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Abstract

The coexistence of conventional and low-input farming methods transforms what appears to be an indi-

vidual optimization problem into a collective action dilemma that subsidies and landscape features alone

cannot resolve. This paper provides the first large-scale, field-level causal evidence of how exposure to pes-

ticide externalities from conventional neighbors affects the diffusion of low-input systems through economic

channels by creating spatial coordination failures. Using French administrative panel data on 9.5 million

agricultural parcels and exploiting quasi-experimental variation in exposure induced by exogenous wind and

topographic gradients, I investigate changes in local organic farming adoption and maintenance. Results

reveal a modest, but persistent reduction in organic farming of approximately 2.8% relative to the mean,

which is above most of exogenous and correlated peer effects. I show that these edge-effect externalities

impose heterogeneous costs on organic producers due to certification-threatening risks from involuntary

nonpoint source pollution (via runoff and drift), and an incomplete insurance market that prevents hedging

these shocks. These findings highlight the need for coordinated spatial policies and complementary risk

management instruments to mitigate the risk of cross-parcel pesticide contamination.
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data.
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1 Introduction

Why do greener technologies fail to diffuse, even when subsidized? In agriculture, the

European Union (EU) has committed e12 billion to organic farming between 2014 and

2022, and an additional e15 billion through 2027 (European Court of Auditors, 2024)

to increase organic farmland from 10% to 25% by 2030 (European Commission, 2021,

2025). However, adoption rates have stagnated despite growing consumer demand and

substantial financial incentives. This paper shows how spatial externalities in mixed farm-

ing landscapes, where conventional and low-input systems coexist, create coordination

failures that hinder the diffusion of technology. This dynamic transforms an individual

choice into a collective action dilemma that subsidies and landscape features alone cannot

resolve.

Edge-effect externalities (EEEs) from conventional neighbors critically shape the eco-

nomic viability of low-input systems (Parker and Munroe, 2007; Parker, 2007; Larsen

et al., 2024), such as organic farming. Pesticide contamination, in particular, represents

a critical yet overlooked barrier. Pesticide drift and runoff, traveling up to 500 meters be-

yond field edges (Carlsen et al., 2006; de Jong et al., 2008; EFSA, 2014), threaten organic

producers with significant economic costs, including de-certification for any detectable

synthetic pesticide residues above 0.01 mg/kg (Regulation (EC) 2018/848), forced crop

destruction, and legal disputes across Europe and North America (Novak, 2017; Schleif-

fer and Speiser, 2022; Reboud et al., 2023). Recent years have documented a growing

number of incidents. In France, the EU’s largest agricultural producer and consumer of

pesticides (SDES, 2025), over 200 accidental contamination cases are recorded annually,

albeit their broader economic implications remain unexplored.

This paper provides the first large-scale, field-level causal evidence of how exposure

to pesticide externalities from conventional neighbors acts as a barrier to the diffusion

of organic farming through economic channels. Using French panel data on 9.5 million

agricultural parcels from the Land Parcel Identification System (LPIS), I address a central

identification challenge: farmers’ adoption and location choices are not random. This self-

selection, or endogenous spatial sorting, means that naive comparisons between high- and
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low-exposure areas are fundamentally biased. The empirical strategy is grounded in a

random profit model that, by formalizing the economic mechanisms, provides two ways to

address endogeneity. First, I include fine-grained individual specific effects to control for

unobserved heterogeneity. Second, I exploit quasi-experimental variation from exogenous

biophysical factors to address remaining idiosyncratic endogeneity in land use choices.

Specifically, historical wind patterns and topography create stable ’shadows’. Parcels

located downwind and downslope of conventional ones face systematically higher risk of

contamination risk than an otherwise identical parcel located upwind and upslope, ceteris

paribus. I combine high-resolution wind data from ERA5 reanalysis (Muñoz Sabater,

2019) with digital elevation models (BD ALTI®) to construct an exposure index that

is, by construction, plausibly orthogonal to farmer characteristics and current land use.

I find that pesticide EEEs have a modest but persistent within-parcel effect. A one-

standard-deviation (s.d.) increase in exposure reduces the probability of being organic

by 0.27 percentage points (pp), or 2.8% relative to the baseline mean.

I demonstrate that these mechanisms arise from the interaction of two market failures.

On the one hand, EEEs generate heterogeneous economic costs. By matching LPIS with

Farm Accountancy Data Network (FADN) records, I show that biophysical spillovers

from conventional neighbors are a double-edged sword for organic farmers: they boost

yields via free pest control but simultaneously reveal contamination. Critically, these pest

control gains remain insufficient to compensate for the yield losses inherent to organic

conversion. This asymmetry between both types of producers makes unilateral conversion

economically irrational in high-exposure areas. On the other hand, incomplete insurance

markets exacerbate this barrier. My analysis reveals that the deterrent effect falls entirely

on uninsured farmers and is completely neutralized by insurance. This finding isolates

the barrier as financial risk, not an agronomic constraint.

Therefore, this coordination failure fragments the organic sector by driving spatial

sorting. The result is a spatial lock-in that traps landscapes in a high-input equilibrium,

making them resistant to unilateral policy interventions. Operating at the extensive

margin, the effect suppresses entry and accelerates exits in high-exposure areas, thereby
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precluding the emergence of contiguous organic clusters that internalize externalities.

Heterogeneity analysis confirms these economic mechanisms. The deterrent effect of

EEEs is twice as strong for high-value perennial crops (e.g., vineyards) facing higher

sunk costs. Finally, I use high-resolution remote-sensing data to show that landscape

features like hedgerows provide only partial mitigation, leaving the core coordination

failure unresolved. These findings call for a policy mix of coordinated spatial planning

and complementary risk management instruments to mitigate cross-parcel pesticide con-

tamination.

This paper makes several contributions to the literature. First, I challenge the prevail-

ing focus on positive peer effects in technology adoption in agriculture (see e.g., Foster and

Rosenzweig (1995) and Bandiera and Rasul (2006) for knowledge spillovers, BenYishay

and Mobarak (2018) and Deperrois and al. (2023) for social learning, and Chabé-Ferret

et al. (2024) for social norms). While the literature on organic adoption emphasizes in-

formation spillovers and social learning (Parker and Munroe, 2007; Lewis et al., 2011),

this paper focuses on the physical constraint of contamination risk. Drawing on the

coexistence literature established for GM crops (Beckmann and Wesseler, 2007; Munro,

2008; Desquilbet and Poret, 2014), I model the production choice as a spatial coordina-

tion problem. In particular, similar to Missirian (2024) in the case of forced adoption of

dicamba-tolerant soybean and cotton varieties in the United States, I study a negative,

physically-mediated peer effect: an endogenous externality from neighbors’ land use. In

addition, my contribution is to disentangle this biophysical mechanism from a compre-

hensive set of exogenous and correlated peer effects (Manski, 1993), which, to the best

of my knowledge, has not been empirically done in this context. I show that EEEs dom-

inate positive peer effects, creating a binding constraint that prevents the development

of organic farming. This paper also advances recent work on pesticide EEEs (Larsen

et al., 2024; Missirian, 2024) by shifting the focus from whether negative spillovers exist

to how they operate. I specifically identify and quantify multiple exposure pathways:

pesticide drift, as in Missirian (2024) and Coinon (2022), but also runoff. Indeed, the

role of soil persistence (Arias-Estévez et al., 2008) and hydrological transport in pesti-
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cide through surface runoff and subsurface flow (Reichenberger et al., 2007), as well as

accumulation in downslope positions and drainage pathways (Schulz, 2004), have been

identified as the main driver of pesticide externalities. Global meta-analyses demonstrate

that runoff and erosion account for up to 4% of applied pesticides leaving agricultural

fields, with concentrations in edge-of-field water bodies exceeding regulatory thresholds

in 24% of cases worldwide (Stehle and Schulz, 2015). These slope-mediated transport

processes dominate pesticide losses particularly during storm events (Lefrancq et al.,

2017), when surface runoff can generate pesticide flows 10-100 times higher than base-

line flow conditions (Rabiet et al., 2010). Moreover, although recent studies document

spillovers, they often fail to address endogeneity and scale effects. My panel, parcel-level

approach leverages exogenous geographic variation (wind and topography) to model the

anisotropic nature of EEEs. This strategy simultaneously overcomes the two primary

identification challenges in the literature on peer effects, i.e., the reflection problem (in-

cluding endogenous sorting and omitted local factors) (Manski, 1993) and the modifiable

areal unit problem (Arbia et al., 1996) that biases aggregate-level studies (see e.g., at the

farm level: Läpple and Kelley (2015); at the municipality level: Allaire et al. (2015) and

Nguyen-Van et al. (2021); and at the county level: Schmidtner et al. (2011) and Missirian

(2024)).1

Second, while recent work establishes a link between EEEs and input use (Larsen

et al., 2024), the economic mechanisms driving this relationship remain poorly under-

stood. This paper identifies a primary financial mechanism driven by incomplete markets

(Sandmo, 1971; Feder et al., 1980; Newbery and Stiglitz, 1981): the risk of uninsurable

certification. I argue that this risk poses a significant challenge to sustainable agricultural

transitions by reframing the constraints on long-term viability as financial, not merely
1Coinon (2022) examines the role of networks in organic farming in metropolitan France across varying

spatial specifications, from regional (spillovers) to parcel levels (peer effects). Using an Explanatory
Spatial Data Analysis (ESDA) framework (Anselin, 1995, 1996), the magnitude of spatial dependency is
confirmed to be highly sensitive to the level of aggregation. Moreover, relying on the French Agricultural
Census that records location solely at the headquarters of each farm, the author shows that parcel-level
data mitigate measurement error found in farm-level studies. In a matched sample between LPIS and
the Agricultural Census for the year 2018, covering approximately 60% of LPIS parcels, 33% are located
in a municipality distinct from the headquarters. The granularity of this study is then critical from a
spatial econometrics perspective to avoid misspecification of the weight matrix, while also ensuring that
the analysis accounts for the relevant unit where these EEEs operate.
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agronomic. This distinction is crucial, as the literature on risk management has largely

focused on moral hazard, where reactive tools (insurance) are seen as substitutes that

crowd out proactive effort (Annan and Schlenker, 2015; Miao, 2020). However, empirical

support for this substitution channel is weak (see e.g., Enjolras and Aubert (2020) on

pesticide use in France). This paper instead tests an alternative hypothesis grounded

in a selection mechanism. Since organic farming entails greater profit volatility, only

agents with sufficient financial resilience (proxied here by crop insurance) can afford to

bear this increased variance (Rosenzweig and Binswanger, 1993). The decision to adopt

is therefore constrained by the farmer’s capacity to buffer shocks, as predicted by Just

and Pope (1978). This interpretation echoes findings that financial instruments are es-

sential for overcoming household risk-management barriers (Cole et al., 2013) and pivotal

in shaping agronomic risk-taking behavior (Mobarak and Rosenzweig, 2013). Consistent

with this selection channel, the empirical results demonstrate that insured farmers are

significantly more likely to grow organically in mixed farming landscapes.

Finally, I bridge ecological and economic analysis by quantifying a crucial, yet often-

overlooked, ecosystem service - the EEE mitigation capacity of landscape infrastructure

(Baudry et al., 2000). This paper moves beyond the traditional valuation of hedgerows

(e.g., as windbreaks, Ucar and Hall (2001)) to provide the first economic valuation of

their critical role in serving as a biophysical barrier against pesticide contamination and

enabling coexistence in mixed farming landscapes. My findings show that while ex-ante

planted hedgerows do help internalize the externality – providing partial, economically

meaningful mitigation – they fail to fully resolve the underlying coordination failure.

