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Abstract

Expectiles have received increasing attention as coherent and elicitable market risk
measure. Their estimation from heavy-tailed data in an extreme value framework
has been studied using solely the Weissman extrapolation method. We challenge
this dominance by developing the theory of two classes of semiparametric Generalized
Pareto estimators that make more efficient use of tail observations by incorporating the
location, scale and shape extreme value parameters: the first class relies on asymmetric
least squares estimation, while the second is based on extreme quantile estimation. A
comparison with simulated and real data shows the superiority of our proposals for
real-valued profit-loss distributions.
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1 Introduction

The risk of a financial position X is usually quantified by a risk measure {(X), where &
is a mapping from some space of random variables to the real line. An influential paper
in the literature by Artzner et al. (1999) provides a meaningful axiomatic foundation for
coherent risk measures. In our framework, the position X is a real-valued random variable
and a positive value of X denotes a loss (e.g. X represents the negative log-returns).
A position Y is then said to be riskier than X if £(Y) > &(X). The risk functional
£ is coherent if it satisfies the following four requirements: Translation invariance, or
equivalently £(X + a) = {(X) + a for all a € R; Positive homogeneity, which amounts to
E(AX) = A¢(X) for all A = 0; Monotonicity, which means that ¥ < X a.s. implies that
£(Y) < £(X); Subadditivity, in the sense that £(X +Y) < £(X) + £(Y). Of practical
interest are law-invariant risk measures in the sense that £(X) = £(Y) if the random
variables X and Y have the same distribution. Elicitability is an additional key property
for a risk measure as it provides a natural methodology to perform backtesting. It has
drawn considerable interest within the quantitative risk management literature mainly
through the contribution of Gneiting (2011). In statistical decision theory, as any risk
measure has to be estimated and/or forecast from historical data, it is important to be
able to verify and compare its competing forecasting procedures. Risk measures for which



such validation and comparison is possible are called elicitable (Fissler and Ziegel, 2016).
Our article contributes to the ongoing search for estimation methods of a law-invariant
risk measure that is both coherent and elicitable.

Arguably, the ubiquitous risk measure in banking and finance is the Value-at-Risk at
level 7 (VaR;), which is defined as the Tth quantile

¢r :=inf{xeR: F(x) =7}, 7€(0,1),

where F' stands for the distribution function of the random variable X. In essence, it
represents a loss that occurs once every 1/(1 — 7) observations on average. This intuitive
interpretation, paired with its versatility, robustness, and elicitability, allowed quantiles to
reign as the standard in risk management for decades. However, VaR,; = ¢, has received
mounting criticism for its failure to uphold the subadditivity axiom in general settings
(Acerbi, 2002), which leads to violations of the diversification principle, as well as its
inability to account for the size of losses beyond level 7 (Danielsson et al., 2001). The latter
defect can be viewed as a side-effect of quantile robustness, as its sole reliance on counting
observations beyond a threshold limits its ability to model extreme losses, particularly
for heavy-tailed distributions. These two shortcomings motivated the adoption of an
alternative that improves on both of these fronts, known as Expected Shortfall at level 7
(ES;) and defined by Acerbi and Tasche (2002) as

1 1
ES.; := J qq dt.

C1-7 ).

Being a coherent risk measure, ES; has superseded VaR, as the standard measure for
market risk in the banking sector according to the Basel Accords III/IV (Wang and Zitikis,
2021). When X is continuous, this instrument coincides with the 7-Conditional Value-at-
Risk E(X|X > ¢;), which represents the expectation of X when the variable takes values
in the upper (1 — 7)-tail (Rockafellar and Uryasev, 2002), making it more attuned to tail
events. Yet, this exclusive reliance on tail observations casts doubts about the measure’s
non-robustness (Cont et al., 2010; Kou et al., 2013), a topic whose relevance is still under
scrutiny in the literature (Kratschmer et al., 2012, 2014, 2015). Perhaps most importantly,
ES; falls short of VaR, in terms of elicitability as it is not directly elicitable (Gneiting,
2011). It only achieves joint elicitability with VaR, (Fissler and Ziegel, 2016).

The alternative concept of expectiles has axiomatic and practical properties that strike
a delicate balance between those of the two aforementioned competing risk measures.
First envisioned by Aigner et al. (1976) and popularized by Newey and Powell (1987) in
a regression context, the 7th expectile can be defined as

& = argminE {|7 — 1(X < 0)|(X —0)> — |7 — 1(X < 0)|X?},
feR
which exists as the unique minimizer in the above optimization problem as soon as E|X| <
oo. Expectiles factor in both the probability and magnitude of tail realizations (Kuan
et al., 2009). While the measure is categorized alongside quantiles into the same class of
M-quantiles defined by Breckling and Chambers (1988), it distinguishes itself within this
class by being the only M-quantile that satisfies all four coherence properties (Bellini et al.,
2014). In fact, expectiles are the only coherent and law-invariant risk measure that is also
elicitable, as shown by Steinwart et al. (2014), Bellini and Bignozzi (2015), and Ziegel
(2016). They also enjoy intuitive financial interpretations in the form of their acceptance
sets and their connection to the gain-loss ratio (Bellini and Di Bernardino, 2017). Although
not comonotonically additive, i.e. {-(X +Y) # &(X) + & (Y) for comonotonic random



variables X and Y (Acerbi and Székely, 2014), the unique combination of coherence, law-
invariance, and elicitability has garnered mounting attention for expectiles; see for instance
Martin (2014), Mao et al. (2015), Ehm et al. (2016), Bellini and Di Bernardino (2017),
Kratschmer and Zahle (2017), Daouia et al. (2021), Girard et al. (2022a,b), Philipps
(2022), Zaevski and Nedeltchev (2023) and Hu et al. (2024). The use of this metric in
measuring extreme risk has also received increasing attention in the fields of insurance and
financial economics, including asset risk (Davison et al., 2023; Liu et al., 2023) as well as
systemic and cybersecurity risks (Daouia et al., 2018, 2024b), to cite a few.

Estimation of tail risk at extreme levels 7 is an important problem for practitioners who
are concerned with the risk exposure to an infrequent catastrophic event that may wipe
out an investment in terms of the size of potential losses. The tail structure of financial
losses being typically described by heavy-tailed distributions, the statistical problem is
difficult due to data scarcity at the far tails, especially when the population risk measure
of interest is beyond the range of the data. Extreme value theory offers an ingenious
solution in the form of extrapolation. It seems to be general consensus in the field that
there are two major extrapolation methods which make use of top observations for tail
risk assessment: (i) the Weissman method which involves estimating an “intermediate”
version of the risk measure (i.e. moderately extreme and well inside the sample) alongside
the tail index, then using the latter to multiplicatively shift the former to the right place
of the targeted “extreme” risk measure, and (ii) the generalized Pareto approach which
approximates the upper tail of the underlying distribution by a Generalized (location-
scale) Pareto distribution (GPD) tail. We refer to the book of de Haan and Ferreira
(2006) for extreme VaR;, estimation and to Daouia et al. (2024c) for a unified theory
of extreme ES, inference in the semiparametric GP model. Extreme &, estimation has
been studied only fairly recently, by making solely use of the Weissman extrapolation
device. The first extrapolated estimators were introduced by Daouia et al. (2018, 2019,
2020), before a series of refined and bias-corrected versions were developed in Girard et al.
(2022a,b), Padoan and Stupfler (2022) and Daouia et al. (2024b).

Extreme expectile estimation using the semiparametric GP approach still remains
untouched and its potential untapped in the challenging context of heavy-tailed data.
However, this approach has for decades constituted a tool of extreme value modeling
for quantile-based risk measures in finance, see McNeil and Frey (2000) and Section 6.2
in Beirlant et al. (2004) among many others, and is considered a staple of statistical anal-
ysis in other fields of application such as climate science (Coles, 2001). While Weissman
extrapolation only relies on the tail index (shape parameter) and the scale parameter, this
competing framework also accounts for the location parameter in the GPD approximation,
which itself constitutes the natural way of handling departures from the scale-shape tail
Pareto model induced by location shifts, thus potentially leading to more accurate esti-
mates and forecasts. Apart from Daouia et al. (2024a) who consider the different setting
of short-tailed distributions, this is the first work to implement the idea of semiparametric
GPD fitting of extreme expectiles in a heavy-tailed model by presenting two classes of
semiparametric estimators: the first relies on direct asymmetric least squares estimation,
while the second pairs extreme quantile estimation with an asymptotic proportionality
relationship between extreme quantiles and expectiles. We derive their asymptotic distri-
butions for generic estimators of the scale and shape parameters, before specializing the
discussion of our general theorems to the use of Generalized Pareto maximum likelihood
estimators (Smith, 1987; Drees et al., 2004) and moment estimators (Dekkers et al., 1989)
for the extreme value parameters. Although we do focus on expectile risk assessment in
finance, our general methodology and asymptotic theory has wide applications outside of



asset /investment risk, including systemic risk, climate risk, cyber risk, geohazards and
disaster risk. Our methods are implemented in the freely available R package Expectrem.
The paper is organized as follows. In Section 2, we present an overview of the current
state of research on tail expectile estimation. Our new contribution is given in Section 3,
where we construct the two classes of generalized Pareto-type estimators and derive their
asymptotic properties. A simulation study examines their finite-sample performance in
Section 4 relative to the best known Weissman-type estimators. Forecast comparisons are
also conducted in Section 5 to evaluate tail risk for the stocks of Netflix, Walmart, and
American Express, as well as the exchange rate of Bitcoin. Section 6 concludes. The
Appendix contains further details about bias reduction and variance correction within the
Weissman extrapolation framework as well as all necessary mathematical proofs.

