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Abstract

We study sequential social learning with endogenous information acquisition when agents

have a taste for nonconformity. Each agent observes predecessors’ actions, decides whether to

acquire a private signal (and how precise it should be), and then chooses between two actions.

Payoffs value correctness and include a bonus for taking the less popular action among pre-

decessors; because this bonus depends only on observed popularity, the equilibrium analysis

avoids fixed points in anticipated popularity and preserves standard Bayesian updating. In

a Gaussian–quadratic setting, optimal actions follow posterior thresholds that tilt against the

majority, and we solve the precision choice problem. Whenever the no-signal decision aligns

with the observed majority, stronger contrarian motives weakly raise the value of information

and expand the set of histories in which agents invest. We provide compact comparative statics

for thresholds, action probabilities, and the precision argmax, a local welfare-and-information

treatment, and applications to scientific priority races, cultural diffusion, and online platforms.

Keywords: social learning; information cascades; endogenous information acquisition; nonconfor-

mity; popularity; Bayesian thresholds.

JEL codes: D83; C72; D82; D85.

1 Introduction

Sequential social learning shows how rational agents can end up herding on the basis of observed

actions. Once the information contained in past actions dominates what a typical private signal

would add, later actions often stop reacting to new information. Yet in many settings agents have a

taste for doing something different from the crowd: scientists may seek distinctiveness, consumers

may value uniqueness, and political actors may position themselves against a majority. This paper

studies how such contrarian motives interact with social learning when information acquisition is

itself a choice.

We develop a simple, fully specified model in which each agent arrives sequentially, decides

whether to buy a private signal and how precise it should be, and then chooses a binary action.

∗We are grateful to Alexis Belianin, Emiliano Catonini, Darina Cheredina, Markus Gebauer, Olivier Gossner,
Vitalijs Jascisens, Margarita Kirneva, Yukio Koriyama, Fabian Slonimczyk, and Alexey Verenikin for helpful com-
ments and discussions. We also thank the participants of the ICEF research seminar for valuable feedback. Financial
support from the French National Research Agency (ANR) under the “Investissements d’Avenir” program (LabEx
Ecodec, ANR-11-LABX-0047) is gratefully acknowledged. All remaining errors are our own.
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Agents value correctness and also derive a bonus from taking the less popular action, where pop-

ularity is the fraction of predecessors who chose a given action. The bonus is proportion-based,

increasing in the size of the opposing crowd, and depends only on observed past actions. This design

avoids any fixed-point in “anticipated popularity” and keeps Bayesian inference disciplined by the

actual history. We work in a Gaussian–quadratic specification for tractability and transparency.

The analysis proceeds in two steps. First, we characterize action choice. Optimal behavior

takes the form of a posterior (equivalently, log-likelihood ratio) threshold that depends on the

observed popularity of the action (Lemma 4.1). The indifference cutoff shifts linearly with pop-

ularity and with the intensity of contrarian preferences, tilting decisions away from the observed

majority (Proposition 4.2). We also quantify how the associated signal threshold moves with these

parameters and how the induced action probabilities respond (Corollary 5.1 and Corollary 5.2).

Second, we study information acquisition. We formulate the precision choice problem with

a fixed entry cost and a convex cost of precision and establish existence of an optimal precision

together with an interior first-order condition in the Gaussian case (Proposition 4.3). We then

define the net value of information at a given history and show that, whenever the no-signal action

coincides with the observed majority, this value is (weakly) increasing in the strength of contrarian

motives; hence the investment region expands with contrarian intensity in that empirically relevant

region (Proposition 4.4). We also provide regularity results for the precision argmax correspon-

dence—upper hemicontinuity in primitives, continuity of the value function, and local continuity

(and, under standard conditions, differentiability) of the interior optimizer (Proposition 5.3).

Taken together, these results deliver a clear positive message. Contrarian motives shift decision

thresholds against the crowd and thereby sustain experimentation precisely in those histories where,

absent contrarianism, agents would be more prone to follow predecessors. At the same time, by

making majority actions harder to choose, stronger contrarian motives can reduce the incidence of

majority choices even when the observed crowd is informative.

2 Related literature

This paper connects three strands of work: social learning from actions, endogenous information

acquisition, and preference-based (non)conformity.

The baseline we build on is the sequential social-learning tradition in which actions reveal

private signals and can trigger herding and cascades. Foundational contributions include Banerjee

(1992) and Bikhchandani et al. (1992), with sharper characterizations in Smith and Sørensen (2000,

2011). Extensions examine learning with partial observability and networks, e.g. Acemoglu et al.

(2011) and Dasaratha and He (2020). A complementary literature studies why learning fails under

misspecification or coarse inference even without payoff externalities, including Bohren (2016), Frick

et al. (2020), Eyster et al. (2014), Bohren et al. (2019), and Kartik and Van Weelden (2020). Our

contribution keeps Bayesian inference fully disciplined by observed actions and asks how a taste for

nonconformity shifts the thresholds that govern action choice and, in turn, the informativeness of

actions and the incentives to gather information.

We adopt a standard “fixed + convex” information technology to endogenize whether agents buy
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signals and how precise these signals are. Classic work on timing and informational externalities in

sequential environments includes Chamley and Gale (1994). For formal treatments of information

choice and precision, see Vives (2008) and Veldkamp (2011); recent empirical evidence on belief-

dependent information acquisition in markets is provided by Lu et al. (2019). Within this tradition,

our novelty is to show how observable, taste-based contrarian motives tilt decision thresholds and

thereby expand the region of beliefs at which information acquisition is worthwhile, while preserving

closed-form characterizations of action thresholds and regularity of the precision problem.