The remainder of the paper proceeds as follows. Section 2 reviews the institutional

background for organic farming and its coexistence with conventional agriculture. Section

3 develops the theoretical model and its key assumptions. Section 4 describes the data

and presents the identification strategy. Section 5 reports the main empirical findings

and investigates heterogeneity, while Section 6 examines how these effects operate. In

Section 7, I analyze strategies to manage coexistence, focusing on landscape features and

economic resilience. Finally, Section 8 concludes.
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2 Institutional Background

The growing development of organic farming, driven by successive Common Agricultural

Policy (CAP) reforms (Sanders et al., 2008; Allaire et al., 2015) and the EU’s 2030 target

of 25% organic land (European Commission, 2020), has increased the physical inter-

face between conventional and organic parcels. Organic farming represented 16.9 million

hectares, or 10.5% of UAA, in the EU in 2022 (European Commission, 2025). This

growth creates an economic and ecological challenge: managing pesticide drift and runoff

to maintain organic certification integrity, and thereby securing both price premiums and

the provision of associated public goods (such as improved water and soil quality, in-

creased biodiversity, and other ecosystemic services; see e.g., Chabé-Ferret et al. (2021)).

Pesticide Residue Contamination and Organic Standards. The core of organic

certification is the prevention of chemical contamination. The EU grants organic certi-

fication based on strict compliance rules with organic standards that exclude synthetic

fertilizers and pesticides, and genetically modified organisms (GMOs), while requiring

ecological practices such as crop rotation, mechanical tillage, and (ex-post) establish-

ment of hedgerows (Regulation (EC) 2018/848; Regulation (EC) 2021/1165). Still, some

naturally-derived substances like copper and spinosad remain authorized (Regulation

(EC) 2018/848). Specifically, these EU regulations mandate that pesticide residues in

organic products remain below 0.01 mg/kg – a near-zero technical threshold Regulation

(EC) 2018/848). This standard creates a unique economic vulnerability and contrasts

with other coexistence ones. For comparison, the tolerance for the accidental presence of

GMOs in organic products is 0.9% (Regulation (EC) 2018/848, Annex I), a requirement

90 times less stringent.2 These standards are enforced strictly, and certification bodies

must test at least 5% of organic operators annually (Regulation (EC) 2018/848, art.

34(3)). Exceeding the residue limit may result in immediate de-certification, restarting
2This threshold is 100 times stricter than for conventional produce. For conventional products, the

EU sets Maximum Residue Limits (MRLs) specific to each pesticide-crop combination, typically ranging
from 0.01 to 10 mg/kg. For example, the MRL for glyphosate in wheat is 10 mg/kg (Regulation (EC)
293/2013 Annex II, Annex IIIB), for chlorpyrifos in apples is 0.01 mg/kg (Regulation (EC) 2020/1085
Annex V), while for spinosad in tomatoes is 0.7 mg/kg (Regulation (EC) 2022/1406 Annex II). See
Regulation (EC) 396/2005.
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the multi-year transition period, and loss of price premiums.

This institutional setup transforms pesticide externalities from a technical problem

into a market failure (Segerson, 1988; Xepapadeas, 2011), which arises from three inter-

connected factors.

First, pesticide drift and runoff are a classic technological externality. Atomistic

spraying decisions impose uncompensated costs on neighbors (Coase, 1960; Griffin and

Bromley, 1982). The polluter (conventional farmer) bears minimal direct costs from dam-

ages, while the victim (organic farmer) faces prohibitive transaction costs to contract

with multiple upwind and upslope neighbors. These transaction costs are compounded

by monitoring, detection, and enforcement costs inherent to atmospheric and hydrologi-

cal transfers. Second, the strict 0.01 mg/kg residue limit creates a discontinuous damage

function that violates standard assumptions in the spatial externalities literature. Con-

tamination below this threshold may be agronomically harmless, but exceeding it triggers

a discrete and dramatic loss of revenue through de-certification. Because the polluter does

not internalize these losses (Schleiffer and Speiser, 2022), pesticide externalities may lead

to socially excessive pesticide application rates. The problem mirrors pollen contami-

nation in GM/non-GM coexistence (Beckmann and Wesseler, 2007; Munro, 2008; Gray

et al., 2011; Desquilbet and Poret, 2014) but with a tolerance threshold orders of magni-

tude stricter, making even minimal transfers economically harmful. Third, the inherent

characteristics of agricultural production preclude Coasean bargaining solutions (Coase,

1960). The presence of multiple neighbors, stochastic wind patterns, topography gra-

dients, and heterogeneous crop-dependent application timing and methods often makes

bilateral negotiation infeasible.

Legal Framework and Limited Liability. Nowhere is the asymmetry between le-

gal liability and practical enforcement more evident than in the French legal framework.

While French regulations prohibit spraying when wind exceeds 19 km/h (Beaufort scale

3) to minimize drift risk, farmers remain liable for any damage regardless of regulatory
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compliance.3 Yet, this de jure strict liability operates as de facto limited liability. Prov-

ing causation requires expensive residue testing and precise temporal matching between

detected chemicals and specific application events. This enforcement failure weakens

conventional farmers’ incentives to internalize the externality. Consequently, organic

producers are often left to bear the entire burden. This means that adoption is condi-

tional on the ex-ante presence of financial or ecological mitigation, or it requires costly

ex-post investment in these strategies (Veron and Chakir, 2025).

3 Theoretical Model

This section models the production system choice as a spatial coordination problem,

driven by nonpoint-source externalities (like pesticide EEEs) that incentivize technolog-

ical clustering.

Consider a landscape of parcels i ∈ P , |P| = N , observed annually for t = 1, . . . , T .

Let Pt ⊆ P denote the set of parcels present in year t.4 A farmer chooses a production

system k for each parcel, either conventional (C) or organic (O). Let DP
i = 1 if parcel i

uses conventional methods and DP
i = 0 if organic. The profit from parcel i under system

k is

πik = PkYik − cik − Lik

where Yik is the expected yield, Pk the price, cik production costs, and Lik contamination-

related losses. I assume that conventional farmers face no such losses (LiC = 0). For

organic parcels, LiO = κi`, where the parameter κi ∈ {0, 1} is an indicator for a contam-

ination event, with pesticide residues exceeding the 0.01 mg/kg threshold. The penalty

` = (PO − PC)YiO + TiO + RiO captures the sum of the foregone organic premium, the

cost of restarting the transition period (TiO), and reputational losses (RiO).
3See the French Order of the 12th September 2006 on the placing on the market and use of plant

protection products
4While the empirical model (Section 4.2) exploits a panel dimension, the theoretical model focuses

on the static trade-offs. I then omit the time index t for notational simplicity.
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3.1 Defining Pesticide EEEs

I construct an anisotropic exposure index, θi, to quantify the risk of contamination,

defined as the aggregate off-target pesticide movement from all non-organic neighbors to

the focal parcel i. The index is defined as

∀ i ∈ Pt : θi =
∑

j∈Pt−1∩Bk(i)
j 6=i

Θij (1)

where Θij
i∈Pt, j∈Pt−1

j∈Bk(i)

= wijajDjt−1d
−δ
ij and wij = DW

ij D
S
ijΓij

The term DP
j corresponds to the neighbor’s lagged conventional status, ensuring the

exposure measure is predetermined with respect to parcel i’s contemporaneous choice

in year t. The term aj is the area of any neighboring parcel j, as a proxy for the

pesticide in absence of parcel-level data on treatment intensity. The weight wij ∈ [0, 1]

captures the physical transport pathways. Similar to Deryugina et al. (2019), and later

Missirian (2024) and Coinon (2022) for pesticides, I exploit wind direction to identify

the causal path of air pollution. The binary variable, DW
ij , denotes whether parcel j is

predominantly upwind relative to i during its crop-specific application window based on

a five-year historical average of wind patterns. The remaining components, DS
ij and Γij,

jointly model downslope runoff based on fixed topography. In particular, DS
ij indicates

if j is upslope from i and Γij proxies the magnitude of the gravitational force along the

slope. Exposure decays with distance dij by parameter δ > 0.

Figure 1a depicts the spatial configuration of six agricultural parcels {A-F}. By as-

sumption, Parcel A (green), managed organically, generates no risk of contamination.

Conversely, parcel B (brown) is managed conventionally and is a source of pesticide

EEEs. The terrain is characterized by a unidirectional downward slope that originates

at parcel A (highest elevation) and terminates at parcel E (lowest elevation). Assuming

a prevailing wind from the northeast along the (A,E) diagonal, parcels C, D, and E are

situated directly downwind of both A and B. This spatial configuration imposes specific

constraints on the contamination matrix (Θij). Given the wind direction, parcel B can-
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Figure 1: Construction and validity of the pesticide EEE index in France, 2019-2022

not contaminate its upwind parcel A. Parcel F is located outside this defined aeolian

and runoff corridor. Therefore, the set of parcels potentially contaminated by B is, by

construction, limited to parcels C, D, and E.

Appendix A details the construction of the neighborhood matrix, Θij, and the ra-

tionale behind this index. Consistent with the literature on nonpoint source pollution

(Carlsen et al., 2006; de Jong et al., 2008; EFSA, 2014) and the focus on EEEs, I define

the neighborhood of parcel i, Bk(i), using a 500m radius (k). The spatial weighting

within this neighborhood follows an exponential distance-decay kernel, for which calibra-

tion results indicate an optimal decay parameter of 0.005. The validity of this index in

capturing pesticide intensity is confirmed by correlating with active substance quanti-

ties at the zipcode level from the French national sales database (Banque Nationale des

Ventes des Distributeurs, BNV-d) for the 2019-2022 period (Figure 1b). As expected, the

index exhibits a highly significant positive correlation with the mean annual quantity of

active substances applied.
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3.2 A Model of Production System Choice

A farmer chooses organic (DP
i = 0) if its expected profit exceeds that of conventional

farming, E
[
πiO

]
≥ πiC . Given that conventional farming yields a certain profit πiC and

organic farming faces a contamination risk with penalty, this condition can be written as

(POYiO − ciO) − E
[
LiO

]
≥ PCYiC − ciC

Let ∆πiO ≡ (POYiO −PCYiC)− (ciO − ciC) be the net profit advantage of organic farming,

absent any contamination. The expected loss for an organic farm, E
[
LiO

]
, depends on

the probability of a contamination event. I assume this probability is linear in exposure,

such that Pr(κi = 1 | θi) = βθi, where β > 0. The expected loss is therefore E[LiO] =

` · Pr(κi = 1 | θi) = `βθi.

I model the farmer’s decision using both a deterministic threshold and a probabilistic

choice framework.

A Probabilistic Choice Model.

To account for observed heterogeneity, where farms with similar exposure make dif-

ferent choices, I introduce a farm-specific stochastic term νi that represents unobserved

costs (e.g., ciO = cO − νi) or non-monetary preferences for organic farming (e.g., environ-

mental preferences (Bonneton, 2025), reputation concerns). The condition for choosing

organic becomes

∆πiO − `βθi + νi ≥ 0

Assuming νi follows a cumulative distribution function (CDF) F , the probability of being

organic is

Pr(DP
i = 0 | θi) = Pr(νi ≥ `βθi − ∆πiO) = 1 − F (`βθi − ∆πiO) (2)

This model predicts a probabilistic relationship where the likelihood of a parcel to be

managed under organic farming decreases smoothly in exposure θi.

A Deterministic Threshold Model.
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As a benchmark, I also test the above predictions under the assumption of homoge-

neous farmers (i.e., νi = 0 ∀i), in which choices are governed by a simple threshold. A

farmer chooses organic if

∆πiO ≥ `βθi ⇐⇒ θi ≤ ∆πiO

`β
≡ θ∗ (3)

All farms with exposure below a critical threshold θ∗ choose organic, implying spatial

segregation based on exogenous exposure.

3.3 Testable Predictions

This model implies two testable hypotheses regarding the choice of a production system

in mixed farming landscapes.

Hypothesis 1 (Deterrence Effect)

A higher level of pesticide EEE exposure reduces the probability that a parcel is farmed

organically.

This prediction follows directly from the probabilistic choice model. Differentiating

the choice probability in Equation (2) with respect to the exposure index θi yields

∂ Pr(DP
i = 0 | θi)
∂θi

= −f(`βθi − ∆πiO)`β < 0 (4)

where f(·) is the probability density function associated with the CDF F . As f(·), `, and β

are all non-negative by definition, the derivative is strictly negative. The intuition is that

higher exposure raises the expected loss, E[LiO], for an organic parcel. Ceteris paribus,

it erodes the profitability of organic production and makes conventional agriculture a

relatively more attractive option.

