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Abstract
The presence of zeroes in Compositional Data (CoDa) is a thorny issue for
Aitchison’s classical log-ratio analysis. Building upon the geometric approach
by Faugeras (2023), we study the full CoDa simplex from the perspective of
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naturally expressed in barycentric coordinates. A decomposition formula for the
displacement vector of two CoDa points yields a novel family of barycentric
dissimilarity measures. In turn, these barycentric divergences allow to define i)
Fréchet means and their variants, ii) isotropic and anisotropic analogues of the
Gaussian distribution, and importantly iii) variance and covariance matrices.
All together, the new tools introduced in this paper provide a log-free, direct
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1 Introduction
Compositional data (CoDa) analysis provides a framework for the statistical treatment
of simplex-valued data, offering insights into proportional relationships. Traditional
CoDa methods rely on log-ratio transformations to address inherent constraints, yet
these approaches falter when zero values are present. This paper introduces a novel
affine geometric perspective on CoDa, leveraging barycentric coordinates to define
divergence measures and variance matrices applicable to the entire simplex, including
compositions with zeros. By reframing CoDa as affine points rather than Euclidean
vectors, we overcome limitations of classical techniques, providing unified tools for
statistical analysis.

1.1 A primer on Compositional data (CoDa)
Compositional data (CoDa) consist of non-negative multivariate data a =
(a0, a1, . . . , ad) ∈ Rd+1, where each ai ≥ 0 represents the quantity of the i-th compo-
nent in a composition. It is understood that the raw magnitude ai is meaningless in
isolation; only its proportion relative to other components matter. Composition of soil
in geology, elements in a mixture in chemistry, sources of calories in nutrition, or vote
shares in an election are examples of CoDa.

The standard approach, pioneered by Aitchison (1986), normalizes the raw com-
position vector a by its sum, i.e. expresses the data in percentages, via the closure
operation:

C(a) := a∑d
0 ai

= a
||a||1

, (1)

where ||.||1 stands for the ℓ1-norm. This leads to the consideration of normalised CoDa
element as a vector

x = (x0, . . . , xd) = C(a),
confined to the d-dimensional unit simplex,

∆d
+ := {x = (x0, . . . , xd) ∈ Rd+1 : xi ≥ 0,

d∑
i=0

xi = 1}. (2)

The unit-sum and non-negativity constraints preclude the direct application of
conventional multivariate statistics: the naive covariance matrix,

Σ :=
(
cov(xi, xj)

)
∈ R(d+1)×(d+1), (3)

produces spurious correlations and lacks subcompositional coherence (Pearson (1897),
Chayes (1971)). To circumvent this, log-ratio transformations—additive (alr), centered
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(clr), and isometric (ilr)—map the positive simplex ∆d
++ = {x > 0, x ∈ ∆d

+} into a
Euclidean space, enabling standard analyses (Greenacre (2018), Pawlowsky-Glahn
et al. (2015), Van Den Boogaart and Tolosana-Delgado (2013)).

A central challenge in CoDa analysis is quantifying component interdependence.
The main approaches are based on the variance matrix of log-ratio transformed data.
Aitchison (1986) proposed the variation matrix T = (tij) ∈ R(d+1)×(d+1), defined as:

tij := Var
(

ln xi

xj

)
, (4)

while the clr- and ilr-variance matrices (Σclr and Σilr) derive from the variance matrix
of corresponding log-transformed data (Aitchison (1986), Greenacre (2018)) or Van
Den Boogaart and Tolosana-Delgado (2013)).

1.2 Motivation
Despite its successes, the log-ratio approach fails when CoDa include zero components,
as logarithmic transformations become undefined. This limitation is critical in fields like
chemometrics and bioinformatics, where datasets (e.g., microbiome profiles) frequently
contain numerous zeros. Efforts to mitigate this through zero-imputation methods (e.g.,
Lubbe et al. (2021), Mart́ın-Fernández et al. (2015), Palarea-Albaladejo and Mart́ın-
Fernández (2015)) introduce sensitivity to replacement techniques, often distorting
log-ratio variance estimates due to the logarithm’s behavior near zero (Greenacre
(2021)). Quoting Greenacre (2021) p. 295, “Zeros in compositional data are the Achilles
heel of the logratio approach”. These challenges underscore the need for alternative
representations that accommodate zeros without imputation.

1.3 Aims, scope and contributions
This paper redefines CoDa within an affine geometric framework, building on Faugeras
(2023), where compositions are treated as projective points in Pd

+, the projectivization
of the non-negative orthant Rd+1

+ . In Faugeras (2023), CoDa are defined as equivalence
classes [x]+ for the (positive) scaling relation,

z ∈ [x]+ ⇔ z = λx, for some λ > 0

of non-negative vectors x ≥ 0, x ∈ Rd+1. The components of the vector representative
x of [x]+, are its homogeneous coordinates, denoted by [x0 : x1 : . . . : xd]. In turn, these
equivalence classes admits several representations within different geometric models.

Here, we focus on the affine model of Pd
+ provided by the simplex ∆d

+, inter-
preting/identifying a CoDa projective point [x]+ as an affine point with barycentric
coordinates (x0, x1, . . . , xd) rather than a Euclidean vector with Cartesian coordinates.
As a consequence, the displacement vector from CoDa point y to x in the simplex
does not write plainly as the vector

x− y = (x0 − y0, . . . , xd − yd)
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obtained by the difference of their coordinates, (as would be the case for x, y vectors),
but is given by a more complicated formula (see the forthcoming Lemma 6). Such a
formula for the displacement vector in barycentric coordinates is key to build notions of
proximity–barycentric divergence–between CoDa affine points and related barycentric
variance matrices.

This shift of perspective eliminates reliance on log-ratios, enabling analysis across
the full simplex, including zero-containing compositions. Our primary contributions
are twofold:
• Barycentric Divergences: We introduce a family of α-barycentric divergence

measures, applicable to all CoDa, and explore their geometric properties, extending
them to infinite-dimensional positive measures.

• Barycentric Variance-Covariance matrices: We define covariance and variance
matrices based on displacement vectors in barycentric coordinates, offering a log-
free alternative to traditional log-ratio variance matrices for assessing component
proportionality.

1.4 Outline
The paper outlines these concepts using affine geometry, avoiding the complexity
of projective methods detailed in a companion study (Faugeras (2024a)). We begin
in Section 2 by elaborating on the affine viewpoint of CoDa and the formula of
the displacement vector in barycentric coordinates. Subsequent sections develop the
mathematical foundations (Section 3 and 6), derive statistical applications (e.g., Fréchet
means (Section 4), Gaussian distributions (Section 5)), and validate the approach
through simulations (Section 7).

Appendix A gives a primer on the basics of affine spaces and barycentric coordinates,
outlining the differences with vector spaces and Cartesian coordinates. In particular,
we give the key basic formula (Lemma 6) for the displacement vector between two
points expressed in barycentric coordinates. Readers unfamiliar with affine geometry
are encouraged to review Appendix A prior to proceeding, while those with prior
knowledge may proceed directly, consulting Lemma 6 as needed.

2 CoDa as an affine point in barycentric coordinates
In this section, we elaborate on the simplex representation of CoDa as affine points
expressed in barycentric coordinates. In particular, we show how the amalgamation,
subcomposition and partition operations on CoDa correspond to affine operations on
barycenters. More importantly, we show that the displacement between two CoDa
elements can be decomposed in terms of displacements of the different pairs of basis
frame parts.

Indeed, in view of Appendix A’s discussion of affine geometry and the homogeneous
character of barycentric coordinates, we elucidate why CoDa elements within the
simplex ∆d

+ are to be regarded as affine points in barycentric coordinates rather than
Euclidean vectors: identifying each component i of a composition with an affine point
Ai, it is reasonable to assume that the set F = {Ai, i = 0, . . . , d} is made of affinely
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independent points, since components relate to different entities and are then not
related to each others. Consequently, a (simplex representative of) CoDa x ∈ ∆d

+
corresponds to the affine point

x =
d∑

i=0
xiAi,

d∑
i=0

xi = 1, xi ≥ 0,

in normalized barycentric coordinates, as in (A4).

2.1 CoDa operations as affine operations on points
We now show how the Amalgamation, Subcomposition and Partition operations on
CoDa of Aitchison (1986) have a simple geometric description in terms of barycenters
and affine combinations of points. Recall that given a CoDa x = (x0, . . . , xd) ∈ ∆d

+,
an amalgamation of order 1 is a mapping

∆d
+ ∋ x 7→ t ∈ ∆1

+,

obtained when the parts of a (d+1)− composition are separated into two mutually exclu-
sive and exhaustive subsets, and the composition within each subset are added together.
This results in a 2−parts composition in ∆1

+. For example, x = (x0, x1, x2, x3) ∈ ∆3
+

can be amalgamated into t = (t0, t1) with t0 = x0 +x1, t1 = x2 +x3. A subcomposition

∆d
+ ∋ x 7→ c ∈ ∆k

+

is obtained by selecting k + 1 parts of a composition and closing the selected subvector
to obtain a subcomposition in ∆k

+. Finally, a partition of order one is the separation
of a (d + 1)−parts composition into two disjoint and exhaustive subsets, and recording
the amalgamation and subcomposition of each subsets. For example, the order one
partition

(x0, . . . , xk

∣∣xk+1, . . . , xd)
cuts the (d + 1)−parts at position 0 ≤ k ≤ d and yields an amalgamation vector
t = (t0, t1), with t0 = (x0 + . . . , xk), t1 = (xk+1 + . . . + xd), together with the two
vectors of subcompositions

c0 = C(x0, . . . , xk) = (x0, . . . , xk)
t0

, c1 = C(xk+1, . . . , xd) = (xk+1, . . . , xd)
t1

.

By Property 2.10 and 2.11 of Aitchison (1986), this results in a bijective transformation

∆d
+ ∋ x 7→ (t, c0, c1) ∈ ∆1

+ ×∆k
+ ×∆d−k−1

+ .

Identifying a CoDa element x = (x0, . . . , xd) ∈ ∆d
+ with the affine point P =∑d

i=0 xiAi expressed as a barycenter of the base parts-points Ai, the point P can be
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decomposed as a sum of two points

P =
(

k∑
i=0

xiAi

)
+
(

d∑
i=k+1

xiAi

)
:= C0 + C1.

C0 and C1 write, in normalized barycentric coordinates, as

C0 =
k∑

i=0

xi∑k
j=0 xj

Ai =
k∑

i=0

xi

t0
Ai =

k∑
i=0

c0iAi,

C1 =
d∑

i=k+1

xi∑d
j=k+1 xj

Ai =
d∑

i=k+1

xi

t1
Ai =

d∑
i=k+1

c1iAi,

where (c0i), resp. (c1i), are the components of c0, resp. c1. The weighted point (1, P )
writes, also in normalized barycentric coordinates, as

P = t0C0 + t1C1, t0 + t1 = 1. (5)

In other words, the composition P can be partitioned into two subcompositions C0
and C1, whose normalized barycentric coordinates c0, c1 corresponds to the subcom-
position operation of Aitchison (1986). In addition, the original composition point P
writes as the barycenter of these two subcompositions points, with barycentric coor-
dinates t = (t0, t1) w.r.t. C0, C1, corresponding to the amalgamation operation. The
equality (5) is the statement of Properties 2.10 and 2.11 of the partitioning operation
of Aitchison (1986) in affine geometric language and corresponds to the well-known
property of associativity/reduction of the barycenter, that is to say that a barycenter
can be computed from sub-barycenters.

These considerations, although elementary, shed a geometric light on the basic
operations on compositions and thus vindicate the affine viewpoint espoused in this
paper. In particular, it clarifies the role of the total/amalgamation/closure in the
treatment of CoDa with a total.

