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Abstract

The energy transition requires significant investment in intermittent renewable en-

ergy sources, such as solar and wind power. New generation capacities are generally

procured through fixed price contracts, such as power purchase agreements and con-

tracts for difference, or feed-in tariffs. With these designs, renewable technologies are

selected based on their generation, regardless of their adequacy with demand and sup-

ply by other technologies. We show that fixed-price contracts implement the optimal

portfolio of renewable technologies if the price is adjusted with a technology-specific

bonus-malus system that depends on the correlation between renewable energy produc-

tion and the wholesale electricity price. We estimate the bonus-malus for solar and wind

power in California, France, Germany, and Spain and decompose it to identify the key

market factors driving the adjustment. We argue that the bonus-malus measures the

cost of integrating intermittent generation into the energy mix. Therefore, it should

be added to the levelized cost of energy (LCOE) to obtain the cost of generating an

additional megawatt-hour with a specific renewable technology.
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1 Introduction

Limiting climate change requires a rapid shift away from fossil fuels towards large-scale invest-

ments in zero-emission sources such as nuclear, hydropower, solar, and wind. Developing new

generation capacity involves long-term investments with life cycles typically exceeding twenty

years. However, the returns on such investments are highly uncertain because they depend

on future electricity prices that are difficult to predict over such long time horizons. More-

over, electricity markets offer limited hedging opportunities, with forward contracts rarely

extending beyond two to three years. Investors are therefore exposed to unexpected price

shocks in energy markets due to the introduction of new technologies (e.g., shale gas and

oil), weather-related disasters, or geopolitical events (e.g., the war in Ukraine). For these

reasons, relying solely on market signals may not be sufficient to mobilize the scale of invest-

ment needed for the energy transition. Public authorities have developed other instruments

to foster investment in new generation of renewable energy sources.

In the last twenty years, most of solar and wind power investment have been driven by

long term contracts, such as Feed-in tariffs (FiT), Power Purchase Agreements (PPA) and

Contracts for Differences (CfD). Historically, FiT have been implemented in many countries

and states such as China, France, Japan, Germany, California, Ontario and the United King-

dom, to launch the energy transition. These tariffs guarantee a fixed price (premium) per

megawatt-hour (MWh) fed to the grid. The price is set by public authorities. More recently,

new investments have been procured through renewable energy auctions.1 Investors bid a

price per MWh at which they are willing to sell their production. The winning bid defines a

price per MWh at which the selected producers are remunerated. Under a PPA, electricity is

sold to retailers or electricity-intensive consumers at a price determined by an auction or ne-

gotiated bilaterally. Under a two-way CfD, investors receive a fixed, prearranged strike price

for the electricity produced over the lifetime of the plant. The electricity produced is sold on

the wholesale market. Producers pay the difference between the wholesale market price and

the strike price to a third party (usually the government) if the former exceeds the latter. The

third party pays the producer the difference in the reverse case, when the wholesale price is

lower than the strike price. Recently, the European authorities explicitly recommended PPAs

and CfDs in Regulation 2024/1747 as a key policy tool to support investment in intermittent

renewable energy sources.2

1According to IRENA (2019), more than 100 countries have used renewable energy auctions, including
Brazil, India, Germany, and the United Kingdom, for a global capacity of 100 gigawatt auctioned in 2028.

2According to Article 19d of Regulation 2024/1747 (European Commission 2024), CfDs apply to ”in-
vestment in new generation of electricity from the following sources: (a) wind energy; (b) solar energy; (c)
geothermal energy; (d) hydropower without reservoir; (e) nuclear energy.” Since the primary source of en-
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We develop a framework to analyze investment in intermittent renewable energy sources

for the energy transition with fixed price contracts. In our framework, both electricity demand

and supply from renewables have random components. Renewable energy technologies are

described by their cost and their capacity factor, which depend on local conditions such as

solar irradiance or wind speed. The supply net of renewable generation is backed up with

electricity from thermal power generation.

We first derive the optimal investment in renewable energy sources as a benchmark. In

doing so, we obtain an optimality condition that links the expected social cost of an additional

megawatt-hour (MWh) generated by all renewable energy technologies with the expected

social cost of one MWh produced by the current energy mix. This condition allows us to

compare the cost of providing one MWh in expectation with various renewable technologies

in a given energy mix. In line with Joskow (2011), it extends the concept of levelized cost

of energy (LCOE) to account for an intermittent electricity supply and variable demand.

The LCOE is transformed into the economic cost of energy (ECOE) by adding a term that

measures the covariance between electricity production and wholesale prices. The ECOE of

one MWh of this technology is lower than the LCOE when the covariance is positive, and

higher when it is negative. Therefore, a “bonus” should be associated with this technology if

its generation correlates positively with the electricity price. Symmetrically, a “malus” should

be applied if there is negative correlation. The ECOE can be used to compare investments in

different renewable technologies and locations.

Next, we investigate a market-only solution to the energy transition when carbon emissions

are priced at their social cost. We show that, in competitive markets, the wholesale price signal

triggers optimal investment in new generation of renewable energy sources. The efficiency of

the market outcome relies on the assumption that risk-neutral investors can perfectly forecast

the future wholesale price during the lifespan of their power generation equipment. We believe

that uncertainty and the lack of visibility with respect to future electricity prices justify the

use of CfDs to encourage investment in new generation capacity.

We analyze the extent to which a fixed price contract can foster investment in the right

renewable energy technologies. We consider two ways to implement fixed price contracts:

FiTs and procurement of PPAs or CfDs. First, we characterize FiTs that would decentral-

ize optimal investment. The tariff is equal to the expected future wholesale market price

adjusted with the “bonus-malus”, i.e., the covariance between generation and the wholesale

market price divided by the average capacity factor. If the covariance is positive, a bonus

should be applied to the expected price because the renewable technology is more valuable

ergy in (c) and (e) are not intermittent, our analysis mainly focuses on (a) and (b).
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when it produces electricity that is scarce relative to demand. Conversely, in the case of

negative covariance, the renewable technology is less valuable as it produces when electricity

is abundant. Second, rather than setting prices with FiTs, the regulator can procure new

generation capacity through CfDs. We propose an auction design that triggers investment in

the most appropriate renewable technologies. The auction is technology-neutral, meaning all

renewable technologies can participate by bidding a price per MWh of production. However,

the price is technology-specific and endogenously determined by the procurement process.

Investors are paid the winning bid, adjusted by the bonus-malus assigned to their technol-

ogy, for each MWh produced. We show that a first-price auction with technology-specific

bonus-malus adjustments implements the optimal portfolio of renewable energy equipment.

Using public data from four electricity markets in California, France, Germany, and Spain,

we propose empirical estimates of the bonus-malus that correct the LCOE or the strike price

in CfDs. Specifically, we demonstrate how the bonus-malus depends on market-specific fun-

damentals and varies based on technological factors. Overall, we find that renewable energy

sources should generally be penalized due to negative covariance between renewable energy

availability (capacity factor) and wholesale market prices. However, there is significant het-

erogeneity in terms of location, time dimension, and technology. To further highlight the

importance of location and technology factors (e.g., solar panel orientation) within each mar-

ket, we use simulated output from solar and wind plants in Germany.

Finally, to understand the importance of the elements that influence the adjustment term,

we decompose the bonus-malus using a second-order Taylor approximation. Instead of rely-

ing on market electricity price to assess the adequacy of the renewable technology with the

energy mix, we derive a bonus-malus based on technological parameters such as capacity fac-

tors, installed capacities, the curvature of the marginal social cost of electricity supply, and

electricity consumption. We then calculate the total bonus-malus based on the individual el-

ements, using market data combined with hourly bidding data from the wholesale electricity

markets in Spain and California. Our findings show that both approaches lead to comparable

estimates of the bonus-malus and explain the observed differences.

