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Abstract

Motivated by finding a way to deal with Compositional Data (CoDa) with or without
zeroes in a unified way, we build upon the previous projective geometry viewpoint of
Faugeras (2023) and use the tools provided by the exterior product and Grassmann’s
algebra. These allow to represent higher dimensional subspaces as linear objects, called
multi-vectors, on which the usual Euclidean scalar product can be extended. Applied
to CoDa seen as equivalence classes, this allows to define a pseudo-scalar product and
pseudo-norm. Depending on the normalization chosen, it is remarkable that the pseudo-
norm obtained is either the same barycentric divergence which was derived in Faugeras
(2024a) from the affine geometry viewpoint, or becomes a new, orthogonally invariant,
genuine distance on the full non-negative CoDa space.

These tools are then used to lay the foundations for further statistical analysis of
CoDa: we show how the relative position of a pair of CoDa around their means can be
decomposed along its components to form exterior covariance, variance and correlation
matrices, along with their corresponding global scalar measure of (co)variation. Gaussian
distributions, Mahalanobis distance, Fréchet means, etc.. can then be introduced and we
sketch their potential statistical applications. Eventually, we establish some connections
with various notions encountered in the literature, like divergences based on quantifying
inequalities, or canonical angles between subspaces. The paper is preceded by a tutorial
on the exterior product, based on intuitive geometric visualization and familiar linear
algebra, in order to make the ideas of the paper accessible to non-specialists.

Keywords: compositional data, projective geometry, exterior product, Grassmann’s algebra,
compositional distance, exterior covariance matrix, Gaussian distribution.
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1. Introduction

1.1. Aims and scope

The present article is a continuation of the geometric approach to compositional data (CoDa),
initiated in Faugeras (2023) and Faugeras (2024a). These papers were motivated by i) finding
a unified way to reconcile several viewpoints on CoDa analysis and ii) proposing log-free
divergence and covariance matrices allowing to effectively handle CoDa with zeroes.
More precisely, we proposed in Faugeras (2023) to view CoDa as projective points [x]+ in
the space Pd

+ obtained by projectivization of the non-negative orthant cone Rd+1
+ := {x ∈

Rd+1, x ≥ 0}: CoDa elements [x]+ are equivalence classes of non-negative vectors x ≥ 0,
x ∈ Rd+1, where [.]+ denotes the equivalence class for the positive scaling relation, viz.

y ∈ [x]+ ⇐⇒ ∃λ > 0, y = λx,

with homogeneous coordinates [x0 : x1 : . . . : xd]. Geometrically, a projective CoDa point
[x]+ corresponds to a ray in the non-negative orthant. Faugeras (2024a) studied the simplex,

∆d
+ := {x ∈ Rd+1 : xT 1 = 1, x ≥ 0} (1)

as a particular affine model of Pd
+, where simplex representatives x ∈ ∆d

+ of [x]+ ∈ Pd
+ are

affine points expressed in (normalized) barycentric coordinates (and not Cartesian coordi-
nates). This affine geometric perspective lead us to define, among others, i) a novel family
of log-free barycentric divergences, to measure the proximity of pairs of CoDa points, and
also ii) corresponding barycentric variance matrices, to measure the proportionality of CoDa
components. These constructs were based on formulating the displacement vector between
two points, in terms of barycentric coordinates.
In the projective viewpoint, the notion of displacement vector between two equivalence classes
[x]+, [y]+ does not exist. For two random CoDa [x]+, [y]+ with respective deterministic
mean points [µx]+, [µy]+, what is meaningful in the projective viewpoint is to consider the
two pairs of directions represented by the projective points ([x]+, [µx]+) and ([y]+, [µy]+).
These pairs of directions determine the vector planes span(x, µx) and span(y, µy). The
intuition is to leverage the (average) relative orientation between these pairs of projective
points/planes as a foundation for establishing a notion of covariance and correlation among
CoDa points. Grassmann’s exterior (wedge) product ∧ is the key fundamental algebraic
tool which allows to synthetically represent higher dimensional subspaces from their lower
dimensional constituents within a linear space. This construction results in bi-vectors x∧µx
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and y ∧ µy, which interpret geometrically as oriented parallelograms. In turn, appropriately
normalized versions of these bi-vectors can effectively represent the two scale-invariant CoDa
pairs ([x]+, [µx]+) and ([y]+, [µy]+). The components and scalar product of these normalized
bi-vectors provide analogs that facilitate the construction of notions such as distance and a
covariance matrix tailored to CoDa.
Remarkably, both approaches, the affine one based on barycentric coordinates of Faugeras
(2024a) and the projective one based on the exterior product of the present article, lead
to closely related notions of distance/divergence and covariance matrices. Together, both
approaches give a twin framework for the analysis of CoDa in a direct, log-free, unified way,
effectively handling zeroes. Each setting capitalizes on an underlying linear structure, that of
an affine space in Faugeras (2024a), and that of the exterior algebra of multi-vectors in the
present paper.
In spite of its power, the exterior product and Grassmann’s algebra appears to be relatively
unknown to statisticians1, partly due to its inherent abstract nature. Therefore, the main
objective of this paper is to try to bridge the gap between the abstract theory and its practical
application towards statistical analysis of CoDa. Hence, some parts of the paper are expos-
itory, intended to explain the basics of the exterior product and Grassmann’s algebra in a
geometrically intuitive way so that its statistical application to CoDa be made understandable
to the widest possible audience.

1.2. Outline

More precisely, the paper is organized as follows: in Section 2, we provide a limited tutorial
on the exterior product and bi-vectors. It is based on geometric intuition, envisioning simple
bi-vectors as oriented parallelograms, and linear algebra, defining bi-vectors through their
linear representations as matrices. We show how the usual Euclidean scalar product and
norm extends to these bi-vectors. Alternatively to Section 2, the reader can find in Appendix
A a short recap of the exterior product and Grassmann’s algebra from the abstract algebraic
viewpoint.
Section 3 employs the constructs outlined above to analyze pairs of equivalence classes of
vectors, thereby addressing the scale invariance inherent in pairs of directions ([x], [y]), or
a pair of CoDa ([x]+, [y]+). We discuss two alternative interpretations of these pairs. The
extension of the classical normalizations of a single equivalence class to pairs then lead to
the derivation of several normalized bi-vector representatives, thereby capturing different
geometric information. This allows to transfer the scalar product and norm of bi-vectors into
a pseudo scalar product and pseudo-norm for pairs of equivalence classes. For CoDa, the
pseudo-norm obtained interprets as a divergence or even a distance, depending on the norm
chosen to standardize CoDa. For the ℓ1 normalization, one obtains the same 2-barycentric
divergence of Faugeras (2024a), which was obtained from the affine geometry viewpoint,
with a reasoning based on barycentric coordinates. For the ℓ2 normalization, one obtains a
genuine, log-free, bounded distance (i.e. satisfying the triangle inequality) on the full CoDa
space (hence, allowing for zeroes in the components), which has the additional property of
being orthogonally invariant. A variant using a square root transform on the simplex is also
suggested.
Section 4 introduces the main statistical objects of the paper for a CoDa analysis based on
such projective viewpoint aided with the exterior product. By applying the pseudo-scalar
product and norms of section 3 to normalized bi-vectors representing the pairs ([x]+, [µx]+),
([y]+, [µy]+), where [µx]+ and [µy]+ are deterministic means of random [x]+, [y]+, one defines
exterior covariance, variance and correlation matrices, in a fashion similar to the barycentric
covariance and variance matrices of Faugeras (2024a). These matrices give orthogonally
invariant decomposition of the variation/covariation of CoDa along its pairs of components.
We briefly show in Section 5 how these measures of statistical variation can be used for

1See e.g. Dieudonne (1979).
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further CoDa analysis, e.g., for defining Fréchet means and their variants (useful for clustering
and regression), Mahalanobis distances, Gaussian-type distributions, and Wasserstein type
distance of CoDa distributions.
At last, Section 6 draws some connections between the norm and scalar product of multi-
vectors and various notions encountered in the literature. In particular, we show how the
norm of bi-vectors is related to divergences based on quantifications, either of the Cauchy-
Schwarz inequality, or of the likelihood ratio order. Next is the relation between the bi-vector
norm and the polar sine, a generalization of the sine function to ratio of volumes. At last, we
explain how the scalar product and norm of multi-vectors are related to the relative position
between subspaces, expressed either via their canonical angles, or via their projection matrices.
This gives additional geometrical insight on the newly defined exterior covariance, exterior
correlation and pseudo-norm between CoDa. We eventually conclude in Section 7.
We follow the notations of Faugeras (2023) and Faugeras (2024a), with the exception of
simply2 denoting by ||.|| the usual Euclidean ℓ2 norm of vectors. A list of the main notations
and conventions is collected in Appendix B.

2. A primer on the exterior product and Grassmann algebra

2.1. Introduction

The exterior (or wedge) product ∧ is one of Grassmann’s (Grassmann (1878), Grassmann
(1995)) genial contribution to geometry. It is defined as a multilinear and antisymmetric
product of any number of vectors, and thus can be thought of as a sort of a multivariate
“rectangular determinant”3. The exterior product algebraicizes the notion of linear indepen-
dence as vectors are linearly dependent if and only if their exterior product is zero. It provides
a fundamental product operation for elements of a linear space V , of dimension n, which al-
lows to represent algebraically vector subspaces as the "product" of their lower-dimensional
parts (e.g. a vector plane is represented by the product of two vectors). It generates a series
of new linear spaces, ∧k(V ), 0 ≤ k ≤ n, whose elements are called k-vectors4 and whose direct
sum defines a (closed) algebra of multi-vectors, the exterior power ∧(V ). If the linear space
V possesses a metric, the measure or magnitude of such multi-vectors may be interpreted as
a length, area, volume, or hyper-volume according to the grade of the product. The exterior
product is also closely related to other algebraic products like the tensor and the Clifford
(geometric) products, and to matrix notions like minors, Gram and compound matrices. It
underpins geometric and conformal algebra and gives a coordinate free, unified treatment of
vector calculus and differential forms (à la Cartan).
There are several ways to introduce the exterior product and Grassmann’s algebra, based on
algebra alone, (see e.g. Kung, Rota, and Yan (2009), Chapter 6.6, Spivak (1965) or Federer
(1969)), geometry (Khosravi and Taylor (2008), Mikusinski and Taylor (2012), Postnikov
(1982) Chapter 7), a mixed of those (Browne (2012), Winitzki (2009), Rosén (2019) Chapter
2), or even from the geometric (Clifford) product (see e.g. Doran and Lasenby (2003), Hestenes
and Sobczyk (1984), Dorst, Fontijne, and Mann (2009), Perwass (2009)). A difficulty of the
topic, in addition to its variety of approaches and ramifications, is the inherent abstract
nature, both in the definition of the exterior product as a formal combination of symbols, and
in the exterior algebra as a formal sum of elements of disparate nature5, scalars, vectors, bi-
vectors, tri-vectors, etc. More fundamentally, as we will explain thereafter, not all k−vectors6

2instead of ||.||2.
3i.e. determinant of fewer than n vectors in an n−dimensional space.
40-vectors are identified with scalars.
5i.e. elements of different grade.
6This is the important distinction between simple k-vectors x1 ∧ . . . ∧ xk ∈

∧k(V ), built from the exterior
product of k (usual) vectors x1, . . . , xk ∈ V and indecomposable or compound k−vectors made of irreducible
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can be given a geometric meaning.
Fortunately, we will only require basic facts about simple bi-vectors obtained from the exterior
product of two vectors and the extension of the scalar product to those simple bi-vectors
(which do have a geometric interpretation). Although the whole construction of the general
exterior product between elements of different grades and the full algebra of the exterior
power space gives better insight and understanding, what is essential for our purposes of
defining distance and covariance for CoDa is the geometric intuition of simple bi-vectors as
oriented parallelograms and the scalar product between them. Our aim in this section is thus
to make the exterior product geometrically intuitive so that its application to CoDa be made
understandable to the widest possible audience.

2.2. An intuitive geometric approach to simple bi-vectors as oriented parallelograms

We thus proceed to give an inductive, concrete, geometric tutorial on the exterior product
and algebra of bi-vectors, whose ideas are mainly inspired by Mikusinski and Taylor (2012)
and Khosravi and Taylor (2008). The general philosophy is similar to the idea that in linear
algebra, the abstract definition of a vector space, based solely on algebraic properties, as a
set V , with the two familiar operations (+,×), is better grasped after one is accustomed to
manipulating the primitive high-school geometrical/intuitive notion of vector as an “arrow”
in space.
Indeed, when one first encounters the concept of a vector x, it is usually described in purely
geometric/physical/sensory terms, as an “arrow”, i.e. as (an equivalence class7 of) a directed
line segment, free “floating” in space: it has geometric predicates,

i) a direction (determined by the line span(x) starting from the origin and parallel to x),

ii) a sense or orientation (so that the line is divided into two rays, one in the sense of x,
and the opposite one in the sense of −x),

iii) and a magnitude (the length ||x|| of the segment),

but is located nowhere in space (two directed line segments having same direction, orientation
and magnitude, i.e. forming a parallelogram, are considered equal). An algebraic description
is obtained by associating to the vector x a sequence of real numbers xi ∈ R, i = 1, . . . , n,
called the components, relative to an (orthogonal) coordinate system: each coordinate com-
ponent xi corresponds to the (signed) length of the projection of x on the coordinate axis
span(ei), where (e1, . . . , en) is the canonical basis of Rn. Pythagoras’s theorem ensure that
the squared length of the vector is the sum of the squared length of its projected components.
Such a geometric-to-analytic-to-abstract-algebraic approach to the linear algebra of vectors
can similarly be employed for bi-vectors: we first apprehend a pair (x, y) ∈ Rn×Rn of vectors
as a single geometric object, to which one can similarly associate notions of magnitude and
coordinate components. In order to take into account that a pair of vectors is a bivariate
object, we will have to replace the concepts of “arrow”, (signed) length, and components
w.r.t. the coordinate axis, with their suitable 2−dimensional generalizations: parallelogram,
(signed) area, coordinates w.r.t. to planes made of pairs of coordinate axis.
We thus conceives geometrically a pair of vectors (x, y) as the parallelogram {sx + ty, 0 ≤
s, t ≤ 1} induced by them, with one vertex at the origin. We will denote by

x ∧ y

such a parallelogram, for reasons which will become clear below and will call it a simple
bi-vector. Geometrically, x ∧ y has
sums of at least two simple k-vectors.

