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The use of quantiles forms the basis of the overwhelming majority of current risk man-
agement procedures. Yet, there exist alternative instruments of risk protection that are
not (unlike quantiles) based solely on the frequency of tail observations and instead take
their severity into account, while adhering to axiomatic requirements. These alternative
risk measures have seen increasing interest in the past decade. The current state of de-
velopment of risk measures beyond quantiles is discussed with a particular focus on three
prominent classes: (i) Expected Shortfall (ES) and extremiles, part of the class of spectral
and distortion risk measures, (ii) expectiles, which constitute a particular case of general-
ized M-quantiles, and (iii) systemic risk measures including Marginal Expected Shortfall
(MES). A structured overview of their strengths and weaknesses with respect to axiomatic
theory, estimation properties, and ease-of-use by risk practitioners will be given. In addition,
challenges arising in the asymptotics and mathematical developments will be discussed and
the use of each of the ES, extremile, expectile and MES risk measures will be illustrated
with real data applications to storm losses in China, tornado losses in the United States,
and financial returns series.

1.1 Introduction

Tail risk assessment is concerned with the analysis of rare events that carry potential serious
impacts on healthcare systems, the environment or the economy. This includes geohazards
and disaster risk, asset/investment risk, systemic risk and emerging risks such as climate,
epidemiological, and cybersecurity risks, that are crucial in finance and insurance. The
risk of a random position X is usually quantified by a risk measure MpXq, where M
maps a relevant space of random variables to R. Of practical interest are law-invariant risk
measures in the sense that MpXq “ MpY q if the random variables X and Y have the same
distribution: all the risk measures we consider throughout this chapter are law-invariant.

In banking and finance, choosing an appropriate risk measure is of great importance.
An influential article by [6] provides a meaningful axiomatic foundation for coherent risk
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2 Risk measures beyond quantiles

measures. In this chapter, we adopt the convention that the financial position of interest X
is a real-valued random variable, and a positive value of X denotes a loss (e.g. X represents
negative log-returns). A position Y is then said to be riskier than X ifMpY q ě MpXq. The
risk functional M is said to be coherent if it satisfies the following four requirements:

• Translation equivariance, or equivalently MpX ` aq “ MpXq ` a for all a P R;

• Positive homogeneity, which amounts to MpλXq “ λMpXq for all λ ě 0;

• Monotonicity, namely, Y ď X with probability 1 implies that MpY q ď MpXq;

• Subadditivity, in the sense that MpX ` Y q ď MpXq `MpY q.

An additional important requirement imposed by [1] is comonotonic additivity, meaning
that MpX`Y q “ MpXq `MpY q for comonotonic random variables X and Y (two random
variables X and Y are said to be comonotonic if they can be written as nondecreasing
functions of one another). Coherent and comonotonically additive risk measures that are
also continuous (see Chapter 4 in [39]) are exactly obtained from spectral risk measures of
the form

Mϕ “ MϕpXq :“

ż 1

0

ϕptq qt dt,

where ϕ P L1r0, 1s is an admissible risk spectrum (i.e. non-negative, non-increasing in the

L1´sense, with
ş1

0
ϕptqdt “ 1, see Definitions 2.3 and 2.4 in [1]), and qτ :“ inftx P R :

F pxq ě τu, τ P p0, 1q, is the τth quantile of X, with F being its distribution function, see
Theorems 4.64 p.189 and 4.87 p.200 in [39]. When ϕ is piecewise continuous, [47] show that
spectral risk measures belong to the Wang [70] family of distortion risk measures

Mg “ MgpXq :“

ż 1

0

q1´t dgptq,

where g is a concave, non-decreasing function on r0, 1s, with gp0q “ 0 and gp1q “ 1. This,
in turn, makes it possible to write spectral/distortion risk measures as Choquet integrals,
see Definition 4.70 on p.192 in [39].

Arguably, the most common risk measure used in all fields of application is Value-at-Risk
at level τ pVaRτ q for τ P p0, 1q. A main issue with VaRτ ” qτ in insurance and financial
market sectors is its failure to be subadditive in general [1]. It is also often criticized for
being unable to account for the size of losses beyond the level τ [17]. A better alternative
to VaRτ in both of these respects is Expected Shortfall (ES) at level τ pESτ q defined by [3]
as

ESτ :“
1

1 ´ τ

ż 1

τ

qt dt.

When the distribution of X is continuous, this is also known as the τ -Conditional Value-at-
Risk, which gives the expectation of X conditional on X ą qτ , namely, EpX |X ą qτ q, see
[64]. Being a spectral risk measure generated by the risk aversion function ϕτ ptq “ 1

1´τ 1pt ě

τq, ESτ is coherent and comonotonically additive. It is preferred to VaRτ by practitioners
who are concerned with exposure to a catastrophic event, and by major regulators, including
the EU, UK, Australia and Canada, which will be requiring the use of ES97.5%, rather than
VaR99%, in alternative internal models from 1 January 2025. In the EU, this is codified
by Article 325ba(1) of Regulation (EU) No 2019/876, which is a revision of the Capital
Requirements Regulation (EU) No 575/2013, implementing the latest Basel Committee on
Banking Supervision rules.

The ES was criticized though for its conservatism and non-robustness due to its de-
pendency only on the tail event [16, 53], although the debate is very much open about
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the relevance of robustness in the context of risk measurement [54, 55, 56]. An alternative
measure which may steer an advantageous middle course between VaRτ and ESτ in terms
of sensitivity to the magnitude of extremes is the τth expectile

eτ :“ argmin
θPR

E
␣

|τ ´ 1pX ď θq|pX ´ θq2 ´ |τ ´ 1pX ď 0q|X2
(

which is well-defined, finite and unique as soon as E|X| ă 8. This concept was first intro-
duced by [61] and has been considered as a risk measure by [58]. Being an L2´minimizer
formulated in a way that is analogous to the L1´formulation of the τth quantile [52],

qτ P argmin
θPR

E t|τ ´ 1pX ď θq||X ´ θ| ´ |τ ´ 1pX ď 0q||X|u ,

the expectile is easy to compute [26]. Its link with ES, as suggested by [68], inspired [22] to
introduce a coherent expectile-based form of ES as

XESτ :“
1

1 ´ τ

ż 1

τ

et dt

obtained by substituting the expectile eτ in place of the quantile qτ in the standard form
ESτ . While expectile-based risk measures have a less natural interpretation and are not
comonotonically additive [2], their adoption as reasonable alternatives to VaRτ and ESτ
has recently attracted a lot of interest, see for instance [8, 9, 20, 32, 57, 63, 73].

Both expectiles and quantiles can be seen as M-quantiles [11]. M-quantiles are related
to M-functionals of location in the same way quantiles are related to the median [51]. The
τth M-quantile of a random variable X is essentially defined as

θψτ :“ argmin
θPR

E t|τ ´ 1pX ď θq|ψpX ´ θq ´ |τ ´ 1pX ď 0q|ψpXqu

based on a suitable loss function ψ. The quantiles qτ are obtained for the absolute loss
function ψpxq “ |x|, whereas the expectiles eτ result from using the quadratic loss function
ψpxq “ x2. Other loss functions may be considered, such as the class of Huber loss functions

ψcpxq :“
x2

2c
1p|x| ă cq `

´

|x| ´
c

2

¯

1p|x| ě cq, for c ą 0,

or the Lp´loss functions ψppxq :“ |x|p, for p ě 1, which interpolate between the absolute
value (for p “ 1) and quadratic (for p “ 2) loss functions above. Interestingly, the only M-
quantiles that are coherent risk measures are the expectiles [9]. Perhaps one of the strongest
arguments in favor of the use of expectiles in practice is given by [7, 66, 73] who proved that
expectiles above the mean are the only coherent law-invariant measure of risk which is also
elicitable, namely, they benefit from a straightforward backtesting methodology, see [8, 35,
36, 42]. While quantiles and expectiles are elicitable functionals, the ES and distortion risk
measures different from the Value-at-Risk and the mean are not elicitable. However, non-
elicitability does not preclude backtesting since spectral risk measures are actually jointly
elicitable with quantiles [38]. This bolstered the interest in a novel risk measure which
belongs to the class of spectral risk measures, enjoys various intuitive meanings and affords
a reasonable alternative to VaRτ , eτ and ESτ in terms of reactivity to heavy tails, namely,
the τth extremile of X defined by [18] as

xτ :“

ż 1

0

Jτ ptq qt dt “

ż 1

0

qt dKτ ptq “

ż 1

0

q1´t dgτ ptq
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for the risk spectrum Jτ p¨q “ K 1
τ p¨q and distortion function

gτ ptq “

"

trp1´τq if 0 ă τ ď 1{2,

1 ´ p1 ´ tqrpτq if 1{2 ď τ ă 1,

with Kτ ptq “ 1 ´ gτ p1 ´ tq and rpτq “ logp1{2q{ logpτq. Extremiles are determined by
tail expectations rather than tail probabilities. Similarly to expectiles, they define a least
squares analog of quantiles since

qτ P argmin
θPR

EtJτ pF pXqqp|X ´ θ| ´ |X|qu,

with equality if F is increasing, and xτ follows by substituting squared deviations in place
of the absolute deviations:

xτ “ argmin
θPR

EtJτ pF pXqqp|X ´ θ|2 ´ |X|2qu.

