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Affine Feedforward Stochastic (AFS) Neural Network

Abstract

The aim of this paper is to link the machine learning method of multilayer
perceptron (MLP) neural network with the classical analysis of stochastic

state space models. We consider a special class of state space models with
multiple layers based on affine conditional Laplace transforms. This new

class of Affine Feedforward Stochastic (AFS) neural network provides closed

form recursive formulas for recursive filtering of the state variables of different

layers. This approach is suitable for online inference by stochastic gradient
ascent optimization and for recursive computation of scores such as backpropagation.
The approach is extended to recurrent neural networks and identification

issues are discussed.

Keywords : Stochastic Neural Network, Perceptron, State Space Model,
Laplace Transform, Nonlinear Prediction, Curse of Dimensionality, Deep
Learning, Stochastic Gradient Descent, Indirect Inference.



1 Introduction

Over the last two decades statistics of the algorithmic modelling, i.e. the
machine learning has advanced significantly, especially for prediction problems
[see Breiman (2001) and the comments by Cox and Efron for the debate
between the algorithmic culture and the approaches based on stochastic
models|. The algorithmic methods have been successful in recommendation
systems, speech recognition, or image analysis, but appeared less efficient and
robust in other fields such as credit scoring, or nonlinear time series. One
of their weaknesses is the lack of interpretation, that is the black-box effect.
Typically, the data are seen as ”generated by a black-box in which a vector of
input variables X go in one side and on the other side the response variables
Y come out” [Breiman (2001), p 199]. In practice, this black-box is replaced
by a prediction algorithm, which often is not sufficiently transparent.

The aim of this paper is to introduce a stochastic structure replicating the
standard scheme of Figure 1.

Figure 1 : Standard Scheme

X — [BlackBoz| — Y

We will focus on black-boxes with feedforward stochastic network structures.
Then we will distinguish three components:

i) The entry (input) process X that describes how the input enters the black-
box (system).

ii) The network structure within the black-box. It has J (hidden) layers and
for each layer j registers the impact of X on several components of a vector
Z;, sometimes called the features. The number of components (or nodes,
neurons, modulus) can depend on the layer.

iii) The exit (output) process Y that describes how the output depends on
ZJ.

The input X and output Y can differ from the observed underlying variables
X*,Y* with economic, physical, or structural interpretations.® In practice
they are defined from X*, Y* by applying some known nonlinear transformations.
For instance, we could have Y = [Y*, (Y*)?]' and X = [X*, X*1x+~¢]".

We focus our attention on the strict feedforward scheme (see Figure 2).

3In some applications the input-output are called sensor-receptor.



Figure 2 : Strict Feedforward Scheme
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The variables X, 7)Y and the transitions are potentially random. This
scheme has to be distinguished from the standard algorithmic scheme often
used in practice where both the variables and transitions are deterministic,
as if the variables were replaced by their pointwise predictions Z sand Y,
say (see Figure 3).

Figure 3 : Predictions Feedforward Scheme
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In the classical probabilistic models, the variables X, Z;, Y are random and
the assumption of strict feedforward scheme implies that the sequence of
Zj’.s satisfies the Markov property. To contrast, under machine learning

the Z]’s and Y are deterministic functions of X. In particular, this scheme

assumes a flexible functional form }A/(X ) for the pointwise prediction of X.
This interpretation is often given when such machine learning approaches
are applied [see Kuan and White (1994) and also Lee et al. (2017) for an
attempt to manage jointly deterministic and stochastic neural networks].

Example 1 : The Multilayer Perceptron (MLP) Neural Network

The MLP network introduced in Rosenblatt (1957), (1958) is a typical example
of feedforward scheme for prediction [see Haykin (1998), Yu and Deng (2015),
Chapter 4 for general presentations].* In general the variable X and the
predictions are valued in different domains. The vector X has dimension
p and its univariate components take real values. The components of the
ZJ, j=1,...,J, take valuesin [0,1], and Y has real value. Then a deterministic
chain is, for instance, a system with two layers and two nodes (neurons) per

layer :

47 Although inspired by the way information is processed in the brain, it is far from a
realistic description of how brains actually work” [Kuan and White (1984)]. Nevertheless
this explains terminologies as neuron, neural, synoptic appeared in the machine learning
literature and the introduction of the word ”artificial” in Artificial Neural Network (ANN)
or Artificial Intelligence (AI).



entry process : 2y = G(¢0X + dio), Z1o = G(chyX + da),

network . 221 = G(CIHZAl + dn), ZQQ = G(CIQIZAl + d21)7 Wlth Zl = (2117 212),
exit process : Yy = 7’22 + 9, and Ty = (221, 222)’,
where ¢q, 2, - . ., 0 are the parameters, called synoptic weights (or connection

strengths) for the ¢ parameters and biases for the d parameters with the
appropriate dimensions, and G is often the logistic function G(y) = 1/[1 +
exp(—y)].> When the components of X are explicitly mentioned, the scheme
is detailed in Figure 4 for p = 4.

5Qther activation functions G have also been suggested, as the Threshold Logic Unit
(TLU) : G(y) = 1,50, or the popular Rectified Linear Unit (RELU) : G(y) = max(0,y) in
the machine learning jargon.



Figure 4 : The MLP Network

The transitions of the feedforward scheme in Figures 3 and 4 are usually
parametric and deterministic. The only implicitly introduced probabilistic
assumption concerns the pair of variables (X,Y’) assumed random. The
single prediction of interest is Y = F (Y| X). In particular the approach does
not explain how to predict in a coherent way transformations of Y as Y, Y2,
or |Y], and how to account for the monotonicity or convexity restrictions
between the pointwise predictions of such nonlinear transforms. 6.

Example 1 (follows) : Identification issues

6as needed in financial applications when Y is a return



The use of the MLPNN is often justified by mentioning the superposition
theorems that state that every continuous function of p continuous variables
can be represented by an appropriate composition of functions of one variable
(see online Appendix 1 on the history of superposition theorems). Then, for
continuous inputs X, the MLPNN is presented as a nonparametric estimation
method of the nonlinear pointwise prediction F(Y|X). This approach is
reversing the results of the representation theorems : the function of interest,
i.e. the prediction, is now unknown, and is estimated by means of the
estimation of a representation. This implies two different identification issues :
i) A (strict) identification issues, since the representation is not unique in
general (see online appendix 1).

ii) A weak identification issue by the curse of dimensionality (CoD) of any
nonparametric estimator that is supposed to capture all cross effects of
the components of X. Practically, with at most thousands of observations
available in the main frequent applications in Economic and Finance”, we
cannot expect to get accurate results with more than three continuous conditioning
variables. In fact in the MLPNN what really matters is the number L; of
neurons in the first layer that summarize the p continuous input variables.
Then, we get the three following situations :

i) If Ly > p, we have a (strict) identification issue.

ii) If 3 < Ly < p, we encounter the CoD and a weak identification issue.

iii) If L; < 3 < p, we have no identification issue, but we do not have a pure
nonparametric approximation, but an approximation based on a constrained
nonparametric model with L; linear indexes. [see Geenens (2011), Conn and
Li (2019) for the discussion of the curse of dimensionality in nonparametric
inferencel®.

The strict feedforward stochastic neural networks (SNN) in Figure 4 is also
considered in probabilistic state-space models under an alternative terminology.
Layer is a terminology common to network and state-space models. The
nodes (neurons) components of Z; are the state variables, the transitions
from Z; to Z;;41 are the transition equations, the exit (output) process is
the measurement equation. Each transition, for instance from Z; to Z;;1,

"This can correspond to the number of firms in an industrial sector or to daily
observations on asset return over 20 years.

8These remarks are also valid for other neural networks as the Kolmogorov-Arnold
Networks (KAN) recently introduced [see Liu et al. (2024)]



is characterized by the conditional distribution of Z;, given Z; (instead of
being defined by the conditional expectation only).

The aim of our paper is fourfold :

i) Render compatible the two cultures, that are the probabilistic state-space
model of Figure 2 and the algorithmic model that automatically updates the
predictions in Figure 3°.

ii) Introduce flexible families of stochastic networks that do not implicitly
assume that the Z; variables are binary, i.e. valued in {0,1}, with their
predictions Z; valued in [0, 1].

iii) Select appropriate learning criteria develop the statistical inference in
order to estimate the predictive distribution, measure the errors in nonlinear
pointwise predictions, filter out the latent features, or analyse the nonlinear
Impulse Response Functions (IRF).

iv) Discuss the interpretation of algorithmic online estimation under strong
or weak identification issues.

There already exists a literature trying to relate the two cultures, mainly
concerned about the nonparametric prediction [see Gallant (1981), Gallant
and White (1981), Athey and Imbens (2019)]. See, however, Example 1
(follows) on identification issues concerning this literature. The comparison
of the MLP neural network models and the stochastic state space models
is less discussed and considered with specific applications in mind [Yu and
Deng (2015) for speech recognition, Twumasi and Twumasi (2022) for the
analysis of a (blood) supply chain or Lee et al (2017) already mentioned].

The plan of the paper is the following. Section 2 introduces the Affine
Feedforward Stochastic (AFS) network. We discuss its analogies with the
MLP neural network, and the activation functions corresponding to this
class of model. This stochastic model allows for the modelling of predictive
distributions, then for coherent predictions of various transformations of Y
and the determination of prediction intervals. It is also applicable to variables
such as count or positive variables. Section 3 shows the backward and forward
prediction algorithms that extend the Kalman filter algorithms existing for
the Gaussian linear state space model. The statistical inference/learning

9This updating is for given parameters coy, cp2, . . .,d. Other algorithms can update the
parameter values when the number of observations of (X,Y) increases (see Section 4.1.4
for online inference).



is discussed in Section 4. This section is at the core of the paper. Indeed
"training large scale feedforward SNN is notoriously hard since backpropagation
is not directly applicable in particular for binary or discrete hidden units”.
We show how backpropagation algorithm works in the AFSNN framework.
We first review the method of moments and the quasi-maximum likelihood
approach. The associated objective functions have no simple closed-form
expressions in stochastic state (SNN) space models and the optimisation
has to be done by the algorithms such as the Stochastic Gradient Descent
(SGD) algorithm, possibly adjusted for online use. We also show its version
with alternating optimisations. Section 5 extends the modelling and state-
space analysis to a stochastic dynamic framework, leading to a new class
of Recurrent Neural Networks (RNN). In this framework we discuss the
problems of controlled variables and the conditional versus unconditional
approaches. The identification issues are examined in Section 6 in both
static and dynamic frameworks. Section 7 considers AFS neural networks
with constraints between layers. We explain how they can be estimated by
indirect inference with the unconstrained AFSNN as the auxiliary model and
appropriate nested stochastic approximation algorithms. Section 8 concludes.
Additional results are provided in appendices and online appendices. Appendix
1 provides the prediction formulas for AFS neural network with intercepts
and possibly with multivariate activation functions. Appendix 2 provides
the algorithm for the first and second-order derivatives of the score. Online
Appendix 1 reviews the literature on the superposition theorems, that is the
possibility to represent every continuous function of several variables by an
appropriate composition of functions of one variable. The chain rule and
the associated backpropagation algorithm are presented in online Appendix
2 in a general framework. The architecture of the Long Short Term Model
(LSTM) is described in online Appendix 3.