7i.e. equipollent.
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i) a direction, the plane span(x, y) corresponding to the subspace spanned by the vectors
(x, y),

ii) an orientation, from x to y (which can be symbolically represented as a turning arrow
from x to y),

iii) a magnitude, ||x∧y||, defined as the area of the parallelogram (it will be defined precisely
below.)

Components to this parallelogram/ simple bi-vector are attached as follows: for each or-
dered pair i < j of indices, the coordinate axis span(ei, ej) determines an (i, j)-plane. For
x = (x1, . . . , xn), y = (y1, . . . , yn), the projection of the parallelogram into this plane is the
parallelogram (

xi

xj

)
∧
(

yi

yj

)
,

generated by the two dimensional projected vectors (xi, xj) and (yi, yj) on this (i, j)−plane.
The (i, j) component of the pair x∧y will be defined as the oriented8 area of this orthogonal
projection. Since (xi, xj) and (yi, yj) are two vectors in the plane R2, the oriented area of the
parallelogram (xi, xj) ∧ (yi, yj) is given by the determinant

pij := pij(x ∧ y) := det
∣∣∣∣∣xi yi

xj yj

∣∣∣∣∣ = xiyj − xjyi. (2)

This yields
(n

2
)

components, which we call Plücker components.

2.3. Matrix descriptions of x ∧ y

Plücker matrix

These Plücker components can be arranged in an n×n anti-symmetric matrix, which we call
the Plücker matrix:

Definition 1. The Plücker matrix of the simple bi-vector x ∧ y is the n× n anti-symmetric
matrix

P := P (x ∧ y) := (pij)n×n, (3)

with pij = −pji, given by (2).

Note that the Plücker matrix also writes as

P = xyT − yxT .

Remark 1. The matrix xyT corresponds to the linear application x⊗ y : V → V , given by
u 7→ x⟨y|u⟩, which is the outer product of the two vectors x, y. x⊗y is bilinear w.r.t. to each
components x, y. Its generalization to tensors, i.e. multidimensional arrays, gives the tensor
product of two tensors and the general construction of tensor algebra. Hence, x∧y, identified
with its Plücker matrix representation P (x ∧ y), corresponds to the anti-symmetrization of
the outer product, formally9, x ∧ y = x ⊗ y− y⊗ x. This is one possible abstract algebraic
definition of the exterior product, as found e.g. in Spivak (1965). Closely related to the outer
product is the Kronecker product, defined as the vectorization (i.e. stacking of the matrix
components in a single long vector) of the outer product.

8We consider oriented areas in order to allow for negative components.
9usually with a factor 1/2 added.
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Compound matrix
Another way to describe matricially this coordinatization of x∧y is via what is known in the
literature as compound matrices, see Aitken (1956) Chapter 5, Prells, Friswell, and Garvey
(2003), Boutin, Gleeson, and Williams (1996). The general description of compound matrices
is as follows: for a matrix A = [aij ] ∈ Rn×m and subsets I ⊂ {1, . . . , n}, J ⊂ {1, . . . , m},
denote by AI,J the sub-matrix of A with rows and columns taken from I, J , respectively.
For I and J of same cardinality p ≤ min(n, m), recall that the I, J-minor of order p of A
is the number det AI,J . Then, the compound matrix Cp(A) of order p of A is defined as
the matrix of minors of order p of A, where the different subsets I, resp. J , are indexed
in lexicographic order ≺, so that one can enumerate these subsets in increasing order, viz.
I1 ≺ I2 ≺ . . . ≺ I(n

p), resp. J1 ≺ J2 ≺ . . . ≺ J(m
p ):

Cp(A) :=
(
det AI,J

)
, I ⊂ {1, . . . , n}, J ⊂ {1, . . . , m},

card I = card J = p. (4)

When m = p, the p−compound of the matrix A ∈ Rn×p reduces to a vector of size
(n

p

)
, since

in this case the subsets J reduce to the single set J = {1, . . . , p}.
In our case, the connection with Plücker matrices of simple bi-vectors is as follows: for a
simple bi-vector x ∧ y, with x, y ∈ Rn, define its A−matrix as

A := A(x, y) := (x y), (5)

i.e. the n× 2 matrix whose column vectors are x, y. Then, the 2, 2−minors of A are precisely
the Plücker components (2): for I = {i, j}, i < j, in (4), det A{i,j},{1,2} = xiyj − xjyi. Hence,
the 2-compound matrix/vector of A,

C2(A) =


...

det A{i,j},{1,2}
...

 =


...

xiyj − xjyi
...

 . (6)

of size
(n

2
)
× 1 corresponds to the vectorization of the Plücker components (2), equivalently,

the vectorization of the upper triangle of the Plücker matrix (3). Let us formalize this in a
definition.
Definition 2. The compound vector representation of x∧y is the vector C2(A(x, y)) ∈ R(n

2),
given by (6).

2.4. The vector space ∧2(V ) of bi-vectors and the exterior product

Vectorization of parallelograms from their linear representations and the exterior prod-
uct
So far, we have just defined x ∧ y as geometric objects, oriented parallelograms, with at-
tributes like direction, orientation, magnitude and components. In particular, these objects
do not possess yet a vector space structure (which would make possible to add simple bi-
vectors together). However, since the components of simple bi-vectors are represented by
linear objects, either antisymmetric (Plücker) matrices (3) or (compound) vectors (6), which
are elements of vector spaces, it is natural to endow the set of simple bi-vectors with the
corresponding addition and scalar multiplication of their components: we simply define the
addition + and scalar multiplication . on simple bi-vectors, as the addition and scalar mul-
tiplication of their Plücker matrices, equivalently their compound vectors. Formally, we set,
for i < j, x, y, r, s ∈ Rn, and λ ∈ R,

pij((x ∧ y) + (r ∧ s)) := pij(x ∧ y) + pij(r ∧ s)
pij(λ(x ∧ y)) := λpij(x ∧ y)
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The set of objects thus obtained by finite linear combination of simple bi-vectors by these
operations are called bi-vectors and belong, by definition, to a vector space, the exterior power∧2(Rn), of dimension

(n
2
)
.

This extension of simple bi-vectors into elements of a linear space10 allows to turn the formal
symbol ∧ into an operation between vectors: by bilinearity and antisymmetry of the 2 × 2
determinant defining pij (or by direct verification), one has that

pij((x + y) ∧ z)) = pij(x ∧ z) + pij(y ∧ z))
pij(x ∧ (y + z)) = pij(x ∧ y) + pij(x ∧ z)

pij(λ(x ∧ y)) = pij((λx) ∧ y) = pij(x ∧ (λy))
pij(y ∧ x) = −pij(x ∧ y)

Thus, ∧ amounts to a product on V ,

∧ : V × V →
∧2(V )

called the exterior product, which is bilinear and antisymmetric on V .
As explained in the introduction, an important distinction is between simple bi-vectors, i.e.
bi-vectors which can be reduced to a single expression x1 ∧ x2, where each x1, x2 are two
(regular) vectors in Rn, and general indecomposable or compound11 bi-vectors, made of sums
(or linear combinations) of at least two simple bi-vectors: only simple bi-vectors have a
geometric interpretation12 as oriented parallelograms, with corresponding attributes. This
is the unavoidable abstraction in the construction of the vector space ∧2(V ): in general,
parallelograms can not be “added” together to give a parallelogram. They only give bi-
vectors. Algebraically speaking, not every antisymmetric matrix, resp. vector of size

(n
2
)
, can

be obtained from a Plücker matrix P (x∧y) of two vectors x, y ∈ Rn, resp. as the compound
vector of an A−matrix A(x, y).

Remark 2. i) In a three-dimensional space, i.e. for n = 3,
(n

2
)

= 3. Hence, C2(A) ∈ R3

identifies with a vector13 of the original space V . This allows to view ∧ as a binary
operation V ×V → V . Then, x∧y corresponds, up to some sign change and permutation
of the components14, to the well-known cross-product x×y of three-dimensional vectors.

ii) In addition, for n = 3, every nonzero bi-vector of ∧2(R3) reduces to a simple bi-vector:
by bilinearity and antisymmetry of ∧, one can write any bi-vector x ∈

∧2(R3) on the
basis (e1 ∧ e2, e1 ∧ e3, e2 ∧ e3) of ∧2(R3) as

x = x1e1 ∧ e2 + x2e1 ∧ e3 + x3e2 ∧ e3,

where x1, x2, x3 ∈ R. Assume w.l.o.g. that x1 ̸= 0 (otherwise pick another component
which is nonzero). Then, again by bilinearity and antisymmetry, x writes as the simple
bi-vector

x = x1

(
e1 −

x3
x1

e3

)
∧
(

e2 + x2
x1

e3

)
.

10The vector space structure of
∧2(V ) explains the terminology bi-vectors for x ∧ y and linear combinations

therereof.
11One should not confuse the notion of compound bi-vectors with the compound vector (6) derived from the

compound matrix (4). The terminology is somehow unfortunate but well-established in the literature.
12This is in contrast with classical linear algebra where all abstract vector elements can be given geometric

meaning as an “arrow” in space.
13often called a pseudo-vector in physics.
14corresponding to Hodge dualization of the bi-vector, i.e. x × y := ⋆(x ∧ y), see e.g. Kanatani (2015)

Proposition 5.7 p. 71. for details.
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Geometric implications for simple bi-vectors

For simple bi-vectors, the algebraic properties of ∧ have geometric implications: let λ ∈ R,
then,

(x + λy) ∧ y = x ∧ y + λy ∧ y = x ∧ y,

and for λ ̸= 0,

(λx) ∧
( 1

λ
y
)

= λ

λ
x ∧ y = x ∧ y.

The geometric meaning is that simple bi-vectors remain the same under shear mappings
(x, x) 7→ (x + λy, y), and squeeze mappings (x, x) 7→ (λx) ∧

(
1
λy
)

(which both preserve
the area of the parallelogram): this corresponds to defining simple bi-vectors as equivalence
classes of parallelograms, where the equivalence relation is defined by a set of elementary
transformations composed of shear and squeeze mappings, see Postnikov (1982) Chapter 7.
One thus has an analogue for simple bi-vectors of the definition of vectors as equivalence class
of directed line segments under translations. In other words, the shape of the parallelogram
does not matter, only its direction, orientation and area-magnitude (yet to be precisely de-
fined). In particular, one can reshape the parallelogram x∧y in order to make it rectangular.
Another way of saying the same thing is that only the part y⊥ of y perpendicular to x is
involved in the exterior product, i.e.

x ∧ y = x ∧ y⊥, with y⊥ := y− ⟨y|x⟩
||x||2 x.

At last, changing the order of the terms in the product, i.e. the identity

y ∧ x = −x ∧ y

interprets as reversing the orientation of the parallelogram (from y to x).

2.5. Norm and scalar product of bi-vectors

Geometric approach to the magnitude of simple bi-vectors via Gram matrices

Following our general philosophy, we first define an intuitive notion of magnitude for simple bi-
vectors from geometric intuition, before proceeding to show it corresponds to a norm derived
from a scalar product on bi-vectors.
Recall that for two rectangular matrices A ∈ Rm×n, B ∈ Rn×m, with m ≤ n, the Cauchy-
Binet formula yields

det(AB) =
∑
S

det(A{1,...,m},S) det(BS,{1,...,m}), (7)

where S is a subset of {1, . . . , n} with m-elements, det(A{1,...,m},S), resp., det(BS,{1,...,m}) are
the m−minors of A, resp. B, and the sum is over all subsets S (see e.g. Gantmacher (1998)).
Now, let A = A(x, y) be the A−matrix of (5). From A, one can construct

G := G(x, y) := AT A =
(
⟨x|x⟩ ⟨x|y⟩
⟨x|y⟩ ⟨y|y⟩

)
(8)

the symmetric, positive semi-definite, Gram matrix of size 2 × 2 associated with the pair
of vectors x, y. Then, as is well-known (see e.g. Mikusinski and Taylor (2012) p. 36),
det(G) is the square of the area (the 2-dimensional volume or measure of magnitude) of the
parallelogram x ∧ y.
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Applied to the Gram matrix G = AT A, the Cauchy-Binet formula (7), together with (2),
yields

det(G) =
∑

1≤i<j≤n

det
(

xi yi

xj yj

)T

det
(

xi yi

xj yj

)

=
∑

1≤i<j≤n

det G

((
xi

xj

)
,

(
yi

yj

))

=
∑

1≤i<j≤n

p2
ij =

∑
1≤i<j≤n

(xiyj − xjyi)2 (9)

The geometric meaning of (9) is that the squared area of the parallelogram x ∧ y is equal to
the sum of the squares of the areas of its projections on all coordinate planes. One thus have
a generalization of Pythagoras’s theorem for length of vectors to areas of parallelogram, via
Plücker components.