Three factors determine the bonus-malus associated with a given renewable technology:

the cannibalization effect of investments in the same technology, its compatibility with other

technologies in the energy mix, and its compatibility with electricity consumption. The can-

nibalization effect assigns a malus to the LCOE (i.e., ECOE>LCOE), increasing with the

installed generation capacity of the same technology and the variance of power generation

with this technology (i.e., the variance of the renewable technology’s capacity factor). The

second term in the bonus-malus decomposition quantifies the adequacy with other renew-
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ables. This term depends on the covariance between the availability of power generated by

the renewable technology and the cumulative generation of other renewable technologies. It

is associated with a bonus because the covariance between solar power and wind power gen-

eration is negative in our data. Therefore, the LCOE of solar should be reduced by this

bonus, which accounts for the complementary nature of solar and wind power in ensuring a

reliable electricity supply (i.e., ECOE<LCOE). Finally, the term in the decomposition that

captures adequacy with electricity use depends on the covariance between the power supply

of the renewable technology and electricity consumption. The covariance is positive, meaning

that power generated by the renewable technology tends to occur when consumption is high,

in all markets except France for solar. In case of positive covariance, the third term of the

decomposition is negative. Hence a bonus should be assigned to wind or solar power based

on its adequacy with consumption in all countries except in France for solar.

Related literature. Many studies have investigated how intermittency in electricity gener-

ation impacts the design of public policies and markets that foster investment in renewable

energy sources (Abrell et al. 2019, Ambec and Crampes 2019, Reguant 2019, Holland et

al. 2022, among others). However, to the best of our knowledge, none of these studies con-

sider long term contracts such as PPAs and CfDs as an instrument to foster investment in

intermittent renewables. Some of them have analyzed FiTs. Ambec and Crampes (2019)

and Reguant (2019) conclude that FiTs do not trigger optimal investment in intermittent

renewables in the absence of a carbon price. Abrell et al. (2019) show that the payment

for renewable generation should vary with the wholesale market price, and, therefore, cannot

be a FiT. We contribute to this literature by showing that technological-specific FiTs can

induce optimal investment in intermittent renewables when carbon emissions are priced at

their social cost. Furthermore, we derive the optimal FiT formula. It is equal to the expected

electricity price adjusted by the technology-specific bonus-malus. Finally, we estimate the

optimal FiT using data from four electricity markets.

Some studies have also examined the efficiency of CfDs for both investment in new gen-

eration and dispatch (Kröger et al. 2022, Schlecht et al. 2024, Ambec et al. 2025). Schlecht

et al. (2024) argue that CfDs should be purely financial contracts, decoupling payment from

actual generation to induce optimal dispatch. Kröger et al. (2022) examine the efficiency and

risk-sharing properties of CfDs. However, none of these studies propose a specific design to

encourage optimal investment in renewables, as we do.

Other studies have investigated the design of auction mechanisms for the procurement

of renewable energy (e.g., Fabra and Llobet 2023, Lamp et al. 2024). The closest paper to
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ours is Fabra and Montero (2022). In their paper, the authors analyze the trade-offs in the

choice between a technology-neutral uniform price auction and separate technology-specific

auctions. They show that the regulator faces a trade-off between rent and efficiency and

that the optimal mechanism depends on the extent to which information asymmetry can be

overcome. Unlike their analysis, we demonstrate that a single auction with differentiated

prices dominates both designs. Furthermore, we highlight how the bonus-malus system can

quantify the total cost of adding intermittent renewable energy capacity.3

Finally, several papers have empirically estimated the social value of an additional MW of

new wind or solar capacity in a given energy mix (e.g., Gowrisankaran et al. 2016, Callaway

et al. 2018, Kaffine et al. 2020, Petersen et al. 2024). We contribute to this literature by

providing a simple formula to assess the cost of integrating wind or solar power into a given

energy mix, which should be added to the LCOE to obtain the ECOE. We estimate this

integration cost for California, France, Germany, and Spain. The estimated values allow to

select the more suitable renewable energy source for a marginal increase of power generation.

2 The optimal energy mix and its decentralization in

competitive markets

In the following, we first present the hypotheses of our model, then determine the optimal

investment plan, and finally consider the market outcome if CO2 emissions from fossil-fired

power plants are priced at their environmental social cost.

2.1 The model

We consider a model of electricity generation with random demand and supply. On the

supply side, electricity is produced from existing (mostly thermal) production capacity and

new generation of intermittent renewable energy such as wind and solar power. The private

cost of producing Q megawatt-hours (MWh) of electricity with the current energy mix is

denoted C(Q). It is increasing with Q (C ′(Q) > 0), and convex (C ′′(Q) > 0). The production

capacity of the existing energy mix is denoted Q. The greenhouse gas emitted by the Q MWh

produced are e(Q) tons of CO2 equivalent, increasing with Q. Each ton being valued with an

3Lamp et al. 2024 empirically study the implications of pricing rules (uniform versus pay-as-bid) on
market outcomes and subsidy payments in German solar auctions.
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environmental cost δ, the social cost of Q MWh generated with the current energy mix is

SC(Q) = C(Q) + e(Q)δ. (1)

New generation from renewable energy sources can be of different types. Each type is denoted

i with i = 1, ..., n. Renewable source i is described by the cost of installing new capacity ri

per megawatt (MW), a technical parameter ki representing the maximal power that can be

delivered by i at cost ri, and a capacity factor ωi. The capacity cost ri varies in the range

[ri,+∞) according to the density function gi and the cumulative function Gi. We denote by

r̃i ≥ ri the marginal capacity cost of the most costly generator (e.g., wind turbine or solar

panel) of technology i. The total installed capacity of renewable i is therefore Ki = kiG(r̃i)

with a cost of ki
∫ r̃i
ri
ridG(ri).

Renewable production being intermittent, the capacity factor ωi varies with location and

weather conditions such as sunshine or wind speed. It is a random variable with support

[ωi, 1], where ωi ≥ 0. Installing Ki yields ωiKi MWh of renewable electricity. The expected

capacity factor of renewable i is denoted E[ωi] for i = 1, ..., n. Once generation capacity is

installed, the cost of producing electricity with renewables is normalized to zero. Greenhouse

gas emissions from renewables are also normalized to zero.

On the demand side, we consider a price-inelastic random demand D to be served, with

D ∈ [D,D]. Let f(D,ω) denote the joint density function of random variables D and ω =

(ω1, ..., ωn), F (D,ω) the cumulative, fD(D|ω) and fω(ω|D) the conditional joint densities,

FD(D|ω) and Fω(ω|D) the conditional joint cumulatives. We assume D ≤ Q, which means

that peak demand can be supplied with the current energy mix, so that we do not need to

worry about curtailment or blackouts.

We first characterize the optimal investment in renewable energy sources. We then show

that the optimal energy mix can be achieved with a carbon price reflecting the social cost of

carbon in a competitive wholesale market (assuming that investors correctly anticipate future

prices). In Section 3, we then determine the investment induced by Contracts for Difference

(CfDs), successively when the regulator sets the strike price and when capacity is procured.

2.2 Optimal outcome

Given the installed thermal capacity, the optimal energy mix is defined as the investment in

renewable energy sources K∗ = (K∗
1 , ..., K

∗
n) that minimizes the expected cost of electricity

generation, anticipating that capacities will be optimally dispatched. The optimal dispatch

is such that, given renewable generation
∑n

i=1 ωiKi, for any realization of demand D, renew-
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ables are entering first in the merit order complemented with thermal power up to quantity

demanded. Hence, given D and K, the supply of thermal production is

Q = max

{
D −

∑
i

ωiKi, 0

}
. (2)

Since Ki = kiGi(r̃i) and ki is fixed, finding Ki is equivalent to finding r̃i for i = 1, ..., n. The

optimal renewable capacities K∗
i for i = 1, ..., n can be found by minimizing the expected cost

of supplying electricity with respect to r̃i,

E[SC(Q)] +
∑
i

ki

∫ r̃i

ri

ridGi(ri),

subject to (2). Differentiating with respect to r̃i for i = 1, ..., n yields the following first-order

conditions:4

−E[SC ′(Q)ωikig(r̃i))] + kir̃ig(r̃i) = 0

for i = 1, ..., n. After simplifying by ki and g(r̃i) that are not random, we obtain the optimal

cut-off cost r̃∗i as a function of the optimal thermal power production Q∗ for every renewable

unit i:

r̃∗i = E [ωiSC
′(Q∗)] , (3)

for i = 1, ..., n. After using the definition of the covariance5, we obtain

r̃∗i
E[ωi]

− cov(ωi, SC
′(Q∗))

E[ωi]
= E [SC ′(Q∗)] , (4)

for i = 1, ..., n. The first term on the left-hand side in (4) is the levelized cost of energy

(LCOE) of the most expensive renewable energy source of type i. It is the cost per MW

installed r̃∗i divided by the expected capacity factor E[ωi]. The second term reduces the

LCOE by the covariance between the varying capacity factor ωi and the marginal cost of

thermal generation divided by the expected capacity factor. The right-hand side displays

4To simplify our analysis, we assume that new renewable capacity does not modify the upper and lower
bounds of thermal power production Q. This is the case, for instance, if ωi is sometimes nil during peak
demand, implying that the upper bound of Q is D, and if the renewable capacity exceeds minimal demand
so that the lower bound of Q is 0. In this case Q ∈ [0, D].

