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Abstract

We study a dynamic reputation model with a fixed posted price where only pur-
chases are public. A long-lived seller chooses costly quality; each buyer observes the
purchase history and a private signal. Under a Markov selection, beliefs split into two
cascades—where actions are unresponsive and investment is zero—and an interior
region where the seller invests. The policy is inverse-U in reputation and produces
two patterns: Early Resolution (rapid absorption at the optimistic cascade) and Dou-
ble Hump (two investment episodes). Higher signal precision at fixed prices enlarges
cascades and can reduce investment. We compare welfare and analyze two design
levers: flexible pricing, which can keep actions informative and remove cascades for
patient sellers, and public outcome disclosure, which makes purchases more informa-
tive and expands investment.

Keywords: Reputation; Social learning; Informational cascades; Product quality; Dy-
namic games.
JEL Classification Numbers: D82; D83; C73; L15.

1 Introduction

Many fixed-price service markets reveal only actions to outside observers. Walk-in
restaurants and cafés make prices and queues publicly visible, yet bystanders do not ob-
serve realized satisfaction; they see who buys and who passes by. Similar observabil-
ity arises for ticketed events with posted prices and visible attendance and, in digital
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markets, for subscription services where outsiders see uptake but not post-purchase out-
comes. In such environments, buyers use observed purchase/non-purchase decisions
as social information, and sellers can influence the informativeness of those actions by
choosing costly quality that shifts the distribution of private experiences. This paper stud-
ies the dynamic incentives that follow.!

Fixed posted prices are pervasive in IO settings—menus, platform subscription fees,
and ticketed events—and onlookers often observe only actions (queues, attendance, sub-
scription counts) rather than realized outcomes. We study how a seller’s dynamic quality
choice interacts with this action-based social learning environment. Relative to canonical
IO reputation models with outcome observability or price adjustment, the information
constraint here is sharper: the seller’s quality primarily matters by sustaining the infor-
mativeness of actions. This generates distinct comparative statics and clear design levers
that align with platform practice (pricing bands; outcome disclosure).

We model a long-lived seller who, in each period, chooses a costly quality action before
meeting a short-lived buyer. The buyer observes the history of purchases and a private
signal about match quality and then decides whether to buy at a fixed posted price.?> The
key institutional feature is that outsiders observe only actions (purchase/non-purchase),
not realized outcomes; hence the public state evolves via the informativeness of actions
themselves.> The seller trades off current revenue and cost against the dynamic value of
pushing the public belief in a favorable direction by keeping actions informative.

Three findings organize the analysis. First, public beliefs partition into two cascade
regions—pessimistic (no one buys) and optimistic (everyone buys)—and an interior ex-
perimentation region in which actions respond to private information. The seller opti-
mally does not invest in the cascades and invests only in the interior (Theorem 2 and
Corollary 2). The underlying force is a single marginal-value difference across the two
next-period belief updates that the buyer’s action can induce; this difference pins down
when quality investment pays (Proposition 1).

Second, within the experimentation region the equilibrium quality policy is inverse-U
in reputation: investment is highest at intermediate beliefs and falls to zero as beliefs ap-
proach either cascade (Proposition 2, with sufficient curvature conditions in Appendix B).
This shape yields two dynamic patterns. In an Early-Resolution regime, beliefs quickly
drift to the optimistic cascade and investment winds down; in a Double-Hump regime,
investment appears in two episodes separated by a pause strictly inside the experimenta-
tion region (Theorem 3 and Proposition 5). When the per-period social value of informa-
tion is concave in “log-odds”, Early Resolution dominates in welfare because the interior

IFor classic social-learning foundations and recent operations work on signaling via queue disclosure,
see Bikhchandani et al. (1992); Banerjee (1992); Guo et al. (2023); Guo (2022).

2Short-run price rigidity is common due to menu costs, posted menus, platform pricing rules, or regu-
lation. Allowing price choice changes information design rather than basic incentives; Section 6 shows the
seller can keep actions informative by selecting prices from an implementability set.

3We abstract from ratings and textual reviews to highlight the informational role of actions. In many
markets credible cross-platform reviews are sparse or delayed, and on-site observers cannot condition on
them even if they exist. Endogenizing public outcome disclosure is analyzed in Section 6.2.



pause in Double Hump slows learning without improving decisions (Proposition 7).

Third, comparative statics reverse a common intuition from exogenous-state social
learning. When private signals become more precise, buyers are more prone to herd at a
tixed price, shrinking the experimentation region. As a result, the seller’s reputational re-
turn to quality can fall even though individual information improves (Proposition 3). The
model thus explains why “better recommendations” or stronger priors in the background
may cool investment incentives when outsiders can only see actions.

Methodologically, we select a Markov equilibrium using a fixed tie-break at buyer
indifference and a vanishing public tremble at the cascade boundaries. This resolves the
well-known boundary indeterminacies, restores a clean Markov structure in finite and
infinite horizons, and delivers existence and continuity of the equilibrium value function
(Theorem 1). The value-iteration algorithm we use for figures proceeds on a “log-odds”
grid and is summarized in Appendix C.

We also study two extensions that connect directly to institutional design. Allowing
the seller to choose the (still posted) price creates, at each belief, an implementability
set of prices that keep actions informative.* Patient sellers optimally remain in that set
to avoid cascades and preserve learning; pointwise, they select the top of the set to maxi-
mize static revenue while maintaining informativeness (Propositions 8 and 9). Separately,
making post-purchase outcomes publicly observable strengthens each observed purchase
as a learning event and expands the investment region; equilibrium investment increases
with outcome precision (Proposition 10 and Corollary 3). Both changes accelerate infor-
mation aggregation and raise total surplus under the benchmark primitives.

Related Literature

Our paper sits at the intersection of three strands: (i) social learning with action-only
observability and informational cascades; (ii) dynamic reputation with a long-lived seller
under imperfect public information; and (iii) models where informativeness is endogenous—
through costly information acquisition or through choices that shape the information con-
tent of observed actions. We contribute by endogenizing the “state” (quality) inside an
action-observed social-learning environment, characterizing a Markov equilibrium with
two cascade regions separated by an experimentation region, and showing an inverse-
U relationship between reputation and investment, together with a comparative-statics
reversal for private-signal precision.

The canonical foundations are Banerjee (1992) and Bikhchandani et al. (1992), where
agents move sequentially, observe predecessors’ actions (but not their private signals),
and may rationally disregard private information once the action history is sufficiently
informative. Early work clarified the conditions under which cascades arise and how
quickly beliefs converge: Lee (1993) analyzes convergence, Vives (1993) studies learn-

“The intuition is close in spirit to “reputation traps” (e.g., Levine (2021)), but the environment differs
crucially: here actions—not outcomes—drive belief updates, and price is exogenous in the benchmark. This
shift changes both the partition of beliefs and the geometry of incentives.



ing speed, and Smith and Serensen (2000) document “pathological” outcomes in obser-
vational learning that limit information aggregation even with rich signals. Laboratory
evidence of cascades is provided by Anderson and Holt (1997) and their classroom formu-
lation in Anderson and Holt (1996). Broader perspectives and applications are surveyed
in Bikhchandani et al. (1998) and synthesized in Chamley (2004).

Several extensions examine the channels by which information flows. Ellison and Fu-
denberg (1995) study word-of-mouth transmission, while Cao and Hirshleifer (2000) in-
corporate conversational exchange alongside observational learning, and Bala and Goyal
(2001) analyze networked observation and the tension between conformism and diver-
sity. Moscarini et al. (1998) consider learning when the underlying state changes over
time. Relative to this tradition, our environment retains the action-only observability of
Banerjee (1992) and Bikhchandani et al. (1992) but departs by endogenizing the state: the
seller chooses current quality, which alters how informative actions are for future buy-
ers. This generates a middle region in which the seller invests precisely to keep actions
informative, flanked by down-/up-cascade regions where actions become unresponsive
and investment shuts down—an inverse-U pattern that does not appear when the state is
exogenous.

Classic reputation models—Kreps and Wilson (1982) and Milgrom and Roberts (1982)—
show how incomplete information about a long-lived player can discipline behavior when
opponents observe payoffs or informative public signals; Mailath and Samuelson (2006)
provide a comprehensive treatment. In our setting, however, only actions are publicly
observed; outcomes remain private, and the seller’s current choice determines future in-
formativeness. This places us closer to work in which reputation evolves through noisy
or incomplete records. Liu (2011) study optimal information acquisition and reputation
dynamics; Liu and Skrzypacz (2014) analyze “limited records” and show how thin public
histories can produce reputation bubbles—a force akin to our action-only observability.
Dilmé (2019) examines reputation building when adjusting behavior is costly; we share
the dynamic investment perspective but focus on how quality endogenously shapes the
informativeness of future actions and thereby creates cascade/experimentation regions.
Most directly, we connect to the “reputation traps” mechanism in Levine (2021): self-
tulfilling pessimism can sustain low reputation.

In our model, a similar force appears at low beliefs because investment itself changes
whether actions will be informative; we propose an equilibrium selection that preserves
a tractable Markov structure while acknowledging this multiplicity.

