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Abstract

A benevolent advisor observes a project’s complexity and posts a
pass—fail threshold before the agent chooses effort. The project suc-
ceeds only if ability and effort together clear complexity. We com-
pare two informational regimes. In the naive regime, the threshold is
treated as non-informative; in the sophisticated regime, the threshold
is a signal and the agent updates beliefs. We characterize equilibrium
threshold policies and show that the optimal threshold rises with com-
plexity under mild regularity. We then give primitives-based sufficient
conditions that guarantee separating, pooling, or semi-separating out-
comes. In a benchmark with uniform ability, exponential complexity,
and power costs, we provide explicit parameter regions that partition
the space by equilibrium type; a standard refinement eliminates most
pooling. The results yield transparent comparative statics and welfare
comparisons across regimes.
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1 Introduction

Most institutions run on thresholds. A medical graduate either clears a
licensing bar or does not; an airline first officer either meets a minimum
flight-hours rule or sits in the right seat later; a firm’s promotion “bar” is
raised or lowered with consequences for who advances and how hard people
push. In each case a single cutoff both filters who proceeds and shapes what
others learn about the task at hand. Recent policy shifts underscore how
consequential such decisions are: the USMLE moved Step 1 to pass/fai]ﬂ
to redirect student effort and alter residency-selection incentives (USMLE
Program)|, |2020)); in commercial aviation, the post-2010 “1,500-hour rule”ﬂ
codified in the FAA’s pilot-qualification reforms made the hour threshold
itself the pivotal gate into airline cockpits (Federal Aviation Administration,
2013). Thresholds are simple to communicate and enforce—but they also
broadcast information about underlying difficulty. When a bar is set high
(or lowered), careful observers may infer something about the environment,
not just the candidates.

This paper proposes a model to study that dual role. An advisor privately
observes project complexity and, before any costly action, commits to a
pass—fail threshold that only reveals whether the agent’s latent ability lies
above the cutoff. Success requires that ability and effort together clear true
complexity, so the test both partitions beliefs and shifts the marginal return
to effort Pl

We analyze two informational regimes that bracket many applications. In
the naive regime, the agent treats the posted threshold as non—informativelﬂ
about complexity and conditions only on pass/fail. In the sophisticated
regime, the threshold is itself a signal: the agent understands the advisor’s
policy and updates beliefs about complexity from the cutoff. Our object is the

IThe stated motivations included reducing “score obsession,” rebalancing curricula, and
mitigating wellness concerns. The reform also altered residency selection, where Step 1 had
functioned as a single-index screen; see the discussion around (USMLE Program), 2020]).

2Industry debates emphasize both safety benefits and pipeline costs. For our purposes,
once the rule is codified the bar itself becomes an object of inference and incentive; see
(Federal Aviation Administration, [2013]) for the policy background.

SThis dual role echoes education signaling: actions both sort types and affect payoffs.
In our case the cutoff simultaneously filters and motivates.

4“paive” need not mean irrational. Institutions sometimes explicitly instruct candidates
not to infer difficulty from posted rules (“don’t read into the bar”), or norms make such
inference taboo. We model this as a benchmark that brackets the fully Bayesian case.



advisor’s threshold policy—the mapping from complexity to cutoffs—chosen
to maximize the agent’s expected utility (a benevolent benchmarkﬂ that iso-
lates information-and-incentives effects).

We show that optimal thresholds are (weakly) increasing in complexity in
both regimes. Formally, we establish increasing differences and apply mono-
tone comparative statics to prove that any optimal selection is nondecreasing
in complexity; for interior solutions the derivative is nonnegative (Theorems
and. Beyond monotonicity, we classify equilibrium threshold policies by in-
formativeness—separating, pooling, or semi-separating—and give primitives-
based sufficient conditions for each case that are stated directly in terms of
the thickness of the ability distribution near the cutoff, the dispersion of com-
plexity, the curvature of effort costs, and the value of success (Definition
and Theorem [3)).

A key novelty is to make the threshold itself an equilibrium signal about
the state of the world (complexity) in a setting where the receiver still chooses
costly post-signal effort. This tight coupling of endogenous disclosure (via
the bar) and subsequent incentives is distinct from standard disclosure or
persuasion environments where the receiver’s action is the terminal choice,
and from standard threshold/standard-setting models where the bar screens
agents but does not reveal the state that determines the productivity of ef-
fort. Contemporaneously, [Bertola| (2025)) studies equilibrium failure rates
when institutions endogenize pass thresholds. His analysis focuses on how
standards map into observed failure frequencies; by contrast, our advisor
observes complexity and the threshold signals that state, which then feeds
into the agent’s continuation effort. The two perspectives are complemen-
tary: our separating/pooling taxonomy explains when bar movements should
be informative about the environment, while his failure-rate lens speaks to
observable pass/fail frequencies.

In a benchmark with uniform ability, exponential complexity, and power
costsﬂ we derive explicit, graphable inequalities that compare a feasible sepa-
rating policy to a conservative pooling benchmark. These yield ready-to-plot
separating/pooling regions; with quadratic costs they are fully explicit via

SEquivalently, the designer is utilitarian over the agent’s ex-ante payoff. Replacing this
with an institutional objective (e.g., weighted success minus effort externalities) preserves
our monotonicity results under mild alignment.

6Uniform F keeps ability tails uncluttered; exponential G gives memorylessness and
tractable posteriors; power costs include quadratic and provide interpretable elasticities
of effort.



the Lambert W function, and for general power costs they collapse to a one-
dimensional root. We then show how the boundary curves shift with the
project’s value and cost curvature. Finally, imposing a standard refinement
(the Intuitive Criterion) removes most pooling{’| a small threshold deviation
can be profitable only for the type that benefits from separation, which forces
beliefs that unravel pooling (Theorem .

The empirical upshot is straightforward: our sufficient conditions pro-
duce transparent diagnostics for when institutions should separate (let bars
track complexity closely) versus pool (hold the line at a constant bar), and
our refinement results explain why, in practice, pooling often unravels once
stakeholders can infer complexity from observed bar moves (e.g., grading
standards, safety minima, or promotion bars that “creep” with market con-
ditions).

Related literature

We connect to (i) signaling/communication, (ii) information design and evi-
dence disclosure, and (iii) monotone comparative statics.

Classic models show how monotone message partitions arise endogenously
in education and communication (Spence, 1973 Crawford and Sobel, [1982).
Our advisor’s threshold is a one-dimensional signal whose informativeness
is determined in equilibrium. Because pooling can often be sustained by
beliefs, we rely on the Intuitive Criterion (Cho and Kreps, |1987)) and related
D1/Divinity logic (Banks and Sobel, 1987) to discipline off-path beliefs in
the threshold environment.

The pass—fail rule is a coarse scoring device, akin to the optimal coarse
disclosure mechanisms in Rayo and Segal| (2010)) and to binary experiments in
Kamenica and Gentzkow| (2011)). A closely related strand studies endogenous
grading/standards. Boleslavsky and Cotton/| (2015)) analyze how a school sets
grading standards to trade off selection and incentives; their bar screens stu-
dents and shapes effort but does not signal the state of the world. Bertola
(2025)) examines equilibrium failure rates under endogenous pass thresholds,
emphasizing how standards translate into observed fail shares. In contrast,
our threshold both sorts and reveals complexity, and the agent responds

"The Intuitive Criterion assigns off-path beliefs to the type that would strictly gain
from deviating; here, a small threshold tweak that benefits exactly one T forces posteriors
that unravel pooling. See|Cho and Kreps|(1987)) and the related D1/Divinity idea in Banks
and Sobel (1987)).



with post-signal effort—this two-way interaction between disclosure and in-
centives is where our comparative statics and taxonomy bite. We also relate
to evidence design and selective disclosure: Herresthal (2022) studies hid-
den testing and what evidence is disclosed ex post. Our advisor instead
posts an observable bar ex ante; yet the common theme is how a designer
chooses a coarse experiment that strategically shapes downstream behavior.
Finally, links to certification and grading with endogenous thresholds (Chan
et al., [2007; |Ostrovsky and Schwarz), 2010) are direct: our results rationalize
when coarser (pooling) certification survives refinements and when standards
should track underlying difficulty.

We use single-crossing and lattice methods (Milgrom and Shannon, [1994;
Topkis, [1998)), extended to uncertainty/endogenous information via |Athey
(2001, |2002)) and strict/interval dominance tools (Edlin and Shannon, 1998;
Quah and Strulovici, [2009). Log-concavity and related hazard-rate condi-
tions (Bagnoli and Bergstrom| 2005)) ensure that threshold and effort best
responses move monotonically with complexity and with posterior informa-
tiveness, delivering our separating/pooling regions.

Because policy thresholds in education, labor markets, and regulation
have measurable behavioral effects, our model provides structure beneath
RD-style estimates (Hahn et al., [2001; Imbens and Lemieux, 2008} |Cattaneo
et all [2020). It clarifies when endogenously informative cutoffs amplify or
attenuate post-threshold behavior and how cost curvature and the distribu-
tional shape of complexity govern whether institutions should separate or
pool; and it complements the failure-rate perspective emphasized by Bertola
(2025)) by highlighting when bar movements themselves should be interpreted
as signals of environmental difficulty.

The paper proceeds as follows. Section [2] lays out the environment and
timing. Sections (3| and |4] develop the naive and signaling analyses and prove
monotonicity. Section [5] derives the sufficient partitions. Section [6] applies
the refinement. Section [7| provides extensions showing robustness to additive
technologies, correlation, noisy tests, and testing costs, and quantify the
value of observing complexity. Section [§ concludes. All the proofs are in [A]

2 Model description

Environment There is a benevolent advisor and a single agent. If the
project succeeds, the agent receives a benefit V' > 0. Success depends on



three primitives: the agent’s latent ability § € R, , his effort e € R, , and the
project’s complexity 7" € R, . Technology is multiplicative:

success < e >T.

Effort is costly. The cost function C': R, — R, satisfies C'(0) = C’(0) = 0,
C’(e) > 0, and C"(e) > 0 for e > 0.

