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Abstract

We study sequential social learning when agents can sometimes pay to verify a claim and
obtain hard, publicly checkable evidence. Each agent observes the public history, receives a
private signal, may investigate at a cost (succeeding only when the claim is true), and can
disclose or conceal any proof. Actions are binary or continuous, with a conformity pull toward
the prevailing consensus. We characterize when false cascades persist and when societies self-
correct. In the binary benchmark, we derive an investigation cutoff and show how its location
relative to classic cascade bands governs breakability; a simple knife-edge condition guarantees
that any wrong cascade at the boundary is overturned with positive probability. With continuous
actions, coarse observation and conformity can recreate cascades, yet occasional disclosures
collapse them. These forces yield a tractable “resilience frontier” with transparent comparative

statics and policy levers.

Keywords: social learning; informational cascades; verification; misinformation; conformity; dis-
closure.
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1 Introduction

A research claim gains traction as papers cite one another, seminar audiences nod along, and
policy briefs echo the finding. Then a small replication team requests data, reruns the code,
and applies simple forensic checks. The result is a public package—archived data, scripts, and a
short report—that anyone can audit. Beliefs shift quickly: what had looked like a robust result is
withdrawn or retracted once verifiable proof accumulates. This paper builds a framework for that
kind of turn. Soft information can stack into a cascade, but costly verification sometimes generates
hard, public evidence that can overturn it.

Classic models show how sequential, rational actors can ignore their own signals and herd on
observed behavior [2, 6]. Subsequent work clarifies when herding persists and how beliefs move

[8, 14]. We enrich this environment with an endogenous verification decision. Each agent sees
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the public history, draws a private signal about a binary state, and chooses whether to pay for an
investigation that yields verifiable evidence only when the state is truly present. If proof arrives, the
agent may disclose it and receive a benefit; if not, actions remain the only soft signal. Continuous
actions are interpreted as expressed opinions disciplined by a quadratic pull toward the consensus,
capturing conformity pressures in public discourse.

Two forces drive our results. The first is a soft channel: actions convey private information
when they are responsive and observable. The second is a hard channel: occasional disclosures
create public, verifiable proof and coordinate everyone on the truth. We use these to formalize
misinformation resilience—the conditions under which wrong cascades are eventually broken by
decentralized behavior. Our first main result characterizes the optimal verification rule: there
is a cutoff in the posterior above which agents choose to investigate (Proposition 4.4). We then
show how this cutoff intersects the classic cascade bands to determine when cascades are breakable
(Proposition 4.5); a simple knife-edge condition at the boundary yields an immediate resilience
benchmark (Corollary 4.6). In the continuous-action extension, we derive a responsiveness threshold
under coarse observation that explains when actions again become uninformative (Proposition 5.1).
Finally, we provide boundary results that pin down local resilience and assemble them into a
compact resilience frontier summarizing both channels (Theorem 6.4; Corollary 6.5). Returning
to the replication vignette, a single verifiable release—data and code that pass public checks—can

shift beliefs even after long stretches in which soft signals mostly aligned with the prevailing view.

2 Related literature

We build on the sequential social-learning tradition where public actions can swamp private infor-
mation and generate cascades [2, 6]. Recent treatments sharpen when learning succeeds or stalls,
the geometry of posteriors, and the speed of correction [1, 11]. Fragility with heterogeneous types
and slight misperceptions is now well documented [10], and network structure can impede diffusion
even under connectivity [12]. Surveys synthesize these advances and open questions [5].

Our “hard-evidence” channel relates to verifiable disclosure: once proof exists, beliefs unravel
toward the truth [4]. Here proof is endogenously produced through costly investigation and arrives
only when the claim is true. This connects to work on disclosure in sequential environments and
strategic revelation [3]. With continuous actions we allow conformity pull, in the spirit of social
image concerns [7], and we study coarse observation of actions. Coarsening is increasingly central
in recent models where agents learn from action-signals rather than raw actions [15, 16]. Our
threshold for soft-channel informativeness complements those papers by tying responsiveness to
coarse observation explicitly.

The broader motivation intersects with misinformation and verification. Large, multi-country
experiments show that fact-checking reduces misperceptions on average, while design and framing
matter for engagement [9, 13]. We abstract from psychology to isolate the equilibrium forces that

make false cascades resilient, and we ask when decentralized verification suffices to restore truth.



We proceed as follows. Section 3 sets up the environment, signals, verification technology,
disclosure, and equilibrium. Section 4 analyzes the binary benchmark, derives the investigation
cutoff, and studies its interaction with cascade bands. Section 5 turns to continuous actions and
conformity, showing how coarse observation can reintroduce cascades and how disclosures collapse
them. Section 6 defines misinformation resilience, proves boundary breakability conditions, and
develops the resilience frontier. Section 7 sketches welfare and policy levers, and Section 8 collects

extensions (heterogeneous costs and benefits, strategic concealment, networks). Section 9 concludes.

3 Model

We consider an infinite sequence of agents ¢t = 1,2,... who act once in order. There is a binary
state 0 € {0,1} (“event present” if § = 1). Let p; € (0,1) denote the common prior Pr(f = 1) and
¢ the public belief at the start of period ¢, formed from the public history. Agents are risk—neutral

and do not discount; payoffs are period—by—period.

Timeline and observables. At the beginning of ¢, agent ¢ observes the public history H;, which
includes all past actions and any disclosed hard evidence (defined below). The agent then receives
a private signal s; € {0, 1}, draws an investigation decision i; € {0, 1} (pay a cost if i; = 1), possibly
obtains hard evidence, chooses whether to disclose it, and finally chooses an action a;. The public

history Hy41 records (aq, disclosed evidence at t).

Private signals. Signals are i.i.d. conditional on # with precision ¢ € (1/2,1):

Let uff = Pr(§ =1 | s =1,H;) and y; = Pr(@ = 1 | s; = 0, H;) denote the signal-updated

posteriors (Bayes’ rule).

Investigation technology. Agent ¢t may pay cost ¢ > 0 to investigate (i; = 1). Investigation
yields verifiable hard evidence E with probability p € (0, 1] if and only if 8 = 1:

PI‘(E ‘ 0= Ly = 1) =D
Pr(E|6=0,iy=1)=0.
When no hard evidence is realized, the investigation produces no public object. There are thus no

false positives; false negatives occur when # = 1 but F fails to arrive. If E arrives, the investigator

privately observes it and then chooses whether to disclose.

Disclosure. Disclosure is a binary choice d; € {0,1} available only if F arrived. If d; = 1, the

public history records a verifiable disclosure at ¢ and all future agents learn 8 = 1. If d; = 0,



no public trace of evidence is left (the action a; remains observable). There is no possibility to
fabricate F.

Actions. The baseline action space is binary, a; € {0, 1}, interpreted as endorsement vs. rejection
of the event. (Section 5 allows continuous opinions a; € [0,1] with a conformity motive.) In the

baseline, absent disclosure, agents care about choosing the action that matches the state.

Payoffs. Agent t’s payoff is

ug = 1{a; =0} + V1{FE arrived and d; =1} — ciy ,
~—
accuracy disclosure benefit investigation cost

where V' > 0 captures whistleblower rents, reputational or prize benefits from bringing verifiable
truth to light.!

Beliefs and updating. The public belief y; = Pr(6 =1 | H;) is common knowledge at the start

of t. Private Bayesian updating from signals yields

+ Htq — lu’t(l - q)
t

= wo= :
P (1= q) 4+ (1 — g

g + (1= pe)(1 —q)’
If F is disclosed at any date, beliefs jump to psr1 = 1 permanently. Otherwise beliefs evolve from
observed actions via Bayes’ rule under equilibrium strategies (defined below). In the binary—action
benchmark without investigation, the standard cascade bands are p < 1 — ¢ (“lower”) and p > ¢
(“upper”), within which optimal actions ignore private signals. In our environment, these bands

still describe behavior in regions where agents optimally do not investigate.

