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Abstract

We characterize Nash equilibria in multi-product markets in which producers

commit to vectors of supply functions contingent on all prices. The framework ac-

commodates (dis)economies of scope in production, and goods may be substitutes

or complements in demand. We show that equilibrium allocations of underlying

goods and payoffs are invariant under bundling. With quadratic costs and linear

demand, this invariance reduces the multi-product problem to an equivalent set of

single-product markets that can be analyzed independently. We introduce Lerner

and pass-through matrices to capture markups and welfare losses; their eigenval-

ues summarize fundamental market properties, remain invariant under bundling,

and lend themselves to comparative statics analysis.
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1 Introduction

In centrally organized multi-product markets, firms often trade several related goods
simultaneously, such as electricity across hours of delivery or financial products with
correlated payoff structures. Goods may be related because the marginal cost of one
good may depend on the quantity of another good produced, or because consumers
derive joint utility from bundles. Market designers have recognized those linkages by
allowing bidders to condition trades in one good on prices or volumes in others. Many
electricity markets use complex intertemporal offers to capture ramping costs (Reguant,
2014);1 the Bank of England’s product-mix auction enabled collateral-specific bidding
(Klemperer, 2008; 2010); and financial exchanges clear contingent multi-leg orders to re-
duce execution risk (Rostek and Yoon, 2024b; Wittwer, 2021). Despite their practical
importance, the theoretical analysis of competition under such interconnected bidding
remains incomplete.

This paper develops a general framework for competition in multi-product supply
function equilibrium and makes six contributions. First, we extend the classic sup-
ply function model of Klemperer and Meyer (1989, hereafter KM) from one product
to many, allowing firms’ bids in one good to depend on the prices of others. Second,
we prove an invariance result: any invertible linear bundling of goods yields the same
payoffs and allocations of the underlying goods. Third, we show how to construct
bundles that locally decouple the markets, so that a firm’s optimal supply of one bun-
dle depends only on the bundle’s own price. Fourth, we characterize equilibria under
quadratic costs and linear demand, showing that with unbounded shocks the unique
equilibrium is linear. Fifth, we introduce Lerner and pass-through matrices as tools for
analyzing markups and welfare across multiple goods. Sixth, we also show how sep-
aration can simplify market design by reducing the complexity of bidding languages
and mitigating the combinatorial explosion in package bidding.

Our first contribution is to extend the supply function equilibrium model of KM
from a single product to a multi-product setting. In our framework, symmetric firms
submit vector-valued supply schedules in which the output of each good is a function
of all market prices, reflecting both economies of scope in production and strategic
interactions across markets. As in KM, additive demand shocks generate ex-post op-
timality conditions, requiring that supply schedules be best responses for every real-
ization of the shocks. The single-product Supply Function Equilibrium (SFE) has been
widely applied in electricity markets, both in theoretical and simulation studies (Green

1From an engineering perspective, such intertemporal linkages have long been central to unit com-
mitment and dispatch models (Wood and Wollenberg 1996).
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and Newbery, 1992; Anderson and Philpott, 2002; Holmberg and Newbery, 2010) and
in empirical work (Wolak, 2007; Hortaçsu and Puller, 2008; Sioshansi and Oren, 2007;
Reguant, 2014). Our formulation provides the first general framework for analyzing
strategic competition when firms submit multi-product supply schedules in the KM
demand-shock tradition.

Our second contribution is to prove an invariance result: any invertible linear
bundling of goods yields the same equilibrium payoffs and allocations of the under-
lying goods. Intuitively, just as a multi-dimensional problem in mathematics can be
expressed in different coordinate systems, a market equilibrium can be expressed in
terms of different bundles of goods without changing the underlying outcome. While
similar invariance has been noted in consumer demand and monopoly models (Lan-
caster, 1966; Carvajal et al., 2010), our result establishes it in an oligopolistic setting
with supply function competition.

Our third contribution is to establish local separation of demand and costs. By ap-
plying a linear transformation, we construct separating bundles for a given set of prices
and production quantities, such that the cross-price effects of the demand slopes and
the cross-quantity effects of the marginal cost slopes vanish. This removes local cross-
effects in slopes, although firms may still create strategic linkages and cost shocks may
remain correlated. In earlier work, Theil (1983) applied orthogonal rotations to di-
agonalize covariance matrices of shocks, while Johnson and Myatt (2003) introduced
a demand transformation to simplify self-selection constraints.2 In contrast, our ap-
proach applies results from matrix analysis to the joint structure of demand and cost
slopes in a strategic equilibrium setting.3

We then prove that this decomposition also delivers local strategic separation. In
separating bundles, the slope of a firm’s supply function in one bundle depends only
on the price of that bundle, not on the prices of other bundles. This means that small
changes in the price of one bundle have no effect on the optimal supply of another
bundle. As a result, at a given equilibrium point, a multi-product supply function
equilibrium can be studied locally as a collection of single-product equilibria. These
separation results can also be exploited for numerical calculations, making it possible
to compute non-linear, multi-dimensional supply function equilibria.

Our fourth contribution is to characterize the full set of equilibria in the case of
quadratic costs and linear demand. In this setting, we obtain a global separation result:
markets can be represented in bundles that remain separated at every set of prices

2Related techniques are used in Johnson and Myatt (2006a, 2006b).
3Formally, this involves simultaneous diagonalization of two matrices (Magnus and Neudecker,

2019; Horn and Johnson, 2013; Theil, 1983); the cost Hessian and the demand Jacobian are jointly di-
agonalized.
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and production quantities. Strategic separation then implies that each bundle can be
analyzed independently, so that the multi-product problem reduces to a collection of
single-bundle problems. Known results for single-good SFEs (KM), including the ex-
istence of non-linear equilibria, can then be applied bundle by bundle. Equilibria in
the original goods are obtained by applying a linear change of coordinates to those
in separated bundles, so that the entire set of equilibria can be recovered in the prod-
uct space. A key implication is that when demand shocks are unbounded, the unique
equilibrium is a linear supply function equilibrium, generalizing the classic KM result
to multi-product markets.

Our fifth contribution is to develop a welfare analysis for multi-product firms in
linear supply function equilibrium with non-constant marginal costs. We introduce a
Lerner matrix, generalizing the scalar Lerner index, and a pass-through matrix, which
describes how cost or demand shocks transmit into prices and quantities across goods.
The eigenvalues of these matrices are invariant to the choice of product representation,
and provide fundamental measures of distortions in multi-product markets. Markups
depend on the number of firms and on the eigenstructure of the competitive pass-
through matrix, which reflects both demand slopes and the marginal cost structure. A
central result is that relative welfare losses are determined by the relative difference
between the competitive and oligopoly pass-through matrices. We study how eigen-
values of the Lerner and the oligopoly pass-through matrices depend on the number of
symmetric producers and eigenvalues of the competitive pass-through matrix. From
these comparative statics results, we find that at least four symmetric firms are needed
to ensure that relative welfare losses are always below 1%. 4

Unlike the existing pass-through literature, which relies on elasticity-based repre-
sentations and conduct parameters (Weyl and Fabinger, 2013; Adachi and Fabinger,
2022) or on conjectural variations (Ritz, 2024), our approach applies to multi-product
supply function equilibria. In our setting, elasticities are not coordinate-invariant and
distortions are more naturally captured by Lerner and pass-through matrices with in-
variant properties.

Our sixth contribution is to highlight how separation can improve market design.
We show that firms’ strategies are simple for separating bundles: they do not need
to make supply in one bundle contingent on the price of another. This suggests that
auctions could be organized around such bundles, reducing the complexity of bidding
languages. In package bidding auctions, the number of possible bids grows exponen-

4For Cournot models, we show that at least 9 symmetric firms are needed to ensure that relative
welfare losses are weakly below 1%. Corchón (2008) gets the same result for single-good markets with
constant returns to scale.
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tially with the number of products, creating the well-known problem of combinato-
rial explosion (Rothkopf et al., 1998; Pekeč and Rothkopf, 2003; Milgrom, 2009). By
constructing bundles that separate markets, our approach mitigates the need for fully
combinatorial bidding while still allowing firms to capture relevant cross-good link-
ages.

Example: Two-period electricity market

To illustrate the role of bundling and motivate the general framework, consider a sim-
ple two-period electricity market in which offers for both periods are submitted simul-
taneously and cleared jointly. A storage technology such as a battery buys in the first
period and resells in the second. Its profitability depends on the price difference across
the two periods, so without bundling its bid would need to condition on both prices.
An inflexible generator such as a nuclear plant must produce the same output in each
period. Its profitability depends on the average price across the two periods, so again
its bid would need to condition on both prices.

Bundling resolves this complexity. A storage bundle (buy one unit in period 1,
sell one in period 2) lets the battery operator submit a simple one-dimensional supply
schedule as a function of the bundle price (the difference).5 Likewise, a block bun-
dle (produce one unit in both periods) lets the nuclear plant submit a one-dimensional
schedule as a function of the block-bundle price (the average).6 Trading in bundles
therefore simplifies strategies without changing allocations. This simple case illus-
trates the general mechanism: appropriate bundling removes cross-market dependen-
cies, simplifies bidding languages, and leaves equilibrium allocations unchanged.

Related literature

Another strand of the supply function literature emphasizes private information in
treasury auctions and financial markets (see Wilson 1979; Back and Zender 1993; Hor-
taçsu and McAdams, 2010; Vives 2011; Kastl 2011; Rostek and Weretka, 2012). Rostek
and Yoon (2021, 2024a, 2025) and Wittwer (2021) extend this literature to study bids
that are contingent on several prices, compare such equilibria with bids that are only
contingent on one price and evaluate the effect of synthetic products in the latter case.

5Note that the storage bundle is similar to the quality upgrade (buy a high-quality unit and sell a low
quality unit) in Johnson and Myatt (2003).

6Block bids of this kind are widely used in EU electricity markets (see Ahlqvist et al. 2022; Herrero,
Rodilla and Batlle 2020), where offers for all 24 hours of the next day are submitted simultaneously and
cleared jointly.
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Our analysis is also related to supply function competition in networked electricity
markets. Graf et al. (2020), Holmberg and Philpott (2018), Ruddell (2018), and Wil-
son (2008) study bidding across locations linked by transmission constraints. In these
models, locational goods may act as perfect substitutes when the network is uncon-
gested, or as completely separate markets when congestion binds. By contrast, in our
framework product interactions arise from economies of scope in costs, strategic bid-
ding incentives, and demand linkages, rather than from physical network constraints.
Moreover, our supply functions are contingent on all market prices. Bizzarri (2022) also
considers multivariate supply functions, but focuses on vertical strategic interaction in
input–output networks. In contrast, we study horizontal interaction across products.

A different body of work studies auction formats developed for practical applica-
tions, allowing discrete, package, or complex bids in which bidders can submit con-
ditional offers across goods or directly report their underlying preferences or costs.
Examples include the Product-Mix Auction introduced at the Bank of England (Klem-
perer 2010; Giese and Grace, 2023), its theoretical foundations (Baldwin and Klem-
perer, 2019; Finster, 2020), combinatorial auctions for spectrum allocation (Ausubel and
Cramton, 2004; Ausubel, Cramton and Milgrom, 2006), and complex bids in electricity
markets (O’Neill et al., 2005; Gribik, Hogan and Pope, 2007; Reguant, 2014; Herrero,
Rodilla and Batlle, 2020). Like our analysis, these mechanisms are motivated by the
need to capture interactions across products, but they also accommodate non-convex
preferences or indivisibility constraints. The crucial distinction is that in our frame-
work bundles are defined by invertible linear transformations of the good space, so
each bundle remains perfectly divisible and is traded at a uniform price. Rebundling is
therefore equivalent to a change of coordinates, leaving allocations and payoffs invari-
ant to the representation. In contrast, package-bidding formats allow all-or-nothing
offers, so effective prices depend on the composition of the package. This violates the
‘one-good one-price’ principle, making equilibrium outcomes dependent on the cho-
sen bidding format rather than invariant across equivalent product representations.
Nevertheless, our results should approximately apply to these practical auction for-
mats when non-convexities and indivisibilities are minor.

In the Industrial Organization literature, bundling is typically studied as a tool for
market segmentation and price discrimination (Armstrong, 2016). Carvajal et al. (2010)
show that if bundles do not span the full product space, bundling choices can affect
profits even under linear pricing. Our analysis is different: we restrict attention to
bundles that span the entire product space, and centralized market clearing guarantees
a single linear price for each good, so price discrimination is ruled out. Allocations and
payoffs are invariant to the choice of bundles.
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Armstrong and Vickers (2018) analyze multi-product Cournot competition and show
that market power raises prices above marginal cost while also distorting relative
prices. They find that markups are inversely proportional to the number of firms and
are determined by the gradient of net utility. In our SFE framework, this relation-
ship no longer holds: relative price distortions change with the number of firms due
to strategic interactions of supply slopes, which lead to quadratic rather than linear
matrix equations. In both frameworks, however, relative prices are undistorted either
for a suitable combination of goods corresponding to a separating bundle or when
the pass-through matrix converges to the identity. In an extension, we show that our
approach can also be applied to Cournot models.

Overview

The used notation is summarized in Table 1. Section 2 presents the model. Section 3
establishes invariance to bundling and identifies separating bundles. Section 4 char-
acterizes multi-product SFE and non-linear equilibria. Section 5 focuses on quadratic
costs and linear demand, where global separation can be obtained. Section 6 introduces
Lerner and pass-through matrices and applies them to welfare and comparative statics,
including a comparison with Cournot. Section 7 concludes. The Appendix provides
proofs of lemmas and propositions, numerical and graphical illustrations of separating
bundles and a pseudocode that shows how non-linear SFE can be computed.