Uncertainty Ability 6 is drawn from a commonly known distribution F'
with density f on R,. Complexity 7" is drawn from a distribution G with
density g on R,. Unless stated otherwise, # and T are independentﬂ We
will impose shape restrictions only when needed for existence and monotone
comparative statics (Sections [3| and [4)).

Test Before any effort choice, the advisor can post a pass—fail testﬂ that
compares ability to a threshold 6* > 0. The test is costless and does not
require effort. It returns an outcome y € {pass, fail} with

y = pass < 0 > 0", y = faill < 0 < 6".
The threshold may carry information about 7" in equilibrium, since the ad-
visor observes T and commits to the test.
Timing

1. Nature draws (6, 7)) from F' x G. The advisor privately observes 7T'; the
agent observes neither 6 nor 7.

2. The advisor commits to a threshold 6* € ©
measurable mapping ¢ : Ry — 0, T +— (T =

R.. A policy is a
(T).

3. The test is administered and y € {pass, fail} is publicly observed.

C
9*

4. The agent chooses continuation effort e, > 0; it can depend on the
posted #* and on y.

8Positive assignment (hard tasks to strong agents) is common in hospitals and pro-
fessional services. Our correlation extension shows the results persist under MLR-type
dependence between 6 and T.

9Pass/fail is the coarsest scoring rule. Institutions often choose coarse disclosure to
manage incentives; see Rayo and Segal (2010). Our endogenous cutoff implements such
coarse experiments.



5. Payoffs realize. The agent’s utility is V - 1{fe, > T} — C(e,). The
advisor is benevolent and maximizes the agent’s expected utility.

Beliefs from the test Conditional on y, the agent knows whether 6 lies
above or below 6*. Let the truncated densities be

frsl010) = =

For complexity, the beliefs used at the effort stage depend on the informa-
tional regime defined next.
We analyze two cases{|

020}, fal®]07) = Pffg)) 140 < 6}

e naive agent. The agent treats 0* as non-informative about 7" and uses
the prior G when choosing e,. Thus the CDF and density entering the
effort problem are Gy« = G and gy = g.

e Sophisticated agent. The agent is fully Bayesian and understands the
advisor’s policy 1(+). Upon observing an on-path threshold 6*, he forms
the posterior over T,

o _ 9 H{y(t) =07}
ju(t | 0 ) = f dr’
Tip(1)=6* g(T) T
with corresponding Gy-( = [ p(t | 6*)dt and density go-. Off-path

beliefs are part of equﬂlbrlum when we reﬁne equilibria, we apply the
Intuitive Criterion.

Agent’s continuation problem Given 6% an outcome y € {pass, fail},
and regime-specific beliefs about 7', the agent solves

max V- Eg, |:G9*<06)i| —C(e),

e>0

where the expectation is with respect to fpass(- | 0%) or feu(- | %) depending
on y. When interior, first-order conditions are

C,(epassw*)) =V Ee’\‘fpass('le*) [9 Go (06pa55(9*))] ) (1)
C'(ewil(07)) = V' - Bon g0 [0 or (Oeran (07))] - (2)
10Think of the naive case as “policy is posted by committee; candidates are told not to

infer difficulty,” and the sophisticated case as “everyone knows how the bar moves with
conditions.” Both are realistic bracketing assumptions.

7



Under the regularity imposed below, ep.ss(6*) > eri(0*) (pass truncation
raises expected 6) and each effort choice is unique if interior.

Advisor’s problem Fix T (observed by the advisor). Anticipating epass(6*)
and eg(0*), the advisor chooses the threshold to maximize the agent’s ex-
pected utility:

U(T, §*) = / Oo[v 1 {fepses(07) > T} — C(epass(e*))} dF(6)

o+
+ / [V era(6) > T} = Clen(0)] aF(0).  (3)
0
A threshold policy is a measurable v : R, — O, T+ ¢(T).

Equilibrium In the naive regime, an equilibrium is a pair (¢, {€pass; €fail })
such that, for every T', ¢(T) € arg maxy- U(T, 6*) given Gy = G and efforts

solving f.

In the sophisticated regime, a Perfect Bayesian Equilibrium (PBE) is a triple
(d}a {epassa efail}, ,LL) with:

1. Agent optimality. For every on-path 0* = (1), the efforts epass(6%), €fai1(6%)
solve ([I)—(2) using go- from p(- | 6*).

2. Advisor optimality. For every T, ¢)(T') € arg maxg- U(T, 6*) given those
efforts and beliefs.

3. Belief consistency. For on-path thresholds, u(- | 6*) is Bayes’ rule
under ; off-path beliefs are specified, and when we refine equilibria
they satisfy the Intuitive Criterion.

Regularity We will appeal to the following standing assumptions when
proving existence and monotonicity.

Assumption 1. (i) f and g are continuous, strictly positive on compact
subsets of Ry, and (weakly) log-concave. (ii) C is C?, strictly convex for
e > 0, with C" continuous and bounded away from 0 on compacts.

Under Assumption |1 the kernels in — are decreasing in e, so each
effort is well defined and unique when interior; pass truncation implies €pass >



efaii- These properties, combined with the piecewise form of , yield increas-
ing differences in (7, 0*) and the monotonicity results stated in Theorems
and 2

Benchmark parameterization When we specialize, we will use 6 ~
Unif[0, 1], T" ~ Exp(\), and C(e) = € with v > 1. This delivers closed-
form expressions for the sufficient inequalities that partition the parameter
space by equilibrium type (B).

3 Equilibrium analysis: naive agent

The naive regime isolates the selection effect of pass/fail without the extra
feedback loop from threshold—as—signal. This gives a clean “moving kink”
structure in the advisor’s problem that we will reuse verbatim in the sig-
naling case: only the distribution over T' changes. The section therefore
builds intuition for all that follows—how pass/fail truncation shifts expected
ability, how the marginal benefit of raising 8* behaves, and why monotone
comparative statics fall out.

In the naive regime, the agent treats the posted threshold 6* as non-
informative about 7" and uses the prior G at the effort stage. Hence Gy = G
and go- = ¢ in (I)—(2). The only information created by the test is the
pass/fail truncation in ability.

Effort choices Given 6* and y € {pass, fail}, the agent solves

max V -Eq,[G(0e)] — Cle),
so the interior first-order conditions specialize to

Cl(epass(e*)) =V. E@prass(-\e*)[e g(eepass(e*))] ) (4>
C'(ewil(07) =V - Egu feac10)[0 9(0ewin(07))] - (5)

Pass/fail does two things to the agent’s problem: it shifts the distribu-
tion of 0 (pass FOSD dominates fail) and leaves the kernel e — 6 g(fe)
decreasing in e under log-concavity. The first drives epass > esii; the second
guarantees uniqueness (when interior) and underpins all comparative statics
by the implicit-function theorem.



Lemma 1. Suppose Assumption (1] holds. For each threshold 0* and each
outcome y € {pass, fail}, the agent’s continuation problem admits a mazx-
imizer e, (0*). Whenever the solution is interior, it is unique and satisfies
€pass(0%) > emil(0%). Moreover, e, (6*) is (weakly) increasing in V' and (weakly)
decreasing under first-order stochastic dominance shifts of T toward greater
complexity.

Proof sketch. Strict convexity of C' and continuity of the kernels 6 — 6 g(0e)
yield at most one interior solution; coercivity of C' yields existence. Since
frass first-order stochastically dominates fri and the right-hand side of is
increasing in the distribution of § under FOSD, we obtain epass > egil. Mono-
tonicity in V' and under FOSD shifts of T follows by the implicit function
theorem. O

Pass/fail “zooms in” on different regions of ability. Conditioning on pass
shifts mass to the right of 6*, which raises the marginal return to effort in
(4); since the right-hand side is decreasing in e, the unique solution must
be weakly higher in the pass group. This is the basic selection—incentives
complementarity that recurs throughout the paper.

Advisor’s problem Given T and anticipating epass(6%), efil(6*), the advi-
sor chooses 6* to maximize U(T,6*) in (B) with Gy- = G.

Holding fixed the (best-response) efforts epass(6*) and eq;(0*), the ad-
visor’s objective can be read as areas cut off by a right-moving kink at
max{0*, T /epass(0*)} and T'/eq(0*). As 6* increases, those kinks slide right,
which is exactly the source of increasing differences in (7', 6*).

Theorem 1. Under Assumption |l the advisor’s objective U(T,0*) has in-
creasing differences in (T, 6%). Hence for every T the set of optimal thresholds
is nonempty, and any optimal selection is (weakly) increasing in T. In par-
ticular, when the optimizer is interior, d6*/dT > 0.

Proof sketch. Write U as a sum of terms of the form — F'(max{6*, T'/ep.ss(6%) })
and —F(T'/egqi(6%)), with epass, ri depending only on 6*. Each term has a
kink that moves right with 6*, generating increasing differences. Topkis then
yields monotone optimal selections. O]

Harder environments mechanically call for (weakly) tougher bars. Em-
pirically, any proxy for T that shifts right should be accompanied by nonde-
creasing 6* if the institution is close to optimal in this benchmark.

10



The interior MCS result leaves open what happens near extremes of 7'
When T is tiny, success saturates and only costs matter near 6* = 0, creating
a no-test corner; when 7' is huge, success is rare unless either the threshold
collapses (expanding fail) or pass effort explodes—so the limiting choice is
governed by the continuation-cost tradeoff. The next statement formalizes
this split and pins down large-T" limits through the cost aggregator C(6*).

Proposition 1. Let U(T,6*) be the advisor’s objective in the naive regime.
There exists Tyman > 0 such that 0*(T) = 0 is optimal for all T € [0, Tyman]-

For every compact interval [Ty, T,] C (0,00) there exists K < oo such
that, for each T € [T,,T,], the function 6* — U(T, 0%) attains a mazimizer on
0, K. Moreover, for any T € (1y,T,,) at which U(T,-) is differentiable at the
mazximizer, the optimizer is interior and satisfies the first—order condition;
otherwise the maximizer occurs at a finite kink of U(T, ).