2.2 Displacement vectors of CoDa points
We now turn our focus on the key formula for the displacement vector of CoDa points.
Indeed, for CoDa points x, y ∈ ∆d

+, the unit sum normalization ||x||1 = ||y||1 = 1
entails a simplification in formula (A5) in Lemma 6, as

−→xy =
∑
i<j

det
∣∣∣∣xi yi

xj yj

∣∣∣∣−−−→AiAj (6)

and makes it clear why the displacement between two CoDa points should not write
as a difference (A1) of their coordinates in a frame of reference (see Appendix A.4).
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Formula (6) is the key ingredient for the affine viewpoint of this paper: it gives the
decomposition of the displacement vector from x to y in terms of the d(d + 1)/2
displacements −−−→AiAj of two different points Ai, Aj , i ̸= j, of the affine frame F .
Remark 1 (Displacement coordinates as weighted ratios). Formula (6) can be written
in terms of ratios. Indeed, let

vij := det
∣∣∣∣xi yi

xj yj

∣∣∣∣ , 0 ≤ i ̸= j ≤ d, (7)

be the determinantal coefficient of the component of the displacement in the −−−→AiAj

direction in formula (6). It writes, for xi ̸= 0, yi ̸= 0, as

vij = xiyj − yixj = xiyi

(
yj

yi
− xj

xi

)
. (8)

Let Ui := {[x]+ ∈ Pd
+ : xi ̸= 0} be the subset of the CoDa space with non-null (hence

positive) i-th coordinate. Then, following Faugeras (2023), Ui can be identified with
the non-negative part of the affine hyperplane {x : xi = 1} of Rd+1: a projective CoDa
point [x]+ ∈ Ui with homogeneous coordinates

[x0 : . . . : xi : . . . : xd]+ =
[

x0

xi
: . . . : 1 : . . . : xd

xi

]
+

can in turn be identified, after dropping the constant 1 at the ith position, with an
affine point X/i ∈ Rd with inhomogeneous coordinates

X/i :=
(

x0

xi
, . . . ,

xi−1

xi
,

xi+1

xi
, . . . ,

xd

xi

)
.

Thus, if both [x]+ and [y]+ belong to Ui, equation (8 interprets as a weighted difference
yj/yi − xj/xi of the jth inhomogeneous coordinate of the points X/i and Y/i, in the
affine patch corresponding to Ui, with a weight xiyi given by the product of their ith
(simplex) coordinate. In other words, the displacement for positive CoDa elements
decomposes as a weighted difference, not of their coordinate components (xj), but of
their ratios. The weight xiyi translates the relative importance of components i of x
and y.

If one sets conventionally 0/0 := 1, then formula (8) becomes true for all
(non-negative) Coda elements [x]+, [y]+ ∈ Pd

+. This interpretation of coordinate
displacements as a weighted sum of components ratios is important from the subcompo-
sitional coherence point of view: only ratios of CoDa components are subcompositionally
coherent, see, e.g., Aitchison (1986).

3 Barycentric divergence on the CoDa space
In this section, we introduce our first major contribution, barycentric divergences, and
study its theoretical properties.
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3.1 Motivation and definition
Lemma 6, and its specialization via formula (6) to CoDa represented on the simplex
∆d

+, by giving the decomposition of the displacement vector of CoDa x to y in terms
of the d(d + 1)/2 displacements −−−→AiAj of two different points Ai, Aj , provides a natural
way to measure the distance or proximity between two CoDa elements.

Indeed, each component i = 0, . . . , d of a composition identifies with a point Ai in
a d−dimensional affine space. However, components of a composition are just different
entities with no proper geometric properties. Hence, although the displacements −−−→AiAj ,
i < j are dependent from the affine geometric viewpoint, it makes sense, from the
compositional viewpoint, to consider each pair (i, j) of components, identified with the
displacements −−−→AiAj , i ̸= j in formula (6), as if they were “orthogonal”. In fact, the
principle of subcompositional coherence in CoDa is based on the idea that, quoting
Pawlowsky-Glahn et al. (2015) p. 16, “subcompositions should behave like orthogonal
projections in real analysis”. This principle somehow motivates (heuristically) the idea
that two different elementary displacements −−−→AiAj , and −−−→AkAl, for (i, j) ̸= (k, l), should
be thought as “orthogonal” and that each corresponding determinantal coordinate
coefficient in (6) measures “orthogonal” characteristics of a pair of CoDa, from which
one can build a measure of distance or proximity between CoDa points. (A more
principled mathematical justification will be given in Faugeras (2024a), based on
exterior products.) Taking a measure of the magnitude of the displacement vector −→xy,
via the choice of a norm ||.||, e.g., an ℓα norm, leads to the following definition:
Definition 1. Let [x]+, [y]+ ∈ Pd

+ be two CoDa elements, and α be a real number.
Then, the α-barycentric divergence is defined, for 1 ≤ α <∞, as

dα([x]+, [y]+) :=

(∑
i<j

∣∣∣∣det
∣∣∣∣xi yi

xj yj

∣∣∣∣∣∣∣∣α)1/α

||x||1||y||1
, (9)

and, for α =∞, as

dα([x]+, [y]+) :=
maxi<j

∣∣∣∣det
∣∣∣∣xi yi

xj yj

∣∣∣∣∣∣∣∣
||x||1||y||1

.

Both expressions reduces to the numerator in case of simplex representatives x, y ∈ ∆d
+.

The following theorem studies properties of such divergences, and justifies the
heuristic motivation which had lead to their definition.
Theorem 1. i) dα is well defined on Pd

+, dα : Pd
+ × Pd

+ → R+, i.e. does not depend
on the representatives x, y of [x]+, [y]+, viz.

dα([x]+, [y]+) = dα([λx]+, [µy]+), λ, µ > 0.

ii) Symmetry: dα([x]+, [y]+) = dα([y]+, x]+).
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iii) Permutation invariance: let σ = (σ0, σ1, . . . , σd) be a permutation of {0, 1, . . . , d}
and write xσ for the vector (xσ0 , . . . , xσ1 , xσd

). Then,

dα([xσ]+, [yσ]+) = dα([x]+, [y]+).

iv) Boundedness: 0 ≤ dα([x]+, [y]+) ≤ 1.
v) Positive-definiteness: dα([x]+, [y]+) ≥ 0 and dα([x]+, [y]+) = 0⇔ [x]+ = [y]+

vi) Zeroes subcompositional coherence: if [x]+, [y]+ ∈ Pd
+ are seen as subcompositions

of larger compositions [x̃]+ := [x : 0]+ ∈ Pd+k
+ and [ỹ]+ := [y : 0]+ ∈ Pd+k

+ , where
0 ∈ Rk, for some integer k > 0, and where x : 0 stands for the concatenation of
x ∈ Rd+1

+ and 0, then

dα([x̃]+, [ỹ]+) = dα([x]+, [y]+).

Proof. i) Since [x]+, [y]+ ∈ Pd
+, x, y ̸= 0. Thus, ||x||1, ||y||1 ̸= 0. Scale invariance

x← λx, y← µy, in the r.h.s. of (9) follows from multilinearity of the determinant.
ii) and iii) follows easily from the definition.
iv) For 1 ≤ α <∞, Minkowski’s inequality yields

∑
i<j

|xiyj − xjyi|α
1/α

≤

∑
i<j

|xi|α|yj |α
1/α

+

∑
i<j

|yi|α|xj |α
1/α

≤

∑
i,j

|yi|α|xj |α
1/α

=
(∑

i

|yi|α
)1/α

∑
j

|xj |α
1/α

= ||x||α||y||α

≤ ||x||1||y||1,

where the last line follows from the Lp inequality, and which gives the result.
For α =∞, the results follows from

|xiyj − xjyi| ≤ max(xiyj , xjyi) ≤ ||x||1||y||1.

v) Assume

dα([x]+, [y]+) = 0⇔ xiyj = xjyi for all i ̸= j ∈ {0, 1, . . . , d}. (10)

Set I = {i : xi ≠ 0}. Since x ̸= 0, I ̸= ∅. By permutation invariance iii), one can
assume w.l.o.g. that x0 ̸= 0. Then, (10) with i = 0 yields

yj = xj

(
y0

x0

)
, ∀j ̸= 0.
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Set λ := y0/x0. λ ̸= 0 because, if λ = 0, then, y0 = 0 and the above equation yields
yj = 0, ∀j ̸= 0. This would lead to a contradiction, since y ̸= 0. One has thus
y = λx, with λ > 0, viz. [x]+ = [y]+.

The converse direction is obvious from the anti-symmetry property of the
determinant.

vi) Both the numerator and the denominator in (9) remain the same if some zeroes are
added to the components of x and y.

3.2 The case α = 2
One has thus obtained a family of symmetric, permutation-invariant, bounded diver-
gences on the full Coda space (i.e. also for CoDa with zeroes). Among all possible
divergences, noticeable cases occur for α = 1, 2,∞. Indeed, for α = 2, the divergence
write as follows:
Lemma 2. The 2−barycentric divergence writes as

d2([x]+, [y]+) =
√
||x||22||y||22 − ⟨x|y⟩2
||x||1||y||1

(11)

= ||x||2||y||2
||x||1||y||1

sin θxy, (12)

where θxy ∈ [0, π/2] is the acute angle between the rays [x]+ and [y]+.

Proof. By symmetry,∑
i<j

(xiyj − xjyi)2 = 1
2
∑
i,j

(xiyj − xjyi)2

= 1
2
∑
i,j

(
x2

i y2
j + x2

jy2
i − 2xiyixjyj

)

= 1
2

∑
i

x2
i

∑
j

y2
j +

∑
i

x2
i

∑
j

y2
j − 2

∑
i

xiyi

∑
j

xjyj


= ||x||22||y||22 − ⟨x|y⟩2,

which gives (11). Together with 0 ≤ ⟨x|y⟩ = ||x||2||y||2 cos θxy, with θxy ∈ [0, π/2], it
yields formula (12).

Remark 2. i) Since ||x||2 ≤ ||x||1, formula (12) implies that

0 ≤ d2([x]+, [y]+) ≤ 1,

which gives, for the case of the 2-divergence, another proof of the upper bound in
Theorem 1 iv).
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ii) Formula (12) involves the the sine of the (acute) angle between rays [x]+ and [y]+.
Since ||x||2 ≤ ||x||1 ≤

√
d + 1||x||1, one has that

sin θxy

d + 1 ≤ d2([x]+, [y]+) ≤ sin θxy,

thus d2 is Lipshitz-equivalent to the sine distance on rays.
The dissymmetry between the ||.||2 and ||.||1 norms in the fraction in (12)

suggests that we (should) eliminate this ratio-of-norms coefficient by replacing
in the definition (12) the denominator ||x||1||y||1 by ||x||2||y||2. This amounts to
normalizing the CoDa elements [x]+, [y]+ by the ||.||2 norm instead of the ||.||1
norm, i.e. to replace the closure operation (1) which radially projects the ray [x]+ on
the simplex by a radial projection on the unit sphere. Such a step will be performed
in Faugeras (2024a), and justified mathematically from the projective viewpoint. In
addition, such a change will lead to improved properties.

iii) Let A =
(
x y
)
∈ R(d+1)×2 be the matrix with columns x, y. Then, formula (11)

writes

d2([x]+, [y]+) =
√

det(AT A)
||x||1||y||1

Hence, the numerator is the square root of the determinant of the Gram matrix,

AT A =
(
⟨x|x⟩ ⟨x|y⟩
⟨x|y⟩ ⟨y|y⟩

)
,

and thus interprets geometrically to the area of the parallelogram spanned by {x, y}.
Thus, for simplex representatives x, y ∈ ∆d

+, d2([x]+, [y]+) interprets geometrically
has twice the area of the triangle Oxy, with O the origin of the ambient vector space
Rd+1. In addition, this form allows to re-derive some of the properties of Theorem
1, and more importantly, suggests the more abstract approach of Faugeras (2024a).

3.3 Infinite dimensional version
As a CoDa element is simply a discrete probability distribution on a finite number of
locations whose locations are forgotten (see, e.g., Faugeras (2024b)), Definition 1 can be
generalized to general probability measures and even to σ−finite positive measures P, Q
on some measurable space (Ω,A), with 0 < P (Ω), Q(Ω) < ∞. (Infinite dimensional
versions of CoDa vector spaces are called Bayes space in the CoDa literature, see, e.g.,
Egozcue et al. (2006)). Let µ be a measure dominating P and Q, (e.g., µ = (P + Q)/2).
By Radon-Nikodym’s theorem, P , Q have densities f = dQ

dµ , g = dQ
sµ . One can then

define in such general case the following symmetric divergence:
Definition 2. Let α ≥ 1. If P , resp. Q, with densities f , resp. g are such that
f, g ∈ Lα(Ω,A, µ), then the finite symmetric divergence,

Dα(P, Q) := (
∫∫
|f(x)g(y)− f(y)g(x)|αµ(dx)× µ(dy))1/α

P (Ω)Q(Ω)
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which reduces to the numerator in case P and Q are probability measures, is well
defined.

Proof. From the inequality, |a − b|α ≤ 2α−1(|a|α + |b|α), (which itself follows from
convexity of x 7→ |x|α for α ≥ 1), one has that

|f(x)g(y)− f(y)g(x)|α ≤ 2α−1(|f(x)|α|g(y)|α + |f(y)|α|g(x)|α).

Hence, if ||f ||α, ||g||α <∞, then the numerator is finite.

To our knowledge, such divergence has not been introduced before in the probabilis-
tic literature. It allows to compare measures with different total masses and possibly
disjoint supports1.