2 The Affine State-Space Model

We consider a model with J + 2 layers including one input layer, one output
layer and J hidden layers. The input variables are X = Z;, the hidden state
variables are Z;,7 = 1,..., J, and the output variables Y = Z;,.

For expository purpose, we assume that the layers have the same numbers
of neurons, that is : dim Z; = L,Vj (The extension to different numbers of
neurons on the layers is presented in Appendix 1).



2.1 The Affine Feedforward Stochastic (AFS) Network

Let us now define the generative model, that is specify recursively the joint
distribution of Z;,7 = 1,...,J + 1 given X = Z;. This is done by means
of the conditional Laplace Transforms (LT), also called conditional Moment
Generating Functions (MGF) . In our framework this is done by considering
the transitions from one layer to the next one, which are J transition equations
for j =1,...,J, and one measurement equation for j = J + 1.

Definition 1: An AFS network is such that :
l) E[eXp(u'Zj)]Zj,l, ceey Zo] = E(exp(u’Zj)\Zj,l],j = 1, ey J + 1,
ll) E[exp(u’Zj)‘Zj,l] = eXp[aj,l(u)'Cj,le,l],j = 1, ceey J + 1,

where v is the L-dimensional argument of the Laplace transform, a; is a
L-dimensional function of u and C; a square (L, L) matrix of parameters.

Z = (Z;,j = 0,...,J +1) can be considered as a process indexed by
layer j, instead of being indexed by time as it is done in the time series
literature (see Section 5 for the dynamic framework and the recurrent neural
network). Condition i) assumes that this process is Markovian. It is not
homogenecous since the transition distributions from Z;_; to Z; depend on
the layer through matrix C;_;, that depends on j. Each matrix C;_; can be
seen as characterizing a network. It is a Compound Autoregressive (CaR)
or affine process since the conditional log-Laplace transform is linear in the
conditioning variable.'C.

Each transition involves two transformations :

i) The state variables Z; ;1,0 = 1,..., L are first combined to construct L
combinations ¢;;_1Z;_1,l = 1,...,L, where ¢;;_; is the [*" row of matrix
Cj_1. These latent indexes (or latent scores) do not depend on u that is on
the type of (exponential) moments we are interested in.

ii) Then a second combination of indexes, that now depends on u, is applied
through the so-called activation function a;_;(u).

10CaR processes, also called affine processes when they are defined in continuous time,
are widely used in financial applications [Darolles, Gourieroux, and Jasiak (2000), Duffie
et al. (2003)].



The definition 1 of the AFS network requires the existence of the conditional
Laplace transform and the fact that it characterizes the associated conditional
distribution. In the one-dimensional framework and with nonnegative variables
Zj, it exists for a negative argument u. Moreover its knowledge for u €
(—o0, 0] characterizes the distribution [Feller (1968), (1971)].

These properties can also be extended to the multivariate framework with
appropriate support and/or multivariate positivity conditions on Z;."

2.2 The Conditionally Independent AFS Network

To facilitate the comparison with the deterministic MLP networks and with
the deep Restricted Boltzmann Machine (RBM), we can constrain the neurons
Zi5,1 =1..., L to be independent conditional on Z;_;. Thus we do not allow
for intralayer connections between the hidden units (states). This constraint
is often introduced to facilitate parallel computations.

Proposition 1 : The AFS network satisfies the conditional independence
at each layer 7, if and only if:

aj(u) = (o (ur), ..., jn(ur),

where u = (uq, ..., ur) and the functions a;;(.) depend on a single argument.

Then the conditional LT for layer j becomes :

L
Elexp(v/'Z;)| Zj—1] = exp{>_ aj_1u(w)crj1Z;1}-
=1

Remark 1 : The set of activation functions is even more constrained in the
standard machine learning literature, where the basic functions are equal in
each layer, i.e. a;; = o independent of [ = 1,... L, and the basic functions
are equal in all hidden layers : «; = «, independent of j = 1,..., J. However,
different activation functions can be encountered in some building blocks
as in the Long Short Term Model (LSTM), that mixes a logistic activation
function, a hyperbolic tangent activation function and an identity activation
function on the output layer (see online Appendix 3).

' They can also be extended to any type of variable by replacing the conditional moment
generating functions by characteristic functions.

10



Remark 2 : The model is easily extended to include intercept terms within
the exponentials (see Appendix 1).

2.3 Log-Laplace Transforms as Activation Functions

The log-Laplace transform interpretations of the quantities a;(u)'C;Z; (resp.
aji(w)e;Z;) imply restrictions on functions a; (resp. ;). Let us consider
nonnegative variables Z; and negative arguments u;. Then the Laplace
Transform (LT) characterizes the distribution. Typically the LT are increasing,
convex and even totally monotonous, that is infinitely differentiable with
respect to u,u < 0, with positive derivatives of any order.

We will see later on that the functions «(.) are the analogues of the activation

functions introduced in MLP and Boltzmann neural networks. Let us provide
da(0)

some examples of such activation functions a standardized by «(0) = 0, =

1, and of the associated distributions. They correspond to different neurons
with constrained support, as nonnegative, or discrete support.

The activation functions are obtained by considering the moment generating
functions of specific parametric families of distributions of the form :

Ex[exp(uY)] = exp[Ara(u, A2)],

where the subparameter A, is either in IR = (—o0, +00), or in IR = (0, 00).
These activation functions are log-Laplace transforms of infinitely divisible
distributions (see Appendix 1.1). These distributions are the following :

i) Exponential distribution : a(u) = —log(1l — u),u < 0;
ii) Poisson distribution P(1) : a(u) = exp(u) — 1.
iii) Inverse Gaussian or Wald distribution :

afu) =1—-+v1-2u.

iv) Normal distribution : a(u) = u + vu®.

v) Compound Poisson distribution, i.e. distribution of a Poisson sum of i.i.d.
variables : a(u) = expv(u) — 1; where ¢ is any log-Laplace transform of
a distribution with unitary mean. When the underlying i.i.d. variables are
discrete such a compounding allows to reach any infinitely divisible discrete
distribution [Feller (1968), Steuter and Van Harn (1979), Lemma 1.2]. For

11



instance, if the underlying family is negative binomial the activation function
is :

a(u) = logp —log[l — (1 —p) expul,

where p € (0,1) and v < —log(1 — p). This activation function associated
with an AFS count neural network is an alternative to the deep Boltzmann
machine architecture [Salakhutdinov and Hinton (2006) and Hinton, Osindero
and Teh (2006) for a structured version applied to the recognition of hand
written digits|, where the activation function is the logistic function associated
with binary variables.

These sets of distributions can be extended, if the basic affine model allows
for a nonzero intercept term (see Appendix 1). All the activation functions «
are negative on the set of negative argument u. for graphical representations,
it can be more convenient to consider the nonnegative functions u — a*(u) =
—a(—u) defined on nonnegative arguments.

Remark 3 : Depending of the selected family of distributions, the underlying
parameter \; can take values in IR or IR™. When its domain is IR, the AFS
is obtained with A\; replaced by a linear function of Z;, say. When this
domain is IR*, it can be replaced by a linear function C'Z;, say, that will
imply positivity constrained parameters. Alternatively it can be applied to
a positive nonlinear transform such as exp(C’Z;), say.

3 Forecasting

The multilayer stochastic state-space model introduced in Section 2 provides
closed form forecasting formulas leading to forward and backward deterministic
recursive equations.

3.1 Recursive Equations

Let us denote the network parameters by C' = (Cy, ..., C). We are interested
in closed form expressions for the nonlinear prediction formulas of all future
variables given the input X = Zj, and also for the prediction of the output
variable Y = Z ;. given some latent ones :

12



Proposition 2 :
i) The conditional Laplace Transforms are exponential linear in the conditioning
variables :

Elexp(u'Y)|Z;] = Elexp(u'Z;1)|Z;] = exp[B;(u, C)Z;],Vj,

Blexp(w'Z)|X] = Elexp(u/Z;)|Zo] = exp[A](u. C) Zo], V.

ii) The functions Bj(u, C'), A;(u, C) satisfy the backward and forward recursive
equations :
Bia(u,C) = Cjya;1[Bj(u, C)], V7,

J

Aj(uv C) = Aj—l[cl‘—laj—l(u)’c]’vjv

J
with terminal conditions :

BJ+1(U7 O) =u, A()(U, C) =u.

Proof : We have just to show the result by induction and an application
of the iterated expectation theorem. Let us consider the backward recursion
for B. We have :

Elexp(u'Y)|Z;-1]
= E{E(exp(u'Y)|Z;)|Z;-1}
= E{exp[Bj(u,C)Z;]|Zj-1}

= exp{dj_[B;(u,C)]C;-1Z;1}.

The backward recursion follows.

Similarly, for the forward recursion, we get :
Blexp(u'Z;)|Z0}
= E{Elexp(v'Z))|Z;1]| %0}
= Elexp(aj-1(u)'Cj-1Z;-1]| Z]
= exp|A; 1[C]_ja;1(u), C]' Z.

13



The result follows.

QED

Corollary 1 : The Laplace transform of the predictive distribution of Y =
Z 111 given X = Z has a closed form expression :

Blexp(u/Y )| X]
= Eoxp(u/Zy:1)|Z0) = exp[By(u, C)X]

= eXp[A{]+1 (U, C>X]7

where the functions By (resp. A1) are obtained by backward (resp. forward)
recursions.

Thus, in the AFS network, the different forecasts can be derived without
a numerical algorithm of Monte-Carlo Markov Chain (MCMC), or Gibbs
sampling as it is commonly done in restricted Boltzmann networks.

Corollary 2 : i) A;(u,C) depends on C' through Cy, ..., C;_; only.
ii) Bj(u,C) depends on C' through Cj,...,C}; only.

Proof : This is a direct consequence of the recursive equations in Proposition
2.

QED

As seen later on this property facilitates the backward /forward (backpropagation)
algorithms, especially for computing the first and second-order derivatives of
the functions with respect to the parameters (see Appendix 2 and online
Appendix 2).

3.2 AFS Network and MLP Network

We have shown in Proposition 2 that the AFS network implies deterministic
backward and forward sequences of predictions, based on the sequence of A;-s
and B’s. Let us now show that the backward deterministic algorithm is of a
MLP network type.

