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Abstract. We propose to measure business cycles using vector autoregressions (VARs).

Our method builds on two insights: VARs automatically decompose the data into stable and

unstable components, and variance-based shock identification can extract meaningful cycles

from the stable part. This method has appealing properties: (1) it isolates a well-defined

component associated with typical fluctuations; (2) it ensures stationarity by construction;

(3) it targets movements at business-cycle frequencies; and (4) it is backward-looking, en-

suring that cycles at each date only depend on current and past shocks. Since most existing

filters lack one or more of these features, our method offers a valuable alternative. In an em-

pirical application, we show that the two shocks with the largest cyclical impact effectively

capture postwar U.S. business cycles and we find a tighter link between real activity and

inflation than previously recognized. We compare our method with standard alternatives

and document the plausibility and robustness of our results.
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1. Introduction

Economists disagree on the measurement of business cycles, the alternating periods of

expansion and recession observed in broad measures of economic activity. The problem lies

in the infinite number of possible transformations of any given series that can be applied to

extract a cycle.

The literature has explored various approaches, each reflecting a different perspective

on the nature of trends and cycles in the data. Some studies assume deterministic time

trends; others focus on growth rates instead of the (transformed) level of the series. Popular

statistical methods impose restrictions on the smoothness of the trend component, as in the

HP filter (Hodrick and Prescott, 1981, 1997), or on the frequency range where the power

of the cyclical component is concentrated, as in bandpass filters (Baxter and King, 1999;

Christiano and Fitzgerald, 2003). Other approaches rely on parametric time-series models,

either unobserved-components models (UCMs; Harvey, 1985; Watson, 1986; Harvey and

Jaeger, 1993; Harvey, Trimbur, and Van Dijk, 2007) or models that exploit the relationship

between trends and medium- to long-term forecasts (Beveridge and Nelson, 1981; Hamilton,

2018).

This heterogeneity would not matter if different methods yielded a consistent picture of

business cycles. However, Canova (1998, 1999) shows that they do not: both quantitatively

and qualitatively, the cyclical properties of U.S. data vary significantly across detrending

methods. Moreover, as discussed below, existing approaches have substantial limitations.

In this paper, we propose a novel method with attractive properties. Our analysis begins

with a vector autoregression (VAR) characterizing the joint dynamics of key macroeconomic

variables. The method proceeds in two steps. In the detrending step, we decompose the VAR

into stable and unstable (unit-root-like) components based on the eigenvalues of its compan-

ion form, following Casals, Jerez, and Sotoca (2002), and retain only the stable component.

In the filtering step, we rotate the VAR residuals to extract orthogonal shocks ranked by

their contribution to selected variables at business-cycle frequencies, as in Angeletos, Col-

lard, and Dellas (2020); by construction, the top-ranked shocks define the cyclical behavior

of the target variables. Our main contribution is to show that the historical contributions

of these primary business-cycle shocks yield cyclical estimates with desirable properties.

We highlight four key features of our method.

First, the VAR should reasonably approximate the data-generating process (DGP), en-

suring that the cycles reflect genuine properties of the data. In contrast, simple time trends,

bandpass filters, and the HP filter often produce cycles misaligned with the DGP (Nelson

and Kang, 1981; Cogley and Nason, 1995; Hamilton, 2018), and even fully specified UCMs

may yield spurious results (Nelson, 1988). An unrestricted VAR in levels also avoids dif-

ficult modeling choices regarding unit roots and cointegration, as these properties emerge
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automatically in long samples (Sims, Stock, and Watson, 1990; Hamilton, 1994); determin-

istic trends can likewise be accommodated easily. In addition, a VAR greatly simplifies

specification and estimation relative to multivariate UCMs, and our Bayesian implementa-

tion provides straightforward measures of statistical uncertainty, which are often lacking in

alternative approaches.

The use of VARs to distinguish between permanent and transitory dynamics has a long

tradition (e.g., Cochrane and Sbordone, 1988; Blanchard and Quah, 1989; King, Plosser,

Stock, and Watson, 1991; Cochrane, 1994; Coibion, Gorodnichenko, and Ulate, 2018). We

build on the key insight that multivariate analysis can reveal stationary components that

remain undetected in univariate settings, but we adopt a more flexible specification that

does not impose exact unit roots or cointegration on the data. The resulting trend-cycle

decomposition removes random-walk components from integrated variables while preserving

the transitory dynamics captured by the classic Beveridge and Nelson (1981) filter. In

addition, the multivariate structure ensures cross-variable coherence, as all cyclical dynamics

originate from a common set of shocks.

Second, our cycles are stationary by construction, an essential property for variables in-

tended to capture transitory deviations from long-run dynamics. This marks an improvement

over alternatives like the HP filter, which may fail to ensure stationarity in practice (Phillips

and Jin, 2021). Our eigenvalue-based detrending also improves on the treatment of unit

roots in Angeletos, Collard, and Dellas (2020), who address instability by truncating the

posterior distribution, discarding draws that imply explosive behavior. Instead, our strategy

retains the full posterior and accommodates exact unit roots. More importantly, we will

show that it produces more credible cyclical estimates than the truncation approach, which

fails to eliminate trend components in our empirical application.

Third, unlike approaches such as the Beveridge-Nelson decomposition or the Hamilton

filter, our cycles conform to the well-established view that business-cycle fluctuations occur

at specific periodicities (Burns and Mitchell, 1946; Stock and Watson, 1999). Crucially, our

method targets these frequencies while producing backward-looking estimates that depend

only on current and past shocks, thereby preserving the temporal structure of the data.

This sets it apart from standard two-sided filters like the bandpass or HP filters, which

achieve frequency selection through non-causal smoothing that relies on future observations,

an approach that can introduce boundary distortions and generate spurious cyclical patterns

(Cogley and Nason, 1995; Hamilton, 2018). Our estimates also avoid the distortions intro-

duced by the Hamilton filter, which, by defining cycles as forecast errors and mechanically

delaying trend adjustments, often produces implausible decompositions, such as rising trends

during recessions and falling trends at the onset of recoveries (Moura, 2024).
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Fourth, our method captures ‘business cycles as usual,’ that is, the typical pattern of ex-

pansions and recessions caused by the shocks that determine the cyclical behavior of macroe-

conomic variables over the full sample. This focus reveals the number of relevant shocks and

yields summary business-cycle statistics that avoid conflating distinct disturbances across

variables and time, providing a valuable input for structural modeling that standard filters

cannot offer. It also establishes a benchmark for historical comparison: by defining typical

cycles, our method helps identify and interpret deviations from regular patterns, offering

new insights into the nature of specific episodes.

To summarize, the VAR cycles we propose isolate a stationary and well-defined component

of the data, aligned with the conventional notion of business cycles and preserving the infor-

mation structure. These properties are widely regarded as desirable for a cyclical estimate.

Since most existing alternatives lack one or more of these features, our method represents a

valuable addition to the empirical macroeconomist’s toolbox.

Of course, our method has limitations. In particular, it assumes that the VAR provides a

good approximation of the DGP, an assumption open to debate. For example, Harvey and

Jaeger (1993) argue that autoregressive models offer a poor representation of cyclical dy-

namics relative to UCMs, while Ravenna (2007) and Chari, Kehoe, and McGrattan (2008)

show that VARs may approximate dynamic stochastic general-equilibrium models poorly

when there are hidden endogenous state variables. Relatedly, Lippi and Reichlin (1993,

1994) and Fernández-Villaverde, Rubio-Ramı́rez, Sargent, and Watson (2007) highlight that

VARs may be non-fundamental, meaning that residuals need not correspond to true innova-

tions, raising the possibility that our VAR cycles could reflect spurious shocks. Finally, the

assumption of constant coefficients may also be contestable (McConnell and Perez-Quiros,

2000; Primiceri, 2005). Ultimately, the adequacy of the VAR is an empirical matter that

can be assessed through specification tests, while non-fundamentalness concerns can be ad-

dressed by expanding the information set with macroeconomic factors to capture unobserved

states (Forni and Gambetti, 2014; Beaudry, Fève, Guay, and Portier, 2019).

Our focus on typical cycles may also limit applications aimed at analyzing the specific

features of individual historical episodes. Still, our typical cycle should remain a useful

benchmark to understand how particular periods diverged from standard patterns. Another

potential issue is that our multivariate estimates depend on the set of included variables.

While this could be problematic if results were highly sensitive to VAR specification, we find

that the cyclical estimates remain robust when the analysis includes core U.S. macroeconomic

variables.

Indeed, in the second part of the paper, we apply our method to postwar U.S. business

cycles. We estimate a BVAR including key macroeconomic variables — gross domestic

product, consumption, investment, hours worked, the unemployment rate, the labor share

of income, inflation, the nominal interest rate, total factor productivity, and credit spreads
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— and identify shocks based on their contribution within the 6–to-32-quarter frequency

band. We find that two shocks suffice to capture the main features of business cycles and

document a close alignment between the resulting VAR cycles and the NBER chronology of

expansions and recessions. The estimated cycles reveal that inflation is strongly procyclical

conditional on the two shocks, indicating a tight link between price pressures and real activity

consistent with inflationary demand shocks. Compared to standard alternatives, our method

is the only one that identifies the Great Recession as deeper than previous contractions and

the subsequent recovery as slower than earlier ones, in line with common wisdom (Hall,

2011; Gaĺı, Smets, and Wouters, 2012). Finally, we establish the robustness of our results

by varying the VAR order, the treatment of low-frequency movements, the set of included

variables, and the sample period. We also discuss the performance of our method during the

unusual COVID recession.

We organize the paper as follows. Section 2 presents our VAR method and discusses its

theoretical properties. Section 3 applies the method to U.S. business cycles, detailing the

VAR specification, the resulting cycles, and the selection of the number of retained shocks.

Section 4 documents the robustness of our results and extends the analysis to the exceptional

COVID episode. Section 5 concludes.

2. Measure

This section outlines the construction of our VAR cycles, which proceeds in two steps.

First, we decompose the data into stable and unstable components to eliminate unit roots.

Second, we extract meaningful cycles from the stable component by identifying shocks with

a large cyclical footprint and discarding the rest.

2.1. VAR representation. Our starting point is the n × 1 vector xt, which stacks the

macroeconomic time series of interest. We assume that a finite-order VAR model provides

a reasonable approximation of the DGP, so that xt evolves according to

A(L) xt = ut, (1)

where A(L) = In −
∑p

j=1 AjL
j is a matrix polynomial in the lag operator L, p is the lag

order, and ut is an n×1 vector of residuals satisfying E(utu
′
t) = Σ, with Σ a positive-definite

n×n matrix. Without loss of generality, we omit deterministic terms from the presentation.