Scalar product and norms of parallelograms from Froebenius scalar product of Plücker
matrices

Having linear representations of bi-vectors as Plücker matrices (3), or as compound vectors (6),
it is natural to use the classical scalar product for matrices or vectors and corresponding norms
to endow ∧2(V ) with a scalar product, effectively turning ∧2(V ) into a finite dimensional
Hilbert space. In particular, the geometric interpretation of (9) suggest to use the Froebenius
inner product between 2 matrices A = (aij), B = (bij) of the same size,

⟨A|B⟩F := Trace(AT B) =
∑
i,j

aijbij ,

which is the usual generalization to matrices of the Euclidean scalar product of vectors. We
thus define:

Definition 3. The Plücker scalar product between two pairs of simple bi-vectors x∧y, r∧ s
is defined as the Froebenius scalar product of their Plücker matrices, viz.

⟨x ∧ y|r ∧ s⟩ := 1
2⟨P (x ∧ y)|P (r ∧ s)⟩F (10)

=
∑
i<j

pij(x ∧ y)pij(r ∧ s)

= det
(
A(x, y)T A(r, s)

)
(11)

= det
∣∣∣∣∣⟨x|r⟩ ⟨x|s⟩⟨y|r⟩ ⟨y|s⟩

∣∣∣∣∣ = ⟨x|r⟩⟨y|s⟩ − ⟨x|s⟩⟨y|r⟩, (12)

where we have normalized the Froebenius product by 1/2, so that (11) follows from the
Cauchy-Binet-Formula (7). It is then extended by linearity to a genuine scalar product on
(possibly indecomposable) bi-vectors of ∧2(V ).

Obviously, this gives the same scalar product on ∧2(V ) which would have resulted from
using the usual Euclidean scalar product ⟨.|.⟩ of R(n

2) and the representation of bi-vectors via
compound matrices, i.e.

⟨x ∧ y|r ∧ s⟩ = ⟨C2(A(x, y))|C2(A(r, s))⟩,

where A(x, y), resp., A(r, s) are the A−matrices (5) for x, y, resp. r, s.
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Definition 3 yields a corresponding norm on ∧2(V ), which we call the Plücker norm:

||x ∧ y|| :=
√
⟨x ∧ y|x ∧ y⟩ (13)

=
√

det G(x, y) =
√
||x||2||y||2 − ⟨x|y⟩2 (14)

=
√

1
2trace(P (x ∧ y)T P (x ∧ y)) =

√
1
2 ||P (x ∧ y)||2F

=
√ ∑

1≤i<j≤n

p2
ij =

√ ∑
1≤i<j≤n

(xiyj − xjyi)2 (15)

= ||C2(A(x, y))|| (16)

where the norm in (16) is the Euclidean norm on R(n
2). Equation (14) shows that one obtains

by linear algebra the same norm for simple bi-vectors as the one derived in (9) from the
geometric standpoint. Hence, the Plücker norm of simple bi-vectors interprets geometrically
as the area of the parallelogram, as explained before. Such geometric interpretation is also
clear from (14): if one introduces the angle θ = θ(x, y) ∈ [0, π] between x and y, defined via

⟨x|y⟩ = ||x||.||y||. cos(θ),

then, (14) gives
||x ∧ y|| = ||x||.||y||. sin(θ) (17)

and one recovers the familiar formula of the area of a parallelogram, base length times height.
Obviously, it is readily seen from the linear representation of bi-vectors that Cauchy-Schwarz’s
inequality for vectors extends to bi-vectors, viz.

|⟨x ∧ y|r ∧ s⟩| ≤ ||x ∧ y|| ||r ∧ s||.

In addition, the definition of the Plücker norm is consistent in the sense that it is invariant
w.r.t. orthogonal transformation: if U is an orthogonal matrix, then

||Ux ∧ Uy|| = ||x ∧ y|| (18)

This follows from the expression (14) and the orthogonal invariance of the Euclidean norm
and scalar product. It can also be seen directly from the definition of the Plücker norm in
terms of A-matrix (5): if x′ := Ux, y′ := Uy, then A(x′, y′) = UA(x, y). Thus, by (14)

||Ux ∧ Uy|| =
√

det G(x′, y′) =
√

det(AT (x′, y′)A(x′, y′))

=
√

det(AT (x, y)UT UA(x, y)) =
√

det G(x, y) = ||x ∧ y||

Remark 3. For a single vector x, its Plücker norm, understood from its definition (14) in
terms of A−matrix, yields the usual Euclidean ℓ2 norm of x, as

||x|| :=
√

det(A(x)T A(x)) =
√

xT x =
√
⟨x|x⟩ = ||x||.

This explains why we use the same notation ||.|| for the Plücker norm of bi-vectors and for
the Euclidean norm of vectors. Similar comments apply to the scalar product of bi-vectors.

Remark 4. These very basic parts of the theory are sufficient for our purposes of using
the exterior product to CoDa analysis. Nevertheless, it is possible to generalize, first to the
construction of simple k−vectors, x1 ∧ . . . ∧ xk, geometrically interpreted as k−dimensional
parallelotopes, then extended by linearity to the corresponding exterior powers vector space
∧kV , and eventually to the exterior algebra ∧V , so that ∧ becomes a genuine multi-linear
and anti-symmetric operation between multi-vectors. The interested reader may consult
Mikusinski and Taylor (2012) and/or Khosravi and Taylor (2008) for details. Alternatively,
we summarize, for the convenience and comparison purposes of the interested reader, the
abstract algebraic approach to Grassmann’s algebra in Appendix A.
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3. Representation of a set of two CoDa as a normalized bi-vector
In this section, we explore the application of the exterior product to CoDa analysis by first
evaluating the influence of their inherent scale invariance on the construction of bi-vectors.
Our objective is to demonstrate that “pairs” of CoDa can be effectively represented as ap-
propriately normalized bivectors. This representation enables the utilization of the norm and
scalar product of bivectors, as defined in Section 2, to establish corresponding measures of
distance (or divergence) and pseudo-scalar products. To this end, we begin with a review of
several inhomogeneous representations for equivalence classes of individual vectors.

3.1. A review of inhomogeneous representations of a single equivalence class

Indeed, in the projective viewpoint of Faugeras (2023), owing to the scale invariance, a CoDa
element [x]+, with vector representative15 x ∈ Rd+1

+ , is an equivalence class for the positive
scaling relation, as explained in the introduction. Hence, [x]+ represents a direction (in the
non-negative orthant), stripped of its magnitude content. Similarly, for a vector x ∈ Rd+1,
the equivalence class [x] = {λx, λ ∈ R∗} for the collinearity equivalence relation ∼,

x ∼ y⇔ ∃λ ∈ R∗ s.t. x = λy,

represents the directional part span(x) attached to the vector x. [x] and is pictured geomet-
rically as the (two-sided) line through the origin parallel to x, and represented algebraically
by its homogeneous coordinates [x0 : . . . : xd].
Homogeneous systems of coordinates, being scalar multiples, do not associate to a direction
[x], resp. a CoDa point [x]+, a unique set of numbers and are thus analytically awkward. One
can de-homogenize, i.e. get a single set of coordinate numbers, by taking a representative of
the equivalence class [x], resp. [x]+, obtained by standardizing the vector x by a norm N .
Indeed, by the property of a norm, for any scalar λ ̸= 0, and x ̸= 0,

λx
N(λx) = λx

|λ|N(x) = sign(λ) x
N(x) = ± x

N(x) ,

so that the vector x/N(x) is stripped of the magnitude content of x, retaining only its direction
(up to sign).
For directional data, it makes sense to take as norm the usual Euclidean ℓ2 norm N(.) = ||.||,
i.e. to consider the radial projection S on the unit sphere, viz.

S(x) := x
||x|| , x ̸= 0. (19)

Thus, a direction [x] is represented by the opposite pair {x/||x||,−x/||x||} of unit-norm
vectors, i.e. a pair of antipodal points on the unit sphere.
For compositional data, the traditional view of CoDa as points on the probability simplex sug-
gests to take as norm the ℓ1 norm, N(.) = ||.||1. The non-negativity constraint x ≥ 0 imposed
on CoDa points entails that such ℓ1 normalization corresponds to taking as representative of
the (positively oriented) direction [x]+ the radial projection x/||x||1 on the unit-sum affine
hyperplane ∑i xi = 1. Such an operation is called “closure” in the CoDa literature, and is
denoted by

C(x) := x
||x||1

, x ̸= 0. (20)

However, the choice of the norm in the normalization is somehow conventional. Thus, an
interesting alternative is to normalize by the usual ℓ2 norm, i.e. by the S-transform of

15From now on, we set the dimension n = d + 1, in order to match the notations of Faugeras (2023) and
Faugeras (2024a).
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(19), so that [x]+ can also be represented by a single normalized vector S(x). This choice
corresponds to a spherical representation of CoDa, see Faugeras (2023). Both choices will
lead to interesting distance/divergences and measures of variation, as we will see16.

3.2. Bi-vector representations of two directions or two CoDa

We now consider as object of inquiry sets of two of equivalence classes, specifically {[x], [y]}
representing two directions, and {[x]+, [y]+} representing two CoDa. We are interested in
investigating how bi-vectors can be used to represent such sets made of two equivalence
classes. In particular, we would like to associate a unique standardized bi-vector to these sets
of two equivalence classes. There are two fundamentally different approaches in understanding
the problem:

i) we can consider the set of bi-vectors x ∧ y generated when the vector representatives
x, y are allowed to vary within their equivalence classes. This gives, e.g., for directions,

{x ∧ y, x ∈ [x], y ∈ [y]}, (21)

(and similarly for CoDa), and then, we look for a single bi-vector representative of this
set of bi-vectors.

ii) we can interpret {[x], [y]} as an ordered pair ([x], [y]) of equivalence classes (and sim-
ilarly for CoDa). We can then build a standardized bi-vector by taking the exterior
product of the pair of individually normalized vector representatives, obtained via the
transforms of Section 3.1.

These two complementary interpretations encode different geometric information, and both
are useful for our statistical purposes of defining distance, covariance and correlation measures
for CoDa.

Interpretation i): Homogeneous Plücker coordinates and Plücker embedding
In the first interpretation i), when the vector representatives x and y are permitted to vary
within their respective equivalence classes, the Plücker coordinates pij of the bi-vector x ∧ y
vary as follows: if x and y are replaced by λx and µy, where λ, µ ̸= 0, then

pij(λx ∧ µy) = λµ pij(x ∧ y),

i.e. pij(λx ∧ µy) is a scalar multiple of pij(x ∧ y). Considering the set of homogeneous
coordinates

[P ] := {λP, λ ∈ R∗},

i.e. scalar multiples of the Plücker matrix (3), gives a coordinatization of the set (21). (Equiv-
alently, one can take as coordinatization scalar multiples of the compound vector (6)). Here,
[P (x∧y)] interprets geometrically as the set of parallelogram (λx)∧ (µy) obtained from x, y
by changing their amplitudes (and orientation for λµ < 0) and thus can be identified with the
whole vector subspace span(x, y). Taking (non-zero) scalar multiple of elements of a vector
space corresponds to the operation of projectivization of a vector space in projective geome-
try. We have just described what is known in the literature as the Plücker embedding of the
Grassmannian G(2, d + 1) into the projectivization of the exterior algebra, here P(∧2 Rd+1).
In other words, since two lines determine a plane, homogeneous Plucker coordinates give an
algebraic representation of such plane.
Similarly, for compositional data, taking the non-negativity constraint into account, one ob-
tains

[P ]+ = {λP, λ > 0},
16This explains why we treat simultaneously directional and compositional data, although we are primarily

interested in CoDa.
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with P the Plücker matrix (3), or, equivalently,

[C2(A)]+ = {λC2(A), λ > 0},

with C2(A) the compound vector (6), as homogeneous coordinates for the set of bi-vectors.
[P ]+ represents an equivalence class of parallelograms with same direction and orientation,
and identifies geometrically with the corresponding oriented plane17.

Interpretation i): Non-homogeneous bi-vector representative of oriented plane

As in Section 3.1, one can obtain a non-homogeneous bi-vector representative of the homo-
geneous [P (x ∧ y)] by normalization. Since we now deal with bi-vectors, the analogue of the
spherical transformation S of (19) is based by standardizing by the Plucker norm (13), and
yields the pair { x ∧ y

||x ∧ y|| ,−
x ∧ y
||x ∧ y||

}
of bi-vectors. These corresponds to antipodal points on the sphere of the exterior power
normed vector space (∧2(Rd+1), ||.||), with ||.|| the Plucker norm. For CoDa, [P (x ∧ y)]+ is
represented by a sole bi-vector. Let us also denote by S such radial projection on the unit
sphere on the exterior power, viz.

S(x ∧ y) := x ∧ y
||x ∧ y|| , x ∧ y ̸= 0. (22)

The latter only encodes the direction (span(x, y)) and orientation (from [x]+ to [y]+) of the
pair of CoDa elements ([x]+, [y]+) understood as a projective line, i.e. as the set {x ∧ y, x ∈
[x]+, y ∈ [y]+}. Combined with the Plucker scalar product (10), representation (22) will be
helpful to define measures of correlation between pairs of CoDa, as will be seen in Sections 4
and 6.