2 Model description

We consider a sealed-bid procurement auction for I heterogeneous divisible goods
i ∈ I ≡ {1, ..., I}. A set of N suppliers n ∈ N ≡ {1, . . . , N} simultaneously submit
joint supply schedules for the provision of the goods. The demand for those goods is
stochastic and is realized after supply schedules have been submitted. The auctioneer
clears the markets jointly and determines a market price for each good. Suppliers pro-
duce according to their supply schedules. We refer to an equilibrium in this one-shot
game as a supply function equilibrium (SFE).

Define P as the set of permissible price vectors p ∈ P ⊆ RI , and Q as the set
of permissible quantity vectors q ∈ Q ⊆ RI . Supplier n’s cost for producing the
quantities q ∈ Q is given by a convex cost function cn(q). The cost functions are
common knowledge among producers. Supplier n’s profit for selling the quantities q
at prices p is

πn(p, q) = p⊤q − cn(q), (1)
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Table 1: Summary of Notation

Symbol Description

Model primitives
I Number of goods
N Number of symmetric suppliers (firms)
p ∈ RI Vector of market prices
q ∈ RI Vector of quantities
c(q) Convex cost function (symmetric across firms)
d(p) Price-sensitive component of the demand function
ε Additive demand shock vector
f (ε) Probability density of the demand shock
µ, Σ Mean and covariance of ε
s(p) Symmetric (per firm) supply function
C(q) = ∂2c(q)/∂q2 Positive-definite cost curvature matrix (Hessian)
D(p) = −∂d(p)/∂p Positive-definite (sign flipped) demand-slope matrix (Jacobian)
S(p) = ∂s(p)/∂p Positive-definite supply slope-matrix (Jacobian)

Bundling
A, B ∈ RI×I Bundling matrices that transform between goods and bundles.

Separating bundles are given by the eigenvectors of DC
We denote transformed vectors/matrices in bundle space with a tilde: e.g. p̃ = ATp

Lerner, pass-through and welfare
L = I − CS Lerner matrix
ρ = (I + 1

N S−1D)−1 Oligopoly pass-through matrix
ρ0 = (I + 1

N CD)−1 Competitive pass-through matrix
R = ρρ−1

0 Relative pass-through matrix
W0 = 1

2 ρ0D−1 Competitive welfare matrix
M = W0(Σ + µµ⊤) Welfare-weighted shock importance matrix
r̄ = tr(MR)/ tr(M) Welfare-weighted average relative pass-through
λ ∈ 1, . . . , I Index of diagonal matrix elements in separating-bundles space.

For L, ρ, ρ0 and R, these elements are (invariant) eigenvalues
rλ = ρλ/ρ0,λ Relative pass-through ratio for eigenvalues indexed by λ

mλ = (M̃)λλ Weight in diagonal element λ of M̃ for separating bundles.
r̄ = ∑λ mλrλ/ ∑λ mλ Welfare-weighted average relative pass-through

where the first term represents revenue as the inner product of the price vector with
the output vector.7

The demand in the auction is non-strategic, represented by the stochastic vector-
valued demand function d : P × E → Q, which gives demand for the goods as func-

7For simplicity, we consider risk-neutral producers, but similar to Klemperer and Meyer (1989), risk
aversion would not change our results, because the equilibria are ex-post optimal.
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tion of the price vector p as well as an additive vector shock ε: 8

d : P × E → Q : (p, ε) 7→ q = d(p) + ε.

The demand shock vector ε has a probability distribution with density f (ε), on the
support E ⊆ RI , which is a convex set that contains the origin. Similar to KM, we as-
sume that demand shocks are additive. Throughout the paper, we make the following
assumptions regarding demand and cost functions.

Assumption 1 (demand and cost functions).

a. The production cost functions cn are twice continuously differentiable, convex and com-
mon knowledge among the producers. The Hessian matrix of the cost function Cn is
positive-definite everywhere.

Cn(q) =
∂2cn(q)

∂q2 > 0

b. The Jacobian matrix of demand with respect to price is continuously differentiable and
negative-definite everywhere.

D(p) = −∂d(p)
∂p

> 0

c. The matrix product ∂d/∂p ∂2cn/∂q2 has no repeated eigenvalues.

Definiteness of the derivative matrices implies that they are symmetric. In particu-
lar this means that cross-elasticities in demand are equal ∂di/∂pj = ∂dj/∂pi, for all i, j.
Goods might be complements

(
∂di/∂pj < 0

)
or substitutes

(
∂di/∂pj > 0

)
. Assump-

tion 1.b. implies that own price effects are negative (∂di/∂pi < 0) and that own price
effects dominate cross-price effects. Assumption 1.c. is a regularity assumption which
rules out degenerate outcomes where demand and costs interactions offset each other.
Without this assumption, proofs would need to include separate statements for those
degenerate cases.

Each supplier n ∈ N submits a vector of supply functions sn : P → Q which
specifies how much supplier n is willing to produce of each good at every price vector
p ∈ P .

8Weyl and Fabinger (2013) study shocks from exogenous (and inelastic) entry. Except for the sign,
such shocks are equivalent to the additive demand shocks that we study.
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Assumption 2 (permissible bidding strategies). The auction only allows supply schedules
for which the Jacobian matrix of the supply function vector of supplier n ∈ N , is symmetric,
continuously differentiable and positive-definite everywhere.

Sn(p) =
∂sn(p)

∂p
> 0.

This assumption implies that the vector of supply functions sn(p) by producer n
corresponds to a reported convex production cost function kn(q). That is, the reported
marginal costs ∂kn/∂q, which are strategic and may differ from the true marginal costs,
are equal to the inverse of the supply functions:

∂kn(q)
∂q

= s−1
n (q) and Kn(q) =

∂2kn (q)
∂q2 > 0,

where Kn is the Hessian of the reported cost function.

The auctioneer collects the bids of the suppliers and determines the market clearing
price after the shock ε has been realized. The clearing price vector pc (ε) is set such that
aggregate supply equals realized demand:

pc (ε) : ∑
n∈N

sn(p) = d(p) + ε. (2)

Assumptions 1 and 2 ensure that any vector of clearing prices, if it exists, is unique
(Varian, 1975). Similar to KM and Vives (2011), we assume that there are no transac-
tions (the payoff is zero) if supply functions are such that the market does not clear for
some ε.

Each supplier chooses its vector of supply functions in order to maximize its ex-
pected profit. Given the clearing price pc (ε), supplier n produces sn(pc(ε)) units of
goods and its expected profit is equal to

Πn =
∫
E

πn (pc (ε) , sn (pc (ε))) f (ε) dε. (3)

The strategy profile {sn(p)}n∈N is a Nash equilibrium in the procurement game if
no player n can increase its expected profit by selecting another permissible bidding
strategy ŝn(p).
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3 Bundling goods

The markets for goods might be interrelated because of: (dis-)economies of scope in
production through the cost function cn, goods that are complements or substitutes
through the demand function d, correlated demand shocks across markets through ε,
or suppliers who link their supply schedules sn across markets for strategic reasons.
This interaction between markets complicates the analysis of players’ strategies. We
can simplify the problem by making a coordinate transformation, i.e. to bundle the
goods. However, first we need to show that such a transformation will not change the
outcome of the game. Below we find that the auction outcome is invariant to bundling
of goods. That is, in equilibrium firms receive the same allocation of the underlying
goods and the same payoffs, irrespective of how the goods are bundled by the auc-
tioneer. In the next step, we will rely on this property and choose specific bundles,
the separating bundles, for which cost and demand interactions vanish. The two other
interactions, correlated shocks and strategic linking, will be addressed in Section 4.
Ex-post optimality will imply that the distribution and correlation of shocks do not
influence the producers’ decisions (the supply functions) and it will follow from our
analysis that strategic linkage disappears for separating bundles.

Instead of procuring I goods i = 1, ..., I, we now assume that the auctioneer pro-
cures I bundles of goods j = 1, ..., I, where each bundle j is divisible but consists of a
fixed proportion of goods i. Formally, one unit of the bundle j consists of a1,j units of
good 1 and a2,j units of good 2, etc. Thus the amount of underlying goods q that are
contained in q̃ units bundles can be calculated as follows:

q = Aq̃.

We refer to A as the bundling matrix. We shall consider bundles which span the full set
of goods and are linearly independent, so that the bundling matrix A is of full rank.9

The bundling transformation corresponds to a coordinate transformation. Note that
typically defined bundles that span the space of goods would not be orthogonal. In
such cases, the coordinate transformation is non-orthogonal.10

For each bundle j, it is possible to compute a price p̃j for one unit of the bundle j

9This means that A has to be an element of the general linear group over R: A ∈ GlI(R). Carvajal
et al. (2010), who analyze the effects of bundling for a monopoly market, also consider ‘partial’ bundles
that do not span the space of goods. In this case A would not be of full rank and would not belong to
GlI(R).

10Hence, bundling matrices are typically not unitary. This implies that distances are normally not
preserved after a bundling transformation, i.e. the transformation is not isometric. For example, the
price-cost margins will typically change after bundling, so that ∥p0 − ∂c(q0)/∂q∥ ̸= ∥p̃0 − ∂c̃(q̃0)/∂q̃∥.
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from the prices of goods contained in that bundle, that is p̃j = ∑j ai,j pi. Hence, p̃ =

A⊤p. From a vector of bundle prices p̃, it is also possible to compute prices for the
underlying goods p that would give those bundle prices:

p = Bp̃,

where B =
(

A−1)T . From the transformations above, we can determine permissible
bundle prices P̃ and bundle quantities Q̃ that correspond to permissible prices and
quantities for the underlying goods.

P̃ = {p̃ ∈ RI |Bp̃ ∈ P} Q̃ = {q̃ ∈ RI |Aq̃ ∈ Q}.

Producer n’s cost of producing q̃ bundles is equal to the cost of the goods Aq̃. So,

c̃n(q̃) = cn(Aq̃). (4)

The demand shock for bundles ε̃ = A−1ε has the support Ẽ = {ε̃ ∈ RI |Aε̃ ∈ E}.The
demand for bundles at bundle prices p̃ and demand shock ε̃ is determined by the
demand for underlying goods and the transformations:

d̃(p̃) + ε̃ = A−1d(Bp̃) + ε̃. (5)

Similarly, a non-strategic supply function of some producer n, which corresponds to
its true marginal cost, can be transformed as follows.

s̃n(p̃) = A−1sn(Bp̃).

The relationship between the supply functions s in goods and s̃ in bundles is illustrated
in Figure 1. The non-strategic supply of bundles q̃ = s̃( p̃) can be found by three sub-

sequent mappings: p̃ B→ p s→ q A−1
→ q̃: converting the bundle prices into good prices,

identifying the non-strategic supply of underlying goods by firm n, and transforming
goods supply into bundle supply.

Furthermore, we will use the properties of the lemma below to show that the prop-
erties of Assumption 1 (concavity of gross utility and convexity of cost) and Assump-
tion 2 (permissible bidding format) are invariant to bundling.

Lemma 1. The transformations of the cost Hessian, C(q) the demand Jacobian −D(p) and

12
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Figure 1: The mapping of supply functions in bundle space to good space.

the supply Jacobian S(p) from good to bundle space are congruence transformations:11

C̃ = A⊤CA, −D̃ = −B⊤DB and S̃ = B⊤SB

A congruence transformation is a mapping RI×I → RI×I which maps a matrix X on A⊤X A
for some non-singular matrix A ∈ GlI(R):

With a congruence transformation, eigenvalues change, but the number of posi-
tive, negative and zero eigenvalues remains constant. This is Sylvester’s law of inertia
(Horn and Johnson, 2013). Moreover, symmetry of transformed matrices is preserved.
Hence, positive definiteness of the cost Hessian and demand/supply Jacobians do not
change when transforming between the good space and the bundle space even if the
coordinate transformation would be non-orthogonal. We note that the product of the
two matrices DC transforms as a similarity transformation: D̃C̃ = A−1DCA. This
transformation preserves eigenvalues, so that the assumed property of non-repeated
eigenvalues is independent of the transformation (Horn and Johnson, 2013). Hence,
Assumptions 1 and 2 are satisfied in bundle space if and only if they are satisfied in
good space.

Cost and net-utility are invariant to bundling. We now formulate a proposition
which shows that the Nash equilibrium is also invariant to the bundling transforma-
tion.

Proposition 1. The strategy profile {s̃n(p̃)}n∈N is a Nash equilibrium in the auction for bun-
dles if and only if the strategy profile {sn(p)}n∈N =

{
As̃n(A⊤p)

}
n∈N is a Nash equilibrium

11Recall that −D(p) = ∂d(p)
∂p .
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in the auction for goods.

Thus if we can solve for an SFE for a specific bundle of goods, then we can use the
expressions above to transform the equilibrium to a market with bundles.

When operating the auction, or solving for the optimal offers or the supply function
equilibrium, we have a choice in how to bundle the goods. In our case, we would like
to find a bundling such that the markets for bundles are (locally) separate, with no
cross-interactions in either cost or demand. That is, we would like to find a congruence
transformation A such that Jacobian of demand and the Hessian of production cost are
diagonal. The following Lemma formalizes this approach.

Lemma 2 (Separating Bundles). Let A be a bundling that consists of the eigenvectors of the
matrix product of the demand Jacobian and the cost Hessian, D(p)C(q),

A = eigenvector(D(p)C(q))

then in bundle coordinates the cost Hessian C̃(q̃) and demand Jacobian −D̃(p̃) are diagonal:

D̃ = B⊤DB ∈ diag(RI×I)

C̃ = A⊤CA ∈ diag(RI×I)

Moreover this is the unique bundling that simultaneously diagonalizes both matrices, up to
scalar multiplication and permutation of columns.12

The eigenvectors of DC are generalized eigenvectors (and conjugate vectors) of D
and C, which normally differ from the eigenvectors of D or C. We discuss this further
in Appendix B.2. Appendix B.1 has numerical examples that illustrate bundling and
how separating bundles can be identified. In general, a bundling A will only sepa-
rate markets locally, at a particular price and quantity. Section 5 focuses on a linear
equilibrium, where there is a bundling A that will separate markets globally.