A complementary literature studies how agents choose the information content that
others learn. Burguet and Vives (2000) and Ali (2018) investigate social learning when
information acquisition is costly; agents’ responsiveness depends on endogenous atten-
tion. Bohren (2016) shows how misspecified beliefs can generate herding that differs from
Bayesian predictions. Our paper maintains Bayesian rationality and fixed private-signal
technology for buyers; instead, the seller’s quality choice endogenizes the informative-
ness of future actions. This mapping from investment to public informativeness inter-
acts with standard strategic-complements structure (Vives, 1990), delivering monotone



best responses, cutoff rules, and the clean partition of the belief space that underpins our
inverse-U result.

Four features of our contribution differentiate it within the above literatures. First,
we endogenize the state in an action-only social-learning environment and show that
the seller’s investment is inverse-U in reputation: zero inside both cascades and positive
in the experimentation region. Second, we provide an explicit dynamic program with a
belief-based Bayes map and show how static cutoffs and dynamic incentives jointly pin
down the cascade thresholds. Third, we identify a comparative-statics reversal: increas-
ing private-signal precision can reduce the responsiveness of actions to information in
equilibrium by shrinking the experimentation region where investment pays. This mech-
anism is distinct from behavioral departures (e.g., Bohren, 2016) or costly attention on the
buyer side (e.g., Ali, 2018; Burguet and Vives, 2000). Fourth, we articulate an equilibrium
selection that preserves Markov perfection in the face of self-fulfilling multiplicity at low
beliefs (cf. Levine, 2021), avoiding the history dependence that arises from naive mixing
at cascade boundaries in finite horizons.

We provide welfare comparisons, a value-iteration recipe in “log-odds”, and two de-
sign extensions: price choice yields an implementability set that keeps actions informative
(eliminating cascades for sufficiently patient sellers), and public outcome observability
strengthens each purchase as a learning event and expands the investment region.

Our contribution is complementary to classic IO accounts where reputation is built
through outcomes and/or price premia—e.g., Klein and Leffler, 1981, Shapiro, 1983, and
the modern repeated-games literature (Horner, 2002; Bar-Isaac and Tadelis, 2008; Board
and Meyer-ter Vehn, 2013). We instead keep prices fixed in the benchmark and make
only actions observable; reputation capital is accumulated by keeping behavior informa-
tive rather than by extracting premia. This difference yields the inverse-U investment
profile and a comparative-statics reversal in signal precision at fixed prices, while our
price-choice extension shows how moving within an implementability set recovers a no-
cascade policy that resembles the classic IO logic. The outcome-disclosure extension maps
to platform design choices that strengthen the informativeness of observed actions.

The remainder of the paper proceeds as follows. Section 2 introduces the environ-
ment, timing, and selection. Section 3 characterizes the buyer’s decision regions in the
static game. Section 4 formulates the dynamic program and proves existence under our
selection. Section 5 develops the inverse-U policy, the Early-Resolution versus Double-
Hump taxonomy, and the welfare comparison. Section 6 studies price choice and public
outcome observability. All proofs appear in Appendix A; curvature conditions, numerics,
the finite-horizon formulation are collected in Appendices B-D.



2 Model

2.1 Environment and primitives

Time is discrete, t = 1,2,.... A long-lived seller chooses the period-t quality 6; <
{0,1}, where 6; = 1 (“high”) costs ¢ > 0 to the seller and 6; = 0 (“low”) is costless.
In each period a short-lived buyer arrives, observes public information described below,
receives a private signal s; € {H, L} about the current quality, and then chooses an action
a; € {0,1}, where a; = 1 denotes purchase and a; = 0 denotes no purchase. The good is
sold at a fixed price p > 0.

The buyer’s (flow) payoff is

v—p ifas=1landb; =1,
u(at, 9t) = —p if ay = 1 and 9f = O,
0 ifa; =0,
with v > p so that a buyer strictly prefers to purchase when she believes the good is
high with sufficiently high probability. The seller’s (flow) payoff is p - a; — c 6;. The seller

discounts at factor 6 € (0,1).
Signals are conditionally i.i.d. across buyers with precision g € (1/2,1):

Pr(ss=H |6 =1)=gq, Pr(ss=H|6;=0)=1—q.

Define the signal likelihood ratio z = 15]761 > 1. We also use the purchase indifference threshold
for a buyer with posterior probability 7 that 6; = 1:

m> " <= buy, n*zg.
Equivalently, in odds form with K = ; f;* = %, the buy rule is “posterior odds > K.”

2.2 Information, observables, and public belief

Only actions are publicly observed; consumption outcomes are private and leave no
public trace. Let h; be the public history of actions up to t — 1. The public state is the
reputation (belief) A; € [0, 1], a sufficient statistic for /i; that players use to forecast period-t
quality under the seller’s equilibrium strategy. We take an initial belief A; € (0,1) as
given.

Timing and information within period t.

1. The public belief A; is observed by the seller and buyer ¢.
2. The seller chooses 6; € {0,1} (privately). She pays c if 6; = 1.

3. Buyer t observes a private signal s; € {H, L} about current quality and then chooses
ar € {0, 1}.



4. The action a; becomes public; payoffs realize; the public belief updates to Ay =
®(A¢ | a;) via Bayes’ rule (defined below).

Thus, outsiders only see {a: }r<; (or, equivalently, A1), never signals s nor realized
qualities 0.

2.3 Strategies and equilibrium

A (pure) Markov strategy for the seller is a measurable function 6 : [0,1] — {0,1};
we allow mixed strategies 8(A) € [0,1] interpreted as the probability of choosing high
quality at belief A. A (pure) Markov strategy for buyer t is a measurable function a : [0,1] x
{H,L} — {0,1} mapping (A4, s¢) to an action; again, mixing is allowed.

Definition 1. A Markov Perfect Equilibrium (MPE) consists of seller and buyer strategy
profiles (6(-),a(-,-)) and a belief-update rule ®(- | -) such that: (i) given ® and 4, the
seller’s 6 maximizes her discounted expected payoff at every A; (ii) given & and 6, the
buyer’s a is myopically optimal at every (A, s); (iii) P is obtained from Bayes’ rule applied
to actions and the equilibrium strategies whenever possible, and by a fixed tie-breaking
convention otherwise.

At buyer indifference (posterior exactly 77*) we fix a deterministic tie-break.

In addition, we adopt a vanishing public “tremble” in the buyers’ signal distribution
as a selection device: formally, we analyze equilibria of e-perturbed environments and let
e | 0. This selection guarantees a Markov structure even near cascade boundaries and
rules out pathologies in finite-horizon backward induction where naive mixing can make
optimal actions depend on lagged beliefs.

2.4 Static decision rules and cascade thresholds

Let 7 = A/(1 — A) denote prior odds that §; = 1.6 After observing s € {H, L}, poste-
rior odds are
r(H)=r-z, r(L) = >

The buyer’s optimal action is: buy after s iff r(s) > K (equivalently, posterior probability
> 7). Hence:

Up-cascade (buy regardless of s): r > Kz,
Down-cascade (never buy): r<K/z,
Experimentation (signal-sensitive): K/z <r <Kz

5The fixed tie-break removes knife-edge cycling at indifference; the public tremble puts strictly positive
probability on both actions in cascades. Taking the limit as tremble — 0 restores the benchmark while
preserving Markov structure.

6“log-odds” linearize Bayesian updates and simplify drift calculations. Several of our curvature argu-
ments are stated in “log-odds” because concavity is preserved under translation by + log z.
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which, in probabilities, correspond to thresholds
K/z — Kz
ATk T ik

In the experimentation region the equilibrium buyer rule is “buy after H, do not buy after
L.” We use this partition repeatedly below and in Section 4.

2.5 Action-based belief updating

Given a seller strategy 0(-) and the buyer’s best response, the public belief updates
from A to A" = ®(A | a) after observing the public action a € {0,1}. Let

P1(A)=Pr(a=1]60=1,7), Po(A) =Pr(a=1]60=0,7A),

which are determined by the region of A:

(1,1) if A > A (up-cascade),
($1,90) =1 (g, 1—q) ifA<A <A (experimentation),
(0,0) if A <A (down-cascade).

When the seller mixes at A with probability 6(A ), the prior odds of high quality are r(A) =
6(A)/ (1 —0(A)). The posterior odds after observing a are

0(r)  1(A)
1-6(A) ¢o(A)’

0(A)  1-p(A)

: , a=0,

1-6(A) 1—¢o(2)
and the next public beliefis ' = ®(A | a) = 1?&'}&2).
Remark. In the experimentation region, where the buyer’s action coincides with her signal,
P1(A) = gand (L) = 1 — g, so observing a purchase multiplies odds by z and observing
no purchase divides odds by z. In the cascade regions, actions are uninformative and
beliefs remain locally constant (up to the vanishing-tremble selection).

R(A|a)=

2.6 Seller’s objective and dynamic program

Let V(A) be the seller’s continuation value from public belief A. Given the buyer’s
static rule and the Bayes map ®, the seller’s Bellman equation is
V(A) = YA, 0) —cO + 5-E|V(PA]A)) AL,
(V) = max {p-7(0,6) — c0 + 5-E[V(@(] 4)) [16]}
where y(A,0) = 0p1(A) + (1 — 6) Po(A) is the purchase probability at belief A when
quality is chosen according to 6, and the expectation is over the realized action A €

{0,1} induced by the buyer’s rule. Section 4 analyzes this problem and delivers the cas-
cade-experimentation—cascade partition and the inverse-U investment result.
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3 Static Game

Before turning to dynamics, we characterize a single period. The static analysis pins
down the buyer’s decision regions, the action likelihoods under each quality, and a my-
opic benchmark for the seller. These objects are the building blocks of the dynamic pro-
gram: they determine when actions are informative and how beliefs update after a pur-
chase or a non-purchase.