Interestingly, xτ is always, for τ Ò 1, more conservative than both qτ and eτ , while remaining
less pessimistic than ESτ , for any heavy-tailed distribution [18].

The univariate risk measures described above ignore the interconnection between finan-
cial institutions. Following [4], it has been observed that widespread failures and losses of
financial firms can impose an externality on the rest of the economy causing systemic risk.
Statistical and econometric approaches have been proposed to measure such a global risk
by [12] for U.S. financial institutions and [37] for European institutions, culminating in the
definition of the SRISK measure. A key component of the SRISK measure for a financial
firm is its contribution to a global stock market decline that happens once or twice a decade.
This can be measured as the firm’s Marginal Expected Shortfall (MES): if X denotes the loss
return on the firm’s equity and Y that of the entire market, the MES is equal to EpX|Y ą tq
for a high threshold t reflecting a substantial market decline, typically a tail τth quantile
of the distribution of Y as a threshold [4, 12, 14, 37]. The use of the τth expectile as an
alternative threshold for quantifying the MES has also been explored by [20, 27], where the
asymptotic connection between quantile- and expectile-based MES is unraveled and used
as a basis for estimating each tail risk measure from the other. Alternative measures of
contagion have been proposed in the literature, including the CoVaR [5], that is, the VaR of
the financial system conditional on institutions being under stress. However, none of these
measures apart from the MES have yet been treated from the point of view of extreme value
theory.

This chapter is structured as follows. Section 1.2 further motivates the consideration of
different risk measures, serving different purposes, through disaster losses data and financial
returns data. Then Sections 1.3, 1.4 and 1.5 review the properties of, as well as estimation
results and extreme value inference about, spectral risk measures, M-quantiles, multivariate
and systemic risk measures. The special cases of tail ES, extremile, expectile and MES will
be illustrated in each section using the data in Section 1.2. The proposed approaches are fully
operational and easy to implement. The datasets as well as our implemented methods and
code are freely available at https://github.com/gillesstupfler. Section 1.6 concludes
and discusses open questions related to estimation and inference of these alternative risk
measures.



Empirical motivation 5

1.2 Empirical motivation

The China weather losses data consists of Total Damages Adjusted Cost, in billion USD,
provided by the EM-DAT1 international disaster database. The dataset comprises n “ 166
records of storms, tornadoes, tropical cyclones and hailstorms. The corresponding sample
mean, maximum and standard deviation are 817,025,934 USD, 11,447,148,000 USD, and
1,534,618,214 USD, respectively, and the data is highly right-skewed (Figure 1.1(A)). The
test of Theorem 5.2.12 in [28] comfortably concludes the heaviness of the upper tail at the
three significance levels 0.01, 0.05 and 0.10 (Figure 1.1(B)). The plot of the bias-reduced Hill
estimator of [13] points towards an estimate of the tail index around 0.71 (Figure 1.1(C)),
which suggests a very heavy upper tail with an infinite variance. We also consider US tornado
monetary losses, in billion USD, provided by the NOAA’s Severe Weather Database2. We
focus on the re-insurance perspective of the loss amounts in excess of 15 million USD,
which results in a sample of size n “ 243 with mean, maximum and standard deviation
being 133,760,934 USD, 2,800,100,000 USD, and 330,588,800 USD, respectively. The data
is again right-skewed (Figure 1.1(D)) and heavy-tailed (Figure 1.1(E)), with a bias-reduced
Hill estimate of the tail index around 0.57 (Figure 1.1(F)).

Besides, our financial data consists of, first, weekly loss returns (minus log-returns)
on the equity price of American International Group (AIG) from July 3rd, 2000, to June
30th, 2010. During the 2007-2008 financial crisis, the US government bailed out AIG to
avoid jeopardizing the financial integrity of its trading partners, including Goldman Sachs,
Morgan Stanley and T. Rowe Price: compared with the weekly loss returns of the latter
three financial institutions over the same time period, whose tail indices were found to be
less than 1{2 in [14], AIG’s returns appear to have a heavier tail, with a bias-reduced Hill
estimate around 0.56 (Figure 1.1(G)-(I)). We also consider the weekly loss returns of a value-
weighted market index, extracted from [14] over the same time period, by aggregating three
US market indices. The tail heaviness of this dataset was checked empirically in [20] with a
Hill estimate around 0.37, which is in line with our bias-reduced Hill estimate around 0.39;
as a consequence, for this dataset and for the sake of simplicity, we do not formally carry
out a series of checks analogous to those of Figure 1.1.

For the four motivating datasets described above, Figure 1.2 displays the empirical ver-
sions of the quantile qτ , the expectile eτ , the extremile xτ , and the two ES forms ESτ and
XESτ , against the security level τ ě 0.90. First, it may be seen that both spectral risk mea-
sures, that is, the sample ES (blue) and extremile (red) in this order, provide globally more
conservative risk appraisal compared to their M-quantile competitors, namely the sample
quantile (orange) and expectile (green). In particular, the sample expectile somewhat sur-
prisingly appears to be the smallest when comparing the sample risk measures at the same
level τ . By contrast, the expectile-based form of ES (cyan) is overall much more reactive to
the magnitude of extremes than the expectile. Of course, a meaningful comparison requires
in practice the use of a different asymmetry level τ for each risk measure. Second, and
perhaps most importantly, the sample versions of the quantile-based risk measures qτ and
ESτ are the only ones to be piecewise constant functions of τ . This awkwardly results in the
same risk measurement for substantially different security levels τ . In this respect, the other
three competing risk measures based on expectiles and extremiles enjoy a smooth evolution
as functions of τ . Finally, and importantly, none of the pure empirical risk measures we
examine here are capable of extrapolating beyond the range of the data, when τ ě 1´ 1{n.
As such, having to resort to extreme value theory for a finer risk assessment is inevitable.

1EM-DAT (Emergency Events Database), CRED / UCLouvain, 2023, Brussels, Belgium – www.emdat.be
2NOAA (National Oceanic and Atmospheric Administration) – https://www.spc.noaa.gov/wcm/\#data
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(A) Histogram and rug plot
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FIGURE 1.1
For the China storm losses data (top panels), US tornado losses data (middle panels), and
AIG financial returns data (bottom panels), from left to right: histogram and rug plot of the
data, plot of p-values for the tail heaviness test (blue line) along with the three significance
levels 0.01, 0.05 and 0.10 in horizontal lines, and plot of the bias-reduced Hill estimator in
solid line, with a first stable region indicated in dashed line. The middle and right plots are
graphed as functions of the sample fraction k{n, where k represents the effective sample
size of top observations needed for extreme value estimation.

1.3 Spectral risk measures: From Expected Shortfall to extremiles

According to [1], if ϕ is a non-negative, non-increasing function on r0, 1s which integrates
to 1, the spectral risk measure of X with risk spectrum ϕ is defined as

Mϕ “ MϕpXq “

ż 1

0

ϕptq qt dt.
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(C) AIG financial returns
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FIGURE 1.2
The sample versions of the quantile qτ , the expectile eτ , the extremile xτ , and the ES forms
ESτ and XESτ , as functions of τ ě 0.9, for the China storm losses data (A), the US tornado
losses data (B), AIG loss returns (C) and the aggregated market index loss returns (D),
along with a rug plot of the data on the y´axis (for more clarity we only display the positive
part of the latter two’s rug plots).

Sufficiently regular spectra induce distortion risk measures: when ϕ is the derivative of a
smooth function, clearly

Mϕ “

ż 1

0

q1´t dgptq, with ϕptq “ g1p1 ´ tq.