Strategies and equilibrium. A (pure) strategy for agent ¢ maps the public belief and private

information into choices

O¢ : (:utast,E) = (itvdtvat)a

where d; is relevant only if E is realized. The public history H; consists of past actions and any
past disclosures. An equilibrium is a Perfect Bayesian Equilibrium (PBE): (i) each agent’s strategy
is sequentially optimal given beliefs; (ii) beliefs are updated from the public history by Bayes’ rule

wherever possible and by standard consistency off the equilibrium path.

Investigation cutoff. In the binary—action benchmark without conformity, there exists an inves-
tigation threshold pu* = p*(q,p,c, V') € (0, 1) such that, holding fixed the anticipated mapping from
actions to beliefs, an agent with posterior u weakly prefers to investigate whenever p > u*, and

not otherwise. Intuitively, higher signal precision ¢ and better verification technology p reduce u*,

'Tf desired, a conformity term can be introduced later as —\(a; — a¢)?, where @, is the publicly inferred consensus;
we defer this to Section 5.



Table 1: Notation

Symbol Meaning

0 e{0,1} State.

e € (0,1) Public belief at the start of period t.

H Public history.

s; € {0,1} Private signal at t.

ge(1/2,1) Signal precision.

ir € {0,1} Investigation decision.

c>0 Investigation cost.

E Hard, verifiable evidence.

p € (0,1] Success probability of investigation given 6 = 1.
dy € {0,1} Disclosure decision when E arrives.

V>0 Private benefit/rent from disclosing hard evidence.
a; € {0,1} or [0,1] Action: binary (baseline) or continuous opinion.
~v € 10,1] Accuracy weight in continuous best response.

h € [0,1] Observational granularity.

wly Posteriors after s; =1 or s; = 0.

x Agent’s posterior given (Hy, s;).

x’ Posterior after a failed investigation.

A(x) Accuracy payoff without investigation.

3, 5 Investigation cutoffs.

Wy [ Cascade boundaries: p=1—¢q, 1 =q.

L(p) Belief likelihood ratio.

Ax(p) Posterior gap under signals.

while higher costs c raise it and higher discovery benefits V' reduce it. Section 4 derives p* formally
and studies how its position relative to the cascade bands determines whether wrong cascades can
be broken.

Two features are central. First, hard evidence is asymmetric (no false positives), so a disclosure
is an absorbing state at truth. Second, disclosure is endogenous: even when E arrives, an agent
may conceal it, trading off V' against any strategic considerations embedded in the action choice.
These forces interact with the usual action—based learning to determine when societies become
stuck in false cascades and when sporadic investigation suffices for correction.

Whenever an agent is (weakly) indifferent at a knife-edge belief (e.g., at u € {1 — ¢,q} in the
binary benchmark or when Aa(u) = h in the continuous/coarsened case), we select the equilibrium
that (i) breaks ties in favor of investigation and (ii) if hard evidence is obtained, in favor of
disclosure. In the continuous-action case, ties in the best response are resolved toward a; =
yog + (1= )

With binary actions and endogenous investigation, the symmetric monotone PBE is unique away

from knife-edges. Multiplicity can arise only at measure-zero parameter sets where the investigation

2Equivalently, add vanishing trembles: an € | 0 private payoff perturbation that makes investigation strictly
optimal on the knife-edge, and (separately) a vanishing disclosure bonus. All results—Proposition 4.4, Proposition 4.5,
Theorem 6.4, Proposition 5.1—are robust to such trembles.



and no-investigation payoffs coincide exactly at the cascade boundaries; our selection above pins
down a canonical equilibrium in those cases. None of the comparative-statics or resilience results

depend on which knife-edge selection is used.

4 Discrete-Action Analysis

This section solves the one-shot problem of an agent who has observed the public belief y; and a
private signal s;, yielding a posterior x € [0, 1] about §# = 1. We derive the value of investigating
after s; is observed, show a single—crossing property that delivers a cutoff rule, and then translate
the decision back into public-belief space to study when cascades are breakable. Throughout this
section actions are binary (a; € {0,1}) and there is no conformity term.

Let  denote the agent’s posterior Pr(6 = 1| Hy, s;) (so x = p; if s; = 1 and @ = py if s, = 0).

If the agent does not investigate, the optimal action is a = 1 iff z > 1/2, yielding value
U™ (z) = max{z,1 —z} = A(x).

If the agent does investigate, then with probability zp hard evidence E arrives (only when 6 =
1), the agent discloses it, obtains the benefit V', chooses a = 1 and gets accuracy 1. With the
complementary probability 1 —xp, no hard evidence arrives; given this failure, the posterior updates

to
z(1—p) _z(1-p)

"=Pr(f = 1| fail H = -
T r( |a1ure, t,St) m(l—p)+(1—$)'1 1—xp’

after which the agent optimally chooses the action that maximizes accuracy, giving value A(z').
Hence
U™(z) = ap(14+V)+ (1 —ap) A(2)) —c. (1)

Lemma 4.1. For z > %,

' zpV —ec, if x> 5=
Umv(x) _ Uno(x) _
l—c+z(p(l+V)-2), if%§x<ﬁ.

By symmetry, for x < % replace x with 1 — x in the right-hand side. In each half-interval [%, 1] and
0, 3] the difference U™ — U™ is affine in x and hence exhibits a single crossing.
[0, 3 g g

Proof. When z > 3, U™(z) = z. If 2/ > I (equivalently x > 1/(2 — p)), then A(2’) = 2’ and

z(1 —p)

(1 —ap)A(a') = (1 —ap) 75— o

=a(1-p),

so (1) gives U™ (2)—U™(z) = ap(1+V)+z(1—p)—c—z = xpV —c. If instead 2’ < 5 (equivalently



x <1/(2—-p)), then A(z') =1 -2/, and
1 —
(=A@ = 1 —ap) (1- T2 ) <1,
so (1) yields U™ (z) —U™(z) = ap(1+V)+1—2—c—2=1—c+z(p(1+V)—2). The symmetry
claim follows by exchanging labels of states and actions, which maps = to 1 — x. ]

Lemma 4.1 implies a threshold rule within each half of the unit interval.

Lemma 4.2. Fizq € (1/2,1). The one-signal posteriors u*(u,q) and p~ (i, q) are continuous and
strictly increasing in p € (0,1). Moreover, for all € (0,1) one has p=(u,q) < p < p*(p,q).

Proof. Let O = u/(1 —p) and R = q/(1 — q) > 1. Bayes gives u™ = lng and pu~ = OLJFR. Both
expressions are strictly increasing in O, and O is strictly increasing in u, yielding the claim. Since
R>1, we have p= < pu < p* for all u € (0,1). O

Lemma 4.3. Fiz (p,c,V) with p € (0,1], ¢ > 0, V > 0. In the binary benchmark, the net gain
from investigating versus not investigating, G(x) = U™ (x) — U™ (z), is continuous and strictly
increasing in the posterior x on [1/2,1) and satisfies G(1 — x) = —G(x). Hence there exists a

unique cutoff x* € [1/2,1) such that an agent investigates iff x > x*.

Proof. Continuity is immediate from the payoff definitions. Monotonicity follows from MLRP
and the structure of investigation: evidence arrives only in the true state, so the likelihood ratio
of “investigation outcomes” (disclosure vs. no disclosure) is increasing in x, which increases the
expected marginal value of investigating. Symmetry around 1/2 holds because swapping labels of
states maps posteriors x — 1 — z and flips the sign of the relative value. Strict increase on [1/2,1)

yields uniqueness of the cutoff by the intermediate value theorem. O

Proposition 4.4. There exists a (weakly) increasing cutoff policy with respect to the posterior.