5For any random variables X and Y , cov(X,Y ) = E[(X − E[X])(Y − E[Y ])] = E[XY ]− E[X]E[Y ].
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the expected marginal social cost of thermal power production, including climate costs. The

optimal cut-off costs r̃∗i for i = 1, ..., n can be found by combining the first-order conditions

(4) for i = 1, ..., n with the binding constraint (2) that defines the optimal thermal power

supply Q∗ with optimal capacity investment K∗
i = kiGi(r̃

∗
i ) for i = 1, ..., n∗.

The efficiency condition (4) implies that, for any pair of renewables i and j, we have

r̃∗i − cov(ωi, SC
′(Q∗))

E[ωi]
=

r̃∗j − cov(ωj, SC
′(Q∗))

E[ωj]
. (5)

The LCOE, net of the covariance between renewable availability and thermal power marginal

cost divided by the average capacity factor, should be the same among renewable energy

sources. Condition (5) emphasizes that LCOE is not the only characteristic to be taken into

account when choosing between different intermittent generation technologies. The covariance

or correlation between production and the marginal cost of the energy mix is at least as

important. Technologies with a positive correlation should receive a bonus, giving an economic

cost of energy (ECOE) lower than their LCOE, while those with a negative correlation should

be subject to a penalty, resulting in ECOE>LCOE. We further decompose the bonus-malus

adjustment applied to the LCOE in section 5.

2.3 Market outcome

We investigate the equilibrium outcome when carbon emissions are priced at their social cost

and the electricity wholesale market is competitive. We assume that producers are price

takers and investors can perfectly forecast future wholesale market prices p.

First, given new generation capacity K, dispatch is optimal. For realizations of D and ω

such that D ≤
∑

i ωiKi, demand can be fully served by renewables at zero marginal cost, and

thus the wholesale electricity price is p = 0. In contrast, if D >
∑

i ωiKi, the demand net of

renewable generation is Q = D −
∑

i ωiKi > 0. It is supplied by thermal power plants. The

market price is equal to the marginal cost of the last MWh supplied, which includes the cost

of carbon emissions, that is:

p = SC ′(Q). (6)

The expected profit of the renewable investment ki at cost ri is:

E[πi(ri)] = (E[ωip]− ri) ki.
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Second, given the future equilibrium prices, investment in new generation capacity of renew-

ables is optimal. Under the assumption of perfect competition, the renewable equipment (wind

turbine or solar photovoltaic plant) making zero profit determines the equilibrium cut-off cost

r̃ei :

r̃ei = E[ωip], (7)

for i = 1, ..., n. All new generation plants with cost ri < r̃ei are built so that the total

production capacity is Ke
i = kiGi(r̃

e
i ). If carbon is priced at its social cost6, replacing p

defined in (6) with τ = δ and using (1) yields the optimality conditions (4) for i = 1, ..., n.

Hence r̃ei = r̃∗i and, therefore, Ke
i = K∗

i for i = 1, ..., n: investment in new generation is

socially optimal. We thus have established the following result.

Proposition 1 When investors are risk-neutral and have rational expectations about energy

prices, the energy mix achieved in a competitive market with emissions priced at their social

cost is efficient.

Proposition 1 confirms that, in theory, the wholesale market provides investors with the

correct price signal when carbon emissions are priced at their social cost. In practice, however,

investors are unable to accurately predict future wholesale prices over long periods. Typically,

future markets in electricity span 2-5 years, which is well below the lifetime of new generation

equipment. Therefore, the assumption of rational expectation does not hold. This market

failure justifies the design of public policies to encourage investment in renewables. We now

investigate the effectiveness of the most common policies: fixing Feed in Tariffs for renewable

electricity produced by new generation capacity, or procuring new generation capacity by

means of PPAs or CfDs.

6If carbon emissions cannot be taxed at their social cost, renewables should be subsidized to improve
efficiency. Under inelastic demand, as assumed here, it can be shown that the optimal energy mix can be
implemented with a price premium for renewable production if emission intensity does not vary with elec-
tricity production. Yet, as shown in Ambec and Crampes (2019), a price premium does not implement the
first-best as long as consumers respond to market prices, unless it is corrected by some form of electricity
taxation. It could also lead to non-optimal dispatch with ramp-up costs.
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3 Public policies for investment in green generation

3.1 Setting prices

Let us denote psi the fixed price assigned to renewable technology i for i = 1, ..., n. The

expected profit of a generation plant of type i with capacity ki and with a fixed price psi is:

E[π] = (E[ωi]p
s
i − ri)ki. (8)

First, we show that fixing the FiT at the expected wholesale market price leads to ineffi-

cient investment in new renewable generation unless the renewable capacity factor is uncorre-

lated with the price. Substituting psi = E[p] into (8) and equalizing the expected profit to zero

yields a cut-off capacity cost r̃si = E[ωi]E[p]. Compared to the efficient cut-off implemented

with competitive wholesale markets r̃∗i = r̃ei defined in (7), we have:

r̃∗i − r̃si = E[ωip]− psiE[ωi] = E[ωi]E[p]− E[ωi]p
s
i + cov(ωi, p), (9)

where the last equality is due to the aforementioned definition of covariance. With a strike

price equal to the average spot price psi = E[p], we obtain r̃∗i −r̃si = cov(ωi, p). Hence this strike

price will trigger under-investment in renewable of type i whenever cov(ωi, p) > 0 (positive

correlation between demand and renewable production) and over-investment if cov(ωi, p) < 0

(negative correlation).

Second, we derive the optimal FiT. Equalizing (9) to zero shows that r̃∗i = r̃si if

psi = E[p] +
cov(ωi, p)

E[ωi]
. (10)

The optimal FiT is equal to the average future price E[p] adjusted by a bonus-malus featuring

the covariance between renewable generation ωi and market price p. If it is positive, then

the renewable energy plants are producing mostly when prices are high. Investors should be

rewarded for that with a bonus. Conversely, if the covariance is negative, production from this

type of renewable tends to occur when prices are low. Therefore, a penalty (malus) should

be applied to reduce the payment per MWh below the average price.

Proposition 2 Pricing renewable technology i at psi = E[p] +
cov(ωi, p)
E[ωi]

per MWh for i =

1, ...n attracts the optimal investment in new renewable generation. It rewards energy sources

that are positively correlated with market prices and penalizes those that are negatively corre-

lated. A FiT equal to the average market price leads to underinvestment (resp. overinvest-

11



ment) in renewable energy if the market price p and the capacity factor ωi are positively (resp.

negatively) correlated.

3.2 Procuring new generation capacity

Instead of fixing the price, the regulator can auction off new generation capacity with PPAs

or CfDs. With PPAs, electricity from renewable technologies is sold to buyers (end consumers

or retailers) at the price psi resulting from the auction. With CfDs, the new generation plant

of renewable type i is remunerated by a strike price denoted psi regardless of the market price

p. If p < psi , producers receive psi − p from the regulator in addition to the market price p.

They earn p+ (psi − p) = psi per MWh. Reversely, if p > psi , producers have to pay p− psi to

the regulator. By selling at price p on the wholesale market, they earn p− (p− psi ) = psi per

MWh.

The regulator decides how much capacity to procure and designs the auction mechanism.

Investors bid the price at which they are willing to provide electricity. The regulator can set

up separate auctions for different types of renewable technologies and locations (e.g., onshore

versus offshore wind) or open up a single auction process. In our framework, if the regulator

organizes separate tenders for the n renewable energy sources, she decides how much capacity

to procure for all renewable technologies. She needs to know the efficient capacity portfolio

K∗ = (K∗
1 , ..., K

∗
n) with K∗

i = kiGi(r̃
∗
i ) for i = 1, ..., n, where r̃∗i is defined in (3).

