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Abstract

We consider the price-cap regulation of a monopolistic network operator when the

regulator has limited commitment. Operating the network requires fixed investments

and the regulator has the opportunity to unilaterally revise the price cap at random

times. When the regulator maximizes consumer surplus, he has an incentive to

lower the price cap once the operator’s fixed investments are sunk. This hold-

up problem gives rise to two types of inefficiencies. In one type of equilibrium,

the operator breaks even but strategically under-invests to induce the regulator to

maintain the price cap. In another type of equilibrium the operator makes strictly

positive profits and periods of high investment and high prices are followed by periods

of low prices and capacity decline. Overall, the model suggests that the regulator’s

lack of commitment limits the deployment of network infrastructures.
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1 Introduction

The issue of cost recovery in telecommunications and other regulated industries has gen-

erated a rich debate over the last decades.1 The concept of long-run incremental cost

(LRIC) pricing emerged in the 90s, as a way to replicate the outcomes of a competitive

market in which firms recover the rental cost of their assets by setting prices at levels

that incorporate the cost of capital, operating expenses, and depreciation. Introduced

in the United Kingdom in 1995 and subsequently adopted in the United States and Eu-

rope—with the European Union explicitly endorsing the LRIC in 2013—the framework

was intended to provide incentives for cost minimization by decoupling allowed revenue

from historical expenditures. Nonetheless, as early as the mid-1990s, economists such as

Hausman et al. (1997) and Sidak and Spulber (1996) voiced concerns regarding the as-

sumptions underpinning the LRIC. The method presupposes constant returns to scale in

asset production, complete utilization of capacity, and a stable resale value for depreciated

equipment, assumptions that are frequently violated in practice. Laffont and Tirole (2001)

observed that the broad consensus in favor of the LRIC was supported by little economic

argument. In particular, technological progress that lowers the competitive price of new

assets over time should trigger adjustments to the conventional the LRIC formula.

In this perpetually changing environment, the issue of uncertainty, coupled with the

irreversible nature of infrastructure investment, has become a central theme in the litera-

ture on price regulation. Telecommunications networks, characterized by significant sunk

costs, face a substantial risk due to unpredictable demand and rapidly evolving techno-

logical standards. Incorporating a risk premium in regulated prices may not be enough to

incentivize investment as the operator also needs to be compensated for the loss of flexibil-

ity inherent to any irreversible investment decision. This concept of option value is based

seminal work by Dixit and Pindyck (1994) who propose a framework that captures the

value of delaying investment until some of the uncertainty is resolved based on techniques

developed for financial options.

In this article, we wish to explore further the risk created by regulatory opportunism

for the regulated firm. While the issue of limited commitment by regulators has been

1See Auriol et al. (2021) for a recent and extensive discussion of practical issues in the regulation of
public services, and Laffont and Tirole (2001) for the regulation of telecoms.

2



recognized, there is still little understanding of its implications for optimal price-cap regu-

lation.2 When the regulator is not able to commit on future regulation, the regulated firm

faces a risk of “hold-up,” whereby ex-post the regulator decreases the price cap below the

LRIC. In this case a price cap at the LRIC cannot induce efficient investment even absent

any other form of uncertainty on demand or technology.

To analyze this issue, we build a continuous time model involving a game between one

regulator (she) choosing a price cap to maximize inter-temporal consumer surplus and one

network operator (he) investing at any point in time to build or maintain capacity. The

demand is known and there is no technological uncertainty. In this setting, the regulator

can ensure efficient production if he can commit to keep a price cap at the LRIC. Indeed, if

she can sell at that price, the operator breaks even on every capacity unit she builds, hence

serves demand and makes zero profit. We then model limited commitment by introducing

a Poisson process that randomly determines dates at which the regulator can unilateraly

impose a new price cap on the firm.

In the first part of the paper, we allow for only one revision: the regulator sets a

price cap at the beginning of the game, the operator builds and maintains capacity until

the (random) time at which the regulator can change the price cap. At that stage, the

regulator’s only relevant choices are a price cap at the short run production cost which

disincentivize any future investment, referred to as regulatory takin, or a price cap at the

LRIC which provides incentives for efficient investment going forward. Turn now to the

initial price cap. That price cap has to be at least the LRIC or else the operator does

not invest. However, unlike in the second period (after the revision), the LRIC may not

be sufficient to incentivize efficient investment: when the price cap is too low (though

above the LRIC), the operator under-invests and rations demand. This is because a lower

capacity increases the regulator’s incentives to keep the price cap high (equal to LRIC)

when the revision occurs. For higher levels of the price cap, the operator may invest to

serve the demand despite the expectation of low price cap in the future. However the price

cap necessary to compensate the operator for future regulatory taking increase when the

regulator’s commitment power weakens. The regulator may then prefer setting the initial

2See Weisman (2019) and Laffont and Tirole (2001), section 4.4.1.4. An illustration of the issue of
limited commitment in regulation is provided by González Fanfalone and Crean (2022) OECD report (see
box 4 on spectrum licenses in Mexico).
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price cap at LRIC, at the cost of a strategic under-investment response by the operator.

By contrast, when the level of commitment is high, the regulator offers a mark-up over

the LRIC, inducing the operator to serve the demand until a regulatory taking occurs and

investment stops.

Next, we study the robustness of these insights to a stationary version of the model

where revision opportunities occur repeatedly. As in the one-revision case, there exists

a Markov equilibrium where the price cap is at the LRIC and the operator strategically

underinvests. Because the commitment power of the regulator is now constant over time,

this constant-cap equilibrium also features a constant capacity. However, unlike in the one-

revision case, an equilibrium at the LRIC does not exist when the regulator’s commitment

power weakens beyond a certain point. Indeed, if the regulator deviates to a low price

cap, which triggers an investment freeze, he now has the possibility to adjust the price cap

upwards in the next revision. When this course correction happens faster, capacity remains

relatively high between the two revisions, while consumers benefit from the temporary

price cut. Similarly, this deviation becomes profitable when depreciation is slow enough,

which precludes a constant-cap constant-capacity Markov equilibrium. In that case, we

show the existence of an equilibrium with regulatory cycles where periods of high caps

and high investments alternate with periods of low caps and investment freezes. As in the

one-revision case, this requires leaving a rent to the operator which then makes strictly

positive profits in expectation.

Overall, the model shows that the lack of commitment on the regulator’s part can

generate a sub-optimal deployment of a network infrastructure through multiple channels.

With regulatory cycles, the price is either too high to maximize gains from trade, or too

low to incentivize any investment. On the other hand, when the regulator maintains the

price cap at the competitive level –the LRIC– the operator strategically underinvests.

Literature

The literature on regulation under limited commitment remains scarce. Salant and Woroch

(1992) model the relationship between a price cap regulator and a firm as a repeated

game with no commitment in a discrete time model. They focus on equilibria supported

by trigger strategies–i.e., any deviation is followed by a path with zero profit and no
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investment– and show that the most efficient stationary allocation can be approximated

for low discount rate. By contrast we focus on Markov equilibria and limited commitment.

Gilbert and Newbery (1994) also analyze a repeated game but for rate-of-return regulation.

They argue that some “constitutional” commitment3 may raise regulator credibility and

allow to support efficient investment. We focus on price cap regulation that does not

raise the issue of cost overrun, but we share the focus on limited commitment. Weisman

(2019) focused on the regulation of entry and argued that some revenue sharing alleviates

the investment issue caused by lack of commitment on the future level of concentration.

We focus on price cap regulation instead and the trade-off between the price level and

investment under limited commitment.

Pindyck (2007) also shows that in the presence of uncertainty, in their case about

demand, inducing investment from an operator may require an upward adjustment to the

traditional LRIC price to cover the potential cost of unused capacity, thereby shifting the

effective retail price upward. Moreover, demand uncertainty creates an option value of

waiting before making an irreversible investment. This intuition is taken further in Dobbs

(2004) who considers continuous fluctuations in demand and the inexorable influence of

technological progress. In this setting, the operator’s investment policy is characterized

by thresholds. When demand remains below a critical threshold, no inveastment occurs,

but once demand reaches a certain level, investment is triggered to maintain prices at a

level that just covers both the traditional cost and the option value premium. In line with

Pindyck (2007), Dobbs (2004)’s analysis shows that if a price cap is set too stringently, the

operator may choose to delay or even halt investment. Our model shares the feature that

uncertainty, in our case about regulatory changes, can lead to underinvestment. However,

uncertainty in our model is essentially strategic. Therefore the operator’s reluctance to

invest, and the corresponding upward price adjustment, are not generated by an option

value to delay investment but rather by a strategic motive for the operator to protect the

firm against regulatory taking.

Dobbs (2004)’s analysis has been extended to richer settings. Roques and Savva (2009)

demonstrated that many of the intuitions derived from the monopolistic case remain valid

when a small number of firms compete, although the strategic interactions among firms

3An obligation to pay a fair rate but only on used capacity.
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introduce additional complexities. Evans and Guthrie (2005) incorporated quantity regu-

lations alongside price caps, revealing that a combined regulatory approach can mitigate

the operator’s tendency to delay investment. Their work illustrates that imposing min-

imum service requirements can force the operator to invest more aggressively. In these

more nuanced models, the optimal regulatory framework is one that carefully balances a

dynamic price cap—with an upward adjustment to account for uncertainty—against min-

imum quantity requirements designed to prevent excessive rationing of demand. In our

model as well, minimum service requirement would alleviate the rationing issue although

we do not explore this possibility. A key difference between these models and ours is that

we consider lumpy investment while they focus on a continuous stochastic investment pro-

cess. As shown by Evans and Guthrie (2005), lumpy investment substantially complicates

the dynamics.

