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Abstract

Expectiles have received increasing attention as coherent and elicitable market risk
measure. Their estimation from heavy-tailed data in an extreme value framework
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1 Introduction

The risk of a financial position X is usually quantified by a risk measure ξpXq, where ξ
is a mapping from some space of random variables to the real line. An influential paper
in the literature by Artzner et al. (1999) provides a meaningful axiomatic foundation for
coherent risk measures. In our framework, the position X is a real-valued random variable
and a positive value of X denotes a loss (e.g. X represents the negative log-returns).
A position Y is then said to be riskier than X if ξpY q ě ξpXq. The risk functional
ξ is coherent if it satisfies the following four requirements: Translation invariance, or
equivalently ξpX ` aq “ ξpXq ` a for all a P R; Positive homogeneity, which amounts to
ξpλXq “ λξpXq for all λ ě 0; Monotonicity, which means that Y ď X a.s. implies that
ξpY q ď ξpXq; Subadditivity, in the sense that ξpX ` Y q ď ξpXq ` ξpY q. Of practical
interest are law-invariant risk measures in the sense that ξpXq “ ξpY q if the random
variables X and Y have the same distribution. Elicitability is an additional key property
for a risk measure as it provides a natural methodology to perform backtesting. It has
drawn considerable interest within the quantitative risk management literature mainly
through the contribution of Gneiting (2011). In statistical decision theory, as any risk
measure has to be estimated and/or forecast from historical data, it is important to be
able to verify and compare its competing forecasting procedures. Risk measures for which
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such validation and comparison is possible are called elicitable (Fissler and Ziegel, 2016).
Our article contributes to the ongoing search for estimation methods of a law-invariant
risk measure that is both coherent and elicitable.

Arguably, the ubiquitous risk measure in banking and finance is the Value-at-Risk at
level τ pVaRτ q, which is defined as the τth quantile

qτ :“ inftx P R : F pxq ě τu, τ P p0, 1q,

where F stands for the distribution function of the random variable X. In essence, it
represents a loss that occurs once every 1{p1 ´ τq observations on average. This intuitive
interpretation, paired with its versatility, robustness, and elicitability, allowed quantiles to
reign as the standard in risk management for decades. However, VaRτ ” qτ has received
mounting criticism for its failure to uphold the subadditivity axiom in general settings
(Acerbi, 2002), which leads to violations of the diversification principle, as well as its
inability to account for the size of losses beyond level τ (Dańıelsson et al., 2001). The latter
defect can be viewed as a side-effect of quantile robustness, as its sole reliance on counting
observations beyond a threshold limits its ability to model extreme losses, particularly
for heavy-tailed distributions. These two shortcomings motivated the adoption of an
alternative that improves on both of these fronts, known as Expected Shortfall at level τ
pESτ q and defined by Acerbi and Tasche (2002) as

ESτ :“
1

1 ´ τ

ż 1

τ
qt dt.

Being a coherent risk measure, ESτ has superseded VaRτ as the standard measure for
market risk in the banking sector according to the Basel Accords III/IV (Wang and Zitikis,
2021). When X is continuous, this instrument coincides with the τ -Conditional Value-at-
Risk EpX|X ą qτ q, which represents the expectation of X when the variable takes values
in the upper p1 ´ τq-tail (Rockafellar and Uryasev, 2002), making it more attuned to tail
events. Yet, this exclusive reliance on tail observations casts doubts about the measure’s
non-robustness (Cont et al., 2010; Kou et al., 2013), a topic whose relevance is still under
scrutiny in the literature (Krätschmer et al., 2012, 2014, 2015). Perhaps most importantly,
ESτ falls short of VaRτ in terms of elicitability as it is not directly elicitable (Gneiting,
2011). It only achieves joint elicitability with VaRτ (Fissler and Ziegel, 2016).

The alternative concept of expectiles has axiomatic and practical properties that strike
a delicate balance between those of the two aforementioned competing risk measures.
First envisioned by Aigner et al. (1976) and popularized by Newey and Powell (1987) in
a regression context, the τth expectile can be defined as

ξτ :“ argmin
θPR

E
␣

|τ ´ 1pX ď θq|pX ´ θq2 ´ |τ ´ 1pX ď 0q|X2
(

,

which exists as the unique minimizer in the above optimization problem as soon as E|X| ă

8. Expectiles factor in both the probability and magnitude of tail realizations (Kuan
et al., 2009). While the measure is categorized alongside quantiles into the same class of
M-quantiles defined by Breckling and Chambers (1988), it distinguishes itself within this
class by being the only M-quantile that satisfies all four coherence properties (Bellini et al.,
2014). In fact, expectiles are the only coherent and law-invariant risk measure that is also
elicitable, as shown by Steinwart et al. (2014), Bellini and Bignozzi (2015), and Ziegel
(2016). They also enjoy intuitive financial interpretations in the form of their acceptance
sets and their connection to the gain-loss ratio (Bellini and Di Bernardino, 2017). Although
not comonotonically additive, i.e. ξτ pX ` Y q ‰ ξτ pXq ` ξτ pY q for comonotonic random
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variables X and Y (Acerbi and Székely, 2014), the unique combination of coherence, law-
invariance, and elicitability has garnered mounting attention for expectiles; see for instance
Martin (2014), Mao et al. (2015), Ehm et al. (2016), Bellini and Di Bernardino (2017),
Krätschmer and Zähle (2017), Daouia et al. (2021), Girard et al. (2022a,b), Philipps
(2022), Zaevski and Nedeltchev (2023) and Hu et al. (2024). The use of this metric in
measuring extreme risk has also received increasing attention in the fields of insurance and
financial economics, including asset risk (Davison et al., 2023; Liu et al., 2023) as well as
systemic and cybersecurity risks (Daouia et al., 2018, 2024b), to cite a few.

Estimation of tail risk at extreme levels τ is an important problem for practitioners who
are concerned with the risk exposure to an infrequent catastrophic event that may wipe
out an investment in terms of the size of potential losses. The tail structure of financial
losses being typically described by heavy-tailed distributions, the statistical problem is
difficult due to data scarcity at the far tails, especially when the population risk measure
of interest is beyond the range of the data. Extreme value theory offers an ingenious
solution in the form of extrapolation. It seems to be general consensus in the field that
there are two major extrapolation methods which make use of top observations for tail
risk assessment: (i) the Weissman method which involves estimating an “intermediate”
version of the risk measure (i.e. moderately extreme and well inside the sample) alongside
the tail index, then using the latter to multiplicatively shift the former to the right place
of the targeted “extreme” risk measure, and (ii) the generalized Pareto approach which
approximates the upper tail of the underlying distribution by a Generalized (location-
scale) Pareto distribution (GPD) tail. We refer to the book of de Haan and Ferreira
(2006) for extreme VaRτ estimation and to Daouia et al. (2024c) for a unified theory
of extreme ESτ inference in the semiparametric GP model. Extreme ξτ estimation has
been studied only fairly recently, by making solely use of the Weissman extrapolation
device. The first extrapolated estimators were introduced by Daouia et al. (2018, 2019,
2020), before a series of refined and bias-corrected versions were developed in Girard et al.
(2022a,b), Padoan and Stupfler (2022) and Daouia et al. (2024b).

Extreme expectile estimation using the semiparametric GP approach still remains
untouched and its potential untapped in the challenging context of heavy-tailed data.
However, this approach has for decades constituted a tool of extreme value modeling
for quantile-based risk measures in finance, see McNeil and Frey (2000) and Section 6.2
in Beirlant et al. (2004) among many others, and is considered a staple of statistical anal-
ysis in other fields of application such as climate science (Coles, 2001). While Weissman
extrapolation only relies on the tail index (shape parameter) and the scale parameter, this
competing framework also accounts for the location parameter in the GPD approximation,
which itself constitutes the natural way of handling departures from the scale-shape tail
Pareto model induced by location shifts, thus potentially leading to more accurate esti-
mates and forecasts. Apart from Daouia et al. (2024a) who consider the different setting
of short-tailed distributions, this is the first work to implement the idea of semiparametric
GPD fitting of extreme expectiles in a heavy-tailed model by presenting two classes of
semiparametric estimators: the first relies on direct asymmetric least squares estimation,
while the second pairs extreme quantile estimation with an asymptotic proportionality
relationship between extreme quantiles and expectiles. We derive their asymptotic distri-
butions for generic estimators of the scale and shape parameters, before specializing the
discussion of our general theorems to the use of Generalized Pareto maximum likelihood
estimators (Smith, 1987; Drees et al., 2004) and moment estimators (Dekkers et al., 1989)
for the extreme value parameters. Although we do focus on expectile risk assessment in
finance, our general methodology and asymptotic theory has wide applications outside of
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asset/investment risk, including systemic risk, climate risk, cyber risk, geohazards and
disaster risk. Our methods are implemented in the freely available R package Expectrem.

The paper is organized as follows. In Section 2, we present an overview of the current
state of research on tail expectile estimation. Our new contribution is given in Section 3,
where we construct the two classes of generalized Pareto-type estimators and derive their
asymptotic properties. A simulation study examines their finite-sample performance in
Section 4 relative to the best known Weissman-type estimators. Forecast comparisons are
also conducted in Section 5 to evaluate tail risk for the stocks of Netflix, Walmart, and
American Express, as well as the exchange rate of Bitcoin. Section 6 concludes. The
Appendix contains further details about bias reduction and variance correction within the
Weissman extrapolation framework as well as all necessary mathematical proofs.

2 An overview of the state-of-the-art

2.1 Statistical model

Let the financial position of interest X be a real-valued random variable, and F be its
cumulative distribution function. In this paper, we consider loss returns (i.e. minus log-
returs), which implies that extreme losses correspond to the upper tail of F . Denote
by U the associated tail quantile function defined as Uptq “ FÐp1 ´ 1{tq for all t ą 1,
where FÐp¨q “ inftx P R, F pxq ě ¨u stands for the generalized inverse of F . Estimating
tail quantities, including expectiles and quantiles, from the perspective of extreme value
statistics relies on the fundamental domain of attraction assumption that there exist a
constant γ P R and a positive scale function ap¨q such that, for all x ą 0,

lim
tÑ8

Uptxq ´ Uptq

aptq
“

ż x

1
sγ´1 ds. (2.1)

The parameter γ is referred to as the Extreme Value Index (EVI for short): a negative,
zero or positive EVI indicates respectively a distribution with short, light or heavy right
tail. In the case of heavy-tailed distributions (i.e. γ ą 0) that describe quite well the tail
structure of most financial data, following Corollary 1.2.10 in de Haan and Ferreira (2006),
the condition (2.1) is equivalent to

lim
tÑ8

Uptxq

Uptq
“ xγ , for x ą 0. (2.2)

The asymptotic theory of extreme value estimators for tail quantities, including the EVI
and extreme expectiles and quantiles, shows that their bias is mainly determined by the
speed of convergence in the domain of attraction condition (2.1) or (2.2). This is captured,
for a general γ P R, by the so-called extended second-order regular variation (SORV)
assumption:

E2pγ, ρ, a, Aq There exist γ P R, a second-order parameter ρ ď 0, a scale function ap¨q ą 0
and a constant sign function Ap¨q which converges to 0 at infinity such that

@x ą 0, lim
tÑ8

1

Aptq

ˆ

Uptxq ´ Uptq

aptq
´

xγ ´ 1

γ

˙

“

ż x

1
sγ´1

ż s

1
uρ´1duds.

This assumes that the right tail of the distribution of X can be approximated by a GPD
tail at a known rate. As can be seen, for instance, from Sections 2.3-2.4 and Chapter 3
in de Haan and Ferreira (2006), Section 5.6 in Beirlant et al. (2004) and Chapter 2 in Falk
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et al. (2011), this kind of condition is inevitable in order to carry out extreme value
analysis when no parametric model structure is imposed on F . In the heavy-tailed case,
this extended SORV condition reduces to the assumption:

C2pγ, ρ̃, Ãq There are γ ą 0, a second-order parameter ρ̃ ď 0 and a constant sign function
Ãp¨q which converges to 0 at infinity such that

@x ą 0, lim
tÑ8

1

Ãptq

ˆ

Uptxq

Uptq
´ xγ

˙

“ xγ
ż x

1
sρ̃´1 ds,

Theorem 3.1 by Fraga Alves et al. (2007) provides explicit expressions of ρ̃ and Ãp¨q in
terms of γ, ρ, ap¨q and Ap¨q. The interpretation of E2pγ, ρ, a, Aq and C2pγ, ρ̃, Ãq can be
found in Daouia et al. (2024c) and de Haan and Ferreira (2006) respectively, along with
abundant examples of commonly used families of continuous distributions satisfying both
of these conditions, and with the explicit corresponding values of γ, ρ, ap¨q and Ap¨q.