We show that the optimal investment in new generation can be procured in a single

auction with a specific rule for setting the price. Investments with the lowest bid are selected,

regardless of the technology, to meet the procured capacity. The winning bid is the highest bid

among all the selected investments. The price should be equal to the highest bid adjusted by

the bonus-malus associated with the renewable technology. The proof is provided in Appendix

A.7

Proposition 3 A single auction on new generation capacity implements the optimal portfolio

of renewable technologies with differentiated prices psi = b̂ +
cov(ωi, p)
E[ωi]

for i = 1, ..., n, where

b̂ is the winning bid.

In a uniform price auction with a continuum of bidders, bidders have incentives to bid their

cost in equilibrium. In our framework, if the price is equal to the winning bid b̂, an investor

with technology i and cost ri would bid its LCOE bi(ri) =
ri

E[ωi]
in equilibrium. Investments

7Notice that one can show that the procurement auction described in Proposition 3 implements the
optimal renewable technology portfolio K = (K∗

1 , ...,K
∗
n) not only at the first best total capacity K∗ =∑

i K
∗
i but also for any total capacity lower than first-best:

∑
i Ki ≤

∑
i K

∗
i .
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are selected on the basis of LCOE alone, missing an important characteristic of renewables:

their adequacy to the energy mix. New generation technologies should be selected on the

basis of their ECOE, that is, not only their cost, but also the correlation between generation

and electricity scarcity. This can be done by differentiating the price with the bonus-malus.

Investors would then bid their ECOE equal to LCOE adjusted by the bonus-malus. The

equilibrium bidding strategy of an investor with cost ri is b
e
i (ri) =

ri − cov(ωi, p)
E[ωi]

. Investments

are selected based on the ECOE (=LCOE net of the bonus-malus). The LCOE is reduced if

the generation occurs when electricity is expensive (positive covariance). The bonus makes

this investment more useful for a same value of LCOE. Conversely, the LCOE is inflated

when generation occurs when electricity is cheap (negative covariance). The malus is added

to the LCOE, making that renewable technology less competitive. Overall, new generation

technologies are selected efficiently on the basis of both their cost and their adequacy to the

energy mix reflected by the electricity wholesale market price.

4 Empirical analysis

How should the fixed price psi be set to foster optimal investment in renewable capacity?

Equation (10) shows that it should reflect the expected value of electricity in the future

adjusted with the bonus-malus term. Similarly, in a procurement process for new generation,

when investors bid the LCOE, a bonus or malus should be applied to the winning bid.

In this section, we propose a simple way to calculate the strike price and the bonus-

malus for wind and solar power in three different European markets and California. We

then highlight the impact of location and technology on the bonus-malus correction term,

considering onshore and offshore wind as well as solar panel orientation and locations.

4.1 Data and descriptive statistics

For the empirical analysis, we rely mainly on publicly available data from the transparency

platform of the European Network of Transmission System Operators (ENTSO-E) and data

from the California Independent System Operator (CAISO).8 For Europe, we focus on three

out of the four largest countries in terms of electricity generation capacity: Germany, France,

and Spain, which are heterogeneous in terms of renewable energy penetration. California

8Data can be accessed online. ENTSO-E: https://transparency.entsoe.eu and CAISO ‘OA-
SIS’: https://oasis.caiso.com/mrioasis/logon.do and ‘Today’s Outlook’ https://www.caiso.com/
TodaysOutlook/Pages/default.aspx.
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provides an interesting example of a market dominated by one type of renewable technology,

namely solar power.

For Europe, we collect hourly market-level data for the period January 2015 to December

2023. The main variables of interest are day-ahead market (DAM) prices, which, assuming

competitive markets, correspond to the expected marginal cost of thermal generation, load,

and production from all generation sources, including solar and wind.9 Finally, we complement

these high-frequency data with annual data on installed capacity, which allows us to calculate

the observed capacity factors by renewable technology. For the case of California, we collect

similar data from CAISO for the period June 2018 to December 2023, aggregating production

and prices at average system-wide hourly values.10 Figures A.1 and A.2 in the appendix

provide an overview of the evolution of renewable penetration (wind and solar) in each market

and show the average capacity factors and price levels over time. As the average DAM prices

were heavily influenced by the 2021 and 2022 energy crisis, we use data from the period

2015-2020 (2019-2020 in the case of CAISO) for the main calculations.11 Finally, figure A.3 in

the appendix shows the hourly variation in terms of average load, DAM prices, and capacity

factors for wind and solar separately in each market, highlighting differences in terms of

renewable penetration and correlation patterns.

To get a better sense of the evolution of the key variables that determine the bonus-

malus, Figure 1 plots the average capacity factor and the correlation between DAM prices

and renewable capacity factors calculated at an annual frequency.

The figure shows that the average capacity factors E[wi] of renewables have been largely

stable over the time period 2015 to 2023, with the exception of wind in California. On the

other hand, focusing on the annual correlation of DAM prices and the capacity factors in

panels (c) and (d) of figure 1, we find a stable correlation only for wind, but not for solar.

In the case of solar, we generally find a positive correlation for individual years and countries

at the beginning of our sample, but this correlation turns more negative over time in all

countries.

This evolution highlights the so-called “cannibalization effect”, which is particularly pro-

nounced in the case of solar. Solar production from existing plants is typically highly cor-

9For the empirical application, we treat each country in isolation and do not consider imports from or
exports to neighboring countries.

10We obtain data on production from ‘Today’s Outlook’ and data on DAM prices from ‘OASIS’. We
aggregate the prices from the three main bidding zones (NP15, ZP26, and SP15) into a single price and
convert all prices into e/MWh for comparability, taking into account the average of the annual exchange
rate over the sample period.

11As highlighted in Dertwinkel-Kalt and Wey (2025) end consumers typically did not face extreme en-
ergy prices during this period due to price breaks and related policies.

14



Figure 1: Expected capacity factors and correlation of market price and capacity factor over
time
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Notes: The figure shows the evolution of the annual capacity factors and the correlation corr(p, ωi) i ∈ {s, w}
for the four markets separately. Panel (a) for solar and panel (b) for wind.
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related within a given market, and new solar installations tend to mirror the production

patterns of existing capacity, making new investment less valuable.

4.2 Estimating the bonus-malus

Propositions 2 and 3 give us a direct formula to compute the bonus-malus based on the

covariance of the capacity factor with DAM prices and the expected capacity factor. Since

all the electricity markets we consider have their own emission trading scheme, we consider

that CO2 emissions are priced at their social cost. Hence electricity wholesale market prices

internalize the social cost of thermal power CO2 emissions. We rely on the period 2015 to

2020, when market conditions and prices were largely stable, to obtain estimates of the optimal

correction term. Table 1 shows the bonus-malus that should be applied when considering

different sample periods, starting in the range 2015 to 2020. Each row advances the starting

year by one, so that the last row corresponds to 2020 only. The calculations are based on

hourly data.

Table 1: Bonus-malus when considering optimal strike price

Wind Solar

Period DE FR ES CA DE FR ES CA
2015-2020 -5.17 -1.9 -3.08 -2.4 -1.22 0.05
2016-2020 -5.29 -2.06 -2.87 -2.68 -1.62 -0.46
2017-2020 -5.8 -2.22 -2.42 -2.87 -1.63 -0.61
2018-2020 -5.68 -2.32 -2.61 -3.03 -0.93 -0.57
2019-2020 -5.07 -2.02 -1.65 -1.99 -4.37 -1.9 -0.48 -8.4
2020-2020 -5.21 -2.05 -1.58 -1.77 -5.87 -2.35 -1.06 -7.25
Average DAM price 34.6 40.33 46.85 30.1 34.6 40.33 46.85 30.1

Notes: The table displays the bonus-malus for wind and solar technology defined as cov(ωi,p)
E[ωi]

for different

markets and time periods as well as the average day-ahead market (DAM) price for 2015-2020 in e/MWh.
California (CA) data based on 2019-2020. Prices in US-$ have been converted to eusing the average annual
exchange rates.

We find important heterogeneity in the bonus-malus that should be applied to solar and

wind technologies in the four different markets. Also, even within the same technology (solar

or wind), there exist important differences across markets. In the case of wind energy, we

find the largest penalty in the case of Germany, where the average wholesale price should

be reduced by 5.17 e/MWh considering the sample period 2015-2020.12 This corresponds

12For ease of exposition, we refer only to ‘price setting’ (section 3.1) when interpreting the bonus-malus.
However, the same logic applies in case of quantities (see Proposition 3).
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to about 15% of the average wholesale price of 34.6 e/MWh in this period. Limiting the

sample to more recent years does not significantly affect this penalty. The correction factors

are smaller in the other countries, reflecting both different covariances between wind capacity

factors and prices and differences in the average capacity factors.

