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Abstract

The analysis of cost functions is an important topic in econometrics both for scien-
tific studies and for industrial applications. The object of interest may be the cost of
a firm or the cost of a specific production, in particular in case of a proposal to a pro-
curement. Engineer methods evaluate the technical cost given the main characteristics
of the output using the decomposition of the production process in elementary tasks
and are based on physical laws. The error terms in these models may be viewed as
idiosyncratic chocs. The economist usually observes ex post the cost and the charac-
teristics of the product. The difference between theoretical cost and the observed one
may be modeled by the inefficiency of the production process. In this case, econometric
models are cost frontier models. In this paper we propose to take advantage of the
situation where we have information from both approaches. We consider a system of
two equations, one being a standard regression model (for the technical cost function)
and one being a stochastic frontier model for the economic cost function where ineffi-
ciencies are explicitly introduced. We derive estimators of this joint model and derive
its asymptotic properties. The models are presented in classical parametric approach,
with few assumptions on the stochastic properties of the joint error terms. We suggest
also a way to extend the model to a nonparametric approach, the latter provides an
original way to model and estimate nonparametric stochastic frontier models. The
techniques are illustrated in the case of the cost function for the distribution of gas in
France.1
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1 Introduction and the Basic Model

Economic theory defines the cost function for a unit of production as the relationship between

the cost of production and the level of production, considering the prices of the production

factors. The level of production can be described using various variables. For example, we

can consider the distribution of gas, electricity, mail services, or manufacturing telecommu-

nications satellites or aircraft engines, etc. It is not a macroeconomic cost neither a total

cost for the firm. The dimension of the product is described by a small number of variables

X (quantity of gas consumed and length of the network, quantity of mail distributed and

housing density, number of channels for transmission and weight of a satellite, power of the

aircraft engine, etc.).

In order to empirically use the prices of production factors (labor costs, capital costs,

etc.), we require samples in which these factors exhibit variation. This is often not the

case in cross-sectional data (for example, in France, these quantities do not vary across the

country). Therefore, we will only consider variables that explain the cost factors related

to the product. We will represent this function as ϕ(X), where X is the set of observable

variables that characterize the production.

The analysis of production and cost functions is an important topic in econometrics both

for scientific studies and for industrial applications. The object of interest may be the cost of

a firm or the cost of a specific production, in particular in case of a proposal to a procurement.

The requirement of a first evaluation of a production cost has motivated various approaches.

The so called “engineer methods”, or “normative methods”, evaluate the cost given the main

characteristics of the output using the decomposition of the production process in elementary

tasks and are based on physical laws. The error terms in these models may be viewed as

idiosyncratic chocs and the relation between the cost and the description of the output may

be considered as a conditional expectation.

The economist usually observes ex post the cost and the characteristics of the product.

The difference between theoretical cost and the observed one may be modeled by the ineffi-

ciency of production process. Then econometric models are cost frontier models, stochastic

frontier analysis for example.

Even if the formalization of a joint model mixing engineer and economist approach seems

original, the economists have been concerned by the importance of engineer approach in cost

analysis, as described in e.g. Chenery (1949), Marsden et al. (1974), Wibe (1984) and

Massol (2011).

• The engineering measure is obtained by aggregating theoretical costs necessary at each

step of the production process. These step-wise costs are calculated using software tools
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that take precise descriptions of the technical aspects of each step as inputs. These

software programs are often fine-tuned or calibrated based on databases associated

with the production sector and then adjusted according to the subjective knowledge

of the engineers. It can be considered that this measure of “Engineering Cost” or

“Technical Cost” (referred to as CT ) is closely related to the cost function ϕ(X) with

a random error having a zero mean. We express this as:

CT = ϕ(X) + u, where E(u|X) = 0. (1.1)

Additionally, it is commonly assumed that u|X follows a normal distribution with

mean 0 and variance σ2
u. Note that below we will not need to assume the normality. It

is important to note that CT is a theoretical cost derived through a specific technique

and is not directly observed. The error term u can be attributed to inaccuracies in the

calculations made at each step of the process and is also influenced by the particular

choice of the function ϕ(·). Note that the technical costs are generally expressed in

technical units (like kcal, kwh, etc.).

• The economic measure is derived from the accounting process of the firm. This cost is

observed and includes various factors that were not taken into account in the previous

approach. It is reasonable to assume that to within some random error, this “Economic

Cost” (referred to as CE) will be greater than CT , the engineering cost, and we define

this difference as inefficiency. Of course the economic costs are evaluated in monetary

units which are often different from the units for CT . To solve this problem we nor-

malize the two costs by their standard deviations: the two costs are “unit free”. This

does not affect the values of the elasticities that we derive below. Therefore, we can

express the economic cost as a typical stochastic frontier model, common in Stochastic

Frontier Analysis (SFA):

CE = ϕ(X) + v + η, where E(v|X) = 0 and η ≥ 0, (1.2)

with v representing the random error (here again we will not need the normality as-

sumption) and η ≥ 0 quantifying the inefficiency. It is usually assumed that η|X is

independent of the noise v (see e.g., Kumbhakar and Lovell, 2000). In our paper, we

will consider for η|X a quite flexible location-scale model defined as

η = µη(X) + ση(X)ξ, (1.3)

where E(ξ|X) = 0 and V(ξ|X) = 1 and the functions µη(·) and ση(·) take only positive

values. So we have

E(η|X) = µη(X), and V(η|X) = σ2
η(X). (1.4)
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Remark 1.1. Note that the location-scale specification for η is much more flexible than

the popular specification in the literature on SFA where most of the approaches assume that

η|X ∼ D+(ση(X)) where D+ is a distribution over positive real numbers belonging to some

one-parameter scale family with parameter ση(X) that may be dependent on X.1 In these

models, it is implicit that E(η|X) = C
√

V(η|X) for some constant C depending on the

chosen family, imposing a strong restriction on the first two conditional moments of the

efficiency term η.