In the present paper, we focus on the estimation of extreme expectiles when F is
attracted to the maximum domain of Pareto-type distributions with tail index 0 ă γ ă 1.
Together with condition E|X´| ă 8, with X´ “ minpX, 0q the negative part of X, the
assumption γ ă 1 ensures that the first moment of X exists, and hence expectiles of X are
well-defined (note that the first moment of X and hence its expectiles do not exist when
γ ą 1). Under this model assumption, Bellini and Di Bernardino (2017) have established
in their Proposition 2.3 an interesting asymptotic connection between extreme expectiles
and their quantile analogs, namely

ξτ „ pγ´1 ´ 1q´γqτ as τ Ñ 1. (2.3)

It follows that tail expectiles ξτ are more spread than tail quantiles qτ when γ ą 1{2,
whereas ξτ ă qτ for all large τ when γ ă 1{2. The asymptotic equivalence (2.3) is
fundamental in the construction of extreme expectile estimators, which we review next.

2.2 Weissman-type estimators

LetX1, . . . , Xn be a sample of observations drawn from F , and for the moment assume that
these random copies of X are independent. Let X1,n ď ¨ ¨ ¨ ď Xn,n be their corresponding
order statistics. In the intermediate case when τ “ τn Ñ 1 such that np1 ´ τnq Ñ 8

as n Ñ 8, or under the more common discretized setup τn “ 1 ´ k{n for a sequence of
integers k “ kn Ñ 8 with kn{n Ñ 0 as n Ñ 8, the population expectile ξτn is extreme
but well inside the sample so that it can be consistently estimated by its empirical version

pξτn “ argmin
uPR

1

n

n
ÿ

i“1

ητnpXi ´ uq, (2.4)

where ητ pyq “ |τ ´ 1py ď 0q|y2 is the expectile check function. The asymptotic normal-
ity of pξτn is derived in Theorem 2 in Daouia et al. (2018) for the class of heavy-tailed
distributions (2.2) with γ ă 1{2. In the more general setting where 0 ă γ ă 1, an
indirect asymptotically normal estimator of ξτn can be obtained from the asymptotic con-
nection (2.3), or equivalently, ξτn „ pγ´1´1q´γqτn as n Ñ 8. By substituting in a suitable
estimator γ in place of γ and the empirical quantile pqτn “ Xn´tnp1´τnqu,n “ Xn´k,n in place
of qτn , the resulting estimator

rξτn “ pγ´1 ´ 1q´γ
pqτn (2.5)
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is shown to have a
a

np1 ´ τnq´asymptotic nondegenerate distribution under the condi-
tions formulated in Theorem 1 in Daouia et al. (2018). The EVI γ P p0, 1q can be estimated
by the celebrated Hill estimator (Hill, 1975)

pγHn :“
1

tnp1 ´ τnqu

tnp1´τnqu
ÿ

i“1

logXn´i`1,n ´ logXn´tnp1´τnqu,n,

or, in the case γ P p0, 1{2q, by the following expectile-based estimator introduced and
popularized by Girard et al. (2022a,b):

pγEn :“

˜

1 `

pFnppξτnq

1 ´ τn

¸´1

where pFnpxq “
1

n

n
ÿ

i“1

1tXi ą xu.

In the more challenging extreme case when τ “ τ 1
n Ñ 1 such that np1 ´ τ 1

nq Ñ c P r0,8q

as n Ñ 8, the population expectile ξτ 1
n
lies at the far tail of the underlying distribution,

possibly beyond the sample maximum Xn,n in the data. Typical examples include τ 1
n “

1´ 1{n, with the associated extreme expectile ξτ 1
n
having the order of magnitude of Xn,n.

In this case, the model assumption of Pareto-type tail (2.2) combined with the asymptotic
connection (2.3), yields the Weissman approximation

qτ 1
n

qτn
“

Upp1 ´ τ 1
nq´1q

Upp1 ´ τnq´1q
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ

,

and hence
ξτ 1

n

ξτn
„

qτ 1
n

qτn
«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ

. (2.6)

This approximation motivates the following class of plug-in estimators of ξτ 1
n
:

ξ
‹

τ 1
n

” ξ
‹

τ 1
n

pτnq :“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ

ξτn (2.7)

where γ is a
a

np1 ´ τnq´consistent estimator of γ, and ξτn is either the empirical asym-

metric least squares estimator pξτn in (2.4) or the quantile-based estimator rξτn in (2.5) for
the intermediate expectile ξτn . More specifically, the use of the latter indirect intermediate
expectile ξτn ” rξτn in (2.7) yields the extreme expectile estimator rξ‹

τ 1
n
:“ ξ

‹

τ 1
n
defined as

rξ‹
τ 1
n

“ rξ‹
τ 1
n

pγq :“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ
rξτn “

ˆ

1 ´ τn
1 ´ τ 1

n

˙γ

pγ´1 ´ 1q´γ
pqτn , (2.8)

while the choice of the former direct intermediate expectile ξτn ” pξτn results in

pξ‹
τ 1
n

“ pξ‹
τ 1
n

pγq :“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ
pξτn . (2.9)

Based on an i.i.d. assumption on the underlying sample and a SORV condition C2pγ, ρ,Aq

with additional mild regularity conditions, Daouia et al. (2018) have shown in their Corol-
lary 3 and Corollary 4 that the two estimators (2.8) and (2.9) have the same limit distri-
bution as the chosen tail index estimator γ with the slightly slower rate of convergence
logpp1´ τnq{p1´ τ 1

nqq{
a

np1 ´ τnq. When using the extrapolated quantile-based estimator
rξ‹
τ 1
n

pγq in (2.8) in conjunction with the Hill estimator γ “ pγHn , and its asymmetric least
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squares competitor pξ‹
τ 1
n

pγq in (2.9) along with the expectile-based estimator γ “ pγEn , it

was shown in Daouia et al. (2018) and Girard et al. (2022b) that, if ρ ă 0 and under the
conditions λ1 “ limnÑ8

a

np1 ´ τnqApp1 ´ τnq´1q P R, λ2 “ limnÑ8

a

np1 ´ τnq{qτn P R
and

a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8, one has

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

log

˜

rξ‹
τ 1
n

ppγHn q

ξτ 1
n

¸

d
ÝÑ N

ˆ

λ1

1 ´ ρ
, γ2

˙

(2.10)

and, when E|X´|2 ă 8 and γ ă 1{2,

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

log

˜

pξ‹
τ 1
n

ppγEn q

ξτ 1
n

¸

d
ÝÑ N

ˆ

γpγ´1 ´ 1q1´ρ

1 ´ γ ´ ρ
λ1 ` γ2pγ´1 ´ 1qγ`1EpXqλ2,

γ3p1 ´ γq

1 ´ 2γ

˙

. (2.11)

Note that when pXn, n “ 1, 2, . . .q is a strictly stationary, β´mixing time series and with
the Hill estimator γ “ pγHn , Davison et al. (2023) have recently proved in their Theorem 3.5
that these estimators, namely rξ‹

τ 1
n

ppγHn q and pξ‹
τ 1
n

ppγHn q, are still asymptotically Gaussian with
the same rate of convergence, but at the cost of an increased asymptotic variance.

When ignoring the asymptotic bias, under the assumption λ1 “ λ2 “ 0, the resulting
Gaussian 100p1 ´ αq% asymptotic confidence intervals for ξτ 1

n
are then

rI
p0q

τ 1
n

pαq “

«

rξ‹
τ 1
n

ppγHn q exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

a

rσ2
n ˆ z1´α{2

¸ff

and pI
p0q

τ 1
n

pαq “

«

pξ‹
τ 1
n

ppγEn q exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

a

ps2n ˆ z1´α{2

¸ff

,

where rσ2
n “ ppγHn q2 and ps2n “

ppγEn q3p1 ´ pγEn q

1 ´ 2pγEn
,

with z1´α{2 being the quantile of level 1 ´ α{2 for the standard Gaussian distribution.

Bias-reduced versions of the estimators rξ‹
τ 1
n

ppγHn q in (2.10) and pξ‹
τ 1
n

ppγEn q in (2.11) have been

recently suggested by Girard et al. (2022b) when the auxiliary function A in their SORV
condition C2pγ, ρ,Aq takes the form Aptq “ bγtρ for certain constants b ‰ 0 and ρ ă 0.
This function A can be estimated by using a consistent tail index estimator γ and the
second order parameter estimators b and ρ that were introduced in Gomes and Martins
(2002) and Fraga Alves et al. (2003). A careful consideration of the different sources of
bias in the construction of rξ‹

τ 1
n
and pξ‹

τ 1
n
(see Appendix A) leads to bias-reduced versions

rξ‹,BR
τ 1
n

ppγH,BR
n q and pξ‹,BR

τ 1
n

ppγE,BR
n q, whose full expressions are given in (A.5) and (A.6), and

with (see Caeiro et al., 2005)

pγH,BR
n “ pγHn

˜

1 ´
b

1 ´ ρ

ˆ

1

1 ´ τn

˙ρ
¸

and (see Girard et al., 2022a)

pγE,BR
n “

¨

˝1 `

pFnppξτnq

1 ´ τn

˜

1 ´
Xn

pξτn

¸´1

p2τn ´ 1q

˜

1 `
bppFnppξτnqq´ρ

1 ´ pγEn ´ ρ

¸

˛

‚

´1

.
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Gaussian 100p1´αq% asymptotic confidence intervals for ξτ 1
n
based on the purely asym-

metric least squares estimator pξ‹,BR
τ 1
n

ppγE,BR
n q and its quantile-based competitor rξ‹,BR

τ 1
n

ppγH,BR
n q,

also available as part of the R package Expectrem, are discussed in Daouia et al. (2024b),
with an alternative solution put forward in Padoan and Stupfler (2022) to correct the naive

confidence intervals pI
p0q

τ 1
n

pαq and rI
p0q

τ 1
n

pαq. We list in Appendix A the intervals constructed

from Daouia et al. (2024b) as pI
p1q

τ 1
n

pαq, rI
p1q

τ 1
n

pαq, pI
p2q

τ 1
n

pαq and rI
p2q

τ 1
n

pαq, and from Padoan and

Stupfler (2022) as pI
p3q

τ 1
n

pαq and rI
p3q

τ 1
n

pαq. Appendix A also provides more details about these
intervals and their observed finite-sample behavior.

3 Semiparametric GP estimation of tail expectiles

Define the excess distribution function Fupxq :“ PpX ´ u ď x|X ą uq, for u P R. A
standard result in extreme value theory, given for instance by Theorem 3.4.13 in Embrechts
et al. (1997), asserts that the model assumption (2.1) holds with γ ą 0 if and only if

lim
uÑ8

sup
xą0

|Fupxq ´ Hpx|σpuq, γq| “ 0, (3.1)

for some positive function σp¨q, where

Hpx|σ, γq “ 1 ´

´

1 `
γx

σ

¯´1{γ
, x ą 0,

stands for the distribution function of the GPD with shape and scale parameters γ and σ,
respectively. According to Theorem 1.1.6(4) on page 10 in de Haan and Ferreira (2006),
the positive scale function σp¨q in (3.1) is related to ap¨q in the model assumption (2.1)
through the identity σpuq “ ap1{F puqq. Based on the result (3.1), for a threshold u large
enough, the distribution function Fu can then be well approximated by a GPD with shape
parameter γ equal to the EVI of F , or equivalently,

F pxq « F puq

ˆ

1 ` γ
x ´ u

σpuq

˙´1{γ

, x ą u.

Inverting the right-hand side, we obtain the celebrated GPD approximation of extreme
quantiles, or directly in terms of the tail quantile function U , the model assumption (2.1)
can informally be rewritten as

@x ą 0, Uptxq « Uptq ` aptq
xγ ´ 1

γ
when t is large. (3.2)

Based on this approximation we construct and study below two new classes of extreme
expectile estimators: the first one in Section 3.1 is built upon asymmetric least squares
extrapolation, while the second one in Section 3.2 relies on extreme quantile estimation.
We build here a general theory based on generic estimators of the scale and shape param-
eters; the application to Generalized Pareto maximum likelihood estimators and moment
estimators of the scale and shape parameters is discussed in Subsection 3.3.

3.1 Extremal asymmetric least squares estimation

Let τn Ò 1 such that nF pξτnq Ñ 8, and let τ 1
n ą τn such that p1 ´ τnq{p1 ´ τ 1

nq Ñ 8.
Using (3.2) with t “ 1{F pξτnq and x “ F pξτnq{F pξτ 1

n
q leads to the expectile-specific

approximation

ξτ 1
n

« ξτn ` ap1{F pξτnqq
pF pξτnq{F pξτ 1

n
qqγ ´ 1

γ

8



for n large enough. Since, in the heavy-tailed case with 0 ă γ ă 1, we have F pξτ q{p1´τq „

γ´1 ´ 1 as τ Ñ 1 (Bellini et al., 2014, Theorem 11), it follows that

F pξτnq

F pξτ 1
n

q
«

1 ´ τn
1 ´ τ 1

n

as n Ñ 8, which in turn suggests the extrapolating approximation

ξτ 1
n

« ξτn ` ap1{F pξτnqq
pp1 ´ τnq{p1 ´ τ 1

nqqγ ´ 1

γ
.