Focusing instead on solar technology in the right panel of Table 1, we generally find

penalties increasing years after years. In fact, the evolution towards larger penalties in solar

can be explained by the aforementioned cannibalization effect. A particularly interesting case

is Spain, where we find a positive value (bonus) when considering 2015-2020. Yet, over time

the covariance between the capacity factor and prices turns negative and we find a malus of

1 e/MWh in 2020. In line with this observation, California, a market largely dominated by

solar technology, shows the largest penalties for solar of about 7.2-8.4 e/MWh (about 25%

of the average DAM price in 2019-2020).

Instead of setting a single strike price, the policymaker could also explore seasonal dif-

ferences in energy demand and renewable energy availability to account for heterogeneity in

the value of renewable production over the year. We thus calculate the bonus-malus for the

sample period 2015-2020 at the monthly frequency. The results are shown in Appendix table

A.1 and highlight the fact that there is more seasonal heterogeneity for solar than there is

for wind. Interestingly, we find that renewable production from solar should receive a bonus

in the winter months, but less so in the spring and summer. Also, when the monthly values

take on positive and negative values (as is the case for France and Spain), the monthly values

do not directly translate into the overall bonus-malus as reported in Table 1.

4.3 Differentiating the bonus-malus by location and technology

We proceed by analyzing the bonus-malus for different locations and technologies within a

given country. To do so, we differentiate the existing wind technology into onshore and offshore

wind and consider different onshore wind locations in the same country. We also show how

solar panel orientation and location choices can affect the optimal correction factor using

simulated renewable output. To implement this analysis, we focus on the case of Germany as

it has both types of wind technologies installed during the sample period 2015-2020 and also

has non-negligible differences in terms of average production profiles for both solar and wind

over space.

First, focusing on realized production from offshore and onshore wind, we calculate both

the correction factor for the sample period 2015-2020, and the seasonal differences by focusing

on monthly data aggregates. The results are presented in Appendix table A.2. We find larger

penalties for onshore wind, which is however mostly driven by differences in the capacity
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factors (0.52 in case of offshore wind versus 0.21 in the case of onshore wind). While all

monthly correction terms are negative, we find large differences by month-of-year, with the

highest penalties in winter months.

Next, we simulate the output of both solar plants and wind farms at two different locations

in Southern and Northern Germany, relying on data from Renewables Ninja.13

To maximize the potential differences in resource availability, for solar investment we

consider two locations in Bavaria (Munich) and Brandenburg (Berlin) with a solar plant

facing either south, west, north, or east. We consider also the case of a solar tracker. For

the case of wind investment, we obtain simulated output for the same type of wind turbine

in Lower Saxony (northwest Germany) and Bavaria (southeast Germany).

Figure A.5 in Appendix C.3 plots the average hourly DAM prices together with the sim-

ulated capacity factors for both solar (panel a) and wind (panel b). Panel (a) shows only

installations in southern Germany and highlights that while the total output is maximized

with south-facing panels, these type of installations generally have a negative correlation with

DAM prices. East and west facing panels, on the other hand, have lower total production,

but a different correlation with wholesale market prices. While east-facing panels produce

closer to the first daily peak, west-facing panels at this location will produce mostly when

electricity is least valuable in terms of DAM prices. We also simulate the performance of

a two-axis tracker solar system, which maximizes overall yield. Focusing on wind in panel

(b), we highlight the level difference in terms of expected capacity factor of the two locations

(average of 0.33 in the north versus 0.14 in the south).

Using the simulated output we calculate the implied bonus-malus when considering dif-

ferent technologies and locations and present it in Table 2. The table shows that there are

important differences in the optimal strike price for the same technology in different locations

within the same market. For example, when looking at different technologies within the same

location (solar panel orientation), we show that the malus is smallest for the tracking system,

followed by east-facing panels, in line with the implied capacity factor and correlations shown

in Figure A.5. Interestingly, for wind we find a very comparable penalty of about 4.8 e/MWh.

However, this is the result of both the differences in the capacity factor (which is significantly

lower in the south) and the differences in the covariance term.

13Renewables Ninja simulates hourly production data for specific locations based on observed weather
data (see Pfenninger et al. 2016 and Staffell et al. 2016) ; source: https://www.renewables.ninja.
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Table 2: Bonus-malus with optimal strike price: different solar and wind locations and tech-
nology

Solar Onshore Wind

Location Panel orientation Bonus-malus Bonus-malus
South South -1.41 -4.76

West -2.15
North -1.78
East -0.86
Flat -1.85
Tracker -0.62

North South -1.87 -4.79
West -2.51
North -1.73
East -1.12
Flat -2.14
Tracker -1.07

Notes: Bonus-malus in e/MWh, defined as cov(ωi,p)
E[ωi]

for different simulated renewable output employing data

from Renewables Ninja. Hourly data is simulated based on observed weather data for the years 2015-2020.

5 Decomposition of the bonus-malus

5.1 Theory

To better quantify the ECOE, which measures the cost of an additional MWh of renewable en-

ergy production, we decompose the bonus-malus term that corrects the LCOE in the marginal

value of new renewable generation derived in (4). In Appendix B, we use a Taylor quadratic

approximation of SC(Q) around the average electricity production denoted Q∗
0 := E[Q∗] to

obtain

r̃∗i
E[ωi]

+ SC ′′(Q∗
0)︸ ︷︷ ︸

(a)


V [ωi]Ki

E[ωi]︸ ︷︷ ︸
(b)

+

∑
j ̸=i

cov(ωi, ωj)Kj

E[ωi]︸ ︷︷ ︸
(c)

− cov(ωi, D)

E[ωi]︸ ︷︷ ︸
(d)

 ≈ E [SC ′(Q∗)] , (11)

where V [ωi] is the variance of ωi. Condition (11) is an optimality condition for the investment

in renewable technology i. Both sides of the equality quantify the expected marginal cost of

one additional MWh: if it comes from the actual energy mix on the right-hand side, or from

investment in renewable technology i on the left-hand side. Hence, the left-hand side of

(11) tells us how intermittency should correct the LCOE to assess the cost of a MWh with

renewable technology i to be compared with its (expected) marginal cost in the current energy
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mix. It is decomposed into four terms labeled from (a) to (d):

(a) The first term that multiplies the curly bracket is the curvature of the supply curve

function (the merit order). It quantifies how costly the intermittency of renewable

i’s generation is to the energy mix. The convexity of the supply function measures

the flexibility of the energy mix to respond to variations in renewable supply and/or

demand. The steeper the slope of the supply curve, the more costly it is to ramp up or

ramp down production to accommodate variations in renewable supply or variations in

demand.14

(b) The numerator of the first term inside the curly brackets V [ωi]Ki captures the additional

cost of renewable i’s generation variability by itself, ignoring the variability of electricity

demand and of other renewable energy sources (everything else being constant). It is

increasing with the variance of power generation (capacity factor) through V [ωi], as well

as with the total production capacity with the same technology Ki.

(c) The numerator of the second term is the sum of the covariances between the capacity

of renewable i and other renewables j ̸= i multiplied by their capacity Kj. It measures

the extent to which the renewable i complements the other renewables. It does so in

the case of negative covariance, which increases the marginal value of renewable i. It

thus reduces the LCOE of i by an amount that is inflated by the installed capacity of

technology j. Conversely, if the covariance is positive, renewables i and j produce at

the same time, which reduces i’s marginal value and thus gives an ECOE larger than

the LCOE.15

(d) The numerator of the last term is the covariance between renewable generation and

electricity demand cov(ωi, D).16 Intermittency is particularly bad if production is low

when demand is high, i.e., when the covariance is negative. Such a renewable technology

is less valuable and therefore this term is added to the LCOE. Conversely, intermittency

is less of a problem if electricity is produced when demand is high. The covariance

is therefore positive, so that the second correction term is negative. The renewable

14In a different setting, Liski and Vehviläinen (forthcoming) use the shape of supply and demand func-
tions to determine the efficiency gains resulting from the introduction of new technologies, such as storage,
on equilibrium prices.