From an econometric point of view, this leads us to consider a system of two equations

CT = ϕ(X) + u (1.5)

CE = ϕ(X) + v + η, (1.6)

where we assume (
u
v

∣∣∣∣X
)

∼ D2

((
0
0

)
,

(
σ2
u σuv

σuv σ2
v

))
, (1.7)

where D2 is any bivariate distribution with mean zero and covariance matrix described in

(1.7) and η follows the location-scale model defined in (1.3). So we expect some dependence

between u and v but both error terms are independent of X and of η|X .

We can select some flexible parametric models for the functions ϕ(X), µη(X) and ση(X).

It is important to note that since we will use least squares approaches for the estimation,

the normality assumption in (1.7) is not necessary but the independence assumptions are

required.

Additionally, it should be noted that without loss of generality, we could also include

in the functions µη(X,Z) and ση(X,Z) external or environmental factors Z, that might

influence the inefficiencies and that are not present in the engineering model identifying the

technical cost CT , and thus Z is not present in the function ϕ(X). Here we assume that

both error terms u and v are independent of (X,Z) and of η|X,Z.

The paper is organized as follows. In the next section we introduce the basic model in a

parametric setup and we derive its properties. We describe how a Non Linear Generalized

Least-Squares (NLGLS) method allows for consistent estimation of parametric specifications

for ϕ(X), µη(X,Z) and ση(X,Z). In Section 2.3 we apply the methodology with real data

from the distribution of gas in France. Section 3 presents our nonparametric extension

showing the identifiability of this general model, even in the case of single nonparametric

stochastic cost function. In Section 3.2 we show how this approach is easy to implement in

practice. Section 4 concludes summarizing the main contributions of our paper.

1A density f(·) belongs to a one-parameter scale family if it can be written as f(·) = (1/σ)f̃(·/σ) for
some σ > 0, where f̃(·) is any density on R+. Popular examples include the Half-Normal and Exponential
distributions, but also the Gamma and Weibull distributions with fixed shape parameters.
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2 A NLGLS Method for Parametric Specifications

2.1 The model and its estimation

Suppose we have chosen parametric specifications for the functions of interest, so that we

write ϕ(X) = ϕ(X ; β), µη(W ) = µη(W ; γµ) and ση(W ) = ση(W ; γσ) where W = (X,Z) and

the functions are known up to the parameters (β, γµ, γσ).

Due to the location-scale model for η in (1.3) and defining ε = η−E(η|W ), the equation

for the economic cost in (1.6) can be rewritten as

CE = ϕ(X ; β) + µη(W ) + v + ε,

= ϕ(X ; β) + µη(W ) + v∗ (2.1)

where v∗ = v + ε, and due to the assumptions above we have

E(v∗|X) = 0, (2.2)

V(v∗|W ) = E(v∗2|W ) = σ2
v∗(W ) = σ2

v + σ2
η(W ) (2.3)

Due the independence between (u, v) and η|W , we have also σuv∗ = σuv.

The simultaneous model (1.5)–(1.6) can then be written as

(
CT

CE

)
=

(
ϕ(X ; β)
ϕ(X ; β) + µη(X,Z)

)
+

(
u
v∗

)
, (2.4)

where now

E

(
u
v∗

∣∣∣∣X,Z

)
=

(
0
0

)
and Cov(u, v∗|X,Z) = ΣX,Z =

(
σ2
u σuv

σuv σ2
v∗(X,Z)

)
. (2.5)

With the chosen parametric specifications, the parameters of the model are therefore defined

as θ = (β, γµ) and λ = (σu, σv, σuv, γσ), where the dimensions of (β, γµ, γσ) depend on the

explanatory variables chosen in the respective models. Hence ΣX,Z = ΣX,Z,λ and σ2
v∗(X,Z) =

σ2
v∗(X,Z, σv, γσ). For instance we might choose for the main part of the model ϕ(X ; β) = β ′X

and µη(W ; γµ) = exp(γ′
µW ) where the first component of X is 1 to allow for a constant in

the linear parts of the model, but there is no constant in the vector Z.

Now we have a random sample of n units, providing observations (CT,i, CE,i, Xi, Zi) for

i = 1, . . . , n. Let X be the n × q matrix of selected regressors where the first column is in

a n-vector of ones, and let W = (X,Z) where there is no constants in the matrix Z. Let

also C being the n-vector of the costs Ci. Then we have the system of 2n equations

(
CT

CE

)
=

(
Xβ
Xβ + exp(W γµ)

)
+

(
u

v
∗

)
, (2.6)
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where

E

(
u

v∗

∣∣∣∣X,Z

)
=

(
0n

0n

)
and Cov(u, v∗|X,Z) = ΩX,Z,λ =

(
σ2
uIn σuvIn

σuvIn DX,Z

)
, (2.7)

with DX,Z = diag(dX,Z), where dX,Z is a n-vector with element dXi,Zi
= σ2

v∗(Xi, Zi, σv, γσ).