Therefore, given estimators σ̆n and γ̆n of ap1{F pξτnqq and γ, respectively, this motivates
the extreme expectile estimator

ξ̆‹
τ 1
n

“ ξ̆‹
τ 1
n

pγ̆n, σ̆nq :“ pξτn ` σ̆n
pp1 ´ τnq{p1 ´ τ 1

nqqγ̆n ´ 1

γ̆n
. (3.3)

Various estimators of the scale function σp¨q ” ap1{F p¨qq and shape parameter γ are
available in the literature, including the (pseudo-)Generalized Pareto maximum likelihood
(GPML) estimators and the Moment-type estimators: if k “ kn Ñ 8 is a sequence of
integers such that k{n Ñ 0, as n Ñ 8, then

• The GPML estimators (Smith, 1987; Drees et al., 2004) of papn{knq, γq are given by

ppaMLpn{knq, pγML
n q “ argmax

σ,γą0

kn
ź

i“1

hpXn´i`1,n ´ Xn´kn,n|σ, γq

where the Generalized Pareto density function is defined as hp¨|σ, γq “ H 1p¨|σ, γq;

• The Moment estimators (Dekkers et al., 1989) of papn{knq, γq are defined as

`

paMompn{knq, pγMom
n

˘

“
`

Xn´kn,nM
p1q

kn
p1 ´ pγp´q

n q,M
p1q

kn
` pγp´q

n

˘

where

pγp´q
n “ 1 ´

1

2

˜

1 ´
pM

p1q

kn
q2

M
p2q

kn

¸´1

and M
pjq

kn
“

1

kn

kn
ÿ

i“1

plogXn´i`1,n ´ logXn´kn,nqj , for j “ 1, 2.

Such estimators of the scale parameter ap1{F punqq typically converge on the relative scale

at the rate 1{

b

nF punq; see Sections 3.4 and 4.2 in de Haan and Ferreira (2006) for the

i.i.d. case, and Section 6 in Drees (2003) for the case of dependent data. For un “ ξτn ,
estimators σ̆n of the parameter ap1{F pξτnqq are therefore expected to converge on the rel-

ative scale at the rate 1{

b

nF pξτnq, which we have seen to be asymptotically proportional

to the rate of convergence 1{
a

np1 ´ τnq of the intermediate expectile estimator pξτn . It
is also customary to use estimators γ̆n that rely on the top kn “ np1 ´ τnq observations
and converge at the same rate 1{

a

np1 ´ τnq; see Sections 3.4, 3.5 and 3.6 in de Haan and
Ferreira (2006) in the i.i.d. case, and Section 6 in Drees (2003) in the serially dependent
case. The next result shows that among the three estimators pξτn , γ̆n and σ̆n on which ξ̆‹

τ 1
n

hinges in (3.3), it is the asymptotic behavior of γ̆n which dominates that of ξ̆‹
τ 1
n
.
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Theorem 1. Assume that

1. E|X2
´| ă 8 and E2pγ, ρ, a, Aq holds with 0 ă γ ă 1{2 and ρ ă 0;

2. τn “ 1´kn{n Ñ 1 such that np1´τnq “ kn Ñ 8,
a

np1 ´ τnqApp1´τnq´1q Ñ λ1 P R,
a

np1 ´ τnq{qτn Ñ λ2 P R, and
a

np1 ´ τnqpapp1´ τnq´1q{qτn ´γq Ñ µ P R, n Ñ 8;

3. τ 1
n Ñ 1 such that p1´τnq{p1´τ 1

nq Ñ 8 and
a

np1 ´ τnq{ logpp1´τnq{p1´τ 1
nqq Ñ 8,

n Ñ 8;

4.
a

np1 ´ τnq

´

pξτn
ξτn

´ 1
¯

“ OPp1q and for suitable estimators γ̆n and σ̆n,

a

np1 ´ τnq

ˆ

σ̆n

ap1{F pξτnqq
´ 1

˙

“ OPp1q and
a

np1 ´ τnqpγ̆n ´ γq
d

ÝÑ Γ,

where Γ is a nondegenerate limit.

Then
a

np1 ´ τnq
ξ̆‹
τ 1
n

´ ξτ 1
n

ap1{F pξτnqq
şp1´τnq{p1´τ 1

nq

1 sγ´1 logpsqds

d
ÝÑ Γ.

By Corollary 4.3.2 on p.135 in de Haan and Ferreira (2006), the conditions of our
Theorem 1 imply

şp1´τnq{p1´τ 1
nq

1 sγ̆n´1 logpsqds
şp1´τnq{p1´τ 1

nq

1 sγ´1 logpsqds

P
ÝÑ 1, as n Ñ 8,

which is useful for constructing an asymptotic confidence interval for ξτ 1
n
. For this same

purpose and for the calculation of ξ̆‹
τ 1
n
in (3.3), the estimator σ̆n of ap1{F pξτnqq can be

obtained in three different ways by setting

σ̆p1q
n “ pap1{

pFnppξτnqq, σ̆p2q
n “ papp1 ´ τnq´1q ˆ pp1 ´ τnq{

pFnppξτnqqγ̆n ,

or σ̆p3q
n “ papp1 ´ τnq´1q ˆ pγ̆´1

n ´ 1q´γ̆n .

The first estimator σ̆
p1q
n is simply the empirical counterpart of ap1{F pξτnqq. The second

estimator σ̆
p2q
n is obtained in view of the approximation ap1{F pξτnqq « app1´τnq´1qˆpp1´

τnq{F pξτnqqγ that follows from the regular variation property limsÑ8 apszq{apsq “ zγ ,
for any z ą 0 (see Lemma 1.2.9 on p.22 in de Haan and Ferreira, 2006), when taking

s “ 1{F pqτnq and z “ F pqτnq{F pξτnq. The third estimator σ̆
p3q
n is obtained from the

same approximation above by replacing F pξτnq{p1 ´ τnq with its limit γ´1 ´ 1. These
three versions of σ̆n will be denoted in the sequel as σ̆ML,i

n , i “ 1, . . . , 3, when using
the GPML method and as σ̆Mom,i

n , i “ 1, . . . , 3, when using the Moment method. This
will in turn result in the associated GPML-based expectile estimators ξ̆‹

τ 1
n

ppγML
n , σ̆ML,i

n q

and Moment-type estimators ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,i

n q. These estimators can be calculated by
using our function pgdExpect from the R package Expectrem with the respective methods
"direct GP ML1", . . . , "direct GP ML3", and "direct GP MOM1", . . . , "direct GP MOM3".

It is also natural and instructive to compare Theorem 1 with the results obtained
for the competing Weissman-type estimators. We have from the proof of Theorem 1 the
following equivalent statement:

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

ξ̆‹
τ 1
n

ξτ 1
n

´ 1

¸

d
ÝÑ Γ. (3.4)
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Therefore, ξ̆‹
τ 1
n
has the same rate of convergence as rξ‹

τ 1
n
in (2.8) and pξ‹

τ 1
n
in (2.9), as well

as their bias-corrected versions pξ‹,BR
τ 1
n

in (A.5) and rξ‹,BR
τ 1
n

in (A.6). While the asymptotic

distribution Γ of these Weissman-type estimators is typically that of the Hill estimator pγHn
or the expectile-based estimator pγEn , or their bias-reduced versions pγH,BR

n and pγE,BR
n , it

would naturally correspond in our generalized Pareto approach to the limit distribution of
the GPML estimator pγML

n or Moment estimator pγMom
n . We will specialize the discussion

of our generic Theorem 1 to both of these shape parameter estimators γ̆n P tpγML
n , pγMom

n u

in Section 3.3 when the scale parameter estimator takes the form σ̆n :“ σ̆
p3q
n “ papp1 ´

τnq´1q pγ̆´1
n ´ 1q´γ̆n , with pap¨q P tpaMLp¨q,paMomp¨qu. This choice of σ̆n is motivated by

its good performance in our numerical illustrations. Next, we show that its associated
assumption in Theorem 1 holds under convenient conditions on both γ̆n and papp1´τnq´1q.

Theorem 2. Assume that

1. E|X´| ă 8 and E2pγ, ρ, a, Aq holds with 0 ă γ ă 1 and ρ ă 0;

2. τn Ò 1 such that np1´τnq Ñ 8,
a

np1 ´ τnqApp1´τnq´1q “ Op1q,
a

np1 ´ τnq{qτn “

Op1q, and
a

np1 ´ τnqpapp1 ´ τnq´1q{qτn ´ γq “ Op1q, n Ñ 8.

Take σ̆n “ papp1 ´ τnq´1q ˆ pγ̆´1
n ´ 1q´γ̆n for suitable estimators papp1 ´ τnq´1q and γ̆n such

that

a

np1 ´ τnq

ˆ

papp1 ´ τnq´1q

app1 ´ τnq´1q
´ 1

˙

“ OPp1q and
a

np1 ´ τnqpγ̆n ´ γq
d

ÝÑ Γ,

where Γ is a nondegenerate limit. Then

a

np1 ´ τnq

ˆ

σ̆n

ap1{F pξτnqq
´ 1

˙

“ OPp1q.

In the financial context of real-valued profit-loss heavy-tailed distributions, we provide
Monte Carlo evidence in Section 4 that, at least, our GPML estimator ξ̆‹

τ 1
n

ppγML
n , σ̆ML,2

n q

outperforms the best known Weissman competitors among those described in Section 2,
both in terms of relative bias and mean-squared error, with its associated asymptotic
confidence interval having slightly better coverage at the expense of being wider.

3.2 Extremal quantile-based estimation

Using now (3.2) with t “ p1 ´ τnq´1 and x “ p1 ´ τnq{p1 ´ τ 1
nq leads to the well-known

Generalized Pareto quantile approximation

qτ 1
n

« qτn ` app1 ´ τnq´1qq
pp1 ´ τnq{p1 ´ τ 1

nqqγ ´ 1

γ

for all n large enough, which results in the extrapolated extreme quantile estimator

qq‹
τ 1
n

“ pqτn `
pσn
pγn

˜

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pγn

´ 1

¸

for suitable estimators pσn and pγn of the scale and shape parameters app1´ τnq´1qq and γ,
respectively. In our heavy-tailed model (γ ą 0), the asymptotic connection ξτ 1

n
„ pγ´1 ´

1q´γqτ 1
n
from (2.3) motivates then the quantile-based estimator

qξ‹
τ 1
n

“ qξ‹
τ 1
n

ppγn, pσnq :“ ppγ´1
n ´ 1q´pγn

qq‹
τ 1
n

(3.5)
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“ ppγ´1
n ´ 1q´pγn

˜

pqτn `
pσn
pγn

«

ˆ

1 ´ τ 1
n

1 ´ τn

˙´pγn

´ 1

ff¸

for ξτ 1
n
, which extrapolates the intermediate expectile estimator qξτn :“ ppγ´1

n ´ 1q´pγn
pqτn to

the far tail at τ 1
n. Next, we establish the asymptotic distribution of this new GPD-type

estimator for generic estimators pγn and pσn of the shape and scale parameters.

Theorem 3. Assume that

1. E|X´| ă 8 and E2pγ, ρ, a, Aq holds with 0 ă γ ă 1 and ρ ă 0;

2. τn “ 1´kn{n Ñ 1 such that np1´τnq “ kn Ñ 8,
a

np1 ´ τnqApp1´τnq´1q Ñ λ1 P R,
a

np1 ´ τnq{qτn Ñ λ2 P R, and
a

np1 ´ τnqpapp1´ τnq´1q{qτn ´γq Ñ µ P R, n Ñ 8;

3. τ 1
n Ñ 1 such that p1´τnq{p1´τ 1

nq Ñ 8 and
a

np1 ´ τnq{ logpp1´τnq{p1´τ 1
nqq Ñ 8,

n Ñ 8;

4. for suitable estimators pγn of γ and pσn of σpqτnq “ app1 ´ τnq´1q,

a

np1 ´ τnq

ˆ

pγn ´ γ,
pσn

σpqτnq
´ 1,

pqτn ´ qτn
σpqτnq

˙

d
ÝÑ pΓ,Λ, Bq (3.6)

where pΓ,Λ, Bq is a nontrivial trivariate weak limit.

Then
a

np1 ´ τnq

qξ‹
τ 1
n

´ ξτ 1
n

app1 ´ τnq´1q
şp1´τnq{p1´τ 1

nq

1 sγ´1 logpsqds

d
ÝÑ

Γ

pγ´1 ´ 1qγ
.

As can be seen from the proof of Theorem 3, an equivalent statement of this conver-
gence is

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

qξ‹
τ 1
n

ξτ 1
n

´ 1

¸

d
ÝÑ Γ, (3.7)

which yields exactly the same rate of convergence as the competing Weissman-type esti-
mators seen in Section 2. Similarly to these estimators, it is the asymptotic distribution Γ
of the chosen tail index estimator pγn which dominates the limit distribution of our extreme
expectile estimator qξ‹

τ 1
n

ppγn, pσnq. In Section 3.3 below, we shall specialize the discussion of

Theorem 3 to the GPML and Moment-type estimators qξ‹
τ 1
n

ppγML
n , pσML

n q and qξ‹
τ 1
n

ppγMom
n , pσMom

n q

obtained by taking the estimators pγn and pσn in (3.5) for the shape and scale parameters
γ and σpqτnq ” apn{knq to be either pγML

n and pσML
n or pγMom

n and pσMom
n , respectively, where

pσML
n :“ paMLpn{knq and pσMom

n :“ paMompn{knq.