Classic conformity arises when actions signal type or status, as in Bernheim (1994), or when

identity considerations affect payoffs, as in Akerlof and Kranton (2000) and Bénabou and Tirole

(2011). We invert the sign and study contrarian preferences within a sequential learning game.

Related models of distinctiveness and anti-conformism outside the canonical cascade environment

include Golman et al. (2017) and Touboul (2019). A separate set of papers blends social learn-

ing with technological payoff externalities (coordination/complementarities), e.g. Dasgupta et al.

(2011) and Ali and Kartik (2012). Our approach is different:1 we add a taste-based bonus tied

purely to observed popularity among predecessors, so the inference problem and equilibrium map-

ping from histories to beliefs remain standard, and there is no fixed-point in anticipated popularity.

This modeling choice isolates how minority-seeking shifts cutoffs and affects information incentives

without conflating preference shifts with payoff externalities.

Finally, it is useful to clarify when motives are contrarian rather than conformist. In applications

where distinctiveness itself carries rents or identity value—scientific priority races, niche political

positioning, or consumption domains emphasizing uniqueness—the minority action is privately

valuable even holding informational incentives fixed. Our specification captures exactly this case

by rewarding the observed minority choice, while leaving the Bayesian learning channel unchanged.

The paper is organized as follows. Section 3 presents the environment and assumptions, includ-

ing the popularity-based contrarian preference and the information technology. Section 4 develops

the equilibrium analysis: threshold behavior for actions, the precision choice problem with existence

and interior FOC. Section 5 analyzes comparative statics. Section 6 provides a local welfare-and-

information treatment, including the evaluator’s value of information and an action informativeness

measure. Section 7 discusses applications and motivation in science, culture, and online platforms.

Section 8 concludes. Appendices collect full proofs and robustness notes.

3 Model

We study a canonical sequential social-learning environment in which agents endogenously choose

whether to acquire information (and how precise it is) before taking a binary action. Agents

value correctness and, in addition, have a taste for nonconformity that depends on the observed

popularity of the action they choose among predecessors.

1In coordination/complementarity settings (e.g., Ali and Kartik (2012)), an agent’s payoff depends on others’
actions. Here, preferences add a taste term that depends only on the observed popularity of one’s own chosen action,
leaving Bayesian inference and the history-to-belief mapping unchanged.
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3.1 Environment and information

Time is discrete, with agents t = 1, 2, . . . arriving sequentially. The state θ ∈ {0, 1} is fixed and

drawn once at t = 1. The common prior is µ1 ≡ Pr(θ = 1) = 1
2 (all results extend to any

µ1 ∈ (0, 1) with only notational changes). Each agent observes the entire history of past actions

ht−1 = (a1, . . . , at−1), where ai ∈ {0, 1}.
Before acting, agent t may acquire a private signal of endogenous precision ρt ≥ 0. If ρt = 0,

no signal is acquired. If ρt > 0, the signal is Gaussian:2

st | θ ∼ N
(
θ, 1/ρt

)
,

conditionally independent across agents given θ. Let ℓt(st; ρt) denote the log-likelihood ratio (LLR),

which in this Gaussian specification equals ℓt(st; ρt) = ρt (st− 1
2) (equal variances and means 0 and

1).

Acquiring any signal entails a fixed cost F > 0. Precision is chosen at a convex cost C(ρ) = c
2ρ

2

with c > 0.3 Thus the total information cost is F 1{ρ > 0}+ c
2ρ

2.

3.2 Preferences and contrarian utility

An agent’s payoff has two components:

• Correctness: the agent obtains 1 if at = θ and 0 otherwise.

• Nonconformity: let Nt−1(a) =
∑t−1

i=1 1{ai = a} and define the observed popularity of action

a among predecessors at time t by

pt(a) =


Nt−1(a)

t−1 , t ≥ 2,

1
2 , t = 1,

so that pt(0) + pt(1) = 1 for t ≥ 2 and both actions are treated symmetrically at t = 1. The

contrarian bonus is proportional to how unpopular the chosen action is:4

b
(
pt(at)

)
= k

(
1− pt(at)

)
, k ≥ 0.

Hence agent t’s (ex post) utility is

ut(at, θ;ht−1) = 1{at = θ} + k
(
1− pt(at)

)
.

2Normality is chosen for closed-form thresholds and clean comparative statics. All results that rely on single-
crossing/MLRP extend to any signal family with MLRP; formulas then become implicit but the qualitative monotone
effects are unchanged.

3Any strictly convex C with C(0) = C′(0) = 0 yields the same comparative statics; quadratic cost is a transparent
benchmark. The fixed cost F > 0 generates the empirically relevant corner at ρ = 0; setting F = 0 collapses to a
pure convex case with the same Euler condition.

4Linear b(p) = k(1−p) is a convenient normalization. Any smooth, strictly decreasing b with b′(p) < 0 delivers the
same first-order threshold tilt around interior beliefs; linearity makes the dependence on pt and k fully transparent.
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The bonus depends only on observed predecessors’ actions. It does not depend on contemporaneous

or future actions, so there is no fixed-point in defining the bonus.5

3.3 Timing

At date t:

1. The public history ht−1 is observed. The public belief is µt = Pr(θ = 1 | ht−1) (defined

below).

2. Agent t chooses a precision ρt ≥ 0, pays F 1{ρt > 0} + c
2ρ

2
t , and if ρt > 0 observes st ∼

N (θ, 1/ρt).

3. Agent t chooses at ∈ {0, 1} and receives ut(at, θ;ht−1).

4. at is publicly revealed; the history updates to ht = (ht−1, at).