4 Fréchet means based on the barycentric divergences
4.1 Definitions and basic properties
Having a notion of divergence between CoDa points, one can now define notions of
center and measures of dispersion of a cluster of points, following the metric approach
of Fréchet (1948) (See also Faugeras (2023) Section 7). Indeed, given a CoDa sample
[x1]+, . . . , [xn]+ ∈ Pd

+, for any Coda point [m]+ ∈ Pd
+, the following functional

Fα,β([m]+) :=
n∑

i=1
dβ

α([m]+, [xi]+), (13)

with 1 ≤ α ≤ ∞, β > 0, gives a measure of the outlyingness2 (i.e. is a depth function)
of the point [m]+ w.r.t. the data points [x1]+, . . . , [xn]+. Minimizing such functional
over the whole CoDa space thus gives a notion of central point, and the value of Fα,β

at a minimum gives a measure of dispersion of the cloud of points. We thus introduce
the following definition:
Definition 3. An empirical (α, β)-barycentric Fréchet mean is defined as a minimizer
of (13). It is simply called an α-barycentric Fréchet mean for β = α.

Among possible choices for β, one can consider three interesting cases, i) β = 2, ii)
β = 1 and iii) β = α. Case i) gives the the well-known Fréchet mean, but for the different
α-divergences of equation (9). The notion of Fréchet mean is a natural extension of
the standard mean in (semi-)metric spaces. In particular, the case α = β = 2 leads
to a quadratic program, and the resolution of a linear system. Case ii) gives a notion
of spatial median, again for the different α-divergences considered, which is a more
robust version of center than the Fréchet mean, but is usually more computationally
difficult. Case iii) is a sort of generalized Fréchet mean, which gives the median for the
1-divergence, the Fréchet mean for the 2−divergence. By removing the power of the
outer bracket in the determinantal formula (9), it somehow appears as a natural choice.

1More precisely, it allows to compare the compositional part of measures, in case they have unequal total
mass.

2or, following Huygens’ terminology in mechanics of solids, is the inertia of the data set relative to the
point [m]+.
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The following theorem easily ensues.
Theorem 3. i) For 1 ≤ α ≤ ∞, β > 0, a (α, β)-barycentric Fréchet mean always

exists.
ii) For β ≥ α ≥ 1 and α =∞, β ≥ 1, stationary points of (13) are (α, β)-barycentric

Fréchet means.
iii) For ∞ > β ≥ α > 1, a (α, β)-barycentric Fréchet mean is unique.

Proof. i) Restricting to simplex representatives in ∆d
+, the functional writes (13) as a

sum of (absolute values of) powers on a compact convex space, hence is continuous,
and Weierstrass theorem ensues that minimizers always exists.

ii) The functional (13) is convex (for β ≥ α and α =∞, β ≥ 1), so that local minima
are global ones.

iii) For ∞ > β ≥ α > 1, (13) is strictly convex.

It is worth noting some advantages of such means/medians: compared to the
classical Aitchison’s mean, which is based on log-ratios and results in the geometric
mean, the proposed approach enables handling situations where zeroes are present in
the composition. Compared to the Fréchet means/medians based on Hilbert’ projective
metric, introduced in Faugeras (2023), characterizing and computing the barycentric
means/medians is a much easier convex problem. In particular, the case α = β = 2
stands out as particularly appealing since unicity is guaranteed and the problem
reduces to a simple basic quadratic program.

4.2 Discussion of variants and extensions
One can consider useful variants and extensions of the Fréchet mean based on
barycentric divergences, which we now discuss.

i) The barycentric means/medians are based on the minimization of the Fréchet
functional (13) over the whole CoDa space Pd

+, (equivalently, ∆d
+). One can also

consider several versions of so-called medoids (see e.g. Kaufman and Rousseeuw
(1990)) where the minimization of (13 is restricted to the finite set of data points
[x1]+, . . . , [xn]+. This allows to obtain a center which is always a member of the
data set. This can be useful in cases where the data set has a special geometric
structure (e.g. sits on a line, a curve, or more generally a manifold), and one wants
to ensure that the central point is representative of the data structure. It is also
beneficial in terms of interpretability of the center. See Examples 8 and 9.
In addition, the computation reduces to a discrete optimization problem, i.e. com-
puting all pairwise divergences between points and identification of the minimal one.
This requires at most O(n2) distance evaluations, and there exists some algorithms
(Wang and Eppstein (2006), Baharav and Tse (2019)) which allows to reduce the
number of distance evaluations to an almost linear time. This can be crucial for
(moderately) large datasets, where computation time is the main bottleneck of the
method.

ii) The Fréchet mean/median/medoid look for a single central point. It can be general-
ized to k-mean/median/medoid clustering (see e.g. Everitt et al. (2011), Simovici
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(2021)) which ask for the location of k cluster centers and a partition the n observa-
tions into k cluster sets,W = {S1, S2, ..., Sk}, so as to minimize the sum of β-powers
of the α-divergences from each sample point to its nearest cluster: the objective is
to find

arg min
W

k∑
j=1

∑
[x]+∈Sj

dβ
α([x]+, [mi]+)

where [mi]+ is itself the Fréchet mean/median

[mi]+ := arg min
[m]+∈Pd

+

∑
[x]+∈Si

dβ
α([x]+, [m]+).

Several variants/algorithms can be envisioned. In particular, the forthcoming Defi-
nition 4 of Generalized Gaussian distribution based on the barycentric divergence
(9) suggests to investigate Expectation-Minimization clustering algorithms based
on a model of mixture of such barycentric Gaussian distributions. We leave this
suggestion for further research.

iii) The measure of the Fréchet functional (13) at the minimum gives a measure of the
global variability of the cloud of CoDa points. An alternative robust measure of
dispersion of a cloud of CoDa points can be obtained by replacing the sum in (13),
calculated at the mean/median point [m]+, by the median. In particular, taking
α = β = 1 gives the Mean Absolute Deviation, defined as

MAD = Median
(
d1([xi]+, Med([x1]+, . . . , [xn]+))

)
,

where Med([x1]+, . . . , [xn]+) is a Fréchet median of the data points based on the
1−barycentric divergence (β = α = 1). See, e.g., Rousseeuw and Croux (1993),
Gauss (1816).

iv) A further generalization is provided by minimizing a weighted version of the Fréchet
functional (13). This corresponds to considering weighted versions of the barycentric
divergences, see Definition 5 in Section 5. In particular, if the weight depends on
some covariate, this allows to perform Fréchet regression of CoDa, see Section 7.

Further study and numerical illustrations of the various Fréchet means based on
barycentric divergences, for varying values of α and β, are provided in Appendix B.

5 Generalized Laplace-Gaussian distribution based on
the determinantal barycentric divergence

5.1 Isotropic Generalized Laplace-Gaussian distributions
As in Faugeras (2023), one can define a family of generalized Gaussian distributions,
based on the family of divergences (9).
Definition 4. A random [X]+ ∈ Pd

+ follows a Generalized Barycentric Gaussian
distribution with parameters ([m]+, σ, α) ∈ Pd

+×R++× [1,∞], if its distribution admits
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a density w.r.t. to the uniform measure ν on Pd
+ given by

fα([x]+; [m]+, σ) := Z−1
α ([m]+, σ) exp

(
−
(

dα([x]+, [m]+)
σ

)α)
(14)

for 1 ≤ α <∞, and by

f∞([x]+; [m]+, σ) := Z−1
∞ ([m]+, σ) exp

(
−d∞([x]+, [m]+)

σ

)
, α =∞,

where Zα([m]+, σ) is a normalizing constant.
Definition 4 gives an analogue of the Gaussian, resp. Laplace, distribution when

α = 2, resp., α = 1, with [m]+ a mean parameter and σ a dispersion parameter. Figure
1 show density ternary plots (i.e. for d = 2) of such distributions with a centered and
non-centered mean parameter, in the noticeable cases α = 1, 2,∞. The level sets of the
density shows the geometry of the balls for the corresponding divergence. In particular,
α = 2 give the usual Euclidean distance geometry, but truncated on the (full) simplex.
The cases α = 1 and α = ∞ give polygonal balls. It is interesting to note that the
level sets of the centered distributions (i.e., for m = 1) have the same (truncated)
hexagonal shape for α = 1 and α = ∞, which is also similar to the balls in Hilbert
projective distance, see Faugeras (2023). The level sets of the non-centered distribution
for α =∞ (lower right panel) appears, due to the truncation, as (part of) lozenges.
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Fig. 1 Generalised Barycentric Gaussian distributions with α-divergence. Left column: centered
distribution with [m]+ = [1 : 1 : 1]+. Right column: a non-centered distribution with m = (0.7, 0.1, 0.2).
α = 1 (up), α = 2 (center), α = ∞ (down). σ = 1.

5.2 Anisotropic Generalized Laplace-Gaussian distributions
As a further generalization, one can consider weighted versions of the barycentric
divergences (9) and corresponding Gaussian-type distributions of Definition 4. Indeed,
in classical multivariate analysis, when measuring distance between vectors x, y ∈ Rd+1

made of heterogeneous components, it is common to standardize the variables by their
standard deviation, in order to balance out the contributions of each variable. This
corresponds to measuring the distance between two sample elements x, y with the
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Standardized Euclidean distance

dS(x, y) :=

√√√√ d∑
i=0

(
xi

si
− yi

si

)2
,

where s = (s0, . . . , sd), with si the standard deviation of the ith variable. A general-
ization of this principle, taking into account the correlation of the data, leads to the
definition of the well-known Mahalanobis distance,

dΣ(x, y) :=
√

(x− y)T Σ−1(x− y),

where Σ is the covariance matrix.
Here, we can apply this idea to CoDa, as follows:

Definition 5. Let W ∈ R(d+1)×(d+1) be a symmetric matrix, with positive components
wij > 0, and null diagonal. Let [x]+, [y]+ ∈ Pd

+ be two CoDa elements. Then, the
W -weighted barycentric α-divergence is defined, for 1 ≤ α <∞, as

dα,W ([x]+, [y]+) :=

(∑
i<j w−1

ij

∣∣∣∣det
∣∣∣∣xi yi

xj yj

∣∣∣∣∣∣∣∣α)1/α

||x||1||y||1
(15)

and, for α =∞, as

d∞,W ([x]+, [y]+) :=
maxi<j

(
w−1

ij

∣∣∣∣det
∣∣∣∣xi yi

xj yj

∣∣∣∣∣∣∣∣)
||x||1||y||1

.

It is easily seen that the W -weighted barycentric α-divergence satisfy all properties
of Theorem 1, with the exception that the upper bound 1 has to be replaced by the
minimal weight.

The corresponding Generalized Laplace-Gaussian distribution is defined analogously
to (14), now with the added parameter matrix W . Without loss of generality, one
can constrain W further by requiring that

∑
i<j wij = 1. This allows to interpret the

parameters as follows: W controls the shape of the balls in weighted α-divergence,
while the σ parameter measures their overall size. Thus, we define

W0 = {W ∈ R(d+1)×(d+1) : wij = wji > 0, i ̸= j; wii = 0;
∑
i<j

wij = 1}

as the resulting set of constrained symmetric weight matrices with zero diagonal and
positive weights.
Definition 6. A random [X]+ ∈ Pd

+ is said to follow a Generalized Weighted Barycen-
tric Gaussian distribution with parameters ([m]+, W, σ, α) ∈ Pd

+ ×W0 × R++ × [1,∞],
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if its distribution admits a density w.r.t. to the uniform measure ν on Pd
+ given by

fα([x]+; [m]+, W, σ) := Z−1
α ([m]+, W, σ) exp

(
−
(

dα,W ([x]+, [m]+)
σ

)α)
(16)

for 1 ≤ α <∞, and, for α =∞, by

f∞([x]+; [m]+, W, σ) := Z−1
∞ ([m]+, W, σ) exp

(
−d∞([x]+, [m]+)

σ

)
,

where Zα([m]+, W, σ) is a normalizing constant.
Figure 2 illustrates Definition 6 for the case α = 2. The left column shows a centered

Generalized Weighted Barycentric Gaussian distribution, i.e. with mean parameter
[m]+ = [1 : 1 : 1]+. The upper, resp., lower, left panels have shape parameter

W =

 0 0.8 0.1
0.8 0 0.1
0.1 0.1 0

 , resp. W =

 0 0.1 0.8
0.1 0 0.1
0.8 0.1 0

 .