Fix a public belief A € (0,1) about current quality. The seller chooses 6 € {0,1} (high
quality 6 = 1 costs ¢ > 0), a buyer receives a private signal s € {H, L} with precision

€ (1/2,1), and then chooses a € {0,1} (purchase if a = 1). The price is p > 0, the
buyer’s value if 8 = 1is v > p, and outcomes are not publicly observed.

Throughout, write the signal likelihood ratio z = 1%1 > 1, the buyer’s indifference

probability 77* = £, and the corresponding odds threshold
7-[*

= _ _°F
K_l—n* v—p’

Letr = 1= /\ denote public odds.

The first step is to characterize how a buyer maps her private signal and the public
belief into a purchase decision at the posted price. This delivers the familiar three-region
partition that underlies all subsequent dynamics.

Lemma 1. Given prior odds r and signal s € {H, L}, posterior odds are r(H) = rz and r(L) =
r/z. The buyer’s optimal action is:

_J1 iffr(s) > K
a(s)—{o iffr(s) <K

Equivalently, let r = K/z and ¥ = Kz. Then:

(Up-cascade) r>r=a(H)=a(L) =1
(Down-cascade) r<r=a(H)=a(L) =0,
(Experimentation) r<r<?=a(H)=1, a(L) =

The posted price defines a posterior cutoff. When public odds are above the upper
threshold, even a weak signal suffices and everyone buys; below the lower threshold,
even a strong signal is not enough and nobody buys. Only between these thresholds do
actions load on private information, and only there can the seller’s quality choice affect
informativeness.

Definition 2. Let A = & = 1fl/<z/z and A = &5 = § JIfIZ(Z Then the three regions in
Lemma 1 correspond to A < A (down-cascade), A < A < A (experimentation), and A > A
(up-cascade).




Given the decision regions, it is useful to summarize the purchase probabilities under
each quality. This reduces the dynamic problem to two primitives: the informativeness
of actions and the static gain from a sale.

Lemma 2. Let 1(A) =Pr(a=1[60=1,A) and Ppo(A) =Pr(a =1|6 =0,A). Then

(1,1) if A > A (up-cascade),
(1 (M), po(A) =14 (g, 1—q) ifA<A<A (experimentation),
(0,0) ifA <A (down-cascade).

In the experimentation region, the purchase decision satisfies MLRP with respect to 6 and has

ikeli o — 4 _ = 1= _ 1-q _ —
likelihood ratio fo = T3 =z fora =1and =% = 7 =1/zfora=0.

Inside the experimentation region, a purchase is a disguised signal realization: under
high quality it occurs with probability g, under low quality with 1 — 4. At the cascade
boundaries, actions cease to be informative because the buyer’s decision stops reacting to
the signal.

With action likelihoods in hand, the belief update becomes a simple multiplicative
map in odds. We record it here for later use in the dynamic program.

Corollary 1. In the experimentation region, observing a = 1 multiplies public odds by z and
observing a = 0 divides them by z:

)Tz z:fa=1, N - r’ .
r/z ifa=0. 1+7

In the cascade regions, actions are locally uninformative: (1, ) = (1,1) or (0,0) and A’ equals
A up to the vanishing-tremble selection used in the dynamic analysis.

A purchase moves “log-odds” up by logz and a non-purchase moves them down
by logz.” This symmetry is what lets us analyze drift and hitting times in the dynamic
section.

As a benchmark, we compute the seller’s one-period best response, holding fixed the
informativeness of actions. This isolates the static force against which dynamic incentives
must overcome.

Lemma 3. Let = m. IfA & (AA), 1 = o and the myopic gain from high quality

is zero, so 0™P(A) = 0. If A < A < A (experimentation), the myopic gain from raising 6 is
p(p1 — o) = p(29 — 1); hence

o 1 ify <1,
gyp(/\):{o §Z>1

’In cascades the update is frozen under our selection; with a small tremble, beliefs drift only at O(e),
and the drift vanishes as ¢ — 0.

and any mix if n = 1.

10



Because actions are uninformative in cascades, static investment there is wasteful. In-
side the experimentation region, the static gain rises in g and the posted price, but the
static calculus ignores how today’s informativeness changes tomorrow’s demand.

Lemma 3 provides an upper benchmark for dynamic investment: the dynamic pol-
icy never invests outside the experimentation region and cannot profitably exceed the
myopic incentive unless continuation values strictly increase with 6 via the Bayes map.

4 Dynamic Infinite-Horizon Problem

We now embed the static building blocks in an infinite-horizon problem. The key state
is the public belief, which moves only when actions are informative. The seller trades off
current revenue and cost against the dynamic value of steering beliefs by keeping actions
informative. We adopt a transparent selection at the cascade boundaries to rule out knife-
edge multiplicities and to obtain a clean Markov equilibrium.

This section formulates the seller’s dynamic program, establishes existence of a Markov
Perfect Equilibrium (MPE) under our selection, and characterizes the equilibrium policy.
We maintain the timing and observables from Section 2, the static best responses and
thresholds from Section 3, and the tie-breaking convention at buyer indifference together
with a vanishing public tremble in the buyers’ signal distribution (letting e | 0).

4.1 Bellman equation and Bayes-step notation

Let V(A) denote the seller’s continuation value starting from public belief A € [0, 1].
Writez =¢q/(1 —gq) > 1, K= p/(v — p), and the static thresholds

K/z - Kz
A= ——7— A= -
- 1+4K/Z 1+ Kz’
as in Definition 2. In odds r = A /(1 — A), define the Bayes steps
+ —
+ — - fr + e —r ()\) - — _r ()\)
rm(A) =rz, r(A)=r/z, A (/\)_1—|—r+(/\)' A (/\)_1_’_77()\).

In the experimentation region (A, 1), a purchase multiplies odds by z and a non-purchase
divides odds by z. In both cascade regions, actions are locally uninformative and, under
the e-selection, A* (1) = A in the ¢ | 0 limit.

Letp1(A) =Pr(a=1|6=1,A)and pp(A) =Pr(a=1|60 =0,A) as in Lemma 2. The
probability of purchase given mixing 6 € [0,1] is

YA, 0) = 091(A) + (1—6) Po(A).

The seller’s Bellman equation is

V(L) = 921{3)1(]{]9’)/(/\,9) —c0 + SE[V(V) | A,e}}, (1)

11



where (using the buyer’s static rule) the law of A’ is

Vo {WM wp. 7(4,0),
AT (A) wp.1—9(A,0).

4.2 Existence and selection

Boundary indifference can generate spurious history dependence. We therefore im-
pose a fixed tie-break at buyer indifference and a vanishing public tremble at cascades.
This yields a well-behaved Bellman operator and restores a clean Markov structure.

To rule out boundary cycling and preserve a Markov structure, we adopt a fixed tie-
break at buyer indifference together with a vanishing public tremble.

Theorem 1. Fix the buyer tie-breaking rule at indifference and consider the e-perturbed environ-
ments in which the public action likelihoods are smoothed by a vanishing tremble. For each e > 0,
the Bellman operator induced by (1) is a contraction on (B([0,1)), || - ||ec) with modulus 6, admits
a unique fixed point V;, and yields a Markov optimal policy 0} (-). Along any sequence €, | 0,
there exists a subsequence for which Ve, — V uniformly and 8 (1) — 6*(A) for almost every A,
where (V,0%) constitute a Markov Perfect Equilibrium of the original environment.

Proof. See Appendix A. O

The tremble keeps transition kernels strictly inside the simplex and the fixed tie-break
removes cycling at the boundaries. Passing to the limit delivers the desired equilibrium
without forcing outcomes that rely on arbitrary history-dependent rules.

Two general properties of the value function simplify later arguments: monotonicity
in the public belief and continuity on the compact state space.

Lemma 4. V is weakly increasing in A. Moreover, V is continuous on (0,1) and right- (left-)
continuous at A (A).

Proof. See Appendix A. O

Higher reputation both raises the chance of a sale and improves the expected continu-
ation, so the value is monotone. Continuity follows from discounting and the continuity
of the transition map.

4.3 A sufficient-statistic for investment incentives

Because (1) is linear in 6, the optimal policy is bang-bang (mixing only at indifference).
The following decomposition is central.
To understand investment, we decompose the gain from raising quality into a static

term and a continuation term that depends on the value gap between the two next-period
beliefs.®

8This decomposition separates a static sale effect from the dynamic value of information—the value
spread between the two next-period beliefs induced by a purchase vs. a non-purchase.

12



The equilibrium investment decision is pinned down by a single marginal-incentive
term that decomposes into a static sale effect and a continuation-value difference.