The motivation for the introduction of distortion risk measures was the calculation of in-
surance premiums [70]. Important examples include ES as well as the Dual Power and
Proportional Hazard risk measures; the Dual Power and Proportional Hazard measures are
respectively called MINVAR and MAXVAR by [15] in the context of studying acceptability
indices. Unlike in the standard setting, the motivation for the use of spectral risk measures
in extreme value analysis is not pricing insurance contracts (as it would be overly pessimistic
and thus unwise to calculate premiums solely on the basis of infrequent, catastrophic events)
but rather the degree of freedom they offer in weighting the most extreme observations, with
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a view on gathering specific information about disaster risk reflected by the extreme value
behavior of a risk variable.

General extreme value adaptations of spectral risk measures The recent liter-
ature has considered two extreme value constructions of spectral/distortion risk measures:

1. The excess-of-loss construction in [69]: a pre-specified spectral/distortion risk measure
is applied to the distribution of maxpX ´R, 0q, where R is a high retention level;

2. The conditional construction in [33, 34]: let g be a distortion function and consider, for
every τ P p0, 1q, the distortion risk measure induced by the function gτ defined as

@t P r0, 1s, gτ ptq :“ g

ˆ

min

ˆ

1,
t

1 ´ τ

˙˙

“

$

&

%

g

ˆ

t

1 ´ τ

˙

if t ď 1 ´ τ,

1 otherwise.

Considering the distortion risk measure of X with distortion function gτ then essentially
corresponds to applying standard spectral/distortion risk measures to the distribution
of X above its τth quantile, that is, the distribution of X|tX ą qτu.

The estimation of these extreme value versions has been considered under the assumption
that the data is generated from independent copies of a random variable X having a heavy
right tail. More precisely, we assume that the tail quantile function U : t ÞÑ q1´1{t of X
satisfies the following standard second-order regular variation condition:

C2pξ, ρ,Aq For all x ą 0,

lim
tÑ8

1

Aptq

ˆ

Uptxq

Uptq
´ xξ

˙

“ xξ
ż x

1

sρ´1ds

where ξ ą 0, ρ ď 0 and A has constant sign and converges to 0 at infinity. Equivalently

@x ą 0, lim
tÑ8

1

Ap1{F ptqq

ˆ

F ptxq

F ptq
´ x´1{ξ

˙

“
x´1{ξ

ξ2

ż x

1

sρ{ξ´1ds

by Theorem 2.3.9 p.48 in [28], where F “ 1 ´F . The function A, such that |A| is regularly
varying with index ρ, determines how close the extremes of X are to pure Pareto extremes:
the further away ρ is from 0, the closer the extremes of X typically are to pure Pareto
extremes, and the easier the extreme value estimation problem is. Any standard heavy-
tailed model (Student, Cauchy, Fréchet...) satisfies assumption C2pξ, ρ,Aq.

Because asymptotic results about the estimation of extremal spectral/distortion risk
measures tend to be fairly technical (general results are, for instance, Theorem 3 in [69]
and Theorems 1, 2 and 3 in [33]), we specialize our discussion to the ES, which is arguably
the most important risk measure covered by both of the constructions we have highlighted
above. In the heavy-tailed setting, it is well-known that if ξ ă 1{s then EpXs

1pX ą 0qq ă 8,
see Exercise 1.16 p.35 in [28]. As a consequence, the ES risk measure is well-defined as soon
as ξ ă 1. Assume here and throughout that the available data points are independent
copies X1, . . . , Xn of a random variable X satisfying assumption C2pξ, ρ,Aq. Let X1:n ď

X2:n ď ¨ ¨ ¨ ď Xn:n be the associated order statistics. Then an obvious estimator of ESτ is
its empirical counterpart

xESτ ” xESτ,n “
1

1 ´ τ

ż 1

τ

pqt dt with pqt ” pqt,n “ Xrnts:n,

where r¨s is the ceiling function; we drop the subscript n in our estimators throughout for the



Spectral risk measures: From Expected Shortfall to extremiles 9

sake of notational convenience. This estimator is visualized in Figure 1.2 for our motivating
datasets at level τ ě 0.9. Since our interest here is in the ES above an extreme level, we
take τ “ τn Ò 1 as n Ñ 8. A different estimation procedure is suggested by the convergence

ESτ
qτ

Ñ
1

1 ´ ξ
as τ Ò 1, (1.1)

(see e.g. [69], p.444) which can be used to construct an estimator of ESτn provided one has
access to an estimator of ξ. A standard choice for that is the Hill estimator [48]: letting t¨u

denote the floor function,

pξτn “
1

tnp1 ´ τnqu

tnp1´τnqu
ÿ

i“1

log
Xn´i`1:n

Xrnτns:n
.

This is the maximum likelihood estimator in pure Pareto models and arguably the most
popular estimator of ξ in heavy-tailed models. One then gets the alternative estimator

ĂESτn “
pqτn

1 ´ pξτn
.

The estimators xESτn and ĂESτn are both asymptotically normal: one path towards a proof is
to use a weighted Gaussian approximation to the tail empirical quantile process s P r0, 1s ÞÑ

pq1´p1´τnqs, see Theorem 2.4.8 p.52 in [28].

Theorem 1.3.1. Assume C2pξ, ρ,Aq holds. Let τn Ò 1 with np1 ´ τnq Ñ 8.

(i) If ξ ă 1{2 and
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q, then

a

np1 ´ τnq

˜

xESτn
ESτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2ξ2p1 ´ ξq

1 ´ 2ξ

˙

.

(ii) If ξ ă 1 and
a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R, then

a

np1 ´ τnq

˜

ĂESτn
ESτn

´ 1

¸

d
ÝÑ N

ˆ

´
λξρ

p1 ´ ξqp1 ´ ρqp1 ´ ξ ´ ρq
, ξ2

"

1 `
1

p1 ´ ξq2

*˙

.

While the first result corresponds to Theorem 2 of [33] and to Corollary 5 of [67] in
this form, the second result has not been noted before in the literature and can be viewed
as a corollary of Theorem 2.4.8 p.52 in [28]. Let us clearly point out that Theorem 1.3.1
is fundamentally different from the earlier results of [10, 29, 59] which are devoted to the
estimation of the ES above a fixed quantile qτ .

The estimators xESτn and ĂESτn are consistent and asymptotically normal at intermediate
levels τn, but cannot extrapolate beyond the range of the observations. At extreme levels
τ 1
n, for which np1 ´ τ 1

nq “ Op1q, the key is to use once again (1.1) in conjunction with the
classical Weissman [71] approximation to obtain

ESτ 1
n

ESτn
«
qτ 1

n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙–ξ

for all n large enough, which in turn suggests the extrapolated estimators

xES
‹

τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pξτn
xESτn and ĂES

‹

τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pξτn
ĂESτn .
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We call them Weissman-type estimators, after [71] who introduced a similar estimator

pq‹
τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pξτn

pqτn

for extreme quantiles qτ 1
n
. They inherit the asymptotic normal distribution of pξτn , at a

slightly slower rate of convergence, see Theorem 3 in [33] and Corollary 6 in [67].

Theorem 1.3.2. Assume C2pξ, ρ,Aq holds with ξ ă 1 and ρ ă 0. Assume further that
τn, τ

1
n Ò 1 with np1 ´ τnq Ñ 8,

a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R, p1 ´ τ 1
nq{p1 ´ τnq Ñ 0

and
a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

ĂES
‹

τ 1
n

ESτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, ξ2

˙

.

If in addition ξ ă 1{2, then the same convergence holds true for xES
‹

τ 1
n

{ESτ 1
n

´ 1.

We now return to our four motivating data examples to illustrate and compare xES
‹

τ 1
n

and ĂES
‹

τ 1
n
with the Weissman estimator pq‹

τ 1
n
of VaRτ 1

n
as a benchmark with the extreme level

τ 1
n “ 1 ´ 1{n. For each dataset, we superimpose in Figure 1.3 the plots of xES

‹

τ 1
n
, ĂES

‹

τ 1
n
and

pq‹
τ 1
n
as functions of the effective sample fraction 1 ´ τn of the top of the sample used for

tail extrapolation in each estimator. The figure also displays the 95% asymptotic confidence

intervals derived from the asymptotic normality of ĂES
‹

τ 1
n
in (A)-(D) and of xES

‹

τ 1
n
only in (D)

where ξ ă 1{2, when ignoring the asymptotic bias by taking λ “ 0. We eyeball the effective
sample fraction threshold for stability of the estimates and take 1 ´ τn “ 11% for China
storm losses, 1 ´ τn “ 11% for US tornado losses, 1 ´ τn “ 16% for AIG loss returns, and
1 ´ τn “ 8% for the market index loss returns, leading to the final pointwise estimates pq‹

τ 1
n
,

xES
‹

τ 1
n
and ĂES

‹

τ 1
n
reported in Table 1.1, along with 95% asymptotic confidence intervals. We

shall return to the question of asymptotic Gaussian inference and its accuracy in Section 1.6.