Interpretation ii): normalized bi-vectors of pairs of CoDa

In the second interpretation ii), when one considers the object {[x], [y]} as the ordered pair
([x], [y]) of equivalence classes, one can define a representative bi-vector constructed by taking
the exterior product of the normalized representatives of [x], [y] of Section 3.1. For pair of
directions ([x], [y]), this yields as normalized representative the opposite pair of bi-vectors

{S(x) ∧ S(y),S(y) ∧ S(x)} = {S(x) ∧ S(y),−S(x) ∧ S(y)} . (23)

For pairs of CoDa ([x]+, [y]+), one obtains as normalized representative a sole bi-vector, either
the one based on the ℓ1 norm standardization, i.e. the closure C transform (20),

C(x) ∧ C(y) = x ∧ y
||x||1||y||1

, (24)

or the one based on the ℓ2 norm standardization, i.e. the spherical S transform (19),

S(x) ∧ S(y) = x ∧ y
||x||||y|| . (25)

It is instructing to compare the geometric content encoded in these various normalized repre-
sentatives (22), (24) and (25), in particular the difference between S(x∧y) and S(x)∧S(y):
S(x∧ y) does not depend on which representative x, y are chosen to represent the (oriented)

17One has (see Section 2.4.2), that, e.g. (x−µy)∧y = x∧y, µ ∈ R. Since (x−µy)∧y represents, for µ > 0,
a parallelogram outside the non-negative orthant, it is readily seen that the set of scalar multiples λx ∧ y,
with λ > 0 and x, y varying inside the positive rays [x]+, [y]+, generates parallelograms located on the whole
oriented plane span(x, y). We thank the referee for highlighting that point.
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plane span(x, y). In particular, it does not have a meaningful magnitude content18. It just
conveniently reduces the Plücker embedding [P (x ∧ y)]+ of the plane span(x, y) to a single
bi-vector instead of its scalar multiples, only encoding the direction and orientation of the
plane. To the contrary, although S(x) ∧ S(y) share the same direction plane span(x, y) as
S(x ∧ y), S(x) ∧ S(y) do depend on the pair of CoDa ([x]+, [y]+) chosen. In particular, its
magnitude (Plücker norm) is meaningful: by standardizing individually each CoDa [x]+, [y]+
to spherical representatives S(x),S(y), resp. simplex representatives C(x), C(y), the norm of
the resulting bi-vector S(x)∧S(y), resp. C(x)∧C(y), with its interpretation as the area of the
parallelogram, allows to quantify the separation between them, as we will now demonstrate.

3.3. Pseudo scalar product and norm for pairs of directions/CoDa

In the remaining of this section, we focus on the normalized bi-vector representatives, resp.,
(23) for pairs of directions, resp., (24) or (25) for pairs of CoDa, corresponding to interpreta-
tion ii) of Section 3.2. We can apply the Plücker scalar product (10) and norm (13) defined
for bi-vectors to these normalized simple bi-vectors. This allows to partially transfer19 the
concepts of scalar product and norm to pairs of directions/CoDa. These will prove useful
to define quantities of statistical interest, like divergences, means and variance/covariance
measures for directional data/CoDa.
For directional data, in view of the sign indeterminacy of the normalized representatives
of [x], [y] in (23), only the absolute value of the Plücker scalar product (10) makes sense
between them. For compositional data, there is no sign ambiguity, but choosing between
normalizations (24) by the ℓ1 norm, or (25) by the ℓ2 norm, leads to two different pseudo-
scalar products. We thus define:

Definition 4. i) For directional data, the pseudo-scalar product S between pairs of di-
rections ([x], [y]) and ([r], [s]) is defined as

S([x], [y]|[r], [s]) := |⟨x ∧ y|r ∧ s⟩|
||x|| ||y|| ||r|| ||s|| (26)

ii) For CoDa, the pseudo scalar product ⟨.|.⟩1 between pairs ([x]+, [y]+) and ([r]+, [s]+) of
CoDa, based on normalization (24) by the ℓ1 norm, is defined as

⟨[x]+, [y]+|[r]+, [s]+⟩1 := ⟨C(x) ∧ C(y)|C(r) ∧ C(s)⟩ = ⟨x ∧ y|r ∧ s⟩
||x||1 ||y||1 ||r||1 ||s||1

(27)

and the pseudo scalar product ⟨.|.⟩2, based on normalization (25) by the ℓ2 norm, is
defined as

⟨[x]+, [y]+|[r]+, [s]+⟩2 := ⟨S(x) ∧ S(y)|S(r) ∧ S(s)⟩ = ⟨x ∧ y|r ∧ s⟩
||x|| ||y|| ||r|| ||s|| (28)

Correspondingly, a pseudo-norm of a pair of equivalence classes can be defined classically as
the pseudo- scalar product of such a pair of equivalence classes with itself. This gives, for
directional data, in view of (26),

||[x], [y]|| :=
√
S([x], [y]|[x], [y]) = ||x ∧ y||

||x|| ||y|| (29)

where ||.|| in the numerator is the Plücker norm (13). For CoDa, applying (27), resp. (28),
yields two pseudo-norms N1, resp. N2, defined as follows:

18It is unity.
19The spaces of pairs of CoDa or directions do not have a global vector space structure. (The Grassmannian

G(2, d + 1) is a manifold).
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Definition 5. For two CoDa elements [x]+, [y]+ ∈ Pd
+,

i) the pseudo-norm N1 of the pair ([x]+, [y]+), obtained from the ℓ1 normalization of the
pseudo-scalar product (27), is defined as

N1([x]+, [y]+) :=
√
⟨[x]+, [y]+|[x]+, [y]+⟩1 = ||C(x) ∧ C(y)|| = ||x ∧ y||

||x||1 ||y||1
, (30)

ii) the pseudo-norm N2 of ([x]+, [y]+), obtained from the ℓ2 normalization of the pseudo-
scalar product (28), is defined as

N2([x]+, [y]+) :=
√
⟨[x]+, [y]+|[x]+, [y]+⟩2 = ||S(x) ∧ S(y)|| = ||x ∧ y||

||x|| ||y|| ; (31)

Note that (31) for CoDa is the same as (29) for directional data.

3.4. Interpretation of the norm of pairs of equivalence classes as a diver-
gence/distance between directions/CoDa

The pseudo norms ||.||, resp. N1, N2 of the higher dimensional object ([x], [y]), resp. ([x]+, [y]+),
is a scalar quantity which interprets geometrically as a proximity measure or divergence be-
tween the lower dimensional objects, i.e. directions [x], [y], resp., CoDa [x]+, [y]+.
This is clear for directional data: in view of (17), Equation (29) simply writes

||[x], [y]|| = sin θ(x, y) ∈ [0, 1].

Thus, pseudo-norm depends explicitly on the angle between x and y, via the sin function
and thus quantifies the spread of the angular separation in the sine distance (see Theorem
7 below for detailed properties). Note that on can recover the (acute) angular/spherical
distance between lines [x], [y],

dangular([x], [y]) := θ([x], [y]) := arcsin(||[x], [y]||) ∈ [0, π/2]

from such a exterior product approach, thus in a manner dual to the classical scalar product
definition of the angle.
For CoDa, it is remarkable that the N1 pseudo-norm (30) of simple bi-vectors gives the same
2−barycentric divergence d2 of Faugeras (2024a) (see Definition 1 and Lemma 2 of Section 3
in Faugeras (2024a)),

N1([x]+, [y]+) = ||C(x) ∧ C(y)|| =
√
||x||2||y||2 − ⟨x|y⟩2
||x||1||y||1

= ||x|| ||y||
||x||1||y||1

sin θ(x, y) = d2([x]+, [y]+). (32)

The family of α−barycentric divergence was derived from an affine geometry perspective,
using completely different arguments. Thus, N1 satisfy all properties of Theorem 1 in Faugeras
(2024a): it is a well-defined, bounded, symmetric, permutation invariant, divergence on the
full CoDa space Pd

+, able to deal with zeroes. In addition, one has the following property on
the attainment of the upper bound:

Lemma 6. N1([x]+, [y]+) = 1 iff C(x) = ei, C(y) = ej for some i ̸= j.

Proof. From (32), N1([x]+, [y]+) writes as a product of three numbers ||x||
||x||1 , ||y||

||y||1 , sin θ(x, y),
bounded between zero and one. Thus, N1 attains the upper bound 1 iff

||x|| = ||x||1,

||y|| = ||y||1,

θ(x, y) = π/2.

(33)
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Note that

||x|| = ||x||1 ⇔
∑

i

x2
i =

(∑
i

xi

)2

=
∑

i

x2
i + 2

∑
i<j

xixj

⇔
∑
i<j

xixj = 0.

Combined with x ≥ 0 and x ̸= 0, this is equivalent to x = λei for some λ ̸= 0, and some
1 ≤ i ≤ n, where ei is the canonical basis vector ei = (0, . . . , 0, 1, 0 . . . , 0) of Rd+1. As a result,
(33) is equivalent to C(x) = ei, C(y) = ej for some i ̸= j. Geometrically, C(x) and C(y) are
two different points on the intersection of the unit sphere and the unit-sum hyperplane.

The interpretation of Lemma 6 is as follows: the N1 norm, equivalently the 2-barycentric
divergence, is maximal for CoDa which reduces to two different single-component CoDa, i.e.
for CoDa points that are maximally spread apart and maximally sparse.

Remark 5. The N1 pseudo-norm involves the ratio of norms ℓ2/ℓ1. Its inverse ℓ1/ℓ2 is widely
used in machine learning as a nonconvex but scale-invariant surrogate of the ℓ0 penalty for
encouraging sparsity, see e.g. Yin, Esser, and Xin (2014) or Xu, Narayan, Tran, and Webster
(2021). Since maxx ̸=0

||x||
||x||1 = (minx ̸=0

||x||1
||x|| )−1, this explains why maximizing N1 in Lemma

6 makes appears the sparsity property induced by the minimization of the ratio ℓ1/ℓ2.
This sparsity property of N1 is in contrast with the N2 pseudo-norm. For example, N1([1 :
0 : 0]+, [0 : 1 : 0]+) = 1, and N1([1 : 0 : 0]+, [0 : 1/2 : 1/2]+) = 1/

√
2, while N2([1 : 0 : 0]+, [0 :

1 : 0]+) = N2([1 : 0 : 0]+, [0 : 1/2 : 1/2]+) = 1: it suffices for two CoDa to be orthogonal to
be maximally separated in the N2 pseudo-norm.

Remark 2 in Faugeras (2024a) hinted at the possibility of removing this ℓ2/ℓ1 ratio of norms
in N1 by normalizing CoDa with the ℓ2 norm instead. This is precisely achieved by the N2
pseudo-norm. By (17), the pseudo norm N2 of formula (31) writes

N2([x]+, [y]+) = sin θ(x, y), (34)

where the non-negativity constraint of CoDa now entails that θ(x, y) ∈ [0, π/2]: θ(x, y) is
equal to the acute angle θ([x]+, [y]+) ∈ [0, π/2] between the rays [x]+, [y]+ in the non-negative
orthant. Compared to the 2−barycentric divergence/pseudo-norm N1, N2 enjoys improved
properties: N2 is a genuine distance, i.e. it satisfies the triangle inequality, is defined on the
full CoDa space (thus allowing for zeroes), and is also orthogonally invariant, as shown in the
next theorem.

Theorem 7. N2 is a bounded, orthogonally invariant distance on the full CoDa space Pd
+: it

satisfies the following properties:

i) scale-invariance: N2([x]+, [y]+)=N2([λx]+, [µy]+), λ, µ > 0.

ii) symmetry: N2([x]+, [y]+) = N2([y]+, [x]+).

iii) boundedness: 0 ≤ N2([x]+, [y]+) ≤ 1.

iv) Positive-definiteness: N2([x]+, [y]+) = 0⇔ [x]+ = [y]+.

v) Triangle inequality: for all [x]+, [y]+[z]+ ∈ Pd
+,

N2([x]+, [z]+) ≤ N2([x]+, [y]+) + N2([y]+, [z]+).

vi) Orthogonal invariance. Let U be an orthogonal matrix. Then,

N2([Ux]+, [Uy]+) = N2([x]+, [y]+).



19

vii) In particular, vi) entails permutation invariance: let σ be a permutation of {0, 1, . . . , d}
and xσ be the vector obtained by permuting the coordinates of x by σ. Then, N2([xσ]+, [yσ]+) =
N2([x]+, [y]+).

Proof. The proofs of i)-iv) are direct consequences of the definition (31) and formulas (14)
and (17). See also Faugeras (2024a) Theorem 1. vi) follows from the orthogonal invariance of
the Euclidean and Plucker norms, see (18). Only the triangle inequality v) deserves a more
detailed proof. We provide two proofs.

1. first proof of v): w.l.o.g. consider normalized representatives x, y, z s.t. ||x|| = ||y|| =
||z|| = 1. Let projx := xxT be the orthogonal projection matrix on x. Then, in view of
(14), one has, by expanding the square,

1
2 ||projx − projy||2F = 1

2
∑
i,j

(xixj − yiyj)2 = 1
2
∑
i,j

x2
i x2

j + y2
i y2

j − 2xiyixjyj

= 1− ⟨x|y⟩2 = N2
2 ([x]+, [y]+)

Thus, N2([x]+, [y]+) = 1√
2 ||projx − projy||F , and the triangle inequality for N2 follows

from the triangle inequality for the Froebenius distance, viz.

||projx − projz||F ≤ ||projx − projy||F + ||projy − projz||F .

2. second proof of v): By (34), the triangle inequality follows from the triangle inequality
for the angular (i.e. spherical) distance. Indeed, one has:

(a) Case 1: if 0 ≤ θ(x, y) + θ(y, z) ≤ π/2, then, by the triangle inequality for the
spherical/angular distance (e.g. corollary 18.6.10 in Berger (1987)) in the spherical
triangle,

θ(x, z) ≤ θ(x, y) + θ(y, z).