Compared to Figure 1, one has elongated the balls in barycentric 2-divergence in the
direction having the higher weight 0.8, that is the contour plots obtained are ellipses
stretched out in the −−−→A0A1 direction (up) and −−−→A0A2 direction (down panel). The right
column shows the same distributions as the left column, but with a non-centered mean,
viz. m = (0.7, 0.1, 0.2), so one can also compare with the isotropic distributions of
Figure 1.
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Fig. 2 Generalised Weighted Barycentric Gaussian distributions with 2-divergence. σ = 1. Left
column: centered distribution with m = (1 : 1 : 1). Right column: a non-centered distribution with
m = (0.7, 0.1, 0.2). (w01, w02, w12) = (0.8, 0.1, 0.1) (up), (w01, w02, w12) = (0.1, 0.8, 0.1) (down).

We provide in the Supplementary Material (Faugeras (2025)), Section 1, some sup-
plementary simulations of these generalized weighted barycentric Gaussian distribution,
in the cases α = 1,∞, for illustration and comparison purposes.

We have thus obtained an analogue of the multivariate Laplace-Gaussian distribu-
tion and its generalizations on the whole CoDa space Pd

+: α sets the general form of the
balls in α-divergence, [m]+ is the location parameter, and (W, σ) the dispersion ones.
Such distributions can thus be made to accommodate for a large variety of shapes of
the data points and should prove useful for modeling and estimation purposes. For
example, one could build nonparametric (density or regression) estimators with a
kernel based on such distributions. We leave this investigation for further research.
Remark 3 (Weighted Hilbert projective distance). We remark that the idea of
weighting the components entering in the formula of the barycentric α-divergence
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can also be applied to Hilbert’s projective metric (see Faugeras (2023)). We can thus
generalize the latter and define the weighted Hilbert projective metric as follows:
Definition 7. Let W ∈ W0. The weighted Hilbert projective metric on Pd

++, with
weight matrix W , is defined as

dH,W ([x]+, [y]+) := max
0≤i<j≤d

wij

∣∣∣∣ln xi

xj
− ln yi

yj

∣∣∣∣ .
In turn, the corresponding Gaussian type distribution is defined analogously to

Definition 6 and Definition 7.4 in Faugeras (2023), with dH,W replacing dα,W in (16).
It also gives risen to an anisotropic Generalised Gaussian type distribution, this time
based on the weighted version of Hilbert’s projective metric. The Supplementary Material
(Faugeras (2025)), Section 1, provides some simulations for illustration purposes.

6 Variance and covariance matrices
We now turn our attention to our second major contribution, the definition of a notion
of covariance matrix for CoDa, based on the barycentric/affine viewpoint.

6.1 Definitions
The basic idea is to construct a covariance matrix based on averaged scalar product
of displacement vectors, as in the Euclidean vector case, but now with taking into
account the affine nature of the data points expressed in barycentric coordinates.

More precisely, let [x]+, [y]+ ∈ Pd
+ be a pair of random CoDa (projective) points.

Assume one has some corresponding (deterministic) mean points

[µx]+ = [µx
0 : . . . : µx

d ]+, resp. [µy]+ = [µy
0 : . . . : µy

d ]+.

A priori, one could consider a variety of mean points, such as the arithmetic mean
(centroid), the geometric (Aitchison) mean, the Fréchet-Hilbert mean (Faugeras (2023)),
the (α, β)-barycentric Fréchet mean of Definition 3, etc. It will turn out that most
interesting properties are obtained using the centroid means. We thus only consider
these thereafter and set

[µx]+ = [Ex]+, [µy]+ = [Ey]+,

From the discussion of Section 2, one can regard these four projective points as
affine points, expressed in barycentric coordinates w.r.t. the frame F = {A0, . . . , Ad}.
Thus, formula (A5) applied to M ≡ [µx]+ and N ≡ [x]+, resp. M ≡ [µy]+ and
N ≡ [y]+, allows to compute the displacement vectors to the CoDa points from the
corresponding means as,

vx :=
−−−−−−−→
[µx]+ [x]+ =

∑
i<j det

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣−−−→AiAj

||µx||1||x||1
,
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vy :=
−−−−−−−→
[µy]+ [y]+ =

∑
i<j det

∣∣∣∣µy
i yi

µy
j yj

∣∣∣∣−−−→AiAj

||µy||1||y||1
.

A term-by-term product of the −−−→AiAj component of vx and vy, viz.

det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣× det
∣∣∣∣µy

i yi

µy
j yj

∣∣∣∣
||µx||1||x||1||µy||1||y||1

gives a measure of the (random) covariation of the displacement vectors vx and vy in
the same direction −−−→AiAj . Taking expectation, this gives an analogue of the covariance
between two Coda points [x]+ and [y]+ as the average of the displacement vectors of
the Coda point [x]+ and [y]+ from their respective mean, in the common direction
from component i to j. This leads to the following definition of the covariance matrix
of the random CoDa points [x]+ and [y]+:
Definition 8 (Covariance matrix for a pair of CoDa). Let [x]+, [y]+ ∈ Pd

+ be random
CoDa points, with corresponding mean point [µx]+, [µy]+ ∈ Pd

+. The barycentric
covariance matrix of [x]+ and [y]+, w.r.t. [µx]+, [µy]+, is defined as the following
symmetric matrix (with null diagonal) of size d + 1

Cov([x]+, [y]+) :=
(
Cov([x]+, [y]+)i,j

)
∈ R(d+1)×(d+1),

where the (i, j) component is set as

Cov([x]+, [y]+)i,j := E

det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣× det
∣∣∣∣µy

i yi

µy
j yj

∣∣∣∣
||µx||1||x||1||µy||1||y||1

 . (17)

If all four representatives are normalized to sit on the simplex, viz. x, y, µx, µy ∈ ∆d
+,

the previous expression (17) reduces to its numerator.
Taking [y]+ = [x]+ and [µx]+ = [µy]+ in the previous definition leads to the

definition of the analogue of a variance matrix for a random CoDa [x]+:
Definition 9 (Variance matrix for CoDa). The barycentric variance matrix of [x]+
w.r.t. the deterministic mean point [µx]+ is defined as the following symmetric matrix
(with null diagonal)

Var([x]+) := Cov([x]+, [x]+) ∈ R(d+1)×(d+1)

=

E

det2

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣
||µx||2

1||x||2
1




i=0,··· ,d
j=0,··· ,d

. (18)
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In case both representatives of [x]+, [µx]+ are chosen on the simplex, viz. x, µx ∈ ∆d
+,

the (i, j) component of Var([x]+), simplifies as

Var([x]+)i,j = E

(
det2

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣) .

Since the squared 2−barycentric divergence d2
2([x]+, [µx]+) is a separable function

of its i < j components, the expected divergence between [x]+ and its mean decomposes
as a sum of the expected pairwise barycentric divergence, along the i < j components,

Ed2
2([x]+, [µx]+) =

∑
i<j

E

det2
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣
||µx||21||x||21

 =
∑
i<j

Var([x]+)i,j

Therefore, it is natural to define the total variance, which quantifies the total variability
in a compositional data set, as the sum of the variance components of the variance
matrix.
Definition 10 (Total Variance for CoDa). The total variance of [x]+ w.r.t. the
deterministic mean point [µx]+ is the scalar

TVar([x]+) =
∑
i<j

Var([x]+)i,j .

By dividing the Variance matrix components Var([x]+)i,j by the Total Variance
TVar([x]+), one obtains a normalised Variance matrix, (called the contained variance in
Greenacre (2021)), which allows to quantify the importance of each variance component
to the total.

Eventually, a measure of correlation is obtained by combining Definitions 8 and 9:
Definition 11 (Correlation matrix for CoDa). The barycentric correlation matrix of
[x]+ and [y]+, w.r.t. [µx]+, [µy]+, is defined as

ρ([x]+, [y]+) :=
(
ρ([x]+, [y]+)i,j

)
∈ R(d+1)×(d+1),

with, for i ̸= j,

ρ([x]+, [y]+)i,j := Cov([x]+, [y]+)i,j√
Var([x]+)i,jVar([y]+)i,j

,
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=

E

det

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣×det

∣∣∣∣µy
i yi

µy
j yj

∣∣∣∣
||µx||1||x||1||µy||1||y||1


√√√√√√√E

det2

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣
||µx||2

1||x||2
1


√√√√√√√E

det2

∣∣∣∣µy
i yi

µy
j yj

∣∣∣∣
||µx||2

1||x||2
1


and ρi,i = 0.

In definition 11, the normalisation by the ||.||1 norm enters both in the expectation
of the numerator and in the expectation of denominator. This suggests the following
modified version of correlation, directly as a ratio of determinants:
Definition 12 (Modified correlation matrix for CoDa). The modified barycentric
correlation matrix of [x]+ and [y]+, w.r.t. [µx]+, [µy]+, is defined as

r([x]+, [y]+)i,j :=
E

(
det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣× det
∣∣∣∣µy

i yi

µy
j yj

∣∣∣∣)√
E

(
det2

∣∣∣∣µx
i xi

µx
j xj

∣∣∣∣)
√

E

(
det2

∣∣∣∣µy
i yi

µy
j yj

∣∣∣∣)
, i ̸= j,

and r([x]+, [y]+)i,i = 0.
Remark 4. i) By definition of Pd

+, if [x]+ ∈ Pd
+, then x ̸= 0 and ||x||1 ̸= 0. Hence, the

ratios in Definitions 8 and 9 are well-defined. By linearity of ||.||1 and multilinearity
of the determinant, (17) is invariant by positive rescaling x ← αx, y ← βy,
µx ← γµx, µy ← δµy, with α, β, γ, δ > 03. Hence, Definitions 8 and 9 are
well-defined on Pd

+.
Definition 11, is undefined when Var([x]+)i,j = 0 or Var([y]+)i,j = 0 (and the

discussion is similar for Definition 12). The situation here is analogous to Euclidean
vectors, where Pearson’s classical correlation coefficient is undefined for a degenerate
(Dirac) random variable. We thus set the corresponding coefficient equal to 0 in
such a case.

ii) When all four points [x]+, [y]+, [µx]+, [µy]+, are simplex normalized, viz.
x, y, µx, µy ∈ ∆d

+, Definition 12 coincides with Definition 11. The difference lies in
the fact that Definition 12 is scale-invariant only for non-random rescaling, whereas
Definition 11 is scale-invariant for deterministic and random rescaling alike.

6.2 Discussion and properties of barycentric variation matrices
The component i, j of the Variance matrix (18) measures the proportionality of parts
i, j, as shown in the next Proposition.
Proposition 4. Assume w.l.o.g. that x ∈ ∆d

+ is the simplex normalized representative.
Var([x]+)i,j = 0 if and only if xi and xj are proportional or one of them is zero.

3Note that α, β may be random.
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Proof.⇐: If x ∈ ∆d
+,
∑d

i=0 xi = 1 implies 1 =
∑d

i=0 Exi =
∑d

i=0 µx
i , that is to say,

µx ∈ ∆d
+ and µx

i = Exi. Therefore, if, say, xj = λxi a.s., for some λ > 0, then,

µx
j = λµx

i and det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣ = det
∣∣∣∣ µx

i xi

λµx
i λxi

∣∣∣∣ = 0 a.s. (two proportional rows). Thus,

Var([x]+)i,j = 0.
On the other hand, if, say, xi = 0 a.s. then µx

i = 0 and Var([x]+)i,j = 0 also.
⇒: Notice that one always has that

Edet
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣ = E(xjµx
i − xiµ

x
j ) = µx

j µx
i − µx

i µx
j = 0.

If Var([x]+)i,j = 0, Tchebychev’s inequality entails that, for all t > 0,

P

(∣∣∣∣det
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣∣∣∣∣ > t

)
= 0.

Thus, xiµ
x
j − xjµx

i = 0 a.s. Since xi ≥ 0, µx
i = 0 iff xi = 0 a.s. Therefore,

xiµ
x
j − xjµx

i = 0 a.s. entails xi and xj are proportional or one of them is zero.

This result is intuitively clear since Var([x]+)i,j measures the quadratic displacement
variation of [x]+ around its mean [µx]+, along the i, j components: if both components
xi and xj are proportional, there is no variation in the (AiAj) direction (and similarly
if one of them is always zero). One thus obtains for the variance matrix an object
similar to the log variation matrix of Aitchison (1986), (or of its variants to be found in
Lovell et al. (2015), Erb and Notredame (2016), Filzmoser and Hron (2009), Egozcue
and Pawlowsky-Glahn (2023)), in its ability to measure the proportionality of parts.