3.4 Beliefs and posteriors

Let σ denote a strategy profile (defined below). Given σ, the public belief after history ht−1 is

µt = Pr(θ = 1 | ht−1;σ).

If agent t acquires precision ρt and observes st, her posterior is

Pr(θ = 1 | ht−1, st;σ) = Λ

(
log

µt

1− µt
+ ℓt(st; ρt)

)
,

where Λ(x) = ex

1+ex is the logistic function and ℓt(st; ρt) = ρt (st− 1
2) is the Gaussian LLR. If ρt = 0

(no signal) the posterior equals the public belief, i.e., Pr(θ = 1 | ht−1;σ) = µt.

3.5 Strategies and equilibrium

A (pure) strategy for agent t is a pair of measurable maps(
φt, αt

)
: Ht−1 → R+ ×A,

where Ht−1 is the set of feasible histories and A is the set of Borel-measurable action rules αt :

R ∪ {∅} → {0, 1} mapping either a realized signal st ∈ R (if ρt = φt(ht−1) > 0) or the null input

∅ (if ρt = 0) into an action. We write ρt = φt(ht−1).

An assessment (σ, µ) consists of a profile of strategies σ = {φt, αt}t≥1 and a system of public

beliefs {µt}t≥1.

5If the bonus depended on expected contemporaneous popularity, equilibrium would embed a fixed-point in pop-
ularity beliefs and could generate multiplicity unrelated to learning. Tying b(·) to observed predecessors isolates the
informational channel.
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Equilibrium concept. An assessment (σ, µ) is a Perfect Bayesian Equilibrium6 (PBE) if: (i)

For each t and history ht−1,
(
φt(ht−1), αt(· | ht−1)

)
maximizes agent t’s expected utility net of

information costs, given (σ, µ); (ii) µ is obtained from Bayes’ rule whenever applicable, given σ and

the model’s likelihoods; off-path beliefs are specified in a way consistent with standard refinements.

We adopt the tie-breaking convention that an indifferent agent picks the action with the higher

contrarian bonus (the less popular action);7 results are unchanged under any fixed tie-breaking

rule.

3.6 Popularity statistic and basic definitions

Let pt(a) be as defined above. We use pt ≡ pt(1) as a shorthand for the popularity of action 1 at

time t, so pt(0) = 1− pt. The popularity statistic is fully observable at time t.

Definition 3.1. At history ht−1, agent t’s action is informative if, conditional on the public belief

µt and the strategy profile σ, there exist signal realizations leading to each action with strictly

positive probability; equivalently, both Pr(at = 1 | θ = 1, ht−1;σ) and Pr(at = 1 | θ = 0, ht−1;σ) lie

strictly between 0 and 1.

Definition 3.2. A 1-cascade occurs at history ht−1 if at = 1 almost surely under σ for both states;

a 0-cascade is defined analogously. In a cascade, actions are uninformative.8

3.7 Standing assumptions

We maintain the following assumptions throughout the paper:

(A1) Signals. Conditional on θ, private signals are conditionally independent across agents; if

precision ρ > 0 is chosen, s | θ ∼ N (θ, 1/ρ).

(A2) Costs. F > 0 and c > 0; the cost of precision is C(ρ) = c
2ρ

2.

(A3) Preferences. The contrarian bonus is b(p) = k(1 − p) with k ≥ 0, applied to the observed

popularity of the chosen action among predecessors.

(A4) Observability and common knowledge. The entire action history ht−1 is public; signals

are private; (F, c, k) and the model are common knowledge.

These assumptions, combined with the Gaussian specification, imply that posterior beliefs are

monotone in st (MLRP)9 and that optimal action rules can be represented as posterior- or LLR-

thresholds in equilibrium. Formal statements and proofs appear in Section 4.

6All statements carry over to sequential equilibrium. We restrict to pure strategies throughout; randomization
matters only at indifference points.

7Any fixed tie-breaking rule yields the same results generically; it only bites on knife-edge histories (measure zero
under continuous signals).

8With endogenous information, contrarian motives can disrupt would-be cascades by restoring incentives to acquire
signals. Proposition 4.4 formalizes the region where this happens.

9With asymmetric priors µ1 ̸= 1
2
all formulas go through with the log-odds shift Lt = log µt

1−µt
; we normalize

µ1 = 1
2
for symmetry in the exposition.

6



4 Equilibrium analysis

We characterize optimal action choice as a posterior/LLR threshold, derive the dependence of the

threshold on the observed popularity pt, and analyze the information acquisition problem (existence,

first-order condition, and comparative statics in k for the value of information under clear baseline

conditions).

Throughout the section fix a date t and a public history ht−1 with associated public belief

µt ∈ (0, 1), log-odds Lt := log µt

1−µt
, and observed popularity pt(1) = Nt−1(1)/(t − 1) (with the

convention p1(1) = 1/2). Write pt := pt(1) and pt(0) = 1− pt.

4.1 Action choice: posterior and LLR thresholds

At history ht−1, the bonus differential from choosing 1 rather than 0 is

∆t := b
(
pt(1)

)
− b

(
pt(0)

)
= k (1− pt)− k pt = k (1− 2pt).

Let ct be the posterior cutoff that makes the agent indifferent between actions.

Lemma 4.1. Fix a history ht−1. For any chosen precision ρ ≥ 0 and any realized signal s, the

difference in expected utility between actions 1 and 0 equals

2 Pr(θ = 1 | ht−1, s)− 1︸ ︷︷ ︸
correctness term

+ ∆t︸︷︷︸
contrarian bonus difference

.