Therefore, since sin is non-decreasing on [0, π/2],

sin θ(x, z) ≤ sin (θ(x, y) + θ(y, z))
= sin θ(x, y) cos θ(y, z) + cos θ(x, y) sin θ(y, z)
≤ sin θ(x, y) + sin θ(y, z).

(b) Case 2: if π ≥ θ(x, y) + θ(y, z) > π/2. It is easy to see (e.g. via KKT conditions)
that the function

[0, π/2]× [0, π/2]→ R

(x1, x2) 7→ sin x1 + sin x2 −
2
π

(x1 + x2)

attains its minimum value 0 on [0, π/2]× [0, π/2] at the four corners (0, 0), (0, π/2),
(π/2, 0), (π/2, π/2). Therefore, θ(x, y) + θ(y, z) > π/2 entails

sin θ(x, y) + sin θ(y, z) ≥ 2
π

(θ(x, y) + θ(y, z)) > 1 ≥ sin θ(x, z).

Remark 6 (On the tightness of the triangle inequality). Let z = λ x
||x|| + (1 − λ) y

||y|| , with
0 ≤ λ ≤ 1. Then, by anti-symmetry of ∧, x ∧ x = y ∧ y = 0. Therefore,∥∥∥z ∧ y

||y||

∥∥∥ = λ
∥∥∥ x
||x|| ∧

y
||y||

∥∥∥,∥∥∥ x
||x|| ∧ z

∥∥∥ = (1− λ)
∥∥∥ x
||x|| ∧

y
||y||

∥∥∥.
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Thus, ∥∥∥ x
||x|| ∧

y
||y||

∥∥∥ =
∥∥∥z ∧ y

||y||

∥∥∥+
∥∥∥ x
||x|| ∧ z

∥∥∥
= ||z||

(∥∥∥ x
||x|| ∧

z
||z||

∥∥∥+
∥∥∥ z
||z|| ∧

y
||y||

∥∥∥) ,

which is
N2([x]+, [y]+) = ||z|| (N2([x]+, [z]+) + N2([z]+, [y]+))

Since z lies on the chord of the sphere, ||z|| < 1, unless [x]+ = [y]+, so that the triangle
inequality does not reduce to an equality when x, y, z are on the same plane, i.e. when
[x]+, [y]+, [z]+ are aligned on the same projective line. In other words, N2 is not a projective
metric, contrary to Hilbert’s projective metric (see Faugeras (2023)) or the spherical distance.

3.5. A variant via square root transform

Spherical representation of CoDa via square root transform
In Faugeras (2023) Appendix A, we explained that CoDa admits (at least) two normalized
representatives on the (non-negative pat of the) Euclidean (ℓ2) unit sphere Sd

+ := Sd ∩Rd+1
+ :

given some vector x ∈ Rd+1
+ of raw amounts, its CoDa part [x]+ can be represented on Sd

+,
either as

S([x]+) = S(x) := x
||x||

, or as R([x]+) = R(x) :=
√
C(x) =

√
x
||x||1

, (35)

see Figure 1. The commutative diagram expresses that C ◦ S = C and S ◦ C = S.

x ∈ Rd
+ \ {0}

non-negative vector
of raw amounts

[x]+ ∈ Pd
+

CoDa as
equivalence class

C(x) = x
||x||1 ∈ ∆d

+
Simplex representative

S(x) = x
||x|| ∈ Sd

+
Spherical representative

R(x) =
√
C(x) ∈ Sd

+
Spherical representative

projectivization

C

S
S √C (.)2

Figure 1: Normalized spherical representations S(x) or R(x) on the non-negative unit Eu-
clidean sphere Sd

+ of a CoDa [x]+.

In the classical CoDa literature, where CoDa elements (equivalence classes [x]+ ∈ Pd
+) are

identified with their simplex representative x ∈ ∆d
+, the transformation R simply corresponds

to the square-root transform of e.g. Watson and Philip (1989). Generalizations of such
transforms to a power (i.e. a Box-Cox) give the α-transform of Tsagris, Preston, and Wood
(2011), and their variants.
The following (toy) example illustrates the differences between the R and S spherical repre-
sentatives.

Example 1. For d = 1, let x = (0.5, 1.5) be a bivariate vector of raw amounts. Its simplex
representative is C(x) = (1/4, 3/4), and the spherical ones S(x) =

(
1/
√

10, 3/
√

10
)
, and
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x

C (x)

S (x)
R (x)

y

S (y)=R (y)

C (y)

[x]+

[y]+

0.2 0.4 0.6 0.8 1.0
x0

0.5

1.0

1.5

x1

Figure 2: Comparison of the R and S spherical representations of CoDa, for d = 1. The
S transform does not change the directional/CoDa part [x]+ (blue dotted ray) of x, as it
remains on the ray [x]+ where the simplex (blue dashed line) representative C(x) (blue point)
also sits, whereas R(x) (blue point) is moved on the unit circle (blue solid line) towards the
first diagonal. For y on the first diagonal, S(x) and R(x) (red point) coincide, and also match
the directional/compositional content [y]+ (red dotted line).

R(x) =
(
1/2,
√

3/2
)
, as illustrated in Figure 2. The picture clearly shows the effect of such

power transformation: whereas the simplex representative C(x) and spherical one S(x) remain
on the same ray [x]+, the spherical R(x) is moved toward the central direction π/4. R modifies
the directional/compositional content of x as the square root largely increases the component
values close to zero (here, for the first component). The angular distance from the x0 axis
thus decreases from arccos(1/

√
10) ≈ 71.6 degrees to arccos(1/2) = π/3 = 60 degrees. To

the contrary, for the vector y = (1, 1), corresponding to C(y) = (.5, .5) ∈ ∆d
+, both spherical

representations coincide, i.e. S(y) = R(y).

Remark 7. The fact that R modifies the compositional part of the data can be regarded
either as an advantage, or as a drawback. On the positive side, by moving the CoDa compo-
nents away from small values, it allows to reduce the influence of outliers (in particular for
CoDa close to zeroes), or make the transformed data more Normally distributed. Gaussian
models are then easier to fit or Gaussian assumptions are more likely to be met in statistical
tests, in a way similar to the classical Box Cox transforms for Euclidean data. In addition, the
R transform (the square root) acts component-wise from the simplex representative and thus
does not bring the influence of other components in the transformed data. On the negative
side, by possibly changing the directions, its distort the geometrical configuration of points.
Thus, measures of distances and variations in the transformed data do not reflect those of
the original data.
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Sine square root distance
As explained above, the R transform thus gives another way to obtain a normalized represen-
tative of a CoDa [x]+ on the non-negative Euclidean unit sphere. In turn, this R transform
induces R(x)∧R(y) as normalized simple bi-vector representative for the pair of equivalence
classes [x]+, [y]+. One can then apply the Plücker norm to such representative to obtain the
following variant of the N2 pseudo-norm:
Definition 8. The sine square-root distance N1/2 between two CoDa [x]+ and [y]+ is defined
as the norm of the bi-vector R(x) ∧R(y), i.e.

N1/2([x]+, [y]+) := ||R(x) ∧R(y)||

where x, y ∈ Rd+1
+ are any vector representative of [x]+ and [y]+. In particular, for simplex

representatives x, y ∈ ∆d
+, it writes, in coordinates, as

N1/2([x]+, [y]+) =
√ ∑

0≤i<j≤d

(
√

xi
√

yj −
√

xj
√

yi)2.

This approach differs from the ones obtained in Section 3.2.2, where we normalized x by its
ℓ1 or ℓ2 norm. Properties of such a distance are similar to those of Theorem 7, and are thus
omitted. Variants using a more general α-power transformation could also be defined.

4. Exterior covariance, variance and correlation for CoDa

4.1. Basic principle

Having now at our disposal measures of distance/divergence and pseudo-scalar product on
the full CoDa space, we can now proceed to define measures of statistical dispersion and
covariation, in a manner similar to Faugeras (2024a), but now from the projective viewpoint
with the exterior product.
Indeed, let ([x]+, [y]+) ∈ Pd

+ × Pd
+ be a pair of random CoDa (projective) points. Given

some deterministic mean points [µx]+, resp. [µy]+, of [x]+, resp. [y]+, what is meaningful
in the projective viewpoint is to consider the pairs of CoDa ([x]+, [µx]+) and ([y]+, [µy]+).
Following Section 3, ([x]+, [µx]+), resp. ([y]+, [µy]+), can be represented by a normalized bi-
vector, i.e. a parallelogram in the direction of the vector plane span(x, µx), resp. span(y, µy),
in the ambient space Rd+1. The (average) relative orientation between these normalized bi-
vectors can serve as a basis upon which one can define a notion of covariance and correlation
between random CoDa points. This is accomplished by taking the expectation of the pseudo-
scalar products ⟨.|.⟩1 and ⟨.|.⟩2 of (27) and (28), that is to say by taking the expected scalar
product (10) for ℓ1 or ℓ2-normalized bi-vectors (24) or (25). In view of the linear structure of
bi-vectors and its corresponding scalar-product, such expected scalar product between pairs
of normalized bi-vectors decomposes along its Plücker components pij , which allows to define
a whole matrix of co-variations along the d(d + 1)/2 pairs i < j of CoDa parts. Indeed, for
the ℓ2 normalization, one has

E (⟨[x]+, [µx]+|[y]+, [µy]+⟩2) = E

( ⟨x ∧ µx|y ∧ µy⟩
||x|| ||µx|| ||y|| ||µy||

)

= E

∑
i<j

pij(x ∧ µx)pij(y ∧ µy)
||x|| ||µx|| ||y|| ||µy||

 =
∑
i<j

E

(
pij(x ∧ µx)pij(y ∧ µy)
||x|| ||µx|| ||y|| ||µy||

)

=
∑
i<j

E


det

∣∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣∣ det
∣∣∣∣∣yi µy

i

yj µy
j

∣∣∣∣∣
||x|| ||µx|| ||y|| ||µy||

 .
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We only treat the ℓ2-normalized pseudo-scalar product ⟨.|.⟩2 of (28), since, for the ℓ1-normalized
pseudo scalar product ⟨.|.⟩1 of (27), the construction coincide with the 2−barycentric diver-
gence in Faugeras (2024a), which was obtained in that paper from the affine barycentric
viewpoint. (We leave the case of the square root spherical representative R of Section 3.5 to
the reader.)
A priori, one could use any kind of mean points [µx]+, [µy]+, like Aitchison’s geometric mean,
the arithmetic mean, or Fréchet means based on various distances/divergences, see Section 4
of Faugeras (2024a). However, as in Faugeras (2024a), the most interesting properties occur
with the arithmetic mean, which corresponds to the barycenter (centroid) obtained by affine
addition of points. Such centroid also has a natural interpretation as mixing CoDa, see Scealy
and Welsh (2014), and corresponds to the m− affine connection of information geometry (see
Faugeras (2023)). Hence, we set thereafter

[µx]+ := [Ex]+, [µy]+ := [Ey]+. (36)

Note that for CoDa with some zeroes components, Aitchison’s component-wise geometric
mean is ill-suited as it suffices that a CoDa has a zero in one of its components to make the
corresponding component of the geometric mean also zero.

4.2. Exterior covariance and variance matrices for CoDa

For a pair of random CoDa, we thus define the following quantities of statistical interest:

Definition 9 (Exterior Covariance). i) Exterior covariance matrix for a pair of CoDa:
Let ([x]+, [y]+) ∈ Pd

+×Pd
+ be a pair of random CoDa, with corresponding deterministic

barycenter mean points [µx]+, [µy]+ ∈ Pd
+, defined by (36). The exterior covariance

matrix of ([x]+, [y]+), based on the ℓ2 normalized pseudo-scalar product ⟨.|.⟩2 of (28),
is defined as the following symmetric matrix (with null diagonal) of size d + 1,

Cov2([x]+, [y]+) =
(
Cov2([x]+, [y]+)i,j

)
∈ R(d+1)×(d+1),

where the (i, j) component is set as

Cov2([x]+, [y]+)i,j := E

(
pij(x ∧ µx)pij(y ∧ µy)
||x|| ||µx|| ||y|| ||µy||

)

= E


det

∣∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣∣ det
∣∣∣∣∣yi µy

i

yj µy
j

∣∣∣∣∣
||x|| ||µx|| ||y|| ||µy||

 . (37)

ii) Total exterior covariance: The total exterior covariance of ([x]+, [y]+) is the scalar

TCov2([x]+, [y]+) =
∑
i<j

Cov2([x]+, [y]+)i,j (38)

= E

( ⟨x ∧ µx|y ∧ µy⟩
||x|| ||µx|| ||y|| ||µy||

)
. (39)

TCov2 gives a global (scalar) measure of the covariation of two random CoDa around their
respective means, while Cov2 decomposes the latter along its (i, j) components and organizes
it into a matrix. It is worth remarking that TCov2 can be computed at once, via (39), without
the need to summing all its d(d + 1)/2 components.