As a final note, we abstract from asymmetric information issues that could distort

firms’ incentives to produce. In particular, Freixas et al. (1985), Baron and Besanko

(1987) and Laffont and Tirole (1988) study the ratchet effect, according to which a low

cost firm may refrain from reporting its cost if this information can be exploited in future

regulation.

The rest of the paper is organized as follows. Section 2 presents the model, Section 3

analyses the case where the regulator can revise the cap only once, while Section 4 studies

the stationary case where the probability of price cap revision is constant over time.

Section 5 concludes, all proofs are in the Appendix.

2 Model

We model a game with two players, a regulator (he) and a monopolistic firm (she) which

we interpret as a network operator. Time is continuous and at each time t, the operator

can provide access to her network to consumers. As in Laffont and Tirole (2001), each

unit of equipment delivers one unit of access to consumers, requires a one-time capital

expenditure C and an operating flow cost c per unit of time (energy, maintenance). We

let Kt denote the number of units of equipment in place at t, i.e., the operator’s capacity.

The operator can increase capacity Kt at any time (at unit cost C) and the equipment
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depreciates at a rate δ per unit of time. Given an access price a per unit of time, the

operator faces a linear demand for access at each time t:

D(a) ≡ Q− αa. (1)

The regulator starts by setting a price cap a at t = 0. However, we depart from Laffont

and Tirole (2001) by allowing the regulator to unilaterally revise this price cap at a later

time. The timing of this revision is determined by a Poisson process with intensity λ.4

The inverse of λ is the average time before the regulator can revise the price cap so that a

high λ means the regulator has low commitment power. We will start with the case where

the regulator has a single opportunity to modify the price cap (at the first jump of the

Poisson process) and then extend the analysis to the stationary case where the regulator

can revise the cap multiple times (at every jump of the process).

All agents discount future payoffs at rate r, and we assume that the regulator’s objec-

tive is to maximize the inter-temporal consumer surplus, where the per-period consumer

surplus at price p if the demand is fully served is given by

S(p) ≡
∫ D(p)

0

(P (q)− p ) dq,

and

P (q) ≡ Q− q
α

is the inverse demand function. Because the access charge can be capped by the regulator

and the operator can only serve demand if she has the corresponding capacity, demand

can be rationed. The per-period consumer surplus at price p and for capacity K ≤ D(p)

is then

Σ (p,K) = S(P (K)) +K(P (K)− p) ≤ S(p), (2)

with
∂Σ (p,K)

∂K
= P (K)− p > 0 and

∂Σ (p,K)

∂p
= −K < 0.

Note that Eq. 2 implies that when demand is rationed, the consumers that are served are

4We assume that the price cap is constant between two revision dates.

7



the ones with he highest willingness to pay.

For the linear demand, this corresponds to

Σ (p,K) =
Q− αp
α

K − K2

2α
.

Finally, as in Laffont and Tirole (2001), we can define the Long-Run Incremental Cost

(LRIC) as the price such that the operator covers her investment and operating cost over

the long term. That is, the LRIC is the access charge such that the operator’s discounted

profit from continuously delivering one unit of access is zero:∫ +∞

0

e−rt(aLRIC − c− δC)dt− C = 0⇔ aLRIC = c+ (r + δ)C. (3)

In what follows, we assume the LRIC is lower than the monopoly price,

pm ≡ 1

2

[
Q

α
+ aLRIC

]
> aLRIC ⇐⇒ Q > αaLRIC . (4)

Note that Eq. 4 also implies that demand is strictly positive when the price is equal to

the LRIC. If the regulator had no commitment problem (if λ equalled zero), then setting

the price at aLRIC would induce the operator to serve the full demand D(aLRIC) while

leaving her with no profit and maximizing consumer surplus and overall surplus. This

ensures that any inefficiency we identify in the analysis can be ultimately traced back to

the regulator’s commitment problem.

3 Single revision

We analyze here the case where the operator has a single opportunity to revise the price

cap, at the first jump of the Poisson process. We proceed backward starting with the

revision stage.
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3.1 Revision stage

Consider first the operator’s response to the revised price cap a at the revision stage.

If aLRIC ≤ a ≤ pm, then from Eq. 3 it is profitable for the firm to invest and serve

all consumers that are willing to buy access at a given that the regulator has no other

opportunity to revise the price cap in the future. If c ≤ a < aLRIC , then building up

capacity yields a strictly negative payoff for the firm, but given that the price cap is above

the operating cost c, exploiting existing capacity is still profitable. Note that in this case,

equipment depreciates with no offsetting investment, therefore capacity declines at rate δ

over time. Finally, if a < c, the operator stops offering access. This operator’s optimal

response implies there are only two relevant choices for the regulator. If the regulator

wants the operator to maintain investment, he optimally sets the price cap a equal to

aLRIC . If instead the regulator wants to minimize the price for the consumer at the cost

of disincentivizing investment, he sets a = c. We show next that this trade-off depends on

the operator’s installed capacity K at the revision’s stage.

Suppose first that the regulator chooses a = c. Then for any capacity K ≤ D (c) ,

consumer surplus going forward is∫ +∞

0

e−rtΣ(c,Ke−δt) dt. (5)

which is increasing in K. While consumers benefit from a low price p = c, they suffer

from the lack of investment which creates increasing rationing over time as the equipment

depreciates.

If the regulator chooses a = aLRIC , the operator invests if needed to obtain capacity

D(aLRIC) and maintains it to serve the full demand. The consumer surplus is therefore

independent from the installed capacity K at the revision stage, equal to

S(aLRIC)

r
. (6)

To compare Eq. 5 and Eq. 6, note first that the operator’s installed capacity at the revision

stage K is at most D(aLRIC). This is because the LRIC is the lowest price such that the

operator has an incentive to build up capacity and therefore D(aLRIC) is the largest
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demand she might serve. Second, as δ tends to 0, Eq. 5 tends to

Σ(c,D(aLRIC))

r
,

when evaluated at K = D(aLRIC), which is strictly larger than Eq. 6. It follows that if

equipment depreciates slowly –δ is not too large– and the operator enters the revision stage

with an installed capacity K close to D(aLRIC), the regulator has an incentive to set a low

price cap to c. Conversely, for δ large enough Eq. 5 tends to 0 and therefore the regulator

chooses a price cap equal to the LRIC even if the operator has the maximal capacity

K = D(aLRIC). This captures that the commitment problem of the regulator is more

severe when the operator’s equipment is more durable: once the operator has incurred

the investment cost KC and the equipment is in place for the long run, the regulator has

an incentive to lower the price to increase consumer surplus. When δ increases, setting

a = c is increasingly costly for the operator because capacity depreciates more quickly

and with it consumer surplus. This cost is particularly salient here because the regulator

has no other opportunity to revise the price up, but the idea that the regulator’s incentive

to expropriate the operator ex post is higher when δ is smaller survives in the stationary

model with multiple price cap revisions (Section 4). Using the linear demand specification

in (1), we can derive a threshold on δ below which this hold-up problem bites.

Lemma 1. There exists K∗ such that if the operator’s installed capacity K is lower than

K∗, the regulator sets a = aLRIC and if K > K∗, the regulator sets a = c. There exists δ

such that K∗ < D(aLRIC) if and only if δ < δ.

The equilibrium level of K∗ is given by the equation∫ +∞

0

e−rt
[
Σ(c,K∗e−δt)− S (aLRIC)

]
dt = 0. (7)

which shows that K∗ is increasing with the depreciation rate δ. As the depreciation

increases, the short-run gain of low price c must increase to compensation the long-run

loss.
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3.2 Initial stage

Suppose δ ≥ δ. Recall that a necessary condition for the operator to be willing to install

any capacity is a ≥ aLRIC , which therefore has to hold at t = 0. Suppose the regulator

sets the price cap at aLRIC at t = 0. Then for any capacity (smaller than D(aLRIC)) the

operator may install, the cap stays at aLRIC at the revision stage. It follows that it is

optimal for the operator to serve the full demand, and consumer and total inter-temporal

surpluses are maximized. In other words, there is no commitment problem.

In the rest of this section, we focus on the case where δ is not too large.

Assumption (A1). δ < δ.

3.2.1 The operator’s investment strategy

Note first that the problem of the operator is stationary before the price revision, given a

constant instantaneous probability this revision occurs. This implies that if the operator

finds it optimal to invest up to a capacity K at t = 0, then it is also optimal to maintain

this capacity until the price cap revision.

Second, as the regulator has to set a ≥ aLRIC at t = 0 to induce investment and from

Lemma 1, the price cap stays at aLRIC at the revision stage if K ≤ K∗, it is optimal for

the operator to install and maintain a capacity at least equal to K∗ before the revision.