These can be included in estimation without affecting the analysis.

We specify the VAR in (log) levels for two key reasons. First, this aligns with our goal

of extracting cycles from the raw data: including GDP in levels yields GDP cycles, whereas

including GDP in growth rates would produce cycles in the growth rate, which are less natural

objects for business-cycle analysis. An exception may apply to price variables, which can

enter in levels when focusing on price cycles, or in growth rates when focusing on inflation

cycles. Second, the levels specification offers greater robustness to alternative trend patterns,
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whether deterministic (if included in the VAR), stochastic, or involving cointegration (Sims,

Stock, and Watson, 1990; Hamilton, 1994).1 This robustness is particularly valuable for

mitigating specification concerns.2

2.2. Detrending step. Potential deterministic trends are removed at the estimation stage.

The detrending step decomposes the VAR into stable and unstable (unit-root-like) compo-

nents, eliminating the latter. This ensures that the estimated cycles, derived from the stable

component, are stationary by construction.

This step is essential when xt includes variables such as aggregate quantities or relative

prices, which may inherit stochastic trends from permanent technology shocks (King, Plosser,

Stock, and Watson, 1991; Fisher, 2006). More generally, macroeconomic time series tend

to be highly persistent (Nelson and Plosser, 1982), and even supposedly stationary series,

such as per-capita hours worked, inflation, and nominal interest rates, display pronounced

low-frequency fluctuations (Francis and Ramey, 2009; Uribe, 2022). The detrending step

eliminates these persistent movements, which lack the mean-reverting properties of genuine

cycles.

One shortcut, used by Angeletos, Collard, and Dellas (2020), estimates the VAR with

Bayesian methods and discards unstable posterior draws. This approach has three draw-

backs. From a theoretical standpoint, ad hoc truncations of the posterior are inconsistent

with Bayesian principles, which encode strong views about parameters in the prior. Dis-

carding unstable draws is particularly troubling in this context, as Angeletos, Collard, and

Dellas (2020) employ a standard Minnesota prior centered on an (unstable) multivariate ran-

dom walk. From an empirical perspective, the approach lacks generality. In our empirical

application, up to 95% of posterior draws are unstable when using prior distributions that

emphasize unit roots and cointegration, as in Sims and Zha (1998) and Giannone, Lenza,

and Primiceri (2019); discarding most of the posterior and analyzing only a narrow subset

is clearly problematic. The issue also arises in a frequentist setting if the point estimate

lies in the unstable region. Finally, and perhaps more importantly, if the data contain at

least one stochastic trend, focusing on stable draws misclassifies the permanent component

as transitory, thus failing to properly detrend the series. As we will show, this can lead to

less credible estimates of the cyclical component.

1In the presence of cointegration, the VAR admits an error-correction representation (Engle and Granger,

1987). We prefer the more general VAR in levels because it is difficult to determine which linear combinations

of the variables are stationary.
2As noted in the Introduction, several authors have questioned the empirical usefulness of VARs. In our

view, any parametric model necessarily entails strong assumptions, and the generality and flexibility of VARs

are notable advantages. Economists with strong prior beliefs in favor of alternative models may still find our

approach of interest, as it can be applied directly to any state-space representation, including linear(-ized)

DSGE models.
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To overcome these limitations, we propose an alternative strategy to eliminate unstable

components, drawing on the eigenvalue decomposition of state-space models proposed by

Casals, Jerez, and Sotoca (2002). Specifically, we first express the VAR in its companion

representation,

Xt = FXt−1 + Gut, xt = HXt, (2)

where

Xt︸︷︷︸
np×1

=

 xt

. . .

xt−p+1

 , F︸︷︷︸
np×np

=

[
A1 . . . Ap−1 Ap

In(p−1) 0n(p−1)×n

]
, G︸︷︷︸

np×n

=

[
In

0n(p−1)×n

]
, H︸︷︷︸

n×np

= G′,

with Iz the identity matrix of size z.

Next, we compute the eigenvalues of F to assess the stability of xt. If all np eigenvalues

have modulus strictly below one, the process is stationary and no unstable root needs to be

removed. In this case, we proceed directly to Section 2.3.

If some eigenvalues have modulus equal to or greater than one, we decompose F to separate

the stable and unstable components of xt. Suppose there are nu unstable eigenvalues and

ns = np − nu stable ones. Assuming for simplicity that F is diagonalizable over the reals,

there exists an invertible real matrix U such that

T = U−1FU =

[
Tu 0nu×ns

0ns×nu Ts

]
,

where Tu is an nu×nu diagonal matrix of unstable eigenvalues and Ts is an ns×ns diagonal

matrix of stable eigenvalues. This decomposition is unique up to the ordering of eigenvalues

within each block, which does not affect the results.3

Defining Yt = U−1Xt, W = U−1G, and J = HU, and partitioning the matrices and

vectors according to the blocks in T, we obtain the diagonal representation,[
Yu,t

Ys,t

]
=

[
Tu 0nu×ns

0ns×nu Ts

][
Yu,t−1

Ys,t−1

]
+

[
Wu

Ws

]
ut, xt =

[
Ju Js

] [Yu,t

Ys,t

]
. (3)

This system decomposes xt into a non-stationary component, JuYu,t, and a stationary com-

ponent, JsYs,t. Our detrending step removes the non-stationary component and retains the

stationary one, denoted xs,t:

Ys,t = TsYs,t−1 + Wsut, xs,t = JsYs,t. (4)

Crucially, when at least one eigenvalue is stable (ns > 0), the resulting stable component xs,t

remains n-dimensional, matching the dimension of the original vector xt. This confirms that

our method removes permanent components, not variables. Conversely, in the unlikely case

3If F is defective (not diagonalizable over the reals), the analysis carries through by replacing standard

diagonalization with the real block diagonalization described in Golub and Van Loan (1996, Theorem 7.6.3).

For robustness, our code implements this more general case.
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where all eigenvalues are unstable, it would correctly concludes that no stable component

exists.

This detrending step builds on the common-trends representation from the cointegration

literature, which decomposes an n-dimensional vector of I(1) variables into nu common ran-

dom walks and n − nu stationary combinations (Stock and Watson, 1988; Cochrane and

Sbordone, 1988). When the unstable eigenvalues of F correspond to exact unit roots, our

procedure recovers the standard common-trends representation and yields a multivariate

extension of the Beveridge and Nelson (1981) decomposition, eliminating the permanent

component JuYu,t and retaining the stationary component JsYs,t. Our detrending step

allows greater flexibility: instead of imposing exact unit roots or requiring a priori knowl-

edge of cointegration relationships, we let the data determine persistence and classify the

components through estimated eigenvalues.

The well-known small-sample downward bias in autoregressive coefficient estimates moti-

vates setting a stability threshold below unity. Following Casals, Jerez, and Sotoca (2002), we

classify eigenvalues with modulus above ρ = 0.99 as unstable. This cutoff reflects a trade-off:

it buffers against small-sample bias that can make unit roots appear stable, while avoiding

the excessive removal of persistent yet genuinely stationary dynamics. It also sharpens the

focus on shorter-term cycles by filtering out very low-frequency movements. As shown in

our empirical analysis, the cyclical estimates are robust to reasonable variations in ρ.

2.3. Filtering step. The detrending step produces a genuine stationary component. One

option is to stop here and interpret xs,t as a multivariate cycle, as in Casals, Jerez, and

Sotoca (2002). However, not all stationary dynamics correspond to conventional business

cycles: some may be too short-lived, others too persistent, and some may display patterns

inconsistent with the typical comovement of macroeconomic variables. To refine our estimate,

we introduce an additional filtering step that enhances its cyclical properties.

Specifically, following Faust (1998), Uhlig (2004), and Angeletos, Collard, and Dellas

(2020), we determine the orthogonal rotation of the residual vector ut in equation (4) that

ranks shocks by their contributions to the variance of selected variables at business-cycle

frequencies. The top-ranked shocks under this criterion shape the cyclical properties of the

target variables and thus capture the main drivers of macroeconomic fluctuations, linking

statistical prominence to economic relevance. Retaining these shocks while discarding the

others provides an effective filter, isolating meaningful cyclical components and attenuating

movements unrelated to aggregate fluctuations. Our multivariate method is essential here,

as univariate autoregressions with a single residual cannot recover distinct shocks.

Formally, we express ut as a linear transformation of an n× 1 vector of orthogonal shocks

εt,

ut = Sεt,
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with S an invertible n × n matrix and E(εtε
′
t) = In.4 This mapping imposes only that

SS′ = Σ, which holds for infinitely many matrices. Any valid choice must satisfy S = Σ1/2Q,

with Σ1/2 the lower Cholesky factor of Σ and Q an n×n orthonormal matrix. Substituting

this into equation (4), we obtain the Wold representation of xs,t,

xs,t = Js (Ins −TsL)−1 WsΣ
1/2Qεt = Γ(L)Qεt, (5)

with Γ(L) = Js (Ins −TsL)−1 WsΣ
1/2. The stability of Ts is crucial for ensuring the validity

of this representation, highlighting the importance of the detrending step.

2.3.1. Single target variable. To set the stage, we begin with the case in which the ranking

criterion relies on a single target variable. The objective is to rank the shocks by their

contributions to the variance of the jth element of xs,t over a specified frequency band [ω, ω].

The population spectrum of xs,t, derived from equation (5), satisfies

Sxs(ω) = (2π)−1Γ(e−iω)Γ(eiω)′,

where i is the imaginary number and ω is a real scalar. Using the identity In = Q (
∑n

k=1 Ek) Q′,

where Ek = eke
′
k and ek is the n-dimensional column vector with a one in the kth entry

and zeros elsewhere, we decompose the spectrum into orthogonal contributions from the n

shocks in εt,

Sxs(ω) = (2π)−1

[
n∑

k=1

Γ(e−iω)QEkQ
′Γ(eiω)′

]
.

The contribution of the kth shock in εt to the spectrum of the jth variable in xs,t follows as

(2π)−1e′j
[
Γ(e−iω)QEkQ

′Γ(eiω)′
]
ej = q′k

[
(2π)−1Γ(eiω)′EjΓ(e−iω)

]
qk,

where qk is the kth column vector of Q. Integrating this expression over the frequency band

[ω, ω] gives the contribution of the kth shock to the variance of the jth variable in xs,t,

denoted

γk,j(ω, ω) = q′k

[
(2π)−1

∫ ω

ω

Γ(eiω)′EjΓ(e−iω)dω

]
qk = q′kΘj(ω, ω)qk,

with

Θj(ω, ω) =

[
(2π)−1

∫ ω

ω

Γ(eiω)′EjΓ(e−iω)dω

]
.