Hypothesis 2 (Spatial Sorting and Strategic Complementarity)

The choice of production system exhibits strategic complementarity, leading to positive

spatial autocorrelation and clustering of parcels with similar production systems.

The externality is unidirectional. Conventional farms impose a risk on organic farms,
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but not vice versa. This creates a strategic complementarity in the decision to farm

conventionally. Farmer j’s choice to be conventional (DP
j = 1) increases neighbor i’s

exposure index θi, which, under Hypothesis 1, reduces i’s probability of choosing organic,

and thereby increasing their likelihood of choosing conventional.

This interdependence implies that the technology choices of neighboring parcels are

positively correlated such that

Cov(DP
i , D

P
j ) > 0, and

∂ Cov(DP
i , D

P
j )

∂wij

> 0 (5)

This mechanism drives a spatial sorting equilibrium. Organic farms have an incentive to

locate near other organic farms to minimize their collective exposure, while conventional

farms are indifferent to the location of other conventional farms. The aggregate result is

the spatial segregation of the two production systems to minimize the costly coexistence

between them.

Stylized Facts. Figure 2 provides a preliminary visual support for both hypotheses.

Panels 2a and 2b depict the share of agricultural land managed organically and the pes-

ticide EEE index, respectively, at the municipality level. Consistent with Hypothesis 2,

Panel 2a shows a clear spatial clustering in organic farming. Organic farming is more

prevalent in Alsace and in southern France, particularly in Occitanie, Provence-Alpes-

Côte d’Azur (PACA), and the Massif Central. In contrast, the intensive northern plains

(Hauts-de-France, Normandy, and Centre-Val de Loire) have rates below 5%. In line with

Hypothesis 1, Panel 2b shows that the low-organic areas (northern cereal plains) are pre-

cisely those with the highest pesticide EEE index. Moreover, I examine the relationship

between the EEE index and the share of organic UAA at the zipcode level (Panel 2c).

As expected, these variables are significantly negatively correlated. This confirms that,

at an aggregate level, areas with a higher prevalence of organic farming are associated

with lower measured risk of contamination.
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(a) Share of organic farming (b) Pesticide EEE index

(c) Pairwise correlation

Figure 2: Organic Farming and pesticide EEE index in France, 2019-2022



3.4 Introducing Risk Management

I extend the model to incorporate two forms of risk management, yielding two additional

hypotheses.

Physical Barriers. First, consider physical barriers like hedgerows. Let hij ∈ {0, 1} be

a hedgerow (at the edge) between i and j, and Hs
i a strategically-positioned hedgerow that

blocks drift and runoff from a dominant source, defined as Hs
i = 1{∃j such that hij = 1

and wij > ω}, where ω is a threshold defining a dominant pollution direction (e.g.,

ω = 0.5). For example, in Figure 1a, if there is a hedgerow located exclusively along

the boundary between parcels D and E, this barrier shields parcel E from contamination

originating from parcel B, but still keeps parcels C and D exposed.

To capture the mitigation effect, I decompose the exposure index conditionally on the

presence of a strategic hedgerow:

θi = θi,blocked + θi,unblocked

where θi,blocked represents contamination from sources up to the first hedgerow encountered

(ex-ante) along wind and slope vectors, as defined in Equation (1), and θi,unblocked captures

residual contamination beyond this barrier.

Hypothesis 3 (Mitigation Effect of Hedgerows)

Strategically-positioned hedgerows mitigate pesticide externalities by physically blocking

contamination pathways.

If hedgerows effectively attenuate drift and runoff, exposure originating from beyond

the barrier should have a weaker deterrent effect on organic adoption than exposure from

unprotected sources. Formally, the marginal effects should satisfy

∣∣∣∣∣∂ Pr(DP
i = 0)

∂θi,unblocked

∣∣∣∣∣ <
∣∣∣∣∣∂ Pr(DP

i = 0)
∂θi,blocked

∣∣∣∣∣
Equivalently, in a linear probability specification with both exposure components, this

implies |βi,unblocked| < |βi,blocked|, where both coefficients are expected to be negative by
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Hypothesis 1.

Financial Risk Management. Second, consider financial risk-management instru-

ments. I use crop insurance as a proxy variable. Although this instrument does not stricto

sensu cover contamination risk, I assume that the purchase decision is non-random and

thus, reveals key unobserved farmer characteristics. Farmers who demonstrate rational-

ity and foresight (particularly regarding climate change; see e.g., Deutsch et al. (2018))

are strongly incentivized to purchase crop insurance to manage agronomic risks (Deutsch

et al., 2018). This decision then reveals unobserved preferences, such as risk aversion

(Binswanger, 1980; Karlan et al., 2014), and, more broadly, signals structural financial

resilience (regardless of the source) among insured farmers. Indeed, they have greater

financial buffers and a superior capacity to absorb shocks because they maintain financial

safety nets.5 In contrast, the absence of insurance may be indicative of binding liquidity

constraints (Rosenzweig and Binswanger, 1993).

I model this as unobserved heterogeneity in risk management, ξi ∈ {0, 1}, where

ξi = 1 indicates a farmer type with a high propensity to manage risk or greater financial

resilience. This heterogeneity implies that the effective loss from contamination, E[LiO],

is perceived differently, because the sensitivity parameter β is a function of this type:

β(ξi), with β(1) < β(0). The marginal effect of exposure on choice becomes

∂ Pr(DP
i = 0)

∂θi

= −f (`β(ξi)θi − ∆πiO) `β(ξi)

5Note that a model where insurance directly covers contamination losses would be observationally
equivalent to the proposed mechanism. In this case, let τi ∈ [0, 1] be the insurance coverage rate for
coexistence losses. Insurance would reduce the effective penalty from contamination, such that the
expected loss becomes

E[LiO] = (1 − τi)`βθi

This will directly modify the marginal effect of exposure on the choice of being organic

∂ Pr(DP
i = 0)

∂θi
= −f ((1 − τi)`βθi − ∆πiO) (1 − τi)`β

Here, the magnitude of the deterrent effect is mechanically attenuated by the factor (1−τi) and converges
to zero as τi → 1. This yields the same qualitative prediction as Equation 6. Given the current
institutional framework, standard crop insurance does not encompass these specific certification losses.
The empirical findings might reflect unobserved heterogeneity instead of the direct coverage channel that
is not present.
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Hypothesis 4 (Buffering Effect of Insurance)

A high propensity for risk management moderates the deterrent effect of contamination

risk on organic farming. If crop insurance is a valid proxy for this type, the same will be

true for insured farmers.

Formally, the above hypothesis means that the marginal effect should satisfy

∣∣∣∣∣∂ Pr(DP
i = 0)

∂θi

∣∣∣∣∣
ξi=ξhigh

<

∣∣∣∣∣∂ Pr(DP
i = 0)

∂θi

∣∣∣∣∣
ξi=0

(6)

4 Data and Empirical Strategy

4.1 Data Sources

This paper merges several rich, high-resolution datasets maintained by the Department

of Statistics and Foresight Analysis of the French Ministry of Agriculture and Food

Sovereignty (Agreste), the National Institute of Geographic and Forest Information (IGN),

Agence Bio, and the European Centre for Medium-Range Weather Forecasts (ECMWF).

Unique parcel and farmer identification numbers ensure accurate record linkage across

these datasets over time. The resulting analysis sample covers 4 years from 2019 to 2022

across nearly 9.5 million parcels, for a total of 38,942,385 observations with data on all

main estimation variables. Table 1 presents summary statistics, while Table B1 provides

detailed definitions and data sources for all variables used in our analysis.

Land Use and Organic Status. The core of this paper relies on the Land Parcel

Identification System (LPIS), an administrative census tracking all agricultural parcels

for the management of the CAP. The LPIS provides annual geospatial and agricultural

information for over 9.5 million parcels (Figure 3a), including the main crop type, parcel

area, and an indicator for organic management. I assume any parcel flagged as organic

is fully managed under organic standards across its entire area. I use the national phy-

tosanitary monitoring system (Bulletins de Santé du Végétal) to determine crop-specific

pesticide application windows. To test the validity of the EEE index for pesticides, I rely
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on active substance data from the BNV-d database, which is compiled by the annual sales

reports transmitted by phytopharmaceutical distributors to the French water agencies.

(a) LPIS parcels (b) Bocage network

Figure 3: LPIS × BDTOPO®: Mapping the landscape structure

Weather and Topographic Data. I use annual weather and detailed topographic

data to construct the biophysical exposure measure. First, I use the ERA5-Land re-

analysis dataset (Muñoz Sabater, 2019) to extract historical (five-year lagged) monthly

gridded wind speed and direction, at 0.1◦ × 0.1◦ resolution, during the relevant pesticide

application windows. This allows me to model potential pesticide drift and determine

the upwind-downwind interaction between a focal parcel and its neighbors. I also extract

contemporaneous means of temperature and precipitation to control for agro-climatic

conditions. Second, I rely on the BD ALTI®, a 25-meter resolution digital elevation

model, to model how topography drives surface runoff based on the altitude and slope

of the terrain. I identify whether a neighboring parcel is upslope of the focal parcel and

incorporate the topographic gradient to proxy the intensity of this flow.

Landscape Features. I also draw on the high-resolution vector dataset BD TOPO®

to quantify the mitigating role of linear vegetative structures (Figure 3b). I identify

hedgerows from the preceding year and treat them as predetermined physical barriers.

For each pair of neighboring parcels, I characterize the hedgerows along their adjacent

edge and determine their position relative to the defined contamination corridor. I then
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aggregate this information to the focal parcel level, constructing metrics such as the

exposure index separately for areas inside and outside the nearest strategically-positioned

hedgerow.

Farm Outcomes and Local Market Context. To test the economic mechanisms,

I combine the LPIS with economic records from the Farm Accountancy Data Network

(FADN). The FADN provides a representative panel with standardized data on input

expenditures (pesticides, fertilizers) and yields. I also report CAP records on crop insur-

ance payments to test the financial risk management channel. Finally, I supplement these

records with data from Agence Bio, the French public agency for organic agriculture, to

capture the local market context, counting the number of organic cooperatives within a

10-kilometer radius to control for local market access.

4.2 Empirical Strategy

To test the theoretical hypotheses (Section 3.3), the objective is causal inference rather

than prediction. The causal effect of pesticide EEEs on land use choice is identified using

the following two-way fixed effects (TWFE) linear probability model (LPM)

Organicit = β θi(t−1) + X′
itγ + Z′

itζ + W′
itρ+ αi + λt + εit (7)

where Organicit is an indicator equal to one if the focal parcel i is managed organically

in year t, and zero otherwise. The variable of interest, θi(t−1), captures an endogenous

peer effect (Manski, 1993). This leave-one-out index is constructed from lagged neighbor-

ing land use (equivalent to peers’ outcome) and weighted by biophysical drift and runoff

vectors (Section 3.1). Z′
it corresponds to exogenous (contextual) peer effects through

neighbor characteristics. This vector includes variables proxying for ’Marshallian’ exter-

nalities (i.e., knowledge and information spillovers), such as neighbor UUA with similar

crop (following Larsen et al. (2024)) and farmer operational network. The latter variable

measures the count of farmers whose operational footprint (the set of municipalities con-

taining their headquarter or parcels) overlaps with that of the focal farmer. The vector
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Table 1: Summary statistics of selected variables

Variables Unit Mean St. Dev. Min Max
Panel A: Outcome variable

Organic farming 0/1 0.098 0.298 0 1
Organic conversion (entry) a 0/1 0.005 0.073 0 1
Organic deconversion (exit) 0/1 0.002 0.047 0 1
Isolated 0/1 0.525 0.499 0 1

Panel B: Peer effects

Endogenous peer effects (θit)
Pesticide EEE index (raw) - 1.754 2.926 0 874.406
Pesticide EEE index (total, scaled) s.d. units 0 1 -0.599 298.202
Pesticide EEE index (unblocked, scaled) s.d. units 0 0.829 -0.320 116.857
Pesticide EEE index (blocked, scaled) s.d. units 0 0.685 -0.279 298.522

Exogenous peer effects (Z′
it)

Neighbor UUA with similar crop ha 55.152 62.021 0.000 6,942.640
Farmer operational network count 44.122 24.085 0.000 577
Total peers in neighborhood count 46.223 24.651 1 611.000

Correlated peer effects (W′
it)

Tick-market externalities (organic cooperatives) count
Importation 0.238 0.787 0 91
Distribution 6.330 9.876 0 1,161
Processing 9.568 12.469 0 1,163
Restaurant 0.047 0.311 0 18
Storage 0.250 0.821 0 67
Transport 0.001 0.031 0 1

Panel C: Additional parcel-level covariates (X′
it)

Parcel size ha 2.843 7.170 0.010 2,249.490
Own farm UUA ha 27.170 34.805 0.000 3,907.550
Mean temperaturec °C 12.165 1.642 -0.976 16.924
Mean rainfall mm 0.003 0.001 0.002 0.006

Panel D: Farm-level data (X′
ft)

Yield s.d. units -0.005 1.009 -3.481 3.914
Pesticide expenses e 11,014.907 15,836.642 0.000 305,854.000
Fertilizer expenses e 13,247.090 17,545.848 0.000 279,941.000
Organic farming 0/1 0.126 0.332 0.000 1.000

Notes: This table presents summary statistics for the 2019-2022 period. Panel D is restricted to the subsample of farms present in the FADN
dataset. s.d. units represents standard deviation units. a The variable Organic conversion equals 1 if a parcel switches from non-organic
to organic at time t, and the reverse applies to the variable Organic deconversion. These indicators are only computed for parcel–year
observations with a valid lag (the first observed year per parcel is excluded), so their mean represents the annual transition share among
the eligible parcel–years. The variable Isolated is a dummy variable that equals 1 when the parcel has no organic neighbors. b Scaled EEE
indices are demeaned and divided by the standard deviation of the raw EEE indices, respectively, across 2019-2022. c Mean temperature
and rainfall are calculated using the previous five years at time t.