It is worth stressing some of its advantageous features. First, being log-free, the
proposed variation matrix (18) is defined on the whole CoDa space Pd

+, and is now
able to process CoDa with zeroes. This is in contrast to all of the above-mentioned
measures, which fail to be defined whenever some zeroes are existent in a component.
Second, even if the data has no zeroes, log transformations will turn parts with
small values into large values, resulting in large variations in the log-ratio variance.
The relative error in the small components are likely to be high and to distort any
multivariate analysis based on such log-ratio variances. This issue occurs in particular
with imputation methods for CoDa with zeroes, see e.g. Greenacre (2021) Section
7. To the contrary, the proposed variation matrix (18) does not alter the scale of
the parts by a nonlinear transformation. At last, it has been argued that when two
parts are not exactly proportional, the log-ratio variance of Aitchison (1986) has no
intrinsic scale and so is hard to interpret. This is especially relevant for determining
a cut-off for selecting variables, and motivated Lovell et al. (2015) to propose their
scale-free variant ϕ which puts the log-ratio variance in relation to the size of the
single variances involved. Here, since the Total Variance of Definition 10 interprets as
the average displacement of [x]+ w.r.t. to its centroid mean, it makes sense to scale
the components Var([x]+)i,j of the Variance matrix (18) by the (scalar) total variance,
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i.e. to set the Normalised Variance matrix

NVar([x]+) := Var([x]+)
TVar([x]+) , (19)

as a scale-free version of the Variance Matrix, with components between 0 and 1.
Let us illustrate these points with basic examples.

Example 1 (Variance matrix with two identical components). We take the same
distribution as in Example 8, Figure B5, but with n = 10000 sample points. The
empirical variance matrix is

Var([x]+) =

 0. 0.0132371 0.0132371
0.0132371 0. 0.
0.0132371 0. 0.

 .

This empirically confirms the result of Proposition 4: since the data (blue points) sits
on the straight line x1 = x2 in the triangle, there is no variation in the direction A1A2.
The empirical variance var([x]+)1,2 computed on the data is exactly zero as x1 and x2
carry the same proportional information.
Example 2 (Variance matrix with uniform Dirichlet distribution). Let x = (x0, x1, x2)
be distributed according to the Dirichlet(1, 1, 1) distribution, which corresponds to the
uniform distribution on the simplex ∆2

+. The empirical arithmetic mean computed on
10000 i.i.d. replications is given by

µx = (0.331853, 0.335558, 0.33259).

The empirical barycentric variance matrix and normalized version are

Var([x]+) =

 0. 0.0186154 0.0184052
0.0186154 0. 0.0187276
0.0184052 0.0187276 0.

 ,

NVar([x]+) =

 0. 0.333919 0.330149
0.333919 0. 0.335932
0.330149 0.335932 0.

 .

One obtains approximately the same values in all directions for the empirical mean
and variance matrix, as expected with such an isotropic distribution.

If the composition above was in fact a four-parts composition with, say, null second
component, i.e. if one adds a column of zeros at the second component, so that x1 = 0,
(x0, x2, x3) ∼ Dirichlet(1, 1, 1), then the new normalized barycentric variance matrix is

NVar([x]+) =


0. 0. 0.333919 0.330149
0. 0. 0. 0.

0.333919 0. 0. 0.335932
0.330149 0. 0.335932 0.

 .
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In other words the new normalized barycentric variance matrix is unchanged, except
for an additional row and column of zeroes at position 2 corresponding to the null
component x1 = 0: there is zero variation in the directions A1Aj, j = 0, 2, 3, in
agreement with Proposition 4.

6.3 Discussion and properties of barycentric correlation
matrices

The barycentric covariance and correlation matrices of Definitions 8, 11 and 12 allow to
measure the joint variation of a pair of random CoDa elements w.r.t. to their respective
arithmetic mean, in a direction AiAj corresponding to the parts i, j, as shown in the
next Proposition:
Theorem 5 (Properties of Covariance, Correlation). i) Boundedness:

Cov2([x]+, [x]+)i,j ≤ Var([x]+)i,jVar([y]+)i,j ,

− 1 ≤ ρ([x]+, [y]+)i,j ≤ 1,

− 1 ≤ r([x]+, [y]+)i,j ≤ 1.

ii) Zero covariance when pair of simplex representatives are independent: Assume
x, y ∈ ∆d

+ are simplex representatives of [x]+, [y]+. If the pair (xi, xj) is independent
of the pair (yi, yj), then

Cov([x]+, [y]+)i,j = ρ([x]+, [y]+)i,j = r([x]+, [y]+)i,j = 0.

iii) Zero modified covariance when independence of pairs of raw amounts: Assume
the compositional data is obtained by closure of the raw amounts, viz. x = C(a),
y = C(b). If the pair (ai, aj) is independent of the pair (bi, bj), and the means
representatives are chosen to be the expectations of the raw amounts, i.e.

µx = Ea, µy = Eb,

then
r([x]+, [y]+)i,j = 0.

Note that (ai, aj) ⊥ (bi, bj) does not imply (xi, xj) independent of (yi, yj).

Proof. Let us denote Xij :=
∣∣∣∣µx

i xi

µx
j xj

∣∣∣∣, Yij :=
∣∣∣∣µy

i yi

µy
j xyj

∣∣∣∣.
i) By Cauchy-Schwarz,(

E

(
detXij

||µx||1||x||1
× detYij

||µy||1||y||1

))2
≤ E

(
det2Xij

||µx||21||x||21

)
E

(
det2Yij

||µy||21||y||21

)
,

which is
Cov2([x]+, [x]+)i,j ≤ Var([x]+)i,jVar([y]+)i,j ,

and yields the result for ρ. The proof for r is similar.
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ii) By independence, E(detXij × detYij) = E(detXij)× E(detYij). Since [µx]+ and
[µy]+ are the centroid means, Exi = λµX

i , Exj = λµX
j , for some λ > 0. There-

fore, E(detXij) = λ(µX
j µX

i − µX
i µX

j ) = 0, and similarly, E(detYij) = 0. Thus,
Cov([x]+, [y]+)i,j = 0.

iii) By choosing as representatives of

[x] = [a]+, [y]+ = [b]+,

directly the raw amounts a, b, independence of (ai, aj) with (bi, bj) imply
independence of

detXij = det
∣∣∣∣ai Eai

aj Eaj

∣∣∣∣ , with detYij = det
∣∣∣∣bi Ebi

bj Ebj

∣∣∣∣ .
The rest of the proof is the same as ii).

Property iii) means that if the raw/absolute amounts are available, the modified
correlation matrix allows to detect independence of pairs of components.

7 Applications to real data
7.1 Foraminiferal data: amalgamation of CoDa with zeroes

using the barycentric variance matrix
The foraminiferal dataset is a classical palaeoecological compositional dataset studied
by Aitchison (1986) (Dataset 34 in Appendix D), and is available in the R package
coda.base Comas-Cuf́ı (2023). This dataset contains the proportions of four different
fossil species (Neogloboquadrina atlantica, Neogloboquadrina pachyderma, Globorotalia
obesa and Globigerinoides triloba) measured across 30 depth levels within core samples.
Figure 3 show the ternary plots for all combinations of three species out of four.
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Fig. 3 Ternary plots of the foraminiferal dataset.

The dataset, positioned near the sample space boundary, contains (a small number
of) zeros—specifically, three in component 3 (Globorotalia obesa) and two in component
4 (Globigerinoides triloba), with no simultaneous occurrences across these species.
This pattern enables zero-value mitigation by amalgamating components 3 and 4.
More broadly, Aitchison (1986) p. 267 advocated amalgamation of similar components
as a general strategy, posing: “Is there a feasible amalgamation which still allows
investigation of the main issues and at the same time removes all zero components?”.
He noted that “If, however, we know that species 3 and 4 are similar, at any rate more
related than any other pair, then perhaps little will be lost if we decide to amalgamate
species 3 and 4.”

This raises a critical question: how can we quantify the similarity between com-
ponents in a compositional dataset, so that we can identify such most similar pair
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neogl. atl. neogl. pach. glob. obesa glob. triloba

neogl atl 0.0000000 0.0084447 0.0033752 0.0015425
neogl pach 0.0084447 0.0000000 0.0007140 0.0002204
glob obesa 0.0033752 0.0007140 0.0000000 0.0000444
glob triloba 0.0015425 0.0002204 0.0000444 0.0000000

Table 1 Barycentric variance matrix for foraminiferal data: species 3
(Globorotalia obesa) and 4 (Globigerinoides triloba) have the smallest
barycentric variance component value 0.0000444 and thus are the most
similar. Total barycentric variance 0.01434119.

neogl. atl. neogl. pach. glob. obesa glob. triloba

neogl atl 0.0000000 0.5888452 0.2353532 0.1075558
neogl pach 0.5888452 0.0000000 0.0497844 0.0153683
glob obesa 0.2353532 0.0497844 0.0000000 0.0030932
glob triloba 0.1075558 0.0153683 0.0030932 0.0000000

Table 2 Normalised Barycentric variance matrix for foraminiferal data
(in percentages of the total barycentric variance): species 3 (Globorotalia
obesa) and 4 (Globigerinoides triloba) only account for 0.309 % of the
total barycentric variance.

of components? When zeros are present in the dataset, traditional log-ratio trans-
formations and the corresponding log-variation matrices (4) become undefined for
the components of interest. The solution found by Aitchison was to use the external
covariate depth and to check, a posteriori, via a significance test within a linear para-
metric compositional regression model with amalgamated species 3 and 4 as reference,
whether there is any dependence of composition on depth, see Aitchison (1986) p. 267.

To the contrary, the barycentric variance matrix (18) of Definition 9 enables such a
quantification of similarity between components (with or without zeroes), and allows for
a simple, direct, model-free, internal identification of the most similar pair. The results
for the foraminiferal dataset are given in Tables 1 and 2, which present the Barycentric
variation matrix and its normalized version (19), i.e. divided by the (scalar) total
variance Tvar = 0.01434119 (see Definition 10). The barycentric variance component
between species 3 and 4 indeed has the lowest value 0.0000444 among all pairs, which
is one order of magnitude below its nearest contender 0.0002204 (between species 2
(Neogloboquadrina pachyderma) and 4 (Globigerinoides triloba)). In more readable
relative terms (Table 2), the barycentric variance component between species 3 and 4
accounts for roughly 0.31 % of the total, compared to 1.53 % between species 2 and 4
(the second lowest variance component), and 58.88 % between species 1 and 2 (the
highest variance component).

This example thus shows that the barycentric variance matrix thus provides a
framework for quantifying the extent to which pairs of components exhibit similar
compositional variation. By leveraging this matrix, one can systematically evaluate
which pairs of components are more similar and, consequently, make informed decisions
about amalgamations. It is interesting to note that our proposed approach is used in
this example from the perspective of classical log-ratio CoDa analysis, (with the goal
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of removing zeroes by amalgamation), and thus can be used in complement, and not in
opposition, to more familiar methods based on log-ratio vector space representations
of non-zero CoDa.

7.2 Clustering of compositional data and variables using
barycentric divergence and variance: FA composition of
marine copepods

Admittedly, it was mainly the low dimensionality and low number of zeros in the
foraminiferal dataset that enabled Aitchison (1986) to manually determine which
components to amalgamate. For datasets having dozens or hundreds of components
and/or numerous zeros (e.g. microbiome data), such an approach by direct inspection
is likely to become impractical.

In contrast, the identification and selection of relevant variables by computation
of the barycentric variation matrix can be performed in these more difficult datasets.
Indeed, one needs O(d2) product operations to compute the barycentric divergence,
so computation of the barycentric variance matrix scales relatively well with the
number of components. This allows for an automated selection of the most important
components using a hierarchical clustering procedure.

We illustrate this possibility on the data set FA compositions of marine
copepods studied by Greenacre (2021). The data set records the composition of
40 fatty acids in a sample of 42 copepods in the Arctic, see Table 2 of Greenacre
(2021), and is also available online. We performed a hierarchical clustering procedure
with complete linkage on the computed barycentric variance matrix. The results
are displayed on Figure 4, which shows the dendogram, ranking the components by
decreasing degree of similarity.

Fig. 4 Dendogram of CoDa variables using hierarchical clustering with complete linkage based on
the 2-barycentric variance matrix.
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The dendogram shows a large number of similar FA components (the large vertical
leaf in the central part, stretching from 16:3(n-4) to 18:2(n-6)), while dissimilar FA
components (those who are merged later in the tree) are those listed on the top
and bottom of the tree (from 16:00 to 18:4(n-3) and from 18-:1(n-9) to 16:1(n-7)).
Interestingly, these most dissimilar components correspond pretty much to those in
the 13-part subcomposition selected by Greenacre (2021), see the list displayed on his
Table 2.