Define the continuation cost function

C(0%) = (1= F(0%)) Cepass(0%)) + F(0") Cewn(6%)),

and extend the policy space to © = [0, 00] by setting U(T, 00) := limg_,o, U(T, 6)
and C(00) = limg_,o C(0). Then, uniformly on compact sets of 6%,

U(T,07) = —C(0") + o(1) (T — o0).

Consequently, any sequence of mazimizers 0*(T) € argmaxg«cp,0o) U (T, %)
has limit points contained in

argmin C C [0, o0].
If argmin C = {é} is a singleton, then 0*(T) — 0 as T — oco. In particular:
(i) If argmin C = {0}, then 6*(T) — 0.
(ii) If argmin C = {oo}, then 6*(T) — oo.
(i) If argmin C = {0} C (0,00), then 6*(T) — 0.

Remark. When 0* — oo, the pass set is empty and everyone realizes y =
fail. The induced effort egy(0*) converges to the effort computed under the
full prior (since F(0%) — 1), so U(T, 00) is the limiting value with an “always

fail” test. If one restricts © = [0, 0] with 0 < oo, case (ii) above becomes the
boundary choice 0*(T) = 6.

11



Corollary 1. Let C(0*) = (1 — F(6*)) C(epass(0%)) + F(6*) C(egn(0*)) as in
Proposition (iéi}. Suppose epass(0) is (weakly) increasing and e (6%) is
(weakly) decreasing in 0*. Then:

1. If there exists § such that 0% +— (1 — F(60%)) C(epass(0%)) is strictly de-
creasing on [0,00) and 0% — F(0%) C(ewq(0%)) is nondecreasing there,
then C is strictly decreasing on [0,00) and hence argmin C = {oo}.
Consequently, 0*(T) — oo as T — oo.

2. If there exists 6 > 0 such that 0* — (1 — F(6*)) C(epass(07)) is non-
decreasing on [0,0] and 0% — F(0*) Clequ(0*)) is strictly decreasing

there, then C is strictly decreasing on [0,6] and hence argmin C = {0}.
Consequently, 0*(T) — 0 as T — oo.

In the benchmark 0 ~ Unif]0,1], T" ~ Exp(\), and C(e) = €7, these
monotonicities hold numerically across the parameter ranges we consider,
and the case in (1) (shut—down) is the typical large-T limit.

Proof. By Proposition[lf(iii), U(T, 6*) = —C(6*)+0(1) uniformly on compacts
as T' — o0, so any limit point of maximizers must lie in argmin C. In (1), C is
strictly decreasing on [0, o0), hence minimized at the endpoint co; similarly in
(2) it is strictly decreasing on [0, 8], hence minimized at 0. The convergence
of 6*(T') follows because a unique minimizer forces all maximizers of U(T},-)
to converge to it as T" — oo. O

Case (1) (“shut-down”) says that when the marginal cost of keeping a
pass group is eventually dominated by its measure 1 — F'(6*), the optimal
policy is to send everyone to the fail branch at very high 7. In many li-
censing or safety screens, this corresponds to “no one passes in very bad
states” —consistent with observed de facto moratoria in extreme conditions.

In Section [5| we illustrate the large-T" behavior by showing that, for our
benchmark primitives, the shut-down limit in Corollary [1}is the empirically
relevant case across wide parameter ranges.

4 Equilibrium analysis: signaling

The only element that changes relative to the naive case is the distribution
of T entering the agent’s problem: the posted 6* now induces a posterior
through (-). All primitives of the “moving kink” remain; the difference

12



is that informativeness raises the marginal return to effort via the poste-
rior density gg+, which strengthens (rather than weakens) our monotonicity
conclusions.

In the signaling (sophisticated) regime, the agent understands the advi-
sor’s policy 1¥(-), so the posted threshold #* is itself informative about T.
After observing 6* and the pass/fail outcome y € {pass, fail}, the agent up-
dates beliefs and then chooses effort.

Posteriors induced by the threshold Given a threshold policy ¢ :
R, — O, the on-path posterior over complexity after observing 6* is

g(t) H{yp(t) = 0"}
fmp(f):e* g(r)dr’

u(t | 67) = Gy () = / ut |6 dt, G- (x) = G ().

Pass/fail truncation in ability is the same as in Section 2} fpass(d | 6*) and
ffail(e | 9*)

Effort choices Given 6* and y € {pass, fail}, the agent solves

max V-E9|y[é9*(96)] — Cle),

so the interior first-order conditions are exactly — with the posterior
density gg«:

Cl<€pass(0*)) =V. IE9~f,,ass(~|6*) [‘9 gf?* (erassw*))] ) (6>
C'(ewil(07)) = V' - Bon g0 [0 o+ (Oean (07))] - (7)

Lemma 2. Under Assumption |1 and on-path Bayes posteriors, the contin-
uation problems admit mazimizers epass(6*) and eqy(0*). Whenever interior,
solutions are unique and satisfy epass(0*) > eni(6%). For fized 6*, e, (0*) is
(weakly) increasing in V' and (weakly) increasing in the informativeness of
the posterior in the Blackwell order.

A more informative posterior tightens mass around realized T. With
log-concavity, = +— gg+(x) is decreasing, so the right-hand side of @—@
shifts up: the agent’s best responses (weakly) increase. This is the “better
information raises effort” channel behind our separation results.

As in Lemmall] strict convexity of C' and the fact that e — Eg[6 go- (fe)]
is decreasing deliver at most one interior solution; coercivity gives existence.

13



Pass truncation implies that fy.ss FOSD-dominates fej, hence epass > €fail.
For informativeness, if Gg+ becomes more informative in the Blackwell sense
and g+ is log-concave, then x +— o« () is decreasing and the right-hand side
of @f rises; the implicit function theorem yields higher e,.

Advisor’s problem Given 7" and anticipating epass(0*), eqi(0*), the advi-
sor chooses 0% to maximize U(T,6*) as in (3)), but the effort kernels now use
g~ induced by .

Theorem 2. Under Assumption[1] with on-path Bayes consistency, the advi-
sor’s value U(T, 0*; i) has increasing differences in (T, 0*). Consequently, for
every T the set of optimal thresholds is nonempty, and any optimal selection
0*(T) is (weakly) increasing in T'; interior solutions satisfy d0* /dT > 0.

Proof sketch. Fix 6* and the induced posterior. As in Section [, U is a sum
of terms like —F (max{60*,T/epss(6*)}) and —F (T/eei(0*)), with epass, Efail
depending only on 6*. The “kinks” in these terms shift right with 6*, pro-
ducing increasing differences pointwise in the posterior. Taking expectation
over the on-path posterior preserves increasing differences. Topkis then gives
a nondecreasing selection in 7. O]

A nondecreasing optimal selection may be strict, flat, or flat on blocks:
these correspond exactly to separating, pooling, and semi—separating policies.
The next definition and theorem make that partition explicit and connect it
to primitive conditions.

We classify equilibria by the informativeness of ¢) about T.

Definition 1. A PBE (v, {€pass, €fail}, t) is separating if T # T" implies
W(T) # Y(T"); pooling if (T) is constant on a set of types of positive mea-
sure; and semi-separating otherwise (pooling on a subinterval and separating
elsewhere).

Theorem 3. Let U(T,0) denote the advisor’s continuation value when thresh-
old 0 is posted and the agent best-responds given the (on—path) posterior
induced by the candidate policy 1. Define the argmax correspondence

(T = arg%lezg(U(T, 6).

Then:

14



(i) By Theorem[d, U has increasing differences in (T,6), hence I'(T) is
nonempty and has a nondecreasing measurable selection y*. With on—path
Bayes beliefs, (v*, BR(v*)) is a PBE.

(ii) Every monotone PBE falls into exactly one of:

e Separating: 1 is strictly increasing on a full-measure set (equiv-
alently: for a.e. T the maximizer is unique and (T') is strictly
increasing a.e.).

e Pooling: v is (a.e.) constant: there exists 6 with (T) = 0 for
a.e. T.

e Semi-separating: There exists a nondegenerate closed interval I =
[T1, Ty] with (T) = 6 for all T € I, while ) is strictly increasing
on (—o0,Ty) and on (Ty, 00).

These three cases are mutually exclusive and exhaustive.

If for Lebesque—a.e. T the mazimizer is unique, i.e. I'(T) = {6*(T)},
then the monotone selection *(T) = 6*(T) is strictly increasing a.e.; hence
a separating PBE exists.

For any constant § € ©, there exist off-path beliefs that support a pooling
PBE with ¢(T) = 0. (Advisor optimality holds pointwise because off-path
beliefs can make all deviations weakly unattractive; on—path Bayes pins the
posterior at 0 to the pooled set.)

Suppose there exist Ty < Ty and 0 such that § € T(T) for every T €
(T3, T3], while supT(T) < § for T < Ty and inf T(T) > 0 for T > Ty. Then
there evists a semi-separating PBE with ¢(T) = 0 for T € [I1,Ty] and
W(T) € T(T) strictly increasing outside [T, Ty].

Remark. Any constant ¢(T) = 0 is a PBE given suitable off-path beliefs;
on—path Bayes pins the posterior on the pooled set.

If the argmax is a singleton a.e., the nondecreasing selection is strictly
increasing a.e., hence separating.

If0 € T(T) for all T € [Ty, Ty) while T'(T) lies strictly below (above) 8 for
T < Ty (T >Ty), paste the constant block on [Ty, Tz] and the unique selection
outside.

Where the marginal value of informativeness equals the marginal contin-
uation distortion, flat blocks become viable; these equalities define (weakly)
monotone frontiers in primitive space by continuity of the envelopes.
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Pooling can often be supported by beliefs. A small off-path shift in 6*
that helps only a specific T” triggers the Intuitive Criterion, which assigns
posterior mass to 7" and breaks pooling. We formalize this in Section [0
(Theorem ; the effect is to expand the separating region at the expense of
pooling.