Specifically:

e Ifx >3 andx > ﬁ, then the agent investigates iff

N[ =

C

x> x] = —.
p

o Ifxe >3 andx < ﬁ, then the agent investigates iff

N[ =

__l-c
-2tV

e Forx < % the rule is symmetric: replace x by 1 — x in the conditions above.

Moreover, x] is decreasing in p and V and increasing in c; x5 is decreasing in p and V and

increasing in ¢ whenever 2 —p(1 4+ V) > 0.



Proof. Immediate from Lemma 4.1: in each region U™ — U™ is affine in z, so the indifference

point solves a linear equation. Comparative statics follow by inspection. ]

Two remarks aid interpretation. First, the “clean” case > 1/(2 — p) is economically natural:
a failed investigation weakens conviction but does not flip the optimal action; here the cutoff is
especially transparent, = > ¢/(pV’). Second, near the knife-edge = ~ 1/2 a failed investigation can
reverse the chosen action; the effective cutoff adjusts to =3, which nests the knife-edge condition
Uinv(1/2) > Um°(1/2), i.e. )

SP1+V) = e (2)

The posterior  is 2 = y;" after a positive signal and z = y; after a negative signal, where

+ Heq - pe(1—q)
t

Eom( =)+ (1 g

peq + (1 — pe) (1 — Q)’

Thus the investigation rule can be written as likelihood-ratio thresholds in u; conditional on the

observed s;. For example, in the clean region after s; = 1 the threshold z > ¢/(pV) is equivalent to

Bt c o 1-gq
L—pe — pV —c¢ q
——

evidence rent ratio signal LR ™!

and after s; = 0 the symmetric threshold uses p; <1 —¢/(pV).

In the classic binary-action benchmark without investigation, agents ignore their signals and
herd when p; < 1 — ¢ (lower cascade) or p; > g (upper cascade). In those regions the next agent’s
posteriors lie on one side of 1/2: if yuy < 1—¢q then pu;” < 1/2 and p; < 1/2; if iy > g then p; > 1/2
and ;7 > 1/2. Whether such a cascade is breakable depends on whether the relevant posterior

crosses the investigation cutoff.
Proposition 4.5. Fixz parameters (q,p,c, V).

1. A lower cascade at belief uy < 1—q is breakable (i.e., some agent strictly prefers to investigate
with positive probability) iff
U (1) = U ().
Equivalently, using Proposition 4.4, either ju; > max{z], ﬁ}, or i € [%, ﬁ) and p” >
x5, (By monotonicity, if the condition fails at p it fails at p; as well.)
2. An upper cascade at belief us > q is breakable iff the symmetric condition holds with x replaced
by 1 — py .

Proof. In a lower cascade, s; = 1 maximizes the posterior among the two signals. Since the decision
to investigate is increasing in z (Lemma 4.1), investigation occurs with positive probability iff it

occurs at « = u;”. The upper-cascade case is symmetric. O



+
;=

A particularly transparent benchmark arises at the cascade boundary u; = 1 — ¢, where p
1/2. Plugging x = 1/2 into Lemma 4.1 yields the following corollary.
Corollary 4.6. If )
3 p(14+V) > ¢,
then any cascade at the boundary is breakable: an agent who receives a positive signal (at the lower
boundary) or a negative signal (at the upper boundary) strictly prefers to investigate. Consequently,

any wrong cascade is overturned with positive probability in finite time.

Proposition 4.4 implies that the incentives to investigate strengthen when p or V rise and
weaken when c rises; higher signal precision g raises ;7 at any given j;, moving the economy
toward investigation after favorable signals. In terms of cascades, wrong lower cascades are easier
to break when (p, V') are high, c is low, and ¢ is high; the symmetric statements hold for wrong
upper cascades. Define the misinformation-resilience region as the set of parameters (g, p, ¢, V') for
which both inequalities in Proposition 4.5 hold at the respective cascade boundaries 4 = 1 — ¢ and
= q. By Corollary 4.6, the simple sufficient condition %p(l + V') > ¢ guarantees resilience at both
boundaries; outside that baseline, resilience obtains whenever u* (or 1 — ™) crosses the relevant

cutoff in Proposition 4.4, which occurs for sufficiently large ¢ even when p(1 + V') is moderate.

Taken together, these results formalize how sporadic verifiable evidence interacts with action-
based learning. If investigation rents are sufficiently attractive relative to costs, wrong cascades are
fragile: they are broken the first time a moderately favorable signal arrives. When rents are small
or costs high, cascades become absorbing unless the signal and verification technologies are strong

enough to push posteriors above the relevant thresholds.

5 Continuous Actions and Conformity

We now allow actions to be continuous opinions a; € [0, 1] and introduce a conformity motive.
Agent t’s posterior about 6 = 1 after observing Hy and s; is « € [0,1]. The agent chooses a to

balance accuracy and alignment with the current consensus pu:

gin VE[(@—0) o] + (1-9)e—mw)?,  vEDI]

truth conformity

With 0 € {0,1} and Pr(0=1 | Hy,s;)=z, we have E[(a — 0)? | 2] = x(a — 1)®> + (1 — x)a®. The
objective is strictly convex and yields a closed-form best response.

The first-order condition gives

a*(z, ) = v+ (1 —7) pe, (3)

i.e., a convex combination of posterior truth and consensus. The responsiveness to private informa-

tion is da*/0x = 7. When ~v = 0 actions are fully conformist (a* = p;) and reveal nothing; when



~v = 1 actions are truthful (¢* = z).
If strategies are common knowledge and a* is observed without noise, then for any v > 0 the
map x — a* is strictly increasing and invertible:

a* —
T = W+ 'ut.
Y

Hence the period-t action fully reveals the posterior z, and soft information aggregates efficiently
across time. In that frictionless case, action-based herding disappears: the belief process coincides
with aggregation of posteriors and does not collapse to a region where actions ignore signals.

Two forces can reintroduce cascades. First, at the classical cascade boundaries the posterior

gap induced by one signal vanishes. Let

He q
O; = and R=-——
T I—gq
Bayes’ rule gives
lu’+ = ﬂ and /’[/_ g Ot/R = Ot .
¢ 1+ OR t 1+0;//R  O;+R

Hence the one-period posterior gap is

pe(pe — 1) (2g — 1)
(2peq — e — q) (2peq — e — q + 1)

Ax(p,q) = pf —pp = (4)
For brevity we write Az (u) when ¢ is fixed.

At the classical cascade boundaries p; € {1—g¢, ¢} we have Az(u, q) = 0; absent hard evidence,
the soft channel thus shuts down locally.

Suppose the public sees a coarsened action a = C(a*) where C rounds to a grid of step h € (0, 1].
A sufficient statistic for signal revelation at belief u is whether the two signal-contingent actions

straddle a grid boundary. Using (3), the signal-induced separation in actions equals

Aa(p) = a* (' p) —a*(p™,p) = vAx(p).

Hence signals are distinguishable from actions at belief p if Aa(p) > h, and indistinguishable if
Aa(p) < h.

Proposition 5.1. Fiz (q,7) and grid step h € (0,1]. At belief p, signals are inferable from actions

if and only if
h

> — where Ax(u,q) is given by (4).
V2 (1) ()

Suppose the public sees a coarsened action a = C(a*) obtained by rounding a* to the nearest

10



grid point of step h. From (3), the signal-induced separation in actions equals

Aa(p) = a*(p' p) —a(p™,p) = vAx(p,q).

Hence signals are distinguishable from actions at belief p if and only if Aa(p) > h, and indistin-
guishable if Aa(u) < h.

In particular, at the cascade boundaries y € {1 — q, q} one has Ax(u,q) = 0, so no finite
clears the threshold. Away from the boundaries, higher q (better signals) increases Ax(u,q) and
relazes the threshold; higher conformity (lower ) tightens it.