Definition 10 (Exterior Variance). i) Log-free exterior variance matrix of a CoDa:
The exterior variance matrix of [x]+ is defined as

Var2([x]+) := Cov2([x]+, [x]+) =
(
Var2([x]+)ij

)
∈ R(d+1)×(d+1), (40)



24 Exterior Distance and Covariance Matrix for CoDa

whose (i, j) component is

Var2([x]+)ij := E

(
p2

ij(x ∧ µx)
||x||2 ||µx||2

)
= E


det2

∣∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣∣
||x||2 ||µx||2

 .

ii) Total exterior variance:
The total exterior variance of ([x]+ is the scalar

TVar2([x]+) :=
∑
i<j

Var2([x]+)i,j (41)

= EN2
2 ([x]+, [µx]+) = E

(
||x ∧ µx||2

||x||2 ||µx||2

)
. (42)

Compared to the barycentric covariance and variance matrices (Definitions 8, 9, 10 of Faugeras
(2024a)), it is striking that the exterior covariance (37) and variance matrices (40) only differ
by the normalization, i.e. the ℓ2 norm instead of the ℓ1 norm. This change allows to remove
the ratio of ℓ2/ℓ1 norm mentioned in Remark 5 (and Remark 2 of Faugeras (2024a)), and
yields the improved properties of N2 as an orthogonally invariant, genuine distance between
CoDa (see Theorem 7). Indeed, one has the analogue of Proposition 4 and Theorem 5 in
Faugeras (2024a):

Proposition 11 (Properties of the exterior variance). i) Measure of proportionality:
At the level of components, Var2([x]+)i,j = 0, for some i < j, iff xi and xj are propor-
tional or one of them is zero a.s.

ii) Global orthogonal invariance:
TVar2([x]+) = TVar2([UT x]+), for any orthogonal matrix U .
At the level of components, the components of the transformed exterior variance matrix
writes

Var2([UT x]+)i,j = E

(
⟨x ∧ µx|ui ∧ uj⟩2

||x||2||µx||2

)
.

Proof. i) As in Proposition 4 of Faugeras (2024a).

ii) Orthogonal invariance of TVar2 follows from orthogonal invariance of N2, Theorem 7
vi).
Let U be an orthogonal matrix with column vectors ui, i = 0, . . . , d, and x′ = UT x be
the coordinates of x in the new basis (ui). Then, by linearity, Ex′ = UT µx. Hence,

det
∣∣∣∣∣x′

i Ex′
i

x′
j Ex′

j

∣∣∣∣∣ = det
∣∣∣∣∣⟨ui|x⟩ ⟨ui|µx⟩
⟨uj |x⟩ ⟨uj |µx⟩

∣∣∣∣∣ = ⟨x ∧ µx|ui ∧ uj⟩

by the Binet-Cauchy identity (12) (or the definition of the scalar product of bi-vectors).
Thus, by invariance of the Euclidean norm by an orthogonal transformation,

Var2([UT x]+)i,j = E

(
⟨x ∧ µx|ui ∧ uj⟩2

||x||2||µx||2

)

Proposition 12 (Properties of the exterior covariance). i) Boundedness:
One has

Cov2
2([x]+, [y]+)i,j ≤ Var2([x]+)i,jVar2([y]+)i,j
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ii) Assume x, y are spherical representatives of [x]+, [y]+, i.e. ||x|| = ||y|| = 1. If (xi, xj),
i ̸= j, is independent of (yi, yj), then

Cov2([x]+, [y]+)i,j = 0.

Proof. As Theorem 5 in Faugeras (2024a).

4.3. Exterior correlation matrix

Eventually, as in Faugeras (2024a), a part-by-part measure of correlation is obtained by
combining Definitions 9 and 10.

Definition 13 (Exterior correlation matrix). The exterior correlation matrix of ([x]+, [y]+)
is the matrix defined as

Cor2([x]+, [y]+) :=
(
Cor2([x]+, [y]+)ij

)
∈ R(d+1)×(d+1)

with (i, j) component set, for i ̸= j, as

Cor2([x]+, [y]+)ij := Cov2([x]+, [y]+)i,j√
Var2([x]+)i,jVar2([y]+)i,j

(43)

Definition 13 corresponds to the barycentric correlation matrix, Definition 11 in Faugeras
(2024a), but with the ℓ2 normalization instead of the ℓ1 one. In (43), both the numerator
and denominator are normalized inside the expectations. As in Faugeras (2024a), one can
dispense with this simultaneous normalization, by defining a modified correlation matrix
r =

(
rij

)
∈ R(d+1)2 as

r([x]+, [y]+)ij := E (pij(x ∧ µx)pij(y ∧ µy))√
Ep2

ij(x ∧ µx)
√

Ep2
ij(y ∧ µy)

(44)

=
E

〈(
xi

xj

)
∧
(

µx
i

µx
j

) ∣∣∣∣
(

yi

yj

)
∧
(

µy
i

µy
j

)〉
√√√√E

∥∥∥∥∥
(

xi

xj

)
∧
(

µx
i

µx
j

)∥∥∥∥∥
2
√√√√E

∥∥∥∥∥
(

yi

yj

)
∧
(

µy
i

µy
j

)∥∥∥∥∥
2

=
E

(
det

∣∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣∣ det
∣∣∣∣∣yi µy

i

yj µy
j

∣∣∣∣∣
)

√√√√E

(
det2

∣∣∣∣∣xi µx
i

xj µx
j

∣∣∣∣∣
)√√√√E

(
det2

∣∣∣∣∣yi µy
i

yj µy
j

∣∣∣∣∣
)

which corresponds exactly to the modified barycentric correlation matrix r, Definition 12 of
Faugeras (2024a). The exterior correlation matrices (43) and (44) have properties similar to
their barycentric analogue and their statements are thus omitted, see Theorem 5 in Faugeras
(2024a). In particular, these exterior correlation matrices are conceived to be a standardiza-
tion between −1 and 1 of the exterior covariance matrix (37), in the same way that Pearson’s
correlation coefficient standardizes the usual covariance in the Euclidean setting.
A total (scalar) measure of correlation between two CoDa [x]+ and [y]+ can be obtained by
summing the components of (43) or (44). Alternatively, one can define a total scalar measure
of correlation Tcor, directly from the exterior scalar product and norm as follows:

Definition 14. The total exterior correlation between [x]+ and [y]+ in Pd
+ is defined as

Tcor([x]+, [y]+) := E⟨x ∧ µx|y ∧ µy⟩√
E ∥x ∧ µx∥2

√
E ∥y ∧ µy∥2

(45)
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Further discussion, in particular, the relation with canonical angles, is to be found in Section
6.4.

5. Sketch of other statistical applications
Summarizing the results so far, we have introduced a distance and a pseudo-scalar product
between pairs of CoDa, along with covariance and variance matrices. One can further define
statistical notions like Fréchet means, Gaussian distributions, etc. together with correspond-
ing statistical applications like clustering or regression for random CoDa. We can mimic the
constructs of Faugeras (2024a) obtained with an affine barycentric approach. In order not to
repeat ourselves, we refer the reader to Faugeras (2024a) for more details and briefly sketch
the difference and some possible new statistical applications derived from the exterior product
approach.

5.1. Fréchet means and regression based on the exterior pseudo-norm N2

As in Faugeras (2024a) Section 5, one can define Fréchet mean/median and variance based
on the minimization of the expected (squared or elevated to some power) pseudo-norm N2,
i.e. metric notions of center and dispersion. The Fréchet mean corresponds to minimizing
the total exterior variance TVar2 of (42). Several useful variants (medoid, clustering,. . .)
are discussed in Section 4.2 of Faugeras (2024a). In particular, weighted versions yield non-
parametric estimators of the regression function of a CoDa given covariates, see e.g. Section
7.3 of Faugeras (2024a) for an example of a local linear Fréchet regression with Euclidean
predictors based on the N1 divergence, and Section 7.4 of Faugeras (2024a) for a discussion
of further extensions. Assuming the data is normalized on the unit sphere, the computation
of (weighted) Fréchet means based on the N2 distance amounts to minimizing a quadratic
function with the unit sphere constraint, i.e. with a quadratic constraint, and thus is com-
putationally relatively straightforward. As in Faugeras (2024a), we stress the interest of the
proposed approach in the ability of the distance N2 to handle CoDa with zeroes, which is
useful in some applications.

5.2. Weighted distance, Mahalanobis distance and classification

As a further generalization, one can define a weighted version of the N2 pseudo-norm (31)
between CoDa: given W =

(
wij

)
∈ R(d+1)2 some symmetric matrix with positive components,

the W -weighted pseudo-norm N2,W between [r]+ and [s]+ is defined as

N2
2,W ([r]+, [s]+) :=

∑
i<j w−1

ij p2
ij([r]+, [s]+])

||r||2 ||s||2
=

∑
i<j w−1

ij det2
∣∣∣∣∣ri si

rj sj

∣∣∣∣∣
||r||2 ||s||2

, (46)

which is the analogue of the W -weighted 2-barycentric divergence, Definition 15, Equation
(15), of Faugeras (2024a), but with the ℓ2 normalization. This allows to define anisotropic
Gaussian distributions, similar to Definition 6 in Faugeras (2024a).
In particular, it is interesting to use, as weight matrix in (46), the exterior variance matrix
(40), i.e. W = Var2([x]+). This allows to define an analogue of the Mahalanobis distance for
CoDa as

N2,Var2([x]+)([r]+, [s]+).

It measures the distance between pairs of component of [r]+ and [s]+ relatively to the scale
of variation of the corresponding pairs of components of [x]+. Such Mahalanobis distance
should be useful for measuring the outlyingness of a CoDa point and identifying outliers in
a sample. In addition, it could also be applied for clustering and classification of CoDa: for
classification into k classes, one estimates the variance matrix Wk and mean [µk]+ of each
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class, based on samples known to belong to each class, and then one classify a test point
[y]+ as belonging to the class for which the CoDa Mahalanobis distance N2,Wk

([y]+, [µk]+)
is minimal.

5.3. Gaussian distributions

As in Faugeras (2023) and Faugeras (2024a), one can define families of Gaussian-type dis-
tributions based on the N2 distance (31). This amounts to defining the density f[X]+ of the
exterior (isotropic) Gaussian distribution with parameters ([m]+, σ) as

f[X]+([x]+; [m]+, σ) := Z−1([m]+, σ) exp
(
−N2

2 ([x]+, [m]+)/σ2
)

where Z is a normalizing constant. Variants including anisotropic versions can be defined
similarly to Faugeras (2024a), by using the W -weighted version (46) of the N2 pseudo-norm.
Details are omitted. We simply content ourselves with giving an illustration with [m]+ =
[1 : 0.5 : 0]+, σ = 1 in Figure 3: one gets similar level sets as the isotropic 2-Barycentric
Gaussian distribution (Definition 6.1 in Faugeras (2024a)), but with a different normalizing
constant, owing to the ℓ2 rescaling instead of the ℓ1 one. Note that in Figure 3, we chose a
mean parameter on the boundary of the simplex, illustrating the ability of these distributions
based on log-free divergences/distance to represent CoDa with zeroes.
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Figure 3: Isotropic Gaussian distribution based on the N2 norm. [m]+ = [1 : 0.5 : 0]+, σ = 1.

5.4. Wasserstein exterior distance between CoDa distributions via optimal
transportation

The N2 norm defines a bounded distance on the space of random CoDa variables,

EN2([x]+, [y]+) = E

( ||x ∧ y||
||x|| ||y||

)
,

which depends on the joint distribution P [x]+,[y]+ of the pair ([x]+, [y]+) of CoDa. It can be
turned into a Wasserstein-Kantotovich type probability metric (see e.g. Rachev (1991)), i.e. a
distance N2 on the space of CoDa probability measures between the (marginal) distributions
P [x]+ , P [y]+ , via optimal transportation,

N2(P [x]+ , P [y]+) := inf EN2([x]+, [y]+),

where the infimum is over all joint distribution P [x]+,[y]+ with given marginals P [x]+ , P [y]+ .
The latter metricizes weak convergence20, see e.g. Rachev and Rüschendorf (1998) or Villani

20Moment convergence is automatically implied since the distance is bounded.



28 Exterior Distance and Covariance Matrix for CoDa

(2009). Interpreting CoDa as a (discrete) probability distribution (see Faugeras (2024b)),
this yields a genuine distance between distributions of distributions, with possibly unequal
supports.

6. Related notions and approaches

6.1. The norm of a simple bi-vector as a quantification of Cauchy-Schwarz
inequality and relation with inequality divergences

Nielsen, Sun, and Marchand-Maillet (2017) show how one can build divergences and proximity
measures by quantifying an inequality, in particular the Cauchy-Schwarz inequality (see also
Budka, Gabrys, and Musial (2011)). The general principle is as follows: given an inequality

lhs(x, y) ≤ rhs(x, y),

where lhs, resp. rhs, denote the left-hand side, resp. right-hand side, of the inequality,
a divergence can be built by measuring the tightness in the inequality. Such measure of
tightness can be performed either on an interval scale, through the difference gap

diff(x, y) := rhs(x, y)− lhs(x, y) ≥ 0,

(or any monotone strictly increasing function thereof), or, when lhs > 0, on the ratio scale,
via the log-ratio gap

lr(x, y) := − log
( lhs(x, y)

rhs(x, y)

)
. (47)

If lhs(x, y) < rhs(x, y) for x ̸= y, and lhs(x, x) = rhs(x, x), then either diff or lr gives a
divergence, i.e. a measure of proximity, between x and y. In addition, if the inequality is
homogeneous, i.e. invariant through rescalings x← λx, y← µy, with λ, µ ̸= 0, then lhs > 0
entails, as sister inequality,

0 <
lhs(x, y)
rhs(x, y) ≤ 1,

which is dimensionless and scale-invariant. In turn, the latter can be quantified, either via
the difference gap, which gives as variant of diff its rational version,

diff′(x, y) := 1− lhs(x, y)
rhs(x, y)

or via the log-ratio gap, the latter giving the same divergence lr as (47). Both the rational
difference gap, diff′(x, y), and the log-ratio gap, lr(x, y), give a projective divergence, i.e. a
divergence which is invariant w.r.t. to rescaling of x, y. The log transformation is simply for
stretching the range of value to [0,∞] (thus with a possible infinite value if lhs = 0.)
Applied to the the Cauchy-Schwarz inequality,

|⟨x|y⟩| ≤ ||x||.||y|| ⇔ ||x||2.||y||2 − ⟨x|y⟩2 ≥ 0,

this gives

diff(x, y) = ||x||2.||y||2 − ⟨x|y⟩2

diff′(x, y) = 1− ⟨x|y⟩2

||x||2.||y||2

D(x, y) = − ln
(
⟨x|y⟩2

||x||2.||y||2

)
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In view of (14), the (squared) norm of simple bi-vectors, resp. pseudo-norm N2 of equivalence
classes, writes,

||x ∧ y||2 = diff(x, y),
N2

2 ([x]+, [y]+) = diff′(x, y).