Suppose now the operator installs and maintains capacity K > K∗. This implies her

profit after the revision is zero and therefore the profit per unit of equipment is∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC) dτ

]
dt− C =

a− (c+ (r + δ + λ)C)

r + λ
. (8)

It follows that the regulator can induce investment beyond K∗ only if he sets a price

cap larger than an “augmented” LRIC, c + (r + δ + λ)C that increases with his lack of

commitment power λ. On the other hand, if a ≥ c+ (r + δ + λ)C and the operator finds

it optimal to install K > K∗, then she should optimally satisfy the full demand since her

per-unit profit Eq. 8 is then positive. Therefore if a ≥ c + (r + δ + λ)C, the operator
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chooses between capacity K∗ that generates an expected profit equal to∫ +∞

0

λe−λt
[∫ t

0

K∗e−rτ (a− c− δC) dτ

]
dt− CK∗

+

∫ +∞

0

λe−λt
[
D(aLRIC)

∫ +∞

t

e−rτ (aLRIC − c− δC) dτ − e−rtC(D(aLRIC)−K∗)
]
dt

=
ā− c− (r + δ)C

r + λ
K∗, (9)

and investing capacity D(a) which generates a profit∫ +∞

0

λe−λtD(a)

[∫ t

0

e−rτ (ā− c− δC) dτ

]
dt− (D(a)C.

=
(a− c− (r + δ + λ)C)

r + λ
D(a). (10)

Let ∆(a) be the difference between the numerators of Eq. 10 and Eq. 9, i.e.,

∆(a) = (a− c− (r + λ+ δ)C) (D(a)−K∗)− λCK∗. (11)

We get the following result,

Lemma 2. If at t = 0, aLRIC ≤ a ≤ c+ (r + λ+ δ)C, then the operator installs capacity

K∗. If a > c+(r+λ+δ)C, then the operator installs capacity K∗ if ∆(a) < 0 and D(a) if

∆(a) ≥ 0. The operator maintains the capacity installed at t = 0 until the price revision.

3.2.2 The regulator’s price cap decision

From Lemma 2, the regulator can induce investment beyond K∗ only if ∆(a) ≥ 0. Given

that ∆(a) is decreasing in λ, this may not be achievable if λ is too high. More precisely,

define

λ1 := min

{
λ | max

a>c−(r+λ+δ)C
∆ (a) ≥ 0

}
.

Lemma 3. If λ > λ1, then ∆(a) ≤ 0 for all feasible price cap, consequently

• at t = 0, the regulator sets aLRIC = c + (r + δ)C and the firm installs capacity K∗

and maintains it until revision,
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• at revision, the regulator keeps the cap at aLRIC = c+(r+δ)C and the firm increases

capacity to D(aLRIC) and maintains it.

Inducing the operator to invest beyond K∗ requires setting a price cap higher than

the augmented LRIC c + (r + δ + λ)C so that she can derives a higher profit for every

additional unit of equipment before being expropriated at the revision stage. This rent

per unit of equipment and per unit of time needs to increase with λ because when the

commitment power of the regulator weakens (λ increases), the time period during which

the operator can profit from it shortens. However, the demand per unit of time is fixed

and demand declines as the price charged for access increases. This puts a cap on the

surplus the regulator can transfer to the operator to incentivize investment, and this cap

binds for λ > λ1.

Suppose now λ ≤ λ1. In that case, the regulator can set a such that the operator

builds up capacity K > K∗ but he may not find optimal to do so. The most efficient way

for the regulator to incentivize K > K∗, is to set a equal to the smallest solution to

∆(a) = 0 (12)

We let a∗(λ) be that smallest solution to Eq. 12. Notice that ∆ (a) is concave (and

quadratic), which implies that it is increasing at a∗(λ). Also

∂∆

∂λ
(a∗(λ)) = −D(a∗(λ))−K∗ −K∗C

r + λ

therefore a(λ) is increasing. Moreover a∗(λ)→ aLRIC as λ→ 0. As discussed earlier, the

rent per unit of equipment and unit of time to the operator needs to increase when the

regulator’s commitment power weakens.

Turn to consumer surplus. If the regulator chooses a = aLRIC , then consumer surplus

is ∫ +∞

0

λe−λt
[∫ t

0

e−rτΣ(aLRIC , K
∗) dτ + e−rt

S(aLRIC)

r
dτ

]
dt

=
Σ(aLRIC , K

∗)

r + λ
+
λS(aLRIC)

r(r + λ)
(13)
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If instead the regulator chooses a = a∗(λ), then consumer surplus is

S(a∗(λ))

r + λ
+

∫ +∞

0

λe−λte−rt
[∫ +∞

0

e−rτΣ(c,D(a∗(λ))e−δτ )dτ

]
dt (14)

Note that when λ tends to 0 and therefore a∗(λ) tends to aLRIC , Eq. 14 is strictly higher

than Eq. 13. It follows that for λ small enough, the regulator finds it optimal to set a

price cap a = a∗(λ) above LRIC to induce the operator to invest in capacity beyond K∗.

Intuitively, K∗ is independent of λ as there is no further revision after the first one. As

the regulator’s commitment problem becomes less severe (λ becomes smaller), the average

time before the revision is larger so that the firm is willing to take the risk of investing

more and serves the full demand. Hence the regulator can induce sales close to the efficient

level D(aLRIC) with a small markup over the LRIC.

Combining this observation with Lemma 3 gives the following result.

Proposition 1. Suppose δ < δ. There exists λ0 ≤ λ1 such that

1. if λ > λ1,

• at t = 0, the regulator sets a = aLRIC and the firm installs capacity K∗ and

maintains it until revision,

• at revision, the regulator keeps the cap at a = aLRIC and the firm increases

capacity to D(aLRIC) and maintains it.

2. if λ < λ0,

• at t = 0, the regulator sets a = a∗(λ) > aLRIC, the firm invests D(a∗(λ)) > K∗

and maintains it until revision,

• at revision, the regulator revises the cap down to a = c and the firm stops

investing.

While Proposition 1 provides the regulator’s optimal strategy when he either has strong

commitment power or little commitment power, characterizing the equilibrium in the

intermediate range [λ0, λ1] is more challenging. This is because increasing the revision
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speed λ affects the regulator’s payoff in two different ways. First, a higher λ increases the

price cap a∗(λ) necessary to induce the firm to fully serve demand at t = 0. This makes

a price cap at the LRIC more attractive in comparison. On the other hand, a higher λ

shortens the delay before the revision. For the regulator, this raises the payoff from his

two possible strategies because consumer welfare after the revision is larger than before

the revision since the regulator can fully commit at the revision stage. But that positive

effect is larger when the regulator sets a = a∗(λ) at t = 0 than if he sets a equal to

LRIC. To see why remember that in the latter case, the firm reaches the revision stage

with a capacity K∗ such that the regulator is indifferent between keeping the price cap at

the LRIC (the equilibrium play) and setting a = c which discourages further investment.

By contrast, if the regulator set a = a∗(λ) at t = 0, the firm reaches the revision stage

with K = D(a∗(λ)) > K∗ which is such that the regulator strictly prefers setting a = c.

It follows that speeding up the revision favours the strategy where a = a∗(λ) at t = 0.

Overall, increasing λ has opposing effects on the two relevant price cap strategies for the

regulator.

Despite this ambiguity, whatever the optimal strategy the regulator ends up picking

in that region, the lack of commitment generates an inefficiently low provision of service

from the operator either because the regulator does not serve the full demand at the price

cap, or because the price is first too high, which reduces demand, and then too low, which

disincentivizes investment.

4 Multiple revisions

The model with one revision delivers two key connected intuitions. The first one is that the

operator has a strategic motive to limit capacity to induce the regulator to maintain the

price cap at the revision stage. This, in turn, implies that providing incentives to invest

enough to serve demand requires a price cap above an augmented LRIC that incorporates

a premium for the risk of a downward revision of the cap. We show in this section that

these two effects are still at play in a stationary version of the model where the regulator

has recurring opportunities to revise the price cap. In other words, these effects are not

dependent on the regulator’s ability to commit at the revision stage, which is effectively
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the case when only one revision is possible. On the other hand, we show that a persistent

lack of commitment can have more detrimental effects on the level of investment that can

be sustained in equilibrium.

To make the model stationary, we now assume that the regulator has an opportunity

to revise the cap at each jump of the Poisson process. The model remains otherwise un-

changed. We restrict attention to Markov perfect equilibria where at each revision, the

strategy of the regulator is to set a price cap a(K) that is a function of the operator’s

installed capacity K, and at each time t, the strategy of the operator is a capacity adjust-

ment (an investment) I(K, a), as a function of the currently installed capacity K and the

price cap a. We then define W (K) as the equilibrium value for the regulator of reaching

a revision stage when the operator’s installed capacity is K and we let V (a,K) be the

equilibrium value for the firm of holding capacity K when the price cap is a.

Finally, we make the following assumptions

Assumption (A2). When indifferent between two levels of investment, the operator

chooses the largest.

Assumption (A3). When indifferent between two levels of price cap, the operator chooses

the level inducing the largest investment.