Since Θj(ω, ω) is real-valued, γk,j(ω, ω) forms a well-defined symmetric quadratic form in

qk.

Ranking the shocks by their variance contributions requires finding n orthogonal unit-

length vectors, q1, . . . ,qn, such that γ1,j(ω, ω) ≥ γ2,j(ω, ω) ≥ . . . ≥ γn,j(ω, ω). This reduces

4Although we refer to the entries of εt as ‘shocks,’ these are statistical rotations of the VAR residuals

rather than structural economic disturbances.
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to a standard eigenvalue problem, implying that qk are the eigenvectors of Θj(ω, ω) ordered

by their corresponding eigenvalues in descending order.5

2.3.2. Several target variables. We extend the analysis to cases in which the ranking proce-

dure relies on multiple variables. Multivariate restrictions are particularly appealing because

they require shocks to explain the joint dynamics of several series, thereby inducing comove-

ment at target frequencies. This aligns with Lucas’s (1977) view that short-term macroeco-

nomic comovement is a defining feature of business cycles. Moreover, a long literature argues

that fluctuations across key macroeconomic aggregates are largely driven by a small number

of common forces (Sargent and Sims, 1977; Stock and Watson, 2016). This strengthens the

case for multivariate targeting: if business cycles reflect such shared drivers, then requiring

shocks to account for comovement should sharpen identification.

In the absence of a standard multivariate variance measure, we adopt a simple and trans-

parent benchmark: the average variance of the individual target variables.6 Target selection

should be guided by the researcher’s interest. For instance, studies of standard business cycles

would typically target output, investment, consumption, hours worked, and unemployment,

while analyses of financial cycles might instead target credit aggregates, interest-rate spreads,

and asset prices.

Let T denote the subset of target variables in xs,t, with nT as its cardinal. Building on

earlier results, the impact of the kth shock in εt on the average variance of the variables in

T is

γkT (ω, ω) = n−1T
∑
j∈T

γkj(ω, ω).

Equivalently,

γkT (ω, ω) = q′kV(ω, ω, T )qk, with V(ω, ω, T ) = n−1T
∑
j∈T

Θj(ω, ω). (6)

5In practice, computing Θj(ω, ω) is necessary to solve the maximization problem. A simple quadrature

rule is effective. Define

Θj(ω, ω) = (2π)−1

[∫ ω

ω

Gj(ω)dω

]
, with Gj(ω) = Γ(eiω)′EjΓ(e−iω).

For N large, an accurate approximation is

Θ̂j =
ω − ω
2πN

[
Gj(ω) + Gj(ω)

2
+

N−1∑
z=1

Gj

(
ω +

z(ω − ω)

N

)]
.

6We also experimented with a weighted target that scales each variable’s contribution by its unconditional

variance over the relevant frequency band. This normalization gives less weight to more volatile variables,

which may or may not be desirable depending on context. We will show that results are identical across

weighted and unweighted targets in our application to U.S. business cycles, confirming the robustness of our

identification to this choice.
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We solve the ranking problem as before, ordering shocks by their variance contributions

using the eigenvalues and eigenvectors of V(ω, ω, T ).

2.4. VAR cycles and interpretation. Our cyclical estimate is the historical contribution

of the first shock(s) identified in the filtering step to the stationary component xs,t. The

construction follows standard methods (Kilian and Lutkepohl, 2017, Chapter 4).

In population, the contribution of the first K shocks to xs,t is

xs,t(q1, . . . ,qK) =
∞∑
j=0

K∑
k=1

Γjqkεk,t−j.

Given the estimated VAR, the detrending and filtering steps provide estimates of the Γ’s

and q’s. The shocks can also be estimated from the VAR residuals:

ε̂k,t = q̂′kΣ̂
−1/2

ût, k = 1, . . . , K, t = 1, . . . , T,

where hats denote estimates and T is the sample size. Thus, the estimated contribution of

the shocks to historical movements in xs,t follows as

x̂s,t(q̂1, . . . , q̂K) =
t−1∑
j=0

K∑
k=1

Γ̂jq̂k ε̂k,t−j, t = 1, . . . , T. (7)

Equation (7) defines our VAR cycles. Comparing it with its population counterpart reveals

that it omits the effects of pre-sample shocks, which cannot be estimated. Since our procedure

recovers shocks that generate stable dynamics, the estimated coefficients Γ̂jq̂k decline as

we move further in the past, reducing the influence of previous shocks as they become

more distant in time. The choice of an eigenvalue stability threshold ρ slightly below one

reinforces this decay. Therefore, apart from a small number of initial observations, we expect

our estimate to closely approximate its population counterpart.

How should these cycles be interpreted? From an econometric standpoint, the answer is

straightforward: they represent a well-defined stationary component of the VAR, driven by

orthogonal rotations of the residuals with the largest impact at business-cycle frequencies.

More intuitively, our VAR cycles capture the common fluctuations across variables most

closely associated with the timing, persistence, and comovement patterns characteristic of

business cycles. They isolate movements that are both temporary (stationary) and cyclical,

while excluding permanent trends and limiting non-cyclical variation.

The economic interpretation is more challenging. Our filtering step is deliberately agnostic

about the nature of the shocks, which are identified based on their impact at business-cycle

frequencies rather than through economically motivated restrictions, as in structural VARs.

As emphasized by Dieppe, Francis, and Kindberg-Hanlon (2021) and Francis and Kindberg-

Hanlon (2022), max-variance identification typically recovers combinations of underlying

economic disturbances, weighted by their relevance for cyclical dynamics, rather than true
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structural shocks. Consequently, attempts to assign structural labels to these shocks, for

instance via impulse-response analysis, are fragile. The difficulty is compounded when re-

taining two shocks or more, as any additional orthogonal rotation alters the interpretation

of individual shocks without affecting the implied VAR cycles.7

2.5. Summary. To summarize, our proposed method for measuring business cycles involves

the following steps:

(1) Select from the vector xt the subset T of target variables that defines business cycles.

(2) Estimate the VAR model in equation (1), including deterministic terms (intercept,

time trends) if necessary.

(3) Detrending step: compute matrix F in the companion form (2), set the eigenvalue

stability threshold ρ, determine the number of unstable eigenvalues, and diagonalize

the system to isolate the stationary component xs,t as in equation (3).

(4) Filtering step: construct V(ω, ω, T ) using equation (6) for a specified frequency band,

then solve the eigenvalue problem to obtain the impulse vectors.

(5) Select a number K of shocks to retain and construct the VAR cycle x̂s,t using equa-

tion (7).

Each step offers flexibility. We must select the variables for the analysis and the subset

of target variables (step 1); choose the lag order, deterministic component, and estimation

approach (step 2); set the stability threshold (step 3); specify the target frequency band

(step 4); and determine how many shocks to retain in the final estimate (step 5).

General principles can guide these choices:

(1) The VAR should include variables central to the research question, e.g., output,

consumption, investment, hours worked, and unemployment for standard business

cycles. Additional variables can be included either to extract their own cyclical

component or to help address non-fundamentalness. Target series should feature

pronounced fluctuations to sharpen cyclical identification.

(2) Standard practices apply for lag selection and the specification of deterministic com-

ponents: with quarterly data, p = 4 lags and at least a constant term are typi-

cally appropriate. Bayesian estimation is especially attractive, as it offers automatic

shrinkage for large systems and quantifies uncertainty through posterior confidence

bands.

(3) A stability threshold of ρ = 0.99 balances the risk of excluding genuine cyclical

dynamics against the risk of retaining near-unit roots.

7A robust economic interpretation requires a reference structural model. The detrending and filtering steps

can then be applied either to the model’s state-space form or to its population-implied VAR approximation,

allowing the cycles to be expressed in terms of structural shocks and frictions and enabling formal comparisons

between model and VAR dynamics. Given our focus on measurement, we deliberately refrain from such

structural interpretation in this paper.
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(4) The frequency range [ω, ω] = [2π/32, 2π/6] spans fluctuations between 6 quarters

and 8 years, in line with standard definitions of business cycles (Burns and Mitchell,

1946; Stock and Watson, 1999). Other applications may call for different ranges.

(5) Conservative choices for the number of retained shocks, like K ≤ 2, strike a balance

between capturing relevant dynamics and avoiding excess noise or weakening the link

to business cycles. Historical and variance decompositions formalize this trade-off,

much as scree plots are used in principal component analysis (PCA) and dynamic

factor models.8

Finally, it is essential to assess robustness to alternative variable selections, VAR and prior

specifications, stability thresholds, number of retained shocks, and sample periods.

The steps outlined above also highlight key aspects that differentiate our VAR method

from existing cycle-extraction techniques.

Flexibility and robustness. Our method fully leverages the flexibility of VARs while ad-

dressing key limitations of parametric alternatives. Unlike the Beveridge-Nelson decomposi-

tion, which imposes exact unit roots, we assess persistence based on estimated eigenvalues.

Our VAR-based method should also be more robust to specification error than UCMs, which

require specifying the dynamics of multiple latent variables and are prone to identification

issues.9 Compared to univariate techniques, our method exploits comovement across series,

allowing it to more effectively separate permanent and transitory components (Cochrane,

1994; Coibion, Gorodnichenko, and Ulate, 2018). It also provides a consistent characteriza-

tion of fluctuations, ensuring cross-variable coherence as VAR cycles reflect shared dynamics

stripped of idiosyncratic movements.

Stationarity. Our VAR cycles are stationary by construction, addressing a fundamental

limitation of alternatives like the HP filter, which may yield nonstationary cycles in realistic

samples (Phillips and Jin, 2021). Stationarity is an essential property of meaningful cycles,

which represent temporary deviations from long-run trends. Crucially, our method will only

identify a stationary cycle if one is present in the VAR: if the data follows a multivariate

random walk, all variation should be attributed to trends, and no cycle would be detected.

In contrast, bandpass, HP, and Hamilton filters extract cycles even from pure random walks,

generating spurious stationary dynamics that are absent from the DGP.