Thus, one gets an algebraic interpretation of the Plücker norm ||x ∧ y|| of the parallelogram
x ∧ y and of the N2 pseudo-norm of equivalence classes [x], [y] of planes, resp. [x]+, [y]+ of
CoDa pairs: they both represent a quantification of the Cauchy-Schwarz inequality, either
on the interval scale for the square of the Plücker Norm ||x ∧ y||2, or on the ratio scale for
N2

2 ([x]+, [y]+). Conversely, in view of their expression in terms of the sine distance (17), one
gets geometric insight and interpretation of the divergences based on the Cauchy-Schwarz
inequality of Nielsen et al. (2017) and Budka et al. (2011).

Remark 8. i) The quantification of the Cauchy-Schwarz inequality in (14) is also known
in the matrix algebra literature as Lagrange’s identity,

||x||2||y||2 − ⟨x|y⟩2 =
∑
i<j

(xiyj − xjyi)2.

It is a special case, for x = r and y = s, of the so-called Binet-Cauchy identity,

(
n∑

i=1
xiri

) n∑
j=1

yjsj

− ( n∑
i=1

xisi

) n∑
j=1

yjrj


=

∑
1≤i<j≤n

(xiyj − xjyi)(risj − rjsi),

which itself is a special case of the Cauchy-Binet formula (7). The exterior algebra
approach thus gives geometric insight on these algebraic identities, as the latter equation
simply corresponds to the definition (12) of the scalar product of bi-vectors.

ii) Note that an elementary proof of Cauchy-Schwarz’s inequality follows from Lagrange
identity, or equivalently from the semi-positive-definiteness of the Gram Matrix of two
vectors.

6.2. Barycentric divergence as a two-sided quantification of the likelihood
ratio order

Let X, Y be continuous univariate real-valued random variables with densities fX , fY . The
likelihood ratio order is defined on the set of univariate absolutely continuous distributions
as

X ≤lr Y ⇐⇒ fY

fX
is non-decreasing. (48)

Such a concept is useful for constructing Uniformly Most Powerful tests or Median-Unbiased
estimates on families of distributions having a monotone likelihood ratio, see Pfanzagl (1979),
Brown, Cohen, and Strawderman (1976). To dispense with the cases where the ratios of
densities are undefined, condition (48) can be rewritten more generally as: for s, t ∈ R, s ≤ t
implies

fX(t)fY (s) ≤ fX(s)fY (t)⇐⇒ g(s, t) := det
∣∣∣∣∣fX(s) fY (s)
fX(t) fY (t)

∣∣∣∣∣ ≥ 0,

The implication s ≤ t⇒ g(s, t) ≥ 0 can further be written as a single inequality

1s≤tg(s, t) ≥ 0, ∀s, t ∈ R. (49)
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Following Faugeras and Rüschendorf (2018), one can build a one-sided risk excess measure,
i.e. a quantitative measure encoding the likelihood ratio order, by setting

D≤lr
+ (X, Y ) :=

∫∫
1s≤t(g(s, t))+dsdt, (50)

where x+ = max(x, 0) is the positive part of x. (D≤lr
+ (X, Y ) is finite since, by the triangle

inequality, 0 ≤ D≤lr
+ (X, Y ) ≤ 2.) Indeed, taking the integral of the positive part of the l.h.s.

of the inequality (49) gives a cumulative quantification of the strength of the (qualitative)
likelihood ratio order relation: if X ≤lr Y , the higher D≤lr

+ (X, Y ), the more Y dominates X

in the likelihood ratio order. On the other hand, if Y ≤lr X, then D≤lr
+ (X, Y ) = 0, so that

D≤lr is one-sided, in the terminology introduced by Faugeras and Rüschendorf (2018): the
zero value of D≤lr

+ (X, Y ) encodes when the order relation Y ≤lr X occurs.
Similarly, one can quantify the extent to which the reverse relation Y ≤lr X occurs. Indeed,
since g(t, s) = −g(s, t),

Y ≤lr X ⇐⇒ {s ≤ t⇒ fY (s)fX(t)− fY (t)fX(s) ≥ 0}
⇐⇒ 1s≤tg(t, s) ≥ 0⇐⇒ 1s≤tg(s, t) ≤ 0.

By setting
D≤lr

− (X, Y ) :=
∫∫

1s≤t(g(s, t))−dsdt ≥ 0, (51)

where x− := max(−x, 0) ≥ 0 is the negative part of x, one obtains a one-sided risk excess
measure of X ≥lr Y . Since |x| = x+ +x−, one can combine (50) and (51) into a single measure
by setting

D≤lr(X, Y ) := D≤lr
+ (X, Y ) +D≤lr

− (X, Y ) =
∫∫

1s≤t|g(s, t)|dsdt ≥ 0.

This yields a quantification of the likelihood ratio order “in both directions”.
In view of the expression of the N1 divergence (30) via the determinant (15), resp. the
determinantal expression of the α-barycentric divergence of Faugeras (2024a) Definition 1
and 2, it appears that the N1 divergence, resp. the α−barycentric divergence, is such a
two-sided quantification in the L2 norm, resp. the Lα norm, of how much two probability
measures P X , P Y differ, where the measure of difference is based on the twin quantification of
the likelihood ratio order: N1 tells how much P X and P Y differ, either from quantifying one
side X ≤lr Y , or from quantifying the other side Y ≤lr X. In other words, as in Definition 2
in Faugeras (2024a), one can extend the notion of N1 divergence from CoDa, i.e. probability
measures on a finite set of atoms, to probability measures on R, as

N1(P X , P Y ) :=
√∫∫

1s≤t|g(s, t)|2dsdt.

Remark 9. By integrating (49), X ≤lr Y implies X ≤hr Y , i.e. comparison in the hazard rate
order, and the latter is equivalent to X|X > t ≥st Y |Y > t for all t, i.e. stochastic dominance
of the conditional distributions over a threshold, see e.g. Müller and Stoyan (2002). The latter
property is key in defining the concept of neutrality of Connor and Mosimann (1969), which
is an analogue of intra-independence of components for CoDa (see also Faugeras (2024b)).
Thus, N1 also appears as a quantification of neutrality.

6.3. Relation to generalized sine functions

Related to the exterior product approach are several generalizations of the sine function of
a planar angle to the solid angle of multi-vectors and corresponding subspaces. Since the
planar sine is a ratio of length, the natural extension of the sine to solid angle is to consider
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the generalization of the sine as a ratio of volumes. Hence, Euler (1781), Eriksson (1978),
Lerman and Whitehouse (2009), were lead to define the polar sine (originally defined for d+1
vectors x0, . . . , xd in Rd+1), as the ratio of the signed volume of the parallellotope represented
by x0 ∧ . . . ∧ xd w.r.t the volume of the rectangular parallellotope with edges equal to the
magnitudes of the vectors x0, . . . , xd,

psin(x0, . . . , xd) := det A(x0 ∧ . . . ∧ xd)
||x0|| . . . ||xd||

,

where A(x0 ∧ . . . ∧ xd) is the A−matrix (5) with columns the vectors x0, . . . , xd, see21, e.g.,
Section 2.4 in Lerman and Whitehouse (2009). A non-negative version of the polar sine,
which works also for k vectors x1, . . . , xk in Rd+1, is defined as

psin+(x1, . . . , xk) =
√

det G

||x1|| . . . ||xk||
= ||x1 ∧ . . . ∧ xk||
||x1|| . . . ||xk||

,

where G = G(x1, . . . , xk) is the Gram matrix (8) associated with x1, . . . , xk. Hadamard’s
inequality yields 0 ≤ psin+(x1, . . . , xk) ≤ 1 and in the case k = d + 1, psin+(x0, . . . , xd) =
|psin(x0, . . . , xd)|. The polar sine can also be understood as a quantification of Hadamard’s
inequality (in the spirit of Section 6.1) to obtain a standardized/dimensionless measure of
linear dependence, being zero if the vectors are dependent and one if they are orthogonal
(“maximally independent”).
As a consequence, it appears that the spherical/ℓ2 normalized representation S(x) ∧ S(y) of
(25), in the interpretation ii) of Section 3, of pairs of directions ([x], [y]) and pairs of CoDa
([x]+, [y]+), is the particular case, for k = 2, of a more general possible “spherical” represen-
tation of k-tuples of directions ([x1], . . . , [xk]), and k-tuples of CoDa ([x1]+, . . . , [xk]+), as the
ratio of a simple k−vector to the product of the norms of its 1−vectors components, viz.

x1 ∧ . . . ∧ xk

||x1|| . . . ||xk||
= S(x1) ∧ . . . ∧ S(xk).

Then, the polar sine simply interprets as the Plücker norm of this standardized representative
of k-tuples of equivalence classes, i.e.

psin+(x1, . . . , xk) = ||S(x1) ∧ . . . ∧ S(xk)||.

6.4. Relation to canonical angles of subspaces and projection matrices

Being an algebraization of geometric notions, the exterior product naturally expresses in
geometric language. In particular, the scalar product between multivectors is related to Jor-
dan (1875)’s canonical/principal angles between subspaces and Hotelling (1936)’s canonical
correlations. Since subspaces are in one to one correspondence with orthogonal projection ma-
trices, relations between subspaces can also be studied via their analogue between projection
matrices, see e.g. Afriat (1957), Galántai (2008).

Canonical angles from Grassmann’s viewpoint

Let us recall the definition of principal angles: let V,W be nonzero subspaces, p = dimV, q =
dimW, with respective basis (v1, . . . , vp) and (w1, . . . , wq). These subspaces are represented
by matrices V ∈ R(d+1)×p, W ∈ R(d+1)×q of full rank formed by the column vectors of the
corresponding basis. Then, the relative position of V,W is given by m = min(p, q) principal
angles 0 ≤ θ1 ≤ . . . ≤ θm ≤ π/2 and associated principal orthonormal basis (ṽ1, . . . , ṽp) and
(w̃1, . . . , w̃q) of V and W resp. s.t. for 1 ≤ i, j ≤ m, ⟨ṽi|w̃j⟩ = δij cos θi, where δij stands
for the Kronecker symbol, and ⟨ṽi|w̃j⟩ = 0 for i > m or j > m. The principal angles and

21psin is denoted pd sin0 in Lerman and Whitehouse (2009) and polsin in Eriksson (1978)
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basis can be obtained iteratively, by solving an eigensystem (Zassenhaus (1964)), or by the
singular value decomposition of an oblique projection matrix or of a difference of projection
(Björck and Golub (1973), Stewart and Sun (1990)).
Gluck (1967), Jiang (1996), Mandolesi (2021b), Mandolesi (2021a), Mandolesi (2020) have
studied the relation between canonical angles and the scalar product and norm of multi-
vectors (see also Miao and Ben-Israel (1992), Gunawan, Neswan, and Setya-Budhi (2005)).
In particular, given a simple p-vector v1 ∧ . . . ∧ vp representing V and PW the orthogonal
projection matrix on W, Mandolesi (2021a) defines the asymmetric angle θV,W ∈ [0, π/2]
between V and W via its cosine as

cos θV,W := ||PWv1 ∧ . . . ∧ PWvp||
||v1 ∧ . . . ∧ vp||

, (52)

and the complementary angle as θ⊥
V,W := θV,W⊥ . Since the Plücker embedding represents

multi-dimensional subspaces of Rd+1 as one dimensional subspaces of ∧(Rd+1), θV,W corre-
sponds to a genuine angle between lines of ∧(Rd+1). θV,W is an asymmetric measure of partial
orthogonality: θV,W = π/2 if p > q or if V is partially orthogonal to W, i.e. if a nonzero
vector of V is orthogonal to all vectors of W, see e.g. Mandolesi (2020).
The relation with the canonical angles is (Proposition 2.6 in Mandolesi (2020)) that, if m =
p ≤ q, then

cos θV,W =
m∏

i=1
cos θi, cos θ⊥

V,W =
m∏

i=1
sin θi,

and the connection with the scalar product and norm of multi-vectors is that, if m = p ≤ q,
then

|⟨v1 ∧ . . . ∧ vp|w1 ∧ . . . ∧wq⟩| = ||v1 ∧ . . . ∧ vp|| ||w1 ∧ . . . ∧wq|| cos θV,W

||v1 ∧ . . . ∧ vp ∧w1 ∧ . . . ∧wq|| = ||v1 ∧ . . . ∧ vp|| ||w1 ∧ . . . ∧wq|| cos θ⊥
V,W

These relations are multi-dimensional generalizations of the one-dimensional (symmetric)
acute angle θ([x], [y]) ∈ [0, π/2] between lines [x] = span(x) and [y] = span(y):

|⟨x|y⟩| = ||x|| ||y|| cos θ([x], [y])
||x ∧ y|| = ||x|| ||y|| sin θ([x], [y]) (53)

Note that an oriented version θ̃V,W ∈ [0, π] of the asymmetric angle θV,W ∈ [0, π/2] can be
defined by (see equation (8) of Mandolesi (2020))

cos θ̃V,W := sign(⟨v1 ∧ . . . ∧ vp|w1 ∧ . . . ∧wq⟩) cos θV,W , (54)

so that the scalar product between multi-vectors writes

⟨v1 ∧ . . . ∧ vp|w1 ∧ . . . ∧wq⟩ = ||v1 ∧ . . . ∧ vp|| ||w1 ∧ . . . ∧wq|| cos θ̃V,W . (55)

Equation (55) rewrites as

cos θ̃V,W =
〈
S(v1 ∧ . . . ∧ vp)

∣∣S(w1 ∧ . . . ∧wq)
〉

(56)

where we have introduced the multi-vectors

S(v1 ∧ . . . ∧ vp) := v1 ∧ . . . ∧ vp

||v1 ∧ . . . ∧ vp||
, S(w1 ∧ . . . ∧wq) := w1 ∧ . . . ∧wq

||w1 ∧ . . . ∧wq||
,

which are the generalization for general p and q of the normalized representative S(x ∧ y) in
the interpretation i) of Section 3.2. In view of the discussion of Section 3.2, these normalized
multi-vectors only encode the (oriented) direction of their corresponding vector subspaces so
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that their scalar product only involves the relative orientation between these subspaces, i.e.
the canonical angles, as reflected by equation (56).