Proposition 1. Fix A. The one-shot gain from raising quality from 6 = 0 to 0 = 1 equals
AA) = p(p1(A) —o(A)) + 5<]E[V(A’) | A, 6=1] —E[V(A") | A,6=0] ) - c

Hence the optimal policy is

1 if A(A) >0,
6*(A) =<0 if A(A) <0,
any 0 € [0,1] ifA(A) = 0.
In the experimentation region (A, A), this simplifies to
AN = (29=1) [p + (VA —vA) ] - ¢ @

whereas in either cascade region Yy = Poand AT = A~ = A, s0 A(A) = —c < 0.
Proof. See Appendix A. O

Investment pays when the sale probability differential is large enough and when the
belief gap is valuable enough. The latter is strongest where actions are most informative,
which anticipates the inverse-U policy.”

4.4 Partition and inverse-U investment

Combining the marginal incentive with the buyer’s decision rule yields a simple par-
tition of the belief space into cascades and an interior experimentation region.

Theorem 2. In any MPE, 6*(A) = 0 for A € [0,A] U [A,1]. Moreover, 6*(A) > 0 for all A in
the nonempty set

7 = {/\e AA) 2 29=1)[p+s(VIAT) = V(A )] > c}.

Proof. See Appendix A. O

The seller never invests in cascades because actions there carry no information. All
investment is therefore concentrated in the interior, where actions move beliefs.

The next figure illustrates the partition and the implied drift in a calibrated example.
Investment is strictly positive only in the interior and the policy is inverse-U shaped.
Where 6*(A)! >11/2, “log-odds” drift upward; outside, drift is zero by definition of cas-
cades (Figure 1).

9Single-peakedness of the finite-difference gradient V(A+) — V(A7) is the key. When that gradient
is bimodal (e.g., for highly patient sellers with intermediate costs), the policy can exhibit two investment
windows; see Section 5.
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Policy 6°(A) and drift u(A)
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Figure 1: Policy and drift. The equilibrium policy 6*(A) is zero in cascades [0, A] U [A, 1]
and positive only on (A, A), yielding an inverse-U. The implied drift in “log-odds”,
u(A) = (29 —1)(20*(A) — 1) logz, is positive where 8*(A) > 1, zero at the cut, and
negative otherwise. Parameters: v =1, p = 0.40,9 = 0.75 (z = 3), 6 = 0.92, c = 0.22.

The shape of the continuation term controls the shape of the policy. Under mild cur-
vature conditions, the value difference across the two updates is unimodal, which forces
a single connected investment window.

Proposition 2. Suppose V is twice continuously differentiable in odds on (A, ) and V is strictly
concave in log r.'% Then the map

A AN = (29-1) [p+(VIAH) = V(AT))| ¢

is single-peaked on (A, A). In particular, there exist at most two cutoffs
A< AL < Ag < A

such that 6*(A) = 0 for A < Apand A > Ay, and 6*(A) = 1 (or mixes at the boundary) for
A € (A, Ag). Hence the equilibrium investment policy is inverse-U in reputation: zero at the
extremes and positive in the middle.

19This holds, for example, under value iteration limits when A* (A1) induce a mean-preserving spread in
log r and the stage payoff is affine in A. See Appendix B for sufficient conditions.
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Figure 2: Value and finite difference. The value function V(1) (solid) is increasing and
concave in “log-odds”. The discrete gradient V(A1) — V(A™) (dashed) is unimodal, im-
plying that the marginal incentive A(A) = (29 — 1)[p + 6(V(AT) — V(A7))] — c is single-
peaked and the investment region is connected. Same parameters as Figure 1.

Proof. See Appendix A. O

Figure 2 illustrates the value function and its discrete gradient, showing the single-
peaked marginal incentive that underlies the inverse-U policy. As beliefs approach either
cascade, an incremental action has little effect on future beliefs. The marginal return to
quality is therefore low near the edges and highest in the middle.

Figure 2 shows V() and the discrete gradient V(A1 )!—!V (A7) that enters the marginal
incentive A(A). The gradient is unimodal over (A, A), which delivers a connected invest-
ment region.

An immediate consequence of the partition is that the seller does not invest in cas-

cades.
Corollary 2. For all parameters, 0*(A) = 0 on [0,A] U [A, 1].

Once actions stop reacting to signals, quality no longer changes what future observers
learn, so any cost is wasted.
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4.5 Comparative statics and patterns

The framework delivers a sharp prediction about private-signal precision: it raises
herding pressure at fixed prices and can therefore depress investment.

Proposition 3. (i) The experimentation interval widens with signal precision: dA/0z < 0 and
9A/9z > 0.

(ii) Define Ay (A) = V(AT) — V(A7) If Ay(A) is decreasing in z on a subinterval of (A, \), then
the equilibrium policy is (weakly) decreasing in z on that subinterval. In particular, for parameters
with p small and 6 moderate so that A(A) in (2) is dominated by the continuation term, increasing
z can reduce 0* (A)—a reversal relative to exogenous-state social learning.

Proof. See Appendix A. O

More precise signals improve individual inferences but make the buyer’s action more
decisive; the interior region shrinks as cascades set in sooner, lowering the value of keep-
ing actions informative.!!

It is helpful to bound investment from above with a simple cost condition. This pro-
vides a quick test for parameterizations with no interior investment.

Proposition 4. Let 7 = ¢/ (p(2q9 — 1)) as in Lemma 3. For all A, 0*(A) = 0 outside (A, A), and
inside it Av(A
6*(A) =0 whenever 1 >1+96 #

In particular, if n > 1 and 6 is small, the dynamic policy coincides with the myopic benchmark
and the experimentation region is investment-free.

Proof. See Appendix A. O

If the cost exceeds a myopic term plus a scaled continuation term, the marginal incen-
tive cannot turn positive, so the inverse-U collapses to zero everywhere.

In finite horizons, naive mixing at the up-cascade boundary can make the buyer’s
optimal action depend on lagged public beliefs (since the current belief may embed the
seller’s previous mixing probability), breaking Markovianity. Our selection (fixed tie-
break plus vanishing trembles) pins down the mapping from beliefs to actions at the
boundary and restores a measurable Markov structure in the infinite-horizon limit (see
Appendix D for a worked example).

The next section (§5) applies the characterization above to describe two equilibrium
patterns—Early Resolution and Double Hump—and maps out the parameter regions that
support each.

The result holds at a fixed posted price. With flexible pricing, the seller can keep actions informative
by adjusting price within the implementability set (Section 6.1), reversing the herding effect.
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5 Equilibrium Patterns: Early Resolution vs. Double Hump

Having characterized optimal investment and belief movements, we classify the qual-
itative shapes that equilibria can take. The central object is the marginal value of invest-
ment, whose shape determines whether the seller invests in a single connected window
(Early Resolution) or in two separated windows (Double Hump). We link these shapes to
drift of beliefs, sample-path behavior, and welfare.

We now classify Markov equilibria by the geometry of the investment set and the
induced drift of public beliefs inside the experimentation region (A, 1).

5.1 Preliminaries: “log-odds” dynamics and drift

Letr = A/(1 —A) and ¢ = logr. In the experimentation region, observing a = 1
moves “log-odds” by +1logz and 2 = 0 by —logz. Given a Markov policy 8(A) € [0,1],
the purchase probability is (A, 0) = (1 —q) + 6(2g — 1), so the one-step expected change in
“log-odds” equals

u(Ad) = Elf' =€ | Al = (2y(A,0(A)) —1) logz = (29 —1) (20(A) — 1) logz.  (3)

We translate the policy into expected movement of beliefs. The sign of drift is pinned
down by whether the policy exceeds one half.

Lemma 5. Inside (A, A), u(A) > 0iff O(A) > 3, u(A) = 0iff O(A) = 3, and u(A) < 0 iff
0(7) < 3.

When the seller invests with probability above one half, purchases are more likely and
beliefs tend to rise; the reverse holds below one half.

By Theorem 2, 6*(A) = 0 outside (A, A), and beliefs then remain (locally) constant.
Hence all movement occurs while A stays in (A, A).

5.2 Investment set and pattern definitions

Recall A(A) from Proposition 1 and define the (open) set of beliefs where investment
is strictly profitable, B
T ={re(AA): A(X) >0}

Continuity of A implies 7 is a finite union of open intervals.

Definition 3. An MPE is of Early-Resolution type if T is a single interval (Ar,Ag) C (A, A)
and 0*(\) > 1 forall A € (A, Ag). In this case u(A) > 0 on (Ar, Ay) and the belief

process almost surely hits A in finite expected time when started in (Ay, Ag).!

2Gymmetrically, one can define a downward Early-Resolution variant if 6* < 1 on the active interval,
leading to absorption at A. The “upward” version is empirically more relevant for a seller who benefits
from demand.
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Definition 4. An MPE is of Double-Hump type if Z is the union of two disjoint nonempty
intervals (A, A2) U (A3, Ag) with A < A < Ay < A3 < Ay < A, and

0*(A) > Lon (A, A2),  0%(A) <don(AaA3),  0(A) > Lon (A3 Ag).

Thus the drift is upward in the lower hump, downward in the middle gap, and upward
again in the upper hump, allowing beliefs to re-enter an investment region without ever
leaving (A, A).

5.3 When do these patterns arise?

The shape of Z is governed by A(A) = (29 —1) [p+6(V(AT) = V(A7))] —c. Two
forces operate: a static term p(2q — 1) and a continuation term (2g — 1)8 [V(AT) — V(A7)].
The static term is constant across A, whereas the continuation term is shaped by the cur-
vature of V in “log-odds”.