8The analogy between our method and factor analysis rests on the shared goal of reducing the stochastic

dimension of the data while preserving relevant information (Sargent and Sims, 1977; Stock and Watson,

2016). However, there are two key differences. Theoretically, factors and shocks are distinct concepts:

a (static) factor affects all observables proportionally in each period; a shock triggers different dynamic

responses across variables. Empirically, unlike our VAR method, PCA cannot handle non-stationary data

and dynamic factor models usually focus on stationary dynamics (Stock and Watson, 2016, Section 2.1.4).
9See Harvey (1985), Watson (1986), and Harvey and Jaeger (1993) for univariate UCMs, and Harvey,

Trimbur, and Van Dijk (2007) for a multivariate extension. For discussions of identification and specification

challenges, see Morley, Nelson, and Zivot (2003), Kiley (2020), and Buncic, Pagan, and Robinson (2023).
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Focus on cyclical frequencies. Our procedure explicitly targets the frequency range com-

monly associated with business cycles, unlike alternatives such as the Beveridge-Nelson de-

composition and the Hamilton filter, which are not frequency-specific and may extract sta-

tionary components that lack cyclical patterns. For example, the Beveridge-Nelson cycle

for U.S. GDP is neither volatile nor persistent and fails to align with NBER chronology

(Kamber, Morley, and Wong, 2018), while the Hamilton filter amplifies fluctuations longer

than typical business-cycle durations (Schüler, 2024). In contrast, we will show that our

VAR cycles exhibit plausible cyclical behavior in U.S. data.

Preservation of timing and dynamics. Our VAR cycles are backward-looking, depending

only on current and past shocks, and thereby preserve the timing and propagation mecha-

nisms estimated from the data. In contrast, two-sided filters like bandpass and HP rely on

non-causal smoothing, incorporating future information unavailable in real time and poten-

tially generating spurious patterns (Cogley and Nason, 1995; Hamilton, 2018). The Hamilton

filter also distorts timing: defining cycles as two-year-ahead forecast errors mechanically de-

lays trend adjustments and often yields implausible decompositions, with trends rising during

recessions and falling at the start of the next recovery (Moura, 2024).

Business cycles as usual. By tracing the effects of shocks identified over the full sample, our

VAR cycles measure ‘business cycles as usual,’ i.e., typical patterns observed over extended

periods. This focus offers three key advantages. First, constructing cycles from well-defined

shocks allows our method to retain information on the stochastic dimension of the cyclical

component, a crucial input for developing structural models that univariate methods cannot

provide. Second, focusing on typical patterns driven by well-defined shocks is a better basis

for producing summary business-cycle statistics, while more flexible approaches may blend

different disturbances without distinction, complicating interpretation. Third, establishing

what constitutes the ‘usual’ cycle enables systematic comparisons, revealing how specific

episodes diverged from typical patterns and offering new insights into the nature of each

period.

Estimation uncertainty. A Bayesian implementation of our method yields credible inter-

vals around VAR cycles through posterior simulation. In contrast, most alternative filters

provide point estimates without associated measures of uncertainty. While UCMs can quan-

tify uncertainty, they are more complex and remain vulnerable to the specification and

identification issues mentioned earlier.

3. Measuring U.S. Business Cycles

This section applies our method to study postwar U.S. business cycles. We outline the

baseline VAR specification, present our cyclical estimates, and compare them with common

alternatives. Throughout, we focus on pre-COVID ‘business cycles as usual,’ which our

method is designed to capture.
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3.1. Specification. Our baseline VAR uses quarterly data on ten key macroeconomic vari-

ables: the logarithms of real per-capita GDP (y), consumption (c), and investment (i); the

log of per-capita hours worked (h); the unemployment rate (u); the labor share (ls); the

federal funds rate (r); the log-difference of the GDP deflator (π); the log of utilization-

adjusted TFP (tfp); and the spread between BAA-rated corporate-bond yields and 10-year

U.S. government-bond yields (spr). Appendix A provides details on definitions and sources.

All series except the federal funds rate, TFP, and the spread are seasonally adjusted.

This selection reflects several considerations. The VAR includes core national-accounts

aggregates that are central to canonical business-cycle models (Smets and Wouters, 2007;

Justiniano, Primiceri, and Tambalotti, 2011), along with key labor market indicators that

capture employment dynamics relevant for NBER recession dating. Including both price

and quantity variables enables a joint analysis of real and nominal developments. TFP and

credit spreads are added to account for productivity and financial conditions, two potential

business-cycle drivers. All variables enter in levels.

The estimation sample runs from 1955Q1, the earliest available date for the federal funds

rate, to 2019Q4. We construct the cyclical components over this same period. Consistent

with our focus on typical business cycles, we end the sample before the onset of the COVID-

19 pandemic to exclude the extreme outliers associated with that episode, which we analyze

separately below.

Our baseline VAR includes p = 4 lags and no deterministic time trend. We estimate

the model using Bayesian methods, adopting an independent Normal - inverse Wishart

prior of the Minnesota type.10 Posterior distributions are obtained via Gibbs sampling with

3, 000 draws, retaining the last 1, 000 for inference. To define the cyclical components,

we eliminate eigenvalues with modulus above ρ = 0.99 and target the average variance of

GDP, consumption, investment, hours worked, and unemployment, the five variables used

by Angeletos, Collard, and Dellas (2020) to characterize the primary business-cycle shock.

We focus on the 6-to-32-quarter frequency band and retain K = 2 shocks, with Section 3.4

justifying this choice of K.

Section 4 assesses the sensitivity of our results to alternative specifications. We examine

smaller VARs that exclude some variables, larger VARs that incorporate additional series,

variations in prior distributions and lag order, and the inclusion of deterministic time trends.

We also evaluate the stability of the cycles across subsamples. These robustness checks

10Expressing the VAR as xt = c +
∑p
j=1 Ajxt−j + ut, this prior assigns a mean of zero to the elements of

c and Aj for j = 2, . . . , p, as well as to the off-diagonal elements of A1, while the diagonal elements of A1

have a prior mean of one. The prior variances are (γ1/k
γ3)2 for the i, ith entry of Ak, [σiγ1γ2/(σjk

γ3)]2 for

the i, jth entry of Ak, i 6= j, and (σiγ4)2 for the ith entry of c, where σi is the residual standard deviation

from a univariate AR(4) model for variable i. The γ’s control the tightness of the prior and we set γ1 = 0.2,

γ2 = 1, γ3 = 2, and γ4 = 100, 000. The prior on Σ, the residual variance matrix, is centered at In with n+ 1

degrees of freedom.



16

confirm the reliability of our method. Finally, we extend the sample through late 2022

to include the COVID period and analyze how the pandemic-related recession differs from

earlier downturns.

3.2. VAR cycles. Figure 1 presents our VAR cycles. Table 1 reports the corresponding

business-cycle statistics, including the volatility of the cycles, their persistence, and their

comovement with GDP cycles.

Visually, the estimated cyclical components exhibit no discernible trend and clear mean

reversion, confirming that our method effectively removes non-stationary components.

The cycles in GDP, investment, consumption, hours worked, and unemployment display

plausible magnitudes, with pre-2008 recessions featuring cyclical losses of approximately 3-

4% for GDP, 1-2% for consumption, 10-15% for investment, 2-3% for hours worked, and a

1-2 percentage-point increase in unemployment. The standard deviations in Table 1 align

with the typical view that GDP cycles are more volatile than those in consumption, less

volatile than those in investment, and comparable to the volatility of cycles in hours worked.

Interpreting volatility of cyclical components is more challenging for other variables due to

the lack of established benchmarks. One approach, pursued below, is to compare the VAR

cycles with some common alternatives.

The charts also underscore the exceptional severity of the Great Recession, with cyclical

losses roughly twice as large as in earlier downturns. This aligns with direct evidence on

recession size: according to Christiano (2017), during the 2007-09 recession, GDP fell by

7.2% (versus a 4.4% postwar recession average), consumption by 5.4% (2.1%), investment

by 33.5% (17.8%), and hours worked by 8.7% (3.2%). That our ‘business-cycles-as-usual’

estimates capture this event well supports earlier findings by Stock and Watson (2012), who

argued that the Great Recession was driven by shocks similar to those in earlier downturns,

though of greater magnitude. However, we show below that other detrending methods often

fail to reflect this severity.

More broadly, our cycles match the NBER business-cycle chronology closely, with every

recession in the sample coinciding with falling activity and rising unemployment. This

provides initial support that our two-shock estimates effectively capture the main features

of postwar U.S. fluctuations.

The cyclical components exhibit strong persistence, with first-order autocorrelations in Ta-

ble 1 ranging from 0.87 for inflation to 0.97 for hours worked, unemployment, and TFP. This

persistence is consistent with standard views on business cycles and reflects our procedure’s

emphasis on cycles lasting several quarters to multiple years.

Investment and hours worked are strongly procyclical, since their correlations with GDP

cycles are above 0.95, while unemployment is strongly countercyclical (correlation of −0.97).

Consumption is also procyclical but less tightly aligned (GDP correlation of 0.82).
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Figure 1. VAR cycles — Baseline specification
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Table 1. Business-cycle statistics — Baseline specification

Standard First-order Correlation with

deviation autocorrelation GDP cycle

Cyclical component of

gross domestic product 1.81 0.94 1.00

investment 7.23 0.94 0.96

consumption 0.86 0.88 0.82

hours worked 1.90 0.97 0.97

unemployment 1.23 0.97 -0.97

labor share 1.12 0.92 0.28

nominal interest rate 1.50 0.93 0.79

inflation rate 0.73 0.87 0.66

total factor productivity 0.64 0.97 -0.30

credit spread 0.46 0.89 -0.77

Notes. Statistics are based on posterior median estimates from the 1955-2019 sample. Cyclical com-

ponents are expressed in percent for GDP, investment, consumption, hours worked, and TFP; in per-

centage points for unemployment and the labor share; and in annualized percentage points for the

nominal interest rate, inflation, and credit spread. The VAR includes p = 4 lags. Cycles are driven

by the K = 2 shocks that contribute most to the average variance of GDP, consumption, investment,

hours worked, and unemployment within the frequency band [ω, ω] = [2π/32, 2π/6], after eliminating

eigenvalues larger than ρ = 0.99.

Turning to other variables, the labor share typically peaks during recessions, drops sharply

at the start of the subsequent expansion, and then gradually rises until the next downturn.

This pattern, which is well documented in the literature on markups (Rotemberg and Wood-

ford, 1999; Nekarda and Ramey, 2020), reflects the relative stability of labor income com-

pared to the much more procyclical capital income. It results in a low correlation of 0.28

with the cyclical component of GDP. In contrast, the nominal interest rate is strongly pro-

cyclical (correlation of nearly 0.80), reflecting the Federal Reserve’s sharp rate cuts during

recessions.