We can interpret these assumptions as focusing the analysis on equilibria where indif-

ferences are resolved in favour of the action that maximizes surplus. From (A2), the opera-

tor, when indifferent, picks the action that maximizes consumers’ instantaneous utility and

from (A3), the regulator, when indifferent, picks the action that maximizes instantaneous

overall surplus.

We analyze below two potential equilibria with particular interest: a stationary equi-

librium and a cyclical equilibrium.

4.1 Equilibrium with constant cap and constant capacity

A natural candidate equilibrium is one in which on the equilibrium path, the price cap and

the operator’s capacity are constant. We let a∗ and K∗ denote these equilibrium values.

In this constant-cap constant-capacity equilibrium, the operator starts at K = 0 and

immediately builds up to K∗, then maintain capacity at that level, which generates con-
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sumer surplus Σ(a∗, K∗) per unit of time. so the regulator’s value function on the equilib-

rium path is

W (0) = W (K∗) =
Σ(a∗, K∗)

r
.

Equilibrium conditions also impose that starting from zero capacity and given the price

cap a∗, the operator builds capacity K∗, that is, I(0, a∗) = K∗. Therefore the operator’s

value function satisfies

V (0, a∗) = V (K∗, a∗)− CK∗ =
K∗(a∗ − aLRIC)

r
.

We show next that the operator behaves similarly off the equilibrium path. More

precisely, given a price cap a∗ she builds capacity up to K∗ starting from any installed

capacity K ≤ K∗. Start with the following observation.

Lemma 4. For any a, V (K, a)−KC is non increasing in K.

Indeed, suppose the operator starts with capacity K < K ′. Then she has the option

to invest I = K ′ −K at cost CI, and therefore

V (K, a) ≥ V (K ′, a)− C(K ′ −K),

which shows Lemma 4.

Suppose now that for some K < K∗ and at the price cap a∗, the operator strictly

preferred installing a capacity different from K∗. This would imply

V (K, a∗) > V (K∗, a∗)− (K∗ −K)C. (15)

Then, since Lemma 4 implies V (0, a∗) +KC ≥ V (K, a∗), we would have

V (0, a∗) > V (K∗, a∗)− CK∗, (16)

and therefore at the price cap a∗ it would be suboptimal for an operator with no capacity

to install K∗, a contradiction. This implies that at K, the operator is indifferent between
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adding capacity I(K, a∗), her equilibrium strategy, and adding K∗ −K,

V (K + I(K, a∗))− I(K, a∗)C = V (K∗)− (K∗ −K)C. (17)

We then use (A2) to break this indifference and show

I(K, a∗) = K∗ −K. (18)

Indeed, K + I(K, a∗) < K∗ contradicts (A2) which states that the operator, when indif-

ferent, chooses the higher capacity K∗. If K + I(K, a∗) > K∗, then Eq. 17 implies the

operator is also indifferent between K+I(K, a∗) and K∗ when she starts with no capacity,

therefore from (A2) chooses I(0, a∗) = K + I(K, a∗) > K∗, a contradiction.

Turn to the regulator. Eq. 18 implies he can induce capacity K∗ with a price cap a∗

starting from any K < K∗. We show in the Appendix that this is his equilibrium strategy.

Intuitively, the regulator only cares about the installed capacity and the price cap after

the revision. Therefore if he induced capacity K + I(K, a(K)) with a price cap a(K) 6= a∗

when the operator has capacity K > 0, he would set a(0) = a(K) to induce the same

capacity when the operator starts from K = 0, a contradiction. This analysis leads to our

next intermediary result.

Lemma 5. In any constant-cap constant-capacity equilibrium, for all K ≤ K∗, K +

I(K, a∗) = K∗ and a(K) = a∗.

One main benefit of Lemma 5 is to pin down the value function off the equilibrium

path. In particular, we can relate on- and off-path values for the operator if, following a

deviation, she finds herself with a capacity K < K∗:

V (K, a∗) = V (K∗, a∗)− (K∗ −K)C. (19)

We show next we can leverage this relation to narrow down the set of possible equilibrium

price caps a∗.
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4.1.1 Necessary conditions and equilibrium price cap

One constraint on a∗ is that if, at a revision stage, K = K∗ and the regulator sets a < a∗,

then the operator lets her capacity depreciate. If she does not, the regulator can improve

consumer welfare by lowering the price while keeping the demand served by the operator

at or above K∗. Intuitively, this implies a∗ cannot be too high for otherwise, following a

slight decrease in the price cap, the operator would be tempted to maintain capacity to

take full advantage of a high price. We show next that this line of reasoning pushes a∗ all

the way down the aLRIC .

Proposition 2. In any constant-cap constant-capacity equilibrium, a∗ = aLRIC.

Obviously, in a constant-cap equilibrium with strictly positive capacity, the price cap

a∗ cannot be strictly lower than aLRIC . To understand why it cannot be strictly higher,

suppose a∗ > aLRIC and the regulator has an opportunity to revise the cap while the

operator’s capacity is at the equilibrium level K∗. Consider the deviation where the

regulator slightly lowers the price cap to a ∈ (aLRIC , a
∗). As explained above, making

that deviation unprofitable requires that the operator reacts by stopping to invest. For an

intuition, consider the simpler case where the regulator can revise the price cap at fixed

time intervals ∆t. Then if the operator lets her capacity depreciate, her (equilibrium)

payoff is ∫ ∆t

0

e−rtK∗e−δt(a− c) + e−r∆tV (K∗e−δ∆t , a∗). (20)

If, on the other hand, the operator maintains her capacity, her (deviation) payoff is∫ ∆t

0

e−rtK∗(a− c− δC) + e−r∆tV (K∗, a∗). (21)

The key observation is that the operator’s capacity remains below K∗ in both cases. As a

result, in a Markov equilibrium, the operator expects the regulator to revert to the price

cap a∗ in the next revision, as can be seen in the last term of Eq. 20 and of Eq. 21. Then

using Eq. 19, the difference between the equilibrium payoff in Eq. 20 and the deviation

payoff in Eq. 21 is(
1− e(r+δ)∆t

r + δ
− 1− er∆t

r

)
K∗(a− c− (r + δ)C) < 0.
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In other words, as long as the current and future price caps are strictly above LRIC, which

the operator can ensure by keeping her capacity below K∗, her net profit from every unit

of capacity is strictly positive. It follows that she is strictly better off maintaining her

capacity at K∗ than letting it depreciate. This, in turn, makes a slight decrease in the

price cap a profitable deviation for the regulator. We show in the Appendix that a similar

reasoning applies when the timing of the revision is stochastic.

4.1.2 Equilibrium existence

From Proposition 2, the only candidate equilibrium price cap is the LRIC. Given that the

regulator plays a = c for K > K∗ and a = aLRIC for K ≤ K∗, the operator cannot expect

a price cap higher than LRIC and her expected profit is therefore at most 0 for every unit

of capacity she builds. Therefore the operator has no profitable deviation, and the final

step for equilibrium existence is to examine deviations by the regulator.

The first potential deviation is to a price cap lower than aLRIC . Since the firm stops

investing if the price cap is strictly below aLRIC , the only relevant deviation of this type

is to a price cap equal to the operating cost c. This deviation is not profitable at K∗ if∫ +∞

0

λe−λt
[∫ t

0

e−rτΣ(aLRIC , K
∗) dτ + e−rtW (K∗)

]
dt

≥
∫ +∞

0

λe−λt
[∫ t

0

e−rτΣ(c,K∗e−δτ ) dτ + e−rtW (K∗)

]
dt.

Using the linear demand specification, this is equivalent to

⇔ K∗

α(r + λ)

[
δ(Q− αc)
r + λ+ δ

− α(r + δ)C − δK∗

r + λ+ 2δ

]
≥ 0. (22)

First, if Eq. 22 holds, then the same inequality is true for any K < K∗. It is therefore

sufficient to rule out a deviation at K∗. Note then that if

Q− αc
α(r + δ)C

≤ r + λ+ δ

δ
, (23)

then Eq. 22 is violated for any strictly positive K∗. It follows that a necessary condition
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for a productive constant-cap constant-capacity equilibrium is

Q− αc
α(r + δ)C

> 1 +
r

δ
⇔ Q− α

[
c+ (r + δ)C

(
1 +

r

δ

)]
> 0 (24)

Our starting assumption is that demand is high enough to cover production costs, i.e.,

Q − α(c + (r + δ)C) = Q − αaLRIC > 0. Eq. 24 imposes a stronger condition, and that

requirement is more difficult to satisfy when depreciation is slow, that is, when the ratio

r/δ increases (keeping r + δ constant). As already discussed in the two-period case, slow

depreciation exacerbates the regulator’s commitment problem because capacity remains

high even when the operator stops investing. When Eq. 24 is violated, this commitment

problem is heightened to the point where no strictly positive K∗ can be sustained in this

type of equilibrium. If Eq. 24 holds a productive equilibrium may exist provided the

regulator has enough commitment power, i.e., λ ≤ λ, where λ is such that Eq. 23 holds

with equality.