14



Corollary 3 :

Let us consider a conditionally independent AFS network. Then the associated
deterministic algorithm for the B’s is similar to the deterministic algorithm
used in a MLP network for computing the pointwise prediction of Flexp(u'Y)|X],
with activation functions o, 7, [ varying, and synoptic parameters C},j =
0,...,J.

Proof : This is just a reinterpretation of the recursive equation for sequence
B; compared to the MLP recursion in Example 1. For instance let us choose
a common activation function a; = G, independent of j. Then the backward
recursion for B; becomes :

B = CjG(Bjn1) = CiG(C],G(Bj2)]

- Cg/‘G[ g/'+1G( ‘;‘+2G(Bj+3))}"'

This is a nonlinear recursive equation alternating the linear transformation
C; and the effect of the nonlinear activation function G.

QED

In order to approximate the predictive distribution of Y given X, the AFS
network leads to the AFS pointwise predictions Elexp(u'Y)|X = z]. It is
important to note that the AFS framework provides coherent predictions
for the different values of argument u. They are not performed separately
as usual with the MLPNN. This standard practice does not ensure that the
approximations satisfy the structural restrictions on the pointwise predictions
such as the monotonicity and convexity of the conditional Laplace transform,
for instance.

The standard activation functions of the MLP network are replaced by the
basic log Laplace transforms aj. The choice of a logistic function implicitly
assumes predicted binary state-variables. In the AFS network the state
variables can be discrete as well as continuous (see Section 2.3). The choice
of the logistic function G has been justified theoretically by the possibility to
approximate any function of continuous inputs X by a MLP network with a
logistic activation function and a sufficiently large number of layers and/or
neurons (see online appendix 1 for a review). However, similar results exist
for other activation functions and networks .

15



In practice the NN are implemented with limited numbers of layers and
neurons. It is interesting to discuss the type of conditional distributions
of Y given X that can be generated by a special NN depending on the
number of layers, neurons, and the choice of the activation function. As an
illustration, we use an AFS neural network for the core of the neural network,
which is completed by a conditionally Gaussian output layer. There are
two inputs, two neurons on each intermediate layer and one (conditionally
Gaussian) output. When the intercepts are introduced (see Appendix 1), the
conditionally independent AFS network has the following structure which is
the AFS analogue of the structure in Example 1 :

entry layer :
Elexp(u1Z11)|X] = expla(ui)(cioX + dio) + b(u1)],

Elexp(usZ12)|X] = expla(ua)(chyX + dao) + busg)].
hidden layer :

Elexp(u1Z91)|Z1] = expla(uy)(chyZ1 + dix) + b(ur)],

Elexp(usZag)|Z1] = expla(ug)(chyZ1 + dar) + b(us)].

exit layer :

E(exp(uY)|Zs) = explu(v'Zz + do) + u?/2].

The above architecture assumes common activation functions o and the
conditional independence of 71, Z15 given X and of Zy, Zyy given 7, as
in the Restricted Boltzmann Machine (RBM).

There exist different representations of a state space model by means of
conditional densities, conditional Laplace transforms, or by state equations
that describe how the state variables are updated following stochastic shocks.
This latter representation is the standard one in the Gaussian linear dynamic
network. Let us show this alternative representation in an AFSNN with count
neurons in the intermediated layers. Let us introduce the binomial thinning

operator (or p-fraction operator) that associates with a nonnegative integer
v

random variable V' the variable : p @ V = Z Ui, where the Us are i.i.d.

i=1

16



Bernoulli variables (of parameter p) independent of V. Then the state space
representation can be written as :

entry layer :

Zy = P& Zfl,Wlth Zfl ~ P[CEOX + le];l = 1,2,
hidden layer :

ZQ[ = p® Z;l, with Z;l ~ ,P(C;lZl —+ dll),l = 1,2,

exit layer :

Y = (’y/Zg + dg) + g, With g~ N(O, 1).

In the Gaussian linear dynamic network the state equations are written by
adding a Gaussian shock to the deterministic linear transformation as in the
above exit layer. In the above nonlinear dynamic framework two types of
shocks are introduced :

i) the first ones explain how to pass from the conditional expectation E(Z7;|X) =
choX +dyo to the count variable Z7; itself. This is a conditionally heteroscedastic
additive shock to account for the discrete support of the Z7;, variable.

ii) The second shocks are through the thinning operator with a stochastic
intensity applied to Z}; instead of a deterministic one to get Z;; with discrete
values. They do not appear in an additive way and the number of shocks,
ie. Uy,...U,,V = Zj;, depends on the neuron and is stochastic.

4 Statistical Inference/Learning (Static Framework)

The connecting weights C' 2 are the parameters that have to be estimated
(learned) from observed variables. The statistical inference has to be adjusted
to account for the specification in terms of the conditional Laplace transforms.
These adjustments concern i) the choice of the (asymptotic) estimation criterion,
which is either a moment calibration criterion, or a quasi log-likelihood. This
criterion has to facilitate the numerical optimizations (numerical efficiency)
while providing reasonable estimators (statistical efficiency) ii) the numerical
algorithms used to optimize the criterion. In this respect we mainly focus

12Tn models with biases (intercept) parameters denoted by d both C' and d have to be
considered. We focus on the C' parameters for expository purpose.
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on the online inference through the stochastic gradient descent and their
alternating analogues.

4.1 Observations and Estimation Criterion

The network is parametrized by the weights C},5 = 0,...,J, that have to
be estimated (learned). In the machine learning literature, it is generally
assumed that we have independent identically distributed (i.i.d.) observations
(X3, Y:),t = 1,...,n, of the input-output variables, the inner layer state
variables Z;;,7 =1,...,J,i =1,...,n, being latent (unobserved). Two types
of data can be used : i) The data have been drawn from a given population
database by a sampling scheme and the i.i.d. assumption could have to
be checked/tested ex-post. '3 ii) In other applications this set is a training
sample controlled by the statistician/data scientist, and the i.i.d. assumption
has to be taken into account in the training design [see Hinton, Osindero and
Teh (2006). Section 6.1 for an example of training sample constructed from
the MNIST database].

The parameter C' = (Cp,...,C}) is estimated by optimizing an empirical
calibration criterion, that can be a moment criterion to be minimized or a
quasi-maximum likelihood criterion to be maximized..

4.1.1 The Method of Moments

In our framework a method of moments based on the conditional Laplace
transform can be used. Let us denote 0§ = vecC = (6, ...,0,), with 0; =
vecC; the parameter, and introduce instrumental variables v(X;), functions
of the input. The moment restrictions are :

m(u,7;0) = E{[exp[u'Y’) — exp[A; (u, C)X)]v(X)} =0, (4.1)

for any u,y(.). Let us select a design g, v,k = 1,..., K, and the associated
K moments. Then the objective function to be minimized is :

L(6) = ma(6)' Vina(6), (4.2)

where V' is a (K, K) weighting matrix and the components of m,,(6) are :

BTypically the ii.d. assumption is not compatible with data drawn by stratified
sampling and does not account for the potential endogenous selectivity biases.
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Mok (0) = % D~ {lexp(i¥5) — exp{ Ay (i, O X)X}k = 1. K.

Then the moment estimator of 0 is :

~

0, = arg min L,(0) = arg min my(0)'Vm,(6). (4.3)

4.1.2 The Quasi-Maximum Likelihood

By performing a Taylor series expansion of the conditional log-Laplace transform
of Corollary 1, we get also closed form expressions of the conditional mean
and variance-covariance matrix of Y given X.

Corollary 4 : We have :

DA . (0,C
pvx) = P08y x)

"L o%A 0,C
VYIX) = ) g;gi, )szz:(e,x),
k=1

where A ;) denotes the k™" component of Ay, and § = vecC.

Remark 4 : The conditional mean and variance are linear functions of X.

Since in practice the input X is often obtained from nonlinear transformations

of the underlying input X* with an economic interpretation, they are nonlinear
functions of X*. Moreover, we deduce that the prediction of Y2 is a quadratic

function of X and therefore a much more complicated nonlinear function of

X

The parameter § = vecC' can also be consistently estimated by maximizing
the Gaussian quasi-maximum likelihood :

~

0, = arg mein L,(0),

where L, (6) is the opposite of the Gaussian log-likelihood :
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n

L,(0) % Zl log det X(6, X;) + % ZI[YZ — (0, XS0, X;) Y — (0, X)),
B - (4.4)

where o means up to an additive constant in 6.

4.1.3 Gradient Descent Algorithm

In the state-space model with a quasi-likelihood or moment criterion, the
objective function has no closed-form expression in general and it is often
approximated by an Expectation-Maximization approach [Dempster et al.

(1977)]. This numerical step can be avoided in our framework by using

a method of moment based on the Laplace transforms or a quasi maximum
likelihood. Indeed, closed form expressions of the conditional moments Elexp(u'Y)| X],
E(Y]X),V(Y]X) are available by Proposition 2 and Corollary 3.

Then, the optimization with respect to 6 can be performed numerically by
applying a gradient descent approach. The estimate 6, is approximated as a

limit of a sequence 6,4, = 0,1, ..., such that :
i 8 OL, ~
On,g+1 = g — )‘an(Qn,q)v (4.5)

where )., is a learning rate that can depend on the number of observations
n and on the iteration step ¢. Several choices of learning rates have been
proposed in the literature. They may be based on the Barzilai-Borwein
approach [Barzilai and Borwein (1988), Raydan (1993)] with :

. . oL,  ~ oL,  ~
(en,q—l - 9n7q—2)/[m(‘9n,q—l) - W(en,q—ﬁ]

"= DL, - oL, - 0L, - oL,  ~
20 Ona-1) = 55 Ong-2) |5 Ong-1) = 57 (0ng-2)]

A

(4.6)

This is a quasi-Newton approach in which the matrix learning rate is replaced
by a scalar learning rate to get weaker requirement, which is a necessary
condition for networks with a large number of parameters.'*

14See Bottou, Curtis and Nocedal (2018) for a general presentation of this type of
algorithms and of some of their numerical properties.
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4.1.4 Online Inference

The Gradient Descent algorithm is not appropriate from an online perspective
when the parameter estimate has to be updated when a new observation
arises. The idea of online inference is to replace the sequence of GD algorithms
indexed by n by a unique algorithm providing directly an estimator 6,,. The
approach is especially simple when the objective function is the opposite of
a quasi log-likelihood, that is when :

Ln(0) = — Zlog f (i, w5 0).
i=1

Then the Average Stochastic Gradient Descent (ASGD) estimator 6, is defined
by the recursions :

dlo
Hn = Qn—l +’7na—§f(yn7xn;0n—1)a

(4.7)

Oy + — (00— by)n=1,2,...
n

™
3
|

with a learning rate vy, = v/n¢,~v > 0,c € (0.5,1), and a given initial value'®.