If ΩX,Z,λ were known, the NLGLS estimator of θ would be given by solving

θ̂n = argmin
θ

{
(u′

v
∗′)Ω−1

X,Z,λ

(
u

v
∗

)}
, (2.8)

where by (2.6), u = CT − Xβ and v
∗ = CE − Xβ − exp(W γµ). The computations can

be very fast when noting that, due to the bloc-diagonal structure of ΩX,Z,λ, we can avoid

the inversion of this (2n× 2n) matrix. Indeed we have after simple algebraic operations (by

using properties of partitioned matrices, see e.g. Härdle and Simar, 2019):

Ω−1
X,Z,λ =

(
diag(aX,Z) diag(bX,Z)
diag(bX,Z) diag(cX,Z)

)
, (2.9)

where aX,Z , bX,Z , cX,Z are n-vectors with elements for i = 1, . . . , n, respectively given by

aXi,Zi
= dXi,Zi

/(σ2
udXi,Zi

−σ2
uv), bXi,Zi

= −σuv/(σ
2
udXi,Zi

−σ2
uv), and cXi,Zi

= σ2
u/(σ

2
udXi,Zi

−σ2
uv).

(2.10)

Since ΩX,Z,λ depends on λ which is unknown, we may use an iterative method requiring

to specify some parametric model for σ2
v∗(Xi, Zi, σv, γσ), providing consistent estimates of

λ. In the next section, we show that the solution θ̂n of (2.8) benefits, under mild regularity

conditions, form the properties of usual estimators of parametric models, i.e.
√
n-consistency

and asymptotic normal distribution. In practice for inference about the values of θ, we use

bootstrap techniques. We will illustrate this in the application below.

Practical details of the iterations

The iterations to solve (2.8) can be done as follows: at step k = 0 we select as initial values

for the covariance matrix Ω
(0)
X,Z,λ = I2n, the order-2n identity matrix, then at step k = 1 we

compute α(k), β(k), γ
(k)
µ solving

arg min
α,β,γµ

{
(u′

v
∗′)(Ω

(k−1)
X,Z,λ)

−1

(
u

v
∗

)}
, (2.11)

which provides the n pairs of residuals (û(k), v̂∗,(k)). The empirical variance of the n residu-

als û(k) provides the new estimate σ̂
2,(k)
u and the empirical covariance between (û(k), v̂∗,(k))

provides σ̂
(k)
uv .
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Since dX,Z = E(v∗2|X,Z), the value of dX,Z is the conditional nonlinear regression of v∗2

on (X,Z). As v∗2 is not directly observed we regress its estimators v∗2,k on (X,Z) by some

selected parametric model, say

v∗2,k = σ2
v∗(X,Z, δ) + ζ, (2.12)

with E(ζ |X,Z) = 0, providing by (nonlinear) least squares a consistent estimator of δ and

the fitted values ̂̂v
∗2,(k)

= σ2
v∗(X,Z, δ̂) (see White 1980). All of these provide the new Ω

(k)
X,Z,λ

by (2.7).

We redefine k = k + 1 and iterate the process till convergence of the solutions to obtain

β̂n, γ̂µ,n. In our application below, we achieve convergence after a few iterations.

Regularization of the computation of the NLGLS in (2.8)

The optimal weighting matrix in equation (2.8) is Ω−1
X,Z,λ. However, when the size ofΩX,Z,λ is

large, the estimated matrix Ω̂X,Z,λ may be not invertible. Actually the smallest eigenvalues

of ΩX,Z,λ will decline to zero when the dimension increases and the estimated values of these

eigen values may be extremely close to zero. In that case, the inversion of ΩX,Z,λ should be

regularized. A possible regularization is the Tikhonov regularization where ΩX,Z,λ is replaced

by ωI2n +ΩX,Z,λ, where the eigenvalues are bounded by ω > 0. In our particular case, the

regularization only occurs in the South West block DX,Z and the regularization may be[
ω

(
0n,n 0n,n

0n,n In

)
+ΩX,Z,λ

]
. For the Tikhonov regularization of the weighting matrix in

GMM see Carasco and Florens (2000).

Remark 2.1. Following the Remark 1.1, the model specification and the estimation procedure

could easily be adapted the case of a simple SFA model with a single equation like (1.2)–(1.3)

for modeling e.g. CE alone. Its estimation only requires the nonlinear least squares described

above.

2.2 Asymptotic properties

The model we describe above in (2.4) is a particular case of the general multivariate, non-

linear, heteroskedastic regression model defined by

Y = φ(W ; θ) + U, with E(U |W ) = 0 and V(U |W ) = ΣW,λ, (2.13)

where Y ∈ R
g, X ∈ R

qx , W ∈ R
qw , θ ∈ R

p and λ ∈ R
ℓ, and where θ and λ are independent

parameters (see e.g. Cameron and Trivedi, 2005, Section 6.10.3). In our case, W = (X,Z)

and g = 2 since Y = (CT CE)
′, U = (u v∗)′ and ΣW,λ was introduced in (2.5). Note that θ =
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(β, γµ) and λ = (σu, σv, σuv, γσ). The parameter θ is locally identified if rank
{
E

(
∂φ′

∂θ

∂φ

∂θ′

)}
=

p and λ is locally identified if ΣX,Z,λ is a one to one function of λ.