4 Characterization of bidding equilibrium

4.1 Best response

In a supply function equilibrium, a seller n acts as a monopolist in response to its
residual demand, defined as the market demand less the offers of all the other sellers:

12Assumption 1.c. rules this out, but if the matrix DC had repeated eigenvalues, then the separating
bundles would still exist but would no longer be unique.
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dn(p) + ε = d(p) + ε− ∑
m ̸=n

sm (p) . (6)

This inherits the properties of Assumption 1.b. — its price Jacobian ∂dn/∂p is negative-
definite and shocks are additive.

There will be a one-to-one correspondence between the shock vector and price vec-
tor, so that any choice of price vector (or quantity vector) can only clear the market for
one shock vector. Thus the best response is ex-post optimal.

Lemma 3 (Optimal response to residual demand). First Order Condition: A necessary
condition for supply function sn(p) of supplier n to be a best response to its stochastic residual
demand in (6) is that at every point (p, q) = (p, sn (p)) on the supply schedule, we have

hn (p, sn (p)) = 0, (7)

where
hn (p, q) = q +

∂dn (p)
∂p

(
p − ∂cn (q)

∂q

)
. (8)

Global Second Order Condition: A sufficient condition for sn (p∗) to be the best quantity to
offer at price vector p∗ is that it satisfies (7) and

(p − p∗)⊤ hn (p, sn (p∗)) ≤ 0 (9)

for every p ∈ P .

It follows from Lemma 3 that the first-order condition for multi-product markets is
a generalization of the first-order condition for one divisible good by Klemperer and
Meyer (1989).

4.2 Symmetric equilibrium

In this section we consider identical suppliers and look for symmetric SFE, i.e. where
each firm n ∈ N submits identical supply schedules, sn = s. It follows from Lemma
3 that the necessary first-order conditions are given by a single, vector-valued partial
differential equation (PDE).

F
(

p, s,
∂s
∂p

)
= s −

(
(N − 1)

∂s
∂p

− ∂d
∂p

)(
p− ∂c

∂q

)
= 0. (PDE)

Solutions sPDE(p) to this PDE will be SFE if they satisfy (1) the bidding format and
(2) the global second-order conditions. We can rewrite this PDE so that we can find a
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symmetric supply Jacobian for a given level of price p0 and quantity q0:

∂s(p0)

∂p
= G(p0, q0)

Here, the function G maps the price and quantity vector on a symmetric matrix rep-
resenting the supply Jacobian. This formulation rewrites the differential equation in a
standardized format.

Any supply Jacobian needs to be symmetric according to Assumption 2, even if the
supply function is not part of an equilibrium. The symmetric supply Jacobian ∂s(p0)

∂p
at price p0 has I(I + 1)/2 degrees of freedom. The partial differential equation (PDE)
imposes I conditions on the supply Jacobian, one for each good. This might seem to
suggest that the symmetric supply Jacobian is not uniquely defined and that there are
I(I − 1)/2 degrees of freedom. However, the proposition below shows that this is not
the case, because related symmetry conditions need to be satisfied for derivatives of the
supply Jacobian. This reduces the degrees of freedom and results in a unique supply
Jacobian. The supply Jacobian is such that the separating bundles that (locally) diago-
nalize the demand Jacobian and cost Hessian, will also (locally) diagonalize the supply
Jacobian. Hence, with the separating bundles the markets will separate, also strategi-
cally. If markets are separate, bidders have no incentive to condition their supply on
the price of other bundles.

Proposition 2. Let (q0, p0) be a point in Q× P . At this point there exists a unique sym-
metric, continuously differentiable supply Jacobian ∂s/∂p that solves (PDE). It satisfies the
commuting relationship:

∂d(p0)

∂p
∂c(q0)

∂q2
∂s(p0)

∂p
=

∂s(p0)

∂p
∂c(q0)

∂q2
∂d(p0)

∂p

and is congruently diagonalized by the separating bundling matrix A that locally diagonalizes
∂d/∂p and

(
∂2c/∂q2)−1at (q0, p0).

This proposition provides two practical methods to derive the supply Jacobian.
It can be found by rewriting the SFE in separating bundles coordinates, calculate I
one-dimensional supply slopes for those bundles and transform the solution back into
goods coordinates. An alternative is solving a set of equations: The FOC (I conditions),
symmetry of the Jacobian (I2/2 − I/2 conditions) and symmetry of its derivatives
(I2/2 − I/2 conditions), which correspond to the commutative property in Proposi-
tion 2. This set of equations uniquely pins down the supply Jacobian.
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F
(

p0, q0, ∂s(p0)
∂p

)
= 0

∂s(p0)
∂p =

(
∂s(p0)

∂p

)⊺
∂d(p0)

∂p
∂c(q0)

∂q2
∂s(p0)

∂p =
(

∂d(p0)
∂p

∂c(q0)
∂q2

∂s(p0)
∂p

)⊺
→ ∂s(p0)

∂p
= G(p0, q0)

The results in Proposition 2 can be used to straightforwardly numerically compute
non-linear, multi-product supply function equilibria, as illustrated in Appendix B.3.
However, there is a singularity at points where the price equals the marginal cost.
More advanced numerical tools are likely to be needed if one needs robust estimates
of supply functions in the neighborhood of such singularities.

5 Quadratic cost and linear demand

Henceforth, we assume quadratic costs and linear demand, which implies that there
is a single bundling transformation that separates markets globally. By applying the
theory of single-good SFE, we can characterize all equilibrium supply schedules. One
of the equilibrium supply schedules is linear. This linear schedule is the unique equi-
librium when demand shocks are unbounded. Furthermore, in the linear setting, costs
and net utility are homothetic in quantities. This makes it possible to describe the inter-
actions between products based on demand preference and production cost through
representative iso-utility and iso-cost curves. This facilitates the graphical illustration
of separating bundles, as is shown in the Appendix B.2.

Assumption 3 (Quadratic cost and linear demand).

1. The costs of suppliers are quadratic, common knowledge and denoted by cn (q) = 1
2q⊤Cq

for all n ∈ N , where C is a positive-definite matrix.

2. The demand is linear in price, with additive demand shocks expressed as d (p, ε) =

ε− Dp, where D is a positive-definite matrix.

The cost Hessian and the demand Jacobian remain constant under Assumption 3.
Proposition 2 implies that there exists one fixed bundling that separates the markets
for all prices and quantities, which can be formalized in the next corollary.

Corollary 1. Under Assumption 3 (quadratic costs and linear demand), the separating bundle
A =

(
B−1)T remains unchanged regardless of the values of (q, p). Therefore a single bundling

transformation A globally separates markets. In this specific basis both matrices

C̃ = A⊤CA and D̃ = B⊤DB
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become diagonal while the supply Jacobian

∂s̃
∂p̃

= B⊤ ∂s
∂p

B

is diagonal for every price p ∈ P .

With the markets separated, supply in each market can be optimized indepen-
dently. Hence, it becomes a simple task to determine supply function equilibria, as we
can apply the findings of KM for a single good market to each independent bundle-
market.

Corollary 1 demonstrates that equilibrium outcomes are invariant to bundling. In
other words, if supply functions are an SFE in one coordinate system, then transformed
supply functions will also remain an SFE in the transformed coordinate system. There-
fore, by characterizing equilibria for the separated markets, we are effectively charac-
terizing equilibria for all possible bundles of those goods.

For two identical firms, KM characterize the set of SFEs, including non-linear SFE,
for a single good market where the range of the demand shock is a bounded interval
[0, ε]. They establish that this set is a one-parameter family of symmetric SFEs, which
forms a fan between the most competitive equilibrium (Bertrand outcome when the
shock is at the upper bound) and the least competitive equilibrium (Cournot outcome
when the shock is at the upper bound). They also find that any symmetric upward
sloping supply function that satisfies the one-dimensional version of the first-order
condition in (PDE) is an SFE. The results of KM can easily be extended to N firms, and
also involve negative demand shocks. For negative shock values, prices and quantities
become negative, indicating that firms are purchasing from consumers. By a reflection
of the values through the origin we can use the KM methodology to derive SFEs. If the
function s(q) is an SFE for the negative shock interval [ε, 0], then the function −s(−q)
is an SFE on the positive shock interval [0,−ε]. The fact that all SFEs have the same
slope through the origin allows us to independently define the positive and negative
sections of the SFE curve. Consequently, we can define the set of all SFEs in a linear
market for a single good as a two-parameter family.

Definition 1. Let S (ε, ε, δ, γ, N) denote the set of SFE, s(p), in an N-player game with a
single good characterized by a linear stochastic demand d (p, ε) = ε− δp, with demand
shock support [ε, ε], and quadratic cost c (q) = 1

2 γq2.

From this definition, it becomes straightforward to characterize all SFE, including
non-linear SFE, in multi-product markets with quadratic costs and linear demand.

18



Corollary 2. Let A =
(

B−1)T be a bundling transformation that globally separates markets,
with D̃ = B⊤DB and C̃ = A⊤CA the corresponding diagonal matrices for bundles. Let d̃ii

and c̃ii be the i-th diagonal entries of D̃ and C̃, then all symmetric SFE Nash equilibria take the
form (and any symmetric supply function with this form is a symmetric SFE)

sj(p) = ∑
i∈I

bji · s̃i

(
∑
k∈I

bki pk

)

where each s̃i (·) belongs to the set of one-dimensional SFE for bundle i. One-dimensional SFE
of different bundle markets can be combined in any way such that

{s̃1 (·) , ..., s̃i (·) , ..., s̃I (·)} ∈ ∏
i
Si

with
Si = S

(
ε̃min

i , ε̃max
i , d̃ii, c̃ii, N

)
.

For each separating bundle i, we get maximum and minimum demand shocks from the feasible
separating shocks Ẽ :

ε̃min
i = min

{
ε̃i | ε̃ ∈ Ẽ

}
ε̃max

i = max
{

ε̃i | ε̃ ∈ Ẽ
}

. (10)

Hence, the set of SFEs is a 2I parameter family of supply schedules, which corre-
spond to the purchasing and supply schedules for each of the separating bundles, in I
markets.

We now confine ourselves to a special class of SFE with linear schedules, denoted as
s (p) = Sp. For such a schedule, the supply Jacobians ∂s/∂p = S are constant and
equal to S. First, we show the existence and uniqueness of such an SFE. We then show
that when demand shocks are unbounded, this linear schedule is the unique SFE.

Lemma 4. A linear schedule s (p) = Sp is an SFE if it solves the algebraic Riccati equation.

S − (D + (N − 1) S) (I − CS) = 0. (11)

There is a unique positive-definite S that solves this equation. If the demand shock has full
support, E = RI , then this linear schedule is the unique symmetric SFE.

The first part of the proof follows from rewriting the first-order conditions ((PDE))
for linear supply schedules. The Algebraic Riccati equation is multi-dimensional ver-
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sion of a quadratic equation which has 2I roots, only one which is positive definite. 13

If the support of the shock for goods E is unbounded, E = RI , then the support of the
shock for separating bundles Ẽ is unbounded as well Ẽ = RI . Hence, for each sep-
arating bundle the demand shock has full support, and KM’s result for single goods
applies: the unique SFE is the linear supply schedule.

Armstrong and Vickers (2018) demonstrate that for Cournot models, the supply
gradient vector is equal to the cost gradient vector plus a mark-up vector: p = Sq =

Cq + D−1q/N. The mark-up decreases with the number of firms N in the market.
Such a straightforward linear relationship does not exist for Supply Function Equilibria
since the intensity of competition depends not only on the demand slope D but also on
the supply slopes of competitors S, which are endogenous. An SFE requires a quadratic
equation to be solved. The mark-ups are examined in greater depth in the following
section. Rather than absolute mark-ups, we shall consider relative mark-ups, which
allow for more convenient expressions for linear SFE.

6 Welfare analysis

6.1 Multi-dimensional mark-ups and welfare.

To characterize the mark-ups in the linear SFE we introduce the Lerner matrix

L = I − CS. (12)

This matrix maps an equilibrium price vector p onto the price-cost mark-up (∆pMark-up).
That is:

Lp = ∆pMark-up ≡ p − ∂c
∂q

. (13)

It gives information about the relative price distortions due to market power in the
multi-good market for any given price vector. The Lerner matrix is dimensionless.

An additional measure of market performance is the (oligopoly) pass-through matrix,
which is defined as

ρ = (I + 1
N S−1D)−1. (14)

Analogous to Weyl and Fabinger (2013), the pass-through matrix describes how an

13This is straightforward for separated markets. We know from Klemperer and Meyer (1989) that
there are two roots for each separated market, one with positive slope and one with negative slope.
Hence, there are 2I ways in which they can be combined, but there is only one combination that has
positive slopes in each separated market. We know from Section 3 that bundling does not change defi-
niteness of demand and supply Jacobians.
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increase in per unit taxes t on goods (or an increase in marginal costs) would affect
prices on the margin, dp = ρdt in an imperfectly competitive market with industry
supply curve NSp. It also maps a demand shock ε onto the equilibrium outcome q.
That is, q = ρ⊤ε.14

We define the competitive pass-through matrix ρ0 as the pass-through matrix with
competitive bids S = C−1:

ρ0 = (I + 1
N CD)−1. (15)

This matrix is dimensionless and aggregates some primitives of the model: the in-
dustry cost Hessian C/N and the demand Jacobian D. It does not depend on firms’
strategic decisions. In essence, the competitive pass-through matrix is a compact mea-
sure of industry characteristics.