Extremiles as a fresh look upon Dual Power risk measures Yet another way
of constructing extreme value spectral risk measures is to fix a parametric family of such
measures, whose weight shifts towards the right tail as the parameter value converges to the
boundary of the parameter space. This is different from the previous construction, where
the focus was rather to consider a fixed risk measure applied to a transformation of X.
Considering reparametrized probability weighted moment families with this objective in
mind is what gives rise to the concept of extremiles, with the reparametrization contributing
to a better understanding of some of the properties hidden by their Dual Power formulation.

The original motivation for introducing extremiles comes from the observation in [18]
that the τth quantile qτ coincides with the median of the transformed distribution function
Kτ pF q, where we recall that

Kτ ptq “ 1 ´ gτ p1 ´ tq “

"

1 ´ p1 ´ tqrp1´τq if 0 ă τ ď 1{2,

trpτq if 1{2 ď τ ă 1,

with rpτq “ logp1{2q{ logpτq. Meanwhile, the mean of this same transformation induces a
coherent and more alert risk measure referred to as the τth extremile xτ that has the closed
form expression

xτ “
EtX Jτ pF pXqqu

EtJτ pF pXqqu
,
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FIGURE 1.3
Extrapolated ESτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG

loss returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1´1{n: Estimates

ĂES
‹

τ 1
n
(rainbow curve, asymptotic 95% confidence intervals in dashed blue), xES

‹

τ 1
n
(red curve,

asymptotic 95% confidence intervals in dashed red) and pq‹
τ 1
n
(gray curve), against the sample

fraction 1 ´ τn. The dashed magenta line is the sample maximum.

which reduces to xτ “ EtX Jτ pF pXqqu for continuous distributions. This risk measure,
which is part of the class of Probability-Weighted Moments (PWM) studied in [45, 60],
later extended in [30, 31, 46], and discussed in Chapters 5 and 25 of this book, depends on
all values of X and puts more weight on extreme realizations, since the weighting density
function Jτ p¨q “ K 1

τ p¨q is increasing for τ ě 1{2 and decreasing for τ ď 1{2. In contrast, qτ
is determined solely by the frequency of tail observations, while ESτ only depends on the
tail event. As visualized in Figure 1.2, the sample extremile, given by the M-estimator

pxτ “

řn
i“1 Jτ pi{nqXi:n
řn
i“1 Jτ pi{nq

“

ş1

0
Jτ prnts{nqXrnts:n dt
1
n

řn
i“1 Jτ pi{nq

,

exhibits a smooth evolution, steering a middle course between the robustness of ordinary
sample quantiles and the severe sensitivity of both empirical ES and extreme quantiles to tail
observations. In fact, for Pareto-type distributions with finite first moment, the asymptotic
connections (see Propositions 3 and 6 in [18])

xτ
qτ

„ Γp1 ´ ξqtlog 2uξ ą 1 and
xτ
ESτ

„ Γp2 ´ ξqtlog 2uξ ă 1 as τ Ò 1,
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where Γ is Euler’s Gamma function, justify the property, from a risk management viewpoint,
that xτ is always more conservative than qτ and less pessimistic than ESτ .

In addition to their duality with quantiles as the mean and the median of the same
transformation of X, extremiles also have an intuitive interpretation as expected maxima
for τ ě 1{2 and expected minima for τ ď 1{2. More specifically for τ ě 1{2, we have

EtmaxpX1, . . . , Xtrpτququ ď xτ ď EtmaxpX1, . . . , Xrrpτqsqu

where rpτq “ logp1{2q{ logpτq and X1, X2, . . . are i.i.d. observations from X. In particular,
xτ “ EtmaxpX1, . . . , Xrpτqqu when rpτq ě 1 is a integer.

The estimation of tail extremiles at an intermediate level τ “ τn Ò 1 with np1´τnq Ñ 8

as n Ñ 8, can be done via the M-estimator pxτn or by making use of the asymptotic
equivalence xτn „ Γp1 ´ ξqtlog 2uξqτn , to define the alternative estimator

rxτn “ Γp1 ´ pξτnqplog 2q
pξτn

pqτn .

While the asymptotic normality of pxτn has already been established in Theorem 4 of [18],
the next theorem is the first result to provide the limit distribution of rxτn . It follows as a
corollary of Proposition 4 in [18] and Theorem 2.4.8 p.52 in [28]. Let X´ “ minpX, 0q.

Theorem 1.3.3. Assume C2pξ, ρ,Aq holds with E|X´| ă 8. Let τn Ò 1 with np1´τnq Ñ 8.

(i) If ξ ă 1{2 and
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q then, under the additional regularity
assumption that the support of X is an interval, on the interior of which F is twice
differentiable with a positive density f such that

sup
0ătă1

tp1 ´ tq
f 1pqtq

tfpqtqu2
ă 8 and lim

tÑ`8
t

fptq

1 ´ F ptq
“ ξ,

one has

a

np1 ´ τnq

ˆ

pxτn
xτn

´ 1

˙

d
ÝÑ

ξ
?
log 2

Γp1 ´ ξq

ż 8

0

e´ss´ξ´1Bpsqds

“ ξ
a

log 2

ż 8

0

gps|1 ´ ξqBpsq
ds

s

where B is a standard Brownian motion and gps|aq “ 1
Γpaq

e´ssa´1, for s ą 0, is the

density function of the Gamma distribution with unit rate parameter and scale parameter
a ą 0. The limiting distribution is centered and has variance

2ξ2 log 2

ż 8

0

Gpt|1 ´ ξqgpt|1 ´ ξq
dt

t
“ ξ2 log 2

ż 8

0

ˆ

Gpt|1 ´ ξq

t

˙2

dt

where Gpt|aq “
şt

0
gps|aqds “

şt

0
1

Γpaq
e´ssa´1ds is the distribution function of the Gamma

distribution with unit rate parameter and scale parameter a ą 0.

(ii) If ξ ă 1,
a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R and
a

np1 ´ τnqp1 ´ τnq Ñ ν P R, then

a

np1 ´ τnq

ˆ

rxτn
xτn

´ 1

˙

d
ÝÑ N

ˆ

λ

"

1

1 ´ ρ

ˆ

logplog 2q ´
Γ1p1 ´ ξq

Γp1 ´ ξq

˙

´ C1pξ, ρq

*

´ C2pξqν,
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ξ2

#

1 `

ˆ

logplog 2q ´
Γ1p1 ´ ξq

Γp1 ´ ξq

˙2
+¸

.

Here

C1pξ, ρq “

$

’

’

’

&

’

’

’

%

1

ρ

ˆ

Γp1 ´ ξ ´ ρqplog 2qξ`ρ

Γp1 ´ ξqplog 2qξ
´ 1

˙

if ρ ă 0,

ş8

0
e´tt´ξ plogplog 2q ´ logptqqdt

Γp1 ´ ξq
otherwise,

and C2pξq “
ξ

2

ˆ

1 ´ ξ

log 2
´ 1

˙

.

At the far tail, for extreme levels τ 1
n with np1 ´ τ 1

nq “ Op1q, combining the asymptotic
connection between tail extremiles and quantiles with Weissman’s [71] approximation gives

xτ 1
n

xτn
«
qτ 1

n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙–ξ

,

which motivates the following extreme value estimators of xτ 1
n
:

px‹
τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pξτn

pxτn and rx‹
τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pξτn

rxτn .

Their convergence is established in Theorems 3 and 5 of [18].

Theorem 1.3.4. Assume E|X´| ă 8 and C2pξ, ρ,Aq holds with ξ ă 1 and ρ ă 0. As-
sume further that τn, τ

1
n Ò 1 with np1 ´ τnq Ñ 8,

a

np1 ´ τnqApp1 ´ τnq´1q Ñ λ P R,
a

np1 ´ τnqp1´τnq Ñ ν P R, p1´τ 1
nq{p1´τnq Ñ 0 and

a

np1 ´ τnq{ logpp1´τnq{p1´τ 1
nqq Ñ

8. Then
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

rx‹
τ 1
n

xτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, ξ2

˙

.

If ξ ă 1{2 and the regularity conditions of Theorem 1.3.3(i) moreover hold, then the same
convergence result holds true for px‹

τ 1
n

{xτ 1
n

´ 1.