The two extrapolated estimators qξ‹
τ 1
n

ppγML
n , pσML

n q and qξ‹
τ 1
n

ppγMom
n , pσMom

n q can be calculated by
using the function gpdExpect from the R package Expectrem, with method="indirect GP ML"

and method="indirect GP MOM", respectively. Our simulation study in Section 4 indicates
that their finite sample performance is very similar to that of the third direct GPML and
Moment estimators ξ̆‹

τ 1
n

ppγML
n , σ̆ML,3

n q and ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,3

n q, respectively (as the only differ-
ence lies, by construction, between their related intermediate direct and indirect expectile
estimators). Moreover, in the case of non-negative loss distributions, the Moment-type
estimator qξ‹

τ 1
n

ppγMom
n , pσMom

n q shows competitive relative mean-squared errors with remark-
ably lower relative bias estimates than those of the bias-corrected Weissman estimators. In
the case of real-valued profit-loss distributions, this indirect Moment estimator still posts
respectable results for low values of γ, but the direct GPML estimator ξ̆‹

τ 1
n

ppγML
n , σ̆ML,2

n q

stands out in terms of relative mean-squared errors and coverage probabilities of its asso-
ciated confidence interval, exhibiting consistent results over all values of γ.
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3.3 GPML and Moment-type estimators

In this section, we focus the discussion of the asymptotic theory on the GPML and Moment
estimators ppaMLpn{knq, pγML

n q and
`

paMompn{knq, pγMom
n

˘

of the scale and shape parameters
papn{knq, γq, for the discretized intermediate level τn “ 1 ´ kn{n with kn Ñ 8 and
kn{n Ñ 0 as n Ñ 8. Although our generic Theorems 1, 2 and 3 are valid in a general
setup allowing for serial dependency in the data, we impose an i.i.d. assumption on the
underlying sample.

We first consider the extrapolated asymmetric least squares estimators ξ̆‹
τ 1
n

ppγML
n , σ̆ML

n q

and ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom

n q defined in (3.3) by taking therein the estimators γ̆n and σ̆n of the

shape and scale parameters γ and σpξτnq ” ap1{F pξτnqq to be either pγML
n and σ̆ML

n or pγMom
n

and σ̆Mom
n , respectively, with

σ̆ML
n :“ paMLpn{knq ˆ pp1{pγML

n q ´ 1q´pγML
n “ pσML

n ˆ pp1{pγML
n q ´ 1q´pγML

n

and σ̆Mom
n :“ paMompn{knq ˆ pp1{pγMom

n q ´ 1q´pγMom
n “ pσMom

n ˆ pp1{pγMom
n q ´ 1q´pγMom

n .

Following Theorem 3.4.2 on p.92 in de Haan and Ferreira (2006), the GPML estimators
pγML
n and pσML

n satisfy, under the second-order condition E2pγ, ρ, a,Aq with γ ą 0 and the
bias condition

?
knApn{knq Ñ λ1 P R, the joint convergence

a

kn

ˆ

pγML
n ´ γ,

pσML
n

apn{knq
´ 1

˙

d
ÝÑ N

`

λ1 b
ML,ΣML

˘

(3.8)

where bML “

´

γ`1
p1´ρqp1`γ´ρq

, ´ρ
p1´ρqp1`γ´ρq

¯

and the matrix ΣML is given by

ΣML “

ˆ

p1 ` γq2 ´p1 ` γq

´p1 ` γq 1 ` p1 ` γq2

˙

.

Under the extra condition
a

np1 ´ τnqpapp1 ´ τnq´1q{qτn ´ γq Ñ µ P R, it can be seen
from Corollary 4.2.2 on p.133 in de Haan and Ferreira (2006) that the Moment estimators
pγMom
n and pσMom

n satisfy the joint convergence

a

kn

ˆ

pγMom
n ´ γ,

pσMom
n

apn{knq
´ 1,

Xn´kn,n ´ Upn{knq

apn{knq

˙

d
ÝÑ N

´

λMom
´

bpγ
Mom
n

γ,ρ , bpσ
Mom
n

γ,ρ , 0
¯

,ΣMom
¯

(3.9)

where

λMom :“

$

’

&

’

%

´µ if γ “ ´ρ or p0 ă γ ă ´ρ and l ‰ 0q,

λ1 ρ

γ ` ρ
if 0 ă ´ρ ă γ or p0 ă γ ă ´ρ and l “ 0q,

bpγ
Mom
n

γ,ρ :“

$

’

&

’

%

´
γ

p1 ` γq2
if 0 ă γ ă ´ρ and l ‰ 0,

γ ´ γρ ` ρ

ρp1 ´ ρq2
if 0 ă ´ρ ď γ or p0 ă γ ă ´ρ and l “ 0q,

bpσ
Mom
n

γ,ρ :“

$

’

&

’

%

γ

p1 ` γq2
if 0 ă γ ă ´ρ and l ‰ 0,

´ρ

p1 ´ ρq2
if 0 ă ´ρ ď γ or p0 ă γ ă ´ρ and l “ 0q,
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and ΣMom :“

¨

˝

γ2 ` 1 γ ´ 1 0
γ ´ 1 γ2 ` 2 γ
0 γ 1

˛

‚.

With the convergence results (3.8) and (3.9) at hand, we show that the two direct extreme
expectile estimators ξ̆‹

τ 1
n

ppγML
n , σ̆ML

n q and ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom

n q are asymptotically normal.

Corollary 1. Under the first three conditions of Theorem 1, we have

a

kn
ξ̆‹
τ 1
n

ppγML
n , σ̆ML

n q ´ ξτ 1
n

σ̆ML
n

şkn{pnp1´τ 1
nqq

1 spγML
n ´1 logpsqds

d
ÝÑ N

ˆ

λ1p1 ` γq

p1 ´ ρqp1 ` γ ´ ρq
, p1 ` γq2

˙

and
a

kn
ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom

n q ´ ξτ 1
n

σ̆Mom
n

şkn{pnp1´τ 1
nqq

1 spγMom
n ´1 logpsqds

d
ÝÑ N

´

λMombpγ
Mom
n

γ,ρ , γ2 ` 1
¯

.

Turning to the indirect quantile-based estimators qξ‹
τ 1
n

ppγML
n , pσML

n q and qξ‹
τ 1
n

ppγMom
n , pσMom

n q

defined in (3.5), we obtain the following asymptotic normality results.

Corollary 2. Under the first three conditions of Theorem 3, we have

a

kn

qξ‹
τ 1
n

ppγML
n , pσML

n q ´ ξτ 1
n

pσML
n

şkn{pnp1´τ 1
nqq

1 spγML
n ´1 logpsqds

d
ÝÑ N

ˆ

λ1pγ ` 1qpγ´1 ´ 1q´γ

p1 ´ ρqp1 ` γ ´ ρq
, p1 ` γq2pγ´1 ´ 1q´2γ

˙

and
a

kn

qξ‹
τ 1
n

ppγMom
n , pσMom

n q ´ ξτ 1
n

pσMom
n

şkn{pnp1´τ 1
nqq

1 spγMom
n ´1 logpsqds

d
ÝÑ N

´

λMombpγ
Mom
n

γ,ρ pγ´1 ´ 1q´γ , pγ2 ` 1qpγ´1 ´ 1q´2γ
¯

.

In order to keep the paper to manageable proportions, we do not discuss the application
of our theorems and all the associated ramifications in the presence of dependence in the
data. Similarly to extreme quantile estimation under mixing conditions (Drees, 2003) or
ARMA-GARCH models (He et al., 2022), our methods may work under serial dependence
with an increased asymptotic variance. Theoretical results along these lines are left for
future research. In our case study of financial time series, we consider a practical solution
to eliminate serial dependence by filtering the time series with an ARMA-GARCH model.
The residuals from the fitted model are then treated as i.i.d. after performing a series of
Ljung-Box independence tests on residuals and their squares.

4 Simulation study

We evaluate the performance of our extreme expectile estimators through an extensive
simulation study. We consider two non-negative loss distributions and two real-valued
profit-loss distributions for the distribution of X, all with tail index γ ą 0:

• Fréchet distribution with survival function F pxq “ 1 ´ exp
`

´x´1{γ
˘

for x ą 0;

• Burr distribution with survival function F pxq “ 1{p1 ` x1{γq for x ą 0;

• Symmetric Burr distribution with density function fpxq “ 1
2γ

|x|1{γ´1

p1`|x|1{γq2
for x P R;
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• Student distribution with degrees of freedom 1{γ.

The first two non-negative distributions are commonly seen in insurance applications,
while the latter two real-valued distributions are more suitable for financial returns. For
each distribution, we examine the cases γ “ 0.25, 0.3, 0.35, and 0.4 for all competing
estimators

ξτ 1
n

P

!

pξτ 1
n
, pξ‹,BR

τ 1
n

ppγE,BR
n q, rξ‹,BR

τ 1
n

ppγH,BR
n q, pξ‹,PS

τ 1
n

, rξ‹,PS
τ 1
n

,

ξ̆‹
τ 1
n

ppγML
n , σ̆ML,i

n q, ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,i

n q, qξ‹
τ 1
n

ppγML
n , pσML

n q, qξ‹
τ 1
n

ppγMom
n , pσMom

n q

)

,

where i P t1, 2, 3u and pξτ 1
n
is the naive, non-extrapolated empirical expectile estimator

described in (2.4) at level τ 1
n. The choice of γ values between 0.25 and 0.4 describes quite

well the tail heaviness of most financial datasets (see e.g. the R package CASdatasets).

We generate B “ 5,000 samples tX
pbq

1 , . . . , X
pbq
n u for b “ 1, . . . , B, with n “ 1,500 for

each simulation case and estimate the extreme expectile ξτ 1
n
at the extreme level τ 1

n “

1 ´ 1{n. We compare the finite-sample performance of the different estimators based on
the following criteria:

1. Relative bias and mean-squared errors

RBiaspξτ 1
n

q “
1

B

B
ÿ

b“1

¨

˝

ξ
pbq

τ 1
n

ξτ 1
n

´ 1

˛

‚ and RMSEpξτ 1
n

q “
1

B

B
ÿ

b“1

¨

˝

ξ
pbq

τ 1
n

ξτ 1
n

´ 1

˛

‚

2

,

where ξ
pbq

τ 1
n
is the expectile estimator generated from the bth sample.

2. Average length and coverage probability of the 95% asymptotic Gaussian confidence
intervals, where the former is defined as the average width of the confidence inter-
vals generated around each estimator, and the latter is the frequency of times said
intervals included the true value of the extreme expectile.

We plot the estimates of RBiaspξτ 1
n

q and RMSEpξτ 1
n

q against k for the positive-valued
distributions in Figure 1, and those for the real-valued distributions in Figure 2. Fig-
ure 1 reveals that the BR (Bias-reduced) and PS (Padoan and Stupfler, 2022) estima-
tors pξ‹,BR

τ 1
n

ppγE,BR
n q, rξ‹,BR

τ 1
n

ppγH,BR
n q, pξ‹,PS

τ 1
n

, and rξ‹,PS
τ 1
n

, represented as solid lines in the figure,
perform well in the positive-valued cases of the Fréchet and Burr distributions. How-
ever, the Burr distribution also sees our two direct GPML estimators ξ̆‹

τ 1
n

ppγML
n , σ̆ML,1

n q

and ξ̆‹
τ 1
n

ppγML
n , σ̆ML,2

n q, represented respectively by the dashed turquoise and purple lines,
reach similar RMSE levels to their BR and PS competitors, but for narrower ranges of
k values that are typically higher than the optimal k values for the BR and PS families
of estimators. Our indirect and third direct Moment estimators qξ‹

τ 1
n

ppγMom
n , pσMom

n q and

ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,3

n q, shown in dash-dotted blue and dashed pink respectively, shore up this
shortcoming by maintaining competitive RMSE measures over long ranges of k values for
both the Fréchet and Burr distributions and low RBias estimates for both distributions
and all values of γ.

The direct GPML estimator ξ̆‹
τ 1
n

ppγML
n , σ̆ML,2

n q, again in dashed purple, however stands
out as the overall best performer in terms of RMSE and RBias when the underlying
distribution is symmetric, exhibiting consistent results over all values of γ. The competing
GPML estimator ξ̆‹

τ 1
n

ppγML
n , σ̆ML,1

n q, in dashed turquoise, closely matches its top performing
direct GPML counterpart only for the Student distribution with γ values 0.35 and 0.4,
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while the indirect and third direct GPML estimators qξ‹
τ 1
n

ppγML
n , pσML

n q and ξ̆‹
τ 1
n

ppγML
n , σ̆ML,3

n q,
in dash-dotted green and dashed magenta respectively, seem to be best for the Student
distribution with γ values 0.25 and 0.3. The indirect Moment estimator qξ‹

τ 1
n

ppγMom
n , pσMom

n q

and third direct Moment estimator ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,3

n q, again in dash-dotted blue and
dashed pink respectively, post respectable results for both distributions, but only for
γ “ 0.25 and 0.3. These results imply that our extrapolated GPD-based estimators would
be a perfect fit for the applications to financial risk analysis which feature symmetric real-
valued distributions with comparable tail heaviness to what we have examined in these
simulation experiments.