The first recursion mimicks the recursion (4.5), but with only the score
dlog f

00
first recursion are averaged online. The ASGD estimator 6, differs from
the quasi maximum likelihood estimator 0,. However, it has been shown
that, if the model is well-specified, it shares the same asymptotic properties
of consistency, asymptotic normality and that they have the same asymptotic
variance covariance matrix [Ruppert (1988), Polyak, and Juditsky (1992)].
The ASGD approach can be extended to other objective functions, in particular,
to the M-estimators and moment calibration criteria [see Anastasiou et al.
(2019), Dalla Vecchia and Basu (2023), Chen et al. (2025) and an application
in Section 7).

corresponding to the new observation. Then, the results of the

15The change of sign in the first recursive equation is introduced since this is a
maximization problem.
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4.2 Alternating ASGD

At each iteration step q of the gradient descent algorithm, or n of the ASGD
algorithm, an additional loop can be introduced to take advantage of the layer
structure of the network by splitting the parameter € into subparameters
07,0;_1,...,0y. Instead of applying the iteration step to €, we apply it
recursively to 6; while keeping the other parameters constant, then to 6;_1,
and so on, up to 6. More precisely, the first recursive equation in the
standard ASGD (4.7) can be written by subvectors as :

dlo - ,

Tgf(yna Ly ej—l,n—la 9j,n—1)7] = 17 ety ‘]7 (48)
j

where h = (91, c. ,9]',1), gj = (9]', C 79J).

In the Alternating ASGD (AASGD), these equations are replaced for instance

by :

ej,n = ej,n—l + Yn

dlo = .
—gf(ynaxmejfl,nyej,nfl)yj = 17-~~7J' (49>
00, Zin

in forward iterations in j (There exists the backward analogue of these
equations starting from ;).

The AASGD is the online analogue of the alternating optimization, also
called the zig-zag approach, or Gauss-Seidel method [Vrahatis et al. (2003),
Hautsch et al. (2023)].

ej,n == ej,nfl + Yn

This is an alternating method that can improve the convergence to a global
minimum of a calibration criterion. Indeed the criterion value L, (z,,yn,0)
can be convex with respect to ; for the other 0y, k # j, fixed, and this for
any j, and nonconvex jointly in 6. This partial convexity property is taken
into account in the AASGD and ensures that the objective criterion decreases
along the iteration steps of the AASGD, not necessarily of the ASGD.

Note also that such property concerns the moment approach based on the
LT and its backward application is more relevant due to Corollary 2.

5 Dynamic Framework

There exists a large time series literature on nonlinear stochastic state space
models, whereas the analysis of networks in machine learning is still at its
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infancy, with dynamic network still often based on the simple LSTM. This
could be due to the following reasons :

i) In applications the number of observation dates is often much smaller
than the number of observed individuals. For instance the observations can
concern 50 millions of individual bank accounts daily. Then the number of
individuals is of about ten thousand larger than the number of observation
dates.

ii) When the variables Y to predict are continuous as returns, the dynamic
has to account for return histories, i.e. for lags. Even when Y has a small
dimension say dimY = 2, if the input includes three lags, say, then the
number of continuous inputs is larger than 6. The curse of dimensionality of
nonparametric inference is quickly reached.

iii) The activation functions introduced in machine learning as the logistic
are not appropriate to capture complicated nonlinear features as speculative
bubbles, extreme risks observed on the data as well as the multiple memory
effects and the fact that they depend on the transformations of output of
interest.

At a first sight, the reader of textbooks in (nonlinear) time series and (dynamic)
neural networks can find the following differences :

i) The transitions are stochastic in state space modelling and deterministic
in machine learning models.

ii) The machine learning models have several intermediate layers whereas
the state space model are presented with one layer in general, but several
”dynamic” neuron, called dynamic factors.

Since the AFS NN and the MLPNN have similar architectures, the comparison
of their extensions to the dynamic framework will be easier.

5.1 Recurrent Neural Network

The models considered in the previous sections are static with an assumption
of i.i.d. input-output observations. However, in applications to Automatic
Speech Recognition (ASR) for instance, the variables are indexed by time
and the objective is to predict future trajectories. The deep neural network
technology (i.e. the network architecture and the learning algorithm) has
been extended to the dynamic framework by considering at each period ¢ a
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Deep Neural Network (DNN) as in example 1, but with two types of observed
inputs : X; = (X, K1), where X" are "exogenous” inputs, i.e. fixed outside
the system, and K; ; are summaries of the previous state variables. These
extensions are called Recurrent Neural Networks (RNN) and are usually
formalized by deterministic state space models [see e.g. Yu and Deng (2015),
Chapter 13|. The introduction of a time delay operator gives rise to the
memory structure. The recurrent network architecture can be structured
to produce different memories, as in the basic Long Short Term Memory
(LSTM) model, initially introduced by Hochreiter and Schmidhuber (1997)
(see online appendix 3). These models differ by the choice of the summaries
K;_1, but also by the assumptions on the future evolutions of the exogenous
inputs, that can assume given future evolutions, usually called scenarios, or
stochastic evolutions.

Let us now extend the static AFS NN to the dynamic framework .

5.2 The Markov AFS RNN

Let us consider the AFS model with intercept (see Appendix 1). We denote
by 6 the vector of all parameters, we index the variables by time and assume :

Xt - )/t_l. (5].)

Thus there is no exogenous inputs and K; ; = Y;_; We get the following
scheme.

Figure 5 : Causal Scheme

—>Y;5,1%th%ZQt...ZJt—)Y;—)ZLt+1,...,

The sequence of conditional distributions is such that :

Blexp(Y)[Yia] = exp[Al (6 0)Yi 1 +agi(u6)]
(5.2)
= exp[B,(u;0)Y;_1 + by(u, 0)],

and
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Elexp(u'Y;)|Z;4] = exp[Bj(u,0)Z;; + bj(u,0)],
(5.3)
Elexp(u'Z;|Yi1] = exp[A)(u,0)Y;1 + a;(u,0)].

The causal scheme shows that we have embedded homogenous Markov processes.
More precisely,

Proposition 4 : In the Markov AFS RNN,

i) Each process Y, (= Zo),(Zj),j = 1,...,J, is a Markov process with
respect to its own information set.
ii) The transition of process (Zj;) is given by :

Elexp(u' Zji)| Zj 1]

= exp[B}[A;(u;0);0]Zj1 + a;(u, 0) + bi[A;(u; 0); 0]].

Proof : Let us derive the expression of the transition by means of the
conditional Laplace transform. We have :

Elexp(u'Zj1)| Zj1-1]
= E{Elexp(u'Z;1)|Yi-1]|Zje-1}
= Elexp(A}(u;0)Yi1) + aj(u; 0)[Zj4-1]

= exp{B}[A;(u;0);01Z;, 1 + a;(u; 0) + b;j[A;(u; 0); 0]}
QED

Such a RNN is automatically deep with a large number J x T layers, where

J is the number of layers within each period and 7' the number of periods.

Moreover, this number of periods increases with the number of observations.

Therefore, it is important to discuss the asymptotic behaviour of these Markov
processes. Let us denote by o the composition operator of functions A(u), B(u)
defined by : AoB(u) = A[B(u)], and by A°" the function A composed h times

with itself.

Proposition 5 : i) The observed process (Y;) is strictly stationary if and
only if : limy, o A%, = 0 (or equivalently limy, ,o Bg" = 0).
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ii) Then its stationary distribution has the Laplace transform : Flexp(u'Y};)] =
exp vyy1(u; 6), where vyq(u,0) = vy [Asii(w; 0); 0] + agq(u; 6).

Proof : See Darolles et al. (2006).

QED

This shows that the distribution of process (Y;) can be equivalently characterized
by the functions [Ajy1(u), ayy1(u)], or by the functions [Aj,1(u), vy (u)].
An analogue of Proposition 5 can be written for the other processes Z; =

(Z]t)aj - 1,...,J.

Corollary 5 : i) The hidden process (Z;;) is strictly stationary if and only
if the observed process (Y; = Z;414) is strictly stationary.

ii) Then its stationary distribution has the Laplace transform : Elexp(v'Z;;)] =
explvj(u; 0)], where vj(u; 0) = vy11[A;(u, 0),0] + a;(u, 0).

Proof : Indeed we have :
Elexp(u'Z; ;)]
= E{Elexp(u'Z;.)|Yi-1]}
= Elexp[A](u;0)Y;_1 + a;(u; 0)]]

= exp{vy[A;(u;0),0] + a;(u; 0)].

The result follows.
QED

The Markov AFS RNN assumes at least as many uncertainties, i.e. stochastic
shocks, as the number of latent and observed processes (Z;,Y;). It also
contains a deterministic equation X; = Y; 1, without any structural interpretation.
The Markov AFS RNN allows for deriving the distribution of process (Y;), or
equivalently the distribution of the joint process (Y3, X;) = (V;,Y;_1). This
corresponds to an unsupervised learning problem in the machine learning
terminology.
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5.3 System with control variates

Let us now consider general specifications with input X; that can include
exogenous component. These inputs arise at each date and change overtime.
They are usually considered as (partly) controllable. Compared to the Markov
AFSNN that leads to unsupervised analyses, these extensions can be partly
supervised. Therefore the role of X; and its exogeneity /controllability features
have to be understood.

5.3.1 The model

The architecture of the Markov AFS RNN differs from the architecture of
the LSTM in online appendix 3, even if both architectures can capture short
and long term effects. Indeed the elements of A% | (u;6) do not necessarily
tend to zero at the same speed when h tends to infinity. Moreover these
speeds can depend on u and/or #. The main difference is in the presence
of deterministic transitions in the LSTM. In the general framework these
deterministic features can be due to either the definitions of some variables,
or the possibility to control exactly some variables. Let us discuss more
precisely this point in the framework of Markov process. We consider the
joint processes (Xi, Z;, Y:). When this process is homogenous Markov, its
parametrized transition density is denoted by :

Z(Xt, Zy, Yt|Xt—17 Zi1,Yi1; 9)~

This transition can be decomposed by applying the Bayes formula as :

Z(Xta Zt7 }/:‘,’th17 thb }/;‘,71; 0)
= l(YHXt,ZtaXt—l,Zt—hYt—hQl)l(Zt|Xt;Xt—1aZt—laYt—1;92)
l(thXz%lathlaiftfl;QZi)y (5‘4>

in which the parameters 6, 05, 05 are indexed by the "layers” '°. Whereas the
two transitions from X; to Z;, and Xy, Z; to Y; (given the past) are assumed
stochastic, we have to discuss more carefully the status of the input X; and
of the ”input gate”. Two cases have to be distinguished.

6This decomposition formula is valid in both the deterministic model (with
deterministic functions characterizing the transitions) and the stochastic model (with !
being the conditional density).
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i) The input X; can be controlled exactly. Then the transition {(X;|X;_1, Z;_1,Y;_1;03)
can correspond to a degenerate point mass conditional distributions and to
a deterministic transition.

ii) The input X; cannot be controlled, or is controlled, but the deterministic
control strategy is not perfectly known. In this case the input gate is itself
stochastic conditional to the past.