2 An overview of the state-of-the-art

2.1 Statistical model

Let the financial position of interest X be a real-valued random variable, and F' be its
cumulative distribution function. In this paper, we consider loss returns (i.e. minus log-
returs), which implies that extreme losses correspond to the upper tail of F. Denote
by U the associated tail quantile function defined as U(t) = F*< (1 — 1/t) for all t > 1,
where F*(-) = inf{zx € R, F(x) > -} stands for the generalized inverse of F'. Estimating
tail quantities, including expectiles and quantiles, from the perspective of extreme value
statistics relies on the fundamental domain of attraction assumption that there exist a
constant v € R and a positive scale function a(-) such that, for all x > 0,

i V) U (7
lim == _L 71 4s. (2.1)

The parameter v is referred to as the Extreme Value Index (EVI for short): a negative,
zero or positive EVI indicates respectively a distribution with short, light or heavy right
tail. In the case of heavy-tailed distributions (i.e. v > 0) that describe quite well the tail
structure of most financial data, following Corollary 1.2.10 in de Haan and Ferreira (2006),
the condition (2.1) is equivalent to

U(tz)
50 U(?)

=z7, forz>0. (2.2)

The asymptotic theory of extreme value estimators for tail quantities, including the EVI
and extreme expectiles and quantiles, shows that their bias is mainly determined by the
speed of convergence in the domain of attraction condition (2.1) or (2.2). This is captured,
for a general v € R, by the so-called extended second-order regular variation (SORV)
assumption:

Ea(7, p,a, A) There exist v € R, a second-order parameter p < 0, a scale function a(-) > 0
and a constant sign function A(-) which converges to 0 at infinity such that

_ vy o X S
Yz >0, lim L (U(t:v) ut) _ 2 1) =J 371f w’lduds.
t—o0 A(t) a(t) Y 1 1

This assumes that the right tail of the distribution of X can be approximated by a GPD
tail at a known rate. As can be seen, for instance, from Sections 2.3-2.4 and Chapter 3
in de Haan and Ferreira (2006), Section 5.6 in Beirlant et al. (2004) and Chapter 2 in Falk




et al. (2011), this kind of condition is inevitable in order to carry out extreme value
analysis when no parametric model structure is imposed on F'. In the heavy-tailed case,
this extended SORV condition reduces to the assumption:

Co(v, p, A) There are v > 0, a second-order parameter j < 0 and a constant sign function
A(-) which converges to 0 at infinity such that

Vo >0, lim ; (U(ta:) — x“*) = w“’f sP~1ds,
t—o A(t) \ U(t) 1

Theorem 3.1 by Fraga Alves et al. (2007) provides explicit expressions of p and A(-) in
terms of v, p,a(-) and A(-). The interpretation of E(v,p,a, A) and Ca(v,p, A) can be
found in Daouia et al. (2024c) and de Haan and Ferreira (2006) respectively, along with
abundant examples of commonly used families of continuous distributions satisfying both
of these conditions, and with the explicit corresponding values of 7, p, a(-) and A(-).

In the present paper, we focus on the estimation of extreme expectiles when F' is
attracted to the maximum domain of Pareto-type distributions with tail index 0 < v < 1.
Together with condition E|X_| < oo, with X_ = min(X,0) the negative part of X, the
assumption v < 1 ensures that the first moment of X exists, and hence expectiles of X are
well-defined (note that the first moment of X and hence its expectiles do not exist when
~ > 1). Under this model assumption, Bellini and Di Bernardino (2017) have established
in their Proposition 2.3 an interesting asymptotic connection between extreme expectiles
and their quantile analogs, namely

&~ (fy_l —1)77¢; as T — 1. (2.3)

It follows that tail expectiles &, are more spread than tail quantiles ¢, when v > 1/2,
whereas ; < ¢, for all large 7 when v < 1/2. The asymptotic equivalence (2.3) is
fundamental in the construction of extreme expectile estimators, which we review next.

2.2 Weissman-type estimators

Let X1, ..., X,, be a sample of observations drawn from F', and for the moment assume that
these random copies of X are independent. Let X7, < --- < X,,, be their corresponding
order statistics. In the intermediate case when 7 = 7, — 1 such that n(1 — 7,) — o
as n — 00, or under the more common discretized setup 7,, = 1 — k/n for a sequence of
integers k = k, — oo with k,/n — 0 as n — o0, the population expectile &, is extreme
but well inside the sample so that it can be consistently estimated by its empirical version

~ 1 &
&, =argmin — » 1, (X; —u), 2.4
gmin - 3, (X~ (2.4)

where 7, (y) = |7 — 1(y < 0)|y? is the expectile check function. The asymptotic normal-
ity of &, is derived in Theorem 2 in Daouia et al. (2018) for the class of heavy-tailed
distributions (2.2) with v < 1/2. In the more general setting where 0 < v < 1, an
indirect asymptotically normal estimator of £, can be obtained from the asymptotic con-
nection (2.3), or equivalently, &, ~ (y~1—1)"7q,, as n — c0. By substituting in a suitable
estimator 7 in place of v and the empirical quantile ¢,, = Xn—n(1—7)|;n = Xn—kn in place
of g, , the resulting estimator

ng = (771 - 1)77(/]\7'” (25)



is shown to have a 4/n(1 — 7,,)—asymptotic nondegenerate distribution under the condi-
tions formulated in Theorem 1 in Daouia et al. (2018). The EVI v € (0,1) can be estimated
by the celebrated Hill estimator (Hill, 1975)

[n(1—7n)]

1
Vn = T log Xn—i+1n — log X
n [n(l - TTL)J Z:z‘i 08 An-itin 08 n—|n(1-7n)],n

or, in the case v € (0,1/2), by the following expectile-based estimator introduced and
popularized by Girard et al. (2022a,b):

EIPN -1 ~ n
AE = (1 + b;”fij}) where F(z) = :L; 1{X; > z}.
In the more challenging extreme case when 7 = 7, — 1 such that n(1 — 7)) — ¢ € [0, 0)
as n — o0, the population expectile &/ lies at the far tail of the underlying distribution,
possibly beyond the sample maximum X, ,, in the data. Typical examples include 7], =
1 —1/n, with the associated extreme expectile &/ having the order of magnitude of X, .
In this case, the model assumption of Pareto-type tail (2.2) combined with the asymptotic
connection (2.3), yields the Weissman approximation

5 _U-n)Y | (1o5)7

B 1—7,

¢,  U((1—m)7Y)

, - 1_/ -
gT’qunk< T”) . (2.6)

ng qr, 1—m

This approximation motivates the following class of plug-in estimators of &, :

and hence

—* —% 1— TT/L 777
gTT’L = §T,,/l (Tn> = 1 an (27>
-7,
where 7 is a 4/n(1 — 7,,)—consistent estimator of v, and §T is either the emplrlcal asym-

metric least squares estimator &, in (2.4) or the quantile-based estimator &, in (2.5) for
the intermediate expectile &;,,. More specifically, the use of the latter indirect intermediate

expectile fT = §Tn in (2.7) yields the extreme expectile estimator 6 o 57, defined as
pe e 11—, s 1—7\" 1 .
*/: */ ) = = % —1 g y 2.8
Tn Tn (7) (1 o Tn> §Tn 1 o TT/L (7 ) q'rn ( )
while the choice of the former direct intermediate expectile ETn = ng results in
~ ~ 1—7 DN
*/ = */ y) = . 2.9
& -8m-(122) & (2.9

Based on an i.i.d. assumption on the underlying sample and a SORV condition Ca(7, p, A)
with additional mild regularity conditions, Daouia et al. (2018) have shown in their Corol-
lary 3 and Corollary 4 that the two estimators (2.8) and (2.9) have the same limit distri-
bution as the chosen tail index estimator 7 with the slightly slower rate of convergence
log((l —1n)/(1—=7))/A/n(1 — 7,,). When using the extrapolated quantile-based estimator

§* (%) in (2.8) in conjunction with the Hill estimator ¥ = A, and its asymmetric least



squares competitor é\;, (%) in (2.9) along with the expectile-based estimator 7 = ALY, it
was shown in Daouia et al. (2018) and Girard et al (2022b) that, if p < 0 and under the

conditions A\; = lim,, oo A/n(1 — ) A((1 = 7,) ") € R, Ao = limy o0 4/n(1 — 7,)/¢r, € R
and /n(1 —7,)/log((1 — 1) /(1—Tn))—>OO one has

* (~NH
T (EB) () aw

log((1 —7)/(1—73,)) &, L—=p

and, when E|X _|? < 0 and v < 1/2,

n(l —7,) o g;ﬁ (’AYE)
log((1—ma)/(1—7) 2\ &,

-1 _ 1\1— _
BNV (M)\l + 2y = 1R A, 71(1_27’7)> ) (2.11)

Note that when (X,,,n = 1,2,...) is a strictly stationary, f—mixing time series and with
the Hill estimator 7 = A1, Davison et al. (2023) have recently proved in their Theorem 3.5
that these estimators, namely f* (A1) and f ( M) are still asymptotically Gaussian with
the same rate of convergence, but at the cost of an increased asymptotic variance.

When ignoring the asymptotic bias, under the assumption A\; = A2 = 0, the resulting
Gaussian 100(1 — a)% asymptotic confidence intervals for £,/ are then

fﬁ‘?)(a):[s”:,g@s)exp (tlog(“‘“ A=) 52, />]

n (1—m)
and 7() = [s (5E) exp (il‘)g(“‘g_” L3 % />]
~ AE 1- n
where &2 (vn) and 52 = Wa

with 21_,/9 being the quantile of level 1 — a/2 for the standard Gaussian distribution.
Bias-reduced versions of the estimators E;, (A1) in (2.10) and §; (AF) in (2.11) have been
recently suggested by Girard et al. (2022bn) when the auxiliary function A in their SORV
condition Ca(7, p, A) takes the form A(t) = byt? for certain constants b # 0 and p < 0.
This function A can be estimated by using a consistent tail index estimator 7 and the
second order parameter estimators b and p that were introduced in Gomes and Martins
(2002) and Fraga Alves et al. (2003). A careful consideration of the different sources of
bias in the construction of g;é and 5;7,1 (see Appendix A) leads to bias-reduced versions
f;,BR('AyT}LI BRY and E;;BR@E BRY whose full expressions are given in (A.5) and (A.6), and
with (see Caeiro et gl., 2005)

b 1\’
~HBR _ oH
= 1—
T 711( 1_p<1_7-n)>

and (see Girard et al., 2022a)

EaTPN — —1 - A~ _
Fp&s, Xn b(Fn(&rn,))™"
AEBR — 14 ( )<1€Am> (27, — 1) (1*(1—(351))

-1




Gaussian 100(1—a)% asymptotic confidence intervals for £;, based on the purely asym-
metric least squares estimator észR(&E ’BR) and its quantile-based competitor E;;BR@E ’BR),
also available as part of the R p?lckage Expectren, are discussed in Daouia et al. (2024b),
with an alternative solution put forward in Padoan and Stupfler (2022) to correct the naive

confidence intervals fi?) (o) and T(TE)) (o). We list in Appendix A the intervals constructed
from Daouia et al. (2024b) as f(T,l)(a), IN(T,I)(a), f(T,z)(a) and IN(T?)(a), and from Padoan and

Stupfler (2022) as fg) (o) and TS)’) (). Appendix A also provides more details about these
intervals and their observed finite-sample behavior.