Proof. Fix pu, ¢ > 1/2, responsiveness v € [0, 1], and grid step h > 0. Let the continuous best
response be a*(x, i) = yx + (1 — )i, and denote ™ the posteriors after one signal, so that by (4)

_ _ plp—1) (29 — 1)
Aalug) = w7 =" = (2ug —p—q)(2ug—p—q+1)°

The signal-induced separation in actions is

Aa(p) = a*(p",p) —a*(u" 1) = vAz(u,q).

Let a = C(a*) be the coarsened action obtained by rounding to the nearest grid point of step
h (ties broken by the public according to the selection in Section 3). The coarsening map C is
monotone and piecewise constant with flat segments of width h. Hence a(u*) = a(u™) if and only
if |Aa(u)| < h, and a(pt) # a(p™) if and only if |Aa(u)| > h. Therefore signals are inferable from

actions at belief p if and only if
yAx(p,q) > h.

At the knife—edge v Ax(u, q) = h inference is pinned down by our tie-breaking (Section 3). Finally,
at the classical cascade boundaries p € {1—g¢q, ¢} we have Az(u,q) = 0 (plugging p into the formulas
for puF yields equality), so—absent hard evidence—the soft channel is locally mute. This proves
the claim. O

Figure 3 complements Proposition 5.1: with v = 0.6 and h = 0.05, breakability rises with
verification p and falls with relative cost ¢/V; when v Az(u, q) < h, actions cease to separate and
disclosures drive correction.

This delivers a simple intuition: continuous actions do not automatically prevent cascades. With
coarse observation or even modest rounding, sufficiently strong conformity collapses the signal-
induced movement in actions below observational granularity, re-creating regions in which actions
are effectively uninformative about private signals.

Investigation adds a second, discontinuous channel for information. If hard evidence F arrives
and is disclosed, beliefs jump to 1 regardless of v or h. Thus disclosures break any ongoing cascade.

When Aa(p) falls below the observational threshold, investigation is the only route to escape from

11



regions where soft signals cannot move public belief. Conversely, when v Az(u) exceeds h, soft

signals are again visible in actions and can steer beliefs without disclosure.

Proposition 5.2. Fiz (q,p,c,V,7v,h). Suppose the binary-action investigation cutoffs from Sec-
tion 4 apply to the posterior x (the value comparison is unaffected by the action’s continuity).
Then:

1. If there exists an interval T C (0,1) with vAx(p) > h for all p € Z, any wrong belief that

enters L is corrected with positive probability without investigation.

2. If at some [i the investigation condition of Proposition 4.5 holds, a wrong cascade at or near

i 1s broken with positive probability via disclosure, independent of v and h.

In particular, the society is misinformation-resilient whenever either channel is active along the
evolution of beliefs: high responsiveness (v large, h small, q large) or sufficiently attractive inves-
tigation (p(1+ V) Z 2c near the boundaries).

Discussion. Equation (3) isolates conformity as a linear dampener of responsiveness. Without
frictions (h = 0) any « > 0 restores full revelation of soft signals and precludes action-based herd-
ing. With even mild coarsening, however, (4) shows that signals are intrinsically least informative
near the classic cascade bands, and strong conformity can render their effect invisible. Hard evi-
dence then plays a pivotal role: it introduces discrete, verifiable corrections that robustly collapse
conformity-driven cascades. The resilience frontier in (g, p,c/V,v,h) thus has two margins—one
continuous (soft) and one discontinuous (hard)—each expanding when media quality or verification
improves, or when conformity pressure eases.

Figure 2 visualizes the binary benchmark: simulated breakability is high on and below the
hard-evidence frontier and declines as verification worsens or costs rise, mirroring Theorem 6.4 and
Corollary 6.5.

6 Misinformation Resilience

We formalize when a society eventually corrects a wrong cascade through either soft information
(actions that reveal private signals) or hard evidence (verifiable disclosures).

Fix (q,7,h) and the equilibrium selection from Section 3. The resilience frontier is the locus
in (p, ¢/V) space that separates parameter pairs for which a wrong cascade at the boundary is
breakable with positive probability from those for which it is not. In the binary benchmark this
specializes to the hard-evidence condition in Corollary 4.6; with continuous actions and coarsening,
it coincides with the parameter region characterized by Proposition 5.1 and Theorem 6.4. Figure 2

provides a numerical visualization.

Proposition 6.1. Fix (q,7,h) and the equilibrium selection from Section 3. Let
R(q,v,h) = {(p, ¢/V) € (0,1]x[0,00) : a wrong boundary cascade is breakable with positive probability}.
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Then:

1. (Hard channel) If (p,c/V) € R and p'> p, ¢V <¢/V, then (p',/V) € R.
2. (Soft channel) If (p,c/V) € R and v' > v, ' < h, then (p,c/V) € R(q,7, ).
3. (Signal quality) If ¢ > q, then R(q,v,h) C R(¢,~,h).

Proof sketch. (i) Increasing p or decreasing ¢/V weakly enlarges the investigation region by Lemma 4.3,
and disclosures arrive at least as often, so any path that breaks the cascade under (p,c/V’) also
breaks it under (p’,¢’/V') by coupling.

(ii) By Proposition 5.1, soft inferability at belief p requires v Axz(u,q) > h. Raising v or
lowering h weakly relaxes this inequality at every u, so any soft-driven correction remains feasible
(and hard-driven corrections are unchanged).

(iii) From Lemma 4.2, Ax(u, q) is (weakly) increasing in ¢, so the soft condition becomes easier;
higher ¢ also increases the fraction of high-posterior agents, enlarging the investigation region.

Combining with (i)—(ii) gives the inclusion. O

A public belief u is a cascade belief if the optimal action is independent of the private signal
(Section 3). A cascade at p is wrong if the induced action does not match the true state. Fix

parameters (q,p,c, V,7,h) and a strategy profile constituting a PBE.

Definition 6.2. A cascade at belief u is breakable if, conditional on py = p and the cascade being
wrong, there exists a path with positive probability on which future public beliefs leave the cascade

region and converge to the truth (either via distinguishable soft signals or via disclosure).

Definition 6.3. The society is misinformation-resilient if any wrong cascade that arises along the
equilibrium path is breakable. Equivalently, starting from any u; € (0, 1), the probability that a

wrong cascade persists forever is zero.

The two channels identified earlier are: (i) the soft channel, operative when signal-induced action
movements are observable (Proposition 5.1); and (ii) the hard channel, operative when investigation

is attractive near cascades (Propositions 4.4-4.5).

6.1 Main characterization near cascade boundaries

Write the classical cascade boundaries as p = 1 — ¢ (lower) and 7z = ¢ (upper). Recall Ax(u) =
put —p~ and the coarse-observation threshold v Az(u) > h from Proposition 5.1; and the knife-edge
investigation condition $p(1+ V) > ¢ from (2).

Theorem 6.4. Fiz (q,p,c,V,~,h).

1. If there exists € > 0 such that vAx(p) > h for all p € [p, p + €] (respectively, for all
w € [i—e, fi]), then any wrong lower (respectively, upper) cascade at the boundary is breakable

via soft information.
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2. If %p(l + V) > ¢, then any wrong cascade at either boundary is breakable via investigation

and disclosure.

3. If %p(l + V) < ¢ and there exists € > 0 with v Ax(u) < h for all p in a neighborhood of the
boundary (lower or upper), then a wrong cascade at that boundary is not breakable (locally

absorbing).