On the other hand, if Eq. 22 holds at K∗ = D(aLRIC),[
δ(Q− αc)
r + λ+ δ

− α(r + δ)C − δ(Q− αc− α(r + δ)C)

r + λ+ 2δ

]
≥ 0

⇔ Q− αc
α(r + δ)C

≥
(
r + λ+ δ

δ

)2

, (25)

then the operator can invest all the way up to D(aLRIC) and serve all the demand, without

inducing the regulator to lower the price cap to c. A necessary condition for Eq. 25 is

Q− αc
α(r + δ)C

>
(

1 +
r

δ

)2

⇔ Q− α
[
c+ (r + δ)C

(
1 +

r

δ

)2
]
> 0. (26)

If Eq. 26 holds, we let λ denote the solution to Eq. 25 holding with equality. If Eq. 26

does not hold, we set λ = 0. In either case, note that λ < λ.

Finally if
r + λ+ δ

δ
<

Q− αc
α(r + δ)C

<

(
r + λ+ δ

δ

)2

, (27)
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then there exists a unique K∗ in (0, D(aLRIC)), such that Eq. 22 holds with equality,

K∗ = (r + λ+ 2δ)

(
Q̄− αc
r + λ+ δ

− α
(

1 +
r

δ

)
C

)
.

This capacity is then the only possible equilibrium capacity even though Eq. 22 holds

strictly for lower capacities. This is because if Eq. 22 holds strictly and K∗ < D(aLRIC),

then the operator deviates: she can slightly increase her capacity while keeping Eq. 22

satisfied, thereby making sure the price cap stays at least equal to aLRIC .5 This discussion

leads to an intermediate result.

Lemma 6. Suppose Eq. 24 holds. There exists λ ≥ 0 and λ > λ such that if a constant-cap

constant-capacity equilibrium exists,

• If λ ≤ λ, the operator’s capacity is at the efficient level: K∗ = D(aLRIC).

• If λ < λ ≤ λ, the operator’s capacity is below the efficient level and strictly decreases

in λ from K∗ = D(aLRIC) to K∗ = 0.

If λ ≥ λ, there is no productive constant-cap constant-capacity equilibrium. Similarly, if

Eq. 24 does not hold, there is no productive constant-cap constant-capacity equilibrium.

Lemma 6 provides a first insight into the similarities and differences between the one-

revision and multiple-revision cases. One intuition these two cases have in common is that

the operator has a strategic incentive to keep capacity below demand to deter a decrease

in the price cap. But the key difference is that in the one-revision model, the regulator has

perfect commitment power at the revision stage and therefore K∗ is independent from λ.

This is no longer true when we allow for multiple revisions that happen at an average time

interval 1/λ. Then the expected time during which capacity depreciates following a one-

time deviation to a = c shrinks with λ, making that deviation less harmful to consumers,

therefore more attractive to the regulator. As a result, this stationary version of the model

delivers the natural intuition that an equilibrium with a low price and a high capacity is

harder to sustain when the regulator’s commitment power weakens.

Suppose now Eq. 24 holds and λ ∈ (λ, λ). From Lemma 6, if a productive constant-cap

constant-capacity equilibrium exists, then demand is rationed: K∗ < D(aLRIC). Because

5This deviation is not strictly profitable for the operator but is played under (A2).
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of this inefficiency, the regulator could be tempted to increase the price cap above LRIC.

This deviation is profitable for the regulator only if the operator does react to a price

cap hike by increasing investment. Therefore a necessary condition is that if the regulator

deviates to a > aLRIC , then D(a) > K∗. We first show that if the regulator sets a > aLRIC

and the operator finds it optimal to increase capacity beyond K∗, then she serves the full

demand D(a). If she does so, her expected payoff is∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC)D(a)dτ + e−rtV (D(a), c)

]
dt− (D(a)−K∗)C (28)

to be compared with her payoff if she keeps her capacity at K∗,∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC)K∗dτ + e−rtV (K∗, aLRIC)

]
dt. (29)

Comparing Eq. 28 to Eq. 29 delivers the trade-off for the operator. Increasing capacity

entails a capacity investment (D(a) − K∗)C, but also implies that in the next revision,

her capacity will be above K∗ and she will therefore face a low price cap a = c. On the

other hand maintaining capacity at K∗ guarantees a∗ = aLRIC in the next revision.

Lemma 7. There exists λ∗ ∈ [λ, λ] such that if λ < λ∗ the regulator has no profitable

deviation to a price cap strictly above the LRIC. If Eq. 26 holds, then 0 < λ < λ∗ < λ.

As in the one-revision case, pining down the region in which the regulator has an

incentive to raise the price cap proves challenging. On the one hand, from Lemma 6, as

λ increases K∗ decreases to eventually reach zero, which makes a deviation to a higher

price cap that induces higher investment more attractive to the regulator. But we also

show that to induce investment beyond K∗, the regulator needs to set a price cap a higher

than the augmented LRIC, aLRIC + λC. This price cap increases with λ which makes the

deviation less attractive to the regulator. Therefore the regulator faces opposing incentives

to deviate as his commitment power shrinks. We define λ∗ as the lowest λ such that the

regulator has an incentive to deviate. In the case where Eq. 26 holds and therefore λ > 0,

the second effect dominates for λ close enough to λ and therefore λ∗ > λ.

Combining Lemma 6 and Lemma 7 provides the final result in this section.
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Proposition 3. Assume that Eq. 26 holds (depreciation is fast enough), then there exist

λ, λ∗ and λ with 0 < λ < λ∗ < λ such that

1. if λ ≤ λ, the only constant-cap constant-capacity equilibrium features a price cap

equal to aLRIC and a capacity equal to demand, K∗ = D(aLRIC). This region is

non-empty (λ > 0) if and only if Eq. 26 holds.

2. if λ < λ ≤ λ∗, the only constant-cap constant-capacity equilibrium features a price

cap equal to aLRIC and a capacity strictly lower than demand, 0 < K∗ < D(aLRIC),

and decreasing in λ.

3. if λ > λ, there is no productive constant-cap constant-capacity equilibrium.

If Eq. 24 does not hold, there is no productive constant-cap constant-capacity equilibrium.

The proposition focuses on cases where the first-best is implemented for high com-

mitment levels (i.e., Eq. 26 holds). When this is not the case but Eq. 24 holds, we can

show there is a profitable deviation for λ close to 0–because the deviation requires only

a slight deviation above aLRIC–and if λ is close to λ–because K∗ is close to 0. Hence no

constant-cap constant-capacity equilibrium exists in these two extreme cases. However we

cannot exclude that such an equilibrium exists for intermediate values of λ.

We conclude with a few remarks on Proposition 3. As explained above, the condition

in Eq. 26 is a requirement on r/δ being small enough, i.e., on depreciation being fast

enough to exert a disciplining effect on the regulator’s incentive to lower the price cap.

Second, as in the one-revision model, there exists an intermediate range (λ∗, λ) where we

cannot fully characterize the equilibrium because the regulator faces conflicting incentives

to increase the price cap above the LRIC, as discussed below Lemma 7. However, the

form this equilibrium can take is not indeterminate. From Lemma 6, we know that in

that region, if a productive equilibrium exists, then the price cap is the LRIC and the

capacity is strictly lower than the equilibrium capacity at λ∗–therefore strictly lower than

demand D(aLRIC)–and decreasing in λ. This is again consistent with the idea that lower

commitment power makes it more difficult to sustain equilibria with low prices and high

capacity. Finally, because the price cap is set at the LRIC, the operator makes zero profit

in this equilibrium. Therefore the loss of consumer surplus is not caused by the regulator
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leaving a rent to the operator to provide incentives to invest, but rather by the strategic

rationing of operator. We will see in the next section that this may not be true in every

equilibrium.

4.2 Cyclical equilibrium

The analysis of the one-revision case shows a pattern where a high price cap (above

LRIC) designed to incentivise high capacity can be followed by downward revision and

an investment freeze. We study here whether a similar pattern exists in the stationary

version of the model with multiple revisions. Specifically, we want to establish conditions

under which periods of high prices and high capacity alternate with periods of low prices

and capacity decay, which we refer to as a cyclical equilibrium.

As earlier, a natural intuition is that the regulator’s incentive to lower the price cap

is higher when the installed capacity is higher. In line with the notation used in previous

equilibrium constructions, we let K∗ denote the capacity above which the regulator gives

up on incentivizing investment, and therefore sets a price cap a∗ = c. When K ≤ K∗,

the regulator sets a price cap a∗ higher than LRIC, which we denote ah. Unlike in the

constant-cap constant-capacity equilibrium where the operator always keeps her capacity

at the threshold K∗, we look for an equilibrium where the operator, given a high price cap

ah, serves the demand. She does so even though D(ah) > K∗ and she therefore exposes

herself to a price cap cut in the next revision.

Overall, the equilibrium is defined by a threshold K∗, a (high) price cap ah such that

ah > aLRIC and D(ah) > K∗ and the following candidate equilibrium strategies.

1. The regulator sets a∗ = c if K > K∗ at the revision stage, and a∗ = ah if K ≤ K∗.

2. The operator

(i) does not invest if a < aLRIC ,

(ii) does not invest if aLRIC ≤ a < ah and K > K∗,

(iii) sets and maintains capacity at K∗ if aLRIC ≤ a < ah and K ≤ K∗,

(iv) sets and maintains capacity at D(a) if ah ≤ a ≤ pm.