When ignoring the asymptotic bias of our direct asymmetric least squares estima-
tors ξ̆‹

τ 1
n

ppγML
n , σ̆ML,i

n q and ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,i

n q for i “ 1, 2, 3, in Corollary 1, their associated

Gaussian 100p1 ´ αq% asymptotic confidence intervals for ξτ 1
n
are

ĬML,i
τ 1
n

pαq “

«

ξ̆‹
τ 1
n

ppγML
n , σ̆ML,i

n q ˘ z1´α{2

σ̆ML,i
n

`

1 ` pγML
n

˘

?
kn

ϕ
pγML
n

pdnq

ff

and ĬMom,i
τ 1
n

pαq “

»

–ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,i

n q ˘ z1´α{2

σ̆Mom,i
n

b

ppγMom
n q

2
` 1

?
kn

ϕ
pγMom
n

pdnq

fi

fl ,

with

dn :“ k{pnp1 ´ τ 1
nqq and ϕγptq :“

ż t

1
sγ´1 logpsqds.

These confidence intervals can be calculated by using the function pgdExpect from the R
package Expectrem with the respective methods "direct GP ML1", . . . , "direct GP ML3",
and "direct GP MOM1", . . . , "direct GP MOM3". Likewise, under the assumption λ1 “

λMom “ 0 in Corollary 2, the resulting Gaussian 100p1 ´ αq% asymptotic confidence
intervals for ξτ 1

n
based upon the indirect quantile-based estimators qξ‹

τ 1
n

ppγML
n , pσML

n q and

qξ‹
τ 1
n

ppγMom
n , pσMom

n q are

qIML
τ 1
n

pαq “

»

—

–

qξ‹
τ 1
n

ppγML
n , pσML

n q ˘ z1´α{2

paMLpn{knq
`

1 ` pγML
n

˘

?
kn

´

ppγML
n q

´1
´ 1

¯

pγML
n

ϕ
pγML
n

pdnq

fi

ffi

fl

and qIMom
τ 1
n

pαq “

»

—

–

qξ‹
τ 1
n

ppγMom
n , pσMom

n q ˘ z1´α{2

paMompn{knq

b

ppγMom
n q

2
` 1

?
kn

´

ppγMom
n q

´1
´ 1

¯

pγMom
n

ϕ
pγMom
n

pdnq

fi

ffi

fl

.

These confidence intervals can also be calculated by using the function gpdExpect with
method="indirect GP ML" and method="indirect GP MOM", respectively.

We plot the coverage probabilities and average lengths of the 95% confidence intervals
against k for the positive and real-valued distributions in Figures 3 and 4, respectively.
While most confidence intervals associated with the twelve competing extrapolated esti-
mators are able to get close to the intended 95% coverage as k varies, very few can achieve
that for a wide range of k values. Our direct GPML confidence intervals ĬML,i

τ 1
n

, and par-

ticularly those associated with the estimators ξ̆‹
τ 1
n

ppγML
n , σ̆ML,1

n q and ξ̆‹
τ 1
n

ppγML
n , σ̆ML,2

n q with
coverage probabilities in dashed turquoise and dashed purple respectively, achieve coverage
levels that are reasonably close to the nominal level for both the positive and real-valued
distributions, and for all studied values of γ; it should here be taken into account that,
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unlike the estimators pξ‹,BR
τ 1
n

ppγE,BR
n q and rξ‹,BR

τ 1
n

ppγH,BR
n q, the proposed GPML intervals do not

benefit from extensive finite-sample corrections. And while these estimators fall short of
the indirect bias-reduced rξ‹,BR

τ 1
n

ppγH,BR
n q estimator’s tight interval lengths, they still post

respectable results, especially around the higher k values where they record their most
competitive RMSE and RBias in Figures 1 and 2. The larger average lengths of our con-
fidence intervals can be attributed to the additional uncertainty that our estimation and
inference procedures must account for, as they incorporate estimates of the location, scale
and shape parameters of the GP distribution, whereas the Weissman-type competitors are
constructed on scale and shape parameter estimates only. Another notable outlier is the
second direct Moment estimator ξ̆‹

τ 1
n

ppγMom
n , σ̆Mom,2

n q as it shows encouraging coverage, in
dashed mauve, for all cases of the symmetric Burr distribution, as well as Student cases
with γ “ 0.35, 0.4.

Finally, it should be noted that our experience with simulated data indicates that
the chosen asymptotic confidence intervals ĬML,i

τ 1
n

, ĬMom,i
τ 1
n

, qIML
τ 1
n

and qIMom
τ 1
n

, obtained from

the asymptotics in Theorems 1 and 3, afford better results (for both non-negative and
real-valued distributions) than their respective counterparts that are derived from the
equivalent convergences in (3.4) and (3.7), mainly due to the reliance of the former con-
fidence intervals on additional location parameter estimates. This is illustrated for the
positive and real-valued distributions in Figures 5 and 6 respectively, where we visualize
the dominance of the chosen direct GPML confidence intervals ĬML,1

τ 1
n

and ĬML,1
τ 1
n

, in terms
of both coverage probabilities and average lengths, over their alternate confidence intervals
that are constructed from the convergence (3.4).
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ré
ch
et

d
is
tr
ib
u
ti
o
n
,
w
h
il
e
p
a
n
el
s
(i
)-
(l
)
an

d
(m

)-
(p
)
sh
ow

th
os
e
fo
r
th
e
B
u
rr

d
is
tr
ib
u
ti
o
n
.
E
a
ch

g
ro
u
p
o
f
fo
u
r
p
a
n
el
s

is
or
d
er
ed

b
y
ta
il
in
d
ex

va
lu
e
γ

P
t
0
.2
5,
0
.3
,0
.3
5,
0.
4u
.
F
or

n
“

1,
50

0
an

d
τ

1 n
“

1
´

1{
n
,
w
e
co
n
si
d
er

th
e
ch
o
se
n
d
ir
ec
t
G
P
M
L

co
n
fi
d
en

ce
in
te
rv
a
ls

Ĭ
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5 Real data illustration: Dynamic tail risk forecasting

We apply our extreme expectile estimation methodologies to evaluate tail risk for the stocks
of Netflix, Walmart, and American Express, as well as the exchange rate of Bitcoin (BTC-
USD). Our goal is to forecast the expectile risk measure of tomorrow given the knowledge
of today. To this end, we adopt a rolling window approach to our analysis, with each
window size set to n “ 1, 500, and utilize data on the daily loss returns (i.e. negative log
returns) Y1, . . . , Yn of the aforementioned stocks and exchange rate. Using this setup and
a careful selection of observation dates, we arrive at the following data specifications:

• Netflix: 498 estimation windows between 2008{12{03 and 2016{11{08.

• Walmart: 482 windows between 2013{11{13 and 2021{09{28.

• American Express: 766 windows between 2011{11{16 and 2020{11{17.

• Bitcoin-USD: 217 windows between 2016{04{28 and 2021{01{08.

We follow the strategy laid out in Girard et al. (2022b) of filtering our time series through
the lens of an ARMA(1,1)-GARCH(1,1) model. For a rolling window Y1, . . . , Yn, we setup
the model:

Yt “ µ ` ϕYt´1 ` ut ` θut´1,

where ut “ σtεt such that σ2
t “ c ` au2t´1 ` bσ2

t´1 and pεtq is an unobserved independent
white noise sequence, while the constants µ, ϕ, θ, a, b, and c are model parameters. Using
the positive homogeneity and location equivariance of expectiles, we can then write the
conditional τth expectile for the next day as

ξτ pYn`1|Fnq “ µ ` ϕYn ` σn`1ξτ pεq ` θun,

where Fn is the σ´algebra generated by the ARMA-GARCH process up to time n.
We first estimate the ARMA-GARCH model parameters using the function garchFit

in the R package fGarch, which allows us to retrieve the raw residuals pui through the
@residuals option. Following the ideas of Girard et al. (2022b), we then fit a GARCH(1,1)
model to pui and retrieve the predictions pεi of the innovations from the GARCH residuals.
These filtered residuals can then be considered as independent and identically distributed
copies of ε, which facilitates the estimation procedures laid out in this work. The extrap-
olated extreme expectile estimates

ξτ 1
n

P

!

pξ‹,BR
τ 1
n

ppγE,BR
n q, rξ‹,BR

τ 1
n

ppγH,BR
n q, pξ‹,PS

τ 1
n

, rξ‹,PS
τ 1
n

, (5.1)

ξ̆‹
τ 1
n

ppγML
n , σ̆ML,i

n q, ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,i

n q, qξ‹
τ 1
n

ppγML
n , pσML

n q, qξ‹
τ 1
n

ppγMom
n , pσMom

n q

)

,

for i P t1, 2, 3u, paired with estimates of the ARMA-GARCH model parameters pµ, pϕ, pθ, pa,
pb, and pc, can be combined to construct the dynamic predictions of the extreme expectiles
of Yn`1 given Yn as

ξτ 1
n

pYn`1|Fnq “ pµ ` pϕYn ` pσn`1 ξτ 1
n

pεq ` pθpun. (5.2)

Thanks to the property of elicitability of expectiles (Gneiting, 2011), these twelve com-
peting forecasters can be evaluated and compared using the scoring function

Lτ 1
n
: R2 Ñ r0,8q, pξ, yq ÞÑ |τ 1

n ´ 1py ď ξq|py ´ ξq2
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which gives the loss Lτ 1
n

pξ, yq when the point forecast ξ is issued and the realization y of
the future observation materializes. Following Ziegel (2016), given T forecast cases with

point forecasts pξ
pmq

1 , . . . , ξ
pmq

T q and realizing observations py1, . . . , yT q, where the index m
numbers the competing forecasters, the latter can be ranked in terms of their average
realized loss (the lower the better)

Lpmq

τ 1
n

“
1

T

T
ÿ

t“1

Lτ 1
n

´

ξ
pmq

t , yt

¯

, m “ 1, . . . , 12, (5.3)

where each forecast case t P t1, . . . , T u corresponds in our estimation context to a rolling
window of loss returns Y1, . . . , Yn, with yt representing the realization of the future ob-

servation Yn`1, and ξ
pmq

t being its point forecast ξτ 1
n

pYn`1|Fnq obtained in (5.2) from the

twelve competitors ξτ 1
n

pεq in (5.1). In our assessment of tail risk, we compare the average

scores Lpmq

τ 1
n

for a fine grid of challenging levels τ 1
n P t0.99, . . . , 1´1{nu, where data is sparse

and inference is difficult to handle. To guide our choice of the intermediate sequence kn
which plays the role of the tuning parameter in our setup, we calculate the average realized
loss for every value k in the range of all possible values of kn, then select the value that
yields the lowest loss for each estimator and each value of τ 1

n. This approach simplifies
the optimal kn selection process while allowing us to compare the performance of each
forecaster fairly. Figures 7, 8, 9, and 10 show the results of our analysis of daily loss
returns of Netflix, Walmart, American Express, and Bitcoin-USD, respectively.

In each figure, Panel (A) showcases the observed data and wraps the realizations yt
between two dashed red lines. Panel (B) shows the results of the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test for each rolling window, illustrating the stationarity of our
loss returns over all chosen time periods, which is required for ARMA-GARCH model-
ing. Panel (C) then examines the independence of the residuals pεi using a Ljung-Box test
on these residuals and their squares. This independence is a prerequisite for conducting
inference on extreme expectiles from our Corollaries 1-2 and the asymptotic theory of
the Weissman-type competitors. The residuals’ tail heaviness is evaluated in Panel (D)
through a study of the GPML (pγML

n ) and Moment (pγMom
n ) estimates of the extreme value

index against an appropriate range of possible values k of the intermediate level kn. The
results from each rolling window are drawn as an individual curve against k, and indi-
cate that the residuals exhibit consistent tail heaviness over all estimation windows for a
wide range of k values. Panel (E) then displays the average realized loss Lpmq

τ 1
n
, defined

in (5.3), for each estimator against τ 1
n, using the optimal kn value that minimizes said

loss. The good news to practitioners concerned with the accuracy of daily forecasts is that
our GPD-based forecasters outperform all Weissman-type competitors, for each studied
financial time series. More specifically, the direct Moment estimator ξ̆‹

τ 1
n

ppγMom
n , σ̆Mom,1

n q

establishes a clear lead for Netflix, Walmart, and Bitcoin-USD data, with estimators like
the second direct Moment estimator ξ̆‹

τ 1
n

ppγMom
n , σ̆Mom,2

n q, the third direct Moment estima-

tor ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,3

n q and the indirect Moment estimator qξ‹
τ 1
n

ppγMom
n , pσMom

n q trailing close

behind. The American Express data sees the indirect Moment estimator qξ‹
τ 1
n

ppγMom
n , pσMom

n q,

respectively the direct GPML estimator ξ̆‹
τ 1
n

ppγML
n , σ̆ML,2

n q, outperform all of the Weissman

competitors for τ 1
n ă 0.995, respectively τ 1

n ě 0.995. The results imply that our Moment
and GPML based estimators are suitable for financial data, which corroborates our simu-
lation findings in Section 4, where said estimators scored ahead of the competition in the
case of real-valued distributions. The final panel (F) wraps up by showing next-day fore-
casts of ξτ 1

n
at level τ 1

n “ 0.99, for the daily loss returns over the observation period, using
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the dynamic predictions (5.2) of the top ranked forecaster ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom,1

n q for Netflix,

Walmart, and Bitcoin-USD, and qξ‹
τ 1
n

ppγMom
n , pσMom

n q for American Express, along with their

95% asymptotic confidence intervals and the realization of the future observation. The
point forecasts and associated confidence bounds seem to follow data trends fairly closely.