Inflation is also procyclical, with correlations of 0.66 with GDP and −0.58 with unem-

ployment. This stands in stark contrast to Angeletos, Collard, and Dellas (2020), who

emphasize a disconnect between inflation and the business cycle. Why do we reach such a

different conclusion? The divergence does not stem from our decision to retain K = 2 shocks.

Since Angeletos, Collard, and Dellas focus on the primary business-cycle shock, their results

effectively correspond to a K = 1 specification. To match this setup, we compute single-

shock VAR cycles and find an even stronger connection between inflation and real activity:

correlations rise to 0.81 with GDP and −0.97 with unemployment.

Instead, the difference stems from the methodology used to assess comovement: correla-

tions between cyclical components provide a more robust measure than impulse responses
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or variance decompositions. As discussed in Section 3.4, our VAR also attributes only a

modest share of the variance of inflation at business-cycle frequencies to the primary shock,

but this does not diminish the relevance of our finding. Even if most inflation fluctuations

originate from shocks that are orthogonal to real activity, such as markup shocks, the strong

procyclicality of inflation conditional on the main business-cycle shocks provides important

information to understand aggregate dynamics. This pattern becomes even more econom-

ically significant when retaining two shocks, as in our baseline cycles, which increases the

contribution to the variance of inflation at cyclical frequencies to 30% while preserving its

procyclical nature.

Overall, our VAR cycles support the New Keynesian view that procyclical marginal

costs generate upward price pressure during booms and disinflation during recessions. This

Phillips-curve mechanism aligns with recent empirical evidence for the U.S., e.g., McLeay

and Tenreyro (2019), Stock and Watson (2019), Hazell, Herreno, Nakamura, and Steinsson

(2022), and Bianchi, Nicoló, and Song (2023). It emerges as an important stylized fact, sug-

gesting that inflationary demand shocks play a greater role in business cycles than implied

by Angeletos, Collard, and Dellas (2020).

The bottom panels in Figure 1 show that TFP and spreads are both countercyclical, as

their cyclical components are negatively correlated with the cycle in GDP. This is expected

for credit spreads, which tend to rise in recessions and spiked sharply during the financial

crisis.

The countercyclicality of utilization-adjusted TFP is more surprising. Setting aside po-

tential measurement error in Fernald’s (2012) series, our VAR cycles provide clear empirical

evidence that the primary forces behind U.S. business cycles are largely orthogonal to cycli-

cal TFP movements. While this does not rule out a role for permanent TFP changes, we

verify that neither of our two business-cycle shocks induces permanent movements in TFP

by tracing their effects on the unit-root component eliminated in the detrending step. This

confirms the disconnect and suggests that TFP fluctuations are not a primary driver of

business cycles. Given the atheoretical nature of our measurement approach, this finding

complements and reinforces the literature questioning the role of technology shocks in short-

term dynamics (Gali, 1999; Francis and Ramey, 2005; Kimball, Fernald, and Basu, 2006;

Ramey, 2016).

Finally, Figure 1 plots the cyclical components within posterior confidence bands. This

intuitive measure of uncertainty represents a clear advantage over most over detrending and

filtering approaches, which typically provide estimates without confidence measures (with

UCMs as the main exception). Sampling uncertainty varies remarkably across series. For

key macroeconomic variables such as GDP, investment, hours worked, and unemployment,

posterior bands are relatively narrow. This provides strong confidence that our estimated

cycles are precise, an important result given the heavily parametrized nature of our VAR
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Figure 2. Comparison with CBO output gap
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Notes. The dashed blue line depicts the posterior median VAR GDP cycle, with shaded bands indicating

a 68% credible interval. The solid red line shows the CBO output gap. See Table 1 notes for data and

VAR details.

framework. That our method delivers sharp inference for these central aggregates reinforces

its empirical relevance.

Instead, estimated cycles for variables such as consumption and TFP display much wider

confidence bands. These are the most persistent series in our system, and our method at-

tributes a larger share of their variation to the trend, resulting in smaller and more uncertain

estimates of the cyclical component for these variables, with broader posterior confidence

intervals. Nonetheless, all estimated cycles, except for TFP, display statistically significant

fluctuations, with peaks and troughs clearly distinct from zero.

3.3. Comparison to common measures of the cycle. We now compare our VAR cycles

to several common alternatives, both to validate their credibility and to underscore key

differences that distinguish our method.

Figure 2 compares our GDP cycle to the output gap published by the Congressional

Budget Office (CBO), a widely used cyclical indicator known for its alignment with the

NBER chronology and frequent use in business-cycle analysis (Kamber, Morley, and Wong,

2018, 2025). Visually, the two measures track each other closely, particularly after 1985.

This is confirmed by formal correlations: 0.77 over the full 1955-2019 sample and 0.91 over

1985-2019. While the CBO gap may not be an ideal measure of output fluctuations, its close

alignment with our VAR cycle, despite not being used in the estimation, provides strong

external validation of our method and adds to the empirical credibility of our estimates.11

11It is also instructive to examine the discrepancies between the CBO gap and our VAR cycle, notably the

stronger expansion in the early 1960s and the deeper recessions in 1980 and 1981-82 implied by the CBO.

Two (not mutually exclusive) explanations arise: our method may filter out idiosyncratic shocks with limited

relevance for broader postwar dynamics, or it may assign part of these fluctuations to the trend. Evidence

favors the latter: even when we remove the filtering step and retain all transitory GDP movements, the

VAR cycle remains distinct from the CBO gap. This finding aligns with Coibion, Gorodnichenko, and Ulate
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An additional strength of our method lies in its multivariate nature and its focus on well-

defined shocks. By tracing the effects of these shocks across all variables, we obtain a coherent

representation of business cycles. This perspective is especially valuable for macroeconomic

modeling: in particular, our results imply that a successful business-cycle model should

reproduce the cycles in Figure 1 and the summary statistics in Table 1 using only two

shocks. By contrast, standalone measures like the CBO gap or cycles from univariate filters

offer little guidance on the number of driving shocks, and cannot assess whether there are

distinct shocks acting on different variables or episodes.

These insights extend to comparisons with standard alternatives, including the HP filter

with smoothing parameter λ = 1, 600, the Christiano and Fitzgerald (2003) bandpass filter

targeting 6-32 quarters, and the Hamilton filter with p = 4 and h = 8.12 Table 2 summarizes

the properties of these alternative measures of the cycle and reports their correlations with

our VAR cycles. Figure 3 provides visual comparisons for GDP, unemployment, and inflation;

Online Appendix I reports full results.

For key real variables (GDP, investment, consumption, hours worked, unemployment),

the VAR cycles exhibit slightly greater volatility than those from the HP and bandpass

filters, indicating that the VAR method assigns larger fluctuations to the cycle. Correlations

between the VAR and HP/bandpass cycles are modest, ranging from 0.15 to 0.8 at most.

Both these observations confirm that the cyclical components isolated by our VAR method

are distinct from those estimated by standard two-sided filters.

The top- and middle-left panels of Figure 3 compare VAR and HP cycles for GDP and

unemployment. (Bandpass cycles closely resemble HP cycles; see Figure 9 in Online Ap-

pendix I.) Before 1990, VAR and HP cycles align closely, offering similar perspectives on

1970s-1980s recessions in particular and suggesting that our multivariate parametric esti-

mates capture the episodes about as well as the flexible univariate HP filter. Discrepancies

emerge in the 1990s and 2000s, as VAR cycles show a stronger expansion in the 1990s and,

crucially, a deeper 2008-2009 recession. This likely reflects the reliance of two-sided filters

on future data: deeper downturns like the Great Recession prompt larger trend adjust-

ments driven by future observations, mechanically reducing the depth of estimated cyclical

(2018), who argue that the CBO measure of potential output underreacts to permanent shocks, distorting

the inferred gap. Visually, Figure 2 reveals a clear downward trend in the CBO gap over 1960-1985, which

is absent from our VAR cycle.
12The HP and bandpass filters are well known. The Hamilton filter defines the trend as the expected value

of the series at date t, based on its behavior up to t− h, using a linear regression on a constant, the value h

periods ago, and p− 1 additional lags; the cycle is given by the residual. We also considered the univariate

Beveridge-Nelson decomposition, but the resulting cycles were small in amplitude, weakly persistent, and

poorly aligned with the NBER chronology; see Kamber, Morley, and Wong (2018) for a discussion.
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Figure 3. Selected comparison with alternative cyclical estimates
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Notes. Dashed blue lines depict posterior median VAR cycles, with shaded bands indicating 68%

credible intervals. Solid red lines show HP cycles (λ = 1, 600) in the left column, and Hamilton cycles

(p = 4, h = 8) in the right column. See Table 1 notes for data and VAR details.

troughs.13 In contrast, our VAR method separates transitory from permanent components

based on component persistence and appears to recover the magnitude of the Great Recession

more accurately, aligning with the CBO output gap.

VAR cycles also reflect the slow recovery in GDP and unemployment following the financial

crisis better than HP cycles, which quickly revert toward zero and understate the persistence

of slack. This matters for macroeconomic analysis, as the protracted weakness in activity

and labor markets was a defining feature of the post-crisis period, shaping both policy

responses and subsequent research (Hall, 2011; Gaĺı, Smets, and Wouters, 2012). Accurately

representing this drawn-out recovery is essential to understand the full extent of cyclical

damage associated with the Great Recession.

13Consistent with this view, the one-sided HP filter, which ignores future data, implies a GDP decline

roughly 2 percentage points larger than the two-sided filter during the 2008-09 recession, closer to our VAR

cycle and the CBO output gap.
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VAR cycles for the labor share, nominal interest rate, and credit spreads are as volatile as

those from HP and bandpass filters. VAR cycles for inflation and TFP are about one-third

less volatile (see the lower-left panel of Figure 3 for inflation), suggesting that these variables

are largely driven by shocks unrelated to the two driving our VAR cycles. Univariate filters,

which do not condition on shocks, cannot make this comparison across variables: they ex-

tract cyclical components separately for each variable, potentially attributing fluctuations

to different underlying disturbances. This limits their usefulness for joint economic inter-

pretation. For example, the HP and bandpass filters find weak comovement between output

and inflation cycles, with correlations near 0.20, while our VAR cycles yield a much stronger

correlation of 0.66. This suggests that by filtering out idiosyncratic inflation movements our

VAR method reveals a tighter link to real activity.