15Note that this term disappears if technology i is the only intermittent renewable energy technology.
16If we denote θ as the fraction of maximum demand D, we have D = θD so that cov(ωi, D) =

Dcov(ωi, θ) with θ ∈ [0, 1]. In this case, we have covariances between random variables in the interval 0 and
1 multiplied by MWh/MW in the correction term. We follow this approach in the empirical implementation
of the decomposition.
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technology is then more valuable, and thus this term reduces the LCOE to assess the

social cost of renewable i.

All correction terms are divided by the average capacity factor E[ωi] to obtain the additional

costs per MWh of electricity produced on average instead of MW of generation capacity.

5.2 Estimation

In the following, we first estimate each individual element inside the curly brackets of the

decomposition (nominators of terms (b) to (d) in equation (11)) focusing separately on wind

(w) and solar (s) technology in the four different markets. These estimates are based on

market data on installed renewable capacity, hourly capacity factor for wind and solar, and

total hourly demand (load). We present the results in Table 3, where we express the covariance

between load and the renewable capacity factor in terms of the maximum load share, θ.

Table 3: Individual elements of decomposition

Wind Solar

D cov(ωw, θ) V [ωw] Kw cov(ωs, θ) V [ωs] Ks cov(ωw, ωs)
DE 79939 0.00249 0.02878 51837 0.00605 0.02595 42193 -0.00534
FR 94492 0.00433 0.02803 13068 -0.00052 0.03937 7573 -0.00532
ES 41015 0.00073 0.02076 23096 0.01158 0.0754 6950 -0.00698
CA 46933 0.00062 0.04315 5979 0.00485 0.08902 13899 -0.00964

Notes: Decomposition following equation (11). We express cov(ωi, D) = Dcov(ωi, θ) with i ∈ {s;w} and
θ ∈ [0, 1]. The table shows the maximum load over the sample period and the average installed capacity for
wind and solar (Kw and Ks, respectively). Main sample: 2015-2020 (CA: 2019-2020), based on hourly data.

Focusing on maximum load, D, we find that France distinguishes itself from the other

countries with a peak electricity demand particularly high in winter due to the widespread

use of electric heating. This seasonal effect also influences the covariance terms, which are

significantly larger for wind and smaller or even slightly negative for solar in France. More

generally, the correlation between renewable generation and electricity demand varies across

countries, with both wind and solar showing heterogeneous patterns depending on national

load profiles. Differences are also observed in the variance of renewable generation, with

California showing the highest volatility of the four markets analyzed. In all regions, solar

and wind generation are negatively correlated, indicating a complementarity between the two

sources. This is consistent with their typical daily generation profiles: wind tends to be more

available during nighttime hours, while solar is limited to daytime hours (see also figure A.3
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in the appendix). It is also in line with the seasonal availability: wind in winter and solar in

summer.

Based on the individual elements of the decomposition, Table 4 calculates the terms (b)

through (d) of Equation (11).

Table 4: Main elements of decomposition

Wind Solar

Term in (11) V [ωw]Kw

E[ωw]
cov(ωs,ωw)Ks

E[ωw]
− cov(ωw,θ)D

E[ωw]
V [ωs]Ks

E[ωs]
cov(ωs,ωw)Kw

E[ωs]
− cov(ωs,θ)D

E[ωs]

(b) (c) (d) (b) (c) (d)
DE 6598.5 -996.55 -880.39 10368.66 -2621.36 -4579.94
FR 1592.2 -175.12 -1778.48 2074.89 -483.82 341.95
ES 1959.55 -198.26 -122.37 2278.37 -700.91 -2064.99
CA 818.92 -425.3 -92.36 5056.09 -235.53 -930.17

Notes: The table presents estimates for the main elements (b) to (d) in equation (11). Positive values increase
the ECOE, while negative values decrease it. Main sample: 2015-2020 (CA: 2019-2020), based on hourly data.

Term (b) quantifies the “cannibalization effect” of a high penetration of the same renewable

technology and thus increases the ECOE of renewable investment. It is particularly strong in

countries with a large production capacity like Germany and Spain for both solar and wind,

or California for solar. Note that small capacity factors, such as solar in Germany further

increase this penalty. Two factors are reducing the ECOE of wind and solar power: the

negative covariance between the two intermittent energy sources (term (c), middle column for

wind or solar in Table 4) that helps to smooth aggregate supply, and the positive covariance

with demand (term (d), right-hand column for wind or solar in Table 4). Note that in line

with Equation (11) we express this last term as benefit by pre-multiplying it with -1.

Focusing on term (c) the covariance between renewable technologies, we find large values

for Germany that are again driven by low relative capacity factors and a large installed

capacity base. Finally, focusing on term (d), we find that France is an outlier because the

covariance between generation and demand turns out to be negative for solar (a cost). It is a

benefit for all other countries for both solar and wind investment. We find strong heterogeneity

in this last parameter depending on daily load as well as seasonal differences in electricity

demand, such as the use of electricity heating in France in winter.

When all components are summed up, we generally observe a negative net adjustment (a

malus) for renewable investment, with the exception of wind in France and solar in Spain.

The positive value for solar in Spain is consistent with the aggregate results presented in

Table 1. However, the positive adjustment for wind in France is more surprising. This is due
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to differences in the covariance between wind capacity factors and load compared to their

covariance with DAM prices. While French DAM prices follow a similar pattern to those in

Germany (see Figure A.3 in Appendix), electricity load in France shows greater variability

− especially in the late evening hours − resulting in a stronger positive correlation between

wind generation and electricity demand than between wind generation and DAM prices.

Finally, to put the estimates in context and to calculate the total implied bonus-malus

from the decomposition, we require an estimate of the derivative of the curvature of the supply

curve for each market at the expected load. To do so, we rely on hourly bid data from the

wholesale electricity markets in Spain and California, where individual demand and supply

bids are publicly available.17

Appendix section C.4 describes the detailed data as well as the data cleaning procedure

that we use to obtain hourly supply and demand bids in these markets. In the case of Spain,

we have a total of 93 million individual bids available for the years 2015-2020, and in the

case of California 23 million bids. To estimate the slope of the supply curve, we perturb

the average hourly load by 1% to obtain counterfactual market clearing prices and use this

estimate to calculate the hourly derivatives. Since there is heterogeneity in the hourly load

pattern, we report the load-weighted average in Table 5.

Table 5: Total bonus-malus with Taylor approximation

Wind Solar
S ′′(Q∗

0) Bonus-malus Bonus-malus
ES 0.0033 -5.41 1.61
CA 0.0019 -0.57 -7.39

Notes: The table presents estimates for the decomposition term (a) in equation (11) and calculates the total
implied bonus-malus, expressed in e/MWh. Main sample: 2015-2020 (CA: 2019-2020), based on hourly bids
from day-ahead wholesale markets in Spain and California (see Appendix section C.4 for details).

We find an average malus for wind of 5.4 e/MWh and a bonus for solar of 1.6 e/MWh in

the case of Spain. For California, we find a malus of about 0.6 e/MWh for wind and of 7.4

e/MWh for solar. These estimates should be compared with those obtained in table 1, which

are based on DAM prices rather than demand, cost, and production capacities. In the case

of Spain, the decomposition yields a slightly larger bonus-malus in absolute terms. However,

the estimates have the same sign, and are comparable in magnitude. For California, we again

17As an alternative, we could estimate the slope of the supply function by reconstructing the marginal
cost curve of electricity supply in each country. However, since detailed fuel prices and plant-specific effi-
ciency estimates are generally unavailable, this method would likely produce a flat, step-wise supply curve,
which could bias the local curvature estimates.
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find that the sign and magnitude are the same for the two approaches, but the estimates are

slightly smaller in absolute terms. Overall, finding similar estimates with the two approaches

lends credibility to our estimates, as they are based on different underlying assumptions.

The observed differences may be due to our assumption of perfect competition in Table

1. If there is market power in supply, DAM prices may not perfectly correspond to the social

cost of providing electricity. Similarly, even small changes in the covariance between load

and DAM prices, as highlighted for the case of France, can lead to differences in estimates.

Finally, the decomposition is based on a second-order Taylor approximation and is therefore

close to, but not equal to the exact value by definition.