3 Semiparametric GP estimation of tail expectiles

Define the excess distribution function F,(z) := P(X —u < z|X > u), for u € R. A
standard result in extreme value theory, given for instance by Theorem 3.4.13 in Embrechts
et al. (1997), asserts that the model assumption (2.1) holds with v > 0 if and only if

lim sup |Fy(z) — H(z|o(u),v)| =0, (3.1)
U=0 20
for some positive function o(+), where
_1/
H(z|lo,y)=1- (l—i—ﬁ) 7, x>0,
o

stands for the distribution function of the GPD with shape and scale parameters v and o,
respectively. According to Theorem 1.1.6(4) on page 10 in de Haan and Ferreira (2006),
the positive scale function o(-) in (3.1) is related to a(-) in the model assumption (2.1)
through the identity o(u) = a(1/F(u)). Based on the result (3.1), for a threshold u large
enough, the distribution function F, can then be well approximated by a GPD with shape
parameter v equal to the EVI of F, or equivalently,

_ _ z—u\

F(x)zF(u)(l—F’yU(m) , T > U
Inverting the right-hand side, we obtain the celebrated GPD approximation of extreme
quantiles, or directly in terms of the tail quantile function U, the model assumption (2.1)
can informally be rewritten as

v —

1
Ve >0, U(te) ~ U(t) + a(t)m when ¢t is large. (3.2)

Y

Based on this approximation we construct and study below two new classes of extreme
expectile estimators: the first one in Section 3.1 is built upon asymmetric least squares
extrapolation, while the second one in Section 3.2 relies on extreme quantile estimation.
We build here a general theory based on generic estimators of the scale and shape param-
eters; the application to Generalized Pareto maximum likelihood estimators and moment
estimators of the scale and shape parameters is discussed in Subsection 3.3.

3.1 Extremal asymmetric least squares estimation

Let 7, 1 1 such that nF(&;,) — oo, and let 7/, > 7, such that (1 —7,)/(1 — 7)) — 0.
Using (3.2) with ¢ = 1/F(&,) and @ = F(&,)/F(&;) leads to the expectile-specific

approximation

Er ~ & +a(1/F(E)) (F@Tn)/i@m))” -1



for n large enough. Since, in the heavy-tailed case with 0 < v < 1, we have F'(&,)/(1—7) ~
vt —1as 7 — 1 (Bellini et al., 2014, Theorem 11), it follows that

F(&'Tn) 1—m

F({T;l) 1—- sz
as n — 00, which in turn suggests the extrapolating approximation

(A=7)/(A=7))" =1
5 :

&, ~ &r, + a(1/F(&7,))

Therefore, given estimators &,, and ¥, of a(1/F(&;,)) and +, respectively, this motivates
the extreme expectile estimator

x Ye o 1—7,)/(1—m, — 1

b = € Gt) = 6y, 7, (LT O (33
" " Y

Various estimators of the scale function o(-) = a(1/F(-)) and shape parameter ~ are

available in the literature, including the (pseudo-)Generalized Pareto maximum likelihood
(GPML) estimators and the Moment-type estimators: if k = k, — o0 is a sequence of
integers such that k/n — 0, as n — o0, then

e The GPML estimators (Smith, 1987; Drees et al., 2004) of (a(n/k,),7) are given by

kn
( ML(n/k ) ML) = arg maXH h n—i+1ln — Xn—kn,n|07 '7)
oy>0 7
where the Generalized Pareto density function is defined as h(-|o,v) = H'(-|o,7);
e The Moment estimators (Dekkers et al., 1989) of (a(n/ky),7) are defined as

(@O (k) AN = (X, oMY (1= 357, MY +357))

(My2\ —
%_):1_1 1_(Mkn)
2 M’g2)

k
. 1 n .
and MIEZL) = Z(log Xn—ivin —log X, n)’, forj=1,2.
=1

where

Such estimators of the scale parameter a(1/F (u,)) typically converge on the relative scale

at the rate 1/4/nF (uy); see Sections 3.4 and 4.2 in de Haan and Ferreira (2006) for the
i.i.d. case, and Section 6 in Drees (2003) for the case of dependent data. For w, = &,
estimators &, of the parameter a(1/F(;,)) are therefore expected to converge on the rel-

ative scale at the rate 1/4/nF (&), which we have seen to be asymptotically proportional

to the rate of convergence 1//n(1 — 7,,) of the intermediate expectile estimator &, . It
is also customary to use estimators ﬁn that rely on the top k, = n(l — 7,) observations
and converge at the same rate 1/4/n(1 — 7,); see Sections 3.4, 3.5 and 3.6 in de Haan and
Ferreira (2006) in the i.i.d. case, and Sectlon 6 in Drees (2003) in the serially dependent
case. The next result shows that among the three estimators §Tn, n and &, on which f

hinges in (3.3), it is the asymptotic behavior of 4, which dominates that of 5’;, .



Theorem 1. Assume that

1. E|X?| < 0 and & (v, p,a, A) holds with 0 <y < 1/2 and p < 0;
2. T = 1—kp/n — 1 such that n(1—7,) = ky, —>OO /N 1—TnA 1-7,)71) — A\ e R,

\/Tﬂw/qm—ﬁ\zeR and A/n(1 — 7,)(a((1—7y) /an—'y)—>ueR n — o0;
3. 7/ — 1 such that (1—1,)/(1—7]) — o and \/M/log((l—m)/(l—n’l)) — 00,

n — oo;

4. A/n(l—m,) (g%: — 1) = Op(1) and for suitable estimators ¥, and &y,

T ((1/;(5)) ) 0s(1) and /n(l = 7)(n — ) —5 T,

where I' is a nondegenerate limit.

Then o
& — &
n(l — Tn) T i i> I.

a(1/F(&,)) {077 gr-11og(s)ds

By Corollary 4.3.2 on p.135 in de Haan and Ferreira (2006), the conditions of our
Theorem 1 imply

Sll ™)/(1-, )S’yn 1 10g( )dS P .
(=7)/0=71) 71 L 8’n—®
§; 7 1log(s)ds

which is useful for constructing an asymptotic confidence interval for &;,. For this same

purpose and for the calculation of E;, in (3.3), the estimator &, of a(1/F(&,,)) can be
obtained in three different ways by setting

&1(11) = a(l/Fn(ng))7 &nQ) = a((l - Tn)_l) X ((1 o Tn)/%n(é—")):yn’
) x (Gt =17

The first estimator & is simply the empirical counterpart of a(1/F(&;,)). The second

estimator 5 is obtained in view of the approximation a(1/F(&,)) ~ a((1—7,)"h) x ((1-
7)/F(£:,))7 that follows from the regular variation property limg .. a(sz)/a(s) = 27,

for any z > 0 (see Lemma 1.2.9 on p.22 in de Haan and Ferreira, 2006), when taking

s = 1/F(q,,) and z = F(q,,)/F(&,). The third estimator 5 is obtained from the
same approximation above by replacing F(&,,)/(1 — 7,) with its limit v~* — 1. These
three versions of &, will be denoted in the sequel as &71;/[ ’i, 1 = 1,...,3, when using
the GPML method and as &y ™" , 1 =1,...,3, when using the Moment method. This
will in turn result in the assoc1ated GPML based expectile estimators 5* (FML Gt

and Moment-type estimators 5 (AMom “Moml). These estimators can be calculated by

using our function pgdExpect from the R package Expectrem with the respective methods
"direct_GPML1",..., "direct_GP_ML3", and "direct_GP_MOM1",..., "direct_GP_MOM3".

It is also natural and instructive to compare Theorem 1 with the results obtained
for the competing Weissman-type estimators. We have from the proof of Theorem 1 the

following equivalent statement:
n(l —1,) g;/ d
1] —T. 3.4
log((1 = m)/(1 - 7)) (af,g > 34)
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Therefore, 5;72 has the same rate of convergence as 5*, in (2.8) and E;;L in (2.9), as well
as their bias-corrected versions g;;LB in (A.5) and §* BR n (A.6). While the asymptotic
distribution I' of these Welssman—type estimators is typically that of the Hill estimator 4!
or the expectile-based estimator 42, or their bias-reduced versions 7y, HBR an nd ~ o BR, it
would naturally correspond in our generalized Pareto approach to the limit distributlon of
the GPML estimator AM" or Moment estimator )°™. We will specialize the discussion

of our generic Theorem 1 to both of these shape parameter estimators ¥, € {JML FMom}

< (3)

in Section 3.3 when the scale parameter estimator takes the form &, := 5’ = a((1 —
7)) (55 — D)7 with a(-) e {@M¥(.),aM°™(-)}. This choice of &, is motivated by
its good performance in our numerical illustrations. Next, we show that its associated
assumption in Theorem 1 holds under convenient conditions on both %, and a((1—7,)"1).

Theorem 2. Assume that

1. E|X_| < o0 and &(v, p,a, A) holds with 0 <~y <1 and p < 0;

2. TnTlsuchthatn(l Tp) — 0O, \/ﬁfl 1-7,)7") = 01), v/n(1 —70)/¢r, =
,and\/ﬁ (1=71)"Y/qr, — )—O(l) n—»oo

Take &, = a((1 —7,)7Y) x (371 = 1)77 for suitable estimators a((1 —71,)~ ") and %, such
that

a((l —7,) 1t
n(l —1,) (M > Op(1) and +/n(1 —1,)( — T,

where I' is a nondegenerate limit. Then

n(l— 1) <a(1/;72§)) - 1> — Op(1).