If the marginal incentive is single-peaked and the policy exceeds one half on the in-
vestment set, beliefs drift upward and hit the optimistic boundary quickly.

Theorem 3. Suppose V is strictly concave in logr on (A, A) and
p2g—1) —c+6(29—1) (V(AT) = V(A7)

is single-peaked in A with a unique maximizer A and strictly positive on a connected interval
(AL, Am).

If, in addition, 0*(A) > J on (A, Ap) (equivalently, A(A) > ¢ — (29 — 1)p exceeds the
myopic half-investment threshold), then the unique MPE is Early-Resolution in the sense of Def-
inition 3. From any initial Ay € (A, Ay) the belief process hits A in finite expected time and
remains there thereafter.

Proof. See Appendix A. O

The “log-odds” process behaves like a biased random walk with an absorbing upper
boundary.!® Once absorbed, actions are uninformative and investment shuts down.

When the continuation term is bimodal, the investment set can split into two win-
dows, creating a region in the interior where the seller temporarily stops investing.

Proposition 5. Suppose V() is sufficiently nonconcave in logr so that the map A — V(AT) —
V(A7) is bimodal. For costs ¢ in an intermediate range and discount factors o large enough that
the continuation term dominates the static term, A(A) crosses zero at four points

A<)\1<A2</\3<)L4<X,

with A > 0 on (A1, Ap) and (A3, Ag). If, in addition, the myopic term is small enough that
0*(\) < 3 on (Az, A3) (e.g., because c is high relative to p(2q — 1)), there exists a Double-Hump
MPE as in Definition 4.

13Tn “log-odds” the process is a biased random walk with absorbing boundaries. Standard hitting-time

bounds imply finite expected time to the optimistic boundary when the drift is nonnegative on the invest-
ment set.
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Proof. See Appendix A. O

Beliefs can move up in the first window, drift back in the gap, and then re-enter a
second window. This produces two investment episodes on the way to absorption.!*

In both patterns, once a cascade boundary is crossed, actions become uninformative
and beliefs stop moving under our selection; re-entry into (A, A) is therefore impossible
from a cascade. In the Double-Hump case, re-entry occurs entirely within the experimen-
tation region: upward drift in the lower hump moves beliefs into the middle gap, where
downward drift returns them toward the lower hump or moves them on toward the up-
per hump.

5.4 Implications for paths and welfare

We summarize how these policies translate into realized paths of beliefs.

Proposition 6. In Early-Resolution MPE, for any initial Ay € (A, A) the stopping time T =
inf{t : Ay & (A, A)} satisfies E[t] < oo, and Ay = A for all t > 7. In Double-Hump MPE, on
any sample path starting in (A1, Ay) there are two disjoint time intervals on which 6*(Ay) > 0
separated by a no-investment spell when Ay € [Ay, A3].

Proof. See Appendix A. O

Figure 3 shows short sample paths under the policy: in Early Resolution paths move
monotonically to the optimistic boundary, whereas Double Hump exhibits two visible in-
vestment episodes separated by a pause. Early Resolution yields short interior spells and
rapid absorption; Double Hump yields alternation between investment and no-investment
before absorption.

Simulated paths in Figure 3 demonstrate Early Resolution: starting anywhere in the
experimentation region, beliefs reach the up-cascade boundary in finite expected time
and remain there. A Double-Hump parameterization (not shown) would exhibit two in-
vestment episodes separated by a no-investment spell within the experimentation region.

Finally, we compare welfare across patterns when the per-period social value of infor-
mation is concave in “log-odds”.

Proposition 7. Expected buyer surplus and total surplus are (weakly) higher in Early-Resolution
than in Double-Hump whenever the per-period social value of information is concave in log r and
the middle gap (A, A3) is nontrivial. The gap arises because the no-investment spell reduces the
speed of information aggregation precisely when beliefs are most influential.

Proof. See Appendix A. O

“4Empirically, such “two-wave” behavior can arise when early adopters trigger a reputational push,
followed by a lull as beliefs hover near an interior threshold, and a second push once fresh information
revives informativeness.
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Short sample paths of A under 8* (T=10)
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Figure 3: Short sample paths of A; under 6*. From diverse initial beliefs inside (A, 1),
beliefs move in visible steps over T=10 periods and approach the up-cascade boundary
A (Early-Resolution pattern; Proposition 6). Same parameters as Figures 1-2.

Because Double Hump spends time in an interior no-investment spell, it slows infor-
mation aggregation exactly where it is most valuable, producing a welfare loss relative to
Early Resolution.!®

6 Extensions: Price Choice and Outcome Observability

The benchmark imposes a fixed posted price and keeps outcomes private. This section
shows how relaxing either assumption changes the information design of the environ-
ment. Allowing the seller to choose price creates an implementability set that can keep
actions informative at every belief; revealing outcomes strengthens the information con-
veyed by each purchase. Both interventions alter investment incentives by changing the
return to keeping actions informative.

15We evaluate welfare as buyer surplus net of seller costs (and revenue transfers cancel). Alternative
surplus measures that weight speed of learning similarly deliver the same ranking when per-period value
is concave in “log-odds”.
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We consider two modifications of the benchmark: (i) the seller may choose the period
price p; before the buyer moves; (ii) consumption outcomes become publicly observable
(in addition to actions). In both cases we keep the timing of Section 2 and the Markov
restriction.

6.1 Flexible price

Suppose the seller chooses p; € (0,v) at the beginning of period t. Given p;, the
buyer’s static purchase cutoff is

wi N _ Pt i (p) . p
e = K= Ty T ooy

For any public odds r = A/(1 — A), the experimentation (signal-sensitive) region at price
p is the interval K(p)/z < r < K(p) z (Lemma 1). The next lemma shows the seller can
always select a price that induces experimentation at the current belief.

With flexible posted prices, the seller can select a price that keeps the buyer at the
information-sensitive margin. We characterize the set of such prices at each belief.

Lemma 6. Fix A € (0,1) withoddsr = A/(1 — A) and z > 1. The set of prices that induce
experimentation is the nonempty open interval'®

r rz

P(A) = (pL(/\), pH(A) ) pL(A) = v pu(A) =0 T

Forany p € P(A), the buyer purchases after H and not after L, so the public belief updates by the
+ log z rule as in Corollary 1.

Proof. See Appendix A. O

Prices map to posterior odds thresholds. Keeping the threshold between the two
signal-induced odds pins the buyer to an action that reacts to the signal, preserving infor-
mativeness.

With flexible prices the seller can (i) keep actions informative at every belief by choos-
ing p; € P(As), thereby precluding informational cascades under our selection, or (ii)
deliberately move to pooling (buy-all or buy-none) by setting p below/above P(A). Im-
portantly, when p € P(A), the period purchase probability in the experimentation region
is

v(A,0) = (1-4q)+6(29-1),
which is independent of p; price affects only the static revenue p - 7, not belief transitions
(provided p stays in P(A)).

16Within P (1) demand in the experimentation region does not depend on the exact price, so pointwise
the seller prefers the highest implementable price. Stepping outside P(A) induces buy-all or buy-none
pooling and shuts down learning.
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A simple policy chooses a price from the implementability set and then applies the
benchmark investment rule. This eliminates cascades while preserving the belief-update
geometry.

Proposition 8. Consider the dynamic problem in which the seller chooses (pt,6:) each period.
The policy that (i) sets any py € P (M) and (ii) sets 0; by the benchmark rule (Proposition 1) with
p replaced by p; induces no cascades and preserves the Bayes £ logz transitions at all beliefs.
Under this policy, the marginal incentive is

AAp) = 2q-1)|[p+o(VAT) = V(A)| —¢,

and the value function solves the same Bellman equation (1) with p replaced by a chosen p(\) €

P(A).
Proof. See Appendix A. O

Once price holds the buyer at the margin, actions remain informative everywhere and
belief movements follow the same =+ log z steps as in the benchmark interior.

Inside experimentation, demand (A, 0) does not depend on p. Thus, conditional on
keeping actions informative, the seller prefers the largest price in P(A) pointwise:

p*(A) € arg max. p pH(A).
Choosing p > py(A) triggers buy-none pooling (no information); choosing p < pr(A)
triggers buy-all pooling.
Avoiding cascades is not always optimal when the seller is impatient. Flexible price in-
troduces a trade-off between static revenue extraction and maintaining informativeness;
patience pushes the solution toward the latter.

Proposition 9. Let py(A) be as above. There exists 6 € (0,1) such that for all § > & the seller’s
optimal policy keeps pr € P(A¢) (hence avoids cascades) for all Ay, while for 6 small enough the
seller optimally chooses a pooling price (buy-all near high beliefs or buy-none near low beliefs) on
a nontrivial subset of beliefs.

Proof. See Appendix A. O

Pooling prices give a one-time static gain but halt learning. When the seller values the
future enough, the loss from shutting down belief movement dominates.