6 Concluding remarks

Tail expectiles define a prime candidate for a standard risk measure in finance and insur-
ance thanks to their excellent axiomatic properties and their ability to capture essential
information about the severity of extreme observations as well as their probabilities. The
problem of correctly estimating and inferring extreme expectile risk is a difficult question
due to the least squares nature of expectiles and their sensitivity to tail heaviness, even
though a series of recent papers has focused on this problem using Weissman-type ex-
trapolation devices. Our Generalized Pareto approach provides good estimates of tail risk
across the board, with reasonably accurate (though elementary) asymptotic Gaussian con-
fidence intervals, in the financial context of symmetric heavy-tailed profit-loss distributions
without resorting to any bias correction of our estimators, even though their asymptotic
behavior indicates that they are asymptotically biased. The results of the tail risk forecast-
ing exercise we have carried out similarly indicates that, in a dynamic estimation setting,
the Generalized Pareto extrapolation method yields encouraging results.

There still remains a lot to be done, especially in the actuarial context of non-negative
heavy-tailed loss variables for which Weissman-type methods seem to outperform our
GPD-based approach. As we have highlighted, asymptotic Gaussian inference of extreme
expectiles may not perform well in finite samples, because of the difficulty of tracking the
statistical uncertainties of the estimated high expectiles and the use of the asymptotic vari-
ances arising in the Gaussian limiting distributions. The finite-sample approximations and
errors thus made are typically due to (i) the use of the GPD model, (ii) the asymptotic ap-
proximations motivating the extreme value estimators of the scale and shape parameters,
(iii) the use of the asymptotic connection between extreme expectiles and quantiles while
ignoring higher-order error terms, (iv) incorrectly neglecting correlations between estima-
tors when the asymptotic behavior of one of them dominates, and/or (v) not accounting
for the variance distortions incurred by utilizing the delta-method for linearization pur-
poses. Improving our results by providing successive corrections for each of these types of
approximation errors is a topic of interest for future research.
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A Appendix: Description of the bias-reduced estimators
and inference

The asymptotic distributions of rξ‹
τ 1
n

ppγHn q in (2.10) and pξ‹
τ 1
n

ppγEn q in (2.11) feature bias compo-
nents due to the semiparametric heavy tail framework. Bias reduced versions of these es-
timators have been recently suggested by Girard et al. (2022b) under the i.i.d. assumption
in the particular case where the auxiliary function A in their SORV condition C2pγ, ρ,Aq

takes the form Aptq “ bγtρ for certain constants b ‰ 0 and ρ ă 0. This function A can
be estimated by using a consistent tail index estimator γ and the second order parameter
estimators b and ρ that were introduced in Gomes and Martins (2002) and Fraga Alves
et al. (2003) and can directly be calculated from the R package evt0. Supplement A of Gi-
rard et al. (2022b) provides a nice and comprehensive summary of how these estimators
of b and ρ are constructed. As shown by Girard et al. (2022b), the direct and indirect
estimators pξ‹

τ 1
n
and rξ‹

τ 1
n
satisfy

log

˜

pξ‹
τ 1
n

ξτ 1
n

¸

“ pγ ´ γq log

ˆ

1 ´ τn
1 ´ τ 1

n

˙

` log

˜

pξτn
ξτn

¸

´ log

ˆˆ

1 ´ τ 1
n

1 ´ τn

˙γ ξτ 1
n

ξτn

˙

, (A.1)

and log

˜

rξ‹
τ 1
n

ξτ 1
n

¸

“ pγ ´ γq log

ˆ

1 ´ τn
1 ´ τ 1

n

˙

` log

ˆ

pγ´1 ´ 1q´γ

pγ´1 ´ 1q´γ

˙

` log

ˆ

pqτn
qτn

˙

(A.2)

´ log

ˆˆ

1 ´ τ 1
n

1 ´ τn

˙γ
`

γ´1 ´ 1
˘γ ξτ 1

n

qτn

˙

.

To deal with the nonrandom bias term in (A.1), they have also shown that

ˆ

1 ´ τ 1
n

1 ´ τn

˙γ ξτ 1
n

ξτn
“

ˆ

1 ´ τ 1
n

1 ´ τn

˙γ qτ 1
n

qτn
loooooooomoooooooon

1 ` B1,n

`

γ´1 ´ 1
˘´γ qτn

ξτn
looooooooomooooooooon

1 ` B2,n

`

γ´1 ´ 1
˘γ ξτ 1

n

qτ 1
n

loooooooomoooooooon

1 ` B3,n

(A.3)

for obvious definitions of B1,n, B2,n and B3,n. As for the extrapolation bias in (A.2), they
have proposed the following correction:

ˆ

1 ´ τ 1
n

1 ´ τn

˙γ
`

γ´1 ´ 1
˘γ ξτ 1

n

qτn
“ p1 ` B1,nq p1 ` B3,nq . (A.4)
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The terms B1,n, B2,n and B3,n can be estimated by

B1,n “
pp1 ´ τ 1

nq{p1 ´ τnqq´ρ ´ 1

ρ
b γp1 ´ τnq´ρ,

B2,n “ p1 ` rpτnqqγ

¨

˚

˝

1 `

pγ´1´1q
´ρ

p1`rpτnqq
ρ ´ 1

ρ
bγp1 ´ τnq´ρ

˛

‹

‚

´1

´ 1

and B3,n “ p1 ` r‹pτ 1
nqq´γ

¨

˚

˝

1 `

pγ´1´1q
´ρ

p1`r‹pτ 1
nqqρ

´ 1

ρ
bγp1 ´ τ 1

nq´ρ

˛

‹

‚

´ 1,

where

1 ` rpτnq “

˜

1 ´
Xn

ξτn

¸

1

2τn ´ 1

˜

1 `
bppFnpξτnqq´ρ

1 ´ γ ´ ρ

¸´1

and 1 ` r‹pτ 1
nq “

˜

1 ´
Xn

ξ
‹

τ 1
n

¸

1

2τ 1
n ´ 1

˜

1 `
b
`

γ´1 ´ 1
˘´ρ

1 ´ γ ´ ρ
p1 ´ τ 1

nq´ρ

¸´1

,

with Xn being the sample mean, ξτn either the direct asymmetric least squares inter-

mediate estimator pξτn or indirect quantile-based intermediate estimator rξτn , and ξ
‹

τ 1
n
the

corresponding extrapolated version. Based on (A.1) and (A.3), the direct extrapolated es-
timator pξ‹

τ 1
n
can then be corrected for its inherent bias, exclusively due to the heavy-tailed

extrapolation, by the bias-reduced version

pξ‹,BR
τ 1
n

” pξ‹,BR
τ 1
n

pγq :“ pξ‹
τ 1
n

p1 ` B1,nqp1 ` B2,nqp1 ` B3,nq

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ
pξτnp1 ` B1,nqp1 ` B2,nqp1 ` B3,nq, (A.5)

where γ is to be itself a bias-reduced estimator of the EVI γ. Similarly, from (A.2) and
(A.4), a bias-corrected version of the indirect extrapolated estimator rξ‹

τ 1
n
is obtained as

rξ‹,BR
τ 1
n

” rξ‹,BR
τ 1
n

pγq :“ rξ‹
τ 1
n

p1 ` B1,nqp1 ` B3,nq

“

ˆ

1 ´ τ 1
n

1 ´ τn

˙´γ
`

γ´1 ´ 1
˘´γ

pqτnp1 ` B1,nqp1 ` B3,nq. (A.6)

Under C2pγ, ρ,Aq and additional mild regularity conditions, if
a

np1 ´ τnqpγ´γq Ñ Γ for a
nondegenerate distribution Γ, both bias-corrected estimators (A.5) and (A.6) converge in
distribution to the same limit Γ as γ at the slower rate logpp1´ τnq{p1´ τ 1

nqq{
a

np1 ´ τnq,
as established in Theorem 2 in Girard et al. (2022b). For the choice of the bias-corrected
EVI estimator γ, Girard et al. (2022b) have suggested to use either the bias-reduced Hill
estimator from Caeiro et al. (2005):

pγH,BR
n “ pγHn

˜

1 ´
b

1 ´ ρ

ˆ

1

1 ´ τn

˙ρ
¸

,

or their bias-reduced version of pγEn from Girard et al. (2022a):

pγE,BR
n “

¨

˝1 `

pFnppξτnq

1 ´ τn

˜

1 ´
Xn

pξτn

¸´1

p2τn ´ 1q

˜

1 `
bppFnppξτnqq´ρ

1 ´ pγEn ´ ρ

¸

˛

‚

´1

.
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As shown in Theorem 3.1 of Caeiro et al. (2005), the bias-reduced Hill estimator pγH,BR
n

is
a

np1 ´ τnq´asymptotically Gaussian with mean zero and the same variance γ2 as

pγHn , while pγE,BR
n is

a

np1 ´ τnq´asymptotically Gaussian with mean zero and variance
γ3p1 ´ γq

L

p1 ´ 2γq as established in Theorem 1 of Girard et al. (2022b). The latter es-
timator is preferable variance-wise only when γ is less than 0.35. The function tindexp

from the R package Expectrem allows to compute either pγEn (if argument br=FALSE) or
pγE,BR
n (if br=TRUE), while the function extExpect computes the extreme expectile esti-

mators pξ‹
τ 1
n

ppγEn q (if argument method="direct") and rξ‹
τ 1
n

ppγHn q (if method="indirect") as

well as their bias-reduced versions pξ‹,BR
τ 1
n

ppγE,BR
n q and rξ‹,BR

τ 1
n

ppγH,BR
n q (if br=TRUE).

Gaussian 100p1´αq% asymptotic confidence intervals for ξτ 1
n
based on the purely asym-

metric least squares estimator pξ‹,BR
τ 1
n

ppγE,BR
n q and its quantile-based competitor rξ‹,BR

τ 1
n

ppγH,BR
n q,

also available as part of the R package Expectrem, are

pI
p1q

τ 1
n

pαq “

«

pξ‹,BR
τ 1
n

ppγE,BR
n q exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

b

ps2,BR
n ˆ z1´α{2

¸ff

rI
p1q

τ 1
n

pαq “

«

rξ‹,BR
τ 1
n

ppγH,BR
n q exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

b

rσ2,BR
n ˆ z1´α{2

¸ff

,

with ps2,BR
n “

ppγE,BR
n q3p1 ´ pγE,BR

n q

1 ´ 2pγE,BR
n

and rσ2,BR
n “ ppγH,BR

n q2.

These intervals tend, however, to have poor coverage as illustrated very recently by Daouia
et al. (2024b): while the bias correction can be reasonably effective, the estimation of the
variances of p

a

np1 ´ τnq{ logpp1´ τnq{p1´ τ 1
nqqq logppξ‹,BR

τ 1
n

{ξτ 1
n

q and p
a

np1 ´ τnq{ logpp1´

τnq{p1 ´ τ 1
nqqq logprξ‹,BR

τ 1
n

{ξτ 1
n

q, by ps2,BR
n and rσ2,BR

n respectively, can be a long way off the

truth. To improve on this, they have suggested corrected versions of pI
p1q

τ 1
n

pαq and rI
p1q

τ 1
n

pαq

defined, respectively, as

pI
p2q

τ 1
n

pαq “ pI
p2q

τ 1
n

pα; Jq “

«

pξ‹,BR
τ 1
n

exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

a

ps2npJq ˆ z1´α{2

¸ff

rI
p2q

τ 1
n

pαq “ rI
p2q

τ 1
n

pα; Jq “

«

rξ‹,BR
τ 1
n

exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

a

rσ2
npJq ˆ z1´α{2

¸ff

,

where the closed form expressions of both ps2npJq and rσ2
npJq, as well as the rationale behind

their formulations, can be found in Daouia et al. (2024b), with J ě 1 being a suitably
chosen tuning parameter. The function CIextExpect from the R package Expectrem

computes pI
p2q

τ 1
n

pαq with method="direct" and rI
p2q

τ 1
n

pαq with method="indirect". These
confidence intervals have asymptotically the desired correct coverage as established in
Theorems 1 and 2 in Daouia et al. (2024b), and will serve as a benchmark for our com-
parison purposes in Section 4.