In our particular case, with the chosen models leading to (2.6), β is identified by the first

equation in (2.4) if rank {E (XX ′)} = qx (where we may have a constant in X). Then γµ is

locally identified by the second equation in (2.4), if rank {E (WW ′ exp(2γµ))} = qw, i.e. if

rank {E (WW ′)} = qw.

If λ = (σu, σv, σuv, γσ) is given, the estimation of θ = (α, β, γµ) is obtained by

θ̂ = argmin
θ

n∑

i=1

U ′

iΣ
−1
X,Z,,λUi, (2.14)

or by solving in θ the system of first order equations
∑n

i=1 U
′

iΣ
−1
X,Z,λ

∂Ui

∂θ′
= 0. The estimator

θ̂ is almost surely convergent to θ and

√
n
(
θ̂ − θ

)
L−→ Np

(
0,

[
E

(
∂φ′

∂θ
Σ−1

X,Z,λ

∂φ

∂θ′

)]−1
)
. (2.15)

If λ is unknown we can use an iterative method as described above to get consistent estimates

of λ in an appropriate model for ΣX,Z,λ (see e.g. the model in (2.12)). The asymptotic

properties of the estimator of θ remain identical as if λ was known.

The asymptotic normality of the estimator justifies the use of the multinomial bootstrap

for the evaluation of confidence intervals (see e.g. Mammen, 1992).

2.3 Application to the distribution of gas in France

We show how our method works with a dataset coming from the company “Gaz Réseau de

Distribution de France” (GRDF). We have information on 1218 distribution units for the

year 2019. In this illustrative example, we will consider a cost variable C (the annual cost of

the piping network) and two outputs X1 and X2 being the length of the piping network (in

kms) and the gas consumption by the customers (in MWh/year). The managers at GRDF

consider the former (X1) as a cost driver which induces the cost and not as an input. For

the cost we have the values of the “Technical cost” (CT ) prepared by the engineers and the

observed “Economic cost” (CE).

There are some outliers in the data, so we use robust techniques to eliminate these

extreme points. We use the boxplots approach and eliminate the data points having a value

for any of the variables outside the whiskers of the boxes, as described, e.g. in Section 1.1 of

Härdle and Simar (2019). This reduces the sample size to 1020 units. As explained above,

to avoid different units for the two costs, we divide each cost by its standard deviation.
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The scale of the two outputs X being quite different, we divide also each X by its standard

deviation (sX1
= 40.58 and sX2

= 51.14× 103).

For the location model for the inefficiencies, we will investigate the effect of an external

environmental factor Z which is a measure of the density of the network (it is the ratio of

the number of customers by the area covered by the unit). Basic summary statistics of the

resulting variables are displayed in Table 1.

Table 1: Summary statistics on the variables with n = 1020. Qa is the a% quantile of the
variable.

variable min Q25 Q50 Q75 max
CT 0.0460 0.1625 0.3625 0.9790 4.9525
CE 0.0043 0.3926 0.7468 1.4655 5.6876

scaled X1 0.0041 0.4418 0.8293 1.5923 5.2403
scaled X2 0.0041 0.2408 0.5606 1.2553 5.2739

Z 0.0010 0.0888 0.1749 0.3252 1.7901

The correlation matrix between the explanatory variables is given in Table 2, where we

note that Z is positively, but slightly, correlated with the two outputs and that, as expected,

the two outputs are positively correlated. The left panel of Figure 1 gives some insight on

the distribution of the variable Z in our sample. The right panel gives an idea of the range

of the n observed pairs (X1i, X2i) where we see, as expected that there are few observations

in the NW and in the SE parts of the figure.

Table 2: Correlation matrix between X1, X2 and Z.

X1 X2 Z
X1 1.0000 0.7628 0.3535
X2 0.7628 1.0000 0.4474
Z 0.3535 0.4474 1.0000

For the cost function ϕ(X ; β) = β ′X we select a flexible quadratic model with X ′ =

(1 X1 X2 X2
1 X2

2 X1X2), so q = 6. The location model for the inefficiencies may be

written as µη(X,Z; γµ) = exp(γ′
µ(X Z)) where here the dimension of γµ = q + 1 = 7. In

Table 3 we give the resulting estimator of the parameters and their 95% confidence intervals

(obtained by 1000 bootstrap replications, using the symmetric bootstrap as in Hall (1988))

are displayed in the following tables.
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Figure 1: Left panel: Histogram of the values of Z. Right panel: Plot of the n observed
outputs (X1i, X2i).