The pass-through distortion matrix R is the ratio of the oligopoly and competitive
pass-through matrices:

R = ρρ−1
0

It measures to which extent market power changes the pass-through matrix.
In a perfectly competitive setting with linear demand and quadratic costs, expected

welfare can be expressed as a function of the fundamentals of the model (demand Jaco-
bian D, the competitive pass-through matrix ρ0, and the second moment of the shock
distribution Σ + µµ⊤). Welfare losses in an oligopoly setting depend additionally on
the pass-through distortion R.

Proposition 3 (Welfare Loss Decomposition). Let W0 = ρ0D−1/2 denote the competitive
welfare matrix, and define the welfare-weighted shock importance matrix M as

M := W0(Σ + µµ⊤),

with µ and Σ the mean vector and co-variance matrix of the demand shock ε. Then the following
statements hold:15

1. Competitive welfare w0 for given demand shock ε is a quadratic function.

w0 = ε⊤W0ε

2. Oligopoly welfare losses wL for given demand shock ε is a quadratic function

wL = ε⊤(I − R)2W0ε.
14The clearing price for a shock ε can be determined from ε− Dp = NSp. Total output is given by

NSp.
15Note that the trace function, which sums the diagonal elements of a matrix, is denoted by tr (·).
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3. Expected competitive welfare

E[w0] = tr(M).

4. Expected welfare loss in oligopoly

E[wL] = tr
[
(I − R)2M

]
5. Decomposition of relative welfare loss into level and dispersion effects:Define the

weighted average relative pass-through as

r̄ :=
tr(MR)

tr(M)
.

Then:

RelLoss =
E[wL]

E[w0]
= (1 − r̄)2 +

tr
[
(R − r̄I)M(R − r̄I)

]
tr(M)

.

Given the quadratic nature of the objective function, the expressions only depend
on the second-order moments of the shock distribution and not on the precise shape
of the probability distribution. The matrix M contains all the information needed to
compute expected welfare under perfect competition: the magnitude of the demand
shocks (with larger shocks corresponding to higher welfare) and the trading surplus
available for each given shock. The pass-through distortion matrix R explains how
market power reduces sales volume for the different products.

The next lemma establishes some general properties of the matrices and their eigen-
values.

Lemma 5. Let L, ρ, ρ0, R, M and W0 be the Lerner, pass-through, competitive pass-through,
pass-through distortion, welfare-weighted shock importance matrices and the competitive wel-
fare matrix. Then,

• Changing from goods to bundle space corresponds to a similarity transformation of the
matrices L, ρ, ρ0, R and M (and their inverses):

L̃ = B−1LB ρ̃ = B−1ρB ρ̃0 = B−1ρ0B R̃ = B−1RB , M̃ = B−1MB ,

• L, ρ, ρ0 and R (and their inverses) have the same set of eigenvectors which correspond to
the separating bundles. Hence, they are jointly diagonalizable by the separating bundles.
They also commute with respect to multiplication.
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• The eigenvalues and trace of the matrices L, ρ, ρ0, R and M (and their inverses and
products) are invariant to bundling.

• Changing from goods to bundle space corresponds to a congruence transformation of W0:

W̃0 = ATW0A

• The matrix W0 is symmetric, positive definite and diagonalizable by the separating bun-
dles.

It can be noted that the matrices L, ρ, ρ0, R, M and W0 are representations of in-
variant underlying objects, which can be referred to as tensors.16 In particular, Lerner,
pass-through, pass-through distortion and welfare-weighted shock importance tensors
are mixed tensors or linear mappings, for which representative matrices have some in-
variant properties. Lemma 5 shows that the trace and eigenvalues of L, ρ, ρ0, R and M
(and their products) are independent of bundling. Hence, they are fundamental and
coordinate-invariant properties of multi-product markets. For example, the results in
Proposition 3 are invariant to bundling. The commutative property of the matrices L,
ρ, ρ0 and R is a strong property, which implies that we can more easily manipulate
expressions.17 Moreover, these four matrices are all diagonalized by the separating
bundles. For a diagonalized matrix L, ρ, ρ0 or R, the diagonal elements are equal to
the matrix’ (invariant) eigenvalues. We index these diagonal elements (eigenvalues) by
λ. The matrix W0 represents a bilinear form, which has different tensor properties. The
eigenvalues of the matrix W0 are not invariant to bundling, but the matrix is diagonal-
ized by the separating bundles. We can index these diagonal elements by λ as well.
The matrix M depends on stochastic properties of the demand shock, and may not be
diagonalized by the separating bundles. Still, we can index the diagonal elements of
this matrix, and the matrix Σ + µµ⊤, by λ when the matrices have been transformed
by the separating bundle. R and W0 are diagonalized for separating bundles. Hence,
for the separating bundles, it will only be the diagonal elements of M and Σ + µµ⊤

that matters inside the trace function.
16A tensor is a mathematical object that generalizes scalars and vectors to higher dimensions. Vectors

in physics are used to depict essential physical attributes, such as velocity or force. A vector is invariant
in itself, but it can be expressed through a set of coordinates, which do depend on the specific coordinate
system in use. Tensors too, are utilized to depict key physical properties. For instance, permittivity and
permeability tensors characterize the electric and magnetic traits of materials, while the Cauchy stress
tensor represents forces at work within objects. As our analysis shows, tensors can also be used to
characterize key properties of multi-product markets.

17The commutative property follows from the fact that the tensors have the same eigenvectors. Ma-
trices with different eigenvectors do not commute. For example, it would typically be the case that
CD ̸= DC.
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Corollary 3. [Bundle-by-Bundle Decomposition] R and W0 are jointly diagonalizable by the
separating bundles. Let:

• rλ := ρλ/ρ0,λ be the pass-through distortion in separating bundle λ,

• mλ := w0,λ(Σ̃ + µ̃µ̃⊤)λλ the weight of bundle λ and,

• r̄ := ∑λ mλrλ/ ∑λ mλ the average relative pass-through.

Then:

1. Absolute welfare loss:
E[wL] = ∑

λ

mλ(1 − rλ)
2.

2. Decomposition of Relative welfare loss:

RelLoss = ∑
λ

mλ(1 − rλ)
2/ ∑

λ

mλ = (1 − r̄)2 + ∑
λ

mλ(rλ − r̄)2/ ∑
λ

mλ.

For separated markets, bundles can be studied independently. For such bundles,
the diagonal element λ of a Lerner or pass-through matrix becomes the well-known
Lerner index and pass-through rate for the bundle λ. Figure 2 illustrates the Lerner
index and pass-through rate for a single good market with linear supply and demand.
The Lerner index L multiplied by the price p is the price-cost mark-up (p − c). The
pass-through rate ρ measures to which extent the mark-up leads to an increase of the
consumer price, as compared to the competitive price: p − pcomp = ρLp. The compet-
itive pass-through multiplied by the demand shock, ρ0ε, is competitive industry out-
put when the demand shock is ε; and ρε is industry output in the oligopoly situation.
Hence, 1 − ρ/ρ0 is the fraction of output that is withheld.

From Figure 2 it is clear that for perfectly-competitive, separated markets welfare is
given by a triangle with base D−1ε and height ρ0ε. For a given demand shock ε, welfare
becomes 1

2 ερ0D−1ε , which is consistent with Proposition 3. The triangle of deadweight
losses have the same shape but dimensions are scaled with the withholding ratio, 1 −
ρρ−1

0 , which is also consistent with Proposition 3.
For separated markets, the pass-through rates can be expressed as a function of

price elasticity of demand ϵDλ
and industry supply ϵSλ

. Equivalently, the competitive
pass-through rate depends on the price elasticity of competitive industry supply ϵC−1

λ
.

ρ =
ϵSλ

ϵSλ
+ ϵDλ

ρ0,λ =
ϵC−1

λ

ϵC−1
λ

+ ϵDλ

.
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Figure 2: Illustration of the Lerner index and (competitive) pass-through in separated
markets. The graph represents industry oligopoly supply curve, industry competitive
supply curve and demand. The blue shaded area represents total surplus with perfect
competition, the area inside the red line is the deadweight loss with oligopoly.

The competitive pass-through is large (ρo → 1), if competitive supply is elastic (ϵC−1
λ

→
∞) and demand is inelastic (ϵDλ

→ 0). It is small (ρo → 0), when the competitive
supply is inelastic (ϵC−1

λ
→ 0) and demand is elastic (ϵDλ

→ ∞).

6.2 Comparative statics

The next proposition links the market structure parameters – namely the competitive
pass-through matrix and the number of firms – with the resulting market performance
measures given by the Lerner matrix and the oligopoly pass-through matrix. Chang-
ing the number of firms N → N∗ while keeping competitive pass-through ρ0 constant,
requires an adjustment of the cost Hessian C, the demand Jacobian D, or both, such
that CD/N = C∗D∗/N∗. This guarantees that properties of the competitive market
do not change. With a constant D = D∗, this requires a rescaling of the cost Hes-
sian C such that the competitive aggregate industry supply curve remains unchanged
C/N = C∗/N∗. This corresponds to a policy that reallocates production assets be-
tween firms, i.e. forced divestiture. With a constant C = C∗, i.e. new firms identical
to the old ones are added, this requires a rescaling of the demand Jacobian D such
that D/N = D∗/N∗ is constant. In policy terms this can correspond to improving
competition by removing trade barriers between two autarkic markets. Figure 3 and
Proposition 4 show that such policy measures will make the market more competi-
tive. Eigenvalues of the Lerner matrix will decrease and eigenvalues of the oligopoly
pass-through matrix will increase.
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Figure 3: Lerner index and pass through as a function of the competitive pass-through,
ρ0,λ, and number of firms N = 1, .., 8.

Proposition 4. Let L, ρ and ρ0 be the equilibrium Lerner, the pass-through and the competitive
pass-through matrices and Lλ, ρλ and ρ0,λ be corresponding eigenvalues that belong to the same
eigenvector. Then,

1. L and ρ depend only on ρ0 and the number of firms N. L is the stable solution (=eigen-
values smaller than 1) of the Algebraic Riccati equation:

(N − 1) L2 − Nρ−1
0 L + I = 0, (16)

and ρ can be calculated from:

ρ = (Lρ0 − I)−1(Lρ0 − ρ0). (17)

2. For a monopoly (N = 1), L and ρ are determined by:

L = ρ0 ρ = ρ0(ρ0 + I)−1

3. For many firms (N → ∞), L and ρ can be approximated as,

L ≈ ρ0

N
ρ ≈ ρ0 − ρ2

0
I − ρ0

N

4. For small eigenvalues of the competitive pass-through matrix (ρ0,λ → 0), L and ρ can be
approximated as,

L ≈ ρ0

N
ρ ≈ ρ0
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5. The eigenvalues of the pass-through matrices are between zero and one. Moreover, the
eigenvalues of ρ are smaller than the corresponding eigenvalues of ρ0, i.e. ρλ ≤ ρ0,λ.

6. For N ≥ 2, the eigenvalues of the Lerner matrix are non-negative and bounded from
above by

Lλ ≤ 1
N − 1

.

This limit is reached when the eigenvalues of the competitive pass-through matrix con-
verge to 1, ρ0,λ → 1.

7. Increasing the number of firms N while keeping competitive pass-through ρ0 constant
makes markets more competitive (Lerner eigenvalues decrease), and increases the pass-
through eigenvalues.

∂Lλ

∂N
< 0

∂ρλ

∂N
> 0

8. Increasing an eigenvalue of the competitive pass-through matrix ρ0 makes markets less
competitive (Lerner eigenvalue increases) and increases the pass-through matrix ρ

∂Lλ

∂ρ0,λ
> 0

∂ρλ

∂ρ0,λ
> 0

9. For N ≥ 2, the ratio of the oligopolistic and the competitive pass-through ρλ/ρ0,λ is
U-shaped in ρ0,λ. The ratio is 1 for ρ0,λ = 0 and ρ0,λ = 1, and reaches its minimum

2(N − 1)
(√

N
N−1 − 1

)
at ρ0,λ = 1

2

√
N

N−1 .

When the market is relatively competitive, that is, with many firms or a competitive
pass-through matrix with small eigenvalues, results (3) and (4) show that the Lerner
matrix is approximately proportional to the competitive pass-through matrix:18

L ≈ ρ0

N
.

This implies that mark-ups for individual products are inversely proportional to the
number of firms.

When all eigenvalues of the competitive pass-through matrix are close 1 and hence,
the competitive pass-through matrix converges to the identity matrix ρ0 → I, result
(6) shows that the Lerner matrix becomes a diagonal matrix with the same relative

18Note that the formula also holds for the monopoly case, N = 1, but the formula is an inaccurate
approximation for an intermediate number of firms, unless the competitive pass-through matrix has
small eigenvalues.
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mark-ups for all products,

L =
I

N − 1
and ρ = ρ0.

The mark-ups are the same for any product and are approximately inversely propor-
tional to the number of firms. This can be compared with a related equiproportionality
result in the multi-product Cournot model by Armstrong and Vickers (2018) for the
case with constant returns to scale.

In relative terms, dead weight losses are small when there is little withholding,
ρλ/ρ0,λ → 1. Figure 3b and Proposition 4 show that is the case when markets are
competitive and mark-ups are low (N → ∞, or ρ0,λ → 0) or when demand is inelastic
in an oligopoly setting (ρ0,λ → 1 for N > 2). The intuition for the latter is the following:
Although price mark-ups are high, Lλ → 1

N−1 , output withholding and deadweight
loss are small because consumers do not respond to prices. Relative output reductions

are largest for intermediate values of ρ∗0,λ = 1
2

√
N

N−1 .