An alternative solution put forward earlier in Padoan and Stupfler (2022) to correct

the naive confidence intervals pI
p0q

τ 1
n

pαq and rI
p0q

τ 1
n

pαq takes the respective forms

pI
p3q

τ 1
n

pαq “

«

pξ‹,PS
τ 1
n

exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

b

s2n ˆ z1´α{2

¸ff

and rI
p3q

τ 1
n

pαq “

«

rξ‹,PS
τ 1
n

exp

˜

˘
logpp1 ´ τnq{p1 ´ τ 1

nqq
a

np1 ´ τnq

b

σ2
n ˆ z1´α{2

¸ff

,
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where pξ‹,PS
τ 1
n

and rξ‹,PS
τ 1
n

(respectively, s2n and σ2
n) are suitably chosen bias-corrected asymmet-

ric least squares and quantile-based estimators of the extreme expectile ξτ 1
n
(respectively,

the asymptotic variance of pξ‹,PS
τ 1
n

and rξ‹,PS
τ 1
n

). See Padoan and Stupfler (2022) for full de-
tails. The R function CIextExpect from the Expectrem package computes both of these

confidence intervals, with method="direct PS" for pI
p3q

τ 1
n

pαq and method="indirect PS"

for rI
p3q

τ 1
n

pαq.

B Appendix: Proofs

We will use in the sequel the notation

dn :“ p1 ´ τnq{p1 ´ τ 1
nq and ϕγptq :“

ż t

1
sγ´1 logpsq ds.

We shall freely use the following fact: under condition E2pγ, ρ, a, Aq with γ ą 0 and ρ ă 0,
Theorem 3.1 in Fraga Alves et al. (2007) guarantees that there exist Ã and ρ̃ ă 0 such that
the SORV condition C2pγ, ρ̃, Ãq holds with |Ã| being regularly varying with index ρ̃, and
Ãptq Ñ 0 as t Ñ 8. Moreover, by Theorems 2.1 and 3.1 in Fraga Alves et al. (2007) in the
case γ ą 0, the auxiliary function Ã is asymptotically proportional to Aptq “ aptq{Uptq´γ.

Proof of Theorem 1. Recall from (3.3) that

ξ̆‹
τ 1
n

“ pξτn ` σ̆n
dγ̆nn ´ 1

γ̆n

and write
a

np1 ´ τnq

ap1{F pξτnqqϕγpdnq
pξ̆‹

τ 1
n

´ ξτ 1
n

q

“

a

np1 ´ τnq

ap1{F pξτnqqϕγpdnq
ppξτn ´ ξτnq (B.1)

`

a

np1 ´ τnq

ϕγpdnq

ˆ

σ̆n

ap1{F pξτnqq
´ 1

˙

dγ̆nn ´ 1

γ̆n
(B.2)

`

a

np1 ´ τnq

ϕγpdnq

˜

dγ̆nn ´ 1

γ̆n
´

dγn ´ 1

γ

¸

(B.3)

´

a

np1 ´ τnq

ϕγpdnq

˜

pF pξτnq{F pξτ 1
n

qqγ ´ dγn

γ

¸

(B.4)

´

a

np1 ´ τnq

ϕγpdnq

˜

ξτ 1
n

´ ξτn

ap1{F pξτnqq
´

pF pξτnq{F pξτ 1
n

qqγ ´ 1

γ

¸

. (B.5)

The key argument is that the third term (B.3) converges in distribution to Γ and all the
other terms on the right-hand side are either op1q or oPp1q, as n Ñ 8.

Indeed, since dn “ p1 ´ τnq{p1 ´ τ 1
nq Ñ 8, logpnp1 ´ τ 1

nqq{
a

np1 ´ τnq Ñ 0 (as a
consequence of assumptions np1 ´ τnq Ñ 8 and

a

np1 ´ τnq{ logpp1 ´ τnq{p1 ´ τ 1
nqq Ñ 8)

and
a

np1 ´ τnqpγ̆n ´ γq
d

ÝÑ Γ, we know by the proof of Theorem 4.3.1 on pp.136-137
in de Haan and Ferreira (2006) that the term (B.3) has the same limit distribution Γ as
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a

np1 ´ τnqpγ̆n´γq (see the analysis of term II therein). In particular, since np1´τnq Ñ 8,
this implies that

1

ϕγpdnq

˜

dγ̆nn ´ 1

γ̆n
´

dγn ´ 1

γ

¸

“ oPp1q as n Ñ 8. (B.6)

On the other hand, by Remark 4.3.3 on p.135 in de Haan and Ferreira (2006), we have

ϕγpdnq „
dγn
γ

logpdnq as n Ñ 8. (B.7)

In addition, under the extended regular variation condition E2pγ, ρ, a, Aq with γ ą 0, we
have according to the proof of Theorem 1.1.6 on pp.10-11 in de Haan and Ferreira (2006)
that pt ´ Up1{F ptqqq{ap1{F ptqq Ñ 0 as t Ñ 8. Since aptq{Uptq Ñ γ as t Ñ 8 in view of
Lemma 1.2.9 on p.22 in de Haan and Ferreira (2006), we conclude that Up1{F pξτ qq „ ξτ
as τ Ñ 1 and then that

ap1{F pξτnqq „ γ Up1{F pξτnqq „ γ ξτn as n Ñ 8. (B.8)

Thus, using (B.7), the first term (B.1) can be expressed as

a

np1 ´ τnq

ap1{F pξτnqqϕγpdnq
ppξτn ´ ξτnq “ OP

˜

a

np1 ´ τnq

dγn logpdnq

˜

pξτn
ξτn

´ 1

¸¸

as n Ñ 8.

Since, by assumption, we have
a

np1 ´ τnq

´

pξτn
ξτn

´ 1
¯

“ OPp1q and dγn logpdnq Ñ 8, the

first term (B.1) is then oPp1q.
The second term (B.2) is handled as follows: we have by (B.6) and (B.7) that

dγ̆nn ´ 1

γ̆n ϕγpdnq
“

dγn ´ 1

γ ϕγpdnq
` oPp1q “

1

logpdnq
` oPp1q “ oPp1q as n Ñ 8.

Thus, the second term (B.2) is oPp1q because
a

np1 ´ τnq

´

σ̆n

ap1{F pξτn qq
´ 1

¯

“ OPp1q.

Let us now turn to the term (B.4) which, due to (B.7), satisfies, as n Ñ 8,

a

np1 ´ τnq

ϕγpdnq

˜

dγn ´ pF pξτnq{F pξτ 1
n

qqγ

γ

¸

„

a

np1 ´ τnq

logpdnq

˜

1 ´

˜

F pξτnq

dnF pξτ 1
n

q

¸γ¸

. (B.9)

Since condition C2pγ, ρ̃, Ãq holds, Proposition 1 in Daouia et al. (2018) implies that

F pξτ q

1 ´ τ
“ pγ´1 ´ 1qp1 ` εpτqq

with εpτq “ ´
pγ´1 ´ 1qγ

qτ
pEpXq ` op1qq ´

pγ´1 ´ 1q´ρ̃

γp1 ´ γ ´ ρ̃q
Ãpp1 ´ τq´1qp1 ` op1qq (B.10)

as τ Ñ 1. It follows that

F pξτnq

F pξτ 1
n

q
“ dn

1 ` εpτnq

1 ` εpτ 1
nq

as n Ñ 8.

Since εpτq Ñ 0 as τ Ñ 1, and εpτ 1
nq “ Opεpτnqq in view of the regular variation properties

of the tail quantile function U and of |Ã|, a Taylor expansion yields
˜

F pξτnq

dnF pξτ 1
n

q

¸γ

´ 1 “ Opεpτnqq as n Ñ 8.
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Thus, (B.9) becomes

a

np1 ´ τnq

ϕγpdnq

˜

dγn ´ pF pξτnq{F pξτ 1
n

qqγ

γ

¸

“ O

˜

a

np1 ´ τnq

logpdnq
εpτnq

¸

. (B.11)

It remains to show that
a

np1 ´ τnqεpτnq “ Op1q. For this, recall that Ã is asymptot-
ically proportional to t ÞÑ Aptq “ aptq{Uptq ´ γ; since

a

np1 ´ τnqApp1 ´ τnq´1q Ñ µ
by assumption, we have

a

np1 ´ τnq Ãpp1 ´ τnq´1q “ Op1q. It follows from the condition
a

np1 ´ τnq{qτn Ñ λ2 that
a

np1 ´ τnq εpτnq “ Op1q, and hence the term (B.4) is op1q

by (B.11).
The last term (B.5) can be rewritten as

´

a

np1 ´ τnq

ϕγpdnq

˜

ξτ 1
n

´ ξτn

ap1{F pξτnqq
´

pF pξτnq{F pξτ 1
n

qqγ ´ 1

γ

¸

“ ´
a

np1 ´ τnqAp1{F pξτnqq
pF pξτnq{F pξτ 1

n
qqγ ´ 1

γ ϕγpdnq

ˆ
1

Ap1{F pξτnqq

˜

ξτ 1
n

´ ξτn

ap1{F pξτnqq

γ

pF pξτnq{F pξτ 1
n

qqγ ´ 1
´ 1

¸

. (B.12)

Under E2pγ, ρ, a, Aq with ρ ă 0, it follows from Lemma 4.3.5 on p.135 in de Haan and
Ferreira (2006) that

lim
nÑ8

1

Ap1{F pξτnqq

˜

Up1{F pξτ 1
n

qq ´ Up1{F pξτnqq

ap1{F pξτnqq

γ

pF pξτnq{F pξτ 1
n

qqγ ´ 1
´ 1

¸

“ ´1{ρ.

In particular, combined with (B.8), and recalling that F pξτnq{F pξτ 1
n

q „ dn Ñ 8, this
yields

˜

F pξτ 1
n

q

F pξτnq

¸γ
Up1{F pξτ 1

n
qq

Up1{F pξτnqq
Ñ 1 as n Ñ 8. (B.13)

Moreover, the proof of Theorem B.3.19 on p.401 in de Haan and Ferreira (2006) yields

lim
tÑ8

1

Ap1{F ptqq
ˆ

Up1{F ptqq ´ t

ap1{F ptqq
“ 0.

Then, on the one hand,

lim
nÑ8

1

Ap1{F pξτnqq
ˆ

Up1{F pξτnqq ´ ξτn
ap1{F pξτnqq

γ

pF pξτnq{F pξτ 1
n

qqγ ´ 1
“ 0.

On the other hand, using again (B.8) together with (B.13) and the regular variation
property of |A| with index ρ ă 0 (see Theorem 2.3.3 on p.44 in de Haan and Ferreira,
2006), we find

1

Ap1{F pξτnqq
ˆ

Up1{F pξτ 1
n

qq ´ ξτ 1
n

ap1{F pξτnqq

γ

pF pξτnq{F pξτ 1
n

qqγ ´ 1

“ o

˜

1

Ap1{F pξτ 1
n

qq
ˆ

Up1{F pξτ 1
n

qq ´ ξτ 1
n

ap1{F pξτ 1
n

qq

¸

“ op1q.
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As a consequence,

lim
nÑ8

1

Ap1{F pξτnqq

˜

ξτ 1
n

´ ξτn

ap1{F pξτnqq

γ

pF pξτnq{F pξτ 1
n

qqγ ´ 1
´ 1

¸

“ ´1{ρ. (B.14)

Then, applying again (B.7), we arrive at

pF pξτnq{F pξτ 1
n

qqγ ´ 1

γ ϕγpdnq
„

dγn
γ ϕγpdnq

„
1

logpdnq
Ñ 0 as n Ñ 8. (B.15)

Now, write

a

np1 ´ τnqAp1{F pξτnqq “
a

np1 ´ τnqApp1 ´ τnq´1q
Ap1{F pξτnqq

App1 ´ τnq´1q
.

Since |A| is regularly varying with index ρ and F pξτnq{p1 ´ τnq Ñ γ´1 ´ 1, one has, by
local uniformity of the regular variation property,

ˇ

ˇAp1{F pξτnqq
ˇ

ˇ „ pγ´1 ´ 1q´ρ
ˇ

ˇApp1 ´ τnq´1q
ˇ

ˇ as n Ñ 8.

Therefore, as
a

np1 ´ τnqApp1 ´ τnq´1q “ Op1q by assumption, we get

a

np1 ´ τnqAp1{F pξτnqq “ Op1q as n Ñ 8. (B.16)

Thus, combining (B.12), (B.14), (B.15) and (B.16), we find that the last term (B.5) is
indeed op1q.

Let us now show that an equivalent statement of the convergence in Theorem 1 is

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

ξ̆‹
τ 1
n

ξτ 1
n

´ 1

¸

d
ÝÑ Γ.

Since C2pγ, ρ̃, Ãq holds with ρ̃ ă 0, we know from p.49 in de Haan and Ferreira (2006)
that, for some constant c ą 0, we have Uptq „ ctγ as t Ñ 8. Then

qτ 1
n

qτn
“

Upp1 ´ τ 1
nq´1q

Upp1 ´ τnq´1q
„ dγn as n Ñ 8. (B.17)

Since ξτ „ pγ´1 ´ 1q´γqτ as τ Ñ 1, we obtain the following stronger version of (B.13):

ξτ 1
n

ξτn
„

qτ 1
n

qτn
„ dγn as n Ñ 8.

The desired convergence result follows by using (B.7) and (B.8).