Under 6 ~ Unif|0, 1], T' ~ Exp(\), and C(e) = e”, the posterior go« is a
(normalized) restriction of the exponential density to the preimage {t : ¥(t) =
0*}. 1If 4 is separating and continuous, then {t : ¥(t) = 0*} is a singleton
and the posterior collapses to a point mass; effort then solves a deterministic
cutoff problem conditional on pass/fail truncation in 6. If 1 is piecewise
constant (pooling or semi-separating), the posterior is exponential truncated
to the pooled interval. In either case, @f reduce to one-dimensional
equations in ep,ss, €fait With kernels that are either degenerate or truncated
exponentials, and the advisor’s objective U(T,0*) is computed by the same
piecewise logic as in Section [3]

5 Parametric benchmark and equilibrium par-
tition

We now specialize to a benchmark where formulas are explicit and the par-
tition by equilibrium type can be graphed directly. Throughout this section:

0 ~ Unif[0,1], T ~Exp(}), Ce)=¢ (y>1), V>0.

Uniform ability keeps tails uncluttered, exponential complexity delivers
posteriors that stay in family under truncation, and power costs give inter-
pretable elasticities while retaining tractability. The point is not knife—edge
optimality, but closed-form inequalities that make the separating/pooling
frontier graphable and comparable across (A, V7).

The naive regime uses the prior G at the effort stage; the signaling regime
replaces G' by the posterior induced by the on-path threshold 6*.

Effort FOCs in the benchmark Let fo.(- | 6%) and fea(- | 6%) be

the pass/fail truncations of Unif[0, 1] as in Section [2] In the naive regime,
m(z) = Aexp(—Az). Plugging into (I)-(2)) yields:
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Lemma 3. Let 6 ~ Unif[0, 1], T" ~ Exp(\), and C(e) = €¥ with v > 1. In
the naive regime, interior efforts satisfy

ey A {e*e—,\e*epas — o~ Apass . o~ A" Cpass _ @~ Aepass
pass 1—6* A€pass (Aepass)? ’
767_—1 _v. i [1 _ ef)\é) Efail B e*ef)\e Efail
fail 0 (Aegain)? Aeail

In the signaling regime, replace X exp(—Ax) by the on-path posterior density
Jo+ ().

Proof. Direct integration of [ 6 m(fe)df with m(z) = Xexp(—Az) under the
two uniform truncations delivers the closed forms. The signaling case is the
same substitution with gy« in place of m. Uniqueness (if interior) follows from
strict convexity of C' and the fact that e — [ 6m(fe)df is decreasing. [

For each group, the left side is marginal cost ve?~!; the right side is a
pass/fail-truncated moment of the density of T evaluated at fe. As 6* rises,
the pass truncation shifts 6 right and the fail truncation left, widening the
gap between ep,ss and egj. Increasing A steepens the density and dampens
both efforts.

Fix a one-parameter family of feasible separating policies indexed by a
policy knob « € (0, 1]: upon observing T', the advisor posts

1 1
* — mi - ' - — /v
0% (T) mm{l, T /w} and induces pass—group effort eg(a) aVHT,

This design guarantees that every passing agent (including the marginal pass
type) succeeds, because 6 es(ar) > 0% (T) es(ar) = T[]

We will compare this feasible separating value to a conservative pooling
benchmark. Relative to this family, [B] derived two primitives—based objects:
the feasible separating lower bound USP(A,V;a) in and the pooling

upper benchmark USOOI(A, V') (with the corner e = 0 enforced). Define

B\ V,y,0) = USP(A,Via) — U\ V).

v

11'We use o purely as a tractable tuning parameter to generate a lower bound on the value
attainable under separation. Smaller o means lower pass effort but a tougher threshold
(fewer passers); larger o means higher pass effort but a milder threshold (more passers).
The per—pass net surplus is (1 — o)V because C(es) = (aVl/V)v = a"V. We do not
claim this family is pointwise optimal among all separating policies; it is a convenient,
closed-form benchmark that yields transparent inequalities.
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Figure 1: Separating lower bound U®®" and pooling upper bound T as

functions of A (y =2, V =1, @ = 1). The intersection A\* is the sufficient
boundary: for A < A\* separation dominates by our bounds; for A > A* the

pooling benchmark is (conservatively) better by the bounds.
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To understand Figure [1, observe that when A is small, complexity is
typically low, so a revealing threshold lets the advisor secure success in the
pass group with modest effort; the separating lower bound rises faster than
the pooling bound and dominates. As A\ grows, more mass sits on high
complexity: the pooling upper bound approaches V' (the “best you could ever
do” without information), while the separating bound saturates at (1 —a7)V
because the pass group’s effort is capped by the policy. The curves cross once
at A\*, which is exactly the comparative-statics boundary for our sufficient
conditions.

Corollary 2. For fized a € (0, 1], the crossing \*(V, v; «) is (weakly) increas-
ing in' V. As a function of v, X*(V,~; «) is (weakly) nonincreasing under the
sufficient bounds.

Proof. Differentiate ®(\;V,v, ) at a root. The implicit function theorem
gives

AN 9D/oV

AV~ 9D/ON
At the crossing, 9®/0V > 0 because UZ™ scales linearly in V' with a strictly

positive bracket while the envelope derivative of USOOI with respect to V
equals 1 — e € (0,1) (where e, is the pooling optimizer). Numerically,
and under mild regularity on growth of e,(\), 9®/IN < 0 at the crossing
(the pooling envelope derivative in A dominates the separating derivative).
Hence d\*/dV > 0; strict positivity is observed throughout our grids.

For fixed (), V, ), (1—a?)V is strictly decreasing in 7, and V'/7 is weakly
decreasing if V' > 1 (weakly increasing if V' < 1), so the separating term
weakly falls in v; the pooling value U:OOI is the maximum of V(1 —e*¢) —¢?
over e > 0, which is weakly decreasing in y pointwise in e; hence its supremum
is weakly decreasing. Therefore, moving v up shifts ®(\;-) weakly down for
each A\, and any crossing moves weakly left. O]

Thus the sufficient separating region expands with project value and
(weakly) shrinks with curvature: higher V' pushes, higher v pulls.

Figure [2| illustrates the intuition. A higher V raises the return to making
thresholds informative (it scales the marginal value of effort and success), so
the separating region expands: the crossing moves to larger .

To draw the partition for a given (V, «):
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Figure 2: Boundary A*(V) for v = 2 and a = ;. Points with A < A*(V) lie
in the separating region by our bounds.

1. For each gridpoint (v, \), solve the pooling FOC Ve *¢ = ve7~! for
ex(\; V) (unique root), and compute U:OOI()\, V') by the envelope.

2. Evaluate UZP(A, V; ) from ([10).

3. Set (N V, v, ) = usr —UI;OOl. Points with ® > 0 lie in the separating
region (sufficient); ® < 0 are pooling-sustainable by the bounds. The
boundary is ® = 0; find it by bracketing and bisection in A for each ~.

For v = 2, the pooling bound admits the closed form in (8) via Lambert W.

When effort gets quickly expensive (high ), informative thresholds buy
less extra effort; institutions should then either lower the bar’s sensitivity
to perceived difficulty or complement thresholds with non-effort instruments
(mentoring, team composition).

Consider the intuition of Figure [3| More convex costs dull the incentive
effect from information: the pass/fail split raises effort less when marginal
costs explode, so the pooling benchmark overtakes at lower \.

Small A means complexity is typically low; the feasible separating pol-
icy guarantees success in the pass group at modest cost and dominates the
pooling benchmark. Large A puts substantial weight on high complexity;
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Boundary A *(y) forV=1, a
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Figure 3: Boundary A*(y) for V =1 and o = 3. Larger v (more convex
effort costs) shifts the boundary left: separation becomes harder to justify.

the pooling benchmark then captures most attainable value (approaching V)
while the separating policy preserves a wedge (1 —a”)V, so pooling becomes
sustainable by the bound. Higher V' pushes the crossing outward (more sep-
aration), while higher curvature v brings it inward (costly effort dulls the
benefit of revealing policies).

Together, Figures show that higher project value expands the sep-
arating region (outward shift in \*), while greater cost curvature shrinks
it—clean, testable comparative statics.

Numerical implementation We locate A\* by bracketing and bisection.
For each v > 1, the pooling FOC

Ve & = 761’1

has a unique solution e,(\;V,~) because the left-hand side is strictly de-
creasing in e while the right-hand side is strictly increasing. We then eval-

uate U:OOI()\, V) =Vv(1 —le*)‘e*) — ¢ and USP(X, V;a) via (10), compute
O\, V,v,a) =U P = Usoo , and refine the bracket to the zero of ® by bisec-
tion. A mixed grid in A (log near 0, linear for A\ 2 1) speeds bracketing. For

~v = 2, one may use the Lambert-W closed form .
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6 Refinement and elimination of pooling

In threshold environments, tiny deviations identify the unique type that truly
benefits from a slightly different bar. Any refinement that assigns beliefs to
“the type with a strict local gain” therefore breaks most pooling arguments.
The Intuitive Criterion is the classic way to formalize this logic.

Pooling can often be supported by off-path beliefs. We therefore impose
the Intuitive Criterion (IC) of|Cho and Kreps (1987). Intuitively, if some type
of advisor (i.e., some complexity T') would strictly benefit from a deviation
to a nearby threshold # while all other types would not, then observing
should make the agent assign probability one to that unique profitable type;
in that posterior, the deviation must be optimal for that type, contradicting
a pooling best response.

Local profitability and type separation Fix a pooling candidate with
on-path threshold #. Let U(T,6) be the advisor’s value from evaluated
at the continuation efforts induced by 6. Write the marginal value of infor-
mativeness (MVI) at @ for type T as

MVI(T;0) = %U(T,Q) S
6=0

where the derivative is taken holding the agent’s effort responses at their

envelope values. By Theorems [1] and 2 U has increasing differences, so
MVI(T'; 6) is nondecreasing in 7" under the regularity in Assumption .

Lemma 4. Suppose there exists T with MVI(T”;6) > 0, and MVI(T;6) <0
for all T # T" in a neighborhood of T'. Then there exists 0 arbitrarily close
to 6 such that

U(T',0) > U(T',0) and U(T,0) < U(T,0) for all T #T'.