Welfare does not depend on bundling. Hence, it follows from Corollary 3 and
Proposition 4 that if we keep N fixed, then relative welfare losses are maximized (ir-
respective of the weights mλ) when ρ0,λ = ρ∗0,λ for all separating bundles. Based on
results in Corollary 3 and Proposition 4, it is straightforward to show the following:

Corollary 4. For given N ≥ 2, relative welfare losses have an upper bound:

E[wL]

E[w0]
≤ 1

4
(

N
(
1 +

√
1 − 1/N

)
− 1/2

)2 .

.

6.3 Comparisons with Cournot

The results in Section 6.1 are valid for any market structure with linear demand, linear
aggregate supply, and quadratic aggregate costs. For example, the results can be ap-
plied to a Cournot model with symmetric firms and where shocks are observed before
outputs are chosen. It is straightforward to show that the properties 2, 4, 5, 7 and 8 in
Proposition 4 also hold for such a Cournot model. However, there are also significant
differences.

Proposition 5. Let LC and ρC be the equilibrium Lerner matrix, the pass-through matrix
for a Cournot model and let LC

λ and ρC
λ be corresponding eigenvalues that belong to the same

eigenvector (separating bundle). Then,
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1. LC and ρC depend only on ρ0 and the number of firms N and is given by

LC =
ρ0

N

(
I − N − 1

N
ρ0

)−1

ρC = ρ0

(
1
N ρ0 + I

)−1
.

2. For many firms (N → ∞) and ρ0,λ < 1 for λ = 1, . . . , I, LC and ρC can be approxi-
mated as,

LC ≈ ρ0

N
(I − ρ0)

−1 ρC ≈ ρ0 −
ρ2

0
N

.

3. The eigenvalues of the Lerner matrix are non-negative and bounded from above by

LC
λ ≤ 1.

Irrespective of N, this limit is reached when the eigenvalues of the competitive pass-
through matrix converge to 1, ρ0,λ → 1.

4. For N ≥ 2, the ratio of the oligopolistic and the competitive pass-through ρC
λ /ρ0,λ is

decreasing in ρ0,λ. The ratio is 1 for ρ0,λ = 0 and N
N+1 for ρ0,λ = 1.

It is straightforward to show that eigenvalues of the Cournot model’s Lerner matrix
and oligopoly pass-through matrix are higher and lower, respectively, in comparison
to the linear SFE model. In particular, relative mark-ups can be huge in the Cournot
case when ρ0,λ → 1, also for many firms. Armstrong and Vickers (2018) demonstrate
that for Cournot model the absolute mark-up is linear in the number of firms, but the
Lerner matrix, which is a relative mark-up is not.

It follows from Corollary 3 and Proposition 5 that if we keep Nfixed, then relative
welfare losses are maximized in the Cournot model when ρ0,λ = 1 for all separating
bundles. Based on results in Corollary 3 and Proposition 5, it is straightforward to
show the following:

Corollary 5. For given N ≥ 2, relative welfare losses in the Cournot model have an upper
bound:

E[wL]

E[w0]
≤ 1

(N + 1)2 .

In the Cournot case, at least 9 symmetric firms are needed to ensure that relative
welfare losses are at or below 1%.19 For the linear SFE model, it is enough to have 4
symmetric firms, which follows from Corollary 4.

19Corchón (2008) finds a similar result for single-good Cournot markets with constant returns to scale.

29



7 Conclusions

We study a single-round procurement auction for multiple heterogeneous divisible
goods. Symmetric firms have costs that are common knowledge and offer a vector of
supply functions where supply of a good depends on the prices of all goods. Demand
has additive demand shocks. Clearing in each market determines equilibrium prices
and production volumes. Optimal bidding behavior is determined by a set of par-
tial differential equations, one for each firm. A firm’s supply offer for one good may
depend on the price of the other because (1) there are (dis)economies of scope in pro-
duction, (2) goods are substitutes or complements, (3) demand shocks are correlated
across markets, and (4) firms link markets for strategic considerations.

We simplify the multi-dimensional problem by choosing a suitable coordinate sys-
tem, which might be non-orthogonal. In our model, a coordinate transformation cor-
responds to bundling of goods. We consider divisible and complete bundles, so that
bundling does not restrict what combinations of the underlying goods can be traded.
Moreover, we consider linear prices, so that there is no discrimination in the market.
We show that payoffs, consumer surplus and the allocation of underlying goods are
invariant to bundling. Hence, bundling does not fundamentally change market out-
comes. Moreover, we show that our model assumptions – for instance, definiteness of
the cost Hessian, demand Jacobian and supply Jacobian – do not change with bundling.

For quadratic costs, linear demand, and symmetric firms, bundles can be chosen
such that both marginal costs and the demand for bundles are independent. That is,
the marginal cost for bundle 1 does not depend on the production level for bundle 2,
and the demand for bundle 1 does not depend on the price for bundle 2 (if we hold
the demand shock in market 1 fixed). If demand and costs are independent, we show
that a firm’s bidding strategies would also be independent: Each firm will submit a
bid function for which supply of bundle 1 does not depend on the price of bundle
2. This is true even if demand shocks are correlated across markets. Hence, ‘smart’
bundling allows us to consider the procurement for each bundle separately. We can
then use the KM model (Klemperer and Meyer, 1989) for a single divisible-good market
to characterize equilibrium offers. There is a unique symmetric equilibrium, which
is linear, when demand shocks are unbounded. For the linear equilibrium, relative
prices are non-distorted along a separating bundle, i.e. the same as in a competitive
market. This is a property that could potentially be used to identify separating bundles
empirically.

To characterize properties of the linear equilibrium, we introduce Lerner and pass-
through matrices, which generalize the Lerner index and pass-through rate used for
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single-good markets. The pass-through matrix can be used to identify the effect of a
vector of unit taxes. But we use the matrix to calculate pass through from demand
shocks to cleared prices, outputs, mark-ups and welfare losses. We show that eigen-
values of the Lerner and pass-through matrices are fundamental properties of multi-
product markets. They are invariant to bundling. We show that the competitive pass-
through matrix and the number of firms provide sufficient information to estimate
mark-ups in an imperfectly competitive market. We also apply this approach to a
multi-product Cournot market with symmetric firms.

When computing welfare losses, we find it useful to work with two pass-through
matrices: one for the case where producers make competitive offers and another for
the case where they make strategic offers. We show that the relative difference be-
tween these matrices determines the welfare loss. In particular, for separated markets
the relative welfare loss for each product equals the square of the relative difference
between the two pass-through matrices. For each number of firms, we can estimate an
upper bound for the relative welfare loss. At least four symmetric firms ensure that
the relative welfare loss is always at or below 1 %. At least nine firms are needed in a
corresponding Cournot model.

For non-linear problems, separating bundles can be used to separate markets lo-
cally. In this paper, we illustrate how local bundling can be used to numerically com-
pute multi-dimensional SFE for non-linear cases. Local independence transformations
can potentially also be useful when designing an auction in practice. It is often more
straightforward to trade independent bundles in separate auctions instead of interde-
pendent goods in a multi-product auction. In practice it is mainly of interest to min-
imize the interaction around the expected clearing price, so local market separation
should be sufficient. If it is not possible to find locally separating bundles in practice,
it would still be possible to find bundles that locally minimize the interdependence
between markets.

8 References

Adachi, T. and M. Fabinger (2022). Pass-through, welfare and incidence under imper-
fect competition. Journal of Public Economics 211, 104589.

Ahlqvist, V., P. Holmberg and T. Tangerås (2022). A survey comparing centralized
and decentralized electricity markets. Energy Strategy Reviews 40, 100812.

Anderson, E. J. and A. B. Philpott (2002). Optimal offer construction in electricity
markets. Mathematics of Operations Research 27, 82–100.

31



Armstrong, M. (2016). Nonlinear pricing. Annual Review of Economics 8, 583-614.
Armstrong, M. and J. Vickers (2018). Multiproduct pricing made simple. Journal of

Political Economy 126(4), 1444-1471.
Ausubel, L. and P. Cramton (2004). Auctioning Many Divisible Goods, Journal of the

European Economic Association 2(2-3), 480-493.
Ausubel, L., P. Cramton and P. Milgrom (2006). The clock-proxy auction: A practi-

cal combinatorial auction design. In Peter Cramton, Yoav Shoham, and Richard Stein-
berg (eds.), Combinatorial Auctions, MIT Press, Chapter 5, 115-138.

Back, K. and J. F. Zender (1993). Auctions of divisible goods: On the rationale for
the treasury experiment. The Review of Financial Studies 6(4), 733-764.

Baldwin, E. and P. Klemperer (2019). Understanding Preferences: ’Demand Types’,
and The Existence of Equilibrium with Indivisibilities. Econometrica 87(3), 867-932.

Bizzarri, M. (2022). Supply and demand function competition in general equilib-
rium: endogenous market power in input-output networks. Working paper no. 648,
Center for Studies in Economics and Finance (CESF), University of Naples Federico II.

Carvajal, A. M., M. Rostek and M. Weretka (2010). Bundling without price discrim-
ination, Working paper No. 936, Department of Economics, University of Warwick.

Corchón, L. C. (2008). Welfare losses under Cournot competition. International Jour-
nal of Industrial Organization 26(5), 1120-1131.

Finster, S. (2020). Strategic bidding in product-mix, sequential, and simultaneous
auctions. Nuffield College, University of Oxford.

Giese, J. and C. Grace (2023). An evaluation of the Bank of England’s ILTR oper-
ations: comparing the product-mix auction to alternatives. Working Paper No. 1044.
Bank of England.

Graf, C., F. Quaglia and F. A. Wolak (2020). Simplified electricity market models
with significant intermittent renewable capacity: Evidence from Italy. Working Paper
No. 27262. National Bureau of Economic Research.

Green, R. J. and D. M. Newbery (1992). Competition in the British Electricity Spot
Market. Journal of Political Economy 100(5), 929-953.

Gribik, P. R., W. W. Hogan and S. L. Pope (2007). Market-clearing electricity prices
and energy uplift. Working paper.

Herrero, I., P. Rodilla and C. Batlle (2020). Evolving bidding formats and pricing
schemes in USA and Europe day-ahead electricity markets, Energies 13(19), 5020.

Holmberg, P. and D. Newbery (2010). The supply function equilibrium and its
policy implications for wholesale electricity auctions, Utilities Policy 18(4), 209-226.

Holmberg, P. and Philpott, A. B. (2018). On supply-function equilibria in radial
transmission networks. European Journal of Operational Research 271(3), 985-1000.

32



Horn, R. A. and C. R. Johnson (2013). Matrix Analysis. Second edition. Cambridge:
Cambridge University Press.

Hortaçsu, A. and D. McAdams (2010). Mechanism Choice and Strategic Bidding
in Divisible Good Auctions: An Empirical Analysis of the Turkish Treasury Auction
Market, Journal of Political Economy 118(5), 833-865.

Hortaçsu, A. and S. Puller (2008). Understanding strategic bidding in multi-unit
auctions: a case study of the Texas electricity spot market. The RAND Journal of Eco-
nomics 39(1), 86–114.

Johnson, J. P. and D. P. Myatt (2003). Multiproduct quality competition: Fighting
brands and product line pruning, American Economic Review 93(3), 748-774.

Johnson, J. P. and D. P. Myatt (2006a). On the simple economics of advertising,
marketing, and product design, American Economic Review 96(3), 756-784.

Johnson, J. P. and D. P. Myatt (2006b). Multiproduct cournot oligopoly. The RAND
Journal of Economics 37(3), 583-601.

Kastl, J. (2011). Discrete bids and empirical inference in divisible good auctions.
The Review of Economic Studies, 78(3), 974-1014.

Klemperer, P. D. (2008). A New Auction for Substitutes: Central Bank Liquidity
Auctions, the U.S. TARP, and Variable Product-Mix Auctions. Mimeo: Oxford Univer-
sity.

Klemperer, P. D. (2010). The product-mix auction: A new auction design for differ-
entiated goods. Journal of the European Economic Association 8(2-3), 526-536.

Klemperer, P. D. and M. A. Meyer (1989). Supply function equilibria in oligopoly
under uncertainty, Econometrica 57, 1243–1277.

Lancaster, K. J. (1966). A new approach to consumer theory. Journal of Political
Economy 74(2), 132-157.

Magnus, J. R. and H. Neudecker (2019). Matrix differential calculus with applica-
tions in statistics and econometrics. Third edition. New York: John Wiley & Sons.

McCartin, B. J. (2013). A Matrix Analytic Approach to the Conjugate Diameters of
an Ellipse. Applied Mathematical Sciences 7(36), 1797-1810.

Milgrom, P. (2009). Assignment messages and exchanges. American Economic Jour-
nal: Microeconomics 1(2), 95-113.

O’Neill, R. P., P. M. Sotkiewicz, B. F. Hobbs, M. H. Rothkopf and W. R. Stewart
Jr (2005). Efficient market-clearing prices in markets with nonconvexities. European
Journal of Operational Research 164(1), 269-285.
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A Proofs of Lemmas and Propositions

Proof of Lemma 1: Congruence transformations of cost Hessian and demand/supply
Jacobians.

Proof. Taking the second partial derivative of the cost function for bundles c̃n(q̃) =

cn(Aq̃) with respect to q̃i and q̃j, and using the definition of the bundling matrix A,
gives the following expressions for the elements of the cost Hessian:

∂2c̃n

∂q̃i∂q̃j
= ∑

kl

∂cn

∂qk∂ql

∂qk
∂q̃i

∂ql
∂q̃j

= ∑
kl

∂cn

∂qk∂ql
Aki Al j.