Table 3: Point estimates and 95% confidence intervals of θ, for the cost and inefficiency
functions.

variable θ̂k lower bound upper bound
Cost function ϕ(·)

Cst -0.0195 -0.0243 -0.0147
X1 0.2651 0.2529 0.2774
X2 0.1231 0.1127 0.1336
X2

1 0.0529 0.0405 0.0654
X2

2 -0.0496 -0.0600 -0.0391
X1X2 0.1924 0.1699 0.2149

Expected Inefficiency µη(·)
Cst -2.1722 -2.3195 -2.0248
X1 1.7311 1.3302 2.1319
X2 0.3123 -0.1071 0.7317
X2

1 -0.1866 -0.3882 0.0150
X2

2 0.0583 -0.0276 0.1443
X1X2 -0.6264 -0.9582 -0.2946
Z -0.1867 -0.5351 0.1617

We see that most of the selected variables are significant for the cost function and also

for the expected inefficiencies model, where the effect of Z seems mostly negative but not in

a fully significant way. Probably most of the variations of the inefficiencies are controlled by

our flexible model for the X variables. This will be confirmed in Figure 5 below where we

will see that the effect of Z is dominated by the effects of the X components.
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We observe that the sign of the coefficients of squares of the Xs are both very close

to zero, but are still have a significant sign (positive for X2
1 and negative for X2

2 ), but the

interaction term is clearly positive, which complicates the analysis. This will be confirmed

in Figure 2 below where the surface of the cost function is twisted and no clear convexity

or concavity in the direction of X1 or of X2 is detected. The plot of the elasticities below in

Figure 6 will give more insight on the possible scale economies.

As explained in equation (2.12), we select a simple model for the variance of v∗. We

define

v∗2 = (δ1 + δ2Z)
2 + ζ, (2.16)

where E(ζ |Z) = 0. We tried several other specifications, a.o., to include or not the X

variables in the model , but without introducing significant results and with almost no effect

on the estimation of the cost functions and the location model for the inefficiencies. This

simple model can also be written as

v∗2 = δ21 + 2δ1δ2Z + δ22Z
2 + ζ, (2.17)

and the results are given in Table 4.

Table 4: Point estimates and 95% confidence intervals for the parameters of the variance
function in (2.17).

parameter Estimates lower bound upper bound
δ21 0.0512 0.0337 0.0687

2δ1δ2 0.1157 0.0642 0.1671
δ22 0.0653 -0.0182 0.1488

Finally to illustrate the results of our estimated model we provide some appealing figures.

Figure 2 displays the data points and the fitted cost function for both the technical costs CT

and for the economic cost CE. We see how well the technical costs CT is fitted by our model

and we also note that most of the data points for the economic cost CE lies above the cost

frontier, due to inefficiencies.
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Figure 2: Left panel, data points of the observed technical costs CT and the fitted cost frontier
ϕ(Xi). Right panel, data points of the observed economic costs CE and the same fitted cost
frontier.

Note that the global quality of parametric model can be appreciated through its R2: we

have for CT , R
2
CT

= 0.9991 and for the model in CE , we have R2
CE

= 0.9114. This may also

be viewed in Figures 3.
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Quality of the fit: sample fitted values vs observed C
T
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Quality of the fit of real CE: n fitted values vs observed C
E

Figure 3: Left panel, fitted values of technical costs ĈT = ϕ̂(Xi, β) versus observed CT . Right

panel, fitted values of economic costs ĈE = ϕ̂(Xi, β) + µ̂η(Xi, Zi), versus observed CE.

Figure 4 shows the distribution of the expected inefficiencies µ̂η(Xi, Zi) obtained by our

model for i = 1, . . . , n.

11



Figure 4: Histogram of the n expected inefficiencies µ̂η(Xi, Zi).

Figure 5: Fitted values µ̂η(X,Z) as a function of X for fixed values of Z at its 3 quartiles.

In order to analyze the effect of the X on the expected inefficiencies for various values

of Z. We select 3 values of Z (its 3 quartiles). The results are displayed in Figure 5 for a
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grid of values for X . This confirm that there is a slight shift effect due to Z by the scaling

exp(γ̂zZ): with the value γ̂z = −01867 this scaling factor takes the values 0.9836, 0.9679 and

0.9416, respectively for the 3 quartiles of Z. These small changes are not visible in Figure 5.

It may also be useful to analyze the estimates elasticities of the cost function with respect

to the two outputs. Since the model is quadratic we have one estimated value for each data

point. The boxplots in Figure 6 show that these cost elasticities are higher when computed

relative to changes in the length of the network than relative to the level of consumption in

the network. It seems we have mainly diseconomies of scale relative to X1, the length of the

network but scale of economies relative to X2 the gas consumption of the customers.

1 2

0.2

0.4

0.6

0.8

1

1.2

1.4

Cost Elasticity: left wrt X1 = length; right wrt X2 = consumption

Figure 6: Elasticities of cost with respect to X1, the length of the network and with respect to
X2, the consumption in the network. Some outlying values (less than 5%) have been dropped
out.

Finally, it could be of interest for the practitioner and the manager of the network to

have a look on the individual measures of expected inefficiencies to identify other sources of

inefficiencies. These are provided for each data point by µ̂η(Xi, Zi) for i = 1, . . . , n.