Figure 1.4 shows the evolution of these two competing estimates with respect to their
quantile analog pq‹

τ 1
n
, as functions of the sample fraction 1 ´ τn, for the extreme level

τ 1
n “ 1 ´ 1{n, along with the 95% asymptotic confidence intervals derived from the asymp-
totic normality of rx‹

τ 1
n
in (A)-(D) and of px‹

τ 1
n
in (D), assuming that λ “ 0. The final point-

wise estimates, obtained from the same effective sample fraction threshold (selected and
described above) for stability of the benchmark pq‹

τ 1
n
, are reported in Table 1.1, along with

their asymptotic 95% confidence intervals.

1.4 M-quantile risk measures: From L1 to convex optimization

The extremile is obtained as the unique minimizer of an expected loss function depending on
the unknown distribution function of the observations. This is the key reason why extremiles
are not elicitable in the sense of [42]. Of interest, therefore, are risk measures defined as

argmin
θPR

E tW pτ,X ´ θq|X ´ θ|pu
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FIGURE 1.4
Extrapolated xτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG loss

returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1 ´ 1{n: Estimates

rx‹
τ 1
n
(rainbow curve, asymptotic 95% confidence intervals in dashed blue), px‹

τ 1
n
(red curve,

asymptotic 95% confidence intervals in dashed red) and pq‹
τ 1
n
(gray curve), against the sample

fraction 1 ´ τn. The dashed magenta line is the sample maximum.

where W is a weighting function formalizing the asymmetrical way in which the left and
right tails of X are taken into account, and p ě 1 encodes how robust the risk measure will
be to extreme observations, with increasing p standing for decreasing robustness. Choosing
W pτ, vq “ |τ´1pv ď 0q| and p “ 1 produces the usual quantiles [52]. This same choice ofW ,
with varying p P r1,8q, generates the class of Lp´quantiles, studied from the extreme value
perspective in [21]. These risk measures are law-invariant and elicitable for any p ě 1 but,
according to [73], only the expectiles, obtained for p “ 2, induce a coherent risk functional.
For this reason, we focus hereafter on the case p “ 2.

Expectile-based Value-at-Risk In the intermediate case when τ “ τn Ò 1 and np1 ´

τnq Ñ 8 as n Ñ 8, a direct, Least Asymmetrically Weighted Squares (LAWS) estimator
of the expectile eτn is given by its empirical version

peτn “ argmin
θPR

n
ÿ

i“1

|τn ´ 1pXi ď θq|pXi ´ θq2.

Its asymptotic normality is proven in Theorem 1 of [22] for heavy-tailed distributions with
ξ ă 1{2. In the more general setting where 0 ă ξ ă 1, an indirect, quantile-based estimator
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of eτn is obtained from the asymptotic connection eτn „ pξ´1 ´ 1q´ξqτn , n Ñ 8, as

reτn “ ppξ´1
τn ´ 1q´pξτn

pqτn .

Its asymptotic normality is established in Corollary 2 of [20].

Theorem 1.4.1. Assume C2pξ, ρ,Aq holds and let τn Ò 1 with np1 ´ τnq Ñ 8.

(i) If ξ ă 1{2, E|X´|2 ă 8 and
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q, then

a

np1 ´ τnq

ˆ

peτn
eτn

´ 1

˙

d
ÝÑ N

ˆ

0,
2ξ3

1 ´ 2ξ

˙

.

(ii) If ξ ă 1, E|X´| ă 8,
a

np1 ´ τnqApp1´ τnq´1q Ñ λ P R and
a

np1 ´ τnq{qτn Ñ µ P R,
then

a

np1 ´ τnq

ˆ

reτn
eτn

´ 1

˙

d
ÝÑ N pbpξ, ρq, ξ2r1 ` tp1 ´ ξq´1 ´ logpξ´1 ´ 1qu2sq,

with

bpξ, ρq “

ˆ

p1 ´ ξq´1 ´ logpξ´1 ´ 1q

1 ´ ρ
´

pξ´1 ´ 1q´ρ

1 ´ ξ ´ ρ
´

pξ´1 ´ 1q´ρ ´ 1

ρ

˙

λ

´ ξpξ´1 ´ 1qξEpXqµ.

While the empirical version peτn of the risk measure eτn inherits its property of coherence
and has a smaller asymptotic variance than the quantile-based competitor reτn for low tail
index values ξ ă ξ0 « 0.262, as can also be seen from Figure 1.10 below, the latter estimator
is (asymptotically) more efficient over the range of values ξ ą ξ0. In order to obtain the
best of these two estimators, [22] suggested to combine them by considering the weighted
version eτnpαq “ α peτn ` p1 ´ αqreτn , for α P R, whose asymptotic distribution is estab-
lished in Theorem 4 therein. The weight α minimizing the asymptotic variance of eτnpαq

was determined in [23], along with an adaptive estimator for eτn obtained from plugging
the variance-optimal weight α into the linear combination eτnpαq. Monte Carlo evidence
from [23] suggests that the resulting adaptive estimator indeed performs well.

In the extreme case when τ “ τ 1
n with np1 ´ τ 1

nq “ Op1q, combining the asymptotic
proportionality relationship between expectiles and quantiles with the Weissman approxi-
mation yields

eτ 1
n

eτn
„
qτ 1

n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´ξ

,

which motivates the class of expectile Weissman-type estimators

e‹
τ 1
n

pαq “

ˆ

1 ´ τ 1
n

1 ´ τn

˙–pξτn

eτnpαq

based on the weighted intermediate estimators. Such extrapolated estimators inherit the
asymptotic normal distribution of the tail index estimator pξτn , as shown in Theorem 5
of [22]. Of particular interest are the purely indirect estimator re‹

τ 1
n
:“ e‹

τ 1
n

p0q and direct

estimator pe‹
τ 1
n
:“ e‹

τ 1
n

p1q, which correspond to the two special cases α “ 0 and α “ 1, and

whose asymptotic normality properties were established, respectively, for ξ ă 1 and ξ ă 1{2
in Corollary 3 and Corollary 4 of [20].
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Theorem 1.4.2. Assume C2pξ, ρ,Aq holds with ρ ă 0, and let τn, τ
1
n Ò 1 be such that

np1´ τnq Ñ 8,
a

np1 ´ τnqApp1´ τnq´1q Ñ λ P R,
a

np1 ´ τnq{qτn Ñ µ P R, p1´ τ 1
nq{p1´

τnq Ñ 0 and
a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8.

(i) If ξ ă 1{2 and E|X´|2 ă 8, then for any α P R,
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

e‹
τ 1
n

pαq

eτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, ξ2

˙

.

(ii) This remains valid for α “ 0 under the weaker assumptions ξ ă 1 and E|X´| ă 8.

For our motivating datasets, the competing estimates pe‹
τ 1
n
and re‹

τ 1
n
are graphed with their

quantile analog pq‹
τ 1
n
in Figure 1.5, as functions of the sample fraction 1´ τn, for the extreme

level τ 1
n “ 1 ´ 1{n, along with the 95% asymptotic confidence intervals associated with

re‹
τ 1
n
in (A)-(D) and with pe‹

τ 1
n
in (D), under the bias condition λ “ 0. The final pointwise

estimates pe‹
τ 1
n
and re‹

τ 1
n
, selected by using the same effective sample fraction threshold for

stability of pq‹
τ 1
n
, are reported in Table 1.1 with their associated confidence intervals.
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FIGURE 1.5
Extrapolated eτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG loss

returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1 ´ 1{n: Estimates

re‹
τ 1
n
(rainbow curve, asymptotic 95% confidence intervals in dashed blue), pe‹

τ 1
n
(red curve,

asymptotic 95% confidence intervals in dashed red) and pq‹
τ 1
n
(gray curve), against the sample

fraction 1 ´ τn. The dashed magenta line is the sample maximum.

Expectile-based ES An expectile-based form of ES as XTCEτ :“ EpX|X ą eτ q was
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first considered by [68]. Despite its straightforward interpretability, this tail conditional
mean does not fulfill the coherence property in general, but the alternative form XESτ “
1

1´τ

ş1

τ
et dt is coherent (Proposition 2 of [22]). Moreover, for heavy-tailed distributions with

tail index ξ P p0, 1q and E|X´| ă 8, XESτ is asymptotically equivalent to the intuitive
XTCEτ and proportional to the expectile eτ since (Proposition 3 of [22]),

XESτ „ XTCEτ „
eτ

1 ´ ξ
as τ Ò 1.