In the financial context of real-valued profit-loss heavy-tailed distributions we provide
Monte Carlo evidence in Section 4 that, at least, our GPML estimator 5 ( ML TS LZ)
outperforms the best known Weissman competitors among those described in Section 2,
both in terms of relative bias and mean-squared error, with its associated asymptotic
confidence interval having slightly better coverage at the expense of being wider.

3.2 Extremal quantile-based estimation
Using now (3.2) with t = (1 —7,)" ! and z = (1 — 7,)/(1 — 77) leads to the well-known
Generalized Pareto quantile approximation

(A=7)/A=7))" —1
gl

Gr, ~ ar, +a((1 =) 7))

for all n large enough, which results in the extrapolated extreme quantile estimator

R o 11—\ n
q:', = an + Tn (( n) - 1)
n Yn 1—7,

for suitable estimators &,, and 4, of the scale and shape parameters a((1 —7,)~!)) and ~,

respectively. In our heavy-tailed model (y > 0), the asymptotic connection &/ ~ (y7' —
1)77q, from (2.3) motivates then the quantile-based estimator

=& (An,0n) = G — 1) drr (3.5)

11



~_1 _5 ~ On 1 7-7{L ~n
Cin ) (an Tn [(1 —Tn> ])

for &/, which extrapolates the intermediate expectile estimator ng =A@ = 1)7"G,, to
the far tail at 7),. Next, we establish the asymptotic distribution of this new GPD-type
estimator for generic estimators 4,, and &,, of the shape and scale parameters.

Theorem 3. Assume that

1. E|X_| < 0 and &(v,p,a,A) holds with 0 <~y <1 and p < 0;
2. 7, = 1—kp/n — 1 such that n(1— Tn)—]{? — 00, 4/N 1—TnA 1-7,)71) — A\ e R,

«/ n(l —7)/qr, — X2 € R, and /n(1 — 1) (a((1 —71)"Y/qr, —77) = peR, n — o0;
3. 1), — 1 such that (1—1,)/(1—7]) — © and \/M/log((l—m)/(l—na)) — 00,

n — 0;

4. for suitable estimators 4, of v and G, of o(qr,) = a((1 —1,)71),

~ On r, — qr d
n(l — 1) | Y — 7, -1, == ">—> I''A,B 3.6
where (I'; A, B) is a nontrivial trivariate weak limit.
Then -
é* - §T’ r
n(l— 1) d

a((1 —7,)~ 1) {7/ 07m) -1 1og(s)ds (V=17

As can be seen from the proof of Theorem 3, an equivalent statement of this conver-

gence is
n(l—m &
(1= 70) ) N IR o (3.7)
log((1 —7)/(1 = 7)) \ &,
which yields exactly the same rate of convergence as the competing Weissman-type esti-
mators seen in Section 2. Similarly to these estimators, it is the asymptotic distribution I'

of the chosen tail index estimator 4, which dominates the limit distribution of our extreme
expectile estimator f* (An, 0pn). In Section 3.3 below, we shall specialize the discussion of

Theorem 3 to the GPML and Moment-type estimators §* (AML 5MLY and €%, £ (AMom, gMom)

obtained by taking the estimators 4, and &, in (3.5) for the shape and scale parameters

v and (g, ) = a(n/ky,) to be either M and GML or AMom and GMem respectively, where

oML .= ML (n/k,) and &Mom .= gMem(p/k,,).

The two extrapolated estimators 5 ( ML GMLY and § (AMom, oMom) can be calculated by

using the function gpdExpect from the R package Expectrem with method="indirect_GP_ML"
and method="indirect_GP_MOM", respectively. Our simulation study in Section 4 indicates
that their finite sample performance is very similar to that of the third direct GPML and
Moment estlmatorsf ( ML 5’% ) and fT, (AMom &7 5 Dom,3 ), respectively (as the only differ-
ence lies, by constructlon between their related intermediate direct and indirect expectile
estimators)/ Moreover, in the case of non-negative loss distributions, the Moment-type
estimator f* (v Mom, 8M°m) shows competitive relative mean-squared errors with remark-
ably lower relative bias estimates than those of the bias-corrected Weissman estimators. In
the case of real-valued profit-loss distributions, this indirect Moment estimator still posts
respectable results for low values of ~, but the direct GPML estimator f* (AML, ool L2)
stands out in terms of relative mean-squared errors and coverage probablhtles of its asso-

ciated confidence interval, exhibiting consistent results over all values of ~.

12



3.3 GPML and Moment-type estimators

In this section, we focus the discussion of the asymptotic theory on the GPML and Moment
estimators (@M(n/k,), M) and (@M (n/k,), 31°™) of the scale and shape parameters
(a(n/ky),v), for the discretized intermediate level 7, = 1 — k,/n with k, — oo and
kn/n — 0 as n — oo. Although our generic Theorems 1, 2 and 3 are valid in a general
setup allowing for serial dependency in the data, we impose an i.i.d. assumption on the
underlying sample.

We first consider the extrapolated asymmetric least squares estimators § (

and fT, (AMom zMom) defined in (3.3) by taking therein the estimators ¥, and oy of the

’ TL

ML vML)

) T'L

shape and scale parameters v and (&) = a(1/F(&,,)) to be either M and ML or AMom

and gMom respectively, with
&%L = aML(n/kn) X ((1/AML) 1) AML AML x ((1 /AML) _ 1) AML
and &TI\L/Iom = aMom(n/kn) « ((1/’\Mom) . ) 72[0111 _ a_Mom ((1/’\Mom) B ) ,yTl\l/Iom‘

Following Theorem 3.4.2 on p.92 in de Haan and Ferreira (2006), the GPML estimators
AML and 6M satisfy, under the second-order condition &(7, p,a, A) with v > 0 and the
bias condition vk, A(n/k,) — A1 € R, the joint convergence

ML ap d ML ML
Vkn <7n -7, a(n?k 7 1) —= N (A oM BV (3.8)
where pMI = <(1_p%ﬁ7_p), (1_p)(_1’i7_p)) and the matrix M is given by

(A +n)? —(1+7)
EML_(—(Hv) 1+(1+’y)2>'

Under the extra condition /n(1 — 7,)(a((1 — 7,)71)/gr, — ) — p € R, it can be seen
from Corollary 4.2.2 on p.133 in de Haan and Ferreira (2006) that the Moment estimators

AMom and gMom satisfy the joint convergence

\/ki<aMom_,y a.yli/lom 1 Xnkn,n_U(n/kn)>
" Ta(n/ky) (n/ky)
Mom Mom a.l\/lorn Mom
_>J\/()\ (m b ),2 ) (3.9)
where
( —p if y=—p or (0<vy<—pandl#0),
)\Mom::
A
'y—li—pp if 0<—p<~vy or (0<y<—pandl=0),
f—ﬁ 1f0<’7<—pandl750,
pin " = o
V:p w if 0<—p<y or (0<y<—pandl=0),
ayl\L/Iom L
b%p = p .
=2 if 0<—p<y or (0<y<—pandl=0),

13



¥4+1 y=1 0
= v=1 ~+2+2 v
0 ¥ 1

and nMom

With the convergence results (3.8) and (3.9) at hand, we show that the two direct extreme

expectile estimators 5 ( ML 5MLY) and 5* (AMom_ ,l\l/lom) are asymptotically normal.

Corollary 1. Under the first three conditions of Theorem 1, we have

\/? 5* (,-’;,%/IL’ u’VI\L/[L) - 57" i} N ( )\1(1 + 7) (1 + 7)2)
ML Sk"/ n(1=7)) AME—110g(s)ds Q=p)A+v=p)
*/ (a}’},ﬁom7 u?’lt/lom) 67’ Mom
and ~/ky, n LN )\Momb7 A2 +1).
&Mom Skn ~7h)) AN -1 Jog(5)ds ( )

Turning to the indirect quantile-based estimators 5 ( ML ML) and f ( Mom  z:Mom)

defined in (3.5), we obtain the following asymptotic normahty results.

Corollary 2. Under the first three conditions of Theorem 3, we have

& @%‘L, A% 5747

LD =1
N( (T

\/l?

(PGt = 1)

)

5* (’\Mom ’\Mom) 5 .

and \/k»n

& Mom Slfn/(n (1=72)) AMom 1 log(s)ds
W (W (7 - )T (2 1) (T = 1))

In order to keep the paper to manageable proportions, we do not discuss the application
of our theorems and all the associated ramifications in the presence of dependence in the
data. Similarly to extreme quantile estimation under mixing conditions (Drees, 2003) or
ARMA-GARCH models (He et al., 2022), our methods may work under serial dependence
with an increased asymptotic variance. Theoretical results along these lines are left for
future research. In our case study of financial time series, we consider a practical solution
to eliminate serial dependence by filtering the time series with an ARMA-GARCH model.
The residuals from the fitted model are then treated as i.i.d. after performing a series of
Ljung-Box independence tests on residuals and their squares.

4 Simulation study

We evaluate the performance of our extreme expectile estimators through an extensive
simulation study. We consider two non-negative loss distributions and two real-valued
profit-loss distributions for the distribution of X, all with tail index v > 0:

e Fréchet distribution with survival function F(x) = 1 — exp (—xil/ 'Y) for = > 0;

¢ Burr distribution with survival function F(z) = 1/(1 + z'/7) for z > 0;

1 ‘a;ll/’Yfl

e Symmetric Burr distribution with density function f(z) = % (a2

for z € R;

14



e Student distribution with degrees of freedom 1/~.

The first two non-negative distributions are commonly seen in insurance applications,
while the latter two real-valued distributions are more suitable for financial returns. For
each distribution, we examine the cases v = 0.25, 0.3, 0.35, and 0.4 for all competing
estimators

= &*BR /~ ~%,BR /~ ~*PS % PS
&y € & EPNAEER), &P ARER), 75, €

- / 5 / 5

g
Th\In 2 ¥n Th\in  »Yn o \Tn " 0n \In  %n

g*/ (AML VML’Z'),g*/ (AMom &MOH’I,Z) 5*/ (AML AML)’ 5*/ (aMom a_Mom)} ’

where i € {1,2,3} and fATT/L is the naive, non-extrapolated empirical expectile estimator
described in (2.4) at level 7. The choice of v values between 0.25 and 0.4 describes quite
well the tail heaviness of most financial datasets (see e.g. the R package CASdatasets).
We generate B = 5,000 samples {X\”,... X} for b = 1,..., B, with n = 1,500 for
each simulation case and estimate the extreme expectile £/ at the extreme level T =
1 —1/n. We compare the finite-sample performance of the different estimators based on
the following criteria:

1. Relative bias and mean-squared errors

—(b —=(b 2
_ 1 & (&Y 5 (€Y
RBias(¢r,) = & 57 —1| and RMSE(E Z 57 -1],
b=1 Tn b=1 Tn

where éz) is the expectile estimator generated from the bth sample.