Sketch. (i) When v Ax(u) > h, actions corresponding to s = 1 and s = 0 are separated by at least
one grid boundary, hence publicly distinguishable. Beliefs therefore update away from the boundary
with positive probability, breaking the cascade (Proposition 5.1). (ii) At u = p the best posterior
is p* = 1/2; Lemma 4.1 and (2) imply investigating strictly dominates after a favorable signal,
yielding disclosure with probability p > 0 and a belief jump to 1. The upper boundary is symmetric.
(iii) If both channels fail locally (no investigation incentive by (2) and no signal distinguishability by
Proposition 5.1), then neither actions nor investigations can move beliefs away from the boundary,

so the wrong cascade is locally absorbing. O

Corollary 6.5. Define the hard-evidence frontier H : % p(1+V') = ¢ and the soft-inference frontier
S: yAx(u) = h and v Ax(fr) = h. The parameter region

{(¢,p.c,Viy,h): 3p(1+V)>c} U {(g,p,c,V,v,h): vAz(p) > h and v Az(R) > h}

1s sufficient for global resilience. Conversely, if both inequalities fail in neighborhoods of the bound-

aries, wrong cascades are locally absorbing.

Figure 2 visualizes the binary benchmark: simulated breakability is high on and below the
hard-evidence frontier and declines as verification worsens or costs rise, mirroring Theorem 6.4 and
Corollary 6.5.

Along H, the slope satisfies dp/dV = —p/(1 + V) at fixed ¢ (more discovery rents substitute
for verification quality). Lower ¢ or higher p/V expand the hard-evidence region. Along S, since
Az(p) is increasing in ¢ away from the boundaries (and equals zero exactly at them), higher ¢
or higher v or finer observation (smaller h) expand the soft-inference region. These margins are

complementary: either can secure resilience on its own.

6.2 Beyond the boundary: interior beliefs and dynamics

Theorem 6.4 focuses on boundary behavior, which is the bottleneck for correction since Az(p) is
minimized there (equals zero in the binary baseline). Away from the boundaries, Az(u) grows with
q and the soft channel becomes progressively more potent; similarly, the investigation cutoffs in
Proposition 4.4 are easier to satisfy because posterior x moves away from 1/2. Hence the frontier
in Corollary 6.5 is conservative: once beliefs are nudged off the boundary (by any small shock), the
set of parameters sustaining resilience strictly expands.

First, policies that increase verification capability (p 1) or reduce verification frictions (c )

guarantee breakability even in the most hostile region (the boundaries). Second, policies that
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improve media quality (q 1), reduce conformity pressure (v 1), or increase observational granularity
(h ]) restore the informativeness of actions and can obviate the need for costly investigation.
Third, if platforms inadvertently coarse-grain signals (large h) while conformity is strong (small
v), even good private signals cannot move beliefs near cascades; in such environments, supporting
verification is pivotal.

We assumed V' > 0, so disclosure is weakly optimal whenever F arrives. Allowing strategic
concealment (e.g., V depends on audience or future payoffs) shifts the hard-evidence frontier upward
by replacing p with p - Pr(d = 1 | E); the qualitative conclusions are unchanged but the resilience
region shrinks proportionally to the equilibrium disclosure rate.

With local observation, boundary conditions are defined on neighborhood beliefs; Az (u) is then
evaluated per neighborhood. Theorems above apply node-wise; resilience requires that either soft
distinguishability or hard-evidence incentives hold on a per-neighborhood basis. Sparse networks
tighten S (actions are noisier aggregates) and raise the value of H (disclosures percolate globally
once observed).

Additional simulation details and figures appear in Appendix B.

7 Welfare and Policy

We sketch a planner’s problem that captures two externalities: (i) a wverification externality—an
investigator’s disclosure permanently resolves uncertainty for everyone; and (ii) a conformity /
observability externality—platform coarsening and social pressure make actions less informative to
others. Policies act on three margins: the effective investigation cost (c), the verification technology
(p), and the informativeness of actions (through conformity v and observational granularity k). We
keep the discussion local to the cascade boundaries, which are the bottlenecks (Section 6).

Let W denote expected discounted welfare from date ¢ onward, where each period’s flow payoff
is accuracy (1 if a; = 6, 0 otherwise) plus any social value from a disclosure. Private choices ignore
the public-good value of moving beliefs out of a wrong cascade. A reduced-form planner therefore
chooses instruments to minimize the probability that a wrong cascade persists forever, subject to
policy costs.

(i) A per-investigation subsidy s € [0,¢| lowers the private cost to ¢ — s. (ii) Investment
in verification raises the success probability from p to p + Ap (e.g., audit capacity, archiving,
authenticity tools). (iii) Platform design reduces coarsening from h to h — Ah (finer observability)
and/or attenuates conformity (nudges that increase 7). We assume convex policy costs re(s),
kp(Ap), and kp(Ah).

At the cascade boundaries, the knife-edge condition for local breakability is % p(1+V) >c
(Corollary 4.6). With a subsidy s, the condition becomes

%p(l%—V) > c¢—s. (5)
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Reqlmred subsidy s* to guarantee breakability (V= 1)9
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p (verlflcatlon success)

Figure 1: Required subsidy s* over (p, ¢/V) for V=1 to guarantee boundary breakability (Propo-
sition 7.1). The required subsidy is zero on and below the hard-evidence frontier and rises linearly
above it.

Proposition 7.1. Given (p,V,c), the least costly hard-evidence intervention that guarantees bound-

ary breakability is either a subsidy
s* = max{O, c— %p(l + V)},

or, equivalently, an increase in verification quality

2(c—s)
Ap* = - .
V) max {0, =V p}

Any pair (s, Ap) satisfying (5) secures local resilience; the planner chooses the cost-minimizing pair

under Ke, Kp.
Sketch. Corollary 4.6 applied to effective cost ¢ — s and success rate p + Ap. O

As a direct illustration, Figure 1 plots the implied subsidy schedule s*(p,c¢/V): zero on and
below the frontier, rising linearly above it.

At belief p, signals are distinguishable from actions iff ¥ Az(u) > h (Proposition 5.1). Near the
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boundaries, Az () is minimal, so a sufficient condition for local resilience via soft information is

h

- for all i in a neighborhood of {1 — ¢, ¢}. 6
Ne(y.d) g e d )

=
Proposition 7.2. Fiz (q,7,h). Let i € {1 —q,q} and Az = inf . o) Az () for some small
e > 0. A sufficient policy to ensure soft breakability at both boundaries is either (i) to reduce

coarsening to

h* S 0 Ax87
or (ii) to raise responsiveness to
. h
T o= Az,

The planner picks the lower-cost option under kp, k (where k. is the cost of nudges that increase

7).

Proof. Write f(p) = Ax(u,q) as in (4). For ¢ > 1/2, f is continuous on [0, 1], satisfies f(1 — ¢q) =
f(g) = 0, and f(u) > 0 on (1 — q,q). By Proposition 5.1, signals are inferable at belief p iff
v > h/f(u). Hence, for any neighborhood U of the boundary (a small interval around {1 — ¢, q}),

inferability throughout U holds iff
h

TS Fw

Since f is continuous and strictly positive on U \ {1 — ¢, ¢}, the supremum is finite for any fixed U;
this yields the stated condition with the “for all y in a neighborhood of {1 — ¢, ¢}” phrasing. The

converse direction is immediate from Proposition 5.1. O

Define the feasible set

R = {(S,Ap, Ah,Av): (5) holds and (6) holds on both boundaries}.
A simple program is

(s,Ap,Amfj,nA'y)ER Ke(8) + kp(Ap) + kp(AR) 4+ Ky (A7),
Because the two margins operate independently at the boundaries (Theorem 6.4), any solution that
satisfies either the hard condition or the soft condition at both boundaries is sufficient for global
resilience.