Hence the optimal action is a posterior threshold: choose at = 1 iff

Pr(θ = 1 | ht−1, s) ≥ ct, ct =
1−∆t

2
=

1

2
+ k

(
pt −

1

2

)
.

Equivalently, in LLR units choose at = 1 iff

Lt + ℓt(s; ρ) ≥ τt, τt := log
ct

1− ct
.

In the Gaussian case with ℓt(s; ρ) = ρ (s − 1
2), this is the signal threshold rule at = 1 iff s ≥ s⋆t (ρ)

where

s⋆t (ρ) =
1

2
+

τt − Lt

ρ
(with the convention that s⋆t (0) = +∞ if µt < ct, −∞ if µt > ct).

Proof. Let π(s) := Pr(θ = 1 | ht−1, s) denote the posterior. The expected correctness payoff of

a = 1 is π(s) and of a = 0 is 1−π(s), so the difference is 2π(s)− 1. The expected contrarian bonus

of a = 1 is k(1− pt) and of a = 0 is k(1− pt(0)) = k pt, so the bonus difference is ∆t = k(1− 2pt),

which does not depend on s or ρ. Therefore the agent prefers 1 to 0 iff 2π(s) − 1 + ∆t ≥ 0,

i.e., π(s) ≥ (1 − ∆t)/2 =: ct. Since posteriors in a binary-state, MLRP environment are strictly

increasing in the LLR, the posterior cutoff implies the LLR cutoff Lt + ℓt(s; ρ) ≥ τt := log ct
1−ct

. In

the Gaussian case ℓt(s; ρ) = ρ(s− 1
2) gives the claimed s-threshold.
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Proposition 4.2. For any history, ct =
1
2 + k(pt − 1

2). Hence: (i) ct is strictly increasing in pt

when k > 0; (ii) if pt >
1
2 then ct >

1
2 and ct is strictly increasing in k; if pt <

1
2 then ct <

1
2 and

ct is strictly decreasing in k; (iii) if pt =
1
2 , then ct =

1
2 for all k.

Proof. Immediate from Lemma 4.1 since ∆t = k(1− 2pt).

4.2 Information acquisition: existence, FOC, and probabilities

Given (µt, pt) and ρ ≥ 0, define the gross expected payoff

Gt(µt, ρ; pt, k) := µt Pr(at = 1 | θ = 1) + (1− µt) Pr(at = 0 | θ = 0)︸ ︷︷ ︸
correctness

+ k E[1− pt(at)]︸ ︷︷ ︸
contrarian bonus

,

where probabilities are induced by the Gaussian signal and the threshold rule of Lemma 4.1. The

agent then solves

max
ρ≥0

{
Gt(µt, ρ; pt, k) − c

2
ρ2 − F 1{ρ > 0}

}
.

We first make the Gaussian probabilities explicit. Let

s⋆t (ρ) =
1

2
+

τt − Lt

ρ
, z0(ρ) := s⋆t (ρ)

√
ρ, z1(ρ) :=

(
s⋆t (ρ)− 1

)√
ρ,

and let Φ and ϕ denote the standard normal cdf and pdf, respectively. Then

Pr(at = 1 | θ = 1) = 1− Φ
(
z1(ρ)

)
,

Pr(at = 1 | θ = 0) = 1− Φ
(
z0(ρ)

)
,

Pr(at = 0 | θ = 0) = Φ
(
z0(ρ)

)
,

and the unconditional choice probability is

Pr(at = 1) = µt [1− Φ(z1(ρ))] + (1− µt) [1− Φ(z0(ρ))].

Hence the expected contrarian bonus equals

E[1− pt(at)] = (1− pt) Pr(at = 1) + pt
(
1− Pr(at = 1)

)
= pt + (1− 2pt) Pr(at = 1).

Proposition 4.3. For any (µt, pt, k), the information acquisition problem admits a solution ρ⋆t ≥
0.10 Moreover, if ρ⋆t > 0 solves the problem, then it satisfies the first-order condition

∂

∂ρ
Gt(µt, ρ; pt, k)

∣∣∣
ρ=ρ⋆t

= c ρ⋆t ,

10Global concavity of the objective in ρ need not hold. Our comparative-statics results rely on the argmax corre-
spondence (compactness/upper hemicontinuity) rather than on single-peakedness of J(ρ; ·).
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where

∂

∂ρ
Gt(µt, ρ; pt, k) =

marginal correctness gain︷ ︸︸ ︷
µt ϕ

(
z1(ρ)

)
(−z′1(ρ)) + (1− µt)ϕ

(
z0(ρ)

)
z′0(ρ)

+ k (1− 2pt)
[
µt ϕ

(
z1(ρ)

)
(−z′1(ρ)) + (1− µt)ϕ

(
z0(ρ)

)
(−z′0(ρ))

]
︸ ︷︷ ︸

∂
∂ρ

Pr(at=1)

.

Here z′0(ρ) and z′1(ρ) are given by

z′0(ρ) =
s⋆t (ρ)

2
√
ρ

+
√
ρ s⋆ ′t (ρ), z′1(ρ) =

s⋆t (ρ)− 1

2
√
ρ

+
√
ρ s⋆ ′t (ρ), s⋆ ′t (ρ) = −τt − Lt

ρ2
.

Proof sketch. Continuity and the quadratic cost imply existence of a maximizer. In the Gaussian

case, write the state-conditional choice probabilities using the signal threshold s⋆t (ρ). Differentiating

Gt yields the Euler condition ∂ρGt = cρ at any interior optimum. Full derivatives appear in

Appendix A.

4.3 Value of information and its monotonicity in k

Define the (net) value of information at (µt, pt, k) by

Φt(µt, pt; k) := max
ρ≥0

{
Gt(µt, ρ; pt, k)−

c

2
ρ2
}

− Gt(µt, 0; pt, k).