Z′
it also includes total peers in neighborhood to measure general agglomeration effects.

W′
it accounts for correlated effects that represent shared environmental factors. This

vector is primarily composed of variables for tick-market externalities, which measure

the density of the local organic supply chain across different actor types (e.g. processing,

storage). X′
it is a vector of individual parcel and farm controls, including parcel size, own

farm UUA, and crop type fixed effects as well as agronomic suitability controls (mean

temperature and rainfall). αi and λt are parcel and year fixed effects, respectively. εit is

the error term.

The identification strategy is designed to isolate the causal effect of pesticide EEEs

from two primary challenges: simultaneity in decision-making and endogenous spatial

sorting. I overcome these challenges in several ways.

A primary threat to identification is endogenous individual sorting, which would vi-

olate the exogeneity assumption through omitted variable bias. This threat arises if

farmers self-select into areas based on unobserved, time-invariant characteristics that are

correlated with both pesticide exposure and the probability to choose organic farming.

For instance, a farmer with a strong, persistent preference for organic methods might be

more likely to convert to organic, and intentionally choose a parcel that is intrinsically less

exposed to neighbors’ pesticides. I control for this unobserved heterogeneity using high-

dimensional individual-specific effects (αi). Then, the coefficient β is identified purely

from within-parcel variation, which attributes changes in organic status to changes in a

parcel’s own lagged exposure.

Another identification assumption relevant to peer effect studies is the reflection prob-

lem in decision-making: neighbors’ choices influence each other contemporaneously (Man-

ski, 1993). One approach to account for simultaneity is to construct the exposure index

θi(t−1) using lagged neighboring land use, conditional on its crop-specific pesticide spray-

ing window. By design, a farmer’s land use choice in year t cannot retroactively influence

their neighbors’ choice in year (t− 1). This temporal staggering mechanically breaks the

simultaneous causality loop.

The identification strategy relies on the standard conditional exogeneity assumption,

21



which is made credible by the granular panel structure of my data. The identifying

assumption is that, conditional on parcel-specific effects (αi), year fixed effects (λt), other

exogenous and correlated peer effects (Z′
it and W′

it, respectively) as well as controls (X′
it),

the remaining variation in the lagged exposure index θi(t−1) is exogenous to unobserved,

time-varying determinants of organic farming at time t. The conditional exogeneity

assumption is formally stated as

E
[
εit | θi(t−1),X′

it,Z′
it,W′

it, αi, λt

]
= 0

The plausibility of this assumption rests on the source of the identifying variation. My

identification does not rely on cross-regional comparisons. Instead, it exploits quasi-

random, parcel-specific variation in nonpoint source pollution driven by the interaction of

lagged neighboring land use with exogenous biophysical factors (namely, prevailing winds

and topography), which govern pesticide drift and runoff. Even within the same farm

(and thus, conditional on the same farmer and many shared αi components), two adjacent

parcels may experience significantly different pesticide externalities based on their precise

positioning. For example, a parcel downwind and downslope of a conventional neighbor

will have a systematically higher θi(t−1) than an adjacent parcel that is upwind and

upslope. This unidirectional, biophysically-driven variation is plausibly orthogonal to

unobserved, time-varying determinants of a farmer’s choice.

I estimate the model using a LPM. In a panel setting with a high-dimensional set of

fixed effects, the linear approximation of the conditional expectation function is a robust

approach for causal inference (Angrist and Pischke, 2009; Wooldridge, 2010). It avoids

the Incidental Parameters Problem (Neyman and Scott, 1948) that plagues standard

non-linear fixed effects estimators. As Greene (2004) shows, unconditional fixed effects

estimators for non-linear models are inconsistent as is the number of parcels N → ∞ with

fixed T , the number of years. The LPM, by contrast, provides consistent estimates via the

standard within transformation. The coefficient β from the LPM is a direct estimate of

the Average Partial Effect (APE) (Angrist and Pischke, 2009), interpreted in percentage
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points (Wooldridge, 2010).6

Given the inherent heteroskedasticity of the LPM (Wooldridge, 2010) and potential

serial correlation, I address inference by clustering standard errors at the farm level. The

unit of observation is the parcel-year, but the economic decision to adopt organic farming

is made at the farm level. This structure implies that unobserved, time-varying shocks

(e.g., farm-level financial constraints, shifts in managerial strategy) are shared across all

parcels operated by the same farm. Clustering at the farm level allows for arbitrary

correlation both within-parcel over time (serial correlation) and, crucially, across-parcels

within the same farm at any point in time.

5 Results

5.1 Main Results

Table 2 presents my baseline estimates of the effect of pesticide EEEs on the probability of

a parcel being managed organically, using a TWFE LPM with standard errors clustered

at the farm level. The main regressor is the standardized exposure index (θi(t−1)). All

specifications include a comprehensive set of agronomic, climate, market, and parcel

controls. The columns progressively introduce a more demanding set of spatial fixed

effects - from department (Column 2) to commune (3), farm (4), and parcel (5) - along

with year fixed effects, allowing me to parse cross-sectional correlations from within-unit

responses. Appendix C shows that the results are not sensitive to (i) excluding control

variables, (ii) using alternative clustering s.d. and (iii) spatial decays, and (iv) accounting

for non-linear effects.

The baseline results provide strong support for Hypothesis 1 (Section 3.3): pesticide
6The coefficient of the LPM is a good approximation of the average marginal effect (AME) of the

probit or logit, particularly when most probabilities are far from the interval [0, 1], as is the case in this
paper. Appendix Figure C1 estimates the model (Equation 7) on cross-sectional samples to ease the
computational burden, and confirms that the main findings are robust to Logit and Probit specifica-
tions. Alternatives include the Conditional Logit (Chamberlain, 1980), but it operates by discarding all
observations that never change state (’non-switchers’). Given 9.5 million parcels, this would likely result
in massive data loss. The fixed effects probit is, furthermore, computationally complex and unreliable
in this setting.
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EEEs pose a significant barrier to organic farming. Across the cross-sectional specifi-

cations (Columns 1–3), the coefficient on the endogenous peer effect (i.e., EEE index)

is stable and highly significant, ranging from -0.0161 to -0.0175. This implies that a

one-standard-deviation increase in exposure decreases the probability of being organic by

1.61 to 1.75 pp, or roughly 16–18% of the 9.8% baseline mean. The coefficient attenuates

substantially in the farm fixed-effects model (Column 4), which is expected as this spec-

ification absorbs all persistent, farm-level unobserved heterogeneity and spatial sorting.

My preferred specification is Column (5). This is the most demanding model as it identi-

fies the effect at the same granular parcel-level at which the biophysical externality itself

occurs. This specification exploits strictly within-parcel temporal variation in exposure.

It is the most robust to endogeneity concerns as the parcel fixed effect controls for all

time-invariant unobserved parcel characteristics and, crucially, all time-invariant farmer

characteristics, as the parcel is nested within the farm. The effect remains economically

and statistically significant at the 1% level. This within-parcel effect translates to a 2.8%

reduction in the likelihood of organic farming, relative to the sample mean, for a one-

standard-deviation increase in the EEE index. This persistence provides the strongest

causal evidence that pesticide EEEs impede organic farming, beyond any confounding

from unobserved spatial or farmer-level heterogeneity.

I also explore the role of other peer effects following the Manski (1993)’s typology.

The exogenous peer effects are negligible and sensitive to the fixed-effect structure. A

similar negative association was observed between neighbor UUA with similar crop and

organic farming. The coefficients for social network proxies (i.e., farmer operational

network and total peers in neighborhood) are negligible and reverse signs, indicating that

in mixed farming landscapes, the negative biophysical externality prevails over potential

positive knowledge spillovers. Moreover, correlated peer effects, proxied by thick-market

externalities, show more intuitive results. Local market infrastructure for processing

(+0.08 pp in Column 5) and especially storage (+0.21 pp) are the most robustly positive

and significant coefficients, suggesting these downstream nodes are supportive of organic

transitions. Finally, the individual parcel and climatic controls perform as expected,
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and all specifications include crop type dummies. Parcel size exhibits a weak positive

association in the cross-section which attenuates to zero or becomes negative in the farm

and parcel FE models. Mean temperature is negatively associated with organic farming

in the preferred parcel FE model, possibly due to greater pest pressure in warmer micro-

climates. The coefficient suggests that a 1°C increase in temperature is associated with

an approximately 16% decline in the likelihood of organic management, relative to the

baseline probability. The coefficient on rainfall is very large and negative, but becomes

statistically insignificant in all specifications that include spatial fixed effects (Columns

2-5).

5.2 Heterogeneity Analysis

This section investigates the heterogeneity of the main effect, analyzing how it varies by

crop type, farm size, and region (Figure 4).

Crop types. The deterrent effect of EEEs is far from uniform across crop types (Panel

A), and is strongest for high-value perennial crops consistent with their economic vul-

nerability. Systems like vineyards require substantial, irreversible investments (for es-

tablishment and a three-year organic conversion, Crowder and Reganold, 2015), creating

quasi-rents that are highly exposed to contamination. In this case, a single contamination

event can jeopardize these multi-year sunk costs, a threat amplified by higher price pre-

miums (Delmas and Grant, 2014) and stricter recertification rules. This explains why the

impact is twice as large for vineyards as for annual crops. In contrast, while permanent

pastures show a modest but significant deterrent effect, vegetables and flowers appear

unaffected.