Flexible pricing gives the seller a second instrument to manage informativeness. With
sufficiently patient sellers, the dynamic value of information dominates, and the seller
sets p; € P(A), eliminating cascades. The inverse-U shape of 6*(A) within experimen-
tation can persist (via the continuation term), but the zero-investment corners associated
with cascades disappear in equilibrium when p is used to keep actions informative.
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6.2 Publicly observed outcomes

Now suppose that if a purchase occurs (a; = 1), a public outcome y; € {G,B} is
observed with precision p € (1/2,1]:'7

Pr(yy =G |6 =1)=p, Pr(yr=G|6=0)=1-p.

Actions remain public when a; = 0, but no outcome is realized. The public update thus
uses both the action and (when available) the outcome.

Letz=¢q/(1—g)andw = p/(1 — p). In the experimentation region, the action equals
the private signal, so if a; = 1 then s; = H and we subsequently observe y; € {G, B}. The
public odds update is

r-z-w ifa;=1andy; =G,
A
r'=<qr-z/w ifa;=1andy; = B, withr = ——.

1-A
r/z ifa; =0,

If p = 1 (perfectly revealing outcome), purchases generate r’ € {0, 00} (absorbing beliefs)
under our selection; if no purchase occurs, beliefs move by 1/z as before.

If post-purchase outcomes become public, the action still filters the private signal,
but each observed purchase is now followed by an additional signal. We describe the
resulting belief jumps.

Lemma 7. For fixed price p, the buyer’s static cutoffs and the cascade thresholds (A, A) are un-
changed by public outcomes. Inside experimentation, the Bayes steps become (+ logz + logw)
after a purchase and — log z after a non-purchase. Hence, for p > 1/2 the expected magnitude
of belief movements weakly increases relative to the benchmark.

Proof. See Appendix A. O

Outcomes multiply the action-based likelihood ratio. Purchases now move beliefs by
a larger amount on average, while non-purchases move beliefs as before.

Let V°U(A) denote the continuation value with public outcomes. In the experimen-
tation region, the purchase probability is still ¥(8) = (1 —g) + 6(29 — 1); conditional
on purchase, y = G occurs with probability p under 8 = 1and 1 — p under 6 = 0. A
computation analogous to Proposition 1 yields:

We update the marginal-incentive decomposition to account for outcome realizations
after a purchase. The result reveals how outcome precision shifts investment.

Proposition 10. In the experimentation region, the one-step gain from raising quality is

ML) = (29=1)p + 8{(2g=1) V(A7) + 29-1)(2p—1) (VHAFE) =V (a+E)) | — ¢,

7Higher outcome precision strengthens learning only when purchases occur; non-purchases remain as
in the benchmark. Thus the effect works by increasing the informational content of purchase events, not by
changing the threshold for buying.
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where A~ is the no-purchase update, and A*C, A8 are the post-purchase updates after y €
{G, B}. In particular, 9A°"t/dp > 0 whenever VOU(ATC) > Vout(A+8),

Proof. See Appendix A. O

Outcomes raise the value spread between good and bad post-purchase states. Higher
outcome precision therefore strengthens the continuation motive for investment.

The preceding expression delivers a clean monotonicity: higher outcome precision
expands the investment region and accelerates learning.

Corollary 3. For p > 1/2, the experimentation region’s investment set under public outcomes
weakly contains the benchmark’s set; moreover, A" () is (weakly) increasing in p pointwise. If
p = 1 and there is any vanishing purchase tremble (as in our selection), down-cascades are less
stable in the sense that the expected hitting time to the upper boundary from any interior starting
point weakly decreases.

Proof. See Appendix A. O

Perfect outcomes make each purchase almost fully revealing, shortening the time be-
liefs spend in the interior and increasing investment incentives along the way.

6.3 Discussion

Public outcomes make each observed purchase disproportionately informative, strength-
ening dynamic incentives to invest in quality by raising the value difference between
good and bad post-purchase states. The inverse-U shape can persist (via the concavity
arguments in Appendix B), but the active window widens and shifts up with p. If prices
are flexible and outcomes are public, the seller can keep actions informative at all beliefs
and accelerate learning through larger post-purchase jumps; in this joint extension, cas-
cades can be avoided in equilibrium for sufficiently patient sellers (Proposition 9), and
investment is strictly higher throughout the interior for larger p.

Both extensions—flexible price (used to stay inside P (A)) and public outcomes—speed
up information aggregation. Flexible price trades off revenue extraction against informa-
tiveness, whereas public outcomes relax the information constraint directly. For ¢ large,
both interventions unambiguously raise total surplus by reducing time spent in uninfor-
mative regions.

7 Conclusion

This paper analyzes reputation formation when only actions are public and current
quality is chosen by a long-lived seller. The central message is simple: reputational in-
vestment is strongest precisely where actions remain informative. In equilibrium, public
beliefs fall into two cascade regions—one pessimistic, one optimistic—where actions no
longer react to private information and the seller has no reason to invest. Between them

24



lies an experimentation region where investment is positive because it keeps actions in-
formative and shifts future demand. The resulting policy is inverse-U in reputation: zero
at the extremes, positive in the middle.

Two dynamic patterns organize the behavior we obtain. In the first, beliefs move
monotonically toward the optimistic cascade and investment winds down quickly (Early
Resolution). In the second, investment appears in two distinct episodes separated by
a pause within the interior region (Double Hump). Which pattern arises depends on
primitives that govern the trade-off between current revenue, the cost of quality, and the
value of accelerating information aggregation.

A practical virtue of the analysis is that equilibrium incentives can be expressed in
terms of a single continuation-value difference across the two immediate belief updates
generated by a purchase versus a non-purchase. This decomposition both explains why
the policy is inverse-U and clarifies the comparative statics. In particular, improving the
precision of private signals does not necessarily make observed actions more responsive.
When precision pushes the system more quickly toward a cascade, the marginal reputa-
tional return to quality falls and investment can decline despite better information in the
background.

Two extensions illustrate how institutional design reshapes these forces. Allowing the
seller to choose price lets her keep actions informative at any belief by setting a price that
places buyers at the information-sensitive margin. Patient sellers then prefer to avoid
cascades altogether, because the dynamic value of information dominates the short-run
gains from pooling prices. Making consumption outcomes public strengthens each ob-
served purchase as a learning event and expands the region where investment pays. Ei-
ther change speeds up learning; together, they can eliminate cascades in equilibrium for
sufficiently patient sellers.

The framework yields concrete empirical and experimental implications in settings
where outsiders see who subscribes or adopts but not their satisfaction. Investment ef-
fort should be highest at intermediate reputation and lowest at the extremes; increases in
background signal precision can reduce action responsiveness and investment by hasten-
ing herding; flexible pricing used to keep actions informative should make cascades rare,
while fixed prices make them common; credible public outcome disclosure should widen
the investment window and accelerate convergence.

There are several natural directions for further work. On the market side, introduc-
ing a second long-lived seller would allow investment races and strategic substitution
in informativeness; even basic existence and selection questions become interesting in
that competition. Allowing a fraction of repeat buyers would add memory to the pub-
lic state and soften the cascade boundaries. On the information side, platforms often
choose recommendation intensity or targeting policies that effectively set signal preci-
sion; analyzing that choice as a mechanism-design problem could connect platform tools
to welfare through the size of the experimentation region. Price dynamics deserve their
own treatment, including temporary sales, commitment to price paths, and the interac-
tion between pricing and disclosure. Finally, a continuous-time formulation provides a
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transparent benchmark with an HJB characterization; it would be useful to map more
precisely when the diffusion limit preserves the inverse-U shape and when it overturns
it.

The framework yields testable predictions in settings where outsiders observe uptake
but not outcomes. Investment effort should be highest at intermediate reputation and
lowest at the extremes. Exogenous increases in private-signal precision (for example,
improved off-platform recommendations or tighter targeting) can reduce action respon-
siveness and investment by hastening herding. When prices are flexible and used to
maintain informativeness, cascades should be rare, whereas fixed prices make them com-
mon. Credible public outcome disclosure (e.g., post-purchase ratings visible to outsiders)
widens the investment window and speeds convergence.

The broader takeaway is that reputational incentives are governed as much by the
informativeness of actions as by the quality choice itself. When institutions or platform
choices make actions uninformative—by fixing prices at pooling levels or by suppressing
outcome disclosure—investment stalls and beliefs calcify. When actions remain informa-
tive, the seller invests, learning proceeds, and the market moves toward the efficient side
of the state space.