Observe that Gt(µt, ρ; pt, k) = Corrt(µt, ρ) + kMt(µt, ρ; pt), where Mt(µt, ρ; pt) := E[1 − pt(at)].

Hence

Φt(µt, pt; k) = sup
ρ≥0

{
At(ρ) + k Bt(ρ) − c

2
ρ2
}
,

At(ρ) : = Corrt(µt, ρ)− Corrt(µt, 0),

Bt(ρ) : = Mt(µt, ρ; pt)−Mt(µt, 0; pt).

The sign of Bt(ρ) depends on whether the no-signal action aligns with the observed majority

or minority. The following proposition isolates a robust region where Φt is (weakly) increasing in

k and therefore the investment region expands with k.

Proposition 4.4. Fix (µt, pt) with pt ̸= 1
2 and let a0t be the action chosen when ρ = 0 (i.e., a0t = 1

iff µt ≥ ct). If a0t coincides with the observed majority action at ht−1 (i.e., a0t = 1 when pt >
1
2 , or

a0t = 0 when pt <
1
2), then for all ρ ≥ 0, Bt(ρ) ≥ 0 and thus k 7→ Φt(µt, pt; k) is (weakly) increasing.

Consequently, for any fixed F > 0, the set { k ≥ 0 : Φt(µt, pt; k) > F } is an interval of the form

[k0,∞) (possibly k0 = 0 or +∞).

Proof sketch. When the baseline action follows the observed majority, raising ρ weakly reduces the

expected bonus shortfall at ρ = 0, so Gt has increasing differences in (ρ, k). Taking the supremum

over ρ ≥ 0 preserves monotonicity in k. See Appendix A for details.
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Remark 4.5. If the no-signal action coincides with theminority (e.g., pt >
1
2 and µt < ct, so a

0
t = 0),

then P1(0) = 0 and the same algebra yields Bt(ρ) ≤ 0 for all ρ ≥ 0. In that case k 7→ Φt(µt, pt; k)

need not be increasing. Proposition 4.4 cleanly separates the region where monotonic expansion in

k is guaranteed from the complementary region where no general monotonicity can be claimed.

5 Comparative statics

We collect a few immediate implications for thresholds, signal cutoffs, and the precision argmax

correspondence.

Corollary 5.1. For any history with popularity pt ∈ [0, 1] and k ≥ 0:

∂ct
∂k

= pt −
1

2
,

∂τt
∂k

=
pt − 1

2

ct(1− ct)
,

∂s⋆t
∂k

=
pt − 1

2

ρ ct(1− ct)
.

Hence, if pt >
1
2 (action 1 is the observed majority), then ct and τt increase in k and the signal

threshold s⋆t shifts up in k (it becomes harder to choose the majority action 1). If pt < 1
2 , the

inequalities reverse. When pt =
1
2 , all three derivatives are zero.

Proof. From Lemma 4.1, ct = 1
2 + k(pt − 1

2) so ∂ct/∂k = pt − 1
2 . Since τt = log ct

1−ct
, the chain

rule gives ∂τt/∂k = (∂τt/∂ct)(∂ct/∂k) =
1

ct(1−ct)
(pt − 1

2). Finally, s⋆t (ρ) =
1
2 + (τt − Lt)/ρ implies

∂s⋆t /∂k = (1/ρ) ∂τt/∂k.

Corollary 5.2. Fix (µt, pt, k, ρ) and let P θ
1 (ρ) := Pr(at = 1 | θ) under the Gaussian threshold.

Then

∂

∂k
P 1
1 (ρ) = −ϕ

(
z1(ρ)

) 1
√
ρ

pt − 1
2

ct(1− ct)
,

∂

∂k
P 0
1 (ρ) = −ϕ

(
z0(ρ)

) 1
√
ρ

pt − 1
2

ct(1− ct)
.

Thus if pt > 1
2 (majority is action 1), increasing k reduces the likelihood of choosing 1 in both

states, and vice versa when pt <
1
2 .

Proof. P 1
1 (ρ) = 1−Φ(z1(ρ)) and P 0

1 (ρ) = 1−Φ(z0(ρ)) with zι(ρ) =
(
s⋆t (ρ)−ι

)√
ρ, ι ∈ {0, 1}. By the

chain rule, ∂k[1−Φ(zι)] = −ϕ(zι) ∂kzι and ∂kzι =
√
ρ ∂ks

⋆
t . Substitute ∂ks

⋆
t from Corollary 5.1.

Proposition 5.3. Let x := (µt, pt, k) and define the objective

J(ρ;x) := Gt(µt, ρ; pt, k) − c

2
ρ2 − F 1{ρ > 0}, ρ ∈ [0,∞).

(a) For each x, the argmax set Γ(x) := argmaxρ≥0 J(ρ;x) is nonempty and compact.

(b) The correspondence x 7→ Γ(x) is upper hemicontinuous. In particular, the value function

V (x) := maxρ≥0 J(ρ;x) is continuous in x.

(c) If for some x the maximizer is unique and interior (Γ(x) = {ρ⋆ > 0}) and the strict second-order

condition holds, ∂ρρGt(µt, ρ
⋆; pt, k) − c < 0, then ρ⋆ depends continuously on x in a neighborhood

of x. If, in addition, the FOC ∂ρGt(µt, ρ
⋆; pt, k) = cρ⋆ has nonzero derivative in ρ at ρ⋆, then ρ⋆ is

continuously differentiable in x by the implicit function theorem.