2. Average length and coverage probability of the 95% asymptotic Gaussian confidence
intervals, where the former is defined as the average width of the confidence inter-
vals generated around each estimator, and the latter is the frequency of times said
intervals included the true value of the extreme expectile.

We plot the estimates of RBias(ET/L) and RMSE(ET;L) against k for the positive-valued
distributions in Figure 1, and those for the real-valued distributions in Figure 2. Fig-
ure 1 reveals that the BR (Bias-reduced) and PS (Padoan and Stupfler, 2022) estima-
tors 5* BR(AE BR), E;,BR(AE R), 5* PS and 5* ,PS , represented as solid lines in the figure,
perform well in the posﬂzlve valued cases of the Fréchet and Burr distributions. How-

ever, the Burr distribution also sees our two direct GPML estimators f* (AME, s 1)

and f ( ML ML 2), represented respectively by the dashed turquoise and purple lines,
reach smnlar RMSE levels to their BR and PS competitors, but for narrower ranges of
k values that are typically higher than the optimal k values for the BR and PS families

of estimators. Our indirect and third direct Moment estimators § ( Mom GMom) and

, 0.
:, (AMom &7 5 om, 3) shown in dash-dotted blue and dashed pink rebpectlvely, shore up this

shortcormng by maintaining competitive RMSE measures over long ranges of k values for
both the Fréchet and Burr distributions and low RBias estimates for both distributions
and all values of ~.

The direct GPML estimator 5* (AML oMt L’2), again in dashed purple, however stands
out as the overall best performer in terms of RMSE and RBias when the underlying
distribution is symmetric, exhibiting consistent results over all values of . The competing
GPML estimator 5 ( ML oL 1) in dashed turquoise, closely matches its top performing
direct GPML counterpart only for the Student distribution with v values 0.35 and 0.4,
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while the indirect and third direct GPML estimators § ( L MLy and 5 ( ML ML3)
in dash-dotted green and dashed magenta respectlvely, seem to be best for the Student

distribution with v values 0.25 and 0.3. The indirect Moment estimator ET, (AMom ZMom)

Y TL
and third direct Moment estimator { ( Mom | gayom:? ), again in dash-dotted blue and
dashed pink respectively, post respectable results for both distributions, but only for
v = 0.25 and 0.3. These results imply that our extrapolated GPD-based estimators would
be a perfect fit for the applications to financial risk analysis which feature symmetric real-
valued distributions with comparable tail heaviness to what we have examined in these
simulation experiments.

When ignoring the asymptotic bias of our direct asymmetric least squares estima-
tors 5* (AML 5ML) and {* (AMom gMom.ty g0 i — 12,3, in Corollary 1, their associated
Gaussian 100(1 — a)% asymptotlc confidence intervals for ./ are

#ML,i % (~ML <ML,
PIE ) = | &, MV, 6310) + 2

(14 AME)

Fno™ ] (FMom)? 41

Vkn

and IMomz(a) = 5* (&Edom’ vMomz) t Zl—oz/2

’VL
Tn

¢,/7\,TI\L/IOIH (dn) 5

with
dy = k/(n(1— 7)) and é,(t) = f 5 log(s)ds.

1
These confidence intervals can be calculated by using the function pgdExpect from the R

package Expectrem with the respective methods "direct_GP_ML1", ..., "direct_GP_ML3",
and "direct_GP_MOM1",..., "direct GP_MOM3". Likewise, under the assumption A\; =
AMom () iy Corollary 2 the resulting Gaussian 100(1 — a)% asymptotic confidence

intervals for &/ based upon the indirect quantile-based estimators 5 ( ML ML) and
5* ( Mom Mom

o, °m) are

ML (k) (14 )
Vhn (@ -1) "

~Mom ~Mom )2
and I%Oln(a) = é. (,‘y’l’lt/lom7 Tl\l,/Iom) i 21—04/2 aMom ¢,’7\/71¥10m (dn>

Vha ((3em) = 1) ™

IML(a) g* (;}\/lelL7 On )izlfoz/Q

ar by (dn)

These confidence intervals can also be calculated by using the function gpdExpect with
method="indirect GP_ML" and method="indirect_GP_MOM", respectively.

We plot the coverage probabilities and average lengths of the 95% confidence intervals
against k for the positive and real-valued distributions in Figures 3 and 4, respectively.
While most confidence intervals associated with the twelve competing extrapolated esti-
mators are able to get close to the intended 95% coverage as k varies, very few can achieve

that for a wide range of k values. Our direct GPML confidence intervals I ’i, and par-

ticularly those associated with the estimators §* (AML MLy and fT, ('y,l;/[L a2y with
coverage probabilities in dashed turquoise and dashed purple respectlvely, achieve coverage
levels that are reasonably close to the nominal level for both the positive and real-valued
distributions, and for all studied values of 7; it should here be taken into account that,
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unlike the estimators 5* BR (3588 and & & BR(AH BR) the proposed GPML intervals do not
benefit from extensive ﬁnlte—sample corrections. And while these estimators fall short of
the indirect bias-reduced 5* BR(AH BR) estimator’s tight interval lengths, they still post
respectable results, espe01ally around the higher k values where they record their most
competitive RMSE and RBias in Figures 1 and 2. The larger average lengths of our con-
fidence intervals can be attributed to the additional uncertainty that our estimation and
inference procedures must account for, as they incorporate estimates of the location, scale
and shape parameters of the GP distribution, whereas the Weissman-type competitors are
constructed on scale and shape parameter estimates only. Another notable outlier is the
second direct Moment estimator 5 ( Mom galom2 ) as it shows encouraging coverage, in
dashed mauve, for all cases of the symmetric Burr distribution, as well as Student cases
with v = 0.35,0.4.

Finally, it should be noted that our experience with simulated data indicates that

yML,i IMomz IML IMom

the chosen asymptotic confidence intervals I, ) and , obtained from

the asymptotics in Theorems 1 and 3, afford better results. (for both non-negative and
real-valued distributions) than their respective counterparts that are derived from the
equivalent convergences in (3.4) and (3.7), mainly due to the reliance of the former con-
fidence intervals on additional location parameter estimates. This is illustrated for the
positive and real-valued distributions in Figures 5 and 6 respectively, where we visualize
the dominance of the chosen direct GPML confidence intervals I L1 and I, [N , In terms
of both coverage probabilities and average lengths, over their alternate conﬁdence intervals
that are constructed from the convergence (3.4).
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5 Real data illustration: Dynamic tail risk forecasting

We apply our extreme expectile estimation methodologies to evaluate tail risk for the stocks
of Netflix, Walmart, and American Express, as well as the exchange rate of Bitcoin (BTC-
USD). Our goal is to forecast the expectile risk measure of tomorrow given the knowledge
of today. To this end, we adopt a rolling window approach to our analysis, with each
window size set to n = 1,500, and utilize data on the daily loss returns (i.e. negative log
returns) Y7, ..., Y, of the aforementioned stocks and exchange rate. Using this setup and
a careful selection of observation dates, we arrive at the following data specifications:

e Netflix: 498 estimation windows between 2008/12/03 and 2016/11/08.
o Walmart: 482 windows between 2013/11/13 and 2021/09/28.

e American Express: 766 windows between 2011/11/16 and 2020/11/17.
e Bitcoin-USD: 217 windows between 2016/04/28 and 2021/01/08.

We follow the strategy laid out in Girard et al. (2022b) of filtering our time series through
the lens of an ARMA(1,1)-GARCH(1,1) model. For a rolling window Y7,...,Y,, we setup
the model:

Yi=p+ oYe1 +up + O0upq,

where u; = o464 such that Ut2 =c+ au%_l + ba?_l and (g¢) is an unobserved independent
white noise sequence, while the constants u, ¢, 6, a,b, and ¢ are model parameters. Using
the positive homogeneity and location equivariance of expectiles, we can then write the
conditional 7th expectile for the next day as

&r (Yns1|Fn) = o+ @Yo + oni1&(€) + Oup,

where F,, is the c—algebra generated by the ARMA-GARCH process up to time n.

We first estimate the ARMA-GARCH model parameters using the function garchFit
in the R package fGarch, which allows us to retrieve the raw residuals u; through the
@residuals option. Following the ideas of Girard et al. (2022b), we then fit a GARCH(1,1)
model to u; and retrieve the predictions &; of the innovations from the GARCH residuals.
These filtered residuals can then be considered as independent and identically distributed
copies of e, which facilitates the estimation procedures laid out in this work. The extrap-
olated extreme expectile estimates

13 /*BR(SEBRy S%BR(SHBRy xPS %PS
57‘,’1 € {57:’1 (’YE BR), S;’L (VTI:I BR), 5;;1 ’ 5;7/1 , (5'1)
&, (A1, 531-0), €, (1o, ahlom), &, (M 531), &, (3hem, 3em)

for i € {1,2, 3}, paired with estimates of the ARMA-GARCH model parameters fi, 5, 9,4,
b, and ¢, can be combined to construct the dynamic predictions of the extreme expectiles
of Y41 given Y, as

€ (Yoi1lFn) = fi + 0V + Gnr1 &5 (€) + Oy, (5.2)

Thanks to the property of elicitability of expectiles (Gneiting, 2011), these twelve com-
peting forecasters can be evaluated and compared using the scoring function

Lyt R —[0,0), (&) | — 1y <y —¢)>
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which gives the loss L./ (£,y) when the point forecast ¢ is issued and the realization y of
the future observation materializes. Following Ziegel (2016), given T forecast cases with
point forecasts (ém), - ,£¥n)) and realizing observations (y1,...,yr), where the index m
numbers the competing forecasters, the latter can be ranked in terms of their average
realized loss (the lower the better)

ZL (t ,yt), m=1,...,12, (5.3)

where each forecast case t € {1,...,T} corresponds in our estimation context to a rolling
window of loss returns Yi,...,Y,, with y; representing the realization of the future ob-
servation Y, 41, and §t ™) bemg its point forecast &,/ (Vn11|F) obtained in (5.2) from the
twelve competitors an( ) in (5.1). In our assessment of tail risk, we compare the average

scores [,( ™) for a fine grid of challenging levels 7/, € {0.99,...,1—1/n}, where data is sparse
and 1nference is difficult to handle. To guide our choice of the intermediate sequence kj,
which plays the role of the tuning parameter in our setup, we calculate the average realized
loss for every value k in the range of all possible values of k,, then select the value that
yields the lowest loss for each estimator and each value of 7). This approach simplifies
the optimal k, selection process while allowing us to compare the performance of each
forecaster fairly. Figures 7, 8, 9, and 10 show the results of our analysis of daily loss
returns of Netflix, Walmart, American Express, and Bitcoin-USD, respectively.