Given intermediate and extreme levels τn, τ
1
n Ò 1 such that np1´ τnq Ñ 8 and p1´ τ 1

nq{p1´

τnq Ñ 0, this asymptotic connection suggests the extrapolated estimator

XES
‹

τ 1
n

pαq “
e‹
τ 1
n

pαq

1 ´ pξτn

for XESτ 1
n
, obtained by replacing the tail index ξ with its estimator pξτn and the extreme

expectile eτ 1
n

with its weighted Weissman-type estimator e‹
τ 1
n

pαq. A direct, LAWS-based
extrapolated estimator

zXES
‹

τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pξτn

zXESτn

for XESτ 1
n
follows from the Weissman approximation

XESτ 1
n

XESτn
„
eτ 1

n

eτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´ξ

by substituting in pξτn in place of ξ and replacing the intermediate value XESτn with its

sample counterpart zXESτn “ 1
1´τn

ş1

τn
pet dt. The asymptotic normality of the latter is given

in Theorem 6 of [22], and for zXES
‹

τ 1
n
and XES

‹

τ 1
n

pαq when ξ ă 1{2, we refer to Theorems 7
and 8 of [22]. In the general case 0 ă ξ ă 1, the asymptotic normality of the purely indirect,

quantile-based estimator XES
‹

τ 1
n

p0q “ p1 ´ pξτnq´1
re‹
τ 1
n
follows as an immediate corollary of

Theorem 1.4.2(ii) and Proposition 4 in [22].

Theorem 1.4.3. (i) Under the conditions of Theorem 1.4.2(i),

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

zXES
‹

τ 1
n

XESτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, ξ2

˙

,

and for any α P R,
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

XES
‹

τ 1
n

pαq

XESτ 1
n

´ 1

¸

d
ÝÑ N

ˆ

λ

1 ´ ρ
, ξ2

˙

.

(ii) This remains valid for α “ 0 under the weaker assumptions of Theorem 1.4.2(ii).

Returning to our four data examples, Figure 1.6 displays the plots of the purely indirect,

quantile-based estimator ĆXES
‹

τ 1
n

:“ XES
‹

τ 1
n

pα “ 0q, its direct, LAWS-based counterpart

zXES
‹

τ 1
n
and the Weissman quantile estimator pq‹

τ 1
n
, as functions of the sample fraction 1´ τn,

for the extreme level τ 1
n “ 1 ´ 1{n, along with the 95% asymptotic confidence intervals

derived from the asymptotic normality of ĆXES
‹

τ 1
n
in (A)-(D) and of zXES

‹

τ 1
n
in (D), under the

bias condition λ “ 0. The final pointwise estimates zXES
‹

τ 1
n
and ĆXES

‹

τ 1
n
, chosen by using the

same eyeballed effective sample fraction threshold for pq‹
τ 1
n
, are reported in Table 1.1, with

their associated 95% asymptotic confidence intervals.
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FIGURE 1.6
Extrapolated XESτ 1

n
estimates for (A) China storm losses, (B) US tornado losses, (C) AIG

loss returns, and (D) Aggregated US market index loss returns, with τ 1
n “ 1´1{n: Estimates

ĆXES
‹

τ 1
n
(rainbow curve, asymptotic 95% confidence intervals in dashed blue), zXES

‹

τ 1
n
(red

curve, asymptotic 95% confidence intervals in dashed red) and pq‹
τ 1
n
(gray curve), against the

sample fraction 1 ´ τn. The dashed magenta line is the sample maximum.

1.5 Towards multivariate risk assessment: systemic risk measures

The risk measures considered so far only quantify the risk carried by a single random vari-
able. In global economics-oriented examples where there are several players involved, there
is valuable information about the dependence between the risk variables of interest that
even the joint estimation of several univariate risk measures cannot recover. We illustrate
this on the following toy example: consider two random variables X and Y , having respec-
tively a Fréchet distribution with tail index 1{4 (namely, PpX ď xq “ expp´x´4q for x ą 0)
and a Pareto distribution with tail index 1{4 (namely, PpY ď yq “ 1 ´ y´4 for y ą 1), and
whose dependence structure is given by the Gumbel-Hougaard (or logistic) copula

Cθpu, vq “ exp
!

´
“

p´ log uqθ ` p´ log vqθ
‰1{θ

)

, u, v P p0, 1q, θ ě 1.

In other words, PpX ď x, Y ď yq “ CθpPpX ď xq,PpY ď yqq. Taking θ “ 1 produces a
random pair pX,Y q having independent components, and θ Ñ 8 yields a perfectly depen-
dent random pair, namely, FXpXq “ FY pY q. In this example, the (extreme) univariate risk
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Risk level China storms US tornadoes AIG Market index
n “ 166 n “ 243 n “ 522 n “ 522

Xn:n 11.44 2.80 1.15 0.20
pq‹
τ 1
n

12.38 (1.77, 22.99) 1.47 (0.42, 2.51) 0.59 (0.28, 0.91) 0.12 (0.07, 0.16)

xES
‹

τ 1
n

28.09 5.01 1.62 0.19 (0.12, 0.26)

ĂES
‹

τ 1
n

35.10 (5.02, 65.17) 3.44 (0.99, 5.88) 1.35 (0.63, 2.06) 0.18 (0.11, 0.24)

px‹
τ 1
n

18.85 3.28 1.04 0.14 (0.09, 0.19)
rx‹
τ 1
n

24.66 (3.53, 45.80) 2.47 (0.71, 4.22) 0.97 (0.46, 1.49) 0.14 (0.09, 0.20)

pe‹
τ 1
n

15.85 2.92 0.71 0.09 (0.05, 0.12)
re‹
τ 1
n

18.34 (2.62, 34.05) 1.73 (0.50, 2.97) 0.68 (0.32, 1.04) 0.09 (0.06, 0.13)

zXES
‹

τ 1
n

25.04 5.44 1.64 0.15 (0.09, 0.20)

ĆXES
‹

τ 1
n

51.97 (7.44, 96.49) 4.06 (1.17, 6.94) 1.54 (0.72, 2.35) 0.14 (0.09, 0.19)

TABLE 1.1
Estimated extreme risk levels of the China storms, US tornadoes, AIG and aggregated
market index datasets at τ 1

n “ 1 ´ 1{n along with 95% asymptotic confidence intervals
(available for the direct estimates only in the aggregated market index data analysis where
the estimated tail index is found to be ă 1{2).

measures of X and Y seen so far do not depend on the degree of dependence θ between X
and Y , but the MES of X at level 1 ´ τ , defined as

MESτ “ EpX|Y ą qτ pY qq,

does depend on θ, as Figure 1.7 shows. Moreover, a stronger degree of positive association
between X and Y indeed results in a larger MES risk measure, all other things being equal.

To incorporate the concept of extremal dependence between two random variables into
an assessment of risk, suppose thatX and Y have continuous survival functions FX “ 1´FX
and FY “ 1 ´ FY . We introduce the bivariate survival copula Cpu, vq “ PpFXpXq ď

u, FY pY q ď vq (u, v P r0, 1s) of X and Y , and we assume the tail dependence condition

J CpRq There is a function R on r0,8s2ztp8,8qu, with Rp1, 1q ą 0, such that

@px, yq P r0,8s2ztp8,8qu, lim
sÑ8

sCpx{s, y{sq “ Rpx, yq.

This condition imposes the existence of a limiting dependence structure in the joint right
tail of X and Y , given by a tail copula R (see [65]). It is arguably a minimal assumption
when it comes to assessing the dependence structure between extreme value estimators.

In this context, when X is positive and heavy-tailed with tail index ξX P p0, 1q,

MESτ
qτ pXq

Ñ

ż 8

0

Rpx´1{ξX , 1qdx as τ Ò 1,

see Proposition 1 in [14]. On the basis of this convergence and the Weissman approximation,
we get for intermediate and extreme levels τn, τ

1
n Ò 1 that

MESτ 1
n

„
qτ 1

n
pXq

qτnpXq
MESτn «

ˆ

1 ´ τ 1
n

1 ´ τn

˙´ξX

MESτn as n Ñ 8.
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FIGURE 1.7
MES values for a random pair pX,Y q whose first (resp. second) marginal distribution is
Fréchet(1{4) (resp. Pareto(1{4)) and whose copula function is the Gumbel-Hougaard copula
Cθ, for θ ě 1. The left (resp. right) panel is a heatmap (resp. surface plot) of the values of
MESτ “ EpX|Y ą qτ pY qq as a function of the Y´quantile level τ ě 1{2 and the dependence
parameter θ ě 1.