10



Proof sketch. Compact truncation, upper semicontinuity at ρ = 0, and continuity elsewhere allow

an application of Berge’s maximum theorem; the implicit function theorem gives local smoothness

under uniqueness and a strict SOC. Full details are in Appendix A.

Remark 5.4. In general, ρ⋆t need not be monotone in k because the term k(1 − 2pt) Pr(at = 1)

can generate either increasing or decreasing differences in (ρ, k), depending on pt. Proposition 4.4

shows that themaximized value of information Φt is (weakly) increasing in k whenever the no-signal

action follows the observed majority; this does not, by itself, pin down the sign of dρ⋆t /dk.

6 Welfare and information content

We provide a local welfare accounting at a given public history ht−1 with state-belief µt ∈ (0, 1) and

observed popularity pt ∈ [0, 1]. We study (i) a myopic evaluator who places weight λ ∈ [0, 1] on the

contrarian bonus (with λ = 0 corresponding to correctness-only evaluation and λ = 1 coinciding

with the agent’s taste), and (ii) the information content of the public action as a primitive measure

of its usefulness for future learning.11 Throughout, strategies and beliefs are as in Section 4.

6.1 Evaluator welfare and value-of-information accounting

Fix λ ∈ [0, 1]. At (µt, pt) and precision choice ρ ≥ 0, define the evaluator’s one-step expected payoff

W λ
t (µt, ρ; pt, k) : =

correctness︷ ︸︸ ︷
µt Pr(at = 1 | θ = 1) + (1− µt) Pr(at = 0 | θ = 0)

+ λk E[1− pt(at)]︸ ︷︷ ︸
distinctiveness

− c

2
ρ2 − F 1{ρ > 0},

where probabilities are induced by the Gaussian threshold in Lemma 4.1. The associated (myopic)

evaluator value of information is

Φλ
t (µt, pt; k) := max

ρ≥0

{
µt Pr(at = 1 | θ = 1)+ (1−µt) Pr(at = 0 | θ = 0)+ λkE[1− pt(at)]− c

2ρ
2
}
.

By construction, Φλ
t treats F as an entry cost (it cancels in the difference).

Proposition 6.1. Fix (µt, pt) with pt ̸= 1
2 and let a0t be the no-signal action (i.e., a0t = 1 iff µt ≥ ct

with ct = 1
2 + k(pt − 1

2)). Suppose a0t coincides with the observed majority (i.e., a0t = 1 when

pt >
1
2 , or a0t = 0 when pt <

1
2). Then for every λ ∈ [0, 1], k 7→ Φλ

t (µt, pt; k) is (weakly) increasing.

Consequently, for any fixed F > 0 the myopic evaluator’s investment region {k : Φλ
t (µt, pt; k) > F}

is an interval [kλ,∞) (possibly degenerate).

Proof. The proof repeats the argument of Proposition 4.4 with k replaced by λk in the evaluator’s

objective. Write P1(ρ) := Pr(at = 1) and recall E[1 − pt(at)] = pt + (1 − 2pt)P1(ρ). When pt >
1
2

11We deliberately avoid global welfare rankings across k. Aggregating over the endogenous belief path would require
dynamic weights and preference aggregation beyond our scope; the local evaluator view and an action-informativeness
metric are transparent and policy-relevant.
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and a0t = 1, we have P1(0) = 1 and (1− 2pt) < 0, so for all ρ ≥ 0,[
E[1− pt(at)]− E[1− pt(at)]

]
ρ=0

= (1− 2pt)
(
P1(ρ)− 1

)
≥ 0.

Thus the map ρ 7→ correctness+λkE[1− pt(at)]− c
2ρ

2 has (weakly) increasing differences in (ρ, k)

for any fixed λ ∈ [0, 1], and so its supremum over ρ ≥ 0 is (weakly) increasing in k. The case pt <
1
2

is symmetric. Continuity and the interval statement follow by Berge’s maximum theorem.

6.2 Information content of the public action

We quantify the informativeness of the period-t action for the state by the total variation distance12

between the state-conditional action distributions:

It(ρ) :=
∣∣Pr(at = 1 | θ = 1)− Pr(at = 1 | θ = 0)

∣∣.
This measure equals zero iff the action is uninformative about θ.

Lemma 6.2. In the Gaussian environment with the threshold decision rule of Lemma 4.1, It(ρ) = 0

iff ρ = 0. For every ρ > 0, It(ρ) > 0.

Proof. For ρ = 0, the action is chosen from the prior alone and is (weakly) deterministic, so

Pr(at = 1 | θ = 1) = Pr(at = 1 | θ = 0) and It(0) = 0. For ρ > 0, the signal threshold s⋆t (ρ) ∈ R is

finite. With s | θ ∼ N (θ, 1/ρ), we have

Pr(at = 1 | θ = 1) = 1− Φ
(
(s⋆t (ρ)− 1)

√
ρ
)
, Pr(at = 1 | θ = 0) = 1− Φ

(
s⋆t (ρ)

√
ρ
)
.

Since s⋆t (ρ)
√
ρ − (s⋆t (ρ) − 1)

√
ρ =

√
ρ > 0, the monotonicity of Φ implies Pr(at = 1 | θ = 1) >

Pr(at = 1 | θ = 0), hence It(ρ) > 0.

The next proposition links information content to contrarian intensity through the investment

margin highlighted earlier.

Proposition 6.3. Fix (µt, pt) satisfying the baseline-majority condition of Proposition 4.4. Let

ρ⋆t (k) be an equilibrium precision choice at (µt, pt) for contrarian intensity k. Then there exists

k0 ∈ [0,∞] such that ρ⋆t (k) = 0 for all k < k0 and ρ⋆t (k) > 0 for all k > k0. Moreover, k 7→ It
(
ρ⋆t (k)

)
is (weakly) increasing and has a (weakly) positive jump at k0 whenever k0 < ∞.