In each figure, Panel (A) showcases the observed data and wraps the realizations y;
between two dashed red lines. Panel (B) shows the results of the Kwiatkowski-Phillips-
Schmidt-Shin (KPSS) test for each rolling window, illustrating the stationarity of our
loss returns over all chosen time periods, which is required for ARMA-GARCH model-
ing. Panel (C) then examines the independence of the residuals &; using a Ljung-Box test
on these residuals and their squares. This independence is a prerequisite for conducting
inference on extreme expectiles from our Corollaries 1-2 and the asymptotic theory of
the Weissman-type competitors. The residuals’ tail heaviness is evaluated in Panel (D)
through a study of the GPML (M) and Moment (JM°™) estimates of the extreme value
index against an appropriate range of possible values k of the intermediate level k,. The
results from each rolling window are drawn as an individual curve against k, and indi-
cate that the residuals exhibit consistent tail heaviness over all estimation windows for a
wide range of k values. Panel (E) then displays the average realized loss ESZL), defined
n (5.3), for each estimator against 7),, using the optimal k, value that minimizes said
loss. The good news to practitioners concerned with the accuracy of daily forecasts is that
our GPD-based forecasters outperform all Weissman-type competitors, for each studied
financial time series. More specifically, the direct Moment estimator f* (jMom gz Mom,1y
establishes a clear lead for Netflix, Walmart, and Bitcoin-USD data, with estimators like
the second direct Moment estimator f* A Mom, Fa0m-2) “the third direct Moment estima-

tor f ( Mom zMoms3) and the indirect Moment estimator § ( Mom ' zMom) trailing close
behmd. The Amerman Express data sees the indirect Moment estimator 5’; (AMom 5Mom)

respectively the direct GPML estimator 5;, (AML, M L’2)

competitors for 7/ < 0.995, respectively 7,, > 0.995. The results imply that our Moment
and GPML based estimators are suitable for financial data, which corroborates our simu-
lation findings in Section 4, where said estimators scored ahead of the competition in the
case of real-valued distributions. The final panel (F) wraps up by showing next-day fore-
casts of &/ at level 7,, = 0.99, for the daily loss returns over the observation period, using

, outperform all of the Weissman
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the dynamic predictions (5.2) of the top ranked forecaster 5;, (AMom_ galem:1y for Netflix,

Walmart, and Bitcoin-USD, and fv’;, (AMom ZMom) for American Express, along with their
95% asymptotic confidence intervals and the realization of the future observation. The

point forecasts and associated confidence bounds seem to follow data trends fairly closely.

6 Concluding remarks

Tail expectiles define a prime candidate for a standard risk measure in finance and insur-
ance thanks to their excellent axiomatic properties and their ability to capture essential
information about the severity of extreme observations as well as their probabilities. The
problem of correctly estimating and inferring extreme expectile risk is a difficult question
due to the least squares nature of expectiles and their sensitivity to tail heaviness, even
though a series of recent papers has focused on this problem using Weissman-type ex-
trapolation devices. Our Generalized Pareto approach provides good estimates of tail risk
across the board, with reasonably accurate (though elementary) asymptotic Gaussian con-
fidence intervals, in the financial context of symmetric heavy-tailed profit-loss distributions
without resorting to any bias correction of our estimators, even though their asymptotic
behavior indicates that they are asymptotically biased. The results of the tail risk forecast-
ing exercise we have carried out similarly indicates that, in a dynamic estimation setting,
the Generalized Pareto extrapolation method yields encouraging results.

There still remains a lot to be done, especially in the actuarial context of non-negative
heavy-tailed loss variables for which Weissman-type methods seem to outperform our
GPD-based approach. As we have highlighted, asymptotic Gaussian inference of extreme
expectiles may not perform well in finite samples, because of the difficulty of tracking the
statistical uncertainties of the estimated high expectiles and the use of the asymptotic vari-
ances arising in the Gaussian limiting distributions. The finite-sample approximations and
errors thus made are typically due to (i) the use of the GPD model, (ii) the asymptotic ap-
proximations motivating the extreme value estimators of the scale and shape parameters,
(iii) the use of the asymptotic connection between extreme expectiles and quantiles while
ignoring higher-order error terms, (iv) incorrectly neglecting correlations between estima-
tors when the asymptotic behavior of one of them dominates, and/or (v) not accounting
for the variance distortions incurred by utilizing the delta-method for linearization pur-
poses. Improving our results by providing successive corrections for each of these types of
approximation errors is a topic of interest for future research.
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A Appendix: Description of the bias-reduced estimators
and inference

The asymptotic distributions of 5;, (A1) in (2.10) and E:, (35 in (2.11) feature bias compo-
nents due to the semiparametric ﬂeavy tail framework. Bias reduced versions of these es-
timators have been recently suggested by Girard et al. (2022b) under the i.i.d. assumption
in the particular case where the auxiliary function A in their SORV condition Ca(7y, p, A)
takes the form A(t) = byt” for certain constants b # 0 and p < 0. This function A can
be estimated by using a consistent tail index estimator 7 and the second order parameter
estimators b and p that were introduced in Gomes and Martins (2002) and Fraga Alves
et al. (2003) and can directly be calculated from the R package evt0. Supplement A of Gi-
rard et al. (2022b) provides a nice and comprehensive summary of how these estimators
of b and p are constructed. As shown by Girard et al. (2022b), the direct and indirect
estimators 5:7,1 and 5;7,1 satisfy

é\:/ — Tn AT —7\" T!
log (572) = (¥ —~)log <1 ;) + log <§T:) — log <<1 :Z) i:) , (A1)
g;'rll — 1 — Tn (771 _ 1)77 (/]\Tn
and log (&g) = (7 —)log (1 — Trﬁ) + log <W> + log <qm> (A.2)

1_7-7/1 K -1 ’Y‘ST;L
(=) %)

To deal with the nonrandom bias term in (A.1), they have also shown that
1— I\ - 1— '\ - -~ - -
< Tn> é‘n — ( Tn> qn (,7—1_1) 7&(7—1_1)76771 (A3)
-7, &rn 1—m QTnJ ngJ dr;,

1+ By, 1+ Bay 1+ By,

for obvious definitions of By ,,, B2, and B3 ,. As for the extrapolation bias in (A.2), they
have proposed the following correction:

<1 - TA)” (o) St (14 B1,) (L + Byn). (A.4)

1—7, qr,
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The terms By, B2, and B3, can be estimated by

B, (=) =m) Pl

Bl,n = — )
p

07 -

A+7(m))? e 5
B (1 +7(mn)) 1+ e by(1 — 1) -1

p
5-1-1)7"
5 ) 5

where

X 1 bt -1)"" A
and 1+7°(7))=[1-52 1+ ———(1—71)" ,
&) 2, —1 1-5—-p

with X,, being the sample mean, §T either the direct asymmetric least squares inter-
mediate estimator an or indirect quantile-based intermediate estimator §T , and 57/ the
corresponding extrapolated version. Based on (A.1) and (A.3), the direct extrapolated es-
timator { , can then be corrected for its inherent bias, exclusively due to the heavy-tailed
extrapolatlon by the bias-reduced version

£rBR _ g* BR( ) = g ,(1+ Bi,)(1+ Bay)(1+ Bsy)

Tn

1—7\ "7~ - = -
= ( > ETn(]‘ + Bl,n)(l + BZ,n)(l + B3,n)v (A5)

1—m7,

where 7 is to be itself a bias-reduced estimator of the EVI . Similarly, from (A.2) and
(A.4), a bias-corrected version of the indirect extrapolated estimator £, is obtained as

& =80 = &, (1 + Bra)(1 + Ban)

(1 — ) ~1— 1)W Gr,(1+ B1,)(1 + Bsy). (A.6)

Under Cy(7, p, A) and additional mild regularity conditions, if \/n(1 — 7,,)(7—7) — I for a
nondegenerate distribution I', both bias-corrected estimators (A ) and (A 6) converge in
distribution to the same limit I" as 7 at the slower rate log((1—7,)/(1 —7),))/A/n(1 — ),
as established in Theorem 2 in Girard et al. (2022b). For the ch01ce of the bias-corrected
EVI estimator 7, Girard et al. (2022b) have suggested to use either the bias-reduced Hill
estimator from Caeiro et al. (2005):

~ b 1 \*
PR = A 1 - — :
1—-p\1-—m,

or their bias-reduced version of A from Girard et al. (2022a):

= — —1 - A~ =
AEBR — 114 Fo(Er,) (1 — X) (27, — 1) (1 + —b(F"(A%")) p)

1—7, 3
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As shown in Theorem 3.1 of Caeiro et al. (2005), the bias-reduced Hill estimator 7H BR

is 4/n(1 — 7,)—asymptotically Gaussian with mean zero and the same variance ~2

AL while QE BR g n(l — 7,)—asymptotically Gaussian with mean zero and variance
73(1 —~)/(1 — 27) as established in Theorem 1 of Girard et al. (2022b). The latter es-
timator is preferable variance-wise only when + is less than 0.35. The function tindexp
from the R package Expectrem allows to compute either A7 (if argument br=FALSE) or
'Ayg BR (if br=TRUE), while the function extExpect computes the extreme expectile esti-

mators é\* (AE) (if argument method-“direct") and 5;, (1) (if method="indirect") as
%,BR /~E,BR % BR/~H,BRy /ip 1 _
well as their bias-reduced versions { ; (") and €57 (A ) (if br=TRUE).
Gaussian 100(1—a)% asymptotlc confidence intervals for &7 based on the purely asym-
metric least squares estimator f (%PL: BR) and its quantile-based competitor 5* BR@E BR),
also available as part of the R package Expectrem, are

() - [@BR% BR) oy ( o= m)/(1 =) famn /)]

n(l—m,)
F(0) = [ﬁf}‘(ﬁ BR) exp ( L log((1 - (T;)i(in; )\ [5200 Zl_@ﬂ)] |

~E,BR\3 ~E,BR
(A ) (1—3""7)

and 0,
1— 245 BR

with 82 BR _

~2 BR (QH,BR)2
n .