A is a non-singular matrix, so we recognize this as the congruence transformation of a
bilinear form (Horn and Johnson, 2013), which proves the first part of the Lemma. We
have from (5) that d̃ (p̃) = B⊤d(Bp̃). Hence,

d̃i (p̃) = ∑
k

dk(Bp̃)Bki

Taking derivatives with respect to p̃j gives the following elements of the demand Jaco-
bian:

∂d̃i

∂ p̃j
= ∑

kl

∂dk
∂pl

BkiBl j.

This congruence transformation proves the second part of the Lemma. The derivation
for the supply Jacobian is analogous.

Proof of Proposition 1: Equilibrium conditions are preserved under bundle trans-
formations.

Proof. The proof follows from the strong equivalence of the game in bundles and good
space. In Section 3, we defined the following bijections:

q = Aq̃ q̃ = BTq

ε = Aε̃ ε̃ = BTε

cn (q) = c̃n

(
BTq

)
c̃n (q̃) = cn (Aq̃)

p = Bp̃ p̃ = ATp
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sn(p) = As̃n(A⊤p) s̃n(p̃) = BTsn(Bp̃)

d(p) = Ad̃(A⊤p) d̃(p̃) = BTd(Bp̃),

where BT = A−1. Note that we consider non-singular bundling matrices. From the bi-
jections above, we realize (by left-multiplying the market clearing condition for goods
by A−1) that the clearing conditions for the two markets are equivalent

d (p) + ε = ∑
n∈N

sn(p) ⇐⇒ d̃ (p̃) + ε̃ = ∑
n∈N

s̃n(p̃).

One implication of this is that payoffs will be the same in the market for goods and bun-
dles for corresponding shocks, if producers choose equivalent supply function strate-
gies in the two markets.

pTsn(p)− cn (sn(p)) = (Bp̃)T As̃n(p̃)− cn (As̃n(p̃)) = p̃T s̃n(p̃)− c̃n (q̃) ,

because BT A = I. Hence, if a set of supply functions for goods is a Nash equilib-
rium, then the corresponding set of supply functions will be a Nash equilibrium for
the bundles, and vice versa.

Proof of Lemma 2: Existence of a basis that jointly diagonalizes cost Hessian and
demand Jacobian.

Proof. The matrix C is positive-definite and D−1 is symmetric, so by a fundamental
result in the theory of quadratic forms, found in e.g. Theil (1983; Chapter 1), there
exists a matrix A that congruently diagonalizes both D−1 and C. That is,

A⊤D−1A and A⊤CA

are both diagonal. Next, we want to show that this diagonalization is unique up to
scalar multiplication and permutations. Let A be some matrix that congruently diago-
nalizes both D−1 and C as above. Congruence transformations preserve definiteness.
Hence, we can invert the first term above and multiply by the latter, which gives an-
other diagonal matrix

A−1D
(

A⊤
)−1

A⊤CA = A−1DCA = Λ.

Multiplying this with A on the left gives DCA = AΛ, so the columns of A are eigenvec-
tors of DC. The eigenvalues of DC are all distinct (Assumption 1.c), its eigenvectors
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are unique up to scalar multiplication and permutations. Hence, we realize that the
bundling that jointly diagonalizes C and D must also be unique up to scalar multipli-
cation and permutations.

Proof of Lemma 3: Characterization of first- and second-order optimality conditions

Proof. For a given supply function sn(p) and for the well-behaved residual demand in
(6), there is a bijective mapping between the demand shocks ε and the clearing prices
p realized in the market. This mapping is determined implicitly from the market-
clearing condition

sn(p) = dn(p) + ε.

Supplier n maximizes its expected profit in equation 3. Because of the one-to-one cor-
respondence between shocks and prices, this expectation can be maximized ex-post
by finding the price that maximizes profit for each outcome of the shock. Differenti-
ate πn (p, dn (p) + ε), as defined in (1), with respect to p to obtain the vector-valued
first-order condition (7).

Consider the function

g (t) = πn (p∗ + t (p − p∗) , dn (p∗ + t (p − p∗) , ε∗)) ,

where ε∗is the shock vector that gives the price vector p∗ for the supply function sn(p).
A sufficient condition for g(t) to obtain a maximum at t = 0, and to ensure that the
payoff is higher for p∗than for p, is that g′(t) · t ≤ 0. Applying the chain rule yields the
condition (9).

Proof of Proposition 2: Uniqueness and strategic separation of Symmetric SFE Jaco-
bian

Proof. The bid functions s(p) are determined by the system of first-order conditions.
To simplify notation we will use subscript , i to denote partial derivatives with respect
to pi or qi for the rest of the proof. The supply function for good i has to satisfy the
first-order condition:

si = ∑
k
(pk − c,k) ((N − 1) sk,i − dk,i) .

This condition is valid for all values of p along the supply function s(p), and it follows
from Assumptions 1 and 2 that the condition is continuously differentiable. Conse-
quently, the derivatives are also identities. We differentiate the identity with respect to
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pj:

si,j = (N − 1) sj,i − dj,i − (N − 1)∑
kl

c,klsl,jsk,i + ∑
kl

c,klsl,jdk,i

+ ∑
k
(pk − c,k)

(
(N − 1) sk,ij − dk,ij

)
.

The derivative sj,i can be found by interchanging the indices i and j.

sj,i = (N − 1) si,j − di,j − (N − 1)∑
kl

c,klsl,isk,j + ∑
kl

c,klsl,idk,j

+ ∑
k
(pk − c,k)

(
(N − 1) sk,ji − dk,ji

)
.

It follows from Assumptions 1 and 2 that the cost Hessian as well as the demand and
supply Jacobians are symmetric. Hence, the two expressions above should be equal
and that the equality can be simplified to:

∑
kl

c,klsl,idk,j = ∑
kl

c,klsl,jdk,i

This expression needs to be satisfied for all combinations of (i, j). In matrix format,
this expression requires that the matrix DCS is symmetric:

DCS = SCD. (18)

The matrix DCS is symmetric if and only if the matrices DC and SC commute. That is:

(DC)(SC) = (SC)(DC)

This follows directly from right-multiplying equation 18 by the positive definite matrix
C. The commutative property of matrix SC with the matrix DC, where the latter has
distinct eigenvalues, implies that they share the same eigenvector space:

A = eigenvector(DC) = eigenvector(SC)

We have not shown that SC has distinct eigenvalues. Still, we can use part of the proof
in Lemma 2 to show that S and C are jointly diagonalized by the same vectors as D
and C, which correspond to the bundling matrix A.

Hence, for separating bundles and given price and quantity vectors p̃0 and q̃0, the
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supply Jacobian can be uniquely determined from the following equations.

q̃0
i = ∑

k

(
p̃0

k − c̃,k(q̃0)
) (

(N − 1) s̃k,i(p0)− d̃k,i(p̃0)
)

∀i

s̃i,j(p0) = s̃j,i(p0) = 0 ∀i ̸= j

Proof of Lemma 4: Linear supply function is an SFE if and only if Riccati equation
holds.

Proof. Existence: For linear supply schedules, (PDE) simplifies to the Riccati equation
in (11). Hence, it is a necessary condition for linear SFE. Given Proposition 1 and
Corollary 1 we may, without loss of generality, take C and D to be diagonal, i.e. we
consider separating bundles. For this bundling, it follows from the Corollary that also
the supply Jacobian S will be diagonalized. Setting the off-diagonal elements of S to
zero, we obtain independent quadratic equations from the Riccati equation

(N − 1) ciis2
ii − (N − 2 − ciidii) sii − dii = 0 for i = 1, . . . , I. (19)

By the quadratic formula this has two roots

sii =
N − 2 − ciidii ±

√
(N − 2 − ciidii)

2 + 4 (N − 1) ciidii

2 (N − 1) cii
,

only one of which is positive. Taking the positive root for each good gives an S with
positive diagonals. This is the only positive-definite solution of the Riccati equation.
The solution satisfies the first-order condition. Hence, it follows from KM and Corol-
lary 2 that it constitutes an SFE, a linear SFE. Also, it follows from KM and Corollary 2
that the linear SFE is the unique SFE for unbounded demand shocks.

Proof of Proposition 3: Expected welfare losses and decomposition

Proof. When the auction clears with total output q, the net consumer surplus is

1
2

q⊤D−1q (20)
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and the net total profit is

p⊤q − 1
2N

q⊤Cq =
1
2

q⊤
(

2S−1/N − C/N
)

q, (21)

since q = NSp. Adding (20) gives total welfare

1
2

q⊤
(

D−1 + 2S−1/N − C/N
)

q

1
2

q⊤
(

I + 2S−1D/N − CD/N
)

D−1q =
1
2

q⊤
(

2ρ−1 − ρ−1
0

)
D−1q.

Output is a linear function of the demand shock

q = NS (D + NS)−1 ε = ρTε.

It is straightforward to show that D−1ρT = ρD−1, so total welfare can be written

1
2
ε⊤ρ

(
2ρ−1 − ρ−1

0

)
ρD−1ε

1
2
ε⊤
(

2ρρ−1
0 − ρρ−1

0 ρρ−1
0

)
ρ0D−1ε

ε⊤
(

2R − R2
)

W0ε

ε⊤W0ε− ε⊤ (I − R)2 W0ε.

The first term corresponds to competitive welfare, for which R = I, when the demand
shock is ε. The second term is the welfare loss. The expressions for expected welfare
and welfare losses follows from the expectation formula for quadratic forms (Magnus
and Neudecker, 2019).

The decomposition of the welfare loss can be explained as follows. The trace of
a product of matrices remains unchanged under cyclic permutations of the matrices.
Hence,

E[wL] = tr
[
(I − R)2M

]
= tr

[
(I − R)M(I − R)

]
Let

I − R = U − V ,

where
U = (1 − r̄) I
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and
V = R − r̄I.

Hence,
(I − R)M(I − R) = U MU − U MV − V MU + V MV .

Trace remains unchanged under transpose. Hence,

tr
[
(I − R)M(I − R)

]
= tr

[
U MU − 2U MV + V MV

]
.

The decomposition result now follows as tr (U MU) = (1 − r̄)2 tr (M)and tr (V MV) =

tr
[
(R − r̄I)M(R − r̄I)

]
. Moreover, it can be shown that the trace of the cross term is

zero.
tr (U MV) = (1 − r̄) tr (MV) = (1 − r̄) [tr (MR)− r̄ tr (M)] = 0,

which gives the decomposed welfare loss.

Lemma 5: Transformation properties of matrices.

Proof. Using the definition of the Lerner matrix in bundle coordinates, the transforma-
tion properties of the matrices C and S, and the relationship ABT = I, we can easily
see that:

L̃ = I − C̃S̃

= I − (A⊤CA)(B⊤SB)

= I − B−1CSB

= B−1(I − CS)B

= B−1LB

With the separating bundles, the matrices S̃ and C̃ are diagonal matrices. As the prod-
uct of two diagonal matrices is diagonal, the matrix L̃ is diagonal:

L̃ = I − C̃S̃

= I − ΛCΛS

= ΛL

Hence, Lerner matrix in bundle coordinates is given by the similarity transformation

ΛL = B−1LB
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Hence, the columns of the matrix B, which correspond to the separating bundles, are
eigenvectors of the Lerner matrix L. The diagonal elements of ΛL correspond to the
eigenvalues of the Lerner matrix:

LB = BΛL

Eigenvalues are invariant to a similarity transformation (Horn and Johnson, 2013).
Hence, the eigenvalues do not change with bundling. Neither does the trace of a ma-
trix that transforms with a similarity transformation change with bundling (Horn and
Johnson, 2013). The argument is analogous for the matrices ρ, ρ0, R, and the inverses
of these matrices. The columns of the matrix B are eigenvectors of these matrices (and
their inverses) as well. Next, we show that L and ρ−1 commute, by using the fact
that they have the same set of eigenvectors (i.e. are jointly diagonalizable). The com-
mutative property of matrix multiplication follows from having identical eigenvector
spaces.

Lρ−1 = BΛLB−1BΛ−1
ρ B−1

= BΛLΛ−1
ρ B−1

= BΛ−1
ρ ΛLB−1

= BΛ−1
ρ B−1BΛLB−1

= ρ−1L.

The same argument can be made for any two matrices that have the same set of eigen-
vectors.

It follows from (15) that W0 = (D + 1
N DCD)−1/2. By assumption, C is a symmetric

and positive definite matrix, so DCD is a congruence transformation, which preserves
the symmetry and positive definiteness properties of C. We also have that D is sym-
metric and positive definite. Addition and the inverse also preserve these properties,
so W0 inherits them. The matrices C and D are diagonalized by the separating bundles.
Hence, W0 will also be diagonalized by these bundles. We can use Lemma 1 to show
that the matrix W0transforms with a congruence transformation.

W̃0 = (BT DB + 1
N BTDBATCABTDB)−1/2

W̃0 = (BT DB + 1
N BTDCDB)−1/2

W̃0 =
(

BT(D + 1
N DCD)B

)−1
/2
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W̃0 = AT
(

D + 1
N DCD

)−1
A/2 = ATW0A.

The matrix M transforms by a similarity transformation.

M̃ = ATW0A
(

A−1Σ
(

A−1
)T

+ A−1¯¯T
(

A−1
)T
)

M̃ = B−1W0

(
Σ + ¯¯T

)
B = B−1MB.

Hence, eigenvalues and the trace of M are invariant to bundling. Still, M has different
properties from L, ρ, ρ0 and R. Normally, M and Σ + ¯¯T are not diagonalized by sepa-
rating bundles. Hence, the eigenvectors of M will generally differ from the separating
bundles, so that M does not commute with L, ρ, ρ0 and R.

Proof of Proposition 4: Comparative statics.