Proof of Theorem 2. Write

a

np1 ´ τnq

ˆ

σ̆n

ap1{F pξτnqq
´ 1

˙

“
app1 ´ τnq´1q

ap1{F pξτnqq

`

γ̆´1
n ´ 1

˘´γ̆n
ˆ
a

np1 ´ τnq

ˆ

papp1 ´ τnq´1q

app1 ´ τnq´1q
´ 1

˙

`
app1 ´ τnq´1q

ap1{F pξτnqq
ˆ
a

np1 ´ τnq

´

`

γ̆´1
n ´ 1

˘´γ̆n
´
`

γ´1 ´ 1
˘´γ

¯
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´
app1 ´ τnq´1q

ap1{F pξτnqq
ˆ
a

np1 ´ τnq

ˆ

ap1{F pξτnqq

app1 ´ τnq´1q
´
`

γ´1 ´ 1
˘´γ

˙

.

By Theorem 2.3.3 on p.44 in de Haan and Ferreira (2006), the function ap¨q is (locally
uniformly) regularly varying with index γ, so that p1 ´ τnq{F pξτnq “ pγ´1 ´ 1q´1 ` op1q

implies that
ap1{F pξτnqq

app1 ´ τnq´1q
„
`

γ´1 ´ 1
˘´γ

as n Ñ 8.

Hence, it suffices to show that

`

γ̆´1
n ´ 1

˘´γ̆n
ˆ
a

np1 ´ τnq

ˆ

papp1 ´ τnq´1q

app1 ´ τnq´1q
´ 1

˙

(B.18)

`
a

np1 ´ τnq

´

`

γ̆´1
n ´ 1

˘´γ̆n
´
`

γ´1 ´ 1
˘´γ

¯

(B.19)

´
a

np1 ´ τnq

ˆ

ap1{F pξτnqq

app1 ´ τnq´1q
´
`

γ´1 ´ 1
˘´γ

˙

(B.20)

“ OPp1q as n Ñ 8.

The first term (B.18) is OPp1q since
a

np1 ´ τnq

´

papp1´τnq´1q

app1´τnq´1q
´ 1

¯

“ OPp1q and by con-

sistency of γ̆n as an estimator of γ P p0, 1q we have
`

γ̆´1
n ´ 1

˘´γ̆n
“ OPp1q. Like-

wise, the second term (B.19) is OPp1q by applying the delta method in conjunction with
a

np1 ´ τnqpγ̆n ´ γq
d

ÝÑ Γ. As for the last term (B.20), we have again by Theorem 2.3.3
on p.44 in de Haan and Ferreira (2006) (and Theorem B.2.18 on p.383 in de Haan and
Ferreira, 2006, which guarantees local uniformity of this SORV property) that

lim
nÑ8

1

App1 ´ τnq´1q

«

ap1{F pξτnqq

app1 ´ τnq´1q
´

ˆ

F pξτnq

1 ´ τn

˙´γ
ff

“
`

γ´1 ´ 1
˘´γ

`

γ´1 ´ 1
˘´ρ

´ 1

ρ
.

Moreover, from (B.10) and a Taylor expansion,

ˆ

F pξτnq

1 ´ τn

˙´γ

´
`

γ´1 ´ 1
˘´γ

“ Op1{qτnq ` OpÃpp1 ´ τnq´1qq.

Recalling that
a

np1 ´ τnqApp1´τnq´1q “ Op1q,
a

np1 ´ τnq{qτn “ Op1q and
a

np1 ´ τnqpapp1´

τnq´1q{qτn ´γq “ Op1q, it follows that (B.20) is Op1q as n Ñ 8, which ends the proof.

Proof of Theorem 3. Recall from (3.5) that qξ‹
τ 1
n

“ ppγ´1
n ´ 1q´pγn

qq‹
τ 1
n
and write

a

np1 ´ τnq

app1 ´ τnq´1qϕγpdnq
pqξ‹

τ 1
n

´ ξτ 1
n

q

“

a

np1 ´ τnq

app1 ´ τnq´1qϕγpdnq

´

qq‹
τ 1
n

´ qτ 1
n

¯

ˆ ppγ´1
n ´ 1q´pγn (B.21)

`

a

np1 ´ τnq

app1 ´ τnq´1qϕγpdnq

´

ppγ´1
n ´ 1q´pγn ´ pγ´1 ´ 1q´γ

¯

qτ 1
n

(B.22)

`

a

np1 ´ τnq

app1 ´ τnq´1qϕγpdnq

`

pγ´1 ´ 1q´γqτ 1
n

´ ξτ 1
n

˘

. (B.23)

By Theorem 4.3.1 on p.134 in de Haan and Ferreira (2006) and the continuous mapping
theorem, the first term (B.21) converges weakly to Γ{pγ´1 ´ 1qγ . In order to control

41



the second term (B.22), note that since the SORV condition C2pγ, ρ̃, Ãq holds, one has
aptq{Uptq Ñ γ as t Ñ 8 by Lemma 1.2.9 on p.22 in de Haan and Ferreira (2006). Using
the delta-method and recalling (B.7) and then (B.17), one gets

a

np1 ´ τnq

app1 ´ τnq´1qϕγpdnq

´

ppγ´1
n ´ 1q´pγn ´ pγ´1 ´ 1q´γ

¯

qτ 1
n

“ OP

ˆ

1

logpdnq
ˆ d´γ

n

qτ 1
n

qτn

˙

“ OP

ˆ

1

logpdnq

˙

.

It follows that the term (B.22) is oPp1q. We conclude with the control of the third term:
by Proposition 1 in Daouia et al. (2020), ξτ 1

n
“ pγ´1 ´1q´γqτ 1

n
p1`rpτ 1

nqq, where, as τ Ñ 1,

rpτq “
γpγ´1 ´ 1qγ

qτ
pEpXq ` op1qq

`

ˆ

pγ´1 ´ 1q´ρ̃

1 ´ γ ´ ρ̃
`

pγ´1 ´ 1q´ρ̃ ´ 1

ρ̃
` op1q

˙

Ãpp1 ´ τq´1q.

Recall that Ã is asymptotically proportional to t ÞÑ Aptq “ aptq{Uptq´γ; since
a

np1 ´ τnqApp1´

τnq´1q Ñ µ by assumption, we have
a

np1 ´ τnq Ãpp1´ τnq´1q “ Op1q, and then, from the
condition

a

np1 ´ τnq{qτn Ñ λ2 and the regular variation properties of U and |A|, that
a

np1 ´ τnq rpτ 1
nq “ op1q. As a consequence

a

np1 ´ τnq

app1 ´ τnq´1qϕγpdnq

`

pγ´1 ´ 1q´γqτ 1
n

´ ξτ 1
n

˘

“ o

ˆ

qτ 1
n

app1 ´ τnq´1qϕγpdnq

˙

“ O

ˆ

1

logpdnq
ˆ d´γ

n

qτ 1
n

qτn

˙

“ O

ˆ

1

logpdnq

˙

and hence the term (B.23) is op1q. The equivalent statement

a

np1 ´ τnq

logpp1 ´ τnq{p1 ´ τ 1
nqq

˜

qξ‹
τ 1
n

ξτ 1
n

´ 1

¸

d
ÝÑ Γ

is obtained by using once again the asymptotic proportionality relationship ξτ 1
n

„ pγ´1 ´

1q´γqτ 1
n
and arguing along the final lines of the proof of Theorem 1.

Proof of Corollary 1. We obtain the two convergence results by applying Theorem 1. To
do so, we need first to show that the last condition of this theorem is satisfied. Under the
tail-heaviness condition (2.2) with 0 ă γ ă 1{2, and the assumptions that Ep|X´|2q ă 8,
τn “ 1 ´ kn{n Ñ 1 with np1 ´ τnq “ kn Ñ 8 and

a

np1 ´ τnqÃpp1 ´ τnq´1q “ Op1q, one
has, by Theorem 1 in Daouia et al. (2020), that

a

kn

˜

pξτn
ξτn

´ 1

¸

d
ÝÑ N

ˆ

0,
2γ3

1 ´ 2γ

˙

, as n Ñ 8. (B.24)

Note that
a

np1 ´ τnqÃpp1´τnq´1q “ Op1q is guaranteed by the condition
a

np1 ´ τnqpapp1´

τnq´1q{qτn ´ γq Ñ µ P R, see the proof of Theorem 1. Then, according to Theorem 2,
it suffices to show that the two conditions of this theorem hold for both the GPML and
Moment estimators of apn{knq and γ. Following Theorem 3.4.2 on p.92 in de Haan and
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Ferreira (2006), the GPML estimators satisfy the joint convergence (3.8) and hence we
obtain

a

kn

ˆ

pσML
n

apn{knq
´ 1

˙

“ OPp1q and
a

knppγML
n ´ γq

d
ÝÑ ΓML (B.25)

where ΓML is the normal distribution N
´

λ1p1`γq

p1´ρqp1`γ´ρq
, p1 ` γq2

¯

. On the other hand, un-

der the first condition of Theorem 1, we know from Lemma B.3.16 on page 397 in de Haan
and Ferreira (2006) that a second-order condition E2pγ´ “ 0, ρ, a{U,Qq holds for logUptq
with an auxiliary function Q defined by

Qptq “

$

’

’

&

’

’

%

γ ´
aptq

Uptq
if γ “ ´ρ or p0 ă γ ă ´ρ and l ‰ 0q,

ρ

γ ` ρ
Aptq if 0 ă ´ρ ă γ or p0 ă γ ă ´ρ and l “ 0q

where the quantity l is defined as l “ limtÑ8 Uptq´aptq{γ, see Theorem 2.1 in Fraga Alves
et al. (2007) for the existence of this limit. Then, as n Ñ 8,

a

knQ

ˆ

n

kn

˙

Ñ λMom :“

$

’

&

’

%

´µ if γ “ ´ρ or p0 ă γ ă ´ρ and l ‰ 0q,

λ1 ρ

γ ` ρ
if 0 ă ´ρ ă γ or p0 ă γ ă ´ρ and l “ 0q.

Therefore, all conditions of Corollary 4.2.2 on page 133 in de Haan and Ferreira (2006)
are satisfied, which yields the joint convergence (3.9), and so we obtain

a

kn

ˆ

pσMom
n

apn{knq
´ 1

˙

“ OPp1q and
a

knppγMom
n ´ γq

d
ÝÑ ΓMom (B.26)

where, by Theorem 3.5.4 on page 104 in de Haan and Ferreira (2006), ΓMom stands for
the normal distribution N

`

λMombγ,ρ, γ
2 ` 1

˘

, with

bγ,ρ “

$

’

&

’

%

´
γ

p1 ` γq2
if 0 ă γ ă ´ρ and l ‰ 0,

γ ´ γρ ` ρ

ρp1 ´ ρq2
if 0 ă ´ρ ď γ or p0 ă γ ă ´ρ and l “ 0q.

Thus, by applying Theorem 2 in conjunction with (B.25) and (B.26), and then Theorem 1
in conjunction with (B.24), we get

a

kn
ξ̆‹
τ 1
n

ppγML
n , σ̆ML

n q ´ ξτ 1
n

ap1{F pξτnqqϕγpdnq

d
ÝÑ ΓML and

a

kn
ξ̆‹
τ 1
n

ppγMom
n , σ̆Mom

n q ´ ξτ 1
n

ap1{F pξτnqqϕγpdnq

d
ÝÑ ΓMom.

Since σ̆ML
n {ap1{F pξτnqq

P
ÝÑ 1 and σ̆Mom

n {ap1{F pξτnqq
P

ÝÑ 1, and since ϕ
pγML
n

pdnq{ϕγpdnq
P

ÝÑ

1 and ϕ
pγMom
n

pdnq{ϕγpdnq
P

ÝÑ 1 in view of Corollary 4.3.2 on p.135 in de Haan and Ferreira
(2006), the conclusion follows by using Slutsky’s lemma.

Proof of Corollary 2. According to Section 4.3.1 in de Haan and Ferreira (2006), see
pages 139-140, we have, under the first three conditions of Theorem 3, that when the
scale and shape GPML estimators are used,

?
kn

apn{knqϕγpdnq
pqq‹

τ 1
n

´ qτ 1
n

q
d

ÝÑ ΓML.
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Then, following the proof of Theorem 3, we obtain

a

kn

qξ‹
τ 1
n

ppγML
n , pσML

n q ´ ξτ 1
n

apn{knqϕγpdnq

d
ÝÑ

ΓML

pγ´1 ´ 1qγ
.

Besides, as seen in the proof of Corollary 1, under the first and second conditions of
Theorem 3, the Moment estimators satisfy the joint convergence (3.9) that corresponds
to our last required condition of Theorem 3. Therefore

a

kn

qξ‹
τ 1
n

ppγMom
n , pσMom

n q ´ ξτ 1
n

apn{knqϕγpdnq

d
ÝÑ

ΓMom

pγ´1 ´ 1qγ
.

Since pσML
n {apn{knq

P
ÝÑ 1, ϕ

pγML
n

pdnq{ϕγpdnq
P

ÝÑ 1, pσMom
n {apn{knq

P
ÝÑ 1, and finally

ϕ
pγMom
n

pdnq{ϕγpdnq
P

ÝÑ 1, the proof is complete following a use of Slutsky’s lemma.
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