25



The operator’s equilibrium strategy has indeed to satisfy a number of constraints. Capacity

must drop below D(ah) when the price cap falls below ah. Otherwise, the regulator would

have no motive for increasing the price up to ah. At the same time, given a price cap

above aLRIC , the operator should maintain her capacity at K∗ since she knows that by

staying at that level, she guarantees the price cap never falls below aLRIC and she can

therefore cover her costs. Finally, ah has to be attractive enough that she wants to serve

demand if the cap is at or above ah, yet lower than the monopoly price pm.

4.2.1 The regulator

In the conjectured equilibrium, the regulator sets a = ah at a revision stage for any

K ≤ K∗, and the operator reacts by building up to D(ah). It follows that the regulator’s

expected payoff is constant in K as long as K ≤ K∗, and we let W denote that value. For

K > K∗, the regulator sets a = c and the operator lets her capacity depreciate. We let

W (K) denote the regulator’s value function at a revision stage when K > K∗. We can

then write

W =

∫ +∞

0

λe−λt
[∫ t

0

e−rτS(ah) dτ + e−rtW (D(ah))

]
dt =

S(ah)

λ+ r
+
λW (D(ah))

λ+ r
. (30)

That is, the regulator’s value if K ≤ K∗ is the expected consumer surplus at the price ah

until the next revision where capacity is at D(ah). Note also that at K∗, the regulator

has to be indifferent between c and ah: for the equilibrium conjecture to hold, he needs to

weakly prefer ah, and if he strictly prefers ah, then there exists K > K∗ such that he also

strictly prefers ah. This implies∫ +∞

0

λe−λt
[∫ t

0

e−rτΣ(c,K∗e−δτ ) dτ

]
dt+

λW

r + λ
= W, (31)

Finally, turn to the regulator’s value function when K > K∗. Define t∗(K) as the time

it takes for the operator’s capacity to depreciate from K to K∗. So t∗(K) is such that

Ke−δt
∗(K) = K∗ ⇔ e−rt

∗(K) =

(
K∗

K

) r
δ

. (32)
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Using this notation, we have that for K > K∗,

W (K) =

∫ t∗(K)

0

e−rtΣ(c,Ke−δt) dt+ e−rt
∗(K)W, (33)

where the second term makes use of the indifference condition in Eq. 31 stating that once

capacity reaches K∗, the expected value for the regulator of seeing that capacity further

depreciate with a price cap a = c until the next revision is equal to W . From Eq. 33, we

can show (using Eq. 31) that W (.) is decreasing and tends to W as K tends to K∗ from

above.

Combining Eq. 30 and Eq. 33, we obtain a first relation between the two key equilibrium

objects, ah and K∗. Consider the following condition

c+
Q̄− αc
α

(
1

1 + r
δ

)2

< ah <
Q

α
. (34)

Lemma 8. If Eq. 34 holds, then for any λ, Eq. 30, Eq. 31 and Eq. 33 define a unique

K∗r (ah), strictly lower than D(ah).

Three remarks on the condition in Eq. 34. First, the right-hand-side inequality simply

says that demand must be positive at the price ah. Next, the reason why ah cannot be

too low is because the regulator would otherwise prefer keeping the price cap at ah when

the operator’s capacity is at D(ah), rather than lowering it to a = c. We will see later

that incentivizing the operator to build up capacity to D(ah) also requires ah to be high

enough. Finally, Eq. 34 is more likely to be true when depreciation is slow (r/δ is large),

unlike in the constant-cap, constant-capacity equilibrium that exists only if depreciation

is sufficiently fast. Indeed, a slow depreciation rate reinforces the regulator’s incentives to

cut the price cap, as it makes an investment freeze less costly to consumers.

To close the regulator’s side of the equilibrium derivation, we check for possible devi-

ations. Obviously, given that the operator serves the demand at ah, there is no incentive

for the regulator to set a > ah. However, the regulator could have an incentive to set

a = aLRIC instead of the equilibrium play a = ah when K ≤ K∗. This would indeed

induce a lower capacity K∗ < D(ah) but also set a lower price for consumers. We show we

can rule out this deviation for any λ if Eq. 24 does not hold. Recall that Eq. 24 is a con-
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dition on the depreciation rate being fast enough under which a productive constant-cap

constant-capacity equilibrium does not exist for any λ (Proposition 3). That is, a cyclical

equilibrium is more likely to exist when the commitment problem that slow depreciation

creates for the regulator precludes equilibria with a stable price cap.

Lemma 9. Suppose Eq. 24 does not hold (depreciation is slow enough), then given ah and

K∗r (ah) defined in Lemma 8, the regulator has no profitable deviation.

4.2.2 The operator

As in the regulator’s case, the conjectured equilibrium strategy imposes some structure

on the operator’s value function. For example, for any a ∈ [aLRIC , ah), the operator keeps

her capacity at K∗ until the next revision, which implies

V (K∗, a) =

∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC)K∗ dτ + e−rt(V (D(ah), ah)− (D(ah)−K∗)C)

]
dt

At the limit where a tends to ah, we must have

lim
a→ah

V (K∗, a) = V (D(ah), ah)− (D(ah)−K∗)C. (35)

If the left-hand side in Eq. 35 was strictly larger, then at ah the operator would prefer

keeping her capacity at K∗. On the other hand, if the left-hand side was strictly lower,

there would exist a price cap a < ah such that at that price cap the operator would

prefer building up to D(a) rather than keeping her capacity at K∗. This would then be a

profitable deviation for the regulator. Simplifying, Eq. 35 can be written as

V (D(ah), ah) =
ah − c− δC

r
K∗ + (D(ah)−K∗)C (36)

Moreover if the price cap is at ah, the firm maintains capacity D(ah) until revision, which

implies

V (D(ah), ah) =

∫ +∞

0

λe−λt
[∫ t

0

e−rτ (ah − c− δC)D(ah)dτ + e−rtV (D(ah), c)

]
dt (37)

28



Finally, if the operator enters a revision stage with capacity D(ah), the regulator sets the

price cap to c and the operator lets her capacity depreciate, which implies

V (D(ah), c) = e−rt
∗(D(ah))

∫ +∞

0

λe−λte−rt(V (D(ah), ah)− (D(ah)−K∗e−δt)C) dt (38)

Combining Eq. 36, Eq. 37 and Eq. 38 then provides a relation between K∗ and ah, which

is the counterpart of Lemma 8. Consider the following condition

aLRIC + λC < ah <
Q

α
. (39)

Lemma 10. If Eq. 39 holds, then Eq. 36, Eq. 37 and Eq. 38 define a unique K∗o (ah).

As earlier, the right-hand side of Eq. 39 simply ensures that demand is positive at ah.

On the left-hand side, the price cap ah has to be strictly higher than the augmented LRIC,

aLRIC +λC that, intuitively, compensates the operator for the risk of a price cap cut. This

is reminiscent of the equilibrium of the one-revision model in the case with high initial

investment: the regulator needs to leave the operator with a rent that is sufficiently high

before the cap decreases to induce investment. As in the one-revision model, the regulator’s

ability to do so is constrained by her commitment power: the augmented LRIC increases

with λ and eventually reaches the monopoly price pm that bounds the per-period rent the

operator can obtain.

4.2.3 Equilibrium existence

The discussion above suggests that this equilibrium, like the constant-cap constant-capacity

equilibrium, is more difficult to sustain when the regulator’s commitment power is low (λ

is high). But the key difference between these two types of equilibria is that the cyclical

one is easier to sustain when depreciation is slow. This is captured in the condition in

Lemma 9 that Eq. 24 does not hold. Taken together, these conditions on commitment

power and depreciation speed lead to the main result of this section

Proposition 4. Suppose Eq. 24 does not hold (depreciation is slow enough), then if λ

is small enough, there exists a cyclical equilibrium. In that equilibrium, the price cap

alternates between ah > aLRIC + λC and c.
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While the constant-cap constant-capacity equilibrium can be efficient for fast enough

depreciation and high enough commitment power, the cyclical equilibrium is always in-

efficient when it exists. In phases where the capacity is high and the operator serves

demand, the price cap is strictly higher than LRIC, and in phases where the price cap is

low, capacity declines over time despite fundamental demand being high enough to cover

costs. In addition to depressing overall surplus, the regulator’s commitment problem also

causes a redistribution of the remaining surplus from consumers to the operator, compared

with the case where the price is at LRIC and the operator serves demand. To see this,

recall from Eq. 39 that the price cap is strictly above the augmented LRIC, aLRIC + λC.

Note then that the operator makes zero profit on every unit of investment if the price

cap is at the augmented LRIC at the time of the investment and then permanently cut

to a = c in the next revision. It follows the operator makes a strictly positive profit in

expectation both because the price cap is stricly above the augmented LRIC and because

over the lifetime of each capacity unit, periods of low and high price caps alternate. The

reason why the equilibrium price cap is strictly above the augmented LRIC is because the

operator’s best alternative to high capacity K = D(ah) is not zero capacity but rather

capacity K∗ which protects her from regulatory capture. Therefore inducing investment

beyond K∗ requires not just a risk premium λC but also an extra rent.