We emphasize once more that our proposed method enables the direct computation
of a similarity measure between components, applicable to CoDa both with and without
zeros. This is in contrast to Greenacre (2021), where he obtained his list of 13 FAs by
excluding a priori all FAs that had an average occurrence below 0.01, in his initial
analysis based on log-ratio distances and variances.

To analyze the complete 40-parts dataset, Greenacre (2021) compare in his Section
7 several zero replacement methods, and conclude that “since the substituted values
will be small numbers, engendering large negative or positive logratios”, “the method
of zero substitution can have a strong effect on the structure of the compositional
data set and influence its subsequent analysis”. An additional warning against zero-
replacement methods is his observation that “some of the methods broke down”, which
prompted the exclusion of the parts with too many zeroes (!).

Turning to the analysis of CoDa points, one can perform hierarchical clustering on
the full 40-part composition. This clustering is based on the matrix of 2-barycentric
divergences between the 42 data points. The barycentric divergence is particularly
useful as it measures the proximity of CoDa, even when zeros are present. The resulting
dendogram for CoDa points is displayed on Figure 5.

32



Fig. 5 Dendogram of data points using hierarchical clustering with complete linkage based on the
2-barycentric divergence for the FA data.

7.3 Fréchet local linear regression of CoDa using barycentric
divergence

Returning to the foraminiferal dataset, further statistical analysis can be obtained by
performing, e.g., a nonparametric regression of the composition on the depth covariate.
If one does not amalgamate species 3 and 4, the data points contain components with
zeros, and thus the CoDa log-ratio regression techniques based on classical multivariate
analysis can not be applied.

In contrast, an estimate of the conditional expectation of the full compositional
response with respect to the depth covariate can be obtained by solving a weighted
variant of the barycentric divergence-based Fréchet mean, as defined in Definition
3. The description is as follows: consider a random pair (X, [Y]+) ∈ R × P3

+ of the
4-parts foraminiferal CoDa response variable [Y]+), with depth covariate X. The goal
of Fréchet regression is to estimate the conditional Fréchet mean

[m]+(x) := arg min
[m]+∈P3

+

E
{

d2
2([Y]+, [m]+)|X = x

}
where d2 is the 2−barycentric divergence (9) of Definition 1. The conditional Fréchet
mean is the metric generalization of the classical regression function/conditional mean
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m(x) = E[Y |X = x] to a non-Euclidean response variate Y taking its values in a space
equipped with divergence d2. Given the sample (xi, [yi]+), i = 1, . . . , 30, an empirical
estimate [m̂]+(x) of [m]+(x) is obtained by solving

[m̂]+(x) := arg min
[m]+∈P3

+

1
n

n∑
i=1

Kh (xi − x) d2
2([yi]+, [m]+),

where n = 30 is the sample size, K is a smoothing kernel such as the Epanechnikov
kernel or Gaussian Kernel and h is a bandwidth, with Kh(.) = h−1K(./h). [m̂]+ is the
metric generalization of the classical Nadaraya-Watson estimate to a Non-Euclidean
response variable, see e.g. Hein (2009), and a weighted version of the empirical Fréchet
mean defined via (13).

Going beyond Nadaraya-Watson smoothers, Petersen and Müller (2019) show how
to generalize nonparametric local linear regression methods (Fan and Gijbels (1996),
Loader (1999)) for response data in a metric space with Euclidean predictors. This local
Fréchet regression proves to be superior to Nadaraya-Watson smoothing, especially
near the boundaries. It is obtained by solving

[m̂]+(x) := arg min
[m]+∈P3

+

1
n

n∑
i=1

s(xi, x, h)d2
2([yi]+, [m]+),

where s(xi, x, h) are local linear weight, replacing the Nadaraya-Watson weights
Kh (xi − x).

We implemented such a local linear Fréchet estimate based on the 2−barycentric
divergence for the foraminiferal dataset, with Epanechnikov kernel and a Nearest-
Neighbor type bandwidth. The latter corresponds to setting h as the k − th smallest
(usual) distance between the fitting point x and the data points xi, see Loader (1999).
The results are displayed in Figure 6.
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Fig. 6 Local linear Fréchet regression of the foraminiferal CoDa on the depth covariate. Shallow
markers (circle, triangle, diamond, square): data points for the four components. Solid lines with filled
markers: Fréchet regression estimate. Epanechnikov kernel, 10-points Nearest Neighbor bandwidth.

The figure shows the influence of the depth covariate on the full-composition: the
composition remains roughly stable from 0 to 15 meters, with species 1(Neogloboquad-
rina atlantica) as dominating species. From 15 to 30 meters, one observes a gradual
shift, with the emergence of species 2(Neogloboquadrina pachyderma) and correspond-
ing decrease of species 1. Species 3 remain at comparatively low levels, with moderate
surge around 13 and 25 meters. Species 4(Globigerinoides triloba) remains low at all
depth levels, and the curve suggest that observation 24 is an outlier.

7.4 Further statistical Fréchet regression analysis
To conclude this section, we briefly discuss how more advanced statistical analyses can
be conducted within the Fréchet regression framework. We also provide references to
relevant literature for further exploration.

Assessment of the model performance can be obtained using either an in-sample
performance measure, by a Fréchet analogue of the coefficient of determination R2,
or an out-of-sample performance, by splitting the sample into training and testing
sets, estimating the regression sample on the training set, and evaluating its predictive
performance on the testing set, see e.g. Ghosal et al. (2023).

When the number of predictor variables increase, the local polynomial estimator is
known to suffer from the curse of dimensionality. A way to alleviate this effect is to
use semi-parametric techniques like single-index models, where the regression function
is assumed to depend only on a scalar projection of the multivariate predictor. Such
single-index models have recently been extended to Fréchet regression by Ghosal et al.
(2023) and Bhattacharjee and Müller (2023). An additional interest of the single-index
model also owes to to its interpretability as the weights of the single index quantify
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the contribution each covariate/predictor component on the output. In particular,
Bhattacharjee and Müller (2023) provides asymptotic normality results on the estimator
of the index, which allows to perform significance tests and selection of the variables.

Another prominent machine learning method for non-parametric regression is
random forest (Breiman (2001), Genuer et al. (2020)). It has excellent predictive per-
formance, requires only a few parameters to tune, is able to learn complex relationships
between input and output and can handle high-dimensional data efficiently. Capitaine
et al. (2024), Qiu et al. (2024) generalized random forests to the Fréchet case where
inputs and outputs lie in metric spaces. By endowing the CoDa space with the present
barycentric divergence or the log-free distance of Faugeras (2024a), one can apply this
state-of-the-art machine learning method to CoDa with zeros. Additionally, Fréchet
random forests outputs out-of-bag error, which provides a direct estimation of the
prediction error. Similarly, the out-of-bag samples can be used to build variable impor-
tance scores which allow to effectively assess the importance of each variable in the
learning task, and thus to perform variable selection.

Other methods to tame the curse of dimensionality are based on dimension reduc-
tion (see e.g. Ghojogh et al. (2023) for an overview). In particular, Zhang et al.
(2022) Ying and Yu (2020), Dong and Wu (2022) and Weng et al. (2024) extends
sufficiency dimension reduction techniques like sliced inverse regression to Fréchet
regression. At last, let us mention that deep Neural networks, combined with dimension
reduction(Isomap), have also been extended to Fréchet regression in Iao et al. (2024).

8 Conclusion
This study reinterprets compositional data (CoDa) through an affine geometric lens,
leveraging barycentric coordinates to address limitations of classical log-ratio methods,
particularly the handling of zero values. Building on the foundational affine geometry
outlined in Appendix A–notably the displacement vector formula (Lemma 6), which
gives a decomposition in terms of displacements of the different pairs of basis frame
parts–we established in Section 2 that CoDa within the simplex ∆d

+ are naturally
represented as affine points, with operations like amalgamation, subcomposition, and
partition corresponding to barycentric manipulations. This perspective, though seem-
ingly overlooked in CoDa literature despite its affinity with ternary plots, offers a
unified framework for analysis irrespective of zero components. Our primary contribu-
tions are twofold. First, Section 3 introduced α−barycentric divergences, applicable
across the entire CoDa space, with properties extensible to infinite-dimensional mea-
sures and a geometric interpretation for α = 2. These divergences enabled to define
some first statistical tools. In Section 4, we defined empirical Fréchet means and medi-
ans for CoDa sample clouds, minimizing the expected α-barycentric divergence to a
fixed point. The α = 2 case, reducing to the centroid for two-part compositions, offers
a robust measure of central tendency, as demonstrated through simulations compar-
ing variants (Appendix B). Section 5 extended this framework by defining isotropic
Laplace-Gaussian distributions based on barycentric divergences, characterized by a
location parameter and uniform dispersion. Weighted versions introduced anisotropic
generalizations, incorporating directional variation parameters akin to multivariate
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Gaussian distributions in Euclidean spaces. These distributions provide a probabilistic
model for CoDa with zeros, as illustrated in simulations.

Section 6 presented our second major contribution, the barycentric variance matrix,
a log-free analogue to log-ratio variance matrices, quantifying component proportional-
ity via averaged scalar products of displacement vectors in barycentric coordinates. Its
practical utility was showcased in Section 7 through real datasets, enabling hierarchical
clustering for component selection and local Fréchet regression for trend and outlier
detection. The potential integration with advanced techniques—such as random forests
or single-index models—highlights its adaptability to modern statistical challenges.

Reflecting on J.A. Dieudonné’s quip, “Who ever uses barycentric coordinates?”
(quoted by Pedoe (1970)), this work asserts CoDa as a compelling application domain.
By providing mathematical grounding and novel tools, we aim to catalyze further
statistical exploration of CoDa from an affine viewpoint, free from positivity constraints.
A companion paper (Faugeras (2024a)) explores a related projective approach based
on Grassmann’s algebra and outer product, suggesting convergence of geometric
perspectives that may enrich future research.
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Appendix A A primer on affine geometry and
barycentric coordinates

We briefly recall the basics of affine geometry and of barycentric coordinate systems.
These are the prerequisites to understand CoDa as affine points.

A.1 Affine spaces
Informally, an affine space is a vector space without a fixed choice of origin. It describes
the geometry of points and free vectors in space, distinguishing between the two types
of objects. As a consequence of the lack of origin, points in affine space cannot be
(linearly) added together by plainly adding their coordinates as is the case for vectors,
since the notion of linear combination of points is frame dependent, see, e.g., Gallier
(2011) Chapter 2.1.4 However, a vector v may be added to a point P by placing the

4Yet, see the forthcoming Section A.2
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initial point of the vector at P and then transporting P to the terminal point. The
operation thus described P → P + v is the translation of P along v.

This suggests to develop affine geometry over linear algebra: an affine space is
a set of points equipped with a set of transformations (that is bijective mappings),
the translations, which form a vector space, and such that for any given ordered
pair of points there is a unique translation sending the first point to the second; the
composition of two translations is their sum in the vector space of the translations.

Weyl’s axiomatization of an affine space formalizes these considerations:
Definition 13 (Affine space). An affine space is a pair (A,

−→
A) consisting of a nonempty

set A (whose elements are called points) and a real vector space −→A (the space of
vectors) such that there is a mapping

A×A →
−→
A

denoted by
(P, Q) ∈ A×A 7→ −−→PQ ∈

−→
A

satisfying the following axioms:

i) for any P, Q, R ∈ A, we have −→PR = −−→PQ +−−→QR;
ii) for any P ∈ A and for any x ∈ −→A there is one and only one Q ∈ A such that

x = −−→PQ.

A is often said to be the affine space associated to −→A , or conversely that −→A is the
associated vector space for the affine space A. It is also convenient to write Q = P + v
or v = Q− P , instead of v = −−→PQ. The dimension of A is defined as that of −→A . When
A = −→A and −−→PQ = Q− P , the vector space −→A itself is regarded as an affine space.

A point O ∈ A (called the origin) and a vector basis (e1, . . . , ed) of (a finite
d−dimensional) −→A together are called a frame of reference in the affine space A. The
affine coordinates of a point P ∈ A in the frame of reference (O; e1, . . . , ed) are defined
as the (vector) coordinates (α1, . . . , αd) of the vector x := −−→OP in the vector basis
(e1, . . . , ed), viz.

x := −−→OP =
d∑

i=1
αiei.