3 Extension to A Nonparametric Model

3.1 The Nonparametric Model and its Properties

The results of the preceding sections indicate that in our application, the chosen parametric

model seems to be adequate to fit the data. But this is not always the case and then it is

appealing to consider more flexible models and thus investigate how to extended our model

to nonparametric models. We will propose nonparametric model for the cost function (in

place of ϕ(X, β)) and for the expected inefficiency (in place of µη(X,Z, γµ)).
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For the cost function, say m(X), we can use local linear approaches (see e.g. Fan and

Gijbels, 1996) and we can select local exponential estimators for the location model, say

exp(g(X,Z)), in order to satisfy the sign constraint (see Ziegelmann, 2002). In a nutshell,

the idea is to follow the approach described above but by localizing the estimation in (2.8)

near each data point by using an appropriate kernel function. But, as explained below,

due to the particularity of our setup, we will not localize in Z to obtain an estimate of the

engineering cost CT that does not depend on the values of Zi.

One might be tempted to extend the model (2.4) as follows. We assume that X ∈ R
d is

the vector of outputs and W = (X,Z) ∈ R
qw

(
CT

CE

)
=

(
m(X)

m(X) + exp(g(X,Z))

)
+

(
u
v∗

)
, (3.1)

where E(u|X,Z) = 0 and E(v∗|X,Z) = 0. Now, for any w = (x, z) in a neighborhood of a

point w0 = (x0, z0), we have the local linear and local exponential approximations

m(x) = m0 +m′

1(x− x0) (3.2)

µη(x, z) = exp {g0 + g′1(w − w0)} . (3.3)

We could then obtain for any w0 = (x0, z0) the local estimators of the model by using

weighted (by some kernel functions) (non-linear) least squares methods. By applying this

approach, clearly the estimates of the cost function in CT would depend on the local value

z0. As pointed above, in our setup, the engineering cost is not defined as dependent on any

external factors Z so this approach is not valid.

We will rather use a model that localize only on the variables X and we will select a

linear model for the impact of Z (any other parametric specification could be chosen) on the

expected inefficiency. We have
(

CT

CE

)
=

(
m(X)

m(X) + exp {g(X) + γ′Z}

)
+

(
u
v∗

)
. (3.4)

Identification

Clearly, the function m(X) is identified by the first equation of (3.4), but still even without

this first equation, the function is also identified by only the second equation of (3.4).

The argument is going along the next lines. E(CE |X,Z) = f(m, g, γ) is identified if

f(m̄, ḡ, γ̄) = f(m, g, γ) implies (m, g, γ) = (m̄, ḡ, γ̄). We need the quite mild following

assumption for our argument.

Assumption 3.1. X and Z are variational independent, i.e., for any function a of X and

for all j,
∂

∂Zj

a(X) = 0. (3.5)
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This assumption implies, a.o., that the support of the variables X does not depend on

Z. Suppose, without loss of generality that γ1, the coefficient of Z1 is different from zero.

We can compute
∂

∂Z1
E(CE |X,Z) = γ1 exp {g(X) + γ′Z} . (3.6)

We verify now that this derivative is identified. Consider two values of the parameters (g, γ)

and (ḡ, γ̄). If we have

γ1 exp {g(X) + γ′Z} = γ̄1 exp {ḡ(X) + γ̄′Z} , (3.7)

we have also
γ̄1
γ1

exp {(γ̄ − γ)′Z} =
g(X)

ḡ(X)
(3.8)

If we derive with respect to Z we have

γ̄1
γ1

(γ̄ − γ) exp {(γ̄ − γ)′Z} = 0, (3.9)

which implies that we must have γ = γ̄. So, by (3.8), we have also g = ḡ and therefore

necessarily m = m̄. So we see that even with only the equation on CE , our nonparametric

stochastic cost function is identified (under Assumption 3.1).2

Estimation by local linearisation

Now we have for any w = (x, z) in a neighborhood of a point w0 = (x0, z), the local linear

and local exponential approximations

m(x) = m0 +m′

1(x− x0) (3.10)

µη(x, z) = exp {g0 + g′1(x− x0) + γ′z} . (3.11)

The estimation of the model can go along the following lines. Define for each observation

i = 1, . . . , n, the residuals

ui = CT,i − [m0 +m′

1(Xi − x0)] (3.12)

vi = CE,i − [{m0 +m′

1(Xi − x0)}+ exp {g0 + g′1(Xi − x0) + γ′Zi}] . (3.13)

2Interestingly, we could thus apply the procedure described in this section to an usual stochastic frontier
model (here in the cost orientation), where we only have data on the economic costs, without the knowledge
of the engineering costs. This means a stochastic cost frontier model ignoring the first equation in model
(3.4). To the best of our knowledge this provides an original way to handle nonparametric stochastic frontier
models.
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where m0, g0 ∈ R and m1, g1 ∈ R
d. Then a simple local estimators could be obtained by

solving in m = (m0, m1) ∈ R
d+1, g = (g0, g1) ∈ R

d+1 and in γ ∈ R the following weighted

least squares problem

(
m̂(x0), ĝ(x0), γ̂(x0)

)
= arg min

m,g,γ

{
(u′

v
′)W

(
u

v

)}
, (3.14)

where u
′ = (u1, . . . , un), v

′ = (v1, . . . , vn) and W is the (2n× 2n) matrix of weights

W =

(
Wn 0n,n
0n,n Wn

)
, (3.15)

with 0n,n being a matrix of zeros and Wn = diag(Kh(Xi−x0)) is the standard n×n diagonal

matrix of the kernel weights (in practice we will use product kernels). Note that the solution

in γ of (3.14) will depend on the chosen local value of x0. The bandwidths h = (h1, . . . , hd)

may be computed by leave-one-out cross validation (here on the pairs (CT,i, CE,i), taking for

each i, the sum of the two). In practice we compute these local estimates for x0 being one

of the observations Xj for j = 1, . . . , n.