By continuity of U in (7',#) and monotonicity of MVI(-;6) in T', a small
move in 6 in the direction of MVI(T"; 0) raises U at T" while weakly lowering
it for nearby types with nonpositive marginal gains. A standard mean-value

argument delivers the strict/weak inequalities.

Intuitive Criterion Under IC, if a deviation @ is strictly profitable for
some types and (weakly) unprofitable for all others, the agent’s posterior
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upon observing § must be supported on the profitable set; if that set is a
singleton {7"}, the posterior assigns probability one to 7.

Theorem 4. Consider a pooling PBE with on-path threshold 0. If there
exists a type T' and a nearby threshold 6 such that u(T, 0) > U(T",0) while
U(T, é) < U(T,0) for all T # T', then the pooling equilibrium fails the
Intuitive Criterion. Hence such pooling cannot be sustained.

If observed thresholds occasionally jump by tiny amounts in “easy-to-
rationalize” directions (e.g., slightly higher bars in clearly tougher periods)
and behavior responds as our FOCs predict, IC would select separation in
those neighborhoods—pooling should not be expected to persist there.

By Lemma [5| there is a type-separating deviation 6. IC requires the
agent to assign posterior probability one to 7" after observing 6. Given that
posterior, 0 strictly increases the advisor’s payoff at 7", making the deviation
profitable and contradicting the optimality of # at 7”. Hence the pooling PBE
is eliminated [

Implications in the benchmark The closed-form bounds in [Bf compare
a feasible separating policy with a conservative pooling benchmark. They
identify a region where separation strictly dominates pooling by the bounds:

O\ V,7,0) = USP(\, Via) = UE™(A, V) > 0.

v

In that region, there exists a neighborhood of complexities for which
the marginal gain from informativeness is strictly positive at any pooling

threshold.

Proposition 2. If ®(\;V,v,a) > 0, then no pooling PBE at that (X, V,~)
survives the Intuitive Criterion. Only separating (or semi-separating with
flat zero—marginal-gain block@ can remain.

Proof sketch. ® > 0 implies that for a positive-measure set of 7" the advisor
strictly prefers a separating move over any pooling policy. By continuity,
at a pooling candidate # there exists 7" with strictly positive local marginal
value, while nearby types do not gain. Lemma[5|then produces a type-specific
deviation and Theorem [ eliminates pooling. O

1 formalizes the IC posterior and the deviation construction.
13IC does not rule out flat segments if multiple types are exactly indifferent to small
movements in 6.
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Proposition 3. In any semi-separating PBE that survives the Intuitive Cri-
terion, v is weakly increasing and piecewise continuous. On any pooled block
[Ty, Ty with pooled level 0, the marginal gain from informativeness is zero for
almost every T € [Ty, Ty); the endpoints satisfy U(T;,0) = U(T;,0;) where 6;
15 the adjacent separating value at T;.

Observe that if MVI(-; #) were strictly positive on a subset of the pooled
interval with positive measure, Lemma [5[ would generate a profitable devi-
ation eliminating pooling via Theorem [l Thus the marginal gain must be
(essentially) zero throughout the pooled block, and matching at the bound-
aries follows by continuity of U and monotonicity of .

In the uniform—exponential-power-cost benchmark, the sufficient bound-
ary \*(V,~; «) defined by ®(A\*; V,~, ) = 0 is the frontier where pooling be-
gins to be (conservatively) sustainable by the bounds. Proposition [2| shows
that for A < A*(V,~; «), all pooling equilibria are eliminated by IC; only sep-
arating (and possibly semi-separating with flat segments satisfying Proposi-
tion [3) can survive.

Remark. The same logic extends to noisy tests and correlated primitives
under the MLR and log-concavity conditions used in Section [7: IC elimi-
nates any pooling configuration with strictly positive local marginal gains for
a unique subset of types.

7 Extensions

The baseline model isolates a simple force: a single cutoff both allocates
information about ability (pass/fail) and, when the agent is sophisticated,
signals the environment through the advisor’s choice. The extensions below
ask whether this mechanism is an artifact of our most convenient assumptions
(multiplicative technology, independence, noiseless tests, zero testing costs,
full observability of complexity) or whether it travels to nearby settings that
show up in practice. In each case we motivate the departure with a concrete
use case (licensing, grading, audits, internal assignment, or regulation), con-
nect to existing literatures on persuasion, certification, and inspection, and
explain how our results carry over and what new comparative statics emerge.
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7.1 Additive technology

In many applications effort “adds points” rather than scaling ability. Exam
prep pushes a test score upward; compliance staff add items to a checklist;
a junior analyst’s hours add to a team’s baseline. The USMLE Step 1 re-
form is a useful mental model: before pass/fail, study time moved the raw
score by roughly additive bumps; after pass/fail the institution still sets a
threshold that partitions the posterior, but the technology is closer to 6 + e
than 6 - e (USMLE Program, 2020)). The question is whether our knife-edge
conclusions—monotone thresholds in complexity and the separating/pooling
taxonomy—hinge on multiplicativity or reflect a more general “moving-kink”
structure.

With 6 + e > T and log-concave posteriors, our core mechanism is intact:
pass groups work (weakly) harder than fail groups, the advisor’s problem
has increasing differences in (7', 60*), and optimal thresholds are (weakly) in-
creasing in complexity. Intuitively, the cutoff still creates a rightward-moving
kink in the success region as 6* rises, so Topkis-style monotone comparative
statics go through. The practical takeaway is that whether coaching “adds”
points or “scales” returns, harder projects should rationally induce tougher
cutoffs, and pass cohorts should exert more effort ex post.

Proposition 4. With success technology 6 + e > T, log-concave on-path
posteriors Go«, and strictly conver C, we have €pass(0*) > ernt(0*), the advi-
sor’s value exhibits increasing differences in (T,0%) in both regimes, and the
separating/pooling/semi-separating taxonomy carries over.

Proof sketch. Interior FOCs: C'(e,) = V - Egjy[go+ (0 + €,)]. Log-concavity
makes x — gy (x) decreasing, so the kernel is decreasing in e; strict convexity
gives uniqueness (if interior). Pass truncation FOSD-dominates fail, yielding
€pass = efail- The advisor’s payoff is again a sum of terms with kinks whose
locations shift right with 6*, giving increasing differences. O

7.2 Correlation between ability and complexity

Hard tasks rarely arrive at random. Firms route thorny clients to senior
teams; teaching hospitals assign complex cases to high-ability residents; se-
lective programs track stronger students into harder courses. In all of these,
ability and complexity are positively correlated by design. Conversely, in
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some organizations difficult, neglected work lands on over-stretched, lower-
ability units.[?] Because our threshold is both a filter and a signal, sorting can
amplify or mute its informational bite: when high 6 sees high T, a pass com-
municates more about a tough environment than when cases are randomly
assigned.

Under MLR-type correlation and log-concave posteriors, the pass group
still works (weakly) harder, U(T, §*) preserves increasing differences, and op-
timal thresholds remain (weakly) increasing in 7. Positive sorting ezpands
the region where separating policies are attractive (passes are especially infor-
mative about high T'), while negative sorting compresses it. For readers, the
intuition is simple: if “hard things go to strong people,” a high bar does dou-
ble duty—screening and credible signaling about difficulty—so institutions
have more to gain from letting thresholds move with complexity.

Proposition 5. Suppose (0,T) has a joint density with h(T | 6) satisfying
MLR in T with respect to 0, and the relevant conditional/posterior densi-
ties are log-concave; let C' be strictly convex. Then epass > egil, the advi-
sor’s value has increasing differences in (T,6%), and the optimal threshold
is (weakly) increasing in T in both regimes. Positive (negative) correlation

enlarges (shrinks) the separating region.

MLR preserves single-crossing after pass/fail truncation and after condi-
tioning on #*. The decreasing-kernel and convexity arguments for the effort
problems go through. Increasing differences follow from the same moving-
kink logic, now integrated against the conditional distributions. Comparative
statics of the separating region follow from the effect of correlation on the
informativeness of the pass/fail split about 7.

7.3 Imperfect (noisy) tests

Real cutoffs are measured with error. Exams are hand-graded or curved; au-
dits have false positives and negatives; and algorithmic “pass” decisions have
ROC trade-offs. In residency selection and professional licensing, committees
regularly wrestle with borderline files and noisy assessments; in compliance,
sampling misses some violations and flags some innocents (e.g., the inspec-
tion models in Mookherjee and Png, [1989). If pass/fail is noisy, two forces

Tnternal assignment and “tracking” in education are salient examples: sorting raises
the informational bite of pass/fail because “pass” now reflects both ability and task diffi-
culty. Our comparative statics quantify this bite.
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collide: the pass group learns less about ¢ (truncation is blurrier) and the
observed threshold is a less precise signal about T[]

With MLR noise and strictly convex costs, e; > ey and increasing differ-
ences survive, but the value of informativeness shrinks smoothly with noise.
As error rates rise, the sufficient region where separation dominates shrinks
toward pooling. Intuitively, noise flattens the marginal benefit curve of rais-
ing 0* because both (i) the pass cohort is less selected on ability and (ii) a
posted cutoff carries less credible information about complexity. This gives
a clean, testable prediction: when instruments are noisy (new exam formats;
shallow audits), institutions should temper how aggressively they let thresh-
olds move with perceived difficulty.

Proposition 6. Let the pass/fail test comparing 0 to 0* have false-negative
and false-positive rates n=(6*),nT(0*) € [0,1) that satisfy MLR in 6. With
strictly conver C, we retain epass > e and increasing differences in (T, 6%).

MLR ensures the posterior after s MLR-dominates that after f, so the
same kernel and convexity arguments yield ep,ss > egy and uniqueness (if
interior). The moving-kink argument for increasing differences is unchanged.
Noise attenuates truncation and thus the gain from informativeness, shrink-
ing the separating inequality in [B| continuously in the error rates.