Farm size. Panel B reveals a clear monotonic relationship between farm size and pesti-

cide EEEs. The magnitude of the deterrent effect is strongest for the smallest farms (Q1)

and progressively weakens as farm size increases, though all quartiles are significantly af-

fected. This gradient likely reflects the advantages of scale as larger farms have a greater

capacity for risk diversification, lower per-hectare certification costs (Jouzi et al., 2017),
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Table 2: Impact of Pesticide Use on the Probability of Being Organic

Dependent variable: Organic
Fixed effects

No FE Dep. Commune Farm Parcel
+ year +year + year + year

(1) (2) (3) (4) (5)
Endogenous peer effects (θit)
Pesticide EEE index -0.0175∗∗∗ -0.0174∗∗∗ -0.0161∗∗∗ -0.0005∗∗∗ -0.0027∗∗∗

(0.0003) (0.0003) (0.0002) (0.0000) (0.0001)
Exogenous peer effects (Z′

it)
Neighbor UUA with similar crop -0.0001∗∗∗ -0.0001∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗ -0.0000∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Farmer operational network 0.0003∗∗∗ -0.0001∗∗ -0.0001∗∗ 0.0000∗∗ 0.0001∗∗∗

(0.0001) (0.0001) (0.0000) (0.0000) (0.0000)
Total peers in neighborhood -0.0001∗∗∗ 0.0001∗∗ 0.0003∗∗∗ -0.0000 0.0002∗∗∗

(0.0001) (0.0001) (0.0000) (0.0000) (0.0000)
Correlated peer effects (W′

it)
Tick-market externalities

Importation 0.0004 -0.0010 -0.0001 -0.0004 -0.0000
(0.0008) (0.0008) (0.0004) (0.0003) (0.0003)

Distribution -0.0004∗∗∗ -0.0003∗∗ 0.0001 -0.0000 0.0001∗

(0.0001) (0.0001) (0.0001) (0.0001) (0.0001)
Processing 0.0008∗∗∗ 0.0004∗∗∗ 0.0006∗∗∗ 0.0000 0.0004∗∗∗

(0.0001) (0.0001) (0.0001) (0.0000) (0.0001)
Restaurant 0.0045∗∗∗ 0.0068∗∗∗ -0.0008 -0.0001 -0.0007∗

(0.0015) (0.0014) (0.0006) (0.0004) (0.0004)
Storage 0.0055∗∗∗ 0.0011∗∗ 0.0027∗∗∗ 0.0023∗∗∗ 0.0021∗∗∗

(0.0005) (0.0005) (0.0003) (0.0002) (0.0002)
Transport 0.0008 0.0094 0.0002 -0.0020 -0.0017

(0.0085) (0.0085) (0.0044) (0.0020) (0.0021)
Additional covariates (X′

it)
Parcel size 0.0001∗∗∗ 0.0001∗∗∗ 0.0000 0.0000∗∗∗ -0.0004∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Own farm UUA 0.0001∗∗∗ 0.0001∗∗∗ -0.0000∗∗∗ 0.0000∗∗∗ 0.0001∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0000)
Mean temperature 0.0018∗∗∗ 0.0008 -0.0058∗∗ -0.0015∗∗∗ -0.0156∗∗∗

(0.0005) (0.0009) (0.0025) (0.0004) (0.0026)
Mean rainfall -10.8197∗∗∗ 2.3101 7.8770∗ -0.8495 -0.6489

(1.1220) (2.5447) (4.4392) (1.4184) (2.5639)

Crop type dummies Yes Yes Yes Yes Yes
Mean dependent variable 0.0980 0.0980 0.0980 0.0980 0.0980
Main effect (% of mean) -17.8000 -17.7000 -16.4000 -0.5000 -2.7000
Observations 38,942,385 38,942,385 38,942,385 38,942,385 38,942,385

Notes: Dependent variable is a dummy equal to 1 if parcel i is managed organically in year t. The EEE
index is standardized (mean-centered and scaled to unit variance), and results are interpreted as the effect
of a one standard deviation increase. Raw exposure values range from 0 to 874.406 with mean 1.755 and
standard deviation 2.927. All specifications include the full set of controls for agronomic and climatic conditions,
knowledge- and market-based peer effects, and intrinsic parcel characteristics. Standard errors clustered at the
farm level are reported in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.
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and a superior ability to internalize externalities through internal buffer zones (Parker

and Munroe, 2007).

Regional patterns. Panel C highlights significant regional heterogeneity. The effect

varies by orders of magnitude across France, mirroring systematic differences in agri-

cultural systems and topography. The majority of French regions show a statistically

significant negative effect. The impact is largest in the Mediterranean regions (PACA,

Occitanie, Nouvelle-Aquitaine), where a high concentration of vulnerable perennial crops

(vineyards, orchards) coincides with complex, steep topography that amplifies runoff.

Conversely, in regions where contamination risk is jointly mitigated by flat topography,

the dominance of less vulnerable annual crops, and larger consolidated fields, the deterrent

effect is statistically insignificant. This is precisely the case in the large cereal-producing

plains of Northern France (Hauts-de-France).

5.3 Impacts of EEEs on Entry and Exit in Organic Production

In Table 3, I also quantify the dynamic impacts of EEEs, examining how exposure drives

entry and exit decisions and ultimately shapes the spatial landscape of organic farming.

Panel A reveals that pesticide externalities operate primarily as a barrier to entry.

A one-standard-deviation increase in exposure reduces the probability of conversion to

organic by 6.1% relative to the baseline hazard (Panel A.1, Column 5). In contrast, the

effect on exit decisions is less pronounced. The parcel-level exit hazard is modest (2.8% of

the mean) and not robust to the inclusion of parcel fixed effects (Panel A.2, Column 5).

This suggests that exit decisions are not responses to parcel-specific shocks but are instead

driven by farm-level exposure patterns. This asymmetry provides strong evidence for a

real options channel (Dixit and Pindyck, 1994; Folta et al., 2006): farmers anticipate the

high, irreversible costs of conversion, which manifests as a strong deterrent to entry but a

weak effect on exit. Panel A.3 pinpoints the isolating effect of high exposure. Controlling

for other peer effects and parcel attributes, high exposure increases the probability of

an organic parcel being geographically isolated (i.e, having no immediate neighbors) by
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Figure 4: Heterogeneity analysis
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2.6% of the mean.

Panel B examines farm-level responses, disentangling the extensive margin from the

intensive margin. The results demonstrate that EEEs operate primarily at the extensive

margin, driving full exits rather than minor adjustments. The hurdle decomposition

(Panel B.3) is most revealing, showing the deterrent effect operates almost entirely at

the extensive margin. The probability of a farm deconverting any land is highly sensitive

to exposure (AME = -6.5 pp, significant at the 1% level), overshadowing any intensive

margin adjustments. Indeed, once the exit threshold is crossed, the intensive margin

appears irrelevant. Conditional on the decision to exit, the share of land deconverted

shows no significant response to EEE levels. This points to a threshold behavior (Chavas

and Holt, 1990; Key and Roberts, 2009): farmers opt for complete abandonment over

marginal acreage adjustments.

Together, these findings thus underscore the strategic complementarity in production

choices - a dynamic driven by unidirectional externalities, as predicted by Hypotheses 1

and 2 (Section 3.3). This asymmetric spatial interaction, where organic farmers benefit

from proximity while conventional farmers impose uninternalized costs, actively fragments

the organic sector. This externality precludes cluster formation and isolates existing

producers.

6 Economic Mechanisms

Section 5 establishes that pesticide externalities can be a significant barrier to organic

farming. In this section, I investigate the underlying economic mechanisms. By merging

LPIS data with farm-level economic data from FADN, I test the hypothesis that this

deterrence is driven by the costs associated with exposure. These costs may be immediate,

via direct damage to production, or prospective, via an (indirect) increased risk of organic

de-certification. In this case, I posit that the risk of involuntary exit is realized if the

contamination becomes visible at the parcel level, which may happen precisely if the

pesticide externalities have a positive production effect (e.g., weed suppression, higher
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Table 3: Dynamic Margins of Organic Conversion and Deconversion

Dependent variable
Fixed effects

No FE Dep. Commune Farm Parcel
+ year +year + year + year

(1) (2) (3) (4) (5)
Panel A: Parcel-level transitions and spatial isolation

A1. Adoption hazard
Pesticide EEE index -0.0004∗∗∗ -0.0004∗∗∗ -0.0004∗∗∗ 0.0001∗∗∗ -0.0005∗∗∗

(0.0000) (0.0000) (0.0000) (0.0000) (0.0001)

Mean dependent variable 0.0090 0.0090 0.0090 0.0090 0.0090
Main effect (% of the mean) -4.6000 -4.9000 -4.1000 1.6000 -6.1000
Observations 23,207,590 23,207,590 23,207,590 23,207,590 23,207,590
R2 0.0090 0.0120 0.0440 0.5490 0.7620

A2. Deconversion hazard
Pesticide EEE index 0.0007∗ 0.0008∗∗ 0.0006∗∗ 0.0000 0.0007

(0.0004) (0.0003) (0.0003) (0.0002) (0.0007)
Mean dependent variable 0.0250 0.0250 0.0250 0.0250 0.0250
Main effect (% of the mean) 2.7000 3.1000 2.3000 -0.2000 2.8000
Observations 2,454,918 2,454,918 2,454,918 2,454,918 2,454,918
R2 0.1130 0.1200 0.2360 0.4790 0.7040

A3. Isolated status
Pesticide EEE index 0.0208∗∗∗ 0.0217∗∗∗ 0.0172∗∗∗ 0.0108∗∗∗ 0.0138∗∗∗

(0.0004) (0.0004) (0.0003) (0.0002) (0.0004)

Mean dependent variable 0.5250 0.5250 0.5250 0.5250 0.5250
Main effect (% of the mean) 4.0000 4.1000 3.3000 2.1000 2.6000
Observations 38,942,404 38,942,404 38,942,404 38,942,404 38,942,404
R2 0.0730 0.1410 0.3950 0.4920 0.9050

Panel B: Farm-level adjustment margins

B1. Deconversion rate (flow)
Area-weighted pesticide EEE indexa -0.1577

(0.1218)
Semi-elasticity % -14.5900
QR effect % -11.1000
Mean risk-set share 0.7790
Observations 30,107
Pseudo-R2 0.7570

B2. Share of UAA under organic management (stock)
Area-weighted pesticide EEE index -0.0070 ∗∗∗

(0.0006)
Mean dependent variable 0.1060
Observations 1,270,474
R2 0.9520

B3. Extensive vs. intensive decomposition
Any deconversion (extensive margin)
Area-weighted EEE index -0.2213∗∗∗

(0.0772)
AME (pp) -6.5390
Mean dependent variable 0.1380
Observations 26,342
Pseudo-R2 0.0640
Conditional magnitude (intensive margin)
Area-weighted EEE index -0.2094

(0.1320)
Semi-elasticity % -18.8900
AME (pp) -6.5390
IQR effect % -14.5700
Mean dependent variable (any deconversion) 0.1380
Observations 14,870
Pseudo-R2 0.8910

Notes: The EEE index θi is standardized (mean-centered and scaled to unit variance), and results are interpreted as the
effect of a one standard deviation increase. Raw exposure values range from 0 to 874.406 with mean 1.755 and standard
deviation 2.927. All specifications in Panel A include the full set of controls for agronomic and climatic conditions, knowledge-
and market-based peer effects, and intrinsic parcel characteristics (including crop type). Adoption (i.e., conversion) and
deconversion hazards are estimated on the risk set {Organict−1 = 0} and {Organict−1 = 1}, respectively, while the isolated
status is estimated on the full sample. The main coefficients on θi can be interpreted as changes in probability points. At
the farm-year level (Panel B), the area-weighted farm-year index (a) is

θ̄A
ft =

∑
i∈Pft

Ait θit∑
i∈Pft

Ait

where Pft is the set of parcels belonging to farm f observed in year t, Ait the area of parcel i ∈ Pft and by θit the raw
(non-standardized) parcel-level exposure index. For comparability, I standardize this farm-year index across the estimation
sample: θ̃wft =

(
θ̄wft − µθ̄w

)
/σθ̄w

. Unless stated otherwise, coefficients in Panel B correspond to a one–standard–deviation
increase in θ̃wft. In Panel B1, I estimate a PPML model of hectares deconverted on θ̃wft with a log offset equal to the organic
area at t−1. Coefficients are reported as semi-elasticities, that is a one–s.d. increase in θ̃wft changes the deconversion rate by
100 · (exp(β) − 1) %. In Panel B2, I run an LPM where the dependent variable is the farm-level share of UAA under organic
management. Coefficients are in percentage points. Panel B3 corresponds to a hurdle decomposition, the extensive margin
(any deconversion) is estimated with a complementary log–log link, where I report average marginal effects in probability
points. The conditional intensive margin (magnitude given deconversion) re-estimates PPML on the subsample with positive
deconversion, using the same log offset as in the rate specification. Standard errors clustered at the farm level are reported
in parentheses. ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10. 30



productivity even when managing under organic), transforming the risk of contamination

into a verifiable and tangible event.