5 Conclusion

We show how the lack of commitment of a regulator undermines the efficiency of a price-

cap regulation. This commitment problem generically induces a network capacity below

the optimum either because the price cap cannot be set at the competitive level, or be-

cause the operator strategically rations demand, out of concern for a future decrease of

the price cap. This model could be used as a baseline to study the interplay between

technological innovation and price cap regulation. While price cap revisions happen at ex-

ogenous random times in our model, they can be in practice motivated by the availability

of a next-generation technology. In that case, the flexibility to adjust the price cap could

generate efficiency gains alongside the commitment problems that this paper highlights.
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Appendix

Proof of Lemma 1

We have shown that the regulator payoff if a = c, Eq. 5, is strictly increasing in K and

it is zero for K = 0. Therefore K∗ < D(aLRIC) if and only if Eq. 5 is strictly larger than

Eq. 6 when evaluated at K = D(aLRIC). As we discussed above, this is true for δ small

enough and false for δ high enough. Furthermore, using Eq. 1, Eq. 5 is equal∫ +∞

0

e−rt
[

1

2α
(Ke−δt)2 +Ke−δt

(
Q−Ke−δt

α
− c
)]

dt =
K

α

[
Q− αc
r + δ

− K

2(r + 2δ)

]
(40)

Evaluated at K = D(aLRIC), this is

Q− α(c+ (r + δ)C)

α

[
Q− αc
r + δ

− Q− α(c+ (r + δ)C)

2(r + 2δ)

]
(41)

The first term is decreasing in δ. Differentiating the second term with respect to δ yields

−Q− αc
(r + δ)2

+
Q− αc

(r + 2δ)2
− αC r

2(r + 2δ)2
< 0.

Therefore Eq. 41 is decreasing which establishes the existence of the threshold δ.

Proof of Lemma 3

Let

∆̂(λ) ≡ max
a≥c+(r+δ+λ)C

(a− c− (r + δ + λ)C)(D(a)−K∗)− λK∗C

For λ large enough, D(c + (r + δ + λ)C) ≤ K∗, which implies ∆̂(λ) < 0. Suppose

D(c+ (r+ δ+λ)C) > K∗, then using the enveloppe, ∆̂′(λ) = −C(D(a)−K0)−K0C < 0.

Finally, K∗ < D(aLRIC) implies ∆̂(0) > 0. It follows there exists a unique λ1 > 0 such

that ∆̂(λ) ≤ 0 if and only if λ > λ1.
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Proof of Lemma 5

We have shown in the text (see Eq. 16) that at I(K, a∗) = K∗ −K.

Suppose there exists K ≤ K∗ such that a(K) 6= a∗. For any K ′ ≥ K

V (K + I(K, a(K)), a(K))− I(K, a(K))C ≥ V (K ′, a(K))−K ′C,

therefore at a = a(K), the operator weakly prefers K + I(K, a(K)) also when she has no

capacity. The regulator weakly prefers capacity K+I(K, a(K)) with price cap a(K) to K∗

and a∗. Since K∗ and a∗ is the equilibrium when the operator starts from zero capacity,

the regulator has to be indifferent between these two options whether the operator enters

the revision stage with capacity K or 0.

Suppose K + I(K, a(K)) > K∗. From (A3), the regulator when indifferent should

pick the cap that induces the higher capacity, here a(K), which contradicts a(0) = a∗.

Therefore K + I(K, a(K)) ≤ K∗. Then a(K) > a∗ cannot be optimal for the regulator

since we have just shown she can induce capacity K∗ with a lower price cap a∗. Therefore

a(K) < a∗. If K + I(K, a(K)) = K∗, then the regulator can induce at least K∗ with a

price cap lower than a∗, which contradicts a(0) = a∗. If K+ I(K, a(K)) < K∗, from (A3),

the regulator being indifferent should pick the price cap a∗ when the operator has capacity

K rather than a(K).

Proof of Proposition 2

Suppose a∗ > aLRIC and the firm reaches a revision stage with the equilibrium capacity

K∗. Consider the deviation where the regulator then sets the price cap at a ∈ (aLRIC , a
∗).

We show below that the operator’s optimal response is to maintain her capacity at K∗.

This implies that a is a strictly profitable deviation for the regulator.

Lemma 11. Suppose that at a price cap a ∈ (aLRIC , a
∗), the operator finds it optimal to

let her capacity depreciate from K∗ to K < K∗. Then at K, the operator either maintain

her capacity or let it further depreciate.

Proof. By contradiction, suppose the operator lets her capacity depreciate to K and then

finds it optimal to increase it to K ′ ∈ (K,K∗]. This implies V (K ′, a) ≥ V (K, a) + (K ′ −

34



K)C, which, combined with Lemma 4, implies

V (K ′, a) = V (K, a) + (K ′ −K)C. (42)

Let T be the time it takes for her capacity to depreciate from K ′ to K and consider the

regulator’s expected payoff when her capacity first reaches K ′,∫ T

0

λe−λt
[∫ t

0

e−rτK ′e−δτ (a− c)dτ + e−rt
(
V (K∗, a∗)−

(
K∗ −Ke−δt

)
C
)]

dt

+e−(r+λ)TV (K, ā) (43)

If instead she maintains her capacity at K ′, her expected payoff is∫ T

0

λe−λt
[∫ t

0

e−rτK ′(a− c− δC)dτ + e−rt (V (K∗, a∗)− (K∗ −K ′)C )

]
dt

+e−(r+λ)TV (K ′, a) (44)

Using Eq. 42 and a > aLRIC , Eq. 44 is strictly larger than Eq. 43 if

(r + δ)

(
−e−λT δ
r (r + δ)

+ λe−(r+λ)T

(
1

r (r + λ)
− e−δT

(r + δ) (r + λ+ δ)

)
+

δ

(λ+ r + δ) (r + λ)

)
−
[

λ

λ+ r + δ
+

r + δ

λ+ r + δ
e−(r+λ+δ)T − e−(r+λ)T − λ

λ+ r

(
1− e−(r+λ)T

)]
− δ

(
−e−λT + λ

λ+r
e−(r+λ)T

r
+

1

λ+ r

)
≥ 0. (45)

Note that Eq. 45 is equal to 0 at T = 0 and when T tends to +∞. Differentiating Eq. 45

with respect to T yields

e−λT e−rT
(
−λ− r + (λ+ r + δ) e−δT

)
,

which is first strictly positive, then strictly negative. It follows that Eq. 45 is strictly

positive. This implies the operator is strictly better off maintaining her capacity at K ′

than letting it depreciate to K and bringing it back to K ′
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Lemma 11 implies we can restrict attention to strategies where the operator lets her

capacity depreciate to some level K < K∗, and then stay at K until next revision (by

Markov assumption). Her payoff is then

∫ t∗(K)

0

λe−λt
[∫ t

0

e−rτK∗e−δτ (a− c)dτ + e−rtV (K∗e−δt, a∗)

]
dt

+

∫ +∞

t∗(K)

λe−λt

[∫ t∗(K)

0

e−rtK∗e−δt(a− c)dτ +

∫ t

t(K)

e−rtK(a− c− δC)dτ + e−rtV (K, a∗)

]
dt,

where t∗(K) is such that K∗e−δt(K) = K. Using Eq. 19 this reduces to

K∗
(
a− c− δC
r + λ

)
+

λ

r + λ
V (K∗, a∗)−

δ
(
K∗ −Ke−(λ+r)t∗(K)

)
(λ+ r) (r + λ+ δ)

(a− aLRIC) (46)

If instead, the operator maintains capacity at K∗, her profit is∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC)K∗ dτ + e−rtV (a∗, K∗)

]
= K∗

(
a− c− δC
λ+ r

)
+

λ

λ+ r
V (K∗, a∗),

which is larger than Eq. 46 as long as a > aLRIC . It follows that the regulator strictly

improves her payoff by maintaining her capacity at K∗, rather than letting it depreciate.

this, in turn, makes a deviation to a ∈ (aLRIC , a
∗) profitable for the regulator.

Proof of Lemma 7

Note first that a deviation to λ > aLRIC is not relevant for if either λ < λ, in which case

the operator serves the demand at aLRIC or if λ > λ in which case, from Lemma 6, a

productive constant-cap constant-capacity equilibrium cannot exist.

Suppose now that λ < λ and suppose the regulator increases the price cap to a > aLRIC .

For such a strategy to be valuable, it must be the case that D(a) > K∗, otherwise the

deviation would imply lower demand at higher price with a revision at a∗ followed by K∗.