If relative to the frame of reference (O; e1, . . . , ed), the point P has coordinates
(α1, . . . , αd), while the point Q has coordinates (β1, . . . , βd), then the vector −−→PQ has,
with respect to the basis (e1, . . . , ed), coordinates

(β1 − α1, . . . , βd − αd). (A1)

Further details on affine transformations, affine subspaces, etc. . ., can be found on any
textbook on affine geometry, see, e.g., Gallier (2011), Shafarevich and Remizov (2013).
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A.2 Barycentric coordinates
Instead of locating a point with respect to a frame made of a point and a vector
basis, one can locate points in a reference system made solely of points. Barycentric
coordinates, introduced by Möbius (1827), specify the location of a point w.r.t. a simplex
(of d + 1 points in a d−dimensional affine space). Barycentric calculus interprets as a
method of treating geometry by considering a point as the center of gravity of certain
other points to which weights are ascribed. It is particularly useful to describe triangle
centers (the centroid, orthocenter, incenter, circumcenter, etc.), which enjoy simple
barycentric coordinate representations with respect to the vertices of their reference
triangle. Barycentric coordinates are used, e.g., in geometric modeling, in computer
graphics, in geophysics, or in the finite element method for interpolation on polygons.

Barycentric coordinates are defined w.r.t. to a simplex of affine independent points.
Hence, we recall the notion of affine independence:
Definition 14 (Affine independence). A set {A1, . . . , AN} of N points in a d-
dimensional affine space, d ≥ 2, is said to be affine independent if the N − 1 vectors−−−→
A1Ak , k = 2, . . . , N , are linearly independent5. A simplex of affine independent points,
i.e. a set of d + 1 affinely independent points in a d-dimensional affine space, is simply
called an affine frame.

Barycentric coordinates are then defined as follows:
Definition 15 (Barycentric coordinates). Let {A0, . . . , Ad} be d + 1 affinely inde-
pendent points in a d-dimensional affine space A. Let P be a given point. There are
scalars p0, . . . , pd, with

∑d
i=0 pi ̸= 0, such that, for all points Q,

(
d∑

i=0
pi)
−−→
QP =

d∑
i=0

pi
−−→
QAi. (A2)

The elements of a (d + 1) tuple (p0, p1, . . . , pd) that satisfies this equation are called
barycentric coordinates of P with respect to {A0, . . . , Ad}.

Proof. Since A is d-dimensional and {A0, . . . , Ad} are affinely independent, there
exist unique scalars αi, i = 1, . . . , d, s.t. P writes w.r.t. to the frame of reference
(A0;−−−→A0A1, . . . ,

−−−→
A0Ad) as

P = A0 +
d∑

i=1
αi
−−−→
A0Ai.

Thus, for all Q ∈ A,
−−→
QP = −−→QA0 +−−→A0P

= −−→QA0 +
d∑

i=1
αi(
−−→
A0Q +−−→QAi)

= (1−
d∑

i=1
αi)
−−→
QA0 +

d∑
i=1

αi
−−→
QAi

5Thus, necessarily, N − 1 ≤ d.
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Thus, equation (A2) is satisfied with p0 = 1 −
∑

i ai, pi = αi, i = 1, . . . , d, and∑d
i=0 pi = 1 ̸= 0.

Conversely, a family of scalars (p0, . . . , pd) s.t.
∑d

i=0 pi ≠ 0 define a unique point
P via the vector −−→QP of (A2) as

P = Q +−−→QP = Q +
d∑

i=0

pi∑d
j=0 pj

−−→
QAi, (A3)

where Q can be chosen arbitrarily, (see, e.g., Gallier (2011) Lemma 2.1 (1)). Barycentric
coordinates are then homogeneous: scaling each coordinate pi ← λpi by a common
factor λ ̸= 0 defines the same point P in (A3). Thus, in barycentric coordinates only
ratios of coordinates are relevant. Therefore, in analogy with homogeneous coordinates
of projective geometry, barycentric coordinates of the point P will be denoted by
(p0 : p1 : . . . : pd). The affine independence of the affine frame insures that the
barycentric coordinate representation of a point with respect to the affine frame
is unique, up to scaling. Imposing the condition

∑d
i=0 pi = 1 yields unicity of the

(p0, . . . , pd) and result in normalised barycentric coordinates, which are sometimes
given as the definition of barycentric coordinates. In this case, the point P of (A3) is
simply written as a combination of the points in the frame,

P =
d∑

i=0
piAi, with

d∑
i=0

pi = 1, (A4)

and is called the barycenter (with weight 1) of the weighted points (pi, Ai), i = 0, . . . , d.
If
∑d

i=0 pi = 0, then, by Gallier (2011) Lemma 2.1 (2),

d∑
i=0

pi
−−→
QAi

is independent of Q and thus defines a unique vector. Combining both cases allows to
give a meaning to general linear combination of points∑

i∈I

λiPi, λi ∈ R,

where (Pi)i∈I is a family of points and I an index set: it will yield

i) either a point, if
∑

i∈I λi ̸= 0, defined as the barycenter of the weighted points
(λi, Pi). If

∑
i∈I λi ̸= 1, writing P =

∑
i∈I λiPi expresses P in homogeneous

barycentric coordinates w.r.t (Pi)i∈I and thus corresponds to the barycenter

P =
∑
i∈I

λi∑
j∈I λj

Pi
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in normalised homogeneous coordinates (A4). In other words, the point P is given
the weight

∑
i λi.

ii) or a vector, if
∑

i∈I λi = 0, defined as
∑d

i=0 λi
−−→
QPi with Q chosen arbitrarily. In

particular, the difference P1 − P2 of two points gives a vector, hereby justifying the
notation of a vector in affine space as a difference of two points.

A.3 Formula of the displacement vector from barycentric
coordinates of points

Let F = {A0, . . . , Ad} be d+1 affine independent points in the affine space Rd. Let the
points M , resp. N , with barycentric coordinates (m0 : . . . : md), resp. (n0 : . . . : nd),
w.r.t. F . Then, the following key (elementary) lemma gives the displacement vector
v = −−→MN from M to N :
Lemma 6. For M and N defined by barycentric coordinates as

M =
∑

i miAi∑
i mi

, N =
∑

j njAj∑
j nj

,

the displacement vector v = −−→MN from M to N writes

v =

∑
i<j det

∣∣∣∣mi ni

mj nj

∣∣∣∣−−−→AiAj∑
i mi

∑
j nj

. (A5)

Proof. One has, by definition of M and N ,

v = −−→MN = −M + N = −
∑

i miAi∑
i mi

+
∑

j njAj∑
j nj

=
∑

i

∑
j njmi(Aj −Ai)∑

i mi

∑
j nj

=
∑

i<j njmi(Aj −Ai) +
∑

i>j njmi(Aj −Ai)∑
i mi

∑
j nj

=
∑

i<j njmi(Aj −Ai) +
∑

i<j nimj(Ai −Aj)∑
i mi

∑
j nj

(A6)

=
∑

i<j(minj − nimj)(−Ai + Aj)∑
i mi

∑
j nj

=

∑
i<j det

∣∣∣∣mi ni

mj nj

∣∣∣∣−−−→AiAj∑
i mi

∑
j nj

.

where (A6) follows by exchanging the role of i and j.
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Notice that v is homogeneous, i.e. is invariant w.r.t. rescalings m ← λm and
n← µn, λ, µ ̸= 0, of the barycentric coordinates of M and N .

A.4 Comparison with the formula of the displacement vector
in a reference frame

The subsequent discussion elucidates the distinction, noted in the introduction, between
Cartesian and barycentric coordinates in calculating displacement vectors.

Assume M and N are expressed in normalized barycentric coordinates, i.e.
∑

i mi =∑
i ni = 1, and set also

vij := minj −mjni,

so that (A5) reduces to the numerator, viz.

−−→
MN =

d∑
i=0

d∑
j=i+1

vij
−−−→
AiAj . (A7)

Such formula (A7) expresses the displacement vector −−→MN in terms of d(d + 1)/2 com-
ponents vij along the coordinate axis vectors −−−→AiAj , i < j. It is more common in affine
geometry to write the displacement vector w.r.t. to a reference frame (O; e1, . . . , ed).
W.lo.g. we take the affine frame with A0 as origin and ei = −−−→A0Ai, i = 1, . . . , d. Indeed,
by distinguishing i = 0 from i ̸= 0 and decomposing −−−→AiAj = −−−→AiA0 +−−−→A0Aj = ej − ei

in (A7), one can write

−−→
MN =

d∑
j=1

v0j
−−−→
A0Aj +

d∑
i=1

d∑
j=i+1

vij
−−−→
AiAj

=
d∑

j=1
v0jej +

d∑
i=1

∑
j>i

vijej +
d∑

i=1

d∑
j>i

(−vij)ei (A8)

=
d∑

j=1
v0jej +

d∑
i=1

∑
j>i

vijej +
d∑

j=1
+
∑
i>j

(−vji)ej

=
d∑

j=1
v0jej +

d∑
i=1

∑
j>i

vijej +
d∑

j=1
+
∑
i>j

vijej

=
d∑

j=1
(m0nj − n0mj)ej +

d∑
1≤i̸=j

vijej (A9)

where we exchanged i and j in the third sum of (A8), used antisymmetry of vij ,
and the second sum in (A9) denotes a double sum. By use of normalized barycentric
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coordinates,

m0 = 1−
d∑

i=1
mi,

n0 = 1−
d∑

i=1
ni.

Plugging these into the first sum of (A9) yields

−−→
MN =

d∑
j=1

(nj −mj)ej +
d∑

j=1

d∑
i=1

(−njmi + mjni) ej +
d∑

1≤i̸=j

vijej

=
d∑

j=1
(nj −mj)ej +

d∑
i,j=1

(−vij) ej +
d∑

1≤i̸=j

vijej

=
d∑

j=1
(nj −mj)ej , (A10)

since vii = 0 by antisymmetry. Alternatively to these tedious but elementary6 algebraic
manipulations, note that one could have simply put Q = A0 in (A2) to obtain directly
(A10).

Formula (A10) expresses the displacement vector between two points in d + 1
barycentric coordinates as a difference nj−mj of d independent coordinates. Thus, one
has a formula similar to the usual difference formula (A1) of two vectors in Cartesian
coordinates, with the notable difference that the zero barycentric coordinates m0 and
n0 are absent. However, the formula is not symmetric w.r.t coordinate components as
one component serves as origin and thus play a distinguished role.

Note that if one directly applies formula (A2), then, obviously, for any point Q,

−−→
MN = −−→QN −

−−→
QM =

d∑
j=0

(nj −mj)−−→QAj , (A11)

so that the displacement vector is expressed as the difference of, this time, all
d + 1 barycentric coordinates along the vectors (−−→QA0,

−−→
QA1, . . . ,

−−→
qAd). However,

(−−→QA0,
−−→
QA1, . . . ,

−−→
qAd) is not a vector basis, since it now contains d + 1 vectors in a

d−dimensional space: this explains why analysis of CoDa as plain vectors of Rd+1, as
was sometimes the usage in the early days of CoDa analysis prior to Aitchison (1986),
is clearly ill-conceived. In addition, it introduces the extrinsic element Q, whose choice
is arbitrary.

The lack of symmetry of (A10) and the above criticisms of (A11) explains why we
base our further considerations on formula (A5) of the key Lemma 6.

6They are somehow illuminating for understanding the difference between Cartesian and Barycentric
coordinates
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A.5 Illustrations
The following simple examples illustrate the aforementioned concepts and Lemma 6.
Example 3 (d = 1). For d = 1, the affine space A is the line R, and two distinct points
A0, A1 on the line are affinely independent. Set M, N ∈ R with respective normalized
barycentric coordinates w.r.t. (A0, A1) as M = (0.5 : 0.5), N = (0.8 : 0.2), viz.

M = 0.5A0 + 0.5A1, N = 0.8A0 + 0.2A1,

see Figure A1. Vectorially, this means, by taking Q = A0 in (6), that

−−−→
A0M = 0.5−−−→A0A0 + 0.5−−−→A0A1 = 0.5−−−→A0A1,
−−→
A0N = 0.8−−−→A0A0 + 0.2−−−→A0A1 = 0.2−−−→A0A1,

since −−−→A0A0 = −→0 is the null vector. In other words, the position vectors −−−→A0M and−−→
A0N have respective (Cartesian) coordinates 0.5 and 0.2 in the frame of reference
(A0,

−−−→
A0A1). The displacement vector

−−→
MN = −−→A0N −

−−−→
A0M = −0.3−−−→A0A1

writes as the difference of the Cartesian coordinates 0.2− 0.5 = −0.3, and obviously
coincides with formula (A5) of Lemma 6,

−−→
MN = det

∣∣∣∣0.5 0.8
0.5 0.2

∣∣∣∣−−−→A0A1 = −0.3−−−→A0A1,

which is computed directly from the barycentric coordinates of the initial points. Here,
for d = 1, formula (A5) give the same number of components in the decomposition of
the displacement vector along the d(d + 1)/2 axis pairs −−−→AiAj, i < j, as the classical
decomposition of the displacement vector along the d vector basis −−−→A0Ai: one single
component along −−−→A0A1.
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Fig. A1 Illustration of barycentric coordinates and displacement vectors for d = 1. Up: two (blue)
points M, N with barycentric coordinates M = (0.5 : 0.5), N = (0.8 : 0.2) w.r.t. the (red) points
A0, A1, on the affine space A. Down: corresponding position vectors −−−→

A0M , −−−→
A0N (dashed black arrows)

w.r.t. to the vector basis −−−→
A0A1 (red arrow), with displacement vector −−→

MN (green arrow), in the
associated vector space −→

A .