A Proofs of Main Results

Proofs from Section 3

Proof of Lemma 1. Let prior oddsber = A/(1 — A) and likelihood ratioz = g/(1 —¢q) > 1.
By Bayes, posterior odds after H and L are r(H) = rz and r(L) = r/z. A buyer who
purchases when her posterior probability 7r that 6 = 1 exceeds t* = p/v is indifferent at
oddsK=m*/(1—m*) =p/(v—p). Thusa(H) = 1iffrz > Kand a(L) = 1iff r/z > K.
The three regions follow: if r > Kz both inequalities hold (buy regardless of s); if r < K/z
neither holds (never buy); otherwise a(H) = 1 and a(L) = 0. O

Proof of Lemma 2. Fix A. In the up-cascade, the buyer buys regardless of s, so (1, ) =
(1,1). In the down-cascade, the buyer never buys, so (1, 9) = (0,0). In the experimen-
tation region, the buyer’s action equals her signal: under 6 = 1 the signal is H with prob.
g and under 6 = 0 with prob. 1 — g, hence (y1,¢9) = (9,1 —g). For a = 1, the likeli-
hood ratio equals ¢1 /99 = q/(1 —q) = z, and for a = 0 it equals (1 — ¢1)/(1 — ¢p) =
(1—g)/q = 1/z, establishing MLRP. O

Proof of Corollary 1. In the experimentation region we have ¢ = gand 9 = 1 —g. By
Bayes’ rule on odds, ¥’ = r -z aftera = 1 and v’ = r/z after a = 0, yielding the claimed
update for A’ = /(1 +'). In cascades, 1 = ypp € {0,1}, so actions are uninformative
and the public belief is unchanged (up to the vanishing-tremble selection). O

Proof of Lemma 3. The seller’s one-period gain from 6 = 1 over 6 = 0 equals p(y1 — ¢g) —
c. This is zero in cascades since §; = 1y, so the myopic best response is 6 = 0 there. In
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the experimentation region, y1 — o = (3 — (1 —¢q)) = 29 — 1, giving gain p(29 — 1) —c.
Hence invest myopically iff ¢ < p(29 — 1), as stated. [

Proofs from Section 4

Proof of Theorem 1. For ¢ > 0, smooth the action likelihoods at cascade boundaries by
setting (¢1,¢9) = (1 —¢,1 —¢) in the up-cascade and (¢, ¢) in the down-cascade. The
Bellman operator

(TeV)(A) = Grg[g};]{m(?»@) —cO+SE[V(A) [ A, 6]}

is a contraction on (B([0,1]), || - ||«) with modulus é by Blackwell’s sufficient condi-
tions. Thus T; has a unique fixed point V;, and there exists a measurable maximizer
6;(-) (Berge’s maximum theorem and measurable selection). Any sequence ¢, | 0 admits
a uniformly convergent subsequence V;, — V by boundedness and equicontinuity on a
compact state space; along the same subsequence, 6; (A) converges a.e. to 6*(A) € [0,1].
As ¢ — 0, the smoothed transition kernels converge pointwise to the equilibrium transi-
tion induced by the buyer’s static rule with a fixed tie-break at indifference, so (V,0*) is
a Markov PBE of the original problem. O

Proof of Lemma 4. Fix A1 < A,. For any control sequence, the purchase probability and the
transition under A, first-order stochastically dominate those under A (given the buyer’s
monotone static rule), and the period payoff and continuation are increasing in both the
purchase indicator and next-period belief. Taking sup over controls preserves the inequal-
ity, hence V(A1) < V(A;). Continuity follows from the e-approximation and bounded
convergence. [

Proof of Proposition 1. Linearity of the Bellman equation in 6 gives
A(A) = p(r — o) + 0 (E[V(V) |0 = 1] —~E[V(A) |0 =0]) —c.

In cascades, 1 = yp and ' = A, so A(A) = —c. In the experimentation region, ¥; = g
and Y9 =1 — g, and

E[V(A) |6 =1 -E[V(A)[0=0]=(g—(1—9))(V(AT) = V(A7))
= (29-1)(V(AT) = V(A7)),

yielding the expression in the main text. O
Proof of Theorem 2. The zero-investment claim on [0,A] U [A, 1] follows from A(A) = —c
by Proposition 1. On (A, A), investment is strictly profitable exactly when the marginal
incentive exceeds zero, defining the nonempty set Z. O
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Proof of Proposition 2. See Appendix B. In brief: concavity of V in “log-odds” implies uni-
modality of the finite-difference gradient V(A") — V(A ™), and hence single-peakedness

of the marginal incentive. O]
Proof of Corollary 2. Immediate from A(A) = —c in cascades and Proposition 1. O
Proof of Proposition 3. Part (i): A = j fl/f/z and A = % with K > 0 give 0A/dz < 0

and 9A/9z > 0. Part (ii): Differentiate the marginal incentive with respect to z inside
the experimentation region, noting that z pushes A* outward (toward cascades). If the
induced decrease in V(A1) — V(A~) dominates the direct static effect, then the marginal
incentive falls and the policy weakly decreases. O

Proof of Proposition 4. From the marginal-incentive expression, A(A) < (29 —1)[p+5Ay(A)] —
¢, where Ay(A) = V(AT) = V(A7). Ifc > p(29—1)[1+6Ay(A)/p], then A(A) <0,and
the optimal policy is 6*(A) = 0 at that A. The cascade claim uses Proposition 1. [

Proofs from Section 5

Proof of Lemma 5. Inside (A, A), Pr(a = 1| 0) = y(0) = (1 —q) +0(29 — 1). The “log-
odds” step is + log z with probabilities y(0) and 1 — y(0), so u(A) = E[¢/ — {] = (2(0) —
1)logz = (29 —1)(20 — 1) log z. The sign follows immediately. O

Proof of Theorem 3. Under the hypotheses, Z = (Ar, Ay) is connected and 6*(A) > 1/2
there. Then the “log-odds” random walk has nonnegative drift on (Ar, Apy). Standard
arguments for biased random walks with absorbing boundaries imply the hitting time of
A has finite expectation when started in (A, Af). After absorption, actions are uninfor-
mative by definition of the up-cascade, so the process remains there. O

Proof of Proposition 5. Assume A — V(AT) — V(A7) is bimodal and § large with ¢ in an
intermediate range. Then the marginal incentive crosses zero at four points, with positive
values on the two outer intervals and negative in between. If in addition the static com-
ponent is small enough that 6*(A) < 1/2 on the middle gap, drift is downward there and
upward on both outer investment windows, yielding the stated pattern. O

Proof of Proposition 6. Early-Resolution: from any interior starting point the process has
nonnegative drift and an absorbing upper boundary; expected hitting time is finite. Double-
Hump: the drift alternates sign across the inactive middle interval; with positive probabil-
ity a sample path enters the first investment window, then the no-investment interval, and
then the second window before absorption, establishing two investment episodes. O

Proof of Proposition 7. Let social surplus per period be concave in “log-odds”. In Early-
Resolution, expected time spent in the interior is shorter and belief moves are biased
toward the optimistic cascade. In Double-Hump, a no-investment spell in the interior
delays learning without improving decision accuracy, lowering the expected integral of
the concave surplus along the path. Formalization uses optional stopping for the “log-
odds” submartingale/supermartingale. O
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Proofs from Section 6

Proof of Lemma 6. Experimentation requires r/z < K < rz. Since p = 1”+—KK is strictly

increasing in K, the corresponding price interval is (71]3:/2, %), which simplifies to

(pL(A), pa(A)) with pL(A) = vr/(r*z) and pg(A) = vrz/(1+ rz). Nonemptiness uses
z> 1 [

Proof of Proposition 8. Choosing any p € P(A) induces experimentation by Lemma 6,
hence 1 = g and ¢y = 1 — g and the +1ogz Bayes steps are preserved at all beliefs. The
Bellman equation remains the same with p replaced by the chosen p(A), and cascades are
precluded under this policy since actions never pool unless p ¢ P(A). O

Proof of Proposition 9. Relative to p*(A) = pu(A) (which preserves experimentation), mov-
ing p to a pooling level changes the static flow by at most a bounded amount while elimi-
nating belief movement, which reduces the continuation value by 6 [V(AT) = V(A7)] > 0
on compact interior subsets. For ¢ sufficiently large, this continuation loss dominates the
static gain, so the optimal policy keeps p € P(A) at all beliefs. For small ¢, the opposite
holds on a nontrivial subset, and pooling prices are optimal there. O

Proof of Lemma 7. The buyer’s static cutoff depends only on p and her private signal,
which arrives before any public outcome. Hence the thresholds A, A are unchanged. In
the experimentation region, a purchase implies s = H; observing y € {G, B} multiplies
the odds by w or 1/w respectively, giving the three update cases stated. O

Proof of Proposition 10. In the experimentation region, Pr(a =1 |6 =1) —Pr(a =16 =
0) = 2q — 1. Conditionalona = 1, wehavePr(y =G |6 =1)-Pr(y =G |6 =0) =
2p — 1. The difference in expected continuation values between § = 1 and 6 = 0 therefore
equals

(29 =) V(A7) + (29— 1)(2p = 1) (VOH(ATE) = VO (ATE)),

and adding the static gain p(29 — 1) and subtracting ¢ yields the formula. Monotonicity
in p is immediate from VOU(A+G) > yout(A+B), O

Proof of Corollary 3. Because VOU(A+C) — VOout(A+B) > 0, 9A°" /9p > 0. Hence the set
where investment is profitable weakly expands with p. For p = 1, purchase outcomes are
perfectly revealing and the magnitude of post-purchase jumps increases, reducing the
expected time to reach the optimistic boundary from any interior starting point. O

B Curvature, Concavity, and the Inverse-U Policy

Let ¢ = logr = log % denote “log-odds” and A/ = logz > 0. In the experimentation

region (A, 1), a purchase moves ¢ to £ + Al and a non-purchase to £ — A{. For any fixed
6 € [0,1], recall y(0) = (1 —g) +6(29—1) € (0,1) and note that inside (A, A) the transition
weights y(0) and 1 — 7y(0) are independent of A.
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Lemma 8. If W({) is concave on (£, ), then for any fixed 6 € |0, 1] the map
(TeW)(£) = py(0) —cO + 6(y(O)W(L+ AL) + (1 —(0))W(L — AL))

is concave on (£, 7).