Then in both cases affine feedforward stochastic NN can be used for each
stochastic transition.

The notion of controllability differs from the notion of (strong) exogeneity.

Definition 1 : The input (X;) is strongly exogenous if and only if :

Z(Xt’thb Zi1, Y1 93) = Z(Xt’XtA; 93)-

Thus we get a classification of the recurrent neural networks in four classes
I, I, III, IV (see Table 1), by distinguishing the status of the input variable
and the status of the first transition.

Table 1 : Types of RNN

input
input gate exogenous | not exogenous
stochastic I II
deterministic 11T JAY

Any RNN modelling has to be clear on the assumptions concerning controllability
and exogeneity. It has to precise the class I-IV to which the model belongs.

5.3.2 Conditional vs unconditional analysis

In the standard analysis, the variables X;,Y; are assumed observable and
the variables Z; are hidden. Then, the observable process (X, Y;) is no
longer Markov in general and the conditional transition of (X, Y;) depends
on all the past trajectory and of all parameters. Let us denote it by :
l*(Xt,YHXt—l,Yt—l;e), where X; | = (Xt—l,Xt—2>-~),Yt—1 = (Y;f—lay;f—27-~-)~
We can reapply the Bayes formula to this joint observable transition to get :
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U (X, Yi| X1, Yi1;0) = U(Ve| X, Yi1; 0)17 (X | X1, Yia3 6). (5.5)

” An important difference between much of the econometric literature and the
machine learning literature is that the econometric literature is often focussed
on questions beyond simple pointwise prediction” [Athey and Imbens (2019),
Section 6]. These questions are the derivation of prediction intervals, the
estimation of structural parameters, the impulse response functions (IRF),
or the identification issues. These different questions can require different
analyses. In particular can we answer such questions from a conditional
analysis of the transitions I*(Y;| Xy, Y;_1;60) only, or do we need to base it on
the joint transition I*(Xy, Y| X;—1;Yi_1;0)?

Let us illustrate this point with the example of an exogenous input.

Example 2 : If the input (X;) is strongly exogenous, (cases I, III in Table
1) decomposition (5.5) becomes :

(X, Vil Xo1, Yio;0) = U(Ya| Xy, Yioa5 01, 00) 17 (X | X1 03). (5.6)

Thus the transition for Y; given X; and the past is sufficient to estimate
(01, 65) by the maximum likelihood. It is also sufficient to predict Y7, from
observation Xp,Yr. However it is not sufficient to predict Yro,Y; 3, for
which X1, X715 will have also to be predicted and this will require the
knowledge of parameter 6.

Remark 5 : In the static framework the machine learning terminology
supervised-unsupervised is used to indicate a conditional analysis of output
given input, and a joint analysis of input-output, respectively [Athey and
Imbens (2019), Section 2.2]. ' Example 2 shows that in a dynamic framework
a supervised, that is a conditional analysis, is not appropriate in general.

5.3.3 Control and supervision

Let us now discuss in more detail the controlled vs supervised learning in an
extended version of model (5.6), where the input gate l;(X;| X;_1, Z;_1,Y;_1;03)
could also depend on the date t. The supervised learning becomes relevant if

17An alternative terminology is discriminative/generative model or classifier. These
conventional terminologies are currently not well established, even if they are largely used
in the machine learning literature.
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parameter #3 is known, that can be the case if the model is used by the
controller himself. Then the future inputs can be generated either in a
deterministic or in a stochastic way depending on the assumption on the
input gate and this known input gate defines the strategy of the controller.
Typically a central bank can fix the prime rate as a function of observed
lagged inflation rates and changes in GDP along a Taylor rule. This leads to
either deterministic, or stochastic scenarios on the future values of the input.
However the strategy of the controller is not necessarily revealed by the
controller (the Central Bank) to the analyst (the statistician). Then, even
if there is an underlying control, the input gate becomes stochastic with
unknown parameter 03 and this leads to a joint unsupervised (generative)
analysis. This arises when the behaviour (reaction) of the controller has to
be anticipated in a general equilibrium framework.

5.3.4 The affine recurrent architectures

Let us now discuss the different affine state space architectures based on the
recursive decomposition in the right hand side of eq. (5.4). The recursive
model is defined by the associated Laplace transforms with 3 layers. 8

input layer :

Elexp(u'X)| X1, Zi—1, Y1

= explag; (u)Coy Xi—1 + agy(u)CoaZi—1 + ags(u)CosYi1 + bo(u, Co)].
hidden layer :
E[GXPW/Zt) ’&7 Zy_1, Yz;fl]

= explay; (u)C] Xy + aly(u)Cp X1 + a’lg(u)C’{th,l + ahy (u)C1, Y1 + by (u, C1)]

output layer :

18The hidden layer could also be decomposed into a sequence of intermediate hidden
layers.
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Elexp(u'Y3)| Xy, Zi, Yi-1]
= explay, (u)Ch Xy + ag,(u)Cyy Zi+

a3 (u) O3 X1 + ayy (u) Oy Zi1 + a5 (u) CosYi1 + ba(u, Ca)].

It is easily checked by applying the iterated expectation theorem that the
joint conditional log-Laplace transform :

log E[GXP(UIYt + U/Zt + W/Xt)’Xt—b Ziq, Y;ffl]a

is an affine function of X;_1, Z; 1, Y;_; for any arguments u, v, w. In particular
the joint process (Xy, Z;,Y;) is Markov of order 1.

When taking into account the lagged values, the number of weights is exploding.
The ML literature on deterministic recurrent neural networks has often eliminated
several interaction effects. In our affine stochastic framework the analogues

of these constrained deterministic models would be :

input layer* :

Elexp(u'Xy)| X1, Zy—1, Y]

= explag; (u)Coy Xe—1 + age(w)CoaZe—1 + bo(u, Co)].
hidden layer* :

Elexp(W'Z)| X, Zi—1, Yi1]

= explal; (u)C} Xy + aly(w)Cy 21 + bi(u, Ch)].

output layer* :

Elexp(u'Y)| Xy, Zi, Yi]

= explaby(u)ChyZy + boy(u, Cs)].

This constrained version assumes that all the information useful to predict
nonlinearly Y; is contained in Z;. Moreover X;, Z; ; summarizes all the
information useful to predict the network at date ¢ (see Yu and Deng (2015),
Section 13, eq(13.1), (13.2)].
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The output and hidden layers are completed by an input layer that allows for
different notions of inputs. For instance, the input X, is strictly exogenous
lff COQ - O

5.4 Statistical inference/learning (dynamic framework)

The learning algorithms described in Section 4 can still be used, but their
asymptotic properties under the identification assumption and serial dependence
have not been derived yet. These properties require the use of the mixingale
theory [McLeish (1975)]. For the SGD algorithm applied in a recursive way,
the consistency and asymptotic normality have been obtained in Kuan and
White (1994), Theorem 11.2.1, Corollary I1.3.6, under a set of high level
assumptions.

It does not seem that similar properties and the additional asymptotic efficiency
have yet been obtained for the ASGD.

6 Identification Issues

Once a parametric model is introduced and assumed well specified, what are
the model characteristics (i.e. parameters) that can be recovered from a set
of observations? Can we recover the parameter itself? Can we recover what
we are interested in? The identification analysis of the model should precede
any estimation step (learning, training step), but is totally absent from the
machine learning literature with a risk of misleading interpretations of some
results.

A complete discussion of the identification in RNN is out of the scope of this
paper. We prefer to illustrate the difficulty of identification in a progressive
way. First we consider a deterministic static network with a fixed number of
observations. Then the analysis is extended to stochastic networks. Finally
we discuss the use of algorithmic learning when the model is not identifiable.

6.1 Static deterministic network

For any static deterministic network for i.i.d. (X, Z;,Y;),t =1,...,T, it is
useful to write the output of the final layer as a function of the input by
"integrating out” the hidden layers. Then we get a nonlinear relationship :
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Y, = H(X,0),t=1,...,T,

where H depends on the activation functions assumed to be known. The
system is characterized by the parameter 6, that gathers all the connecting
weights. Let us assume that this deterministic model is well specified, i.e.
the output data have been obtained from the input data with a true value 6,
of the parameter. Can we recover this true value or part of it 7 This leads
to the following definitions.

Definition 2 : Static deterministic network, finite sample.

i) The identified set is :

107 =1{0:Y, = H(X,,0),t =1,...,T}.

ii) The parameter 6y is identifiable if and only if /607 = {6y} reduces to the
singleton 6.

iii) A function h(f) of parameter 6 is identifiable iff h(I©7) reduces to a
singleton.

iv) Two models with parameter values in the identified set are said observationally
equivalent.

When 6, is identified, we can identify without errors the structure of the
black-box.
A necessary condition for identification is the order condition.

Proposition 6 : The order condition is :

TdimY, > dimé.

Thus, the introduction of a too large number of parameters creates identification
issues if the number of observations is not sufficiently large.

Let us now give examples of identification issues for deterministic networks
with one hidden layer and two neurons. First we consider extreme activation
functions to facilitate the discussion.

Example 3 : Linear model.

The static mOdel fOI' Xt = (Xlta X2t)7 Zt = (th, Z2t>7 }/t = (i/lta }/Qt) 1S :
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Zy = C1Xy+dy,

Y, = CyZi+dy, t=1,...,T.
We deduce :

Y;:H(Xt;O):CQC'lXt+d2+C'2d1,t:1,...,T.

We immediately see that we can identify the "reduced form” parameters
C* = CyC4,d* = dy + Csdy, but not C7 and Cy, dy and dy separately.
Moreover, since C'; and d; are not identifiable, we cannot identify the hidden
features : Z, = C1 .X; + d;.

Example 4 : Digit model

Let us now consider binary variables Xiy;, Xo, Z14, Zot, Y14, Yor and a TLU
(Heaviside) activation function. The model is :

th = ]10011X1t+0012X2t+d01>07
ZQt = ]10021X1t+0022X2t+d02 >0-
}/it = ]10111Z1t+0112Z2t+d11>07
Yo = IIC'121Z1t+C122Z2t+d12>0'

Since the inputs are binary, we see that, for given 6, the function H is from
{0,1}% to {0,1}2. Then, we get at most 16 equations to be solved for 6. This
shows that the order condition for identification is not sufficient.

The pattern of the identified set can be derived explicitly. For instance it is
easily checked that X; = X, =0 and Y; = 1 is equivalent to :

{do1 > 0,dp2 > 0,C111 + Ch12+ dy1 > 0}
U{do1 < 0,dp2 > 0,C112 4+ dy1 > 0}
U{d01 < 0, d02 < O, dyp > O}

U{d(n > 0, dog < O, 0111 + d11 > 0}
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This shows the type of set information on 8 contained in some observations.
The use of the TLU activation function in the 1960’s led researchers away
from the gradient descent algorithms, since the derivative of a TLU is zero
almost everywhere. This explains the success of sigmoid activation functions
introduced by Cowan (1967).