These intervals tend, however, to have poor coverage as illustrated very recently by Daouia
et al. (2024b): while the bias correction can be reasonably effective, the estimation of the

variances of (4/n(1 —7,)/log(( 1—7‘n /(1 —1))))log(& :,BR/ng and (/n(1 —7,)/log((1—

7)/(1 = 71))) log( ;/BR/&;L), by §2°% and 52P% respectively, can be a long way off the

truth. To improve on this, they have suggested corrected versions of IAi,l)(oz) and ~m(oz)
defined, respectively, as

1®(a) = 1¥(as 1) = lg*BReXp (ilog((lm)/(lﬂ’ﬂ) %(J)leap)]

n h n(l—7,)

j;(_/?)( ) _ 1(2)(04 J) lg*nBR exp (ilog((l - Tn)/(l — 7—7/1)) 5_3({]) « Zla/2>] ’

n & n(l—7,)

where the closed form expressions of both 32 (J) and 52 (.J), as well as the rationale behind
their formulations, can be found in Daouia et al. (2024b), with J > 1 being a suitably
chosen tuning parameter. The function CIextExpect from the R package Expectrem
computes f( )( ) with method="direct" and I i )( ) with method="indirect". These
confidence 1ntervals have asymptotically the des1red correct coverage as established in
Theorems 1 and 2 in Daouia et al. (2024b), and will serve as a benchmark for our com-
parison purposes in Section 4.

An alternative solution put forward earlier in Padoan and Stupfler (2022) to correct

the naive confidence intervals fg)) (a) and TS)) () takes the respective forms
- log((1 = 7)/(1 = 7)) /2
T9) = | & exp | + A2 X 2,
Tn( ) [ffn P n(l—Tn) n 1—a/2

~ log((1—7)/(1—7))) /=
and ﬂTZ)(a) _ [%ps exp (i og(( nu)_/(%) ))\/g " Zlm)] 7
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where ,;?;;PS and 5;;1’8 (respectively, 32 and @2 ) are suitably chosen bias-corrected asymmet-
ric least nsquares and quantile based estimators of the extreme expectile £,/ (respectively,
the asymptotic variance of & ,PS and f*/PS) See Padoan and Stupfler (2022) for full de-
tails. The R function CIextExpect from the Expectrem package computes both of these

confidence intervals, with method="direct_PS" for I ’1,)( ) and method="indirect PS"

for I ~(3) (oz).

B Appendix: Proofs

We will use in the sequel the notation

¢
dni= (1= )/(1=7) and . () i= J 5 log(s) ds.
1
We shall freely use the following fact: under condition & (v, p,a, A) with v > 0 and p < 0,
Theorem 3.1 in Fraga Alves et al. (2007) guarantees that there exist A and j < 0 such that
the SORV condition Cy(v, p, A) holds with |A| being regularly varying with index 5, and
A(t) — 0 as t — o0. Moreover, by Theorems 2.1 and 3.1 in Fraga Alves et al. (2007) in the
case v > 0, the auxiliary function A is asymptotically proportional to A(t) = a(t)/U(t)—

Proof of Theorem 1. Recall from (3.3) that

" Tn
and write
n(l —1,) e g
(/T ) b () 7 5
vl —1,)
) 60 a6 (B-1)
Vn(l—1y,) On B i —1
) <a<1/F<§Tn>> 1) % (B.2)
Val=7) (di* =1 d}—1
@) ( W ) (B3
i m) (P T,
¢7(dn) v
¢

)7 = d”) B.4)
n(l—) r =&, _ (F(57n>/F(§T ) —1
5,(d) ( (/7€) 3 ) ' 9

The key argument is that the third term (B.3) converges in distribution to I' and all the
other terms on the right-hand side are either o(1) or op(1), as n — .

Indeed, since d, = (1 — 7,)/(1 — 7)) — ©, log(n(l — 7)))/A/n(l —1,) — 0 (as a
consequence of assumptions n(1 — 7,,) — o0 and y/n(1 — 7,)/log((1 — 7,)/(1 — 7)) — o©0)
and A/n(1 —7,) (%0 — ) 4, I', we know by the proof of Theorem 4.3.1 on pp.136-137
in de Haan and Ferreira (2006) that the term (B.3) has the same limit distribution I' as
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n(l — 7,) (% —"y) (see the analysis of term II therein). In particular, since n(1—7,) — o0,
this implies that

1 (dir—1 dj—1
— — =op(l) as n — oo. B.6
m(dn)( ST ) . >0
On the other hand, by Remark 4.3.3 on p.135 in de Haan and Ferreira (2006), we have
d
Oy (dy) ~ 710g(dn) as n — o0. (B.7)

In addition, under the extended regular variation condition & (v, p,a, A) with v > 0, we
have according to the proof of Theorem 1.1.6 on pp.10-11 in de Haan and Ferreira (2006)
that (t — U(1/F(t)))/a(1/F(t)) — 0 as t — . Since a(t)/U(t) — 7 as t — o0 in view of
Lemma 1.2.9 on p.22 in de Haan and Ferreira (2006), we conclude that U(1/F(£;)) ~ &,
as 7 — 1 and then that

a(1/F(&,)) ~YU(1/F(&,)) ~v&n, asn— . (B.8)

Thus, using (B.7), the first term (B.1) can be expressed as

n(l=m) o .\ n(l—7) (&, s
/(&) b ) gT")‘Oﬂ’(d%logw (f )) -

Since, by assumption, we have 4/n(1 — 7,) <§% - 1) = Op(1) and d;,log(d,) — oo, the
first term (B.1) is then op(1).
The second term (B.2) is handled as follows: we have by (B.6) and (B.7) that

dr —1 _ di-1 +op(1) = 1
Yo Oy (dn) — Yo (dn) 7 log(dy)

Thus, the second term (B.2) is op(1) because 4/n(1 — ) (W - 1) = Op(1).
Let us now turn to the term (B.4) which, due to (B.7), satisfies, as n — o0,

n(l—r) (A= (F&)/FE)  vol—m) ([ FE) \
¢'y<dn) < 0 ) IOg(dn) <1 (an(gT;L)> ) (B9)

+op(l) = op(l) asn — oo.

Since condition Ca(7y, g, A) holds, Proposition 1 in Daouia et al. (2018) implies that

FED _ (1 1y+etr)
with (1) = —M(E(X) +0o(1)) — Mﬁ(u — 1) H(1 +0(1)) (B.10)

ar Y1 =~ —p)
as 7 — 1. It follows that
F(ffn) 1 +e(mn)
— d ;

F(&y) l+e(r)

Since e(7) — 0 as 7 — 1, and £(7},) = O(e(7,,)) in view of the regular variation properties
of the tail quantile function U and of |A|, a Taylor expansion yields

F&) \ .
(%F(&)) 1= 0(e(ry)) asn— .
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Thus, (B.9) becomes

n(l—7,) (dn— (F(&,)/F(E2)) ) (=)
¢'y(dn) ( o > =0 <log(dn)5(Tn)> . (B.11)

It remains to show that \/n(1 —7,)e(r,) = O(1). For this, recall that A is asymptot-
ically proportional to t — A(t) = a(t)/U(t) — ~; since /n(1 —7,) A((1 — 7)) — 1
by assumption, we have y/n(1 — 7,) A((1 — 7)) = O(1). It follows from the condition
V(1 = 74)/qr, — A2 that /n(1 —7,)e(r,) = O(1), and hence the term (B.4) is o(1)
by (B.11).

The last term (B.5) can be rewritten as

. n(l—m( b, = _(F(&n)/p@ﬂ;))”‘l)

$y(dn)  \ a(l/F(&r,)) "

(F(&r)/F (7)) = 1
v Qb'y(dn)

— —\/n(1 — 1) A(1/F (&)

vt ( S b - 1) : (B.12)
A(L/F(&r,)) \a(1/F(&r,)) (F(6r,)/F ()Y — 1

Under & (v, p,a, A) with p < 0, it follows from Lemma 4.3.5 on p.135 in de Haan and
Ferreira (2006) that

Lo 1 (U(l/F(ﬁng))— UVWFE) o _1>
=0 A(/F () a(1/F (&) (F (&) /F &) — 1

In particular, combined with (B.8), and recalling that F(&,)/F (&) ~ dp — o0, this
yields

=—1/p.