Finally, the Hamilton filter produces cyclical components that are markedly more volatile,

as shown in Table 2 and the right column of Figure 3. The top panel, focusing on GDP,

reveals that the filter implies larger cyclical losses during the 1958 and 1973-75 recessions

than during the Great Recession, despite the fact that the latter involved output losses

exceeding 5%, a full percentage point more than in the earlier downturns. In addition,

following recessions Hamilton cycles feature sudden recoveries, far more pronounced than

in other estimates. As noted earlier and emphasized in Moura (2024), these exaggerated

rebounds lack a meaningful economic interpretation, as they result from the delayed trend

adjustments inherent in the Hamilton filter.

Overall, the comparisons confirm that different cycle-extraction strategies can yield mark-

edly different results. This highlights the need for an approach that exploits data properties

and enhances economic interpretability, precisely the strength our VAR method.

3.4. Rationale for retaining K = 2 shocks. Having established the empirical credibility

of our VAR cycles, we now justify our decision to retain K = 2 shocks. The key tradeoff is

familiar: too few shocks risk missing relevant dynamics, while too many dilute the connection

to business cycles and increase estimation noise. We explore this tradeoff using historical

and variance decompositions.

Figures 4 and 5 compare cycles with K = 1 or K = 3 shocks (in blue) to our baseline K = 2

estimates. One-shock cycles closely track our benchmark after 1990, especially during the

Great Recession, reflecting the prominence of that episode in identifying the dominant shock.

However, one-shock cycles understate fluctuations in the 1960s-1980s, missing the depth of

recessions and strength of expansions, especially in 1973-75 and 1981-82. In contrast, as

shown in Figure 3, two-shock cycles better match both the magnitude and timing of these

episodes, performing about as well as the HP filter for GDP and unemployment and providing

a more accurate representation of pre-1990 dynamics.

This finding suggests a shift in cyclical drivers over time. By capturing distinct episodes

across the full sample, the K = 2 specification delivers a more comprehensive account
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Figure 4. VAR cycles — Retaining K = 1 shock
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within the frequency band [ω, ω] = [2π/32, 2π/6], after eliminating eigenvalues larger than ρ = 0.99.

Shaded bands indicate associated 68% credible intervals. Dashed black lines show our reference VAR

cycles driven by K = 2 shocks. See Table 1 notes for data and VAR details.
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Figure 5. VAR cycles — Retaining K = 3 shocks
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Shaded bands indicate associated 68% credible intervals. Dashed black lines show our reference VAR

cycles driven by K = 2 shocks. See Table 1 notes for data and VAR details.
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Figure 6. Cyclical variance contributions
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of U.S. business cycles. This marks a key departure from Angeletos, Collard, and Dellas

(2020), whose single-shock focus overlooks the evolving nature of aggregate fluctuations and

the important role of the second shock before the 1990s.

Figure 5 shows that adding a third shock does little to enhance the cyclical representation

of core variables like GDP, investment, hours worked, and unemployment. Instead, it mostly

captures idiosyncratic movements in consumption, inflation, and TFP, precisely the type of

fluctuations our method aims to filter out. The three-shock specification also yields wider

uncertainty bands without meaningful gains in economic interpretation, further supporting

our choice of K = 2 shocks as the most informative and parsimonious characterization of

U.S. business cycles.

The population variance decompositions in Figure 6 reinforce this conclusion. The first

shock accounts for the bulk of cyclical variance in real variables (60% for GDP, 80% for

investment, 65% for unemployment), while the second shock raises the explained share above

90% for most of these variables. These are statistically significant gains, with a clear and

common ‘elbow’ in the variance profiles indicating a natural breakpoint at K = 2.14 The

second shock also contributes meaningfully to the cyclical behavior of nominal rates and

inflation, strengthening real-nominal linkages. By contrast, the third shock adds little to

core macro variables and primarily reflects variation orthogonal to business cycles.

These decompositions also clarify which variables systematically comove with the cycle

and which are shaped by unrelated shocks. The two retained shocks account for most

cyclical variation in core real variables, as well as a substantial share of nominal-rate and

credit-spread fluctuations. In contrast, they explain only about 30% of cyclical variation in

inflation and little of TFP, suggesting that these series are largely driven by disturbances

unrelated to business cycles. Crucially, our VAR cycles isolate the portion of each series

that responds to the main business-cycle shocks, filtering out idiosyncratic components and

retaining only the relevant comovement. Such quantitative insights sharpen interpretation

and usefully inform modeling, while also distinguishing our method from traditional filters,

which blend together all sources of variation and cannot identify whether different variables

respond to common shocks.

4. Robustness and COVID Cycles

This final section establishes the robustness of our VAR method across alternative speci-

fications and extends the analysis to the atypical COVID episode.

14See Jolliffe (2002) and Stock and Watson (2016) for a discussion of elbow tests in PCA and dynamic

factor models. Our logic is similar, although we cannot formally test one value of K against another.



29

4.1. Robustness. Unlike standard cycle-extraction approaches, which are typically univari-

ate and nonparametric, our VAR method is multivariate and parametric.15 This allows us to

exploit cross-variable dynamics to identify trends and cycles, but also raises concerns about

robustness. Here, we document that our VAR cycles remain stable across a wide range of

alternative implementations, underscoring our method’s reliability.

For each variable, Table 3 reports the correlations between our baseline VAR cycles and

those obtained under alternative specifications. All estimates use K = 2 shocks, identified

(unless noted otherwise) by targeting the average variance of GDP, consumption, invest-

ment, hours worked, and unemployment over the frequency band [ω, ω] = [2π/32, 2π/6],

after eliminating eigenvalues larger than ρ = 0.99. Correlations are computed over the base-

line 1955-2019 sample, adjusted when necessary. For completeness, Figures 11-28 in Online

Appendix I display the cycles from each alternative specification alongside the baseline esti-

mates.

Rows 1-2 assess sensitivity to the lag order, using p = 2 and p = 8 instead of the baseline

p = 4.

Rows 3-4 evaluate the identification of business-cycle shocks. Given the weak cyclical

behavior of consumption, Row 3 excludes it from the set of target variables. Row 4 replaces

the baseline unweighted variance target by a weighted version that scales each variable’s

contribution by its unconditional variance within the relevant frequency band.

Rows 5-8 compare the baseline cycles to those from alternative VAR systems. Rows 5-7

expand the information set by including additional variables: Row 5 adds standard cyclical

indicators — the CBO output gap, manufacturing capacity utilization, and macroeconomic

uncertainty from Jurado, Ludvigson, and Ng (2015) — to sharpen the focus on business cy-

cles; Row 6 incorporates the first two macroeconomic factors from McCracken and Ng (2020)

to address potential non-fundamentalness; Row 7 adds government consumption, exports,

and imports. Instead, Row 8 restricts the system to a smaller core of real variables (GDP,

investment, consumption, hours worked, and unemployment), omitting direct information

on financial and nominal dynamics.

Rows 9-14 examine the role of slow-moving trends. Row 9 replaces our detrending step with

the simpler approach of Angeletos, Collard, and Dellas (2020), discarding unstable posterior

draws. Row 10 introduces a deterministic, variable-specific cubic trend, which is flexible

enough to approximate piecewise linear trends. Rows 11-12 report sensitivity to the stability

threshold ρ for classifying eigenvalues in the detrending step, setting it to 0.95 and 1.0 instead

of the baseline 0.99. Rows 13-14 add prior components that shrink the VAR toward unit

roots and/or cointegration: Row 13 uses the long-run prior of Giannone, Lenza, and Primiceri

15BP and HP filters are canonical univariate, nonparametric approaches. The Beveridge-Nelson and

Hamilton filters are parametric but univariate. Multivariate UCMs are the closest to our VAR method in

terms of dimensionality and parametrization.
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(2019), tilting estimates toward cointegration among GDP, consumption, investment, and

TFP on the one hand, and between nominal rates and inflation on the other; Row 14 follows

Sims and Zha (1998), combining the sum-of-coefficients prior (favoring unit roots) and the

initial-observations prior (favoring cointegration).16 Finally, Rows 15-16 assess temporal

stability by comparing full-sample cycles to those estimated separately over the 1955-1983

and 1984-2019 subsamples.17

The correlations reported in Table 3 confirm the robustness of the VAR method. The

lag order (Rows 1-2, Figures 11-12), the exclusion of consumption from the target variables

(Row 3, Figure 13), and the use of a weighted target (Row 4, Figure 14) have minimal

impact on the results. Thus, consumption does not contribute independent information

about business cycles, and using a simple average variance target does not distort inference

about the dominant shocks.

Modifying the information set by adding or removing variables affects the estimates,

though correlations with the baseline cycles remain high throughout. Augmenting the sys-

tem with off-the-shelf cyclical indicators lowers the depth of the estimated trough during

the Great Recession, likely because neither the output gap nor utilization declined more in

2008-09 than in earlier recessions (Row 5, Figures 15-16). Instead, including the McCracken

and Ng (2020) factors or additional GDP components has little impact, suggesting that the

baseline specification is not subject to non-fundamentalness (Rows 6-7, Figures 17-20). In-

terestingly, restricting attention to a smaller real system has little effect on the cycles for

GDP, investment, hours worked, and unemployment, suggesting that nominal variables are

not essential for identifying business cycles in key macro series (Row 8, Figure 21). However,

the consumption cycle differs markedly, reflecting the challenge of separating trend and cycle

for this near-unit-root series — a difficulty already apparent in our baseline estimates from

the wide uncertainty bands.

The VAR cycles are also sensitive to the treatment of trends, though the impact remains

moderate. The Angeletos, Collard, and Dellas (2020) strategy, which simply discards un-

stable posterior draws, yields cycles that are highly correlated with our baseline estimates

for most variables, but not for GDP, consumption, and TFP (Row 9, Figure 22). For these

three series, the alternative detrending approach produces much wider and noisier cycles,

featuring implausible patterns such as a persistent 5% positive cyclical component in GDP

throughout the 1990s and 2000s, or an steadily growing consumption ‘cycle’ that remains

strongly positive during the 2008–09 recession. These anomalies suggest that discarding

unstable draws is not effective in removing the permanent component: by selecting stable

16Following Giannone, Lenza, and Primiceri (2019), we adopt a hierarchical Bayesian approach in these

exercises, treating the hyperparameters defining prior tightness as random variables.
17We adopt the same break date as Stock and Watson (2016), and our findings are robust to alternative

break points in the early 1980s. See McConnell and Perez-Quiros (2000) and Stock and Watson (2003) for

empirical evidence on the structural shifts in U.S. business cycles during this period.
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parameter vectors from a model estimated on trending data, the approach tends to under-

state the persistence of unit roots and thus misclassifies permanent movements as cyclical.

This confirms the superiority of our detrending step from an empirical perspective.