The above approach in (3.14)–(3.15) may work but it assumes implicitly that the two

functions m(x) and g(x) have similar shape, allowing a common bandwidth h ∈ R
d for

localizing both parts of the models. There is no reasons why it should always be the case,

so it is more appropriate to allow different shapes of the two functions, and so to use two

different bandwidths, say hm ∈ R
d and hg ∈ R

d for the two parts of the model.

This can be achieved in an iteration process in the spirit of backfitting (see e.g. Mammen

and Park, 2005). We could start the process with initial values of the estimators obtained

by the joint localisation with a common bandwidth h ∈ R
d described above in (3.14)–(3.15).

Practically the initial step, with k = 0, is given by the solution for i = 1, . . . , n of

(m̂(0)(Xi),ĝ
(0)(Xi), γ̂

(0)(Xi)) = arg min
m,g,γ

n∑

j=1

{
[(CT,j − (m0 +m′

1(Xj −Xi))]
2
Kh(Xj −Xi)

+ [CE,j − (m0 +m′

1(Xj −Xi) + exp(g0 + g′1(Xj −Xi) + γ′Zj)]
2
Kh(Xj −Xi)

}
,

(3.16)

where the common h may be computed by the usual least squares leave-one-out cross val-

idation (LSCV). We will now compute two different localisations for the two parts of the

model each with its own vector of bandwidths. The iteration goes then as follows:

[1] Set k = k + 1. We first start with the expected inefficiency term and solve for i =
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1, . . . , n the problems

(ĝ(k)(Xi), γ̂
(k)(Xi)) =

argmin
g,γ

n∑

j=1

{[
CE,j −m

(k−1)
0 (Xj)− exp(g0 + g′1(Xj −Xi) + γ′Zj)

]2
Khg

(Xj −Xi)

}
,

(3.17)

where now a specific bandwidth hgR
d can be specified to the usual LSCV.

[2] Having the solutions (g(k), γ(k)), the second step of the iteration k is given by the

solution for i = 1, . . . , n tof the problems

m̂(k)(Xi) = argmin
m

n∑

j=1

{
[CT,j − (m0 +m′

1(Xj −Xi))]
2
Khm

(Xj −Xi)

+
[
CE,j − exp(g

(k)
0 (Xj) + γ(k)′(Xj)Zj)− (m0 +m′

1(Xj −Xi))
]2

Khm
(Xj −Xi)

}
,

(3.18)

where the bandwidths hm ∈ R
d can be selected by LSCV.

As in the backfitting algorithm, we iterate till convergence of the solutions.

The asymptotic properties of backfitting methods have been investigated by Fan et al.

(1998) and Mammen et al. (1999). Roughly speaking the estimates shares the usual proper-

ties of the nonparametric estimators (local linear, Fan and Gijbels, 1996 or local exponential,

Ziegelman, 2002), with the rate of convergence
√
nhd driven by the number of variables (d)

used in each step of the backfitting algorithm.

3.2 Nonparametric Approach for our Application

We use the same data set on the distribution of gas and estimate the model (3.4) with the

algorithm described above. The iterations were mostly stabilized after 5 or 6 iterations (for

each of the fitted values of the cost and of the expected inefficiency, a change of value less

than 10−6 from one iteration to the next one). We give the final results after 10 iterations.3

As above we have 2 outputs (X1 = L, the length of the network and X2 = C, the

consumption of gas of the network). The external variable Z is as above the density of the

network, and to illustrate the flexibility of our approach, we use a quadratic model γ′

1Z+γ′

2Z
2

for the effect of Z on the expected inefficiencies.4 The model can thus be written as
(

CT

CE

)
=

(
m(X)

m(X) + exp {g(X) + γ′

1Z + γ′

2Z
2}

)
+

(
u
v∗

)
.

3For our large sample of n = 1021 data, it took less than 1h30 on a PC, with a processor Intel(R), 3.10Ghz
with 6 cores, 16G Ram. The iteration 0, took 14 minutes.

4We did the exercise without the variable Z2 and we obtained quite similar results.
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with E(u|X,Z) = 0 and E(v∗|X,Z) = 0

The results can be summarized as follows: the starting value (iteration k = 0) provided

a common bandwidth h′ = (hL hC) = (0.1999 0.2314) whereas after the 10 iterations we

obtain the values h′

m = (3.9389 0.3045) for estimating m(X) and h′

g = (0.5520 3.5671 for

estimating exp {g(X) + γ′

1Z + γ′

2Z
2}. Clearly quite different values of the bandwidths for

each component.

Figure 7 displays the data points and the fitted cost function for both CT and CE on a

grid of values for (X1, X2).

Figure 7: Nonparametric approach: left panel, data points of the observed technical costs CT

and the fitted cost frontier m̂0(Xi). Right panel, data points of the observed economic costs
CE and the same fitted cost frontier.