Subsidizing verification (s 1) or improving it technologically (p 1) moves the economy vertically
across the hard-evidence frontier; refining observability (h ]) or boosting responsiveness (v 1) moves
it horizontally across the soft frontier (Corollary 6.5). When platforms heavily coarsen actions (large
h) or conformity is strong (small v), the soft margin is expensive; hard-evidence tools are then cost-
effective. Conversely, in high-¢ environments where Az(u) is large near the boundaries, modest

UI changes that reduce h (finer ratings/scales; richer reaction sets) or mild accuracy nudges that
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increase v can obviate costly subsidies.

If disclosure is imperfect (some investigators conceal), the hard-evidence frontier shifts by re-
placing p with p-Pr(d=1 | E). Whistleblower rewards that raise V' or policies that mandate/enable
verifiable archiving effectively increase Pr(d=1 | F) and move the frontier down. Caution is war-
ranted with selective warning labels: they may reduce h for labeled items but increase perceived
accuracy of unlabeled content (an “implied truth” effect), which can dampen soft inference away
from labels. In our terms, such policies change h unevenly and can tighten the soft frontier in unla-
beled regions. A robust approach combines small, general-purpose boosts to v (accuracy prompts)
with either lower h platform-wide or targeted support for verification (s or p) at topics where Az ()

is intrinsically small.

8 Extensions and Robustness

This section records several add-ons that leave our main insights intact while clarifying scope.

8.1 Heterogeneous investigation costs and benefits

Let costs and discovery benefits be agent-specific, (¢;, Vi) drawn i.i.d. from a continuous distribution
F on [0,¢] x [0, V], observed privately by agent i before choosing i; € {0,1}. The value comparison
in Lemma 4.1 and Proposition 4.4 applies typewise; in the “clean” region (z > 1/(2 — p)) the

indifference condition is zpV; = ¢;.

Proposition 8.1. Fiz a posterior x > 1/(2 — p). There exists a monotone selection rule: agent
i investigates iff ¢p; = Vi/ci > ¢*(x), where ¢*(x) = 1/(px). The ex-ante investigation probability
at (x,p) equals 1 — ®(¢*(x)), where ® is the c.d.f. of ¢;. Consequently, the hard-evidence margin
strengthens (weakens) under MLRP shifts of F' that raise (lower) the distribution of ¢;.

The resilience frontier shifts outward when the population contains a sufficiently thick upper tail
of high ¢; types (high V; or low ¢;). This preserves the qualitative role of p and V' in Corollary 4.6,
replacing p(1 + V') with pE[V; | ¢; > ¢*] in knife-edge comparisons.

8.2 Strategic concealment and disclosure frictions

Suppose disclosure, conditional on E, is chosen to maximize V; — A;, where A; is a (possibly type-
and history-dependent) private cost of disclosure. Let 7(-) € [0, 1] denote the equilibrium disclosure

probability given evidence. Then all hard-evidence formulas carry through with the substitution
p ~ p=pE[r(E, H) | E].

The hard-evidence frontier in Corollary 6.5 becomes 3 (1+V) > ¢ under homogeneous (¢, V) or the
selection-weighted analogue under heterogeneity. Whistleblower rewards and verifiable-archiving

rules operate either by raising V; directly or by increasing 7, thereby expanding the resilience region.
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8.3 Networked observation

Let agents observe only a neighborhood’s past actions and disclosures on a graph G = (N, ¢&).
Beliefs are now local: (i) is agent i’s public belief given her neighborhood history. Define local
cascade boundaries (i) = 1 — ¢ and 7i(i) = ¢ as before. Propositions 5.1 and 4.5 apply node-wise
with p replaced by p(i). Disclosures, once observed, percolate through G deterministically if they
are globally visible (e.g., archived, searchable). When observation is purely local, a disclosure at
node j shifts beliefs to 1 along paths that include j; resilience then depends on whether the set
of nodes recurrently visited by the belief process intersects these paths. Sparsity tightens the soft

frontier (actions are noisier aggregates), increasing the relative value of the hard-evidence channel.

8.4 Coarse and noisy actions beyond rounding

The coarsening operator C can encode bounded attention or platform frictions more generally. If
the public observes @ = a* + 1 with noise 7 (mean zero, variance o2), then distinguishability of
s =1 vs. s = 0 reduces to a standard signal-detection condition:

[Aa(p)| _ v Ax(p)

= > Zay
g g

for a target false-positive rate o and critical value z,. The soft frontier becomes v Ax (i) > z40 in

place of v Az(u) > h, leaving all comparative statics unchanged.

8.5 Repeated interactions and reputation

If some agents reappear and V; includes reputational returns that depend on future audiences, then
m generally rises (evidence is more likely to be disclosed), effectively increasing p. Reputational ben-
efits can also reduce effective conformity costs by making deviations from consensus less penalized
in expectation, which raises . Both forces shift the resilience frontier outward. The main caveat is
selection: reputational stakes may induce over-investigation in high-visibility states, concentrating

disclosures on salient topics.

8.6 Evidence with rare false positives

Suppose investigations can (rarely) generate spurious “evidence” with probability € < 1 when

f# = 0. Then disclosures at 8 = 0 do not fully pin down the state. Beliefs jump to

Hp

'=Pr(0=1|E)=—""
: ( I £) pp + (1 — pe

which exceeds p but is below 1 unless € = 0. All hard-evidence results continue to hold with 1

replaced by ', and with p = p(1 — €) in knife-edge inequalities. For small ¢, the resilience frontier
shifts inward by O(e).
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8.7 Batch arrivals and finite horizons

With k agents arriving per period and public aggregation of their actions before beliefs update,
Az(p) scales by the cross-sectional amplification in the law of large numbers. If actions are observed
without noise, the soft channel strengthens in k; with coarse/noisy observation, the effective gran-
ularity h (or noise o) scales down as k grows, again expanding the soft frontier. In finite horizons,
the late arrival of investigators raises the value of early disclosure; the knife-edge %p(l +V)>c¢
becomes easier to satisfy if V' includes time-sensitive rents.

Across these variants, two margins continue to govern resilience: (i) soft action informativeness
(controlled by ¢, 7, and observability), and (ii) hard verification (controlled by p, V', ¢, and disclosure
frictions). Heterogeneity, networks, and modest noise shift quantitative thresholds but leave the

qualitative geometry of the resilience frontier unchanged.

9 Conclusion

We develop a sequential social-learning framework in which agents can endogenously verify claims
and occasionally generate hard, publicly checkable evidence. Two forces shape outcomes: a soft
channel, where actions convey private information, and a hard channel, where rare disclosures coor-
dinate everyone on the truth. In the binary benchmark we show that investigation follows a unique
cutoff and that the position of this cutoff relative to the classical cascade bands governs whether a
wrong boundary cascade is breakable; a simple boundary condition delivers an immediate resilience
test (Proposition 4.4, Proposition 4.5, Corollary 4.6). With continuous actions under conformity
and coarse observation, we derive a transparent responsiveness threshold at which the soft chan-
nel falls silent, while occasional disclosures still overturn false cascades (Proposition 5.1). These
pieces assemble into a tractable resilience frontier with clean comparative statics and monotonicity
(Theorem 6.4, Corollary 6.5, Proposition 6.1).

The analysis clarifies policy levers without committing to a specific implementation. Interven-
tions that raise verification success (p) or lower effective cost (¢/V') expand the breakable region; so
do designs that increase responsiveness or granularity of observation (higher v, lower h) (Section 7).
In environments where conformity pressures or coarse signals mute the soft channel, even small im-
provements in verifiability can substitute for otherwise uninformative actions. Our baseline takes
disclosure as weakly optimal (V' > 0); strategic concealment simply rescales the effective arrival
rate by pE[r] without altering the geometry of the frontier.

Robustness variants leave the message intact. Allowing rare false positives tightens the hard—evidence
frontier in a transparent way; partially observable attempts to investigate weakly enlarge the break-
able set by shifting incentives; alternative conformity costs widen the dead zone but preserve the
hard—evidence logic (Appendix A). Numerical illustrations visualize these thresholds and frontiers
but are not used in proofs; additional figures and code appear in Appendix B.