Introducing a deterministic trend in the VAR has only a moderate effect on the estimated

cycles: correlations with the baseline remain close to or above 0.85 in most cases, indicating

that our method is robust to trend specification (Row 10, Figure 23). Similarly, lowering the

eigenvalue stability threshold ρ to 0.95 has little impact, while raising it 1.0 produces more

persistent GDP and consumption cycles, with implausible consumption dynamics during

the 1990s and 2000s (Rows 11-12, Figures 24-25). These findings support the use of a

stability threshold below unity to guard against misclassifying near-unit-root behavior as

part of the stable component.18 Prior distributions that more strongly tilt the VAR toward

unit roots and/or cointegration have limited effects overall, except for the typically sensitive

consumption and TFP cycles (Rows 13-14, Figures 26-27). Crucially, these priors yield

posterior distributions in which nearly 95% of draws are unstable; discarding them to focus

on a narrow, unrepresentative subset of stable draws risks distorting inference, emphasizing

the advantage of our more general detrending step.

Finally, applying the method to subsamples split in the early 1980s yields cyclical esti-

mates largely consistent with the baseline, with only consumption and TFP cycles display-

ing notable deviations in the second subsample (Rows 15–16, Figure 28). In particular, the

consumption cycle rises sharply during the Great Recession, indicating that the method at-

tributes the decline to the trend rather than the cycle, likely a symptom of the difficulty in

separating the two components in shorter samples. Aside from this discrepancy, the esti-

mated cycles remain closely aligned with the full-sample results, as reflected in the generally

strong correlations reported in Table 3, and continue to convey a consistent picture of past

business cycles. Achieving such alignment despite significant shifts in cyclical dynamics

across the two periods and the highly parametric nature of VARs is a striking result.

Taken together, these results confirm the robustness of our method to a wide range of

modeling choices. Despite some variation for consumption and TFP, the broader picture

of business-cycle dynamics remains remarkably stable across specifications. In addition,

highlighting the uncertainty surrounding consumption and TFP cycles is an advantage of

our method, as most alternatives would produce point estimates without revealing that

separating trend from cycle is more difficult for these series than for the others.

18We experimented with stability thresholds ranging from 0.80 to 1.0. For all variables except TFP,

correlations with the baseline cycles obtained with ρ = 0.99 remain above 0.90 for thresholds between 0.92

and 0.98; see Figure 29 in Online Appendix II. Lower thresholds lead to a clear deterioration: with ρ = 0.88,

most correlations fall near zero as the method then attributes most persistent fluctuations to the trend.

These findings suggest that, in business-cycle applications, the stability threshold should generally lie in the

0.95–0.99 range to avoid misclassification of persistent cyclical movements.
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4.2. COVID cycles. While our VAR method is designed to capture typical business-cycle

patterns, examining its performance during the COVID episode yields valuable insights into

both the robustness of historical cyclical relationships and the dimensions along which this

unprecedented shock diverged from typical postwar fluctuations.

Figure 7 presents the VAR cycles extended to include the COVID period. Following recent

econometric practice, e.g., Schorfheide and Song (2021) and Lenza and Primiceri (2022), we

hold the VAR parameters fixed at their values estimated from the 1955–2019 sample, assum-

ing that pandemic-related outliers contain no information about standard macroeconomic

dynamics. As a result, the pre-COVID cycles are identical to those in Figure 1, while post-

2020 cycles incorporate the shocks inferred from the residuals associated with the COVID

episode. For comparison, the figure also reports HP and Hamilton cycles.

For several key macroeconomic variables — GDP, consumption, the labor share, TFP,

and credit spreads — our VAR cycles capture the COVID recession reasonably well. The

implied dynamics align closely with fluctuations in the raw data and in alternative estimates

of cyclical components, suggesting that core aspects of the contraction followed patterns

consistent with earlier postwar downturns, despite the episode’s unique origin. That a model

trained exclusively on pre-2020 data can track these variables highlights the robustness of

certain cyclical relationships during economic downturns.

More revealingly, the VAR cycles diverge from actual data for specific variables in ways

that are economically interpretable. The method understates the steep fall in hours worked

and the surge in unemployment, missing the unprecedented speed and scale of labor-market

disruption. Instead, it overpredicts the decline in the nominal interest rate, which quickly

hit the effective lower bound — a nonlinearity that cannot be accommodated within the

VAR’s linear structure. It also substantially overstates the drop in inflation, which proved

more resilient than historical patterns would suggest.

These discrepancies can serve as diagnostic signals to pinpoint how the COVID recession

differed from historical norms. Because our method reflects typical cyclical regularities, it

highlights the precise dimensions along which the pandemic was exceptional. For instance,

given the magnitude of the output contraction, historical patterns would have implied smaller

labor-market losses and more pronounced declines in the policy rate and inflation. The

divergence between these counterfactual predictions and actual outcomes emphasizes the role

of abrupt policy interventions, including unique constraints on economic activity, in shaping

the recession. More broadly, this illustrates a key strength of our method: by providing a

benchmark grounded in typical dynamics, it enables researchers to identify when and how

current developments deviate from standard cyclical behavior.

Figure 7 yields two further insights. First, the VAR cycles revert to zero relatively quickly

after the COVID recession, capturing the transient nature of the disruption. By 2022,

most cycles had returned near baseline, in line with two-sided HP cycles that benefit from
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Figure 7. Cyclical estimates during COVID
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hindsight, indicating that the pandemic left little lasting cyclical imprint. Second, the charts

clearly illustrate the artificial base effects introduced by the Hamilton filter, which generate

exaggerated spikes in the estimated cycles exactly two years after the COVID downturn.

An alternative strategy for handling exceptional episodes would be to augment the VAR

with episode-specific dummy variables, as proposed by Ferroni, Fisher, and Melosi (2024) in

the context of DSGE models. This approach would absorb unusual shocks, such as those

associated with the COVID recession, into the dummy terms, while preserving the estimated

autoregressive structure for standard dynamics. As a result, much of the pandemic episode

would be attributed to these dummies, leaving little of it to the underlying VAR. While this

would offer a cleaner separation between regular fluctuations and exceptional disturbances,

it would come at the cost of discarding the informative deviations discussed above. We

view our approach as complementary: by retaining the full residual structure, it allows for a

diagnostic reading of atypical episodes through the lens of historical business-cycle patterns.

Exploring the potential of such hybrid strategies is an interesting avenue for future work.

5. Conclusion

We propose a new method to measure business cycles using VARs. This involves two

steps: first, detrending to remove nonstationary components; second, filtering to extract

meaningful cycles from the stable component. The resulting cycles isolate a well-defined VAR

component that corresponds to typical fluctuations, are stationary and backward-looking by

construction, and reflect the idea that business cycles occur at specific periodicities. In an

empirical application, we show that two shocks suffice to capture postwar U.S. business cycles

and reveal a tighter link between inflation and real activity than previously recognized. We

also compare our method to other common filters, assess the plausibility and robustness of

our results, and analyze the COVID episode in detail.

We conjecture that our method could be fruitfully applied in other contexts. Beyond

straightforward extensions to other countries, a promising application is the measurement of

the international business cycle, defined as the historical contribution of the shock(s) with

the largest impact on national indicators within a given group of countries. By preserving

conditional comovements, VAR cycles may shed new light on longstanding debates, such as

the correlation between consumption and real exchange rates (Backus and Smith, 1993), or

the relationship between GDP and trade (Frankel and Rose, 1998). Another relevant appli-

cation is the measurement of longer-term economic and financial cycles, capturing cyclical

movements in asset prices and credit conditions, as well as their interaction with real activity

(Comin and Gertler, 2006; Jordà, Schularick, and Taylor, 2017).
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Jordà, O., M. Schularick, and A. M. Taylor (2017): “Macrofinancial History and

the New Business Cycle Facts,” NBER Macroeconomics Annual, 31(1), 213–263.



39

Jurado, K., S. C. Ludvigson, and S. Ng (2015): “Measuring Uncertainty,” American

Economic Review, 105(3), 1177–1216.

Justiniano, A., G. Primiceri, and A. Tambalotti (2011): “Investment Shocks and

the Relative Price of Investment,” Review of Economic Dynamics, 14(1), 101–121.

Kamber, G., J. Morley, and B. Wong (2018): “Intuitive and Reliable Estimates of the

Output Gap from a Beveridge-Nelson Filter,” The Review of Economics and Statistics,

100(3), 550–566.

(2025): “Trend-Cycle Decomposition in the Presence of Large Shocks,” Journal of

Economic Dynamics and Control, 173(C).

Kiley, M. T. (2020): “What Can the Data Tell Us about the Equilibrium Real Interest

Rate?,” International Journal of Central Banking, 16(3), 181–209.

Kilian, L., and H. Lutkepohl (2017): Structural Vector Autoregressive Analysis, Themes

in Modern Econometrics. Cambridge University Press.

Kimball, M. S., J. G. Fernald, and S. Basu (2006): “Are Technology Improvements

Contractionary?,” American Economic Review, 96(5), 1418–1448.

King, R. G., C. I. Plosser, J. H. Stock, and M. W. Watson (1991): “Stochastic

Trends and Economic Fluctuations,” American Economic Review, 81(4), 819–840.

Lenza, M., and G. E. Primiceri (2022): “How to Estimate a Vector Autoregression after

March 2020,” Journal of Applied Econometrics, 37(4), 688–699.

Lippi, M., and L. Reichlin (1993): “The Dynamic Effects of Aggregate Demand and

Supply Disturbances: Comment,” American Economic Review, 83(3), 644–52.

(1994): “VAR Analysis, Nonfundamental Representations, Blaschke Matrices,”

Journal of Econometrics, 63(1), 307–325.

Lucas, R. E. (1977): “Understanding Business Cycles,” Carnegie-Rochester Conference

Series on Public Policy, 5(1), 7–29.

McConnell, M. M., and G. Perez-Quiros (2000): “Output Fluctuations in the United

States: What Has Changed since the Early 1980’s?,” American Economic Review, 90(5),

1464–1476.

McCracken, M. W., and S. Ng (2020): “FRED-QD: A Quarterly Database for Macroe-

conomic Research,” Working Papers 2020-005, Federal Reserve Bank of St. Louis.

McLeay, M., and S. Tenreyro (2019): “Optimal Inflation and the Identification of the

Phillips Curve,” in NBER Macroeconomics Annual 2019, volume 34, NBER Chapters, pp.

199–255. National Bureau of Economic Research, Inc.

Morley, J. C., C. R. Nelson, and E. Zivot (2003): “Why Are the Beveridge-Nelson

and Unobserved-Components Decompositions of GDP So Different?,” The Review of Eco-

nomics and Statistics, 85(2), 235–243.