36



If the operator plays the strategy K∗, her payoff is∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC)K∗dτ + e−rtV (K∗, a∗)

]
dt

=
(a− c− δC)K∗

r + λ
+

λ

r + λ
V (K∗, a∗). (47)

If she increases capacity to K > K∗, her payoff is∫ +∞

0

λe−λt
[∫ t

0

e−rτ (a− c− δC)Kdτ + e−rtV (K, c)

]
dt− (K −K∗)C

=
(a− c− δC)K

r + λ
+

λ

r + λ
V (K, c)− (K −K∗)C (48)

For K > K∗, define t∗(K) such that e−δt
∗(K)K = K∗ (see Eq. 32 in the main text). As

long as K > K∗ the price cap is at c and stays at c at revision. Therefore the operator

expects zero profit before time t∗(K) so that

V (K, c) = e−rt
∗(K)

∫ +∞

0

λe−λte−rt(V (K∗, a∗)−K∗C
(
1− e−δt

)
) dt

=

(
K∗

K

) r
δ λ

λ+ r + δ
K∗C

Substituting in Eq. 48 and differentiating with respect to K,

a− c− (r + λ+ δ)C

r + λ
− λ2

(r + λ)(r + λ+ δ)

r

δ

(
K∗

K

) r
δ

+1

C (49)

This implies Eq. 48 is convex in K, and therefore if the operator finds it profitable to

increase capacity following a deviation by the regulator to a, she picks K = D(a).

Then, comparing Eq. 47 and Eq. 48, a deviation a > a∗ induces the operator to raise

her capacity above to D(a) if and only if

a− c− (r + λ+ δ)C ≥

(
1−

(
K∗

D(a)

) r
δ λ

λ+ r + δ

)
λK∗C

D(a)−K∗
(50)

Given D(a) > K∗, this deviation exists only if a > aLRIC + λC. We define λ∗ as the
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lowest λ such that Eq. 50 holds and the regulator’s deviation payoff is higher than her

equilibrium payoff for some a. Note that if λ > 0 (Eq. 26 is true), then for λ higher but

close enough to λ, K∗ is close D(aLRIC) and therefore higher than D(aLRIC + λC). In

that case there is a non-empty region above λ where there is no deviation.

Proof of Lemma 8

Combining Eq. 30 and Eq. 33 we get

r + λ

λ
W − 1

λ
S(ah)−

∫ t∗(D(ah))

0

e−rtΣ(c,D(ah)e
−δt) dt− e−rt∗(D(ah))W = 0 (51)

Differentiating the LHS of Eq. 51 with respect to K∗ yields

r + λ

λ

∂W

∂K∗
− ∂t∗(D(a∗))

∂K∗
e−rt

∗(D(a∗)) [Σ(c,K∗)− rW ] > 0.

This is positive because Eq. 31 implies W is increasing in K∗, Σ(c,K∗) − rW > 0, and

finally, Eq. 32 implies t∗(K) is decreasing in K∗.

For a given a∗, ifK∗ = 0, thenW = 0 and the LHS of Eq. 51 is negative. IfK∗ = D(a∗),

then the LHS of Eq. 51 is

r + λ

λ
W − 1

λ
S(a∗)−W =

1

λ
(rW − S(a∗)). (52)

Therefore there exists ah and K∗ < D(ah) such that Eq. 51 holds if and only if Eq. 52 is

strictly positive. Using Eq. 31, this is equivalent to∫ +∞

0

λe−λt
[∫ t

0

e−rτΣ(c,D(a∗)e−δt) dτ

]
dt >

S(a∗)

r + λ
. (53)

Using the linear demand specification in Eq. 1, this is equivalent to∫ +∞

0

λe−λt
[∫ t

0

e−rτ
[

1

2α
D(ah)

2e−2δτ +

(
Q̄−D(ah)e

−δτ

α
− c
)
D(ah)e

−δτ
]
dτ

]
dt >

D(ah)
2

2α(r + λ)
.

which reduces to

ah > c+
Q̄− αc
α

(
δ

r + δ + λ

)2

(54)
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Eq. 54 is true for any λ if Eq. 34 is true, in which case there exists a unique Kr(ah) such

that Eq. 51 holds.

Proof of Lemma 9

For K ≤ K∗ the regulator chooses between a = c with depreciation, a = aLRIC with

capacity maintained at Kh and the equilibrium a = ah with capacity D(ah) and payoff

W . We know that at K∗, the regulator is indifferent between a = c and a = ah (Eq. 31).

Since the payoff from playing a = c is strictly decreasing in K, he strictly prefers a = ah

for K < K∗. The regulator prefers a = ah to a = aLRIC if an only if

W ≥ Σ (c+ (r + δ)C,K)

r + λ
+

λW

r + λ

Using Eq. 31, this holds for K ≤ K∗ if and only if∫ +∞

0

λe−λt
[∫ t

0

e−rτΣ(c,K∗e−δτ ) dτ

]
dt ≥ Σ (c+ (r + δ)C,K0)

r + λ

Using the linear demand specification in Eq. 1, this is equivalent to

K∗

r + 2δ + λ
≥ Q− αc
r + δ + λ

− α(r + δ)C

δ
. (55)

The left-hand side of Eq. 55 is negative for any λ if and only if Eq. 24 is not true.

Next, suppose K > K∗. Setting a = ah is dominated by a = c because W (K) > W.

Setting a = c+ (r+ δ)C is also dominated by a = c. To see that notice that for both price

caps the capacity depreciates to K∗. Then we have seen that at K∗ the regulator prefers

c to the LRIC. Moreover during the transition to K∗, the price is lower and therefore

consumer surplus is higher when a = c.
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Proof of Lemma 10

Combining Eq. 36, Eq. 37 and Eq. 38, we get

r + λ

λr
(ah − aLRIC)K∗ − 1

λ
(ah − aLRIC − λC)D (ah)

=

(
K∗

D (ah)

) r
δ
[

λ

r (r + λ)
(ah − aLRIC)K∗ +

λ

r + λ+ δ
CK∗

]
(56)

Rewrite Eq. 56 as

r + λ

λr
(ah − aLRIC) X̂ − X̂1+ r

δ

[
λ

r (r + λ)
(ah − aLRIC) +

λ

r + λ+ δ
C

]
−1

λ
(ah − aLRIC − λC) = 0 (57)

where X̂ ≡ K∗

D(ah)
and is therefore in (0, 1). The LHS of Eq. 57 is concave in X. At X = 0,

it takes value

−1

λ
(ah − aLRIC − λC)

and has a positive slope. At X = 1 it takes value

1

r + λ
(ah − aLRIC) + C

r + δ

r + λ+ δ
,

which is strictly positive given ah ≥ aLRIC . Therefore there exist ah and K∗ < D(ah) such

that Eq. 56 holds if and only if ah > aLRIC + λC, in which case there is a unique Ko(ah)

such that Eq. 56 holds.

Proof of Proposition 4

Using Eq. 31 and the linear specification in Eq. 1, we can write Eq. 51 as(
r + λ

λ
− X̄

r
δ

)(
r + λ

r

(
Q̄− αc
α

X̄
1

r + λ+ δ
− X̄2

2α

1

r + λ+ 2δ
D (ah)

))
=

D (ah)

2αλ
+

1− X̄1+ r
δ

r + δ

Q̄− αc
α

− 1− X̄2+ r
δ

r + 2δ

D (ah)

2α
(58)
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where X̄ ≡ D(ah)
K∗ . From Lemma 8, Eq. 58 implicitly defines X̄(.) as a function of ah on

the interval
[
c+ Q̄−αc

α

(
δ

r+δ+λ

)2
, Q
α

]
. We know from the Proof of Lemma 8 that K∗ = 0

cannot be a solution to Eq. 51, which implies that for any ah ∈
[
c+ Q̄−αc

α

(
δ

r+δ+λ

)2
, Q
α

]
,

X̄(.) > 0.

Next, Eq. 57 also implicitly defines X̄(.) as a function of ah on the interval
[
aLRIC + λC, Q

α

]
.

In addition, from the Proof of Lemma 10, X̂(aLRIC + λC) = 0. Finally,

c+
Q̄− αc
α

(
δ

r + δ + λ

)2

< aLRIC + λC ⇔ Q̄− αc
α(r + δ + λ)C

<

(
1 +

r + λ

δ

)2

,

which is true if Eq. 24 does not hold.

This implies X̄(aLRIC + λC) > X̂(aLRIC + λC). Therefore, a sufficient condition for

the existence of ah ∈
(
aLRIC + λC, Q

α

)
such that X̄(ah) = X̂(ah) is

X̄

(
Q

α

)
< X̂

(
Q

α

)
.

Eq. 58 implies

(r + λ)2(r + δ)

r(r + λ+ δ)
X̄

(
Q

α

)
+ λ

(
X̄

(
Q

α

))1+ r
δ
(

1− (r + λ)(r + δ)

r(r + λ+ δ)

)
= λ, (59)

and therefore X̄
(
Q
α

)
tends to 0 as λ→ 0.

Similarly Eq. 57 implies

r + λ

r

(
Q

α
− aLRIC

)
X̂

(
Q

α

)
−
(
X̂

(
Q

α

))1+ r
δ
[

λ2

r (r + λ)

(
Q

α
− aLRIC

)
+

λ2

r + λ+ δ
C

]
=

(
Q

α
− aLRIC − λC

)
(60)

and therefore X̂
(
Q
α

)
tends to 1 as λ→ 0.

We conclude that if λ is small enough, there exists ah ∈
(
aLRIC + λC, Q

α

)
such that

X̄(ah) = X̂(ah). At that solution, ah and K∗ = D(ah)X̄(ah) are solutions to Eq. 51 and

Eq. 56 and form an equilibrium as long as Eq. 24 does not hold, which, from Lemma 9,

guarantees the regulator has no profitable deviation.
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