Proof. By Proposition 4.4, Φt(µt, pt; k) is increasing in k and the agent’s investment region {k :

Φt(µt, pt; k) > F} is an interval [k0,∞), so ρ⋆t (k) = 0 for k < k0 and ρ⋆t (k) > 0 for k > k0. The

mapping k 7→ It(ρ⋆t (k)) equals 0 on [0, k0) and is strictly positive on (k0,∞) by Lemma 6.2. Upper

hemicontinuity of the argmax (Proposition 5.3) yields right-continuity of ρ⋆t (k) away from the entry

point; at k0 the function It(ρ⋆t (k)) has a (weakly) positive jump from 0 to It(ρ̄) for any interior

maximizer ρ̄ ∈ Γ(µt, pt, k
+
0 ).

12Total variation equals the L1 distance between the two Bernoulli action distributions and pins down the optimal
one-shot use of at for inference. Other measures (e.g., mutual information) yield the same qualitative conclusions
here.
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Remark 6.4. Our welfare objects are local (one-step) at a given history. A full dynamic welfare

ranking across different values of k would require aggregating over the endogenous path of public

beliefs induced by equilibrium play, which lies beyond our scope. Propositions 6.1 and 6.3 show that,

on the empirically relevant baseline-majority region, stronger contrarian motives weakly expand (i)

the evaluator’s myopic value of information for any λ ∈ [0, 1] and (ii) the set of histories at which

actions are strictly informative.

7 Applications and motivation

Scientific progress, cultural diffusion, and online attention markets all feature a tension between the

pull of consensus and the private appeal of standing apart. Our model distills this tension into a

transparent, history-based bonus for taking the less popular action and shows how that bonus shifts

decision thresholds and information choices in ways that map directly into observable behaviors.

A scholar’s evidence—from a new experiment, dataset, or argument—may clash with prevailing

orthodoxy. The personal payoff to nonconformity can be substantial in such environments. As Max

Planck wrote in his Scientific Autobiography :

“A new scientific truth does not triumph by convincing its opponents and making them

see the light, but rather because its opponents eventually die, and a new generation

grows up that is familiar with it” (Planck, 1949, pp. 33–34).

Kuhn echoed the same theme in The Structure of Scientific Revolutions:

“Paradigm change cannot be justified by proof. Instead it must be decided by persuasion

and conversion, and often by generational replacement” (Kuhn, 1962, p. 151).

Our positive results formalize when such contrarian motives keep inquiry alive rather than derail

standards of evidence. The action rule is a clean posterior (LLR) threshold that tilts against the

observed majority (Lemma 4.1 and Proposition 4.2). Thus, in fields where a topic has recently

become popular (pt high), a stronger taste for distinctiveness (higher k) mechanically raises the

cutoff for following that majority, making it more likely that dissenting findings are voiced rather

than suppressed. On the information margin, whenever the no-signal decision coincides with the

observed majority—arguably the empirically relevant case near dominant paradigms—increasing k

expands the investment region: more teams choose to collect evidence (Proposition 4.4). Together,

these effects predict bursts of experimentation exactly when orthodoxy is strong,13 consistent with

the idea that distinctiveness rents encourage outsiders to keep testing dominant views.

Two measurement implications follow. First, as a topic’s popularity rises, the probability of

majority actions should decline at the margin (Corollary 5.2), even holding public belief fixed.

Second, entry into data collection (or running new experiments) should be more responsive to the

observed crowd than to fine differences in priors, lining up with our region-wise monotonicity in k

(Proposition 4.4). Regularity of the precision choice (§5, Proposition 5.3) ensures these comparative

statics are robust to small shifts in primitives.

13Formally, when the no-signal action follows the majority, increasing k (salience of distinctiveness) weakly expands
the investment region (Proposition 4.4); interior precision and action probabilities then move as in Corollaries 5.1–5.2.
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In cultural markets, status often derives from distinctiveness: early adopters and “outsiders”

reap private benefits from nonconformity. Our threshold characterization implies that visible popu-

larity (pt) crowds some agents away from the mainstream choice, generating cycling and diversity in

observed actions even without technological externalities. When a genre, style, or meme is already

popular, higher k makes additional adoptions less likely at the margin (Corollary 5.1 and Corol-

lary 5.2); yet the same contrarian force invites more “tests” of alternatives, expanding exploration

(Proposition 4.4). This yields a simple macro-pattern: mainstream surges coincide with more at-

tempts at differentiation and more informative minority actions, whereas very strong contrarianism

can push behavior into low-value deviation for its own sake.

On platforms where actions (likes, shares, reposts) are public, pt is highly salient. Our model

predicts two opposite forces as pt grows: (i) a tilt away from boosting already-popular content

(threshold shift), and (ii) a larger set of histories in which users invest in “search” (click-throughs,

reading, creating competing posts) to find contrarian content (investment-region expansion). De-

sign choices that make popularity more or less salient14 therefore change both what gets ampli-

fied and how much users investigate alternatives. Because our results keep the inference channel

Bayesian, these design predictions are separate from algorithmic feed-back effects: they arise even

in simple, transparent feeds.

The results yield low-commitment instruments for sustaining informativeness without prescrib-

ing beliefs. In environments prone to premature herding, modest visibility of popularity (or small

symbolic rewards for minority contributions) can replicate the threshold tilt and enlarge the range

of histories in which agents test alternatives (Proposition 4.4). Conversely, when fragmentation is

a concern, dampening the salience of pt can mitigate excessive contrarianism. These are positive

implications; we refrain from ranking k globally.