Following Chabé-Ferret et al. (2021), I estimate a TWFE panel model that exploits

within-farm temporal variation in pesticide EEE exposure while controlling for time-

invariant farm-specific characteristics (χf ) and aggregate time trends (µt), such that

Yft = ψ θ̄f(t−1) + ϑOrganicft + X′
ftη + χf + µt + εft (8)

where Yft is an economic outcome for farm f in year t, either normalized yields or input

spending (in euros). The variable θ̄f(t−1) is the farm-level average exposure to pesticide

EEEs from neighboring agricultural activities. I control for organic status (Organicft), a

binary indicator equal to one if farm f operates at least one organic parcel in year t. This

variable, constructed from LPIS,7 addresses potential confounding if farms endogenously

transition to organic production in response to exposure trends. The vector X′
ft includes

the total farm UUA (in hectares) and the type of agricultural products produced by the

farm (OTEX classification) in order to capture scale effects and compositional changes

in production orientation. Standard errors are clustered at the farm level to account for

serial correlation in outcomes and exposure within farms. In supplementary analyses, I

also use two-way clustering (farm×year) and spatial clustering (municipality and depart-

ment) to account for potential correlation across nearby farms. Results are qualitatively

robust across all specifications (Appendix C). ψ measures the s.d. change in yields per

unit increase in the EEE index, or is expressed in euro change for input spending. The

coefficient ϑ identifies the effect of transitioning to organic production, conditional on

pesticide EEEs and farm characteristics.

To explore heterogeneity in exposure effects across farming systems, I re-estimate the

model separately for conventional and organic farm subsamples, excluding the organic

status.
7Using LPIS to average the parcel-level status at the farm level allows me to overcome a measurement

problem, as the reported organic status in FADN surveys is subject to under-reporting.
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6.1 Main Results

Table 4 presents farm-level regressions on productivity, estimated for the full sample and

for conventional and organic farms separately. The results highlight the heterogeneity of

how pesticide externalities affects yields across different types of farms, and provide an

economic rationale for the spatial risk-avoidance behavior documented above.

Column (3) shows that, for organic farms, a one-unit increase in the EEE index is asso-

ciated with a 0.206 s.d. increase in yields. The positive coefficient of θ̄f(t−1) is statistically

significant at the 5% level, offering direct evidence of the contamination-revelation mech-

anism. Organic farms may experience involuntary productivity gains in the short run.

Consistent with the literature (Chabé-Ferret et al., 2021), I confirm the well-documented

yield gap between organic and conventional farms. Yields decrease substantially among

organic farmers (0.42±0.21 units of a s.d.), all else being equal. Notably, the impact of

pesticide EEEs on organic farms (Column 3) accounts for about half of the gap. This

finding suggests that pest control gains from conventional farms substantially narrow

the economic performance gap between both producer types, but never compensate it

entirely. Additionally, this reliance undermines the integrity of organic certification by

revealing a systematic dependence on prohibited neighboring inputs.

Conversely, and as predicted by Hypothesis 2 (Section 3.3), conventional farms derive

no significant productivity benefit from external exposure (Columns 1 and 2). In this case,

the marginal product of external pesticide exposure is near zero, as their own intensive

applications already account for pest management.

6.2 Alternative Mechanisms

This section discusses whether the impact on the economic performance of organic farmers

reflects contamination-revelation mechanisms or alternative strategies, such as voluntary

intensification or the adoption of complementary practices.

Table 5 supports the hypothesis that these farms use intensive pest control practices.

Conventional farms do not see a significant change in pesticide spending after exposure (-

42.223±201.83e), while it increases significantly, at the 5% level, by 654.84±613.36e for
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Table 4: Heterogeneous Productivity Effects

Dependent variable: Yields (normalized)
All farms Conventional Organic

(1) (2) (3)

Pesticide EEE index 0.030 0.011 0.206∗∗

(0.026) (0.027) (0.091)
Organic -0.420∗∗∗

(0.104)

Controls Yes Yes Yes
Year FE Yes Yes Yes
Farm FE Yes Yes Yes
Observations 20,830 18,443 2,387
R2 0.480 0.488 0.499

Notes: θ̄f(t−1) is the mean of the parcel-level EEE index (θi(t−1)). Or-
ganic represents farms with at least one parcel certified under organic.
All regressions include farm fixed effects and year fixed effects. Stan-
dard errors are clustered at the farm level. ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01

organic farms. For organic farms, pesticide spending only comprises approved biological

controls (e.g., Bacillus thuringiensis, botanical extracts) and mineral treatments (copper,

sulfur compounds), which differ fundamentally from the synthetic products applied by

conventional neighbors.

Columns (4)-(6) examine fertilizer expenditures as a placebo test. Pest control spillovers

should affect pest-related outcomes but not soil nutrient management. Consistent with

this prediction, exposure generates no significant effect on fertilizer spending for any farm

type.

This pattern is consistent with contamination-revelation operating alongside partial

defensive responses. Organic farmers increase their spending on approved pest man-

agement tools in response to environments with higher pest pressure, even though they

benefit from the involuntary spillover of pest suppression from their neighbors’ synthetic

treatments. The fact that yields rise despite increased defensive spending suggests that

the involuntary spillover effect may dominate. Combined with previous results, I may

then rule out general intensification as an explanation for the productivity gains, as well

as those on agglomeration economies. Indeed, if productivity gains reflected shared in-

frastructure or knowledge spillovers, or just complementary practices, we would observe
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similar effects for conventional farms and effects on non-pest-related outcomes like ni-

trate management. Furthermore, farms in high-exposure areas may engage in additional

management practices that increase yields independently. However, the farm fixed-effects

specification eliminates the effects of time-invariant practice differences and identifies ef-

fects from within-farm temporal variation in exposure. Another factor that could explain

is selection on unobserved quality. In this case, selection would predict higher baseline

yields in areas with high exposure. It would require explaining why productive farmers

choose locations that Section 5.2 shows they actively avoid (i.e., strong entry deterrence

and exit responses).

Table 5: Testing Alternative Mechanisms

Dependent variable: Input spending (e)

Pesticides Fertilizers
All farms Conventional Organic All farms Conventional Organic

(1) (2) (3) (4) (5) (6)
Pesticide EEE index 59.235 -42.223 654.843∗∗ -137.963 -342.788 543.087

(95.727) (100.914) (306.681) (162.960) (177.829) (496.800)
Organic -2,230.619∗∗∗ -2,453.588∗∗∗

(544.733) (643.548)

Controls Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes
Farm FE Yes Yes Yes Yes Yes Yes
Observations 24,444 21,193 3,051 24,444 21,193 3,051
R2 0.950 0.951 0.946 0.906 0.906 0.893

Notes: Organic represents farms with at least one parcel certified under organic. Pesticide expenditures include all farm spending
on plant protection products as reported in FADN accounts, measured in euros. For organic farms (columns 3 and 6), pesticides refer
exclusively to products authorized under organic farming regulations (e.g., biopesticides, natural substances such as copper-based
fungicides, sulfur, and biological control agents). Fertilizer expenditures refer to nitrogen-based fertilizer spending. θ̄f(t−1) is the
farm-year, average of parcel-level EEE index. All regressions include farm and year fixed effects. Standard errors are clustered at
the farm level. ***p < 0.01, **p < 0.05, *p < 0.10.

7 Pathways to Coexistence: The Role of Risk Man-

agement

7.1 The Buffering Effect of Landscape Features

Given the deterrent effect of pesticide EEEs, I evaluate whether they can be mitigated by

physical landscape features (Section 3.4 Hypothesis 3). I examine if the ex-ante presence
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of planted hedgerows, which are natural barriers known to intercept nonpoint source pol-

lution, can buffer parcels from exposure and thus moderate its impact on the development

of organic farming. To do so, I decompose the EEE index into two components: expo-

sure from neighboring parcels that is intercepted by a hedgerow along the contamination

pathway (θi,blocked) and exposure that reaches the focal parcel unimpeded (θi,unblocked).

The results confirm that hedgerows provide meaningful but incomplete protection

(Table 6). Across Columns (1)-(3), the marginal effect of unblocked exposure is consis-

tently larger in magnitude than that of blocked exposure. In the municipality fixed-effects

model (Column 3), the coefficient on unblocked exposure is -0.018, compared to -0.013 for

blocked exposure. The difference (∆=−0.006, or approximately 6% of the mean organic

rate) is statistically significant at the 1% level and negative, confirming a buffering effect.

Overall, these findings provide support for Hypothesis 3. Strategically-positioned

hedgerows mitigate pesticide externalities, reducing the deterrent effect by approximately

28% (Column 3). However, the persistence of a significant negative effect even for blocked

exposure (θi,blocked) underscores that physical barriers alone cannot fully resolve the co-

existence problem in mixed farming landscapes. The attenuation of the differential effect

in the farm and parcel fixed-effects models Columns (4)-(5) reflects the time-invariant

nature of hedgerows. Their protective benefits are predominantly cross-sectional. Once

parcel-specific landscape characteristics are absorbed by fixed effects, limited temporal

variation in the presence of ex-ante hedgerows constrains identification of within-parcel

buffering effects.

7.2 The Moderating Role of Insurance

If farmers cannot use inputs to defend against exposure, do formal risk management tools

alter their decisions? To test this, I offer a new perspective on how crop insurance, as a

proxy for financial risk management, mediates the relationship between pesticide EEEs

and organic management. I re-estimate the baseline specification (Equation 7) within

subsamples defined by insurance status.

Figure 5 pinpoints the adverse effect of pesticide externalities. It falls entirely on
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Table 6: Mitigation Effect of Hedgerows

Dependent variable: Organic
Fixed effects

No FE Dep. Commune Farm Parcel
+ year +year + year + year

(1) (2) (3) (4) (5)
Pesticide EEE index: unblocked -0.019∗∗∗ -0.019∗∗∗ -0.018∗∗∗ -0.000∗∗∗ -0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Pesticide EEE index: blocked -0.016∗∗∗ -0.015∗∗∗ -0.013∗∗∗ -0.001∗∗∗ -0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)

∆ (θi,unblocked − θi,blocked) -0.003∗∗∗ -0.005∗∗∗ -0.006∗∗∗ 0.000∗∗∗ 0.000∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
∆ (% mean) -3.1 -4.8 -5.6 0.4 0.2
Mean dependent variable 0.098 0.098 0.098 0.098 0.098
Observations 38,942,385 38,942,385 38,942,385 38,942,385 38,942,385
R2 0.094 0.108 0.201 0.862 0.947

Notes: EEE indices are standardized by the common SD of total exposure (θi) so that θi,unblocked and θi,blocked
are on the same scale. The ’blocked’ EEE index (θi,blocked) represents contamination from source to the first
hedgerow encountered along wind and slope vectors, while ’unblocked’ exposure θi,unblocked captures residual
contamination beyond this barrier. Mean blocked share (over parcels): 0.526. All specifications include the full
set of controls for agronomic and climatic conditions, knowledge- and market-based peer effects, and intrinsic
parcel characteristics. Standard errors clustered at the farm level are reported in parentheses. ∗∗∗ p < 0.01, ∗∗

p < 0.05, ∗ p < 0.10.

uninsured farmers, who exhibit a large, statistically significant negative response. Specif-

ically, this uninsured group experiences a 0.3 pp reduction in their probability of being

organic for each one-unit increase in pesticide externalities. For insured farmers, how-

ever, the deterrent effect is entirely absent, with coefficients statistically indistinguishable

from zero. This finding corroborates Hypothesis 4 (Section 3.4), demonstrating that the

impact of EEEs is attributable to financial constraints. The mere presence of a finan-

cial safety net neutralizes this sensitivity, acting as a driver for organic adoption in an

incomplete market setting where any coexistence loss is privately borne.

8 Discussion and Conclusion

The empirical results presented support my theoretical predictions (Section 3). Using ad-

ministrative panel data on 9.5 million parcels and exploiting quasi-random variation from

wind and topography, this paper provides micro-level evidence that pesticide externalities

drive landscape-level coordination failures. These failures prevent the spatial agglomer-

ation necessary to internalize exposure and support the organic sector. By simultane-
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Figure 5: Financial risk management - Subsidized crop insurance

ously identifying endogenous, contextual, and correlated effects, I present novel insights

into the interplay between physically-mediated externalities, ’Marshallian’ spillovers, and

market structure in shaping agricultural technology adoption. In particular, I show that

EEEs significantly deter organic farming, thereby driving spatial sorting and preventing

the emergence of clusters. Mitigation operates through two distinct channels, namely a

physical one, where ex-ante hedgerows provide partial mitigation (boosting adoption by

28%), and a financial one, where insurance coverage neutralizes the potential loss related

to involuntary decertification.