Two natural directions remain. First, richer interaction structures—networks, repeated encoun-

ters, or platform feedback—can endogenize both observability (h) and responsiveness (7), poten-
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tially generating new selection effects while preserving our boundary logic. Second, heterogeneous
investigation benefits and costs (or institutionally supplied verification) would speak to the optimal
placement of limited verification capacity. Our results suggest a simple organizing principle: when

soft signals are muted, a modest increase in verifiability can restore truth at scale.

A Proofs

A.1 Proof of Lemma 4.1
Proof. Fix a public history H; and a realized private posterior x = Pr(6 = 1 | Hy, s¢) € [0, 1]. If the
agent does not investigate, the optimal binary action is ¢ = 1 iff x > %, yielding

U™ (z) = max{z,1 — z} = A(x).

If the agent investigates, hard evidence E arrives iff # = 1 and the investigation succeeds; thus
Pr(E | ) = zp. Upon arrival, the agent discloses, gains V', takes a = 1 and secures accuracy 1. If

no evidence arrives (probability 1 — zp), the posterior updates to

z(1—p) _z(1-p)
z(l-p)+(1—-2)-1 1—ap’

2 = Pr(0 = 1| failure, Hy, s;) =

because Pr(failure | # = 1) = 1 — p and Pr(failure | § = 0) = 1.

The continuation value is then A(z’). Hence
U™ () = ap(l + V) + (1 - zp)Aa’) —c. (7)

Consider z > £ so U™ (z) = z. There are two subcases.

Case 1: 2/ > L. This is equivalent to > 1/(2 — p) since

1- 1
= uz% — 2z(l-p)>1l—ap <= 2z2—p)>1 <= > ——

x> > .
1—xp 2—p

N[

Then A(z') =2’ and (1 — ap)A(z’) = (1 — xp)ml(l_i;? = z(1 —p). Using (7),
U™(z) —U™(z) =ap(1+ V) +2(1l —p) —c—x =apV —c.

Case 2: 2’ < }. Equivalently z < 1/(2 — p). Now A(z') = 1 — 2’ and hence
no__ x(l _p) .
(1 —xp)A(x") _(1_xp)(1_71—xp ) =1-ux.

Again from (7),

U™(z) —U@)=2p(l+V)+(1—2)—c—2z=1—c+z(p(l+V)-2).
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This establishes the stated piecewise form for x > % By symmetry of labels of states and actions,
the expression for x < % follows by replacing  with 1 — z. In each subinterval the expression is

affine in x, implying a single crossing. O

A.2 Proof of Proposition 4.4

Proof. For z > %:

Region A (x > 1/(2 — p)): From Lemma 4.1, U™ — U™ = xpV — ¢, which is increasing and
crosses zero at 2§ = ¢/(pV) (if pV > 0). Thus the agent investigates iff > 27 (provided z7 € [3, 1];
ifz] < % then investigation is (weakly) optimal throughout the region; if 7 > 1 it is never optimal).
Comparative statics are direct.

Region B (3 <z < 1/(2—p)): From Lemma 4.1, U™ — U™ =1—c+z{p(1 + V) —2}. If
p(14 V) = 2, the difference equals 1 — ¢, so investigation is (weakly) optimal everywhere in Region
Biff c < 1. If p(1+ V) > 2, the slope is positive and, since 1 — ¢ > 0 for any ¢ < 1, investigation
is (weakly) optimal on Region B (and strictly at interior z if ¢ < 1). If p(1 + V) < 2, the slope is
negative and the indifference point solves 1 —c+ z{p(1 + V) — 2} =0, i.e.

1—c¢

EREEr e

Because the slope is negative, the agent investigates iff z > x5. Again, monotone comparative
statics follow. The characterization for z < % is obtained by symmetry (replace x with 1 —z in the
conditions and thresholds). O

A.3 Proof of Proposition 4.5

Proof. Suppose py < 1 — q (lower cascade). Then, holding u; fixed, the posterior after a positive
signal 7 = p is weakly larger than the posterior after a negative signal = = ;. Moreover,
both 27,2~ < %, with equality 1 = % at the boundary p; = 1 —¢. By Lemma 4.1, U™V — U™ has
the single-crossing property and is (weakly) increasing in = on [0, %] after applying the z — 1 — =z
symmetry. Therefore, an agent strictly prefers to investigate for some signal realization if and only
if she prefers to investigate at * = x™. This yields the stated condition. If it holds, then with
probability Pr(s; = 1| p¢) > 0 the agent investigates; with probability p > 0 evidence arrives and
is disclosed, breaking the cascade. The upper-cascade case is symmetric: when p; > ¢, the smallest

posterior is 1 — z~ on [%, 1], and single crossing again implies the stated condition. O

A.4 Proof of Corollary 4.6

Proof. At the lower boundary py = 1 —q, z = u = % Lemma 4.1 (Case 2) gives

U™y ) =3ipl+Vv)—c
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If %p(l +V) > ¢, an agent who receives s; = 1 strictly prefers to investigate, which yields disclosure
with probability p > 0 and breaks the cascade. If equality holds, investigation is weakly optimal;
any equilibrium/tie-breaking that selects investigation suffices, and the result also obtains under
arbitrarily small perturbations of (p,V,c). The upper boundary is symmetric (use x = 1 — py; =
). .

A.5 Proof of Proposition 5.2

Proof. Part (i): If there exists an interval Z on which v Ax(u) > h pointwise, then by Proposition
5.1 the two signal-contingent actions are publicly distinguishable throughout Z. Therefore, when-
ever the public belief lies in Z, there is positive probability (equal to the signal likelihood) that the
observed action reveals the private signal and hence moves beliefs toward the truth; iterating yields
eventual correction with positive probability without requiring disclosure.

Part (ii): By Proposition 4.5, if the binary-action investigation condition holds at some f,
then with positive probability an agent investigates and discloses, forcing beliefs to 1 irrespective
of (7,h). Therefore any wrong cascade at or near ji is broken with positive probability via the

hard-evidence channel. O

A.6 Proof of Theorem 6.4

Proof. We prove parts 1-3 in turn:

1. Let 4 = 1 — ¢ (the lower boundary). If there exists € > 0 such that vy Axz(u) > h for all
€ [p, pu+ €], then whenever the public belief lies in that interval, the two signal-contingent
actions are publicly distinguishable (Proposition 5.1). Hence with positive probability the
next observed action shifts belief strictly above u; by persistence, beliefs exit the cascade
region and move toward the true state with positive probability. The upper boundary is

symmetric.

2. At either boundary, the best posterior equals % (lower: p* = %; upper: 1 —pu~ = %) By
Lemma 4.1, U™ (3) — U™(3) = 3p(1 4+ V) —c. If 3p(1+V) > ¢, investigation is weakly
optimal after the favorable signal; with probability p > 0 evidence arrives and disclosure

jumps beliefs to 1, breaking the cascade.

3. Suppose $p(1+V) < cand there exists € > 0 such that v Az(u) < h for all 4z in a neighborhood
of the boundary. Then at and near the boundary, investigation is strictly suboptimal after
any signal, and soft signals are indistinguishable from observed actions. Therefore neither
channel moves beliefs away from the boundary; the wrong cascade is locally absorbing, proving

non-breakability.

23



Lemma A.1. Let Az(u,q) be as in (4). For g € (1/2,1) define

(¢—3)°
q(1 —5q+12¢% — 16¢% + 12¢* — 4¢°)

r(q) > 0.

Then, as 4 — q and 4 — 1 — g,

Az(p,q) = w(q) (@ —p) + ollp—gql);,  Az(p,q) = k(g) (p—(1—-¢) + o(lp—(1—-q)).