Let us also show that there exist other reasons for a lack of identification in
deterministic neural networks.

Example 5 : Ex-ante segmentation.

The input X; can characterize an ex-ante segmentation. Then, the components
of X; are binary variables that sum up to one. For instance, this segmentation
can be constructed from a quantitative variable X; by state discretization.
In this framework, any function H(X;) can be written as a linear function of
X;. Therefore, the model can be rewritten with dim X; parameters and the
order condition is not satisfied.

Example 6 : Definition of neurons

Let us consider the MLPNN in Example 1. By construction the specification
is symmetric with respect to the neurons of layer 1 (resp. layer 2). Thus for
a given layer we cannot identify which is the first neuron of the layer.

Among the observationally equivalent models in Examples 3 and 4, there are
networks with a single layer. It can be interesting to examine such models
that could allow us to replace a true hidden black-box by an observationally
equivalent one with a simplified structure.

In a general framework with other activation functions (logistic, RELU,
tanh), other numbers of layers and neurons, and other assumptions on the
supports of the observed and hidden variables, the ex-ante analysis of identification
can become untractable, even in a deterministic framework. However, some
identification issues can be revealed ex-post when the parameter 6 is estimated
numerically. Let us consider the approximation of € through a gradient
descent algorithm (see Sections 4.1.3, 4.1.4). If the parameter 6 is not
identifiable, these algorithms will not converge to the true value 6 in general.
In fact the approximations at step ¢ of the algorithm will at best converge to
the identified set, and, if they converge pointwise (when ¢ increases), the limit
can depend on the starting value used in the algorithm. This dependence
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on the starting value has been frequently observed in the machine learning
practice and is largely due to identification issues.

6.2 Stochastic networks

The identification analysis is much more complex in stochastic networks.
Indeed the introduction of shocks to each layer and neuron make impossible
to gain the exact knowledge of 6, in finite sample, that is for a given number of
observations T". Then, the definitions of an identified set and of an identifiable
parameter will be written in an asymptotic framework that will depend on
high level assumptions.

Let us consider the static framework. The parametric model is characterized
by the specification of the conditional distribution of Y; given X, or equivalently
by the conditional Laplace transform :

Bolexp(u/Y)| Xi] = (u, X3 0), u varying.

This function is the analogue of the function H(Xy;6) in the deterministic
model, but depends on the additional argument u to capture all nonlinearities
inY.

Then the literature has considered two types of asymptotic analysis.

i) When X is assumed fixed to the observations X7i,..., X7y in repeated
samples, all the asymptotic knowledge on the parameters is conveyed through
the conditional Laplace transforms :

(u; Xy;0),u varying, t =1,...,T.

ii) When the observations (X;,Y;),t = 1,...,T, are assumed i.i.d., all the
asymptotic knowledge on the parameters is conveyed through the joint Laplace
transform :

Eppolexp(uY; +0'Xy)] = By ewp(v'Xe) +(u, Xy, 0)]

= ,II) (ua v 07 MO)a

where g corresponds to the marginal distribution of Xj.

This leads to the following definitions that extend Definition 2 to the stochastic
framework.
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Definition 3 : Static stochastic network.

i) Fixed input in repeated samples (i.e. supervised)
The asymptotic identified set is :

AOr ={0,¢(u, X4;0) = Yo(u, X3),t =1,...,T,u, varying},

where 1o(u, X;) is the true conditional Laplace transform of Y; given X.
This identified set depends on X1, ..., Xr.

ii) The i.i.d. sample (i.e. unsupervised).
The asymptotic identified set is :

AB = {‘9 : &(l@ U3 97 MO) = "L;()(U, U)7 U, v Val"ying};

where 1o (u, v) is the true joint Laplace transform of (X;,Y;). This identified
set depends on the marginal distribution pg of the input.

iii) Under the assumption of a well-specified asymptotic model, with a true
value 6, of the parameter, 6y belongs in the asymptotic identified set.

These definitions depend on the assumptions on the model. It is easily
seen that the parameter 6, can be identifiable for a set Xy, ..., Xt of input
observations, but not identifiable for another subset of observations X, . .., Xr.
In the i.i.d. case, it can be identifiable for some pg, but not for another fig.

Moreover, these are high level assumptions, that cannot be checked in practice,
from only a finite, even large number of observations.

6.3 Simulations under partial identification

In multivariate dynamic systems with hidden layers the identification issues
are due to partial observations: we observe the time series of inputs and
outputs, X;,Y; but not the internal hidden variables Z;. This render difficult
the identification of the internal system. Let us consider such a framework
where 6 is not identifiable and assume that the variables X;, Z;,Y; can be
easily simulated for any given 6.

There exists a lot of online learning algorithms that have been introduced
to estimate . Since 6 is not identifiable, we can at best get approximations
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O that converge to the identified set, AO, when T tends to infinity, not
necessarily pointwise. Even if they converge pointwise, the limiting value
can depend on the starting value used in the algorithm and are in general
different from the true value 6,.

However the generative model is often used to simulate the trajectories of
X, Z1, Yy from the system in which 6 is replaced by fr. These simulated
values will depend on the selected QT and, if HT is close to a point 6 of
the identified set, they will depend on ;. However by definition of the
observations and of the associated identified set, the simulated trajectories
(X7(65), Y2 (05)] of (X, Y:) have the same distribution as the trajectories
of (X;,Y;) and this holds for any (6}) in AO. Therefore, the standard
simulations [X?(f7), Y;#(07)] can be used to approximate nonparametrically
any function of the distribution of (X3, Y;) such as the predictive distribution
of Y11 given X;,Y;. Indeed the distribution of process (X, Y;), is identifiable.
However the simulations cannot be used to get the predictive distribution of
the Z variable, i.e. the filtering distribution, since this one is not nonparametrically
identifiable in general.

6.4 Starting Values as Identifying Restrictions

To illustrate the discussion above, let us consider a parametric model with
the conditional distribution : I(y;|xs; @) = I*(y¢|ze; a(6)), where 0y (resp. ag =
a(fy)) denotes the true value of @ (resp. of a). We assume that the series
(X, Y;) is ii.d. and that ag is asymptotically identifiable. Then the first
subsystem of the ASGD algorithm applied online (see 4.1.4) is

da' - Ologl*
a0 (6) =5, — da

Let us now assume that a(.) is linear : a(6) = 6, + A, say.

et—i-l _€t+7t (ytlxt;a(ét)),t: 1,...,T.

Proposition 6 : Under the assumptions above,

i) The online ASGD estimator ; = a(f;) is consistent of ag = a(fy).

ii) The starting values of § = 0, — A'6, are identifying restriction for the non
identifiable parameter Sy = 059 — A’019.

Proof :

We get :
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dlogl*
oa

dlogl*

él,tJrl = él,t+% (yt|1't§a(ét)>7

éQ,t—i—l = 9~2,t+7tA/ (ytlxt;a(ét)),

It follows that :
é2,t+1 - Alél,t—l—l = é2,t - A/éu = 9~2,o - Al9~1,0, (6.1)
where 6, are the starting values of the algorithm. Then the first equation of

the system above can be rewritten as :

dlog [*
a

él,t—i—l = él,t + Yt [yt’.ﬂft, (Id -+ AA/)élyt + A(ézo — A,él,O)]' (62)

Equations (6.1)-(6.2) have the following interpretations.

i) The parameter 5 = 0, — A’f; is purely non identifiable and its estimator
(posterior value) is equal to its starting value Bo = b9 — A'6y0.

ii) The equation (6.2) corresponds to the SGD applied to ; estimated under
the 7identifying restriction” : 0y — A'0; = Oy — A’QNLO. By the standard
properties of SGD, we deduce that the online estimator 8, converges to the
same limit as the maximum likelihood estimator of ¢ under the constraint
Oy — A0y = 09 — A0y . In particular it converges pointwise to a pseudo
true value 6% = ¢(6y, 6y). Moreover, by construction, d, = a(f;) converges to

alc(6y,00)] = a(fy) = ao, independent of the starting value 6.

QED
More precisely, we have :
0, = (Id+ AA) a, — A(fa — A'61)],
Oy = (Id+ A'A)[Aa, + (Ba0 — A'010)). (6.3)

Since a,; inherits the asymptotic properties of the unconstrained maximum
likelihood estimator of parameter a, that is : v/T'(ap — ag) —4 N(0,V (ap)],
where V' (ayp) is the asymptotic efficiency bound for a. We deduce easily the
pseudo true value and the limiting degenerate Gaussian distribution of 6,.
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7 AFS Neural Network with Between Layer
Restrictions

7.1 Constrained Model

At this stage, we have considered the unconstrained static or recurrent AFS
neural networks with in general a rather large number of parameters 6;, j =
1,...,J, where j indexes the layer. Their main advantage is to be easy to
estimate numerically by selecting an appropriate learning criterion and by
using stochastic gradient descent and backpropagation algorithms. Their
main drawback is the often too large number of parameters, that can induce
the identification issues discussed in Section 6.

To solve this identification issues, we can introduce constraints on parameters,
that is assume that the 6 parameters depends on a parameter n with a
much smaller dimension, such that 7 is identifiable. Then two cases can
be distinguished :

i)Ifn=(n;,j=1,...,J), where 6; = 6,(n;), we get within layer restrictions.
Then the SGD and backpropagation algorithms are still easy to apply.

ii) However, we can have between layer restrictions 6 = 6(n). This will
destroy the recursive layer structure of the algorithms and their numerical
performances.

To circumvent this difficulty a method from machine learning called variational
inference or Evidence Lower Bound (ELBO) approach will introduce an
unconstrained NN easy to estimate numerically in order to get an approximation
of the structured model [see Hinton and Van Camp (1993) for the introduction
of the ELBO approach, and Blei et al. (2018) for a survey on variational
inference for statisticians|. However, these approximate approaches do not
provide statistically consistent estimated constrained models.

7.2 Indirect Inference on Generative AFSNN

Let us now assume that it is easy to simulate artificial data for given value
of parameter 6 (and values of y in the dynamic case) In other words, we
assume a generative model. Let us also assume that the constrained model
is well-specified with true value 7y (resp. 0y = 0(19)) of parameter n (resp.
@). Then we can apply the indirect inference approach [Gourieroux et al.

40



(1993)] along the following steps :

Step 1 : Use the observations yy, ..., yr to estimate 6 in the unconstrained
model by applying the SGD /back-propagation algorithm with given starting
value 65 = 6(n;), learning rates and stopping rules. This provides an unconstrained
estimator 67 of 6. Note that this estimator converges statistically, but not
necessarily to 6y due to the identification issue discussed in Section 6.