• The algebraic Riccati equation which determines S is given by:

S − (D + (N − 1)S)(I − CS) = 0

Left multiplying this equation by C gives:

CS − (CD + (N − 1)CS)(I − CS) = 0

We now use the definition of L = I − CS and ρ−1
0 = I + 1

N CD to find the
quadratic equation in (16). We show below that there is a unique solution with
eigenvalues smaller than 1.

• The relation in (17) can be written as:

ρ−1
0 − L = (I − L)ρ−1.

Using the definitions L,ρ and ρ0, we find

CS +
1
N

CD = CS(I +
1
N

S−1D),

which can easily be multiplied out to find an identity.

• Claims 2-4 are proved further down. Next we prove claims 5-9. In these proofs,
we will use the result in Lemma 5 that eigenvalues of the Lerner and pass-through
matrix do not depend on bundling. Hence, we can, without loss of generality, cal-
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culate eigenvalues for separating bundles. Our first result is that the eigenvalues
of ρ0 are positive and less than one. This follows from the definitions of the ma-
trices that link them to the eigenvalues of C and D for separated markets:

ρ0,λ =
1

1 + 1
N CλDλ

The eigenvalues of L are given by:

Lλ = 1 − CλSλ

which is obviously smaller than 1 as both Cλ and Sλ are positive. This follows
from the assumption that the cost Hessian and supply Jacobian are positive defi-
nite.
Considering separated markets, we realize that the first-order condition in (16)
can be written as follows:

(N − 1) L2
λ − N

Lλ

ρ0,λ
+ 1 = 0.

Any root of this expression must be positive Lλ ≥ 0, as the first and third term
of the sum are positive. This proves part of claim 6, and that CλSλ ≤ 1. The
quadratic equation has two positive roots, one root, λ+

L , which is smaller than 1
and one root, L−

λ , which is larger than 1, and is irrelevant.

L+
λ =

ρ0,λ

N
2(

1 +

√
1 − 4 (N − 1)

(
ρ0,λ
N

)2
) < 1 (22)

L−
λ =

ρ0,λ

N
2(

1 −
√

1 − 4 (N − 1)
(

ρ0,λ
N

)2
) > 1

We realize that L−
λ > 1. Otherwise, we must have that√

N2 − 4 (N − 1) ρ0,λ
2 < N − 2ρ0,λ.

Squaring both sides of this expression and simplifying gives us the condition
ρ0,λ(1 − ρ0,λ) < 0, which is never satisfied as 0 < ρ0,λ < 1.
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For L+
λ < 1 we must have that:√

N2 − 4 (N − 1) ρ0,λ
2 > 2ρ0,λ − N.

Squaring both sides and simplifying gives us the condition ρ0,λ(1 − ρ0,λ) > 0,
which is always satisfied. This is the stable solution in claim 1.

• The eigenvalues of ρ are positive and less than the corresponding eigenvalues of
ρ0. This follows from that CλSλ ≤ 1.

ρλ =
1

1 + 1
N

Dλ
Sλ

≤ 1
1 + 1

N CλDλ

= ρ0,λ ≤ 1.

This partly proves claim 5.

• It follows from (22) that the derivative of the Lerner eigenvalue (for constant ρ0,λ)
is given by:

∂Lλ

∂N
=

N − 2(N − 1)ρ2
0,λ −

√
N2 − 4(N − 1)ρ2

0,λ

ρ0,λ(N − 1)2
√

N2 − 4(N − 1)ρ2
0,λ

The nominator is positive, so the slope depends on the sign of the denominator.
So ∂Lλ

∂N < 0 if

N − 2(N − 1)ρ2
0,λ <

√
N2 − 4(N − 1)ρ2

0,λ

Squaring both sides gives

N2 − 4N(N − 1)ρ2
0,λ + 4(N − 1)2ρ4

0,λ < N2 − 4(N − 1)ρ2
0,λ

Collecting terms gives:
ρ2

0,λ(ρ
2
0,λ − 1) < 0

which is always satisfied. This proves the first part of claim 7.

• It follows from (17) that

ρλ = (1 − Lλ)/(1/ρ0,λ − Lλ) = 1 − 1/ρ0,λ − 1
1/ρ0,λ − Lλ

.

Above, we showed that ∂Lλ
∂N < 0. From this follows that ∂ρλ

∂N > 0 and that ∂rλ
∂N =

∂(ρλ/ρ0,λ)
∂N > 0, which proves the remainder of claim 7.

• It follows from (22) that the derivative of the Lerner eigenvalue with respect to
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ρ0,λfor constant N is:

∂Lλ

∂ρ0,λ
=

−N + N2√
N2−4(N−1)ρ2

0,λ

2(N − 1)ρ2
0,λ

The nominator is positive, so the derivative is ∂Lλ/∂ρ0,λ > 0 if the denominator
is positive. This condition can be rewritten as:

N >
√

N2 − 4(N − 1)ρ2
0,λ

Squaring both sides and simplifying shows this is the case. This proves parts
of claim 8. We have ∂Lλ/∂ρ0,λ > 0, so to find an upper bound for the Lerner
eigenvalue Lλ, for N ≥ 2, we can take the limit of ρ0,λ → 1 :

Lλ =
2

N +
√

N2 − 4 (N − 1)
=

1
N − 1

,

which corresponds to claim 6.

• To complete claim 8, we need to show that ρλ is an increasing function of ρ0,λ.
The derivative of ρλwith respect to ρ0,λfor constant N is:

∂ρλ

∂ρ0,λ
=

(
2 + 4ρ0,λ(N−1)√

N2−4ρ2
0,λ(N−1)

)
(2 + 2ρ0,λ)− 2(N + 2ρ0,λ −

√
N2 − 4ρ2

0,λ(N − 1))

(2 + 2ρ0,λ)2 ,

(23)
which can be simplified to

∂ρλ

∂ρ0,λ
= 2

4ρ0,λ(N − 1)− (N − 2)
√

N2 − 4ρ2
0,λ(N − 1) + N2√

N2 − 4ρ2
0,λ(N − 1)(2 + 2ρ0,λ)2

.

The expression is positive as
(

N2 + 4ρ0,λ(N − 1)
)2

= N4 + 8ρ0,λ(N − 1)N2 + 16ρ2
0,λ(N −

1)2 is strictly larger than (N − 2)2
(

N2 − 4ρ2
0,λ(N − 1)

)
.

• For constant N,we get

rλ =
ρλ

ρ0,λ
=

1 − Lλ

1 − ρ0,λLλ
. (24)

Hence,

∂rλ

∂ρ0,λ
=

∂Lλ
∂ρ0,λ

(ρ0,λ − 1) + (1 − Lλ) Lλ

(1 − ρ0,λLλ)
2 (25)
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From the Riccati equation (N − 1) L2
λ − N Lλ

ρ0,λ
+ 1 = 0,it follows that

(N − 1) 2Lλ
∂Lλ

∂ρ0,λ
− N

∂Lλ
∂ρ0,λ

ρ0,λ − Lλ

ρ2
0,λ

= 0,

which gives
∂Lλ

∂ρ0,λ
=

NLλ

ρ0,λ (N − 2 (N − 1) Lλρ0,λ)
.

Hence, (25) can be rewritten as follows:

∂rλ

∂ρ0,λ
= Lλ

N (ρ0,λ − 1) + (1 − Lλ) ρ0,λ (N − 2 (N − 1) Lλρ0,λ)

ρ0,λ (N − 2 (N − 1) Lλρ0,λ) (1 − ρ0,λLλ)
2 . (26)

From the Riccati equation in (16), we get.

ρ0,λ =
NLλ

(N − 1) L2
λ + 1

. (27)

Partially substituting this equality into (26) as well as simplifications and factor-
ization gives

∂rλ

∂ρ0,λ
= ρ0,λ

(N − 1) (Lλ − 1)2
(

Lλ + 1 −
√

N
N−1

) (
Lλ + 1 +

√
N

N−1

) (
L2

λ + 1/ (N − 1)
)

N2Lλ

(
1/ (N − 1)− L2

λ

)
(1 − ρ0,λLλ)

2 .

We have from claim 6 that Lλ ≤ 1/ (N − 1) and from claim 8 that Lλ is increasing
with respect to ρ0,λ. Hence, ∂rλ

∂ρ0,λ
is negative for Lλ ∈

(
0, L∗

λ

)
and positive for

Lλ ∈
(

L∗
λ, 1/ (N − 1)

)
, where L∗

λ =
√

N
N−1 − 1. Thus, rλ has a minimum at L∗

λ.
Using (27), we realize that this corresponds to:

ρ∗0,λ =
N
(√

N
N−1 − 1

)
(N − 1)

(√
N

N−1 − 1
)2

+ 1
=

√
N

N−1

2

and

rλ =
2 −

√
N

N−1

1 −
√

N
N−1
2

(√
N

N−1 − 1
) = 2(N − 1)

(√
N

N − 1
− 1

)
.

It follows from the Riccati equation and (24) that Lλ = 0 and rλ = 1 when ρ0,λ →
0. Similarly, it follows that Lλ = 1/(N − 1) and rλ = 1 when ρ0,λ → 1. This
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proves claim 9.

• Now, we prove claims 2-4. For the monopoly case in claim 2, we set N = 1 in (16)
which gives L = ρ0. From (17) we get:

ρ = (ρ0 − ρ−1
0 )−1(ρ0 − I).

Note that (ρ0 − ρ−1
0 )−1 = ρ0(ρ0 − I)−1(ρ0 + I)−1, which results in:

ρ = ρ0(ρ0 + I)−1

• With µ = 1/N, the Riccati equation can be written as follow:

(1 − µ) L2 − ρ−1
0 L + µI = 0.

For µ = 0 (many firms in claim 3) we have: L(L − ρ−1
0 ) = 0. This expression

has two solutions: L = 0 (with zero eigenvalues) and L = ρ−1
0 (with eigenvalues

larger than 1). The latter solution is irrelevant. Taking the differential of the first-
order condition (for a fixed ρ0) and rewriting the expression we find:

∂L
∂µ

=
(

2(1 − µ)L − ρ−1
0

)−1
(L2 − I)

For µ → 0, we have L = 0, and this simplifies to

∂L
∂µ

= ρ0

Using a Taylor expansion of L around µ = 0, we find:

L(µ) = L(0) +
∂L(0)

∂µ
µ +O

(
µ2
)

,

which establishes the first part of claim 3.

• The pass-through matrix is given by:

(L − ρ−1
0 )ρ = (L − I).

For µ → 0 and L = 0 we get
ρ = ρ0.

49



Taking the full differential of the relationship defining ρ gives:

ρdL + (L − ρ−1
0 )dρ = dL

Evaluating this at µ → 0, L → 0 and ρ → ρ0 gives:

∂ρ

∂µ
= ρ0(ρ0 − I)

∂L
∂µ

Given that ∂L/∂µ = ρ0, we find the following Taylor expansions of the pass-
through matrix:

ρ(µ) = ρ0 + ρ2
0(ρ0 − I)µ +O

(
µ2
)

,

which proves the second part of claim 3.

• For small ρ0, the first part of claim 4 follows immediately from (16). We get the
second part of the claim by implementing the approximation for Linto (17) and
then neglecting second-order terms of ρ0.

Proof of Proposition 5: Lerner and Pass-Through under Cournot Competition

Proof. In the Cournot setting, producers observe shocks before deciding on their out-
put. We are solving for Cournot equilibria, where the equilibrium output is propor-
tional to the price, q = SCp. Still, after shocks have been observed, each producer’s
output is fixed, it does not depend on the price. Hence, the Riccati equation in (11)
simplifies as follows:

SC − D
(

I − CSC
)
= 0.

Left multiplying this equation by C and using definitions of the Lerner and pass-
through matrices gives

I − LC − N
(

ρ−1
0 − I

)
LC = 0,

which establishes the first part of claim 1. Next, we can show from the simplified
Riccati equation and the definition of ρ0 in (15) that:(

SC
)−1

D/N = (I + CD) /N = ρ−1
0 − (N − 1) I/N.

Plugging this into the definition of ρC in (14) establishes the second part of claim 1.
The first part of Claim 2 follows straightforwardly from claim 1. In the second part,

we use that the Taylor series expansion for (1 + X)−1 = 1 − X +O
(
∥X∥2

)
(Horn and
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Johnson (2013).
The expression for LC in claim 1 also holds for separating bundles, which gives an

expression for LC
λ . It follows from this expression that LC

λ is increasing with respect to
ρ0,λ. The maximum of LC

λ is reached at ρ0,λ = 1,which gives LC
λ = 1. This proves claim

3.
It follows from the expression for ρC in claim 1 that

rC
λ =

ρC
λ

ρ0,λ
=

N
ρ0,λ + N

,

which establishes claim 4.
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B Numerical Computations and Visual Illustrations

B.1 Two-good numerical example with separating bundles

Example 1. (Simultaneous diagonalization) Suppose we have a price p0 at which de-
mand has slope

∂d
∂p

(p0, ε) = −D = −
[

1 1
1 2

]
and a quantity q0 at which the cost Hessian is

∂2c
∂q2 (q0) = C =

[
2 −1
−1 3

]
.

Then

DC =

[
1 2
0 5

]

has eigenvalues λ1 = 1, λ2 = 5 with eigenvectors [1, 0]⊤ and [1, 2]⊤.20 Thus

A =

[
1 1
0 2

]
B =

1
2

[
2 0
−1 1

]

diagonalize C and D to

C̃ = A⊤CA =

[
2 0
0 10

]
and D̃ = B⊤DB =

1
2

[
1 0
0 1

]
.