6 Conclusion

Decarbonizing the economy requires substantial investment in clean power generation tech-

nologies, which have the disadvantage of being highly dependent on weather conditions. The

choice of these technologies and their location should be in line with the needs to be met, in

particular to reach their production peaks at times of high demand. It is therefore inefficient

to pay for the MWh produced by intermittent technologies regardless of the statistical charac-

teristics of their availability. Investments in technologies and/or locations whose intermittent

production is negatively correlated with demand should not be encouraged. Our article shows

that all remuneration systems, in particular Feed-in tariffs, Power Purchasing Agreements and

Contracts for Difference, should modulate the remuneration through a bonus-malus system

designed to encourage investment in renewable energy in the technology and/or locations

where they are most socially useful. The correction term should be added to remuneration

per MWh. It can be computed with market data. It involves the correlation between the

renewable source availability and wholesale market price. Alternatively, the correction term

can be computed with demand, costs and generation data. It involves the correlation between

demand and generation of the renewable energy source, the correlation among generation from

different renewable sources as well as the variance of generation.

Using data from California, France, Germany, and Spain, we have shown that the price

to pay for solar and wind technologies is generally lower than the expected wholesale prices,

meaning that if the actual strike price is set equal to the expected wholesale price, it should

be complemented with a malus.

This purchasing policy may appear discriminatory and could therefore be challenged by

competition authorities. In fact, it is not, since the sum of “wholesale price expectation +

bonus-malus” is the relevant indicator of the scarcity of the contingent MWh, which we name
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Economic Cost of Energy (ECOE). In this paper we provide different ways to calculate the

bonus-malus based on past market data. Yet, the paper also highlights that the accurate

calculation of the bonus-malus depends on many factors such as the technology and location

of each investment. It is therefore not easy to implement and the policy maker likely needs to

set approximate values for each technology (e.g., onshore wind vs. offshore wind, adjustable

solar panels vs. fixed panels facing south or west, etc.) and by location (north vs. south).

In general, our estimates are based on ex-post market data and thus on the idea that

policy makers can perfectly forecast future prices. We also assume risk-neutral investors

and that technological factors are fixed. Some key questions include how the policy maker

should adjust the bonus-malus to changing market and technology conditions, such as the

introduction of energy storage18 or electric vehicles.19 In the same vein, we do not consider

the limitation and costs imposed by the electricity grid.20 We leave this as a promising avenue

for future research.

18Ambec and Crampes (2019) and Andrés-Cerezo and Fabra (2023) have modeled energy storage in simi-
lar frameworks of energy provision with intermittent renewables.

19Electricity vehicles can make consumers more responsive to retail market prices (Bailey et al., 2024).
Furthermore, Electric vehicle charging impacts the marginal value of renewables and the optimal energy
mix (Heid et al. 2024).

20See Joskow and Tirole (2000), Yang (2022), Ambec and Yang (2024), and Gonzales et al. (2023) for
theoretical and empirical analysis of investment on both new generation and interconnection capacity. Sim-
ilarly, our work does not consider interconnected markets as discussed in Ito and Reguant (2016) or Buchs-
baum et al. (2024).
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A Proof of Proposition 3

Let us denote b(ri) the bidding strategy of investors in technology i with cost ri. Consider

the following bidding strategy for a technology i with cost ri per MW installed:

bei (ri) =
ri − cov(ωi, p)

E[ωi]
(12)

for i = 1, ..., n.

We first derive the equilibrium outcome when investors bid bei (ri), and show that invest-

ment in renewable capacities satisfy the optimality conditions. With a winning bid b̂, all

bidders with costs ri such that bei (ri) ≤ b̂ are selected for i = 1, ..., n. The cost of the last

bidder selected with technology i is denoted r̃i. It satisfies the following condition: bei (r̃i) = b̂

for i = 1, ..., n. Combined with (12), it yields:

r̃i − cov(ωi, p)

E[ωi]
=

r̃j − cov(ωj, p)

E[ωj]
= b̂,

which, combined with (6), leads the optimality conditions (5). With a total capacity K∗ =∑
i K

∗
i auctioned off, the winning bid is

b̂ =
r̃∗i − cov(ωi, p)

E[ωi]
(13)

for i = 1, ..., n. Hence the investment portfolio is first-best K∗.

Next we show that bei (ri) defined in (12) are equilibrium strategies because no investor

has incentive to deviate from it in equilibrium. Given the strike price psi = b̂ +
cov(ωi, p)
E[ωi]

defined in Proposition 3, the expected profit with a given strategy bi(ri) for the investor with

technology i and cost ri is

E[πi(ri)] =


[(

b̂+
cov(ωi), p
E[ωi]

)
E[ωi]− ri

]
ki if bi(ri) ≤ b̂,

0 if bi(ri) > b̂.
(14)

Plugging the winning bid defined by (13) in (14) yields

E[πi(ri)] =

{
(r̃∗i − ri) ki if bi(ri) ≤ b̂,

0 if bi(ri) > b̂.
(15)
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Consider an investor in technology i with cost ri. First, suppose that bei (ri) ≤ b̂ so that the

investment is implemented if the investor bids bei (ri) defined in (12). If the investor deviates

by bidding lower bi(ri) < bei (ri), the investor’s payoff changes only if the investor is pivotal,

that is if bei (ri) = b̂. By lowering the bid, the investor lowers the winning bid b̂. The price

assigned to the equipment plan psi defined in Proposition 3 is then strictly lower and so is also

the investor’s expected profit. The investor is thus worse-off by bidding bi(ri) < bei (ri) if its

bid modifies the winning bid b̂, while its payoff is unchanged otherwise. Suppose now that the

investor deviates by bidding higher bi(ri) > bei (ri). The investor’s payoff changes only when

bi(ri) > b̂, in which case the investor is not selected and, thus, his or her payoff is nil. The

investor is not better-off.

Second, suppose now that bei (ri) > b̂ so that the investment is not implemented. If the

investor deviates by bidding lower bi(ri) < bei (ri), his payoff changes only if bi(ri) ≤ b̂, in

which case, the investor is selected. However, using the definition of bei (ri) in (12), bei (ri) > b̂

implies E[ωi ]̂b + cov(p, ωi) − ri < 0 and, therefore, the investor’s expected profit defined in

(14) is negative. Hence the investor is worse-off when bidding lower. If the investor deviates

by bidding higher bi(ri) > bei (ri), he or she is not selected and thus the investor’s payoff is

unchanged, equal to 0.

B Decomposition of the bonus-malus in the energy mix

A Taylor approximation of the social cost of electricity generation yields SC(Q) ≈ SC(Q∗
0)+

SC ′(Q∗
0)(Q−Q∗

0) +
1
2SC

′′(Q∗
0)(Q−Q∗

0)
2. Differentiating this approximation with respect to

Q yields SC ′(Q) ≈ SC ′(Q∗
0) +SC ′′(Q∗

0)(Q−Q∗
0). Therefore cov(ωi, SC

′(Q)) is approximated

by

cov(ωi, SC
′(Q)) ≈ cov(ωi, SC

′′(Q∗
0)Q)

= SC ′′(Q∗
0)cov(ωi, Q)

= SC ′′(Q∗
0)cov(ωi, D −

∑
j ωjKj)

= SC ′′(Q∗
0)
{
cov(ωi, D)−

∑
j ̸=i cov(ωi, ωj)Kj − V [ωi]Ki

}
where the equality in the second line is due to the fact that SC ′′(Q∗

0) is not random, the third

line is derived by substituting Q as defined in (2), and the last line uses the definition of the

variance and of the covariance implying V [ωi] = cov(ωi, ωi). Substituting cov(ωi, SC
′(Q)) in

(4) by the above approximation yields (11).
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C Data Appendix

C.1 Background on energy markets under consideration

Figure A.1: Evolution of renewables (RES) in total energy production
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(d) Share of wind in total production

Note: Share of renewable production in total energy production for each country. Imports and exports are
not considered for the construction of the variables.
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Figure A.2: Average capacity factor for solar and wind energies and day-ahead market
prices

0

.05

.1

.15

.2

.25

.3

%
0

50

100

150

200

250

EU
R

/M
W

h

2014 2016 2018 2020 2022 2024
year

Wholesale prices (DAM), lhs
Capacity factor, rhs

DE

(a) Germany

0

.05

.1

.15

.2

.25

.3

%

0

50

100

150

200

250

EU
R

/M
W

h
2014 2016 2018 2020 2022 2024

year

Wholesale prices (DAM), lhs
Capacity factor, rhs

FR

(b) France

0

.05

.1

.15

.2

.25

.3

%

0

50

100

150

200

250

EU
R

/M
W

h

2014 2016 2018 2020 2022 2024
year

Wholesale prices (DAM), lhs
Capacity factor, rhs

ES

(c) Spain

0

.05

.1

.15

.2

.25

.3

.35

.4

%

0

25

50

75

100

$/
M

W
h

2018 2019 2020 2021 2022 2023
year

Wholesale prices (DAM), lhs
Capacity factor, rhs

CA
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Note: Annual average day-ahead market prices and capacity factors for renewables (wind and solar combined).
Note that for the main analysis we convert US-$ to e using the average annual exchange rate over the sample
period.
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Figure A.3: Average hourly load, capacity factors, and DAM prices
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(b) France
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(c) Spain
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(d) California