Step 2 : For each given value of 7, we can create simulated data y;(n),t =
1,...,T, by applying the generative constrained AFSNN, and replicate such
simulated sets for s =1,...,5.

Step 3 : These artificial data sets can be used to reapply the SGD /Backpropagation
algorithm on the unconstrained model with the same starting values 6 =
0(ng), learning rates and stopping rules. This provides S unconstrained
estimators of 6 : 05.(n),s =1,..., 5.

If T is large, the ésT(no), s=1,...,5 and 67 would converge to the same
value in the identified set, but this value could be different from 6y = ().

Step 4 : To adjust for this possible asymptotic bias and deduce a statistically
consistent estimator of g, in the constrained model, we can solve the problem :

s ! s

: O N A R

iy = arg min (g > 05.(n) — 9T> (; > " 05(n) — 9T> :
s=1 s=1

It has been shown recently that this matching problem can be solved numerically
efficiently by a SGD algorithm, even if the 79 function does not have the
form of an M-estimator [Chen et al (2025)]. It is called SGMM algorithm.
Note that this latter optimization is with respect to a much lower number of
parameters 7 than the first optimization that are with respect to 6.

To summarize the use of the algorithms :

i) The constrained model cannot be directly estimated from the observations
by a simple SGD algorithm.

ii) In the indirect approach, we get two loops of SGD/backpropagation
algorithms. The pair SGD/backpropagation algorithms is used in steps 1
and 3 on observations and simulated data, respectively. Then the SGMM
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algorithm is used in step 4.

The indirect inference approach is statistically consistent. Because it rests on
numerical stochastic optimizations [Robins and Monro (1951), Kushner and
Yin (1997)], it tends to be numerically faster than alternative approaches
based on Monte-Carlo Markov Chain (MCMC).

8 Concluding Remarks

The aim of this paper was to relate the machine learning approach of deep
neural network with the classical literature on stochastic state space models.
We have shown that the architecture of the multilayer perceptron neural
network can be represented as a deterministic state space model and that
standard recurrent neural networks such as the LSTM also have deterministic
hidden state equations. These deterministic transitions imply nonlinear
accounting equations between the hidden and observed variables, that create
degeneracies in statistical inference and instabilities when applying the estimation
(learning) approaches. They also largely explain the lack of probabilistic
tools in the machine learning literature such as confidence interval, prediction
intervals, or diagnostic tools.

To solve this problem, we have introduced a class of stochastic state space
models for static or recurrent neural networks. These models are based on
affine dynamic structures largely used in applications to Finance—Insurance,
and more generally to the analysis of risk dynamics. In particular the class of
AFS neural networks assumes a number of stochastic shocks larger or equal
than the total number of variables to avoid arbitrary accounting equations.
We show that the AFS neural networks provide an architecture of layers,
neurons, activation functions similar to the architecture of the MLP neural
network, but written on the predictive distributions through their conditional
Laplace transforms, instead of being written in ”expectation” only. We also
show that these models can be estimated by the quasi maximum likelihood
or by the method of moments based on Laplace transforms. They can be
estimated online by the average stochastic gradient descent or an alternating
variant. A chain rule (backpropagation) can also be used to compute the
scores appearing in the SGD algorithms.

We also explain how these online estimators can be used when the models are
not identifiable, and why the starting values in the algorithmic approaches
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can be seen as identification restrictions. Then we considered AFSNN with
constraints between layers and we show how they can be estimated by indirect
inference using two loops of numerical stochastic optimizations, the first one
for the estimation of the unconstrained AFSNN, the second one for the bias
adjustment.
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Appendix 1
Extended Recursions

The aim of this appendix is to explain how to construct the « activation
functions in the AFS neural network and introduce ”intercepts” (biases) in
the AFS model by analogy with the practice in MLP neural network. We
first consider the case of decomposable multivariate activation, that allows to
focus on the one-dimensional . Then we give examples of non decomposable
multivariate activation functions, that can allow for simultaneity and/or
feedback effects in RNN. In the last subsection of this appendix, we provide
the form of recursive equations for these extended versions including intercepts.

1.1 One dimensional activation with intercept.

The intercept effects can be introduced in two ways either i) in the transformation
of Z;_4 variables (as in Example 1) and/or ii) in the definition of the underlying
log-Laplace transform itself.

The extended version of the conditionally independent AF'S network in Proposition
1is:

Elexp(u'Z;)| Zj 1]

L

= oxp {Z[%‘—Ll (w)(crj—1Zj—1 + dij—) + 5j—1,l(u)]} :
=1

where the a;_1, 5;_1; are chosen ex-ante and the connection (or synoptic)

weights ¢; ;1 and "biases” d; j_; are parameters to be estimated.

To ensure that the quantity above is really a conditional Laplace transform,

we can assume that :

i) any a;_1; is the log-Laplace transform of a univariate infinitely divisible
distribution;?

ii) ¢ j—1Zj-1 + dj_1, is nonegative;

ili) B;_1, is any log Laplace transform.

These forms of transitions can be obtained from the transitions of Compound

9A distribution with log-Laplace transform «(u) is infinitely divisible if and only if
ca(u), is also a log-Laplace transform for any ¢ > 0.
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Autoregressive process. For instance the Integer Autoregressive (INAR(1))
process [Al-Osh and Azaid (1987), Mc Kenzie (1985)] has such a transition
with activation function a(u) = log[pexp(u) + 1 — p|, with 0 > p > 1.

1.2 Nondecomposable multidimensional activation function with
intercept.

The extension of the conditional Laplace transform is definition 1 ii) is :
Elexp(u'Z;)| Zj-1] = explay—1(w)'[Ci1Zj-1 + dja] + Bj-1(u)],

where «;_; is not necessarily of the form a;_1(u) = diag [o;_1,(w)].

1.3 Recursive equations

The formulas in Proposition 2 become :
Elexp(u'Y)|Z;] = exp[Bj(u; C)Z; + bj(u; C, d)],
Elexp(u'Z;)|Zo] = exp[A)(u,C)Zy + aj(u; C, d)],

where the functions Bj;, b;, A;, a; satisfy the backward and forward recursions :

Bj,1<u; O) = C,'flajfl[Bj(u; C)]a

bj—1(u;C,d) = o [Bj(u; O)'djy + Bj-1[Bj(u; C)] + bj(u; C, d),

Aj(u; O) = Aj[Caj1(u), O,

J

aj(u; Cod) = a;1[Cf o1 (u), Cd] + a1 (u)'dj—1 + Bj-1.

J

Note that the functions A; depend on the connecting weights, but not on the
intercept terms either d;, or f;

Proof : The proof is similar to the proof of Proposition 2. Let us for instance
consider the backward recursion. We have :
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Elexp(u'Y)|Zj-1]
= E{Elexp(u'Y)|Z;]|Zj-1}
= Efexp(Bj(u; C)Z; + bj(u; C,d))| Zj1}

= exp{aj,[B;j(u; Cl[Cj1Z1 + dja] + Bi-1[Bj(u; C)] + b(u; €, d) }.

We deduce :
Bj_l(u, C) = le-ilOéj_l[BJ(u; C)],
and

bi1(u;C.d) = o _1[Bj(u,C)|dj—1 + Bj_1[Bj(u; C,d) + bj(u; C,d).

7—1

QED
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Appendix 2
Recursion on Derivatives

The alternating optimization is simplified due to an appropriate decomposition
of the conditional Laplace transform : Elexp(u'Y)|X] = exp[By(u, C') X],
with respect to the subparameters C;,j = 0,...,J. Let us denote C’j =
(Cj,...,Cy),C; = (Cy,...,C)). By applying the iterated expectation theorem

to conditioning with respect first to Z;, next to Z;_;, we get :
Bo(u,C) = A; 1{C}_,a;1[B;(u, C;)], Cj_s}.
We deduce the derivative with respect to vec(C;_1). We get :

8B0(u, C)
a(VGC Oj_l)/

0A, .., ] , ]
= a;l : [ijlajfl[Bj (U, CJ)J Cj*2]IdL ® ajfl[Bj (u, CJ)]

0A;_ _ . _
- 8;’ : [Bj-1(u,Cj-1), Cjo]ld, ® a;_[Bj(u, Cj)].

i) First-order derivatives

The expression above involves the derivatives of the functions A;(u,C;_1)
with respect to u. These derivatives can be computed recursively by a
propagation algorithm from the equations :

Aj(u, Ci_y) = A;1[C5 a1 (u), Cj_s].

J

We have :

814]0’“%) . aAj_l
ow’ o

ii) Second-order derivatives

OJa;—
(€} 1a-1(u), Cj—s]C] 1)

Jj—1 o

For some algorithms, especially when applying the quasi-maximum likelihood
approach of section 4.1.2, and objective functions, it can be useful to derive
the recursive formulas for second-order derivatives. To derive such recursions,
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we have to introduce the elements A;; of function A; and the rows c;_, ; of
matrix Cj_;.
Then we have :

0Aij(u, Cj_1) _ 0Ai
ou’ o

4 / da g—1lu
a1 (u), Cyo]SE {cj_l,kka_ﬂ)} |

We deduce :
A j(u,C 1)

dudu!
aa/._ (u) aZAfL . , ! aai u
= Ja; Cijaa auéZ/l[Cj—laj—l(u)vCJ—Q]OJA#’()
OAij 1. Lo w)
1050, Cod S { st

k=1
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Online Appendix 1
Approximation of Functions by Multilayer Perceptron Neural Network

We first review the Kolmogorov-Arnold representation theorem or superposition
theorem, that states that every continuous function of p continuous variables
can be represented by an appropriate composition of functions of one variable.
We especially discuss modern variants of the superposition theorems known
as universal approximation theorems, and their interpretation in terms of
deterministic hidden layers. Then we discuss approximate superpositions
representations based on multilayer perceptron (MLP) neural networks.

A.1 The Superposition Theorem

The theorem is usually written for continuous function defined on [0, 1]".
Any such function f can be written as :

f($1>""xn) = Zgj[z ijk’<xk’)]7 (a'l)

where j, are continuous real functions on [0,1] and g; continuous real
functions on IR.

The initial proof of this result is due to Kolmogorov (1956), Arnold (1957),
is nonconstructive and the representation is not unique.