Example 2. (Unique SFE slope) Let there be N = 2 symmetric suppliers in the market.
Suppose that quantity q0 = [4, 6]⊤ and price p0 = [3, 14]⊤ in a market with additive
demand shocks, where demand has slope

D = −∂d
∂p

(p0, ε) =

[
1 1
1 2

]
,

20It can be noted that the two eigenvectors are non-orthogonal, so the coordinate transformation from
the unbundled market to the market for bundles will be non-orthogonal. The reason for this is that DC
is non-symmetric, which is the case unless C and D happen to be congruent matrices, so that DC = CD.
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Figure 4: Result of Example 1. The columns of matrix A = [q1, q2] corresponds to
the separating bundles and the columns of matrix B = [p1, p2] corresponds to the
corresponding orthogonal price bundles.

and where cost has gradient ∂c/∂q = [4, 15]⊤ and Hessian

C =
∂2c
∂q2 (q0) =

[
2 −1
−1 3

]
.

Hence, the bundling matrix A =

[
1 1
0 2

]
from Example (1) will separate the market

locally. We know from Proposition 2 that there is a unique Jacobian ∂s/∂p that solves
the PDE, and that this Jacobian will be diagonalized by the separating bundling matrix
A. Using C̃ and D̃ from Example (1), and solving (PDE) for separating bundles gives:

∂s̃
∂p̃

=
1
2

[
1 0
0 5

]
.

Next, we transform this Jacobian back to the underlying goods. Hence, the unique
Jacobian of a symmetric SFE passing through (q0, p0) is

∂s
∂p

= A
∂s̃
∂p̃

AT =

[
3 5
5 10

]
.

(Non-linear SFE in a linear market). Suppose that the market is linear with two
suppliers (N = 2). The matrices that define the cost and demand functions, repre-
sented by C and D respectively, are in accordance with Example 1. Let us assume that
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Figure 5: Illustration of Example 3: Transformation of demand shock support from
good-space into bundle-space.

the demand shock ε has a range of values within a rectangle, as visualized in Figure 5
denoted as:

E = [−2, 2]× [−2, 2] .

The bundling

A =

[
1 1
0 2

]
B =

1
2

[
2 0
−1 1

]
separates the markets globally, and provides ranges for the shocks in bundle coordi-
nates

ε̃1 ∈ [−3, 3] , ε̃2 ∈ [−1, 1] .

The transformation of the shock space due to change of basis resulting from bundling
is depicted in Figure 5.

Example 3. (Linear multi-good SFE). Consider the same market as in Example 1. This
gives us

ρ0 = (I + 1
N CD)−1 =

[
2/3 0

−4/21 2/7

]
.

The eigenvalues of this matrix are 2/3 and 2/7, and they are invariant (see Lemma 5).
Hence, for separating bundles we get

ρ̃0 =

[
2/3 0

0 2/7

]
=

[
ρ̃0,X 0

0 ρ̃0,Y

]
.

The Riccati equations separate and become two quadratic equations:

L̃2
j −

2
ρ̃0,j

· L̃j + 1 = 0 j = X, Y
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The relative price cost mark-ups for bundles X and Y are:

L̃X =
2

3 +
√

5
≈ 38.2% and L̃Y =

2
7 + 3

√
5
≈ 14.6%.

The slopes of the linear SFE for separating bundles are given by

s̃X =
1 − L̃X

c̃X
=

−1 +
√

5
4

and s̃Y =
1 − L̃Y

c̃Y
=

−1 + 3
5

√
5

4
.

Transforming back to goods gives the Lerner matrix in goods:

L = B

[
L̃X 0
0 L̃Y

]
B−1 =

[
L̃X 0

L̃Y−L̃X
2 L̃Y

]
≈
[

38.2% 0%
11.8% 14.6%

]

and the supply Jacobian in good coordinates is

S = A

[
s̃1 0
0 s̃1

]
A⊤ =

−1+ 4
5

√
5

2
−1+ 3

5

√
5

2
−1+ 3

5

√
5

2 −1 + 3
5

√
5

 ≈
[

0.39 0.17
0.17 0.34

]
.

The pass-through matrix is:

ρ = (I + 1
N S−1D)−1 =

[
1 −

√
5

5 0
−
√

5
15 1 −

√
5

3

]
≈
[

0.55 0
−0.15 0.25

]
.

The pass-through distortion matrix is:

R = ρρ−1
0 =

[
3/2 − 3

√
5/10 0

1 − 13
√

5/30 7/2 − 7
√

5/6

]
≈
[

0.83 0
0.031 0.89

]
.

Assume that the demand shock has the following mean and covariance:

µ = E(ε) =
[

7 10
]⊤

and Σ = Var(ε) =

[
4 4
4 9

]

From the pass-through matrices we get:

W0 = ρ0D−1/2 =

[
2/3 −1/3
−1/3 5/21

]
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and

M = W0

(
Σ + µµT

)
=

[
32/3 13
−1/21 9/7

]
.

It now follows from Proposition 3 that expected welfare for competitive bids would
be:

tr (M) =
251
21

≈ 11.95.

The expected welfare loss in the oligopoly market is:

tr
(
(I − R)2 M

)
=

13175
126

− 140
√

5
3

≈ 0.21.

B.2 Illustrating separating bundles as conjugate vectors

Following Armstrong and Vickers (2018), we express net consumer surplus U(q) in
terms of quantities, which benefits our analysis of multi-product markets and the intu-
itive understanding of our results. In the linear setting, net utility can be described as
a quadratic form:

U(q) =
1
2

q⊤D−1q,

where q represents a vector of cleared quantities. The production costs are also quadratic:
c(q) = 1

2q⊤Cq. The iso-cost and iso-net-utility curves form ellipses, which are homo-
thetic with respect to the origin.21

The shape and orientation of the iso-cost ellipse vary depending on the nature of
the cost interaction between the products, as illustrated in Figure 6. If there are no cost
interactions then the ellipse’s axes align with the two main axes. In the presence of cost
synergies (economies of scope), the major axis of the ellipse lies in the first and third
quadrants, while production rivalry (diseconomies of scope) places it in the second
and the fourth quadrants. The shape and orientation of the iso-net-utility ellipse, on
the other hand, depend on whether goods are complements or substitutes. If product
demand is independent, the axes of the iso-net-utility ellipse align with the coordinate
system. In the case of complementary goods, the major axis of the net-utility ellipse
resides in the first and third quadrants, but for substitute goods the major axis is found
in the second and the fourth quadrants.

For two bundles, qi and qj, it follows from the congruence transformation in Lemma
1 that element i, j of matrix C̃ is given by C̃ij = q⊤

i Cqj. Hence, the production of bun-

21Net utility is homothetic, but not gross utility, V(q) = 1
2 q⊤D−1q + q⊤D−1 (” − q), unless ” = 0. In

this sense, the demand side of our linear model has similarities to assumptions made in Armstrong and
Vickers (2018). They find that homothetic net utility simplifies the solution of Cournot equilibria, even
if gross utility is not homothetic.
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Figure 6: The shape and orientation of the iso-cost curve and iso-net consumer surplus
depend on the nature of the cost and demand interaction between products.

dles qi and qj are rivalry when q⊤
i Cqj > 0, there are cost synergies when the bilateral

form is negative q⊤
i Cqj < 0, and production costs are independent when q⊤

i Cqj = 0.
Often it is possible to choose bundles such that products with cost synergies is changed
to new products with cost rivalry, or vice versa. Hence, cost synergy is not invariant to
bundling. Analogously, the sign of q⊤

i D−1qj determines whether bundles are comple-
ments or substitutes, and these properties can depend on how bundles are chosen.

To diagonalize the cost Hessian C one must identify conjugate vectors q1 and q2

with respect to the matrix C, such that qT
2 Cq1 = 0. In the case of a linear model, this

condition has a straightforward graphical interpretation, as the cost Hessian C maps
a quantity q on the cost gradient Cq. If vector q2 is conjugate to vector q1, it will be
orthogonal to the marginal cost gradient at q1, i.e. Cq1. This is illustrated in Figure
6. Alternatively, vector q1 will be orthogonal to the marginal cost gradient at q2, i.e.
Cq2. Consequently, a pair of conjugate vectors (q1, q2) corresponds to the concept of
conjugate diameters of the iso-cost ellipse 1

2q⊤Cq (Shilov, 1961; McCartin, 2013). Note
that for any vector q1 there exists a corresponding conjugate vector q2, resulting in
infinitely many pairs of conjugate diameters. In general, the conjugate diameters are
not orthogonal, q⊤

1 q2 ̸= 0 except for the pair that corresponds to the main axes of the
ellipse, which are the eigenvectors of C.22 This situation is depicted on the right side
of Figure 7. Similarly, to diagonalize D−1, one must find bundles that are conjugate
vectors with respect to the matrix D−1.

For a pair of vectors (q1, q2) to diagonalize both matricesC and D−1, the two vectors
must be conjugate with respect to both C and D−1. In other words, vector q2 must be
orthogonal to both gradients at q1, Cq1 and D−1q1. This implies that those gradients
are aligned and equal up to a scalar

22The exception to this is when the ellipse is degenerate and becomes a circle, occurring when C has
repeated eigenvalues. Then all conjugate diameters are orthogonal.
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Figure 7: The graph depicts conjugate vector pairs for the iso-cost ellipse. The figure on
the left demonstrates how, for a given vector q1, the conjugate vector may be obtained
as the one that is orthogonal to the cost gradient and therefore parallel to the iso-cost
line in q1. The primary diameters are a specific case of conjugate vector pairs, and they
are orthogonal to each other, as seen in the figure on the right.

Cq1 = λD−1q1.

Hence, the iso-cost and iso net-utility curves have tangency points at q1, as illustrated
in Figure 8. It follows that q1 is a generalized eigenvector (and λ a generalized eigen-
value) with respect to C and D−1. The relationship above can be rewritten as follows:

DCq1 = λq1.

This confirms that q1 is an eigenvector of DC, as claimed in Lemma 2. 23

If we limit ourselves to linear SFE, the reported cost function 1
2q⊤S−1q can also be

represented as an ellipse. Figure 9 illustrates iso-net utility (blue), iso-cost (red) and the
iso-reported-cost (black) ellipses for a production level q. The gradients at q represent
marginal net utility, marginal cost, and the equilibrium price. In general, they are not
parallel.

According to Corollary 1 separating bundles will diagonalize the supply Jacobian.
As a result, the pair of mutual conjugate vectors (q1, q2) of C and D−1 is likewise a
pair of conjugate vectors of S−1. Figure 9 shows that the three ellipses have a pair of
conjugate diameters in common, along the vectors q1 and q2. Along the separating
bundle q2 (green) , the gradients of all plotted ellipses are orthogonal to the separating
bundle q1, and vice versa.

23When the matrix DC has identical eigenvalues (= repeated eigenvalues), then the levels of constant
net utility and cost are homothetic to each other. The matrices D−1 and C have the same set of conjugate
vectors, all of which separate the markets. In the paper we rule out this complication by assuming that
DC does not have repeated eigenvalues.
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Figure 8: Matrices C and D are simultaneously diagonalized by a pair of bundles
(q1, q2) that are conjugate diameters in the iso-cost ellipse 1

2q⊤Cq and the iso-net-
utility ellipse 1

2q⊤D−1q. Data examples in Appendix B.1 are used in this figure.

Figure 9: The iso-net utility (blue), iso-cost (red) and the iso-reported-cost (black) el-
lipses for a production level q. The three ellipses have a pair of conjugate diameters in
common which are proportional to q1 and q2.
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Algorithm 1 Outline of algorithm that numerically computes supply q = s(p) with
starting point (q0, p0). The function JACOBIAN uses the equations in Subsection 4.2
to determine the supply Jacobian at each price in the grid. Siand Ii denote the ith
column of the Supply Jacobian and identity matrix, respectively. Note that columns
and rows are indexed from 0.

1: procedure SFE(c(·), d(·), q0, p0)
2: global N, N1, N2, I, ∆p1, ∆p2 ▷ grid size and step size
3: q(0,0) := q0 ▷ Initialize q(0,0)

4: p(0,0) := p0 ▷ Initialize p(0,0)

5: for i = 0, N1 do
6: c(i,0) := ∂qc(q(i,0))

7: C(i,0) := ∂2
q2c(q(i,0))

8: D(i,0) := −∂pd(p(i,0))

9: S(i,0) :=JACOBIAN(N, C(i,0), D(i,0), q(i,0), p(i,0), c(i,0))
10: q(i+1,0) := q(i,0) + ∆p1S(i,0)

0
11: p(i+1,0) := p(i,0) + ∆p1I0

▷ Calculate q(1,0), q(2,0), q(3,0), ...
12: for j = 1, N2 do
13: c(i,j) := ∂qc(q(i,j))
14: C(i,j) := ∂2

q2c(q(i,j))

15: D(i,j) := −∂pd(p(i,0))

16: S(i,j) :=JACOBIAN(N,C(i,j), D(i,j), q(i,j), p(i,j), c(i,j))
17: q(i,j+1) := q(i,j) + ∆p2S(i,j)

j

18: p(i,j+1) := p(i,j) + ∆p2Ij

▷ Calculate q(i,1), q(i,2), q(i,3), ...
19: end for
20: end for
21: end procedure

B.3 Pseudocode for computing SFE using local separation.

A consequence of having a unique supply Jacobian, as shown in Proposition 2, is that
we are able to use numerical integration to solve for a qPDE(p), for a given starting
point (q0, p0).24 This idea is illustrated in Algorithm 1. It calculates the vector of
supply functions by forward integration (Euler method) on a rectangular price grid
p(i,j) where i ∈ {0, 1, ..., N1} and j = {0, 1, ..., N2} are the node indices, and ∆p1 and
∆p2 denote the grid spacings for goods 1 and 2. This grid is illustrated in Figure 10.

24Often one needs a curve as an initial condition to solve a PDE. In our case, a single starting point is
enough. The reason is that the supply Jacobian is restricted to be symmetric in our problem.
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Figure 10: Price grid for numerical integration of sPDE(p).
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