Plugging in a
a

np1 ´ τnq-consistent estimator pξX of ξX and replacing MESτn with its
empirical version

řn
i“1Xi1tYi ą pqτnpY qu
řn
i“1 1tYi ą pqτnpY qu

results in an extreme value estimator for MESτ 1
n
. In real-life situations where the profit-loss

variable X is the equity return of a financial firm and Y represents an aggregated return
measure of a financial market, the random variable X is not necessarily positive, but as
shown by [14], its MES is mainly determined by top, and hence positive, realizations of X.
This led [14] to propose the intermediate estimator

zMESτn “

řn
i“1Xi1tXi ą 0, Yi ą pqτnpY qu

řn
i“1 1tYi ą pqτnpY qu

,

as well as the corresponding extreme value estimator of MESτ 1
n
:

zMES
‹

τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pξX
zMESτn .

The asymptotic normality of zMES
‹

τ 1
n
is established in Theorems 1 and 2 of [14], with possi-

bly two different intermediate levels τn in pξX and zMESτn . As evidenced in the asymptotic
theory and finite-sample simulation study of [14], selecting different thresholds may result
in extrapolated estimators with faster speed of convergence and a better finite-sample per-
formance. Nevertheless, and for the sake of simplicity, we will use in the sequel the same
τn for both of these estimators. An alternative extreme value estimator for MESτ 1

n
has also

been suggested by [14] in their Equation (12) with no asymptotic theory.
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Another option studied by [20, 27] is given by the expectile-based form

XMESτ “ EpX|Y ą eτ pY qq,

which obeys similar asymptotic approximations as the standard quantile-based form MESτ .
Indeed, assuming that condition J CpRq holds and X,Y are heavy-tailed with respective tail
indices ξX , ξY P p0, 1q, we have as τ Ò 1,

XMESτ

UXp1{FY peτ pY qqq
Ñ

ż 8

0

Rpx´1{ξX , 1qdx and
XMESτ
MESτ

Ñ
`

ξ´1
Y ´ 1

˘´ξX
,

with UX being the tail quantile function of X, see Proposition 2 in [14]. Combining the first
convergence result with the Weissman approximation leads to

XMESτ 1
n

XMESτn
„
UXp1{FY peτ 1

n
pY qqq

UXp1{FY peτnpY qqq
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´ξX

as n Ñ 8.

A direct, LAWS-based estimator of the extreme value XMESτ 1
n
follows then as

{XMES
‹

τ 1
n

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pξX
{XMESτn ,

where {XMESτn “

řn
i“1Xi1tXi ą 0, Yi ą peτnpY qu

řn
i“1 1tYi ą peτnpY qu

.

The asymptotic proportionality relationship XMESτ „
`

ξ´1
Y ´ 1

˘´ξX
MESτ as τ Ò 1 also

yields the indirect quantile-based estimator

ČXMES
‹

τ 1
n

“

´

pξ´1
Y ´ 1

¯´pξX
zMES

‹

τ 1
n
,

for a suitable estimator pξY of ξY .

The three extrapolated estimators zMES
‹

τ 1
n
, {XMES

‹

τ 1
n
and ČXMES

‹

τ 1
n
have the same asymp-

totic distribution, dictated by the tail index estimator pξX , in view of Theorem 2 in [14] and
Theorems 4 and 5 in [20] respectively. The result stated below is essentially a consequence
of Theorem 4.1 in [27], encompassing the results mentioned above. Introduce the bivariate
second-order condition:

J C2pR, β, κq Condition J CpRq holds and there are β ą ξX and κ ă 0 such that locally
uniformly in y P p0,8q,

sup
xą0

ˇ

ˇ

ˇ

ˇ

sCpx{s, y{sq ´Rpx, yq

minpxβ , 1q

ˇ

ˇ

ˇ

ˇ

“ Opsκq as s Ñ 8.

Theorem 1.5.1. Suppose that X ą 0 with probability 1, UX and UY satisfy condi-
tions C2pξX , ρX , AXq and C2pξY , ρY , AY q with 0 ă ξX ă 1{2 and ρX ă 0, and con-
dition J C2pR, β, κq holds. Assume moreover that τn, τ

1
n Ò 1, with np1 ´ τnq Ñ 8,

p1 ´ τ 1
nq{p1 ´ τnq Ñ 0 and

a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8, as well as the bias

conditions np1 ´ τnq1´2κ Ñ 0 and
a

np1 ´ τnq|AXpp1 ´ τnq´1q|ξX{p1´ρXq´ε Ñ 0 for some

ε ą 0, and suppose that
a

np1 ´ τnqppξX ´ ξXq
d

ÝÑ Z as n Ñ 8.

(i) Then
a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

zMES
‹

τ 1
n

MESτ 1
n

´ 1

¸

d
ÝÑ Z.



22 Risk measures beyond quantiles

(ii) Assume ξY P p0, 1q, E|Y´| ă 8,
a

np1 ´ τnqAY pp1´τnq´1q Ñ 0,
a

np1 ´ τnq{qτnpY q Ñ

0, and
a

np1 ´ τnqppξY ´ ξY q “ OPp1q. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

ČXMES
‹

τ 1
n

XMESτ 1
n

´ 1

¸

d
ÝÑ Z.

(iii) Assume ξY P p0, 1{2q and there is δ ą 0 such that E|Y´|2`δ ă 8, and also that
a

np1 ´ τnqAY pp1 ´ τnq´1q Ñ 0 and
a

np1 ´ τnq{qτnpY q Ñ 0. Then

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

{XMES
‹

τ 1
n

XMESτ 1
n

´ 1

¸

d
ÝÑ Z.

All convergences remain valid in the case when X is not necessarily positive, provided
E|X´|1{ξX ă 8 and np1 ´ τnq “ opp1 ´ τ 1

nq2κp1´ξXqq as n Ñ 8.

We apply the three extrapolated estimators zMES
‹

τ 1
n
, {XMES

‹

τ 1
n
and ČXMES

‹

τ 1
n
to estimate

the two forms of extreme MES for AIG, Citigroup, JPMorgan Chase and Berkshire Hath-
away, where for these four examples X refers to the loss return of each company and Y is
the aggregated market index considered previously in this chapter (the choice of the fre-
quency of data and time horizon follows the same set-up described in Section 1.2 for AIG
and the market index). It should be noted that inference is feasible so far only in the case
ξX P p0, 1{2q for MESτ 1

n
, and in the case pξX , ξY q P p0, 1{2q ˆ p0, 1q for XMESτ 1

n
; the condi-

tion ξX ă 1{2 does not appear to be satisfied for AIG and Citigroup. The plots of the three
extrapolated estimates are graphed in Figure 1.8 as functions of 1 ´ τn for τ 1

n “ 1 ´ 1{n,
along with 95% asymptotic confidence intervals derived from Theorem 1.5.1. We eyeball the
effective sample fraction threshold for stability of the estimates and take 1 ´ τn “ 13% for
AIG, 1 ´ τn “ 12% for Citigroup, 1 ´ τn “ 9% for JPMorgan Chase, and 1 ´ τn “ 17%
for Berkshire Hathaway, leading to the final pointwise estimates and corresponding 95%
asymptotic confidence intervals reported in Table 1.2.

Financial institution pξX zMES
‹

τ 1
n

{XMES
‹

τ 1
n

ČXMES
‹

τ 1
n

AIG 0.56 0.73 0.71 0.57
Citigroup 0.50 0.97 0.79 0.77
JPMorgan Chase 0.32 0.27 (0.18, 0.37) 0.23 (0.15, 0.31) 0.22 (0.14, 0.30)
Berkshire Hathaway 0.39 0.13 (0.08, 0.17) 0.10 (0.06, 0.13) 0.11 (0.07, 0.15)

TABLE 1.2
Estimates for AIG, Citigroup, JPMorgan Chase and Berkshire Hathaway at τ 1

n “ 1 ´

1{n with n “ 522. The second column reports the bias-reduced Hill estimate pξX for each

institution. The third column reports the quantile-based MES estimates zMES
‹

τ 1
n
, and the

last two columns report the expectile-based MES estimates {XMES
‹

τ 1
n
and ČXMES

‹

τ 1
n
. Each

estimate is followed by a 95% asymptotic confidence interval (available when pξX ă 1{2).
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FIGURE 1.8
Extrapolated MESτ 1

n
and XMESτ 1

n
estimates for (A) AIG, (B) Citigroup, (C) JPMorgan

Chase, and (D) Berkshire Hathaway, with τ 1
n “ 1 ´ 1{n: Estimates zMES

‹

τ 1
n
(rainbow curve,

asymptotic 95% confidence intervals in dashed blue), {XMES
‹

τ 1
n
(black curve, asymptotic 95%

confidence intervals in dashed black) and ČXMES
‹

τ 1
n
(pink curve, asymptotic 95% confidence

intervals in dashed pink), against the sample fraction 1 ´ τn.