Then the literature has looked for more specific representations with less
functional parameters by considering identical g; functions [Lorentz (1962)],
inner functions ¢, depending on a single function ¢ with appropriate shift
in the argument [Sprecher (1993)], and extending the representation to other
functions f. This leads to the following representation [Ismayilova and
Ismailov (2023)] :

flay, @) = Z!J[(Z Aep(zy + aj)) + bl, (a.2)

Ak, bj are known, ¢ is a universal monotonic function, that is independent of
function f, and g a one variable function depending on f. This representation
exists also for discontinuous functions, and unbounded functions on [0, 1]™.
Moreover, the representation is unique [Ismailov (2017)].
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The interpretation of this representation in terms of feedforward deterministic
neural network with two hidden layers is appealing and has been noted in
Hecht-Nielsen (1987). The architecture of the two layer feedforward network
(TLFN) is the following :

input layer : xy,...,T,;
first-hidden layer : 21 j, = @(xr +a;),7 =0,...,2n,k=1,...,n.

second hidden layer : 2z, ; = g[z M2k + 0], =0,...,2n.

k=1
2n

output layer : y = Z 29
j=0

There has been a huge debate on the usefulness of this result since functions
g, have no simple form, are rather difficult to find even numerically, and
function g is wildly varying w.r.t. f, even if f is smooth [see Girosi, Poggio
(1989), Kurkova (1991)].

A.2 Superposition with Multilayer Perception (MLP) Neural Network

The difficulties above have been circumvented by looking for superpositions
with similar given transfer functions and approximate representations instead
of exact representations.

A.2.1 Ridge functions and MLP models

The basic transformations are multivariate transformations of the form :
G(aix1+. ..+ ayz, +b),= G(d'x+b), where G is a sigmoidal transformation
from IR to [0,1]. Then the approximations are obtained by superposing
different layers with such transform at each node (neuron). More precisely.
The single layer perceptron (SLP) neural network considers an approximation
of the type :

J

flay, ... o) ~ ZC]'G(CL;Z'—I—I)]'), (a.3)

Jj=1

where c;, b;, a; are parameters.
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The two layer perceptron (TLP) neural network is obtained by iterating the
approximation above. It leads to :

J K
Fan, o) 2 ) GG epGlalr + bi) + by, (a.4)
j=1 k=1

and so on.
The SLP network has J nodes on the hidden layer. The TLP network K.J
nodes in the first hidden layer and J nodes in the second hidden layer.

A.2.2 The approximation results

There exist different approximation results by MLP neural networks that
involve the choice of function GG, the number of layers and the number of
nodes on each layer. The main results are given below.

Approximation 1 [Hornik et al. (1989)], Th. 2.3, Cybenko (1989), Th. 2.
For a given activation function GG, the continuous function f can be uniformly
approximated with error € by a SLP neural network (a.3) with number of
nodes J and parameters depending on €.

This means that f can be well approximated with a single layer model, but
a number of nodes that can be very large. Can we control for the number of
nodes ?

Approximation 2 [Maiorov and Pinkus (1999), Th 4].

There exists a sigmoidal activation function G such that f can be uniformly
approximated with error € by a TLP neural network (a.4), with parameters
depending on ¢, but fixed number of nodes J = 6n + 3, K = 3n.

This results controls the number of nodes at each layer, but does not explain
what is the right sigmoidal function to choose. It is often used as an argument
for considering two layers only in (deterministic) deep learning. Note however
that the number of nodes in the first layer is equal to K.J + 18n2 + 9n and
becomes quickly rather large when the dimension n increases.

Approximation 3 : [Gripenberg (2003), Th. 2].
For a given activation function G, we can get an approximation of function f
at level € with a given number of nodes at each layer and a number of layers
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depending on . Therefore there is a tradeoff between the number of nodes,
the number of layers and the possibility to fix ex-ante the activation function

G.

For practical use the approximation results do not explain how to fix the
number of layers, the number of nodes and the activation function to get a
good accuracy, that will depend also on function f.

Moreover the results are usually derived for functions defined on [0, 1]”. Some
can be extended to functions defined on IR™, but in this case the uniform
approximation is on every compact on [R" and then can be very poor in the
tails of function f.

Remark 1 : The continuity assumption of function f implies that the
arguments xi,...,x, correspond to observed continuous variables and then
the approximation results are not valid if some underlying variables are either
qualitative (dummy variables), or count variables.

Remark 2 : There is a multiplicity of deterministic MLP networks. Indeed

the initial variables x4, ...z, can be replaced by transformed variables z7, ..., z}
in a one-to-one relationship with zq,...,x,. For instance the MLP network
can be written in z7 = logx;,i = 1,...,n, instead of z}s (when the x}s are
positive).

Remark 3 : Similarly, the MLP network can be written on a one-to-one
transform of function f instead of function f itself. For instance let us assume
that :

flz1,...,2,) = E(Y|X =2) =pay,...,2z,).

where Y is a binary variable. Then f = p takes values in [0,1]. The direct

approximation (a.4) will induce constraints on parameters c¢;,j = 1,...,J,
J

such that ¢; > 0,Vj, with ch = 1, that can be difficult to take into
j=1

account in the learning (estimation) step. Instead the approximation (a.4)

can be applied to the transformed function G~'[p(xy,...,z,)] instead of

being applied to p(xy,...,x,) itself. Equivalently the approximation (a.4)

is replaced by :
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J K
pler, . an) = GGG epnGlalr + bi) + bil}. (a.5)

j=1 k=1

Remark 4 : It is not known how to extend and use these approximation
results for networks with stochastic transitions, or equivalently how to construct
superposition approximations of the conditional Laplace transform v (u, X)
that are "uniform” and coherent with respect to argument wu.
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Online Appendix 2
The Chain Rule and the Backpropagation

As mentioned in the text, some derivatives can be performed on functions
satisfying the chain rule. In the MLPNN] this leads to the backward propagation
algorithm introduced in Rumelhart, Hinton and Williams (1988) and precisely
described for the LTSM in the appendix of Hochreiter and Schmidhuber
(1997). Let us consider a network defined by :

ZO = X ,Wlth dim Z(] = my,
Zi(c1,X) = qi(C1X), ,with dim Z; = my,
ZQ(C_27 X) = gQ[CéZI(ﬁv X)]

= ¢2[C%g:1(C1X)], with dim Zy = ma,
up to Z;(cs, X) = g4[C4Z5-1(cs—1, X)] with dim Z; = my,

where c; = vec Cj,7 =1,...,J. The functions g;,7 = 1,...,J, are given and
0g;(u;
their Jacobian % with dimension (m;,[;) has a closed form in practice.
u'

J

Then the score appearing in the ASGD algorithm can require the derivatives
of Z;(cs, X) with respect to ¢; = vec Cj,7 = 1,...,J. Due to the chain
rule, we get the following result :

Proposition : We have :

02,(cs, X)
ofeh
ag 4 / 69 — ,
. a—u;;[CJZJ1<u,X>]CJaTﬂ[CglzJ2(CJ2, X)),
ag; . -, , ‘
aug. [C1Zi 1 (cjmr, X))y, @ Z (=1, X),j=1,...,J,

where ® denotes the Kronecker product.
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This formula leads to a forward-backward (or backpropagation) algorithm.
For given values of the (s, the successive values of the Z;(c;, X) are computed
forward by : o

ZJ(C_JuX) = g][O]/ZJ—1<£7X>]7J =1,...,J

0Z(cy, X)
80}

the formula in the Proposition above.

and then the derivatives ,j=4J,J—1...computed backward by

The formula is written without assuming the conditional independence between
the neurons of a same layer and a universal activation function. It can be
easily written with these special restrictions.
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Online Appendix 3
The Architecture of Long Short Term Memory (LSTM) Cell

We provide below the standard architecture of an LSTM cell [Hochreiter and
Schmidhuber (1997)]. It is given with the notations of the machine learning
literature with variables of a same dimension denoted xy,i;, fi, ¢, 8¢, by, Yt,
three types of activation functions : the logistic function o, the hyperbolic
tangent : tanh, and the linear one. The connecting weights are denoted
W with appropriate indexes and the operator e means the componentwise
product of two vectors. At the beginning of period ¢, the observed inputs
are exogenous inputs z; and lagged summaries h;_1,c¢;—1. The deterministic
state space model has the following structure :

iv = o(Wiery + Winhyy + Wicer 1 + bi), (2)
fo = oWewy + Wephi—y + Wyeer—1 + by), (i)
¢ = fiecq+igetanh(Wexy + Weohy 1 +b,), (iit)
o = o(Woexy + Wophi—1 + Woeer + b,), (iv)
hy = o;etanh(c), (v)
v = Wyphy + by (vi)

In the usual terminology of neural networks, this system has 5 layers. The
first layer (input layer), with two neurons is described by (i) and (ii). The
second layer with dim ¢ neurons corresponds to (iii). Similarly the third and
fourth layers have one neuron and corresponds to (iv) and (v), respectively.
Then (vi) is the output layer.

The LSTM literature has introduced its own terminology that explains the
notations for the variables, but can be confusing. The first state equation
(i) is called the input gate, the second (ii) the forget gate eliminates the
information that is no longer relevant in the cell state. The equations (iii)
are the cell activation equations and the equation (iv) is the output gate.

The LSTM model has been initially introduced to allow for different degrees
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of persistence (short vs long persistence) in the nonlinear dynamics of h,
(and of y;). Note that this feature can also be reached with the Markov
AFS neural network of Section 5.2, without fixing ex-ante the state variables
creating the long memory features.

Such LSTM cells are introduced in R-software libraries as Keras and Tensorflow
[Arnold (2019)]. Look at the warning in implementing such softwares in
Twumasi and Twamasi (2022), Section 3.3.8, ”due to the numerous modelling
steps from time series differencing, data transformations, inverse scaling after
obtaining predictions”.
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Online Appendix 3
Acronyms

This machine learning literature is introducing and using a lot of acronyms.
The ones used in our paper are given below with their meaning. Some
acronyms were used before in statistics with other meanings. These double
meanings can be confusing and are systematically mentioned.
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AFS (network)
Al
ANN

ASGD (algorithm)

ASR
BM
BP (algorithm)

BPTT (algorithm)

CoD

DNN

ELBO

GD (algorithm)
GDP

GMM

HMM
KAN
LSTM
LT
MGF
ML

MLP (network)
NN

RBM

RELU

RNN

SGD (algorithm)
SLP

SNN

TLU

Affine Feedforward Stochastic
Artificial Intelligence
Artificial Neural Network
Average Stochastic Gradient Descent
Automatic Speech Recognition
Boltzmann Machine

Back Propagation

Back Propagation Through Time
Curse of Dimensionality

Deep Neural Network

Evidence Lower Bound

Gradient Descent

Gross Domestic Product

i) Gaussian Mixture Model

ii) Generalized Method of Moments
Hidden Markov Model
Kolmogorov Arnold Network
Long Short Term Memory
Laplace Transform

Moment Generating Function

i) Machine Learning

ii) Maximum Likelihood

Multi Layer Perceptron

Neural Network

Restricted Boltzmann Machine
Restricted Linear Unit

Recurrent Neural Network
Stochastic Gradient Descent
Single Layer Perceptron
Stochastic Neural Network
Threshold Logic Unit.
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