Example 4 (d = 2). For d = 2, the affine space A is the plane R2, and any three
distinct points A0, A1, A2 not on the same line are affinely independent. Take, e.g.,
A0, A1, A2 forming an equilateral triangle. Let M, N ∈ R2 with respective normalized
barycentric coordinates w.r.t. (A0, A1, A2) as M = (1/3 : 1/3 : 1/3), N = (0.8 : 0.2 : 0),
viz.

M = 1
3A0 + 1

3A1 + 1
3A2, N = 4

5A0 + 1
5A1 + 0A2,

so that M is on the center of the triangle and N is on the edge A0A1, see Figure A2.
In the frame of reference (A0;−−−→A0A1,

−−−→
A0A2), the position vectors corresponding to M

and N write

−−−→
A0M = 1

3
−−−→
A0A1 + 1

3
−−−→
A0A2

−−→
A0N = 1

5
−−−→
A0A1

i.e. have respective Cartesian coordinates (1/5, 0) and (1/3, 1/3) w.r.t. to the vector
basis (−−−→A0A1,

−−−→
A0A2). The displacement vector writes classically as the difference of

these Cartesian coordinates of position vectors,

−−→
MN = − 2

15
−−−→
A0A1 −

1
3
−−−→
A0A2. (A12)
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On the other hand, formula (A5) of Lemma 6 writes

−−→
MN = det

∣∣∣∣1/3 4/5
1/3 1/5

∣∣∣∣−−−→A0A1 + det
∣∣∣∣1/3 4/5
1/3 0

∣∣∣∣−−−→A0A2 + det
∣∣∣∣1/3 1/5
1/3 0

∣∣∣∣−−−→A1A2

= −1
5
−−−→
A0A1 −

4
15
−−−→
A0A2 −

1
15
−−−→
A1A2. (A13)

Since in any plane triangle one has −−−→A0A1 +−−−→A1A2 +−−−→A2A0 = −→0 , i.e.

−−−→
A1A2 = −−−−→A0A1 +−−−→A0A2,

it is readily checked that (A13) coincides with (A12).

Fig. A2 Illustration of the displacement vector formula (A5) of Lemma 6 for d = 2. Two (blue)
points M, N with barycentric coordinates M = (1/3 : 1/3 : 1/3), N = (4/5 : 1/5, 0) w.r.t. the affine
frame A0, A1, A2. The displacement vector −−→

MN (green arrow) decomposes along the coordinate
axis (−−−→

A0A1,
−−−→
A0A2,

−−−→
A1A2) (red arrows) as the sum of − 1

5
−−−→
A0A1, − 4

15
−−−→
A0A2, − 1

15
−−−→
A1A2 (purple dotted

arrows).

Compared to Example 3, here, for d = 2, one has one extra axis component, −−−→A1A2,
in the decomposition of the displacement vector in the d(d + 1)/2 = 3 coordinate axis

46



−−−→
AiAj, i < j, made of ordered pairs of distinct points (Ai, Aj), provided by Lemma 6,
compared to the classical decomposition of the displacement vector on the d = 2 vectors
basis (−−−→A0A1,

−−−→
A0A2).

Appendix B Numerical experiments on barycentric
Fréchet means and comparison with the
centroid

We illustrate and investigate the different kind of means based on α-barycentric
divergence. In the following, we always choose β = α in Definition 3, except for α =∞,
for which we set β = 1.

For α = 2, the barycentric Fréchet mean sometimes corresponds to the arithmetic
mean, i.e. the centroid defined as the arithmetic average of the data points on the
simplex, viz.

[x]+ :=
[

1
n

n∑
i=1
C(xi)

]
+

,

where C is the closure operation of (1). Also, the barycentric median (α = 1) may not
be unique. The following toy example illustrates these points.
Example 5 (Toy example: centroid/barycenter of the triangle). A simple calculation
shows that the 2-barycentric Fréchet mean (m0, m1, m2) ∈ ∆+

d of the vertices of the
basic triangle A1A2A3, with A1 = (1, 0, 0), A2 = (0, 1, 0), A3 = (0, 0, 1) minimizes the
Lagrangian

L(m) := 2(m1
0 + m2

1 + m2
2) + λ(m0 + m1 + m2 − 1),

where λ is the Lagrange multiplier, and is thus easily seen to be equal to m =
(1/3, 1/3, 1/3), i.e. the barycenter or centroid of the triangle.

On the other hand, the Fréchet functional for the 1-divergence is constant and
equal to 2, hence any point in the triangle is a 1-barycentric Fréchet mean. For the
∞-divergence, the Fréchet functional writes, for normalized m ∈ ∆+

d , as

max(m0, m1) + max(m0, m2) + max(m1, m2),

and is also minimal for the barycenter.
Note that this toy example, how trite as it may appear, illustrates a case which can

not be dealt with Aitchison’s log-ratio approaches, since the data contains some zero
components.

When CoDa is one-dimensional (i.e., has two components), one can prove that
the empirical Fréchet mean based on the 2−barycentric divergence coincides with the
arithmetic mean, as shown in the following Proposition.
Proposition 7. For d = 1, the empirical Fréchet mean based on the 2−divergence is
the arithmetic mean.
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Proof. Assume x1, . . . , xn is a simplex-normalized sample, so that xi = (xi
0, xi

1) ∈ ∆1
+,

i = 1, . . . , n. The normalized Fréchet mean m ∈ ∆1
+ minimizes

F (m) =
n∑

i=1
(xi

0m1 − xi
1m0)2 =

n∑
i=1

(xi
0 − xi

0m0 − xi
1m0)2

=
n∑

i=1
(xi

0 −m0)2,

since m0 + m1 = 1 and xi
0 + xi

1 = 1. The latter is obviously minimized by taking
the arithmetic mean of the first coordinate m0 = 1

n

∑n
i=1 xi

0, which yields m1 =
1
n

∑n
i=1 xi

1.

However, in general, the Fréchet mean based on the 2−barycentric divergence is
different from the arithmetic (linear) mean. We illustrate this fact with the simple
Example 6, where the data is made of only two data points.
Example 6 (Toy counter-example: two data points). One considers two data points
(0.05, 0.85, 0.15), (0.3, 0.2, 0.5), located on the left of the triangle, as depicted by the
blue points on Figure B3, together with the barycentric Fréchet means for α = 2
(orange square), α = 1 (green lozenge), α = ∞ (downward violet triangle) and the
arithmetic mean (red upward triangle). Here, only the 2-barycentric mean remain close,
yet distinct, from the arithmetic mean, which is the mid-point between the to data
points. All Fréchet means appears somehow skewed towards the right of the triangle,
away from the segment line where the data sits.

Fig. B3 Comparison of the means for a toy example of 2 data points. Sample points (blue), Arithmetic
mean (red upward triangle), Fréchet means for the α-divergence: α = 2 (orange square), α = 1 (green
lozenge), α = ∞ (downward violet triangle).

A more comprehensive picture of the influence of the α parameter on the location
of the α−barycentric mean is given in Example 7, still very basic with only three data
points. In general, when the number of points is larger, the different α−means have a
tendency to be less spread apart.
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Example 7 (A counter example with three points). One consider the means of the
three (blue) data points (1/8, 1/8, 3/4), (1/17, 12/17, 4/17), and (4/9, 1/9, 4/9), see
Figure B4. The 2-Fréchet mean is, approximately, (0.160, 0.462, 0.378) and is depicted
by the red upward triangle, while the arithmetic mean (red circle) is approximately
equals to (0.140, 0.467, 0.393), and are thus clearly different. Note that the means remain
different if one replaces the normalization by ℓ1-norm in the denominator of the 2-
divergence by the ℓ2 norm. Also shown on the Figure are the Fréchet mean based on the
1-divergence (green lozenge), the Fréchet mean for the ∞-divergence (violet downward
triangle), and several barycentric Fréchet mean for the α-divergence (orange squares),
for α varying from 1.1 to 10. For α = 1, the Fréchet mean corresponds statistically to
the “median” (the Fermat-Weber-Torricelli problem), albeit with a different notion of
“distance”.

Fig. B4 Comparison of the means for a toy example of 3 data points. Sample points (blue), Fréchet
mean for the 2 divergence (red upward triangle), arithmetic mean (red circle), Fréchet mean for the
1-divergence (green lozenge), Fréchet mean for the ∞-divergence (violet downward triangle). Fréchet
mean for the α-divergence (orange squares), for α varying from 1.1 to 10.

When the data have a special geometric structure, in particular when it is on a
straight (Euclidean) lines, the different Fréchet means exhibit intriguing properties, as
illustrated in the next two examples.
Example 8. Let a0, a1 be independent, uniformly distributed r.v. on [0, 1] and set
a2 = a1, so that the raw amounts a1 and a2 are co-monotonic. CoDa is obtained by
closure, i.e. x = C(a). A sample of n = 10 i.i.d. replications of x is shown on Figure
B5 (blue points) and sits on the straight line x1 = x2 in the triangle. The Fréchet
Means for α = 2, α = 1, α = ∞ , together with the arithmetic mean, are computed
and displayed on Figure B5. It is noteworthy to remark that four means considered
respect the geometry of the data, in the sense that they all lie on the line x1 = x2. On
this example, the 2-barycentric Fréchet mean (orange square) and the arithmetic mean
(green lozenge) coincide, and are distinct from the 1-barycentric Fréchet mean (red
upward triangle), resp. ∞-barycentric Fréchet mean (violet downward triangle). As the

49



Mean x0 x1 x2
n = 10
Arithmetic 0.519382 0.240309 0.240309
2− barycentric 0.519382 0.240309 0.240309
1− barycentric 0.616009 0.191995 0.191995
∞− barycentric 0.615063 0.192469 0.192469
n = 50
Arithmetic 0.335202 0.332399 0.332399
2− barycentric 0.335202 0.332399 0.332399
1− barycentric 0.310344 0.344828 0.344828
∞− barycentric 0.310345 0.344828 0.344828

Table B1 Comparison of the different kind of means
of Example 8.

sample size grows, we notice empirically that the 1 and ∞ barycentric Fréchet mean
seem to become indistinguishable, on this example, see Table B1.

Fig. B5 Comparison of the means for Example 8 of 10 data points on a line. Sample points (blue),
Fréchet mean for the 2 divergence (orange square), arithmetic mean (green lozenge), Fréchet mean
for the 1-divergence ((red upward triangle)), Fréchet mean for the ∞-divergence (violet downward
triangle).

The previous example showed barycentric Fréchet means aligned with the line
where the data sits. However, the picture in Figure B5 is somehow misleading and is
due to the symmetry in the data of Example 8. In general, this is not the case, as
illustrated on the following example.
Example 9. As in Example 8, we sample a0, a1 as independent, uniformly distributed
r.v. on [0, 1], but we now set a2 = a0 + a1, and eventually, x = C(a). The data (blue
points) sits on the line x2 = 1/2 displayed on Figure B6. In this example, only the
arithmetic mean and the ∞-barycentric mean sit on the line x2 = x0 + x1 = 0.5. In
addition, the 2−barycentric Fréchet mean now clearly differs from the arithmetic mean.
All mean remain close to each others, yet different, and seem to converge to the same
point as the sample size increases.

50



Mean x0 x1 x2
n = 10
Arithmetic 0.317668 0.182332 0.5
2− barycentric 0.324976 0.191089 0.483935
1− barycentric 0.375724 0.137818 0.486458
∞− barycentric 0.368017 0.131983 0.5
n = 50
Arithmetic 0.236695 0.263305 0.5
2− barycentric 0.241752 0.268185 0.490062
1− barycentric 0.238849 0.266468 0.494683
∞− barycentric 0.237808 0.262192 0.5

Table B2 Comparison of the different kind of means
of Example 9.

Fig. B6 Comparison of the means for Example 9 of 10 data points on a line. Sample points (blue),
Fréchet mean for the 2 divergence (orange square), arithmetic mean (green lozenge), Fréchet mean
for the 1-divergence ((red upward triangle)), Fréchet mean for the ∞-divergence (violet downward
triangle).
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