Proof. Differentiate (4) in p and evaluate at © = ¢ and p = 1 — ¢; one obtains J,Ax(u, q)’/Fq -
—/Q(q) and aMAﬁ(M7Q)|M:17q

= +k(q). Hence the gap vanishes linearly at the boundaries with
slope magnitude (q), which is increasing in ¢ and diverges as ¢ T 1. O
A.7 Proof of Corollary 6.5

Proof. The set {(¢,p,c,V,v,h) : %p(l + V) > ¢} makes the hard-evidence channel operative
at both boundaries by Theorem 6.4(2), hence sufficient for global resilience. Likewise, the set
{(¢,p,c,V,v,h) : vy Ax(p) > h and v Az(fi) > h} makes the soft channel operative at both bound-
aries by Theorem 6.4(1). If both inequalities fail in neighborhoods of the boundaries, Theorem

6.4(3) implies local non-breakability and thus failure of global resilience. O

B Simulation Appendix

This appendix sketches a simple Monte Carlo framework to visualize the resilience frontier, the
investigation cutoff, and breakability probabilities under both binary and continuous actions (with
coarsening). The code can be implemented in any language; we describe the logic and provide
figure placeholders.

B.1 Design goals and metrics

We track three summary objects:

o Breakability indicator: whether a wrong cascade (lower or upper) is overturned within

Timax periods.

« Time to correction: the (random) time until beliefs exit the cascade region and converge

to the truth (via disclosure or soft inference).
o Investigation rate: the fraction of periods (or agents) who choose to investigate.

Unless noted, we initialize at the boundary belief u1 € {1 —¢, ¢} and condition on the wrong state

to focus on resilience in the bottleneck region.
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B.2 Environment and primitives

Parameters: signal precision ¢ € (1/2,1); verification success p € (0, 1]; investigation cost ¢ > 0;
discovery rent V' > 0; responsiveness 7 € [0, 1]; coarsening step h € [0, 1]; horizon cap Tax € N;
simulations N € N. Posteriors after signals: p* and g~ as in Section 3. Investigation decision
uses Proposition 4.4. For continuous actions, a* = yx + (1 — ) u; the public observes a = C(a*) by

rounding to the nearest grid of step h.

B.3 Binary-actions simulation

Inputs: (q,p,c,V, Tax), initial belief y1 at the wrong boundary, true state 6* € {0,1} (opposite
of boundary-implied action).

Loop for t =1,..., Thax:
1. Compute posteriors p;” and y; ; draw signal s; € {0,1} with Pr(s; = 1 | 0*) = q.
2. Set x + i if s; = 1, else z < p; .
3. Investigate decision: evaluate U™ (z) — U (z) from Lemma 4.1; investigate iff > 0.
4. If investigate: draw E ~ Bernoulli(p - 1{6* = 1}).
o If £ =1: disclose; set py4+1 < 1 and stop (correction).

z(1-p),
1—xp ?

o If E = 0: update posterior to 2’ = choose accuracy-maximizing action based on

x'; update p41 from observed action (Bayes, given equilibrium mapping).
5. If not investigate: choose accuracy-maximizing action based on x; update p;y1 accordingly.

Outputs: indicator of correction within Tjay; time to correction (if any); investigation count.

B.4 Continuous-actions with coarsening

Inputs: (¢,p,c, V.7, h, Thax), initial p; at the wrong boundary, state 6*.
Loop for t =1,... , Thax:

1. Draw s; and compute x as above.
2. Compute a* = vx + (1 — v)u; publish @ = C(a*) by rounding to grid step h.

3. (Optional) Investigate using the same rule as in the binary case; if disclosure occurs, set

i1 < 1 and stop.
4. Soft update from actions: compute a* = C(yu + (1 —y)ue) and @~ = C(ypy + (1 — 7))

o If a™ # a~, use Bayes with likelihoods implied by {a™,a~} to update p1.

o If @© = a, treat the action as uninformative and keep us+1 = p; (or apply a tiny

tie-breaking perturbation if desired).
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Binary breakability rate (q=0.6)
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Figure 2: Binary-actions simulation: breakability probability over (p, ¢/V) at ¢ = 0.6. Brighter
areas indicate higher probability that a wrong cascade at the boundary is overturned within the

simulation horizon.

B.5 Parameter grids and outputs

A compact grid suffices for informative figures:

q €{0.55, 0.6, 0.65, 0.7}, pe{0.1:0.1:0.9}, V e{05,1,2, 4},
c€{0.05:0.05:1.0}, ~€{0.2 04,06, 08, 1.0}, he{0,0.02 005 0.1, 0.2}

For each grid point, run N simulations per boundary and report: breakability rate, mean time
to correction (conditional on correction), and investigation rate. Use a fixed random seed for
reproducibility.

Figure 2 plots the simulated breakability probability in the binary benchmark. Consistent with
Corollary 4.6 and the resilience frontier in Corollary 6.5, breakability is highest where verification
is effective (high p) and relatively cheap (¢/V low).

Figure 3 fixes v = 0.6 and h = 0.05. The pattern mirrors Proposition 5.1: when actions
are sufficiently responsive and observable, the soft channel helps correction; otherwise, the hard-

evidence channel (higher p or lower ¢/V') dominates.
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Corlwiéinuous breakability (g=0.6, y=0.6, h=0.(1535
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Figure 3: Continuous actions with conformity and coarsening (y = 0.6, h = 0.05): breakability
probability over (p, ¢/V) at ¢ = 0.6. Brighter areas indicate higher probability that a wrong
cascade is overturned via soft inference or disclosure.

B.6 Reproducibility notes

Use a fixed seed (e.g., seed=1729). For stability, set Tiax large enough that absorbing states
(disclosure or near-one beliefs) are reached in most corrected runs; report the fraction hitting the
cap. To avoid numerical underflow in Bayes updates near boundaries, work in log-likelihood ratios

when implementing pF.

B.7 Pseudocode

function simulate_binary(muO, theta, q, p, ¢, V, Tmax, seed):
set RNG(seed); mu = muO
for t in 1..Tmax:
s = Bernoulli(q) if theta==1 else Bernoulli(l-q)
x = mu_plus(mu,q) if s==1 else mu_minus(mu,q)
gain = U_inv_minus_U_no(x, p, c, V) # Lemma 1
if gain >= 0:
E = Bernoulli(p) if theta==1 else O
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if E==1: return (correct=1, t, investigated=1)
x = xx(1-p)/(1 - x*p) # failure posterior
# choose action to match state given x; update mu via Bayes
a =1 if x>=0.5 else O
mu = update_from_action(mu, a, q) # equilibrium mapping

return (correct=0, t=Tmax, investigated=...)

A continuous-actions variant replaces the action step by a* = vz + (1 — v)u and the update rule

by comparing coarsened actions a=.

B.8 Deliverables

The repository should include: (i) a script to run the grid and save CSV outputs; (ii) plotting
scripts that generate the four figures above; (iii) a README with exact parameter choices, seed, and

runtime notes; (iv) a repro target that re-creates all figures from a clean environment.

This appendix is self-contained: once the investigation cutoff and the soft distinguishability

condition are coded, the remaining logic follows directly from Sections 4 and 5.

Robustness & reproducibility (brief note). All results are reproducible with the public
scripts referenced in the Data and Code Availability section. In robustness checks (reported in the
replication package), we vary the primary-source domain list, use alternative stance lexicons, and
run in-time and in-space placebo events; conclusions are unchanged. A deterministic pipeline and

session lockfiles are included in the replication package; full archives will be posted upon submission.

Data and Code Availability

All simulation code and figure scripts used in this paper are provided in the replication package

(cascades_sim/); figures in the paper can be regenerated from clean runs.
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