Note: Hourly average load share (of maximum observe load) and capacity factors for wind and solar on left
axis, and DAM prices (in e/MWh, on right axis) based on main estimation samples. Time expressed in
Coordinated Universal Time (UTC) for European countries (one hour difference to Central European time)
and Pacific Standard Time.
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Figure A.4: Evolution of capacity factor

0

.1

.2

.3

.4

.5

E[
w
]

Jul-15 Jul-17 Jul-19 Jul-21 Jul-23
Month

Germany France
Spain California

Solar

(a) Solar

0

.1

.2

.3

.4

.5

.6

.7

E[
w
]

Jul-15 Jul-17 Jul-19 Jul-21 Jul-23
Month

Germany France
Spain California

Wind

(b) Wind

Notes: Evolution of the expected capacity factor (average capacity factor by month of sample. Panel (a) for
solar and panel (b) for wind.
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C.2 Monthly definition of the capture price

Table A.1: Bonus-malus in euros/MWh with optimal strike price - monthly aggregation

Wind Solar

Month DE FR ES CA DE FR ES CA
1 -7.316 -5.286 -2.667 -1.266 4.933 5.664 3.993 -7.474
2 -6.256 -3.801 -3.812 2.172 1.776 1.887 1.209 -13.581
3 -4.631 -2.316 -2.429 -0.831 -1.94 -0.995 0.745 -11.408
4 -3.167 -1.503 -1.98 -0.384 -4.295 -0.85 0.403 -8.909
5 -3.357 -1.172 -2.558 0.6 -2.161 -0.597 -0.104 -6.889
6 -4.009 -1.728 -2.087 0.368 -0.742 1.424 -0.472 -4.532
7 -5.124 -2.095 -1.865 0.595 -0.673 1.852 0.994 -2.815
8 -3.475 -1.221 -1.495 -0.087 -1.209 1.381 0.247 -7.193
9 -4.528 -2.164 -3.651 -0.683 -1.318 2.406 0.177 -5.735
10 -5.864 -3.373 -3.287 -2.666 0.608 2.063 -0.374 -7.945
11 -6.269 -4.218 -3.537 -1.254 2.154 2.252 1.066 -9.106
12 -7.784 -5.445 -4.043 -1.104 3.293 4.539 2.209 -8.262
Average DAM price 34.602 40.336 46.848 30.1 34.602 40.336 46.848 30.1

Notes: The table displays the bonus-malus for wind and solar technology defined as cov(ωi,p)
E[ωi]

for different

markets and time periods using monthly time aggregation. The average day-ahead market (DAM) price for
2015-2020 in e/MWh is reported for comparison. California data based on 2019-2020. Prices in US-$ have
been converted to e using the average annual exchange rates.
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Table A.2: Bonus-malus with optimal strike price, offshore and onshore wind in Germany in
euros/MWh

Month Offshore Onshore
1 -4.069 -7.89
2 -2.432 -6.918
3 -2.531 -4.939
4 -1.939 -3.363
5 -2.138 -3.701
6 -3.031 -4.199
7 -4.429 -5.311
8 -4.128 -3.504
9 -3.671 -5.09
10 -2.391 -6.569
11 -5.834 -6.731
12 -5.902 -8.525
2015-2020 -3.109 -5.685

Notes: Bonus-malus for offshore and onshore wind in Germany. Monthly aggregation and overall for the
sample period 2015-2020.
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C.3 Differentiating the bonus-malus by location and technology

Figure A.5: Simulated renewable output and wholesale market prices
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(a) Solar in South Germany, different panel orientation
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(b) Wind in South and North Germany

Notes: Panel (a) shows the average simulated hourly capacity factors for a 1 MW solar plant in Bavaria
(Germany) with different panel orientation (west, east, south-facing, and tracker) together with average DAM
prices over the sample period 2015-2020. Panel (b) considers the simulated capacity factor for a 1 MW wind
turbine in Southeast and Northwest Germany. Time expressed in Coordinated Universal Time (one hour
difference to Central European time).
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C.4 Bidding data from Spain and California

In order to decompose the bonus-malus in section 5, we need an estimate of SC ′′(Q∗
0), which

represents the slope of the supply curve function at the expected electricity production Q∗
0.

We rely on public bid data from the day-ahead market (DAM) in Spain and California to

obtain an estimate of this parameter.

Data. In the case of Spain, we obtain individual bid data for the years 2015 to 2020 from

the Iberian market operator OMIE.21 The data include all individual demand and supply

bids for each hour of the sample. OMIE reports separately the raw supply and demand bids

and the matched supply and demand bids. The matching is done after the bids have been

submitted, taking into account network constraints, ramping constraints, etc. Since we do

not know how the matching process would have affected unallocated bids (OMIE does not

disclose the exact matching process), we calculate the market clearing prices based on the

raw bids by equating cumulative supply and demand for each hour in the sample. Figure A.6

shows an example for a given hour in the sample.

Figure A.6: OMIE bidding data (Spain)
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Notes: Example supply and demand bids in the Iberian Market for Wednesday, 18 April 2019, 10am.

Since there are a few hours in which the Portuguese and Spanish markets are separated,

21Data for the last 5 years approximately can be downloaded from OMIE (https://www.omie.es/en/
file-access-list?parents=/. Data for previous years can be requested from the website. Main data files:
curva pbc XXXX.
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for our calculation we focus only on hours in which the market was integrated. Note that

the market separation only affects 5% of the total number of bids. For the period 2015-2020,

there are a total of 93 million (m) bids in the Iberian market, of which about 70m are supply

bids, that we use in the estimation.

For California (CAISO), we focus on the years 2019 to 2020 to match the main estimation

sample period. Data for the last 5 years can be obtained from OASIS.22 We focus our analysis

on the public bid data. The main challenge, however, is that in CAISO each bidder can offer

the same resource to the day-ahead energy market and potentially to one or more of the

ancillary services markets. In addition, there is locational pricing (each bid submitted in

CAISO is associated with a node of the power network) and different bid types (economic

bids, multi-stage bids, and convergence bids) need to be considered. Since we are interested

in a dataset comparable to the Spanish market, where we have individual price-quantity bids

in the DAM, we rely on the work of Liski and Vehviläinen (forthcoming) to pre-process the

data.23 Figure A.7 shows as example of the cumulative demand and supply bid curves based

on individual bids for the same day: Wednesday, 18 April 2019, 10am.

The 2019-2020 data consists of a total of 23m individual bids, of which 17.4m are supply

bids. We convert the hourly bids to e/MWh in line with the main estimates of the bonus-

malus and to be able to directly compare the European and US estimates.

Estimation. In a first step, for each hour of the sample we construct the market clearing

price based on the demand and supply bids so that all demand is covered. Note that we do

not consider electricity flows to neighboring markets (imports/exports). Second, we calculate

the average load for each hour of the day in the sample period.24 We take this average load

as the expected electricity production in that hour (Q∗
0). Finally, to determine the value of

the derivative, we first compute the market clearing price that corresponds to the average

load in a given hour, and then increase the load by 1% of the average load to determine

the counterfactual market clearing price that corresponds to this higher load level, pQ∗
1
. The

derivative is then given by (pQ∗
1
− pQ∗

0
)/∆load. Since there is heterogeneity in the hourly load

pattern, we report the load-weighted average in table 5 in the text and use this single value

to determine the value of the bonus-malus with the decomposition.

22https://oasis.caiso.com/mrioasis/logon.do
23The authors would like to thank Iivo Vehviläinen for making the dataset available and refer to the data

appendix in Liski and Vehviläinen (forthcoming) for a detailed description of the data cleaning procedure.
24Given the large amount of data in the case of Spain, we perform the estimation on an annual sample.
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Figure A.7: CAISO bidding data (California)
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Notes: Example supply and demand bids for Wednesday, 18 April 2019, 10am.
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