7.4 Costly testing and partial commitment

Setting and moving thresholds is rarely freeE] Psychometric work to validate
a new cut score, proctoring time, extra audits, or legal review of a policy
change all generate costs; in some settings the advisor can only commit to a
coarse menu (“low/medium /high bar”) rather than a fine mapping. Think
of regulators ratcheting a minimum-hours rule (FAA), a dean’s office tuning
a qualifying-exam bar, or a compliance team deciding how intensively to
screen vendors. The natural question is whether small complexities are worth
“turning on” the threshold at all, and how commitment frictions change the
shape of optimal policies.

15Noise can be statistical (grading error) or strategic (limited audit intensity). In in-
spection models (Mookherjee and Pngj, (1989)), similar trade-offs are summarized by ROC
curves; our message is that noisier instruments weaken both selection and signaling.

16Cut-score setting is resource-intensive (psychometrics, item calibration, legal review).
When posting the bar is costly, one should expect inaction bands—thresholds that do not
move for small changes in T. Our proposition formalizes this.
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Adding a convex posting cost k(0*) creates a no-test region: for low T,
the marginal information value is dominated by marginal testing cost, so
0*(T) = 0 is optimal. Beyond a cutoff T'(k), the optimal threshold again
rises (weakly) with complexity. Under partial commitment (menus or dis-
cretized bars), the same feasible-separation logic applies: our sufficient sepa-
rating region still certifies when informative thresholds are worthwhile, while
the Intuitive Criterion bites harder against pooling. Policy implication: in-
stitutions should expect inaction bands—intervals of complexity where it is
optimal to keep the bar unchanged—and wider bands when testing is expen-
sive or governance restricts fine tuning.

Proposition 7. If posting 6 incurs a continuous, increasing, convex cost
k(0) with k(0) = 0, then there exists T'(k) > 0 such that 0*(T) = 0 for all
T € [0, T(k)], and for T > T (k) the optimal threshold is (weakly) increasing
i T.

Proof sketch. Subtracting k(6*) preserves increasing differences in (7°,60%),
so monotonicity survives. For small 7', marginal gains from information
are dominated by marginal testing costs, creating a no-test region. The
closed-form replacement follows by evaluating the feasible separating policy
at 0*(T) = T/(aV'/7) and subtracting k(aV'/7) per pass. O

If the advisor can commit only to a correspondence (menus or discretized
thresholds), the Intuitive Criterion becomes more powerful, but the conser-
vative separating region from [B|still applies (it comes from a feasible policy).

7.5 Advisor does not observe complexity

Sometimes the designer must pick one bar for everything. A central board
sets a single passing score for multiple cohorts; a regulator chooses a uniform
minimum standard without seeing firms’ task difficulty; a firm adopts a global
promotion bar despite heterogeneous business lines. This “global threshold”
is a natural benchmark for the value of observing complexity: how much is
lost when the advisor cannot condition the cutoff on 17

Without observing 7', the advisor optimizes a constant threshold § against
the prior, collapsing the signaling margin. The value of observing 7" is weakly
positive and becomes strictly positive exactly when our sufficient separating
condition holds on a set of complexities of positive measure: the designer
would like to raise the bar on tougher tasks and lower it on easy ones. When
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pooling is optimal everywhere by our bounds, the value of information is
(essentially) zero. Empirically, this yields a “price of ignorance” bound:
in environments where we diagnose separation (e.g., hard rotations, high-
variance lines of business), letting managers or committees tailor thresholds
to realized difficulty should produce measurable gains.

Proposition 8. If the advisor cannot observe T, she chooses a constant
threshold 0 to mazimize Er[U(T,0)]. The value of observing T is weakly non-
negativﬂ and strictly positive whenever the sufficient separating inequality
holds on a set of complexities of positive measure under some feasible policy;
it 1s zero when the pooling inequality holds everywhere.

Comparing sup, E¢[U(T,(T))] to supg Ex[U(T,0)] gives weakly non-
negative value by optimizing U pointwise in T'. Strict positivity follows if
a feasible separating policy yields strictly higher payoff than any constant
policy on a positive-measure set; otherwise pooling is optimal and the value
is zero.

Across additive technologies, MLR correlation, noisy instruments, and
posting costs, two primitives drive design: (i) decreasing kernels that keep
effort problems well behaved, and (ii) right-moving kinks that preserve in-
creasing differences for the advisor. As these weaken (more noise, steeper
costs), the case for separation shrinks smoothly, matching the comparative
statics in our benchmark figures.

8 Conclusion

We studied a simple advising problem where a benevolent advisor observes
project complexity T and posts a pass—fail threshold 6* before the agent
chooses costly continuation effort. The threshold both allocates information
about ability (pass/fail) and, when the agent is sophisticated, signals the
environment through the advisor’s choice.

Two takeaways organize the results. First, under standard shape restric-
tions on primitives and convex effort costs, the advisor’s optimal threshold
is monotone in complexity in both informational regimes: d6*/dT > 0 (Sec-
tions |3 and . This monotonicity delivers a clean equilibrium taxonomy

""Formally, sup,, E7[U(T,4(T))] > supg E¢[U(T, 6)] by pointwise optimization in 7.
This is the classic value-of-information logic from [Blackwell (1953]).
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into separating, pooling, and semi-separating policies. Second, we provide
explicit, graphable inequalities—comparing a feasible separating policy with
a conservative pooling benchmark—that partition the parameter space and
allow straight—to—figure diagnostics. In the benchmark with uniform abil-
ity, exponential complexity, and power costs, the boundary can be traced in
(7, A) for any given V (Section [f]).

Refinement sharpens the picture. The Intuitive Criterion eliminates pool-
ing whenever a small threshold deviation is uniquely profitable for a type
(Section @ In the sufficient separating region identified by our closed forms,
pooling cannot survive the refinement, so only separating (or semi-separating
with flat zero-marginal-gain blocks) remains.

Robustness exercises show the mechanism is not an artifact of the multi-
plicative technology or independence. The same monotone policy and taxon-
omy survive under an additive technology, correlation satisfying MLR, noisy
tests, and testing costs (Section . When the advisor cannot observe T', the
two informational regimes collapse and the value of observing T' is weakly
positive, becoming strictly positive when separation is feasible on a nontrivial
set.

The model yields testable predictions. Thresholds should be (weakly) in-
creasing in objective measures of complexity; pass groups exert weakly more
effort than fail groupﬁ; and environments with higher project value or lower
cost curvature exhibit more separation. When the threshold is endogenously
informative, observed changes in 8* should co-move with post-threshold ef-
fort in the directions implied by our FOCs. These implications connect to
empirical settings that leverage policy cutoffs and RD-style designs.

Two directions seem most useful next. On the theory side, allowing multi-
level (or continuous-score) disclosures and endogenous test noise would let
us endogenize coarseness and quantify the information—incentive trade-off
beyond binary thresholds. On the empirical side, calibrating the bench-
mark inequalities to data where both thresholds and post-threshold behavior
are observed (e.g., qualifying exams, compliance screens, internal promotion
bars) would map observed partitions directly into primitives and recover the
implied separating region.

Overall, the paper provides a tractable way to reason about when and how

181f an institution raises 6* on objectively harder cohorts (or years), we should observe
(i) more post-threshold effort by the pass group and (ii) stronger RD-style behavior around
the bar when the bar is more informative.

30



a simple threshold both informs and motivates. The closed-form partitions
make the knife-edges transparent, while the refinement results clarify which
pooling arguments are robust to credible off-path beliefs.

A Proofs

Lemmas collect the monotonicity and decreasing—kernel primitives
used throughout. The naive results (Section rely on the moving-kink
representation and Berge/Topkis; the signaling results (Section {4 add only
on—path Bayes and the Blackwell-informativeness step. The refinement argu-
ments formalize the one-sided derivative (“MVI”) logic used by the Intuitive
Criterion.

We use 1{-} for the indicator, assume C'is C* with C"(0) = 0, C’(e) > 0,
C"(e) > ¢ > 0 on compacts, and—where invoked—log-concavity and strict
positivity of the relevant densities on compact subsets. When we appeal to

monotone comparative statics we use standard increasing-differences (Top-
kis) and single-crossing (Milgrom—Shannon) arguments.

A.1 Preliminaries

Lemma A.1. Given 0* € (0,00) and density f on R, define

Joass (0 67) = 1_‘10(—}%11{9 >0}, fa(0]0°) = Ff<(53>1{9 <6},

Then foass(- | 0%) first-order stochastically dominates fu(- | 0%).

Proof. For any nondecreasing ¢, [ ¢(0) foass(0 | 0%) d0 > [ ¢(0) frau(60 | 6*) dO
because the support of fyass is to the right of 8* while that of fg is to the
left and both are renormalizations of f. Equivalently, the CDF under fyass
lies weakly below that under fr,; for all arguments. O

Lemma A.2. Let m : R, — R, be a continuous density that is weakly de-
creasing (m'(x) < 0 wherever the derivative exists). Then for any probability
measure v on Ry with finite first moment, the map

Ro(e) = / 0 m(0¢) v(do)
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is continuous and weakly decreasing in e. If m'(-) < 0 on a set of positive
measure and v has support with positive mass away from 0, then R, is strictly
decreasing.

Proof. Continuity follows by dominated convergence. For e; > e; > 0,

R,(e2) — R,(e1) = /H[m(ﬁeg) — m(fe1)]v(df) <0,

since m is weakly decreasing and € > 0. Strict inequality holds under the
stated strictness conditions. O]

A.2 Proofs for Section [3]
Proof of Lemma[l. Fix 6* and y € {pass, fail}. The agent solves

max D, (e;0") =V - /G(Qe) vy (df) — C(e),
where vy = foass(+ | 6%) and vy = fr(- | 6%). The map e — [ G(0e) v, (df) is
continuous and bounded by 1, while C' is coercive; hence ®,(-;6*) attains a
maximizer on [0,00) by Weierstrass.

Whenever the solution is interior, the FOC is

C'(e,) =V - /Qg(ﬁey) v, (d0).

By Lemma the right-hand side is weakly decreasing in e, while C" is
strictly increasing; there is at most one interior solution. Corner solutions
are covered by C"(0) >V [ 0g(0) v,(d6).