Proof. TyW is an affine combination (with constant weights) of two translations of W plus
an affine term; concavity is preserved under translations, convex combinations, and ad-
dition of affine functions. ]

Lemma 9. If { fx({) }yc 4 are concave, then f({) = sup, fu({) is concave.

Theorem 4. Consider the Bellman operator on the experimentation region,

(TV)(¢) = es%pl] {py(0) —cO+5(v(O)V(E+AL)+ (1 —(0))V(L—AL))}.

If Vo(£) is concave, then V,, = T"Vy is concave for all n, hence the fixed point V is concave.
Moreover, the one-sided limits connect continuously to the cascade boundaries, where V(A) = 0

and V(1) = {&5.

Proof. Concavity preservation follows by Lemma 8 (for each fixed 0) and Lemma 9 (sup
over ). Contraction implies convergence; boundary values follow from no-investment,
uninformative actions, and the seller choosing 8 = 0 at cascades (down: zero sales for-
ever; up: sale each period at zero cost). O

Lemma 10. If V() is concave, then the finite-difference gradient
D) = V({+AL) -V ({—AL)
is single-peaked on (£, ¢) (unimodal).

Proof. For concave V, the discrete slope V(- + A) — V(+) is nonincreasing. Then D({) =
[V(E+A)—V(€)] + [V(¢) — V(£ — A)] is the sum of a nonincreasing and a nondecreasing
function, hence unimodal. O

Theorem 5 (Proof of Proposition 2). Inside (A, A),
MY = q-D[p+6(VAT) = V(A))] —c = @g-1)[p+sD(0)] —c.
By Lemma 10, D({) is single-peaked. Adding the constant p and multiplying by (29 —1)6 > 0

preserves single-peakedness, so A(A) is single-peaked. Hence the investment set {A : A(A) > 0}
is a (possibly empty) interval, and 6 is inverse-Ul.
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C Numerical Implementation and Replication

State grid. Work in “log-odds” ¢ € [{,{] with £ = log% and ¢/ = log % Let
Al = logz. Choose a grid aligned to the step: ¢, = £+ kAl k = 0,..., K with g ~ .
(If £ is not an integer multiple of A¢ from ¢, cap at the largest /x < ¢ and treat / as an
absorbing state handled separately.)

Boundary conditions. Set V(A) = 0 and V(A) = £ (seller chooses § = 0; actions are
uninformative but buyers purchase in the up-cascade).

Value iteration. Initialize V(©) () (e.g., zeros). Iterate forn =0,1,2,...:

Vi) = max {Pr(0) = c0+6(7(0) VI (G1) + (1= 2(0) VI (841))

where (1) = g, 7(0) = 1 — q Atk = 0 and k = K, use the boundary values above.
Converge when ||V ("+1) ()| < tol.

Policy recovery and plots Compute Aly) = (2q—1)[p+6(V(lxr1) — V(lk-1))] — ¢
and set 0*(¢;) = 1{A(¢) > 0} (mix only at A = 0). Plot 6*(A), ( ),and V(AT) = V(A7)
by mapping ¢ < A.

Notes. (i) No interpolation is needed if the grid is aligned; otherwise use linear interpo-
lation for V(¢ + A/). (ii) Contraction guarantees convergence. (iii) For figures in Section 5,
choose parameters to obtain single- vs. double-hump patterns (e.g., small p, large J, and
intermediate c for a double hump).

D Finite Horizon: Pathology and Selection

D.1 Backward induction and boundary mixing

Consider a T-period version. Let A; denote the public belief at period t. Backward
induction determines (0;(-),a;(-,-)) from t = T to 1. At the up-cascade boundary A,
buyers are indifferent (r = Kz) between buying after L and not buying after H. If the
seller mixes in period t — 1 at A;_; in a way that puts A; exactly at A, then buyer t’s
optimal action can depend on the mixing probability used at t — 1, hence on A;_, breaking
Markovianity.

Example. With T = 2, suppose A, = A induced by mixing at t = 1. Buyer 2 is indifferent
at A. If buyer 2 follows any history-dependent tie-break (e.g., buy when the seller mixed
with probability above 1/2), then buyer 1’s optimal period-1 choice depends on A1 and the
intended tie-break, and buyer 2’s action depends on A; even conditional on A;, violating
Markov perfection.

31



D.2 Selection that restores Markov structure

We adopt the same buyer tie-break and vanishing-tremble selection as in the infinite-
horizon section; the next result shows that this delivers a unique Markov equilibrium in
finite horizon and matches the infinite-horizon selection in the limits e | 0 and T — oo.

Proposition 11. Fix the buyer tie-breaking rule at indifference and perturb the period-t action
likelihoods by a public tremble ¢ > 0 (so that at cascades 1 = g = 1 — € or ¢). For each
T and ¢ > 0, backward induction yields a Markov equilibrium (0f.(A),a;.(A,s)). Along any
sequence €, |. 0, the limit strategies are Markov and coincide with the infinite-horizon selection
when T — 0.

Proof. Fix a finite horizon T € N, discount factor 6 € (0,1), and a buyer tie-break at
indifference (e.g., @ = 0). For e > 0 introduce a public tremble that makes actions strictly
mixed in cascades: in the down-cascade set (], ;) = (¢,€) and in the up-cascade set
(9], ¢5) = (1 —¢1—¢); in the experimentation region keep (97, 95) = (9,1 —q). Let
z = q/(1—gq) > 1. For a given public belief A with odds » = A/(1 — A), the action-
induced next belief is

rz
At = , ifa=1,

AV o= 1+r7rz na
N = r/z ifa=20
T 14+7r/7 -

with the understanding that at the cascade thresholds the buyer’s action is determined
by the tie-break and tremble.!® Given a seller quality choice # € [0,1], the purchase
probability under the e-selection is

1e(A,0) = $i(A) + 0 (¢i(A) —95(A)),

which equals (1 — g) + 6(29 — 1) in the experimentation region, (1 — ¢) in the up-cascade,
and ¢ in the down-cascade. The one-period flow payoff is p (A, 8) — cé.

Step 1. Define the finite-horizon dynamic program backward:

VEL(A) =0, VE(A) = erg[%{p%()\,e)—ce + SE[VEL () m,e}}, t=T,...,1.

For fixed t and A, the objective is affine in 6. Hence optimal 65 (A) is bang-bang:

0:(A) = 1{AT(A) > 0} with AF(A) = (¥ — 9§) [p+ (Vi () — Vi, (A0)] e

By Berge’s maximum theorem and the continuity of 7y, and the transition map, there ex-
ists a measurable maximizer. We fix the seller’s tie-break at indifference by setting 65(A) = 0
whenever A¢(1A) = 0; this pins down a unique equilibrium policy profile {6¢}T_;. Given

18Thus, for any ¢ > 0, both a = 0 and a = 1 have strictly positive probability at any A, which yields a
continuous transition kernel in what follows.
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the fixed buyer tie-break and the public tremble, the buyer’s best response is single-
valued at every state and the belief process {At}tlel is a time-inhomogeneous Markov
chain with Borel transition kernel (since A* () are continuous and +; is continuous). Thus,
for every T and & > 0, there is a unique Markov Perfect Bayesian Equilibrium (value V,

policy 05).

Step 2. We prove by backward induction that each Vf is continuous on [0,1] and that
Vf — Vi uniformly as ¢ | 0, where V; is the value under the knife-edge (no-tremble)
selection with the same buyer tie-break. The base case Vi, ; = 0 is trivial. Suppose

Vi1 — Vi1 uniformly and each Vi is continuous. Then the map

A pe(d,8) = 0+ 6(7e(A,0) Vi (A1) + (1= 7:(14,6)) Vi (A7)

is jointly continuous in (A, 6) for each ¢, and converges uniformly (in (A, 6)) to the corre-
sponding no-tremble objective as ¢ | 0 because §%(A) — ;(A) pointwise and the state
space is compact. By Berge’s maximum theorem, Vf — V; uniformly and Vf is continu-
ous. The policy selectors 6% (-) converge pointwise except possibly on the closed indiffer-
ence set {A; = 0}; our seller tie-break 6; = 0 identifies a unique limit policy 6.

Step 3. For each fixed € > 0, the finite-horizon values satisfy the monotonicity Vf’T 1T Vfas
T — oo (where V¢ solves the infinite-horizon Bellman equation with the same selection),
because adding periods weakly increases attainable discounted payoffs under discount-
ing. The corresponding policies admit convergent subsequences by compactness; the
limit is Markov and attains the infinite-horizon value. Combining this with Step 2 (let-
ting e | 0) shows that the law of motion for beliefs and the value/policy under the finite-
horizon e-selection converge to those under the infinite-horizon knife-edge selection used
in the main text: belief transitions are the & logz updates in the experimentation region
and (by construction) the process is absorbed in cascades.

Putting Steps 1-3 together proves: (i) for every T and & > 0 there is a unique Markov
PBE under the tie-breaks; (ii) as € | 0, (V{,0f) — (V4,6;) uniformly/pointwise; and (iii)
as T — oo the finite-horizon objects converge to the infinite-horizon selection used in the
main analysis. O
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