— ’y J—

F(&y U(1/F (&

7(5”) ( /f(én)) — 1 asn — oo. (B.13)
Moreover, the proof of Theorem B.3.19 on p.401 in de Haan and Ferreira (2006) yields

lim L X U(l/F(j)) —! =

=0 A(L/F(@)  a(1/F())
Then, on the one hand,

1 1/F (&) — &

oo A(1/F () a(1/F (&) (F&n)/FE) -1

On the other hand, using again (B.8) together with (B.13) and the regular variation
property of |A| with index p < 0 (see Theorem 2.3.3 on p.44 in de Haan and Ferreira,
2006), we find

1 UOFE) & )
AFE)) " a(/FE)  (FE)/FE)) —1

:O( 1 XU(l/F(@;L))—gT,g):O(l)
A(l/F(fm)) Q(I/F<§T4L)) ‘
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As a consequence,

lim

oo A(L/F(Er,))

1 & — &, ol )
(MUH%»@%@M@@W—11> Yoo B

Then, applying again (B.7), we arrive at

(FE&)/FE)) =1  dy 1
¥ ¢~ (dn) Y ¢y(dn)  log(dy)

— 0 asn — . (B.15)

Now, write

Vil = T AQ/F(E,) = v/all— T A AW/F(Er))

A((l —m)7Y)
Since |A] is regularly varying with index p and F(&;,)/(1 — 7,) — v~! — 1, one has, by
local uniformity of the regular variation property,
[A/F (&) ~ (7 =D)AL =) 7H)] asn— o
Therefore, as y/n(1 — 7,) A((1 — 7,) %) = O(1) by assumption, we get
n(l — 1) A(/F(&,)) = O(1) as n — oo. (B.16)

Thus, combining (B.12), (B.14), (B.15) and (B.16), we find that the last term (B.5) is
indeed o(1).
Let us now show that an equivalent statement of the convergence in Theorem 1 is

n(l— 1) &
log((1 —7)/(1—17))) (57 1) B

Since Ca(7, p, fl) holds with p < 0, we know from p.49 in de Haan and Ferreira (2006)
that, for some constant ¢ > 0, we have U(t) ~ ¢t as t — o0. Then

g _ U=
Gr. U0 —7a) D)

~d) asn — o0. (B.17)

1

Since & ~ (v —1)77¢r as T — 1, we obtain the following stronger version of (B.13):

gT,’L - QT;L

~d) asn — o0.
ng q'rn "
The desired convergence result follows by using (B.7) and (B.8). O

Proof of Theorem 2. Write

ol =) (u/?"m”)

0= e e (=) )
e Y 4 “( Q

(
a((l— n) ) . ~n _ -
ey VR (6T -6 )
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CalO=m) ) | (F©) e
(e V¢ (i -0,

By Theorem 2.3.3 on p.44 in de Haan and Ferreira (2006), the function a(-) is (locally
uniformly) regularly varying with index «, so that (1 — 7,)/F (&) = (y™1 = 1)7! + o(1)
implies that B
a(1/F (&) (
T\ ~\7
a((1 = 7))

Hence, it suffices to show that

’1—1)_7 as n — oo.

. a((1—m,) !
(ﬁ;l — 1)7% x /n(l —1y) (M — 1> (B.18)
T ()t 1)) o
o (T )

= Op(1) asn — oo.
The first term (B.18) is Op(1) since /n(1 —7,) <ZL58:7:Z§:3 - 1) = Op(1) and by con-
sistency of ¥, as an estimator of v € (0,1) we have (¥,'— 1)_% = Op(1). Like-
wise, the second term (B.19) is Op(1) by applying the delta method in conjunction with
n(l —7,)(n — ) ~9, . As for the last term (B.20), we have again by Theorem 2.3.3

on p.44 in de Haan and Ferreira (2006) (and Theorem B.2.18 on p.383 in de Haan and
Ferreira, 2006, which guarantees local uniformity of this SORV property) that

o1/F(E)  (FE\ ] 0 (=171
a((lan)l)_<1*Tn> ]—(71—1) ! p :

1
lim

we A((T = 7))

Moreover, from (B.10) and a Taylor expansion,

-y
(F520) — 67 -7 = 0t/ae) + 0L -

1—7,

Recalling that n/n(1 — 7,) A((1—7,) 1) = O(1), /(1 — 7)/¢r,, = O(1) and y/n(1 — 7,) (a((1—

7)Y /s, —7) = O(1), it follows that (1.20) is O(1) as n — oo, which ends the proof. [

Proof of Theorem 3. Recall from (3.5) that 5;, = (A1 = 1) g, and write

!
n

n(l—1,) 5,
a((l — Tn)*l) ﬁb'y(dn) (577’1 57'”)
n(l—1,) - . .
- ey gy (B~ ) X G’ =D (B.21)
n(l — Tn) o 5, B .
AU =7)0) 65 (dn) ((%1 —)T = (v =) ) Gr, (B.22)
" R (=17 —&x). (B.23)

a((l - Tn)il) QZ)’y(dn)

By Theorem 4.3.1 on p.134 in de Haan and Ferreira (2006) and the continuous mapping
theorem, the first term (B.21) converges weakly to I'/(y~! — 1)7. In order to control
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the second term (B.22), note that since the SORV condition Ca(7, p, A) holds, one has
a(t)/U(t) — v as t — o0 by Lemma 1.2.9 on p.22 in de Haan and Ferreira (2006). Using
the delta-method and recalling (B.7) and then (B.17), one gets

n(l —7,) . s B B - 1 o an
o T eay (Gt =0 =07 =174y = 0 <1g<d> dq>

_o]P(bg(ldn))

It follows that the term (B.22) is op(1). We conclude with the control of the third term:
by Proposition 1 in Daouia et al. (2020), & = (v~'=1)"7g. (147(7},)), where, as 7 — 1,

-1 _
rr) = ”(”q” (E(X) + o(1)
(vi-1)"7 (yvl1-1)"7-1 . ~
+< o ; + > —i—o(l))A((l—T) .

Recall that A is asymptotically proportional to ¢ — A(t) = a(t)/U(t)—; since A/n(1 — 1,) A((1—
)" 1) — p by assumption, we have y/n(1 — 7,,) A((1—7,)~%) = O(1), and then, from the
condition y/n(1 — 7,)/¢r, — A2 and the regular variation properties of U and |A|, that

n(1 —7,)r(7}) = o(1). As a consequence

n(l —1,) 1V — €)= o dr;,
A=) ey (O~ 4 —6n) (a«l—mlwdn))

1 — QT’>
— O I dn'YJ
<1Og(dn) an
1
-0 <log(dn)>

and hence the term (B.23) is o(1). The equivalent statement

n(l - Tn) g;ﬁ _ d
log((1—7)/(1—7})) (fra 1> '

is obtained by using once again the asymptotic proportionality relationship &, ~ (vt -

1)77q,, and arguing along the final lines of the proof of Theorem 1. O

Proof of Corollary 1. We obtain the two convergence results by applying Theorem 1. To
do so, we need first to show that the last condition of this theorem is satisfied. Under the
tail-heaviness condition (2.2) with 0 <~ < 1/2, and the assumptions that E(|X_|?) < oo,
Tw = 1 — kp/n — 1 with n(1 —7,) = ky, — 0 and y/n(1 — 7,,)A((1 — 7,)~") = O(1), one
has, by Theorem 1 in Daouia et al. (2020), that

\/17"<£”1>i»/\/<0 27 > as n — o. (B.24)

& T1-2y

Note that r/n(1 — 7,) A((1—7,) ') = O(1) is guaranteed by the condition /n(1 — 7, ) (a((1—
7)Y /qr, —v) — p € R, see the proof of Theorem 1. Then, according to Theorem 2,
it suffices to show that the two conditions of this theorem hold for both the GPML and
Moment estimators of a(n/k,) and . Following Theorem 3.4.2 on p.92 in de Haan and
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Ferreira (2006), the GPML estimators satisfy the joint convergence (3.8) and hence we
obtain

~ML
Viin <a<ff)k> > Op(1) and V/kn(3" = 9) =5 T (B.25)

where TMI ig the normal distribution A/ <%, (1+ 7)2>. On the other hand, un-
der the first condition of Theorem 1, we know from Lemma B.3.16 on page 397 in de Haan
and Ferreira (2006) that a second-order condition & (y— = 0, p,a/U, Q) holds for log U (t)

with an auxiliary function @ defined by
a(t)
v
t
o -4 W

P .
——A() f 0<—p<y or (O<y<—pandl=0
AW ( )

if y=—p or (0<vy<—pandl#D0),

where the quantity [ is defined as | = lim;_,o, U(t) —a(t)/7, see Theorem 2.1 in Fraga Alves
et al. (2007) for the existence of this limit. Then, as n — o0,

—u if y=—p or (0<vy<—pandl#0),
/ n Mom ,__

YEPp

if 0<—p<~vy or (0<vy<—pandl=0).

Therefore, all conditions of Corollary 4.2.2 on page 133 in de Haan and Ferreira (2006)
are satisfied, which yields the joint convergence (3.9), and so we obtain

NS G and ~/k, (VO™ — ) —L, pMom (B.26)
"\a(m/ka) Or ‘

where, by Theorem 3.5.4 on page 104 in de Haan and Ferreira (2006), I'M°™ stands for
the normal distribution N (AMomb, , 4% + 1), with

Y .
Ty _
. e if 0<vy<—pandl #0,
Vp = -
va) if 0<—p<vy or (0<y<—pandl=0).
p(L—p)

Thus, by applying Theorem 2 in conjunction with (B.25) and (B.26), and then Theorem 1
in conjunction with (B.24), we get

g* (:}771;/[[‘7 u}}L/IL) 57" d * Mom’ 5.M0m) - 57"
k =S MY and A/ S phom,
Ve ) oud) Vi a(1/F(r,)) 6y (dn)

Since 5} /a(1/F (£r,)) —— 1 and &Y™ /a(1/F(¢,)) —— 1, and since gsy (dn) /6 (dy) —

1 and ¢gmom (dn) /b (dn) £, 1 in view of Corollary 4.3.2 on p.135 in de Haan and Ferreira
(2006), the conclusion follows by using Slutsky’s lemma. O]

Proof of Corollary 2. According to Section 4.3.1 in de Haan and Ferreira (2006), see
pages 139-140, we have, under the first three conditions of Theorem 3, that when the
scale and shape GPML estimators are used,

\/E o d ML
S G — LN U
)b (do) ra  4r2)
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Then, following the proof of Theorem 3, we obtain
e g;’ (%rI\L/IL a.};/[L) - éT;L d ML
" a(n/kn)p(dn) (v =1
Besides, as seen in the proof of Corollary 1, under the first and second conditions of

Theorem 3, the Moment estimators satisfy the joint convergence (3.9) that corresponds
to our last required condition of Theorem 3. Therefore

&, (Gaom 5Yom) — g, phom

a(nfkn)dr(dn) (-1

Vkn

Since MV /a(n/k) — 1, ¢sme(dn)/ds(dn) — 1, Y™ /a(n/ky) —— 1, and finally
P5Mom (dn) /o~ (dn) F, 1, the proof is complete following a use of Slutsky’s lemma. O
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