

π(n)

V ′(π)
[
1− [1− F̃ (π;n)]n

]
dπ,

where the equality uses integration by parts. Its derivative with respect to n is

nπmλ(1− λ)

(n− 1)2

∫ 1

0

ts(u)ws(u)du, (11)

where we have again used the change of variables from earlier in the proof, and where

ts(u) = u
2−n
n−1 (lnu+ n− 1) and ws(u) = −

u2V ′(πm 1−λ
1−λ+λnu

)
(1− λ+ λnu)2

.
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Letting Ts(u) =
∫ u

0
ts(z)dz, similar steps as above can be used to establish that Ts(0) =

Ts(1) = 0 and that Ts(u) < 0 for u ∈ (0, 1). We now prove that w′
s(u) > 0. To do this,

rewrite ws(u) as a function of π:

ws(u) = − 1

(λnπm)2
(πm − π)2V ′(π) =

[
πm − π

(λnπm)2

][
q (p)

∫ pm

p
π′ (z) dz

π′ (p)

]
.

Clearly the first square-bracketed term is decreasing in π. The second square-bracketed

term is also decreasing in π, given that p increases in π over the relevant range, and given

that q′(p) < 0 and given that (as shown in the proof of Proposition 2) log-concavity of

π′(p) implies that
∫ pm

p
π′ (z) dz/π′(p) is decreasing in p. Hence the product of the two

square-bracketed terms is decreasing in π; as π decreases in u, this implies that w′
s(u) > 0

as claimed above. Finally, equation (11) implies

nπmλ(1− λ)

(n− 1)2

∫ 1

0

ts(u)ws(u)du = −nπmλ(1− λ)

(n− 1)2

∫ 1

0

w′
s(u)Ts(u)du > 0,

where the equality uses integration by parts, and the inequality uses w′
s(u) > 0 and

Ts(u) < 0.

Proof of Lemma 5. Using q(p) = (1− ap)b for a, b > 0, one can check that

πm(w) =
(1− aw)1+b bb

a (1 + b)1+b
= q (w)

1+b
b

bb

a (1 + b)1+b
.

Hence π (p(β;w);w) = βπm(w) is equivalent to

[p(β;w)− w] q (p(β;w)) = βq (w)
1+b
b

bb

a (1 + b)1+b
. (12)

Moreover, since 1 − ap = q(p)1/b, we can also write a (p− w) = q (w)1/b − q (p)1/b. Sub-

stituting this into (12) and simplifying, and then using Q(β;w) = q (p(β;w)), we obtain[
1−

(
Q(β;w)

q (w)

)1/b
](

Q(β;w)

q (w)

)
=

βbb

(1 + b)1+b
.

This in turn implies that Q(β;w) = K(β)q(w). (Note that the function K(β) is uniquely

defined. This is because a unique p(β;w) solves π (p(β;w);w) = βπm(w) given the qua-

siconcavity of the profit function, and so Q(β;w) = q (p(β;w)) must also be unique.)
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Proof of Proposition 4. We need to prove that constant curvature demand implies that

π′(p) is log-concave. (The result then follows from arguments in the text.) Note that

π′(p) ∝ 1− ap− ab(p− w) > 0 for p < pm. It then follows from direct calculation that

d2

dp2
ln π′(p) = − a2

(1− ap)2

[
(b− 1) + (b+ 1)2

(
1− ap

1− ap− abp+ abw

)2
]

≤ − a2

(1− ap)2
[
(b− 1) + (b+ 1)2

]
< 0,

where the first inequality uses the fact that p ≥ w (since downstream firms will never

price below their cost).
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