I also document the underlying economic mechanisms and find that this deterrent ef-

fect stems directly from the organic-conventional interface, rather than reflecting general

agglomeration economies or spatially correlated unobservables. Neighboring pesticide

applications create a fundamental trade-off for organic fields by reducing pest pressure

at the cost of a certification dilemma. This reliance on neighbors’ pesticides creates a

triad of risks for organic farms regarding decertification (if audits reveal yield depen-

dence on prohibited inputs), price premium erosion (if consumers perceive the system as

non-autonomous, see e.g., Crowder and Reganold, 2015), and transition uncertainty (if

conventional neighbors reduce pesticide use due to regulatory changes). These forward-

37



looking concerns, more so than immediate contamination, provide a strong rationale for

the spatial avoidance documented in this analysis. The contamination-revelation mecha-

nism thus operates through both direct financial channels and induced spatial selection.

This analysis is, however, subject to several limitations. The EEE index is a proxy,

not a direct measure, of contamination. While it incorporates key biophysical channels,

validating it with plot-level application data or residue testing remains an important av-

enue for future work. Additionally, causal inference in the mitigation analysis is limited

by potential selection bias, as these adoption decisions are endogenous. Stronger identifi-

cation would require quasi-experimental variation in, for instance, insurance availability.

This analysis is limited to the private costs for organic farmers, leaving broader social

welfare implications and optimal policy design as open questions. General equilibrium

modeling of landscape-level policies could bridge this gap, assessing costs and benefits

and identifying optimal spatial configurations.

More broadly, this study highlights that agricultural transitions are fundamentally

spatial coordination problems, not just individual ones. Overcoming landscape lock-in

requires policies that explicitly manage the externalities arising at field edges. These

findings directly inform several policy implications. First, policies that solely subsidize

organic conversion are miscalibrated. They ignore the fundamental coordination failure

– i.e., the unpriced externality from conventional neighbors – and focus instead on the

symptom. The core policy challenge is not adoption, but managing the interface between

farming systems. Second, the heterogeneity in exposure mechanisms renders uniform

national approaches suboptimal. Effective policy must be spatially targeted, for instance

through organic priority areas or dynamic, topography-based buffer zones. Finally, my ad-

ditional finding that hedgerows provide meaningful mitigation highlights a cost-effective,

landscape-scale intervention: promoting ecological barriers, which simultaneously offers

protection and biodiversity co-benefits.
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A Measuring Pesticide Externalities

In this paper, I focus on the management of agricultural parcels in a context of coexis-

tence. While cross-parcel pesticide drifts are well documented in the literature, it remains

unclear whether these hazards affect pesticide use decisions or technology adoption. For

each potential emitter j in the r‑radius neighborhood Br(i) we define a directed dose

Θij
i∈Pt, j∈Pt−1

j∈Bk(i)

= wijajDjt−1d
−δ
ij , where wij = DW

ij D
S
ijΓij (9)

From a biophysical perspective, the matrix Θij combines four components: an at-

mospheric and hydrological transport model, the intrinsic characteristics of the pollution

source, the vulnerability of the receiving parcel, and the distance between the source and

the receptor.

First, I account for wind-mediated spillovers. Pollutants such as fine particles (for

instance, pesticide droplets) can travel via wind. If parcel j lies in the upwind direction

of parcel i, using the meteorological convention, the emissions from j may reach i. The

variable DW
ij is a binary indicator denoting whether j is upwind relative to i. I identify

upwind parcels using both the recorded wind direction of j (that is, the prevailing wind

to which i is exposed) and the angle between the line j → i and a chosen reference. I

compute the mean wind direction from the u- and v-components of the wind during j’s

spray window between year (t− 1) and (t− 5) (relative to parcel i).

Second, the indicator incorporates topographical effects. Hydrological flow and pollutant-

transfer models show that in agricultural regions, a significant share of runoff and asso-

ciated pollutants may migrate downhill, accumulate in downstream soils or aquifers, and

potentially contaminate water resources. The term DS
ij equals 1 if parcel j is uphill than

i, allowing water to flow from j to i.

In addition, gravity is the key driving force behind surface runoff and the transport of

soluble or particulate contaminants. A steeper slope accelerates the flow of sediments that

may carry pesticide residues or other pollutants. Our model incorporates this effect with
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the term Γij, defined as the gravitational force parallel to the slope. This variable is equal

to g sin(α), where g ≈ 9.81 m/s2 is the gravitational acceleration in the Earth surface,

and α is the slope angle. The steeper the slope from j to i, the faster contaminants are

driven downhill. If j is not upslope than i, then Γij is null, since gravity will not naturally

transport pollutants upslope.

Third, I take into account pesticide use. In absence of data on the quantity of pes-

ticide applied at the parcel level, I refer directly on the production system. The term

Djt−1 equals one if parcel j is under conventional production system. I assume that

parcel j does not apply pesticides if it is under organic management or extensive crop.

I weight the index by parcel size to take into account the fact that larger source parcels

are expected to contribute proportionally more pesticide. The variable aj assumes that

pesticide application (and therefore potential transfer) scales linearly with the area of the

source parcel, which is a reasonable assumption for most agricultural practices.

Finally, the function d−δ
ij imposes a distance-based attenuation that reflects the fact

that pesticide concentrations generally diminish with increasing distance through dilu-

tion, degradation, or dispersal processes. To test the best specification, I calibrate a

gravitational and exponential specification with varying parameters using a grid search

approach. For example, I systematically test a range of values for the exponential spec-

ification from 0.005 to 0.02 in increments of 0.0025 by estimating a logistic and probit

regression model for each value and computing the AIC and BIC information criteria.

This grid search calibration, which provides a rigorous evaluation of model performance,

is consistent with empirical approaches used in gravity models for international trade

(Anderson and Van Wincoop, 2003) and in spatial econometrics (Fotheringham et al.,

2000; LeSage and Pace, 2009). The calibration results reveal that the exponential speci-

fication with a decay parameter of 0.005 (or 0.01 as a second best) yield the lowest AIC

and BIC values, and then offer an optimal balance between model fit and parsimony.

Using an exponential specification, commonly used in spatial economics and exposure-

flow models, imply that the larger the value of δ, the more rapidly the influence of past

observations diminishes. For robustness checks, we perform sensibility analyses using both
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values, and also perform robustness checks using the most optimal value for gravitational

specification.

Because this indicator is multiplicative, if any condition does not hold, then the risk

contribution from that source is zero. In other words, the pathway for drift or runoff is

assumed inoperative (or very minimized) under those circumstances.

For isolating the aggregated effect of pesticide externalities generated by i’s neighbor,

I compute each year a parcel-level index, θi, as defined in Equation (1).
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B Additional Tables

Table B1: Description of selected variables

Variables Description Source
Panel A: Outcome variable

Organic farming Binary variable indicating if the parcel is managed under organic
farming

LPISa

Organic conversion Binary variable equal to 1 if a parcel switches from conventional to
organic at time t

LPIS

Organic deconversion Binary variable equal to 1 if a parcel switches from organic to con-
ventional at time t

LPIS

Isolated Binary variable equal to 1 when the parcel has no organic neighbors LPIS

Panel B: Peer effects

Endogenous peer effects (θit)

Pesticide EEE index (raw) Pesticide EEE index as defined in Section 3.1 from neighbor’s pesti-
cide use, based on practices (organic/non-organic), wind patterns,
and topography at time (t− 1) and around radius k

LPIS, ERA5 Reanaly-
sis, BD ALTI®

Pesticide EEE index (total, scaled) Total raw pesticide EEE index, demeaned and divided by the raw
EEE standard deviation

LPIS, ERA5 Reanaly-
sis, BD ALTI®

Pesticide EEE index (unblocked, scaled) Component of the EEE index representing residual contamination
passing beyond the first barrier (i.e., a hedgerow)

LPIS, ERA5 Reanal-
ysis, BD ALTI®, BD
TOPO®

Pesticide EEE index (blocked, scaled) Component of the EEE index representing contamination from the
source to the first barrier

LPIS, ERA5 Reanal-
ysis, BD ALTI®, BD
TOPO®

Exogenous peer effects (Z′
it)

Neighbor UUA with similar crop Total utilized agricultural area (in ha) of neighboring parcels culti-
vated with the same crop group as the focal parcel around radius k

LPIS

Farmer operational network Proxy for social interaction, measured as the count of distinct peers
whose own operational area (defined by municipalities of headquar-
ter and parcels) overlaps with the focal farmer’s operational area

LPIS

Total peers in neighborhood Total count of distinct farmers located within the defined neighbor-
hood k

LPIS

Correlated peer effects (W′
it)

Tick-market externalities Count of organic cooperatives within a 10km radius, by type of
activity, as a proxy for shared market access

Agence Bio

Importation Number of organic cooperatives specialized in importation

Distribution Number of organic cooperatives specialized in distribution

Processing Number of organic cooperatives specialized in processing

Restaurant Number of organic cooperatives specialized in restaurants

Storage Number of organic cooperatives specialized in storage

Transport Number of organic cooperatives specialized in transport

Panel C: Additional parcel-level covariates (X′
it)

Parcel size UUA of the focal parcel (in ha) LPISa

Own farm UUA Total UAA (in ha) belonging to the focal parcel’s farmer within the
defined neighborhood

LPIS

Mean temperature Mean temperature (°C) calculated over the five years prior to time
t

ERA5 Reanalysis

Mean rainfall Mean rainfall (mm) calculated over the five years prior to time t ERA5 Reanalysis
Panel D: Farm-level data (X′

ft)

Yield Farm-level yield, in standard deviation units FADNa

Pesticide expenses Farm-level total expenses on pesticides (in e) FADNa

Fertilizer expenses Farm-level total expenses on fertilizers (in e) FADNa

Organic farming Dummy variable indicating if the farm is certified organic LPIS

Notes: a With the exception of these variables, all others are the author’s calculations based on the datasets sourced.
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C Robustness Checks

C.1 Main results at the parcel level (Section 5.1)

In this section, I discuss the results obtained for robustness checks regarding the main

analysis. Similar results are obtained from the main estimate when control variables are

excluded (Table C2 Panels A-B) and alternative standard error clusterings are used at

the commune, department, or two-way farm-year levels (Table C2 Panel C). The coeffi-

cient remains statistically significant at the 1% level with nearly all clustering approaches.

Next, I verify that the findings are not driven by misspecification of the functional form.

For tractability due to the large dataset, I estimate a linear probability model in Section

4.2, which serves as a first-order approximation of the non-linear contamination proba-

bility. As a robustness check, I test for nonlinearities using year-by-year subsamples. As

shown in Figure C1, the coefficients from the LPM are nearly identical to those from the

Logit and Probit models. This consistency validates the stability of the results across the

sample period, indicating that they are not influenced by any single year or pandemic-

related disruptions. I also explore the dose-response relationship and the construction of

the EEE index. Table C2 Panel D discretizes the EEE index into quintiles, and highlights

a clear monotonic dose-response pattern. Relative to the lowest exposure quintile (Q1),

coefficients become progressively more negative from Q2 to Q5. This nonlinearity points

to threshold effects that are consistent with certification-threatening risks.

Additionally, Table C3 confirms that the main findings are robust to raw EEE index

and alternative spatial decay parameters, across specifications with δ ∈ {0.0025, 1}.