Moura, A. (2024): “Why You Should Never Use the Hodrick-Prescott Filter. A Comment

on Hamilton (The Review of Economics and Statistics, 2018),” Journal of Comments and



40

Replications in Economics, 3(2024-1), 1–17.

Nekarda, C. J., and V. A. Ramey (2020): “The Cyclical Behavior of the Price-Cost

Markup,” Journal of Money, Credit and Banking, 52(S2), 319–353.

Nelson, C. R. (1988): “Spurious Trend and Cycle in the State Space Decomposition of

a Time Series with a Unit Root,” Journal of Economic Dynamics and Control, 12(2-3),

475–488.

Nelson, C. R., and H. Kang (1981): “Spurious Periodicity in Inappropriately Detrended

Time Series,” Econometrica, 49(3), 741–751.

Nelson, C. R., and C. I. Plosser (1982): “Trends and Random Walks in Macroeconomic

Time Series : Some Evidence and Implications,” Journal of Monetary Economics, 10(2),

139–162.

Phillips, P. C. B., and S. Jin (2021): “Business Cycles, Trend Elimination, and the HP

Filter,” International Economic Review, 62(2), 469–520.

Primiceri, G. (2005): “Time Varying Structural Vector Autoregressions and Monetary

Policy,” The Review of Economic Studies, 72(3), 821–852.

Ramey, V. (2016): “Macroeconomic Shocks and Their Propagation,” in Handbook of

Macroeconomics, ed. by J. B. Taylor, and H. Uhlig, vol. 2 of Handbook of Macroeconomics,

chap. 2, pp. 71–162. Elsevier.

Ravenna, F. (2007): “Vector autoregressions and reduced form representations of DSGE

models,” Journal of Monetary Economics, 54(7), 2048–2064.

Rotemberg, J. J., and M. Woodford (1999): “The Cyclical Behavior of Prices and

Costs,” in Handbook of Macroeconomics, ed. by J. B. Taylor, and M. Woodford, vol. 1 of

Handbook of Macroeconomics, chap. 16, pp. 1051–1135. Elsevier.

Sargent, T. J., and C. A. Sims (1977): “Business Cycle Modeling without Pretending

to Have Too Much A Priori Economic Theory,” Working Papers 55, Federal Reserve Bank

of Minneapolis.

Schorfheide, F., and D. Song (2021): “Real-Time Forecasting with a (Standard) Mixed-

Frequency VAR During a Pandemic,” NBER Working Papers 29535, National Bureau of

Economic Research, Inc.
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Appendix A. Data

Most series are sourced from the Federal Reserve Economic Database (FRED). Exceptions

include TFP from Fernald (2012), macroeconomic uncertainty from Jurado, Ludvigson, and

Ng (2015), and macroeconomic factors from McCracken and Ng (2020). Tables 4 and 5

document the original series and the transformations applied prior to inclusion in the VARs.

Table 4. Data sources

Data Mnemonic Symbol

GDP and subcomponents

Real GDP per capita A939RX0Q048SBEA Y

GDP: Implicit price deflator GDPDEF P

GDP share: Consumption expenditures on nondurable goods DNDGRE1Q156NBEA CNDY

GDP share: Consumption expenditures on services DSERRE1Q156NBEA CSY

GDP share: Gross private domestic investment A006RE1Q156NBEA IY

GDP share: Expenditures on durable goods DDURRE1Q156NBEA DGY

GDP share: Government consumption and investment A822RE1Q156NBEA GY

GDP share: Exports B020RE1Q156NBEA XY

GDP share: Imports B021RE1Q156NBEA MY

Labor market

Nonfarm business sector: average weekly hours PRS85006023 AH

Civilian non-institutional population CNP16OV POP

Civilian employment level CE16OV EMP

Civilian unemployment rate UNRATE UN

Nonfarm business sector: labor share PRS85006173 LS

Interest rates

Effective federal funds rate FEDFUNDS FF

Moody’s Baa corporate bond spread relative to 10-year treasuries BAA10YM SPR

Productivity

Fernald’s utilization-adjusted TFP (log difference) — DTFP

Cyclical measures and controls

Capacity utilization (manufacturing) CAPUTLB00004SQ UT

Jurado et al.’s macroeconomic uncertainty (one-year-ahead) — MU

McCracken and Ng’s macroeconomic factors — F1, F2

Congressional Budget Office output gap GDPC1 GDPPOT OG

Notes. Mnemonics refer to FRED series identifiers. Symbols represent the variables in Table 5.
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Table 5. Variables entering the VARs

Variable Definition

GDP y = 100× log(Y)

Inflation rate π = 400× log[P/P(−1)]

Consumption c = 100× log[(CNDY + CSY)×Y)]

Investment i = 100× log[(IY + DGY)×Y)]

Government expenditures g = 100× log(GY×Y)

Exports x = 100× log(XY×Y)

Imports m = 100× log(MY×Y)

Hours worked h = 100× log(AH× EMP/POP)

Unemployment rate u = UN

Labor share ls = LS

Interest rate r = FF

Credit spread spr = SPR

TFP tfp = log[cumulative sum(DTFP/4)]

Uncertainty mu = MU

Macroeconomic factors f1, f2 = F1, F2

Output gap og = OG

Notes. As recommended by Edge and Gurkaynak (2010), we apply a very gradual HP filter to smooth

population when computing per-capita hours worked, eliminating artificial spikes from Census revisions.

We set the smoothing parameter to 100, 000 and retain the trend, denoted POP.
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Online Appendix

“Measuring Business Cycles using VARs”
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Online Appendix I. Comparison to Alternatives

Figures 8 to 10 compare our baseline two-shock VAR cycles with standard alternatives —

the HP filter with λ = 1, 600, the Christiano and Fitzgerald (2003) bandpass filter targeting

the 6-32-quarter frequency band, and the Hamilton filter with p = 4 and h = 8. As in

Section 3, we focus on pre-COVID cycles. Summary business-cycle statistics are reported in

Table 1.
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Figure 8. Cyclical estimates — VAR vs. HP filter
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Notes. Dashed blue lines depict posterior median VAR cycles, with shaded bands indicating a 68%

credible interval. Solid red lines show HP cycles (λ = 1, 600). See Table 1 notes.
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Figure 9. Cyclical estimates — VAR vs. bandpass filter
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Notes. Dashed blue lines depict posterior median VAR cycles, with shaded bands indicating a 68%

credible interval. Solid red lines show bandpass cycles (6-32 quarters). See Table 1 notes.
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Figure 10. Cyclical estimates — VAR vs. Hamilton filter
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Notes. Dashed blue lines depict posterior median VAR cycles, with shaded bands indicating a 68%

credible interval. Solid red lines show Hamilton cycles (p = 4, h = 8). See Table 1 notes.
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Online Appendix II. Robustness

Figures 11 to 28 compare our baseline VAR cycles with those obtained under a wide range

of alternative specifications, including variations in lag order, shock identification, system

composition, trend treatment, and sample split, as detailed in Section 4.1. As in the main

text, we focus on pre-COVID cycles.
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Figure 11. Robustness — VAR(2) vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles from a BVAR(2) model, while dashed black lines

depict baseline cycles.
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Figure 12. Robustness — VAR(8) vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles from a BVAR(8) model, while dashed black lines

depict baseline cycles.
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Figure 13. Robustness — Consumption excluded from targets vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when consumption is excluded from target variables,

while dashed black lines depict baseline cycles.
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Figure 14. Robustness — Weighted variance target vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when using a weighted variance target, while dashed

black lines depict baseline cycles.
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Figure 15. Robustness — Cyclical VAR vs. baseline (1/2)
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Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with the output gap,

capacity utilization, and macroeconomic uncertainty, while dashed black lines depict baseline cycles.
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Figure 16. Robustness — Cyclical VAR vs. baseline (2/2)
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Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with the output gap,

capacity utilization, and macroeconomic uncertainty, while dashed black lines depict baseline cycles.
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Figure 17. Robustness — Factor-augmented VAR vs. baseline (1/2)
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5Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with the first two

McCracken and Ng (2020) macroeconomic factors, while dashed black lines depict baseline cycles.
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Figure 18. Robustness — Factor-augmented VAR vs. baseline (2/2)
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Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with the first two

McCracken and Ng (2020) macroeconomic factors, while dashed black lines depict baseline cycles.
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Figure 19. Robustness — Large VAR vs. baseline (1/2)
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Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with government con-

sumption, exports, and imports, while dashed black lines depict baseline cycles.
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Figure 20. Robustness — Large VAR vs. baseline (2/2)
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Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with government con-

sumption, exports, and imports, while dashed black lines depict baseline cycles.
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Figure 21. Robustness — Small VAR vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when restricting the VAR to GDP, investment,

consumption, hours worked, and unemployment, while dashed black lines depict baseline cycles.
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Figure 22. Robustness — Discarding unstable draws vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when replacing the detrending step by the discarding

of unstable posterior draws as in Angeletos, Collard, and Dellas (2020), while dashed black lines depict

baseline cycles.
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Figure 23. Robustness — Deterministic time trend vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when augmenting the VAR with a variable-specific

cubic time trend, while dashed black lines depict baseline cycles.
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Figure 24. Robustness — Eigenvalue stability threshold ρ = 0.95 vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when using the eigenvalue stability threshold ρ = 0.95,

while dashed black lines depict baseline cycles.
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Figure 25. Robustness — Eigenvalue stability threshold ρ = 1.00 vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when using the eigenvalue stability threshold ρ = 1.00,

while dashed black lines depict baseline cycles.
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Figure 26. Robustness — Long-run prior vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when estimating the VAR with the long-run prior of

Giannone, Lenza, and Primiceri (2019), while dashed black lines depict baseline cycles.
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Figure 27. Robustness — Sims-Zha prior vs. baseline
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Notes. See Figure 1 notes. Blue lines show cycles when estimating the VAR with the Sims and Zha

(1998) dummy prior, while dashed black lines depict baseline cycles.
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Figure 28. Robustness — Split sample vs. baseline
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Notes. See Figure 1 notes. Blue and red lines show cycles from BVAR(2) models estimated on the

1955-1983 and 1984-2019 subsamples, while dashed black lines depict baseline cycles.
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Figure 29. Robustness — Correlations with baseline as function of stability
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Notes. In each panel, the x-axis reports the eigenvalue stability threshold ρ and the y-axis shows the

correlation between the implied VAR cycles and the baseline estimates using ρ = 0.99. See Table 1

notes for details on the VAR.
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