The final fit is very good and, as expected, quite similar to what we obtain for the quite

flexible parametric model used in Section 2.3, see Figure 2. The same comments apply for

both pictures. Here again, the global quality of nonparametric model can be appreciated

through its R2. We have R2
CT

= 0.9942 and R2
CE

= 0.9305. This may also be viewed in

Figure 8, which slightly improve the fits when compared to its parametric counterparts in

Figure 3.
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Figure 8: Nonparametric approach: left panel, fitted values of technical costs ĈT =
m̂0(Xi) versus observed CT . Right panel, fitted values of economic costs ĈE = m̂0(Xi) +
exp {ĝ0(Xi) + γ̂1(Xi)Zi + γ̂2(Xi)Z

2
i }, versus observed CE.

Figure 9 shows the distribution of the expected inefficiencies

µ̂η(Xi, Zi) = exp
{
ĝ0(Xi) + γ̂1(Xi)Zi + γ̂2(Xi)Z

2
i

}
(3.19)

obtained for i = 1, . . . , n, in the nonparametric approach. It is again quite similar to the

one obtained in our parametric approach, in Figure 4, slightly more concentrated below the

value 1 (less inefficiencies in CE).

Figure 9: Nonparametric approach. Histogram of the n expected inefficiencies µ̂η(Xi, Zi).

Here again, we can analyze the effect of the two outputs on the expected inefficiencies

for 3 fixed values of Z (its 3 quartiles). We can see in Figure 10 that Z has very low effect
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on the level of the expected inefficiencies. Compared with Figure 5 of the parametric case,

we see that the peaks for small values of X2 = C and large values of X1 = L is much less

important here. This is probably due to the higher flexibility of the nonparametric model.

Interestingly we provide in Figure the “scaling effect” of Z on the expected inefficiencies

(i.e. exp {γ̂1(Xi)Zi + γ̂2(Xi)Z
2
i }) as a function of Z. We see the global decreasing effect of

Z, with a lot of variations, with a slight positive upward curvature, probably introduced by

the term Z2. This is confirmed by Figure 12 which displays the boxplots of n estimated

values of γ̂1(Xi) and γ̂2(Xi).

Figure 10: Nonparametric approach: fitted values µ̂η(X,Z) for a grid of values for X and
for a fixed value of Z at its 3 quartiles.
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Figure 11: Nonparametric approach. Scaling effect of Z on the expected inefficiencies
µ̂η(Xi, Zi). A couple of numerical outliers (huge values) have been eliminated.
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Figure 12: Nonparametric approach: boxplots of n estimated values of γ̂1(Xi) and γ̂2(Xi). A
few outlying values (less than 6%) have been eliminated.

Finally, the nonparametric approach gives more additional results, for instance we can

reproduce the boxplots of the first derivatives of the cost function with respect to the two

outputs, i.e. m̂1,X1
(Xi) and m̂1,X2

(Xi). We have for each derivatives n values and their

boxplots are provided in Figure 13.
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Figure 13: Nonparametric approach: boxplots of the n estimated derivatives m̂1,X1
(Xi) and

m̂1,X2
(Xi).

In fact we can also provide the boxplots of the estimated elasticities as we did for our

parametric model in Figure 6. The results are shown in Figure 14. Again, as in the para-

metric case we see that we have mainly diseconomies of scale relative to X1, the length of

the network but scale of economies relative to X2 the gas consumption of the customers.
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Figure 14: Elasticities of cost with respect to X1, the length of the network and with respect
to X2, the consumption in the network. Some outlying values (less than 10%) have been
dropped out.

4 Conclusions

This paper analyzes situations in which cost evaluations for producing goods can be calcu-

lated using various ”normative,” ”technical,” or ”engineering” methods by decomposing the
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process into elementary tasks based on the characteristics of the outputs. Some error terms

may be interpreted as idiosyncratic approximation errors. Conversely, economists rely on an

accounting measure of the real cost; however, this includes the potential for inefficiencies in

the production process.

Our first original contribution is the proposal of a model that reconciles or combines both

types of cost measures. This results in a two-equation model: one regression for the technical

cost and one stochastic cost frontier for the economic cost. We develop the methodology for

managing this combination, initially within a purely parametric framework. Since our model

accommodates least-squares methods, there is no need to specify any stochastic assumptions

regarding the error terms or the inefficiency distribution.

Our second original contribution is a nonparametric extension of the model and we prove

the identifiability of the model. By doing so, we present also a novel approach to modeling

nonparametric stochastic frontier models, specifically in a cost-oriented context.

These methodologies were inspired by the analysis of the cost function for gas distribution.

In this specific dataset, the flexible parametric model we selected produces results comparable

to those of the more flexible nonparametric model. However, this finding is not universally

applicable, as the nonparametric approach offers a considerably less restrictive framework

for modeling cost functions. In summary, our application reveals diseconomies of scale

concerning the cost relative to the length of the network and economies of scale regarding

the gas consumption of customers. We have also observed some impact of these two outputs

on expected inefficiency. However, the only available external factor that might influence

these inefficiencies–the density of the network–appears to have a positive effect on efficiency,

albeit on a smaller scale. One way to improve the model would be to explore additional

external factors that could enhance the fit of expected inefficiencies and, consequently, the

observed economic costs.
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