Since v, first-order stochastically dominates vy by Lemma and the
right-hand side of the FOC is increasing in the distribution of § under
FOSD, we obtain epass(0*) > emu(6*) (with the same corner convention).
Monotonicity in V' follows from the implicit-function theorem applied to
C'(e) = VR, (e) with R, decreasing in e by Lemma .

Finally, suppose T' changes from G to Gy with Gy < G pointwise (a shift
toward greater complexity), and both have weakly decreasing densities on
R,. Then for all e > 0 and every 6 > 0, g2(fe) < g;(fe), so the FOC’s right-
hand side (and thus the marginal benefit curve) shifts weakly downward; the
unique interior solution (if any) weakly decreases by the implicit-function
theorem. This covers the benchmark families we use (e.g., exponential). [
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Proof of Theorem [1 Write, for €pass = €pass(0*) and egi = esil(6*),

U'(jv7 9*) =V (/Oo]l{eepass Z T} dF(@) + /9*]1{96]‘3“ Z T} dF(9>>
— Cepass) (1 — F(07)) — Clegan) F(67).

Since epass, i depend only on 6* (not on 7T'), we may rewrite the success
part as

v[1 — F(max{0", T/epass}) + (F(67) — F(T/efa“))J.

Fix 6* and consider the function of T" given by —F(max{0*,aT'}) and —F(aT)
(with @ > 0). For any 03 > 07 and Ty > T}, the difference

[F(max{63,aTb})—F(max{0}, al>})| —[F (max{63, aTi })— F (max{6}, aT })]

is nonnegative because the “kink” at a1 = 6* shifts right as * rises. Thus
each term has increasing differences in (7,60*), and so does U(T,0*) (cost
terms do not depend on T'). Topkis’ theorem then implies that the argmax
correspondence T' +— arg maxy- U (T, 6*) is nonempty and has a nondecreasing
selection. For interior optima, differentiating the first-order condition in T’
yields df*/dT > 0. O

Proof of Proposition[]l Fix K < oo and write ©x = [0,K]. The map
(T,6*) — U(T,6%) is continuous: the indicator 7' — 1{fe,(6*) > T} is
right—continuous; e,(6*) is continuous in #* by the implicit-function theo-
rem (Lemma with C” > 0); and the integrands are dominated by in-
tegrable bounds. Hence, by Berge’s Maximum Theorem, for each T' there
exists 05 (T) € argmaxg-co, U(T,6*) and 0} (-) is upper hemicontinuous.

Fix any § > 0. For T small, e ]l{ﬁepass(é) > T} dF(0) =1 — F(f) and
foé ]I{Hefaﬂ(é) > T} dF(#) = F(f), so the success probability is locally flat
in é, while the cost term

Cepass(9)) (1 = F(6)) + Clera(9)) F(6)

is strictly increasing in 0 near 0 (continuity of €pass, € and strict convexity
of C' with C’'(0) = 0). Therefore there exists Tynan > 0 such that 6*(7") = 0
is optimal for all T € [0, Tyman-
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Fix 0 < T, < T, < co. By Step 1, for each T' € [T}, T,,] the maximizer over
any compact [0, K| exists. Since U(T,6*) is continuous and (by inspection
of (3)) piecewise continuously differentiable with finitely many kinks in 6*
on compacts (the kinks come from the points where max{6*,T"/e,ass(0*)}
changes regime), we can pick K large enough that any maximizer lies in
0, K]. If U(T,-) is differentiable at the maximizer, the envelope theorem
yields the first—order condition and interiority; otherwise the optimum occurs
at a finite kink.

Write the success part of U as

V([ 10ennto) 2 71 00+ [ 1i000at) 2 ) d00),

*

which vanishes uniformly in * on compacts as T — oo (bounded conver-
gence; the thresholds T'/e,(6*) diverge). Hence U(T,0*) = —C(6*) + o(1)
uniformly on compacts. Berge’s maximum theorem plus epi-convergence
then imply that any limit point of maximizers belongs to arg min C; unique-
ness of the minimizer yields convergence of the maximizers. The boundary
cases follow from the definition of C at 0 and oco. [

A.3 Proofs for Section (4
Proof of Lemmal[3 Fix 0* and y € {pass, fail}. The agent solves

max V-/ég*(ee) vy (do) — C(e),

e>0

with v, as above. Existence of a maximizer follows by Weierstrass (bounded
benefit, coercive cost). For interior solutions,

C'(ey) =V - / 0 o+ (Bey) v, (d6).

By Lemma (applied to gg«), the right-hand side is weakly decreasing in
e, so there is at most one interior solution. Pass truncation FOSD-dominates

fail (Lemma [A.1)), hence epass > €fail-
Informativeness. Let two on-path posteriors p and i at 6* satisfy g >=p u
(Blackwell more informative). Write the objective as

U(e: p) = v/ [/w < Qe}u(dt)] v, (d6) — C(e).
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For each fixed e and 6, the map pu — [1{t < e} u(dt) is affine (hence
both convex and concave) in p. Therefore, by Blackwell’s theorem, higher
informativeness weakly raises the value of the best action whenever the
problem has single crossing in (p,e) (Milgrom—Weber monotonicity). Sin-
gle crossing holds because, when gy« is log-concave, the marginal condi-
tion C'(e) = V [0 go-(0e) v,(df) has the “decreasing differences” property
in (u,e): more informative p tightens the posterior around its realized T
and—by log-concavity—raises the value of  +— gp«(x) near x = fe in the
convex order. Thus e, (6*; 1) > e, (0*; ). In the benchmark exponential fam-
ily (Section , this reduces to a simple FOSD comparison of posteriors and
the conclusion follows directly["] O

Proof of Theorem[J Fix 6* and the associated on-path posterior. As in the
naive case,

U(T, 0% p0) =V [ 1— F( max{0", T/epass(e*)})+(F(@*)—F(T/efai|(0*)))+] —cost terms,

with €pass, €ri1 depending only on 6* (not on 7). The same “moving-kink”
argument as in Theorem (1| shows that for any fixed posterior, U(-,0%; u)
has increasing differences in (T, 60*). Taking expectations over the on-path
posterior preserves increasing differences. Topkis then yields a nondecreasing
optimal selection 6*(T'); interior optima satisfy df* /dT > 0 by differentiating
the FOC. m

Proof of Theorem[3. Increasing differences (Theorem [2) imply T'(T") has a
nondecreasing measurable selection (Topkis). On-path Bayes yields the
posterior at any on—path 0; the agent’s best-responses are well-defined by
Lemma [2} advisor optimality holds by construction. The three classes in are
logically disjoint and cover all nondecreasing maps.

If T'(T) is singleton a.e., the (unique) nondecreasing selection is strictly
increasing a.e. (otherwise two distinct types would share the same unique
maximizer on a set of positive measure, contradicting increasing differences).
This gives a separating PBE.

Fix 6. Let ¢ = 6 and specify off-path beliefs that assign zero continuation
value to any deviation; then no type profits from deviating. On-path Bayes

19Formally, under exponential T' the posterior on any pooled interval remains exponen-
tial with a larger rate when the interval is shorter (more informative), making = — go« ()
uniformly larger and shifting up the FOC right-hand side for all e.
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at 0 is the distribution of 7' truncated to the pooled set, which pins down
the agent’s efforts. This is a standard construction.

Define ¢(T) = 6 on [T}, Ts] and pick a nondecreasing selection ¢(T) €
[(T) on (—o0, Ty) U (Ty, 00) with (T,) < 0 < (Ty). For T € [T1,Ty], 0 is
optimal by hypothesis. For T < Ty (vesp. T > T5) any 6 > 0 (resp. 0 < 0)
is strictly dominated by increasing differences and the separation of I'(T")
from @; thus the pasted policy is pointwise optimal. Bayes’ rule on-path and
arbitrary off-path beliefs complete the PBE. n

A.4 Proofs for Section

We first formalize the local deviation used by the Intuitive Criterion.

Lemma 5. Let 0 be a pooling threshold and define the right-hand directional

derivative o 75
MVIF(T:0) = lim (L.0+e) ~UT,9)
5 19

whenever the limit exists (it does almost everywhere by Rademacher’s theorem
under Assumption . Suppose there is T' with MVIT(T';0) > 0 and a
neighborhood N' of T on which MVI*(T;0) <0 for all T € N'\ {T"}. Then
for all sufficiently small ¢ > 0,

UT',0+¢)>U(T,8) and U(T,0+¢) <U(T,6) YT e N\{T"}.

Proof. By definition of the one-sided derivative, there exists £ > 0 such that
for all € € (0, £] the above inequalities hold with weak/strict signs as stated.
Continuity of U in (T, 0) and local boundedness of the derivatives ensure we
can pick a common ¢ for a small neighborhood N. m

Proof of Theorem [ Consider a pooling PBE with on-path 6. If there exists
T' and & > 0 such that U(T",0+¢) > U(T',0) while U(T,0+¢) < U(T, ) for
all T # T" in a neighborhood of 7", then upon observing the off-path § + ¢
the Intuitive Criterion requires the agent to assign posterior probability one
to 7" (the unique type that could benefit). At that posterior, the deviation
is strictly profitable for 77, contradicting optimality of # at 7’. Lemma
guarantees such a deviation whenever MVI'(T”; #) > 0 and nearby types have

nonpositive MVI*. Hence the pooling PBE fails the Intuitive Criterion. [J
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A.5 Proofs for Section

Proof of Proposition[4, Under +e > T, the interior FOCs become C’(e,) =
V-Egjy[go+(0+e,)]. If o~ is log-concave, then x — go-(x) is decreasing on R,
SO Lemma applies verbatim with e in place of fe; existence /uniqueness
(if interior) and ep,ss > efail follow. The advisor’s payoff can again be written
as a sum of terms of the form —F(max{0*,T — a}) and —F(T — a) with
a = e,(0"), so the same “moving-kink” argument yields increasing differences
in (7,0*) and the same separating/pooling taxonomy. O

Proof of Proposition[J. Let h(6,T) be the joint density. MLR of 7" in 6 im-
plies that for 65 > 6, the likelihood ratio h(T" | 65)/h(T | 6,) is increasing
in 7. This property is preserved after pass/fail truncation in 6 and after
conditioning on 6*, so the posteriors used in the effort FOCs inherit single
crossing. The map e — Eg,[6 go- (fe)] remains decreasing by Lemma |A.2] en-
suring uniqueness of interior efforts and ep,ss > €. For the advisor, the same
“moving-kink” representation as before establishes increasing differences in
(T,0%) after integrating over the conditional distributions. Positive (nega-
tive) correlation between 6 and T' makes pass more (less) informative about
high T and therefore enlarges (shrinks) the set where separation is attrac-
tive—this follows from the fact that the marginal value of informativeness is
increasing in 7" by Theorem [2] O

Proof of Proposition [ Let the binary test at 6* produce y € {pass,fail}
with false-negative/positive rates n=(6*),n*(6*) € [0,1) that satisfy MLR in
0. Then the posterior of # after y = pass MLR-dominates that after y = fail,
which implies €pass > €gail by the same kernel/convexity argument as before.