Relation to the exterior covariance of CoDa
Applied to the bi-vectors x ∧ µx and y ∧ µy of Section 4, these formulas give the following
geometrical interpretation of TCov2 of Definition 9: by (55) and (53), (39) writes

TCov2([x]+, [y]+) := E

( ⟨x ∧ µx|y ∧ µy⟩
||x|| ||µx|| ||y|| ||µy||

)
= E

(
sin θ(x, µx) sin θ(y, µy) cos θ̃span(x,µx),span(y,µy)

)
(57)

Such formula is the analogue for CoDa of the total covariance for Euclidean vectors. Indeed,
for Euclidean vectors x, y ∈ Rd+1, with covariance matrix Σxy = E((x−Ex)(y−Ey)T ), let
us define the total covariance of x, y as

TCov(x, y) := trace(Σxy) = E

(∑
i

(xi − Exi)(yi − Eyi)
)

= E(⟨x− Ex|y− Ey⟩)
= E(||x− Ex|| ||y− Ey|| cos θ(x− Ex, y− Ey)). (58)

TCov writes as the expected product of the distances between x, y and their respective means
Ex, Ey, times the cosine of the angle between these displacement vectors. Thus, it gives a
valid global scalar measure, summarizing the covariation between two random vectors, while
the full picture, i.e. the covariation components by components, is given by the covariance
matrix Σxy.
Formula (57) is the homogenized version of (58): sin θ(x, µx), sin θ(y, µy) now measures the
scale invariant sine distance between CoDa [x]+, [y]+ and their respective means [µx]+ and
[µy]+, and θ̃span(x,µx),span(y,µy) is the cosine of the oriented asymmetric angle (52), i.e. the
product of the cosines (up to sign) of the two canonical angles between the projective lines
corresponding to the planes span(x, µx), and span(y, µy).
For the components Cov2([x]+, [y]+)i,j of the exterior covariance matrix of Definition 9 i),
such geometrical interpretation breaks down, as the ratio in (37) involves in the numerator
the scalar product of the projection on the (i, j) plane of the two bi-vectors, whereas the
denominator is the norm of the (non-projected) vectors. Still, the concept of the exterior
covariance matrix remains meaningful: first, its construction is analogous to the Euclidean
vector case. Second, it allows to decompose the total exterior covariance along its components,
as the sum of the components of the exterior covariance matrix is the total exterior covariance.

Relation to exterior correlation of CoDa
Similar discussion can be carried on for the exterior correlation matrices, Definition 13. Re-
garding the exterior total correlation coefficient, Definition 14 mimics in equation (45) the
definition of the correlation coefficient of Euclidean vectors, i.e. as a ratio of the total exterior
covariance by the square root of the total exterior variances: one takes the expectation of
the expected scalar product of bi-vectors, divided by the square root of the product of the
expected norm of the bi-vectors. In view of (56), it also makes sense to consider directly the
average of the cosine of the asymmetric angle as a measure of correlation for CoDa. We are
thus lead to the following definition.
Definition 15. The Grassmann total correlation coefficient between [x]+ and [y]+ is defined
as

TCorG([x]+, [y]+) := E⟨S(x ∧ µx)|S(y ∧ µy)⟩

= E

( ⟨x ∧ µx|y ∧ µy⟩
∥x ∧ µx∥ ∥y ∧ µy∥

)
= E cos θ̃span(x,µx),span(y,µy),
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where θ̃span(x,µx),span(y,µy) is the oriented asymmetric angle (54) between the projective lines
corresponding to the planes span(x, µx), and span(y, µy).

Relation to the gap distance of projection matrices

Eventually, we hinted in the Appendix of Faugeras (2023), at the possibility of representing a
CoDa point [x]+ as a projection matrix projx := xxT /(xT x). Such representation was used
in the first proof of the triangle inequality in Theorem 7 v), where we expressed the N2 norm
in term of the Froebenius distance between projection matrices

N2([x]+, [y]+) = 1√
2
||projx − projy||F .

For a unit norm x, ||projx−projy||F corresponds to d(x, span(y)) = infλ∈R ||x−λy||, see e.g.
Qiu, Zhang, and Li (2005), Galántai (2004).
Let us mention that, more generally, the gap distance (used, notably in functional analysis,
see e.g. Kato (1995), Galántai (2004)) between equi-dimensional subspaces U ,V is defined as

gap(U ,V) := ||projU − projV ||F = sin θm

where projU , resp. projV , is the orthogonal projection matrix on U , resp. V and is equal to
the sine of their largest principal angle.

7. Conclusion
We have thus tried to give a guided tour on the projective geometry viewpoint to CoDa
analysis based on the exterior product and Grassmann’s algebra, so that these powerful tools
can be made available to the CoDa community. We supplied a gentle, intuitive approach to
these abstract objects, interpreting geometrically bi-vectors as oriented parallelograms, which
admit linear representations as Plücker or Compound matrices. A scalar product and norm
on bi-vectors, extending the usual ones, can be defined and transferred to equivalence classes.
For CoDa, this results in a pseudo-scalar product and pseudo-norm. It is remarkable that
the pseudo-norm obtained with the ℓ1 normalization yields the 2-barycentric divergence of
Faugeras (2024a), which was obtained in that paper from the affine geometry viewpoint, with
a somehow heuristic reasoning based on barycentric coordinates. The present paper thus
gives a theoretical justification to the constructs of Faugeras (2024a).
The ℓ2 normalization of the pseudo-norm yields added benefits for measuring the closeness
of CoDa: one gets a log-free, orthogonally invariant, bounded distance satisfying the trian-
gle inequality on the full CoDa space (hence, allowing for zeroes). Elaborating further, we
introduced key statistical constructs for measuring the dispersion and covariation of Coda,
both at the level of pairs of components, and globally. We described the connections with
related notions of the literature, like divergences based on quantifying the Cauchy-Schwarz
inequality or the likelihood ratio order, the polar sine, canonical angles between subspaces
and projections matrices.
In turn, the exterior distance and variance/covariance/correlation matrices introduced in the
paper can serve as the backbone for further statistical analysis. For length reasons, we have
barely scratched the surface of potential statistical applications and only sketched possible sta-
tistical analysis based on Fréchet means, weighted and Mahalanobis-type distances, Gaussian
distributions, Optimal Transportation distances, etc. Our objective was to lay the theoretical
foundations for a unified statistical analysis from the projective viewpoint aided with the
exterior product. The main message is that the exterior product yields an underlying linear
structure and a powerful algebraic tool for the analysis of CoDa in a geometric way. More
detailed and applied statistical applications will be pursued elsewhere.
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Appendix A: The exterior product and Grassmann’s algebra in a nutshell
It is instructive to look how the general, abstract algebraic, top-bottom, construction of the
exterior product and Grassmann’s algebra traditionally found in the literature is in agreement
with the bottom-up, based on geometric intuition, approach of Section 2. We thus give a very
quick introduction to the general theory, following Kung et al. (2009) Chapter 6.6. Let V be
a n-dimensional real vector space. For u1, . . . , uk ∈ V , their exterior product is the formal
expression u1 ∧ . . . ∧ uk, and the k-th exterior power Λk(V ) of V is the vector space of all
linear combination of such expressions, modulo22 the following relations

u1 ∧ . . . ∧ (aui + bvi) ∧ . . . ∧ uk = au1 ∧ . . . ∧ ui ∧ . . . ∧ uk

+ b u1 ∧ . . . ∧ vi ∧ . . . ∧ uk

u1 ∧ . . . ∧ ui ∧ . . . ∧ uj ∧ . . . ∧ uk = −u1 ∧ . . . ∧ uj ∧ . . . ∧ ui ∧ . . . ∧ uk

expressing the multi-linearity of the product and its anti-symmetry. If e1, . . . , en is a basis of
V , then the set of multi-vectors ei1 ∧ ei2 ∧ . . .∧ eik

with 1 ≤ i1 < i2 < . . . ik ≤ n form a basis
of Λk(V ). The exterior algebra Λ(V ) is the algebra on the direct sum Λ(V ) = ⊕n

k=1 Λk(V )
with (associative) multiplication ∧ defined formally on exterior products by

(u1 ∧ . . . ∧ uk) ∧ (v1 ∧ . . . ∧ vj) := u1 ∧ . . . ∧ uk ∧ v1 ∧ . . . ∧ vj

and extended by linearity.
For two vectors x = ∑n

i=1 xiei, y = ∑n
i=1 yiei, their exterior product gives, by bilinearity and

antisymmetry,

x ∧ y =
(

n∑
i=1

xiei

)
∧

 n∑
j=1

yjej


=

n∑
i=1

n∑
j=1

xiyjei ∧ ej

=
∑

1≤i<j≤n

xiyjei ∧ ej +
∑

1≤j<i≤n

xiyjei ∧ ej

=
∑

1≤i<j≤n

xiyjei ∧ ej +
∑

1≤i<j≤n

xjyiej ∧ ei

=
∑

1≤i<j≤n

(xiyj − yjxi)ei ∧ ej ,

where we used the fact that ei ∧ ei = 0 and ej ∧ ei = −ei ∧ ej . Thus, the simple bi-vector
x ∧ y decomposes onto the bi-vector basis (ei ∧ ej)i<j , into the n(n− 1)/2 components

det
(

xi yi

xj yj

)
= pij(x, y),

in agreement with our definition of Plücker components (2).

Appendix B: Notations
• (Column) vectors x = (x0, x1, . . . , xd) ∈ Rd+1 are written in bold letters, and operations

on vector are interpreted component wise. span(x, y) vector subspace spanned by x, y.
• ||.|| = ||.||2 denotes the usual norm (Euclidean/ℓ2), ||x||1 = ∑d

i=0 |xi| the ℓ1 norm.
• R+ = {x ∈ R, x ≥ 0} stands for the non-negative part of R.

22This corresponds to defining the exterior power as a quotient space of the tensor product space by these
relations, see e.g. Bhatia (1997) and Federer (1969).
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• ∆d
+ =

{
x ∈ Rd+1

+ : ||x||1 = 1
}

the d-dimensional (unit or probability) simplex of Rd+1,
Sd = {x ∈ Rd+1 : ||x|| = 1} the unit sphere.

• Pd real projective space of dimension d induced by Rd+1, Pd
+ the space of (non-negative)

CoDa vectors as equivalence classes [.]+.
• [x] ∈ Pd, [x]+ ∈ Pd

+ are projective, resp. CoDa, equivalence classes of x.
• C(x) = x/||x||1 closure operation/normalization by the ℓ1 norm. S(x) = x/||x|| spheri-

cal projection/normalization by the ℓ2 norm. R(x) square root transformation.
• x∧y parallelogram/exterior product of two vectors/simple bi-vector. ∧k(V ) kth exterior

power of V , ∧(V ) exterior algebra of V .
• A(x, y) A-matrix of the pair (x, y), P (x ∧ y) Plücker P -matrix of x ∧ y, Cp(A) p-th

Compound matrix of A. G(x, y) Gram matrix of the A(x, y) matrix.
• ⟨x∧y|r∧ s⟩ scalar product of two simple bi-vectors, ||x∧y|| (Plücker) norm of a simple

bi-vector.
• ⟨[x]+, [y]+|[r]+, [s]+⟩1, resp. ⟨[x]+, [y]+|[r]+, [s]+⟩2 pseudo-scalar product between pairs

of CoDa based on the ℓ1, resp. ℓ2 normalization. N1([x]+, [y]+), resp. N2([x]+, [y]+)
corresponding pseudo-norm of a pair of CoDa. N1/2([x]+, [y]+) pseudo-norm based on
the square root transform R. N2,W ([x]+, [y]+) weighted N2 pseudo-norm with weight
matrix W .

• Cov2([x]+, [y]+), Var2([x]+), Cor2([x]+, [y]+) exterior covariance, variance, correlation
matrices based on the ℓ2 normalization. TCov2([x]+, [y]+), TVar2([x]+), TCor2([x]+, [y]+)
corresponding total (scalar) measure of exterior covariance, variance and correlation.
TCorG([x]+, [y]+) Grassmann total correlation coefficient.

• θ(x, y) ∈ [0, π] (symmetric) angle between vectors, θ([x], [y]) ∈ [0, π/2], θ([x]+, [y]+) ∈
[0, π/2] acute angle between lines/rays, θV,W ∈ [0, π/2] asymmetric angle between sub-
spaces, θ̃V,W ∈ [0, π] oriented asymmetric angle between subspaces, θ⊥

V,W ∈ [0, π/2]
complementary angle between subspaces.
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