I further test the robustness of the heterogeneity analysis by controlling for alter-

native fixed effects (Figures C2-C5), as well as the robustness of the hedgerow analysis

(Table C4).
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Table C2: Robustness checks - Baseline model

Dependent variable: Organic
Fixed effects

No FE Dep. Commune Farm Parcel
+ year +year + year + year

(1) (2) (3) (4) (5)
Panel A: No covariates

Pesticide EEE index -0.0175∗∗∗ -0.0174∗∗∗ -0.0160∗∗∗ -0.0004∗∗∗ -0.0026∗∗∗

(0.0003) (0.0003) (0.0002) (0.0000) (0.0001)
R2 0.0910 0.1080 0.2000 0.8620 0.9470

Panel B: Without the variable SameCrop

Pesticide EEE index -0.0173∗∗∗ -0.0173∗∗∗ -0.0161∗∗∗ -0.0005∗∗∗ -0.0027∗∗∗

(0.0003) (0.0003) (0.0002) (0.0000) (0.0001)
R2 0.0930 0.1080 0.2010 0.8620 0.9470

Panel C: Different sd. errors clusterings

Cluster at the commune level
Pesticide EEE index -0.0175∗∗∗ -0.0174∗∗∗ -0.0161∗∗∗ -0.0005∗∗∗ -0.0027∗∗∗

(0.0003) (0.0003) (0.0003) (0.0000) (0.0001)
R2 0.0940 0.1080 0.2010 0.8620 0.9470

Cluster at the department level
Pesticide EEE index -0.0175∗∗∗ -0.0174∗∗∗ -0.0161∗∗∗ -0.0005∗∗∗ -0.0027∗∗∗

(0.0018) (0.0015) (0.0015) (0.0002) (0.0004)
R2 0.0940 0.1080 0.2010 0.8620 0.9470

Two-way clustering at the farm and year
Pesticide EEE index -0.0175∗∗∗ -0.0174∗∗∗ -0.0161∗∗∗ -0.0005 -0.0027∗

(0.0014) (0.0013) (0.0011) (0.0003) (0.0014)
R2 0.0940 0.1080 0.2010 0.8620 0.9470

Panel D: Non-linear effects

Quintile specification1

Pesticide EEE index: Q2 -0.0450∗∗∗ -0.0407∗∗∗ -0.0287∗∗∗ -0.0017∗∗∗ -0.0036∗∗∗

(0.0008) (0.0008) (0.0005) (0.0001) (0.0002)
Pesticide EEE index: Q3 -0.0588∗∗∗ -0.0546∗∗∗ -0.0437∗∗∗ -0.0024∗∗∗ -0.0065∗∗∗

(0.0009) (0.0009) (0.0006) (0.0001) (0.0003)
Pesticide EEE index: Q4 -0.0730∗∗∗ -0.0687∗∗∗ -0.0575∗∗∗ -0.0028∗∗∗ -0.0094∗∗∗

(0.0010) (0.0010) (0.0007) (0.0001) (0.0003)
Pesticide EEE index: Q5 -0.0877∗∗∗ -0.0845∗∗∗ -0.0741∗∗∗ -0.0027∗∗∗ -0.0120∗∗∗

(0.0011) (0.0010) (0.0008) (0.0002) (0.0004)
R2 0.0990 0.1130 0.2030 0.8620 0.9470

Quadratic specification
Pesticide EEE index -0.0183∗∗∗ -0.0183∗∗∗ -0.0170∗∗∗ -0.0005∗∗∗ -0.0029∗∗∗

(0.0004) (0.0004) (0.0003) (0.0000) (0.0001)
Pesticide EEE index: squared 0.0001∗∗ 0.0001∗∗ 0.0001∗∗ 0.0000∗∗ 0.0000∗∗

(0.0001) (0.0001) (0.0001) (0.0000) (0.0000)
R2 0.0940 0.1080 0.2010 0.8620 0.9470

Notes: Dependent variable is a dummy equal to 1 if parcel i is managed organically in year t. The pesticide EEE
index is standardized (mean-centered and scaled to unit variance), and results are interpreted as the effect of a
one standard deviation increase. Raw exposure values range from 0 to 874.406 with mean 1.755 and standard
deviation 2.927. All specifications include the full set of controls for agronomic and climatic conditions, knowledge-
and market-based peer effects, and intrinsic parcel characteristics. 1The reference category for the discretized EEE
index corresponds to the first quintile. Standard errors clustered at the farm level are reported in parentheses
(except for Panel C). ∗∗∗ p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.
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Table C3: Robustness checks - Different definitions of EEEs

Dependent variable: Organic
Fixed effects

No FE Dep. Commune Farm Parcel
+ year +year + year + year

(1) (2) (3) (4) (5)
Panel A: Raw pesticide EEE index

Pesticide EEE index -0.0060∗∗∗ -0.0059∗∗∗ -0.0055∗∗∗ -0.0002∗∗∗ -0.0009∗∗∗

(0.0001) (0.0001) (0.0001) (0.0000) (0.0000)
R2 0.0940 0.1080 0.2010 0.8620 0.9470

Panel B: Alternative spatial decay parameters δ

δ = 0.0025
Pesticide EEE index -0.0171∗∗∗ -0.0170∗∗∗ -0.0157∗∗∗ -0.0005∗∗∗ -0.0032∗∗∗

(0.0003) (0.0003) (0.0002) (0.0000) (0.0001)
R2 0.0940 0.1080 0.2000 0.8620 0.9470

δ = 0.01
Pesticide EEE index -0.0167∗∗∗ -0.0166∗∗∗ -0.0154∗∗∗ -0.0004∗∗∗ -0.0020∗∗∗

(0.0003) (0.0003) (0.0003) (0.0000) (0.0001)
R2 0.0930 0.1080 0.2000 0.8620 0.9470

δ = 0.015
Pesticide EEE index -0.0158∗∗∗ -0.0157∗∗∗ -0.0145∗∗∗ -0.0004∗∗∗ -0.0017∗∗∗

(0.0003) (0.0003) (0.0003) (0.0000) (0.0001)
R2 0.0930 0.1080 0.2000 0.8620 0.9470

δ = 0.02
Pesticide EEE index -0.0152∗∗∗ -0.0151∗∗∗ -0.0138∗∗∗ -0.0003∗∗∗ -0.0015∗∗∗

(0.0003) (0.0003) (0.0003) (0.0000) (0.0001)
R2 0.0930 0.1080 0.2000 0.8620 0.9470

δ = 0.05
Pesticide EEE index -0.0137∗∗∗ -0.0135∗∗∗ -0.0123∗∗∗ -0.0002∗∗∗ -0.0012∗∗∗

(0.0004) (0.0004) (0.0003) (0.0000) (0.0001)
R2 0.0920 0.1070 0.2000 0.8620 0.9470

δ = 0.1
Pesticide EEE index -0.0129∗∗∗ -0.0127∗∗∗ -0.0115∗∗∗ -0.0001∗∗∗ -0.0011∗∗∗

(0.0004) (0.0004) (0.0004) (0.0000) (0.0001)
R2 0.0920 0.1070 0.2000 0.8620 0.9470

δ = 0.25
Pesticide EEE index -0.0119∗∗∗ -0.0116∗∗∗ -0.0105∗∗∗ 0.0000 -0.0009∗∗∗

(0.0004) (0.0004) (0.0004) (0.0000) (0.0001)
R2 0.0920 0.1070 0.1990 0.8620 0.9470

δ = 0.5
Pesticide EEE index -0.0112∗∗∗ -0.0109∗∗∗ -0.0099∗∗∗ 0.0001∗∗∗ -0.0008∗∗∗

(0.0003) (0.0003) (0.0003) (0.0000) (0.0000)
R2 0.0920 0.1070 0.1990 0.8620 0.9470

δ = 1
Pesticide EEE index -0.0110∗∗∗ -0.0106∗∗∗ -0.0097∗∗∗ 0.0001∗∗∗ -0.0007∗∗∗

(0.0003) (0.0003) (0.0003) (0.0000) (0.0000)
R2 0.0920 0.1060 0.1990 0.8620 0.9470

Notes: Dependent variable is a dummy equal to 1 if parcel i is managed organically in year t. The
pesticide EEE index is standardized (mean-centered and scaled to unit variance), and results are inter-
preted as the effect of a one standard deviation increase. All specifications include the full set of controls
for agronomic and climatic conditions, knowledge- and market-based peer effects, and intrinsic parcel
characteristics. Standard errors clustered at the farm level are reported in parentheses. ∗∗∗ p < 0.01,
∗∗ p < 0.05, ∗ p < 0.10.
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Table C4: Robustness checks - Mitigation Effect of Hedgerows

Dependent variable: Organic
Fixed effects

No FE Dep. Commune Farm Parcel
+ year +year + year + year

(1) (2) (3) (4) (5)
Panel A: Raw EEE index θ

Pesticide EEE index: unblocked -0.006∗∗∗ -0.007∗∗∗ -0.006∗∗∗ 0.000∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Pesticide EEE index: blocked -0.005∗∗∗ -0.005∗∗∗ -0.004∗∗∗ 0.000∗∗∗ -0.001∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
∆ (θi,unblocked − θi,blocked) -0.001 -0.002 -0.002 0.000 0.000
Mean dependent variable 0.098 0.098 0.098 0.098 0.098
Observations 38,942,385 38,942,385 38,942,385 38,942,385 38,942,385
R2 0.094 0.108 0.201 0.862 0.947

Panel B: Year-specific common standard deviation

Pesticide EEE index: unblocked -0.019∗∗∗ -0.019∗∗∗ -0.018∗∗∗ -0.000∗∗∗ -0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
Pesticide EEE index: blocked -0.016∗∗∗ -0.015∗∗∗ -0.013∗∗∗ -0.001∗∗∗ -0.003∗∗∗

(0.000) (0.000) (0.000) (0.000) (0.000)
∆ (θi,unblocked − θi,blocked) -0.003 -0.005 -0.006 0.000 0.000
Mean dependent variable 0.098 0.098 0.098 0.098 0.098
Observations 38,942,385 38,942,385 38,942,385 38,942,385 38,942,385
R2 0.094 0.108 0.201 0.862 0.947
Notes: Dependent variable is a dummy equal to 1 if parcel i is managed organically in year t. The EEE index is

standardized (mean-centered and scaled to unit variance), and results are interpreted as the effect of a one standard
deviation increase. Raw exposure values range from 0 to 874.406 with mean 1.755 and standard deviation 2.927. All
specifications include the full set of controls for agronomic and climatic conditions, knowledge- and market-based peer
effects, and intrinsic parcel characteristics. Standard errors clustered at the farm level are reported in parentheses. ∗∗∗

p < 0.01, ∗∗ p < 0.05, ∗ p < 0.10.
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Figure C1: Robustness checks - Year-by-year effect of exposure on organic farming
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Figure C2: Robustness checks - Heterogeneity analysis by crop type
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Figure C3: Robustness checks - Heterogeneity analysis by farm size
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Figure C4: Robustness checks - Heterogeneity analysis by region
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Figure C5: Robustness checks - Financial risk management instrument
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C.2 Main results at the farm level (Section 6)

In this section, I test the robustness of the economic results using different clustering

specifications.

Table C5: Robustness checks (inference) - Effects on normalized yields

Dependent variable: Yields (normalized)
All farms Conventional Organic

(1) (2) (3) (4) (5) (6) (7) (8) (9)

Pesticide EEE index 0.030 0.030 0.030 0.011 0.010 0.010 0.206∗∗ 0.206∗ 0.206∗

(0.025) (0.031) (0.026) (0.026) (0.033) (0.024) (0.064) (0.111) (0.089)
Organic -0.420∗∗ -0.420∗∗ -0.420∗∗

(0.111) (0.126) (0.115)

Controls Yes Yes Yes Yes Yes Yes Yes Yes Yes
Year FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Farm FE Yes Yes Yes Yes Yes Yes Yes Yes Yes
Clustering Farm×year Mun. Dep. Farm×year Mun. Dep. Farm×year Mun. Dep.
Observations 20,830 20,830 20,830 18,443 18,443 18,443 2,387 2,387 2,387
R2 0.480 0.480 0.480 0.488 0.488 0.488 0.499 0.500 0.500

Notes: θ̄f(t−1) is the average of parcel-level EEE index at the farm level. Organic represents farms with at least one parcel certified under
organic. All regressions include farm fixed effects and year fixed effects. Standard errors are clustered at the municipality (mun.) or
department (dep.) level, or two-way (farm×year). ∗p<0.1; ∗∗p<0.05; ∗∗∗p<0.01
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