The advisor’s payoff continues to be a sum of terms with kinks located at
T/é,(0%) and 6*; as §* rises the kinks move right, so increasing differences in
(T, 6%) are preserved. As noise increases, pass/fail truncation becomes less
pronounced, shrinking the marginal value of informativeness continuously
in (n™,n7) and therefore shrinking the sufficient separating region of ; as
(n™,n7) — (0,0) we recover the baseline. O

Proof of Proposition[7 Subtracting k(6*) from the advisor’s payoff preserves
increasing differences in (7', 6*) (the cost term is independent of T'). For small
T, Step 2 in the proof of Proposition[I]shows that marginal gains from raising
0* are dominated by k’(0*) near 0, so there exists T'(k) > 0 with 0*(T) = 0
for T € [0, T(k)]. For larger T, Topkis implies the optimal 6*(T) is weakly
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increasing. In the closed-form sufficient condition , the per-pass rent
(1 —a”)V is reduced by k(aV'/7), which yields the stated replacement. [

Proof of Proposition[§. Without observing 7', the advisor chooses a constant
threshold 6 to maximize E¢[U(T,0)]. With observation, she chooses a mea-
surable policy 9 to maximize E¢[U(T,(T'))]. Since sup,, Ep[U(T,¢(T))] >
supg E7[U (T, 0)] by pointwise optimization in 7', the value of information is
weakly nonnegative. It is strictly positive whenever there exists a positive-
measure set of complexities for which a feasible separating policy strictly
dominates all constant thresholds; conversely, if the pooling benchmark of
dominates for every T', then constant policies are optimal and the value is
Z€ro. O

B Closed-form inequalities for equilibrium par-
titions

This appendix develops explicit inequalities that partition the primitive space
into regions where separating, pooling, or semi-separating equilibria arise.
Throughout we adopt the benchmark primitives

0 ~ Unif[0,1], T ~Exp()), Cle)=¢€¢ (y>1), V>0.

The separating side is built from a feasible revealing policy (hence a lower
bound on the advisor’s payoff). The pooling side is an ability—wise bench-
mark that (conservatively) upper bounds the payoff attainable under pooling.
Therefore, whenever the separating lower bound exceeds the pooling upper
bound, separation is guaranteed by our bounds; when it does not, pooling is
sustainably better by the bound (the true boundary may be more favorable
to separation, especially under refinements).

B.1 Quadratic costs

Pooling upper benchmark Under pooling (agent does not learn T"), an
ability-wise upper benchmark replaces 6 by 1:

UPOOI()\,V) = max {V(l —e) — 62}.

e>0
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The FOC is Ve ¢ = 2¢. Let 2 = Ae so that ze* = %)\2 and z = W(K)\Q).
Using e = W(c)/c for ¢ = £ A? gives

W ()2 + 217 (c) v
>\2

—pool

U\ V) =V —

with the understanding that if the interior FOC yields a negative value, the
maximizer is the corner e = 0 and Up001()\, V) =0.

Separating feasible benchmark Fix a € (0,1] and consider the mono-
tone policy 0*(T) = min{1, T/(a/V)}.

In the pass group the agent sets epass = aV/V, guaranteeing success when-
ever T < av/V and delivering net (1 — a?)V. Averaging over T ~ Exp(\)
yields
1— e—/\a\/v

AoV

Corollary 3. With C(e) = €* and fired o € (0,1], as A | 0 we have UP =
—pool

L1 — a®)a V32 4 O(\2) while T = X2 + O(XY); as A 1 o0, U —
(1 —a*)V and T V.

UP(\Via)=(1-a*)V |1- (9)

Proof. Let z = Aa/V. Using the expansion e = 1 — z + %2 + O(a?),

2
1—e® r—% +0(23
po Lo g rm s RO w e
T T 2

Hence
U*P(\,Via) = (1 — oﬂ)v(g . O(xQ)) =11 = a®)aAV¥? +0(\?).

For pooling, set ¢ = ¥ A% and use W(c) = ¢ —¢? + O(c*) as ¢ | 0. Then

W(e)*+2W(c) = (c—* + 0(63))2 +2(c—+0() =2c— &+ 0(%).

Plugging into gives

v2
4

—=pool

T\, V) = V=

20—+ 0(c%) _ V—< &

IARY: 4y _ 2 4
S Ve )+O()\ ) AZLO(OY).
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Therefore, as A ] 0,

U\ Vie) =0), T V) = 6(N),

so UP > T for all sufficiently small A, yielding separation by the bounds.

As A1 oo, in ([9) we have z = AavV'V — oo and 1 — (1 —e™®)/z — 1, s0
Us? — (1 — a?)V. For pooling, choose e = ¢/\; then V(1 — e ¢) — ¢% =
V(1 —e) —c2/A?2 + V(1 —e©) as A — oo, and letting ¢ — oo shows
UPOOI(/\,V) t V. Hence U — (1 — a?)V and S V', proving the
large-A claim. Monotonicity of the zero of ®(+; V2, ) in V follows from the
implicit function theorem since d®/9\ < 0 at the crossing and 0®/90V > 0
(both terms scale up with V' but the separating term does so at lower order
near the boundary), so the crossing shifts to larger A when V' increases. [

B.2 General power costs: C(e) =¢7, v > 1

Under the same ability-wise benchmark, the FOC is Ve ™¢ = ve’~ 1. Let
z = Xe. Then

% —pool

y—1
e R O e T (z17)

X

Y

with the corner e = 0 (hence UgOOI = 0) enforced whenever it dominates.

With 6*(T) = min{1, T/(aV7)} and eps = aV'/7,

1— e—)\aVI/" ]

sep . o oy
U\ Via) = (1-am)V SVSTEE

1— (10)

Proposition 9. With C(e) = €7 (y > 1), let UTP(\,V; ) be as above and

TP\ V) = maxeso{V(1 — ) — &7}, If ®(\;V,y,0) = U — T2
is positive (zero, negative), then separation holds by these sufficient bounds

(boundary; pooling is sustainable by the bounds), respectively.

Proof. The feasible separating policy 6*(T) = min{1, T/(aV/7)} with pass
effort epass = aV/7 delivers the value in ; hence US" is a lower bound
on the advisor’s optimum.
For pooling, replacing € by 1 gives success probability 1 — e
effort e, so any pooling policy is bounded above by
sup {V (1 —e ™) — ¢},

e>0

¢ for any
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The interior FOC is Ve ™¢ = ~e’~!. Writing z = Me yields 277 'e* =
(V/~)A7 and the value

—=pool . Z\7 2771(2 + ’Y)

U, (/\,V):V(l—e )— (X) :V_T7
with the corner e = 0 (hence value 0) taken if it dominates. Therefore USOOI
is an upper bound on the payoff attainable by any pooling policy.

If &\ Vv, ) = USSP — U?Od > 0, every pooling policy yields strictly
less than the feasible separating policy; the benevolent advisor thus strictly
prefers a separating policy, so no pooling equilibrium can be optimal. If
® < 0, pooling is sustainable by the benchmark; and & = 0 defines the

boundary by the two-sided bounds. The statements follow. O]
Corollary 4. For v > 1 and fized a € (0,1}, as A | 0, US? = %(1 —
aa AV 4+ 0()\?) and UiOOI = O/ ): as At oo, USP — (L—a)V
and UiOOI — V.

Proof. Set x = AaV'/7. As before,

1 — e ‘ 1
== = 240(), so UYP(\Via) =5 (1=a") a AV 1+0(2).

For pooling, let z = Ae solve 277 1e* = (V/y)A\7. As X | 0, we have z | 0
and hence e =1+ z + O(2?), so
1/(v=1)
val(l Lo 0(22)) = K)\’Y = z= <K) ! A=) 0()\7/(%1))_
Y Y

Using 1 —e ™ =z — % + O(2%) and (z/\)7 = 27\ 77,

2 2l
+=pool z 3 V4

— \/0-1 [VK _ KV] + 0()\7/(7—1)),

where K = ((V/y))Y0=Y. Since K¥ = K"'K = (V/v) K, the bracket
simplifies to VK — (V/v)K = VK(y—1)/7, so

B v/(v=1)
USOOI()\7v) — (%) ()\TV> + o()ﬂ/(”_l)).
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Thus, as A | 0,
se —pool _
USP(A\ Via) =0()), Ty (A V)=6\/07),

Y

so ® > 0 for sufficiently small A and separation obtains by the bounds.

For A 1 0o, set e = ¢/ and note V(1 —e™ ) —e? = V(1 —e ¢) = /X7
V(1—e7); taking ¢ — oo shows U:OO] 1 V. In (10), * = AaV7 — oo, hence
the bracket tends to 1 and U® — (1 — «”)V. This establishes the large-\
claim. The outward shift of the zero of ®(:;V,~,«) in V follows from the
implicit function theorem, using continuity and the fact that the separating
side scales linearly in V' while the pooling side scales sublinearly near the

crossing. O
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