1.6 Discussion

Much remains to be done if the alternatives to quantiles discussed in this chapter are to be
widely used in day-to-day risk management practice. The main question currently open, in
our view, is how to carry out accurate inference about extreme risk measures in realistic
settings. As far as extreme expectile estimation is concerned, for instance, it appears from
the finite-sample results of [20, 22] that the estimators pe‹

τ 1
n
and re‹

τ 1
n
suffer from substantial

finite-sample bias. It was also noted later by [62] that asymptotic Gaussian inference of
extreme expectiles eτ 1

n
using these estimators was a difficult question, due to the fact that

the asymptotic variances of their Gaussian limiting distributions tend to poorly represent
the actual uncertainty in finite samples. One should expect these issues about bias and
inference to be more generally present and detrimental when (M)ES or extremiles are used.

Recently, [41] and then [25] have come up with very accurate bias-corrected versions and
precise approximations to the empirical variances of pe‹

τ 1
n
and re‹

τ 1
n
, thus enabling to construct

refined bias-reduced and variance-corrected Gaussian confidence intervals for the tail risk
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measure eτ 1
n
in heavy-tailed models. They have provided successive corrections for three

sources of approximation errors in the development of the asymptotic normality of both
extrapolated estimators, namely (i) the use of the asymptotic connection between extreme
expectiles and quantiles while ignoring higher-order error terms, (ii) wrongly neglecting cor-
relations between estimators when the asymptotic behavior of one of them dominates, and
(iii) incurring variance distortions by applying the delta-method for linearization purposes.
The resulting corrected Gaussian confidence intervals enjoy coverages close to the nominal
confidence level even in moderately large samples [25]. The bias-reduced and variance-
corrected versions of pe‹

τ 1
n
(see Section 3 of [25]) and re‹

τ 1
n
(see Section 4 of [25]), obtained for

the aggregated market index and JPMorgan Chase data, at the extreme level τ 1
n “ 1´ 1{n,

are graphed in Figure 1.9, along with corrected associated 95% confidence intervals which
better account for statistical uncertainty compared to the original, naive Gaussian confi-
dence intervals we introduced in this chapter. It is noteworthy that at the moment, the
bias-reduced version of re‹

τ 1
n

appears to be more stable and hence reliable than the one

built on pe‹
τ 1
n
; subject to further improvements in this direction, the approach developed by

[25, 41] could serve as a blueprint for the construction of bias-reduced and variance-corrected
asymptotic Gaussian confidence intervals for extreme ES and extremiles.

A broader question of substantial practical interest is to determine when the so-called
“direct” estimators considered in this chapter, based on extrapolating intermediate risk
measures calculated using the empirical distribution of the data, perform better than “in-
direct” estimators constructed upon asymptotic proportionality relationships warranted by
the extreme value model assumption. A first step towards that goal is a comparison of
the asymptotic variances of risk measure estimators at intermediate levels, see Figure 1.10.
This was already discussed below Theorem 1.4.1 for expectiles, and it can moreover be seen
from Figure 1.10 that, on the range ξ P p0, 1{2q, the empirical ES estimator performs (from
the asymptotic variance viewpoint) always worse than its quantile-based counterpart, and
that the empirical extremile estimator essentially performs comparably or worse than its
quantile-based counterpart. In addition, these four estimators have comparable or higher
asymptotic variance than the empirical quantile at the same intermediate level, which sug-
gests that the ES and extremile are in a certain sense more difficult to estimate and infer
than tail quantiles. As far as extreme risk measure estimation is concerned, existing litera-
ture reveals that:

• For extreme expectile estimation, [20] and [22] provide evidence that the indirect es-
timator re‹

τ 1
n
is superior in the case of non-negative loss distributions, while the direct

estimator pe‹
τ 1
n
seems to be best in the case of real-valued profit-loss distributions.

• For tail extremile estimation, [18] provide evidence that the estimator px‹
τ 1
n
of xτ 1

n
is

superior in terms of mean-squared error and bias when ξ ă 1{2 compared to rx‹
τ 1
n
.

Further, large-scale Monte-Carlo studies are required to reach a definitive conclusion and,
perhaps, find whether “direct” methods are superior in certain situations regardless to which
tail risk measure is estimated. This would be valuable in applications such as financial data
analysis where prior information is often available about what kind of model is reasonable.
It should also be noted that, as pointed out in Section 1.4, the use of an adaptive expectile
estimator, based on a linear combination of the intermediate “direct” estimator and its
competing “indirect” analog, is fruitful when the weighting parameter α P R is chosen in
an optimal way. To the best of our knowledge, this has only been done for tail expectiles
in [22, 23]. For tail ES and extremile estimation, the optimal construction of such a linear
combination is an open problem.

Last but not least, this introductory chapter to methodologies for extreme risk assess-
ment alternative to quantiles does not deal with more complex real-life situations where



Discussion 25

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

E
xp

ec
til

e

γ̂τn

0.25

0.30

0.35

0.40

0.45

0.50

(A) Market index: basic estimates

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

Effective sample fraction x 100%

E
xp

ec
til

e

γ̂τn

0.2

0.3

0.4

0.5

(C) JPMorgan Chase: basic estimates

0.0

0.1

0.2

0.3

0.4

0 5 10 15 20 25

E
xp

ec
til

e

γ̂τn

0.25

0.30

0.35

0.40

0.45

0.50

(B) Market index: bias−reduced estimates

0.0

0.2

0.4

0.6

0.8

0 5 10 15 20 25

Effective sample fraction x 100%

E
xp

ec
til

e

γ̂τn

0.2

0.3

0.4

0.5

(D) JPMorgan Chase: bias−reduced estimates

FIGURE 1.9
Extrapolated eτ 1

n
estimates for the aggregated US market index (top panels) and JPMor-

gan Chase (bottom panels) with τ 1
n “ 1 ´ 1{n. Left: Basic estimates re‹

τ 1
n
(rainbow curve,

asymptotic 95% confidence intervals in dashed blue) and pe‹
τ 1
n
(red curve, asymptotic 95%

confidence intervals in dashed red), against the sample fraction 1´ τn. Right: Bias-reduced
estimates and variance-corrected confidence intervals. The benchmark Weissman quantile
estimates pq‹

τ 1
n
in gray curve and the sample maximum in dashed magenta line.

the data points are serially dependent and/or heterogeneous with or without available co-
variate information that may be high-dimensional. A fully operational inferential theory
that would deal with all these difficulties is not currently available. Various steps have been
made towards solving one of the above challenges: the setting of serially dependent and
stationary observations, without covariates, has been considered by [27] in the extreme ex-
pectile estimation context. The work of [40] gives flexible theory for extreme conditional
expectile estimation, including in popular time series, but their approach is highly sensitive
to model misspecification, makes the strong assumption of a constant tail index, and their
bootstrap scheme is difficult to calibrate. The recent work of [24] provides fully operational
extreme conditional quantile and expectile estimators based on α´mixing data, although
their approach is, by design, limited to low-dimensional covariates; the work of [72] can
handle moderately high-dimensional covariates but puts a very strong linear constraint on
tail conditional expectiles. Extremile regression for independent, identically distributed and
low-dimensional data is considered in [19]. The integration of low-dimensional covariates
into extreme MES estimation is discussed in [43, 44]. Dynamic estimation, namely, con-
ditional estimation in time series models where the covariate primarily consists of lags of
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the target variable with a view on predicting future risk levels, is addressed by [49, 50] in
strictly stationary, parametric location-scale models.
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FIGURE 1.10
Comparison of the normalized asymptotic variances vpξq{ξ2, where vpξq is the asymptotic

variance of the empirical ES estimator xESτn (solid red line), the indirect quantile-based

ES estimator ĂESτn (dashed red line), the empirical extremile estimator pxτn (solid orange
line), the indirect quantile-based extremile estimator rxτn (dashed orange line), the empirical
expectile estimator peτn (solid blue line) and the indirect quantile-based expectile estimator
reτn (dashed blue line). The horizontal dotted line is the line ypξq “ 1, corresponding to an
asymptotic variance equal to that of the empirical intermediate quantile estimator.
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