Our applications rely on the taste-based bonus being tied to observed popularity among prede-

cessors. This choice avoids fixed-point complications in expectations about popularity and keeps

inference disciplined by the actual history. It is precisely this clarity that lets us connect quotes

like Planck’s and Kuhn’s to tight comparative statics: when orthodoxy is visible, contrarian mo-

tives move thresholds in predictable ways and—in the baseline-majority region—make additional

information gathering privately worthwhile.

8 Discussion and Concluding Remarks

Our analysis shows how embedding contrarian motives into a sequential learning environment re-

shapes both information acquisition and welfare. On the positive side, nonconformist preferences

expand the set of public beliefs under which agents find it worthwhile to experiment, thereby sus-

taining informative actions and counteracting premature herding. At the same time, these prefer-

ences lower chosen precision conditional on investing, reflecting the substitution of “being different”

for “being accurate.” The welfare consequences follow an inverted-U pattern: mild contrarianism

14Operational proxies for pt include visible like/share counts, trending labels, or sorted feeds. Our comparative
statics speak to these UI “knobs” even in non-algorithmic feeds because they work through observability, not recom-
mendation logic.
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is socially beneficial, but excessive contrarianism drives agents to act against already-informative

public beliefs, generating correctness losses and inefficient experimentation.

Beyond the formal results, the framework sheds light on broader phenomena. In scientific com-

munities, priority races and reputational incentives make standing apart from orthodoxy valuable,

but contrarianism taken too far undermines shared standards of evidence. The same logic applies

in cultural diffusion, where nonconformist motives keep diversity alive yet risk fragmentation. Our

model thus offers a disciplined way to analyze when minority-seeking stabilizes experimentation

and when it turns into destructive contrarianism.

The simplicity of our specification suggests several extensions. Allowing heterogeneity in con-

trarian intensity k—possibly private information—would capture richer identity-based motives

and may generate assortative dynamics or segmentation. Introducing networks of observation,

or continuous-time arrivals, could further align the model with empirical settings such as scientific

collaboration or social media. Finally, linking contrarianism with forward-looking incentives (as in

reputation models) may illuminate how agents balance distinctiveness with credibility.

Taken together, the results highlight a central message: contrarian motives, when moderate,

improve learning by counteracting conformity, but when extreme, undermine the informativeness

of actions. This trade-off connects the sociology of science with the economics of cascades, offering

both a positive framework and a normative lens for thinking about conformity, diversity, and the

dynamics of ideas.

A Additional proofs for Section 4

A.1 Proof of Proposition 4.3

The objective Gt(µt, ρ; pt, k)− c
2ρ

2−F1{ρ > 0} is continuous on [0,∞) and goes to −∞ as ρ → ∞,

so a maximizer exists. In the Gaussian case define

s⋆t (ρ) =
1
2 +

τt − Lt

ρ
, z0(ρ) = s⋆t (ρ)

√
ρ, z1(ρ) = (s⋆t (ρ)− 1)

√
ρ.

Then

Pr(at = 1 | θ = 1) = 1− Φ
(
z1(ρ)

)
, Pr(at = 0 | θ = 0) = Φ

(
z0(ρ)

)
,

and E[1− pt(at)] = pt + (1− 2pt) Pr(at = 1). Differentiating gives

∂

∂ρ
Gt(µt, ρ; pt, k) = µt φ(z1)(−z′1) + (1− µt)φ(z0)z

′
0 + k(1− 2pt)

∂

∂ρ
Pr(at = 1),

with z′0 =
s⋆t
2
√
ρ +

√
ρ s⋆′t , z

′
1 =

s⋆t−1
2
√
ρ +

√
ρ s⋆′t , and s⋆′t = −(τt − Lt)/ρ

2. At any interior maximizer

ρ⋆t > 0 the Euler condition ∂ρGt = cρ⋆t holds.
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A.2 Proof of Proposition 4.4

Let P1(ρ) = Pr(at = 1). If pt >
1
2 and the no-signal action is 1, then P1(0) = 1 and

E[1− pt(at)]− E[1− pt(at)]
∣∣
ρ=0

= (1− 2pt)
(
P1(ρ)− 1

)
≥ 0.

Thus the objective inside the supρ≥0 has increasing differences in (ρ, k), and the supremum Φt(µt, pt; k)

is weakly increasing in k (the case pt <
1
2 is symmetric). Berge’s maximum theorem yields conti-

nuity and the interval property of the investment region.

A.3 Proof of Proposition 5.3

For each x = (µt, pt, k), the feasible set [0, R] with R large ensures compactness; the objective

is upper semicontinuous in ρ (downward jump only at 0) and continuous in (ρ, x) away from 0.

The maximum theorem gives upper hemicontinuity of Γ(x) and continuity of the value. Under

uniqueness, strict SOC, and a nonsingular derivative of the FOC, the implicit function theorem

yields local continuity/differentiability of ρ⋆t (x).

B Robustness: popularity–belief proximity

This lemma is not used in the proofs above; it only records that when pt and µt are ε-close,

comparative-statics directions coincide.

Lemma B.1. Fix k ≥ 0. If |pt − µt| ≤ ε and
∣∣µt − 1

2

∣∣ > ε, then sign
(
ct − 1

2

)
= sign

(
c̃t − 1

2

)
where

ct =
1
2 + k(pt − 1

2) and c̃t =
1
2 + k(µt − 1

2).

Proof. Immediate from |ct − c̃t| ≤ kε and the triangle inequality around 1
2 .
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