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Abstract

Agents often make choices by forming expectations about attributes, but such expec-
tations are usually unobserved by researchers. We develop two methods for estimating
discrete choice models where agents use unobserved heterogeneous information sets to
form expectations. Preferences are point-identified using a finite mixture approximation
of the unobserved information structure or set-identified with partial information.
Both methods apply to individual- and market-level data without imposing strong
assumptions on how expectations are formed. We revisit two empirical applications
that confirm the importance of accounting for unobserved information: firms’ revenue
expectations when exporting and consumers’ fuel cost expectations when purchasing
cars.
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1 Introduction

Many choice models incorporate agent expectations about the attributes of options in their
choice set. For example, when choosing health insurance, individuals form expectations
about their future health status (Einav et al., 2010); when purchasing vehicles, they anticipate
future fuel costs (Hausman, 1979); and when deciding on educational programs, they
consider expected future wages (Arcidiacono et al., 2020). All these settings require the
researcher to formulate the expectations agents form about the uncertain attributes of their
options to estimate preferences.

Formulating these expectations is difficult in many settings as researchers seldom
observe the information set agents use to predict the uncertain attribute of options. Further-
more, we expect agents to differ in the information used when making predictions. In most
applications, researchers assume a particular expectation formation process, such as perfect
foresight, and use the resulting predicted attributes for estimation. Whenever researchers’
formulation of these expectations differs from how agents form expectations, the estimation
of preferences is biased (Manski (1993, 2004); Cunha and Heckman (2007);Dickstein and
Morales (2018)). Our paper develops two new methods to deal with unobserved and het-
erogeneous information when estimating preferences. We present simulation results and
revisit two empirical applications showing the importance of accounting for unobserved
information heterogeneity.

The first method we develop generalizes previous plug-in approaches in which re-
searchers specify a specific form of expectation formation. We propose formulating agent
expectations as a finite mixture model of unobserved heterogeneous information types.
This method results in point-identified preferences, is consistent when expectations are
heterogeneous, is easily implementable with existing choice model estimation methods,
and allows us to estimate the prevalence of different information types in the data, thereby
substantially expanding the approach of Cunha et al. (2005) (CHN05 hereafter). The key
requirement of the finite mixture model is that it requires the researchers to observe an
exhaustive set of information variables.

Therefore, we develop a second method that remains useful when researchers observe
only the information set of a single type. Because we make weaker assumptions about
the information structure, we obtain set-identified preferences. We construct moment
inequalities based on the observation that the known type is an extremal information type
whose choices bound other types at some realizations of the data, an approach similar
in spirit to D’Haultfœuille et al. (2018). Our approach relates to Dickstein and Morales
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(2018) (DM18 hereafter). While DM18 rely on the observed minimal information common
to all agents, we rely on observing a single information type, thus developing moment
inequalities that can be estimated with both individual- and market-level choice data.

The finite mixture method consists of two steps. First, we generate all possible combina-
tions of information variables that agents can use to create a set of discrete information
types. For each type in the set, we transform the ex-post product attributes observed by
the researcher into a conditional expectation function, maintaining the standard rational
expectations assumption in the literature (Ahn and Manski (1993)). Second, we plug the
conditional expectations into the choice model and estimate the proportion of agents
with each conditional expectation as a finite mixture model. This approach builds on the
intuition of Bonhomme et al. (2022) in approximating unobserved continuous heterogeneity
with discrete groups.

We prove point-identification of preferences whenever the finite number of types in
our model covers all the information types in the data-generating process (DGP). The
main assumption is that we can observe every potential information variable agents might
use. The key identifying variation comes from (1) how different information variables
generate various conditional expectations and (2) how realized choices vary with different
realizations of the information variables and associated conditional expectations. While
regular plug-in approaches in the literature result in biased preference estimates, the finite
mixture plug-in we propose results in a consistent estimator because it allows flexibility in
approximating the unobserved information structures.

Our approach has several advantages. The method allows for heterogeneity across
information types and directly estimates the fraction of each information type. This
contributes relative to Cunha and Heckman (2007), whose approach allows for a trial and
error procedure to test information sets against each other. The finite mixture model reveals
the distribution of information types in the data, which is often a direct policy interest.
Evaluating policy interventions that target information, as in Allcott and Knittel (2019) or
Barahona et al. (2023), requires disentangling preference and information heterogeneity.
Our method provides a tractable solution to this problem that researchers can employ while
using standard choice estimation data and methods. The finite mixture model is compatible
with individual- and aggregate-level choice data. Researchers can estimate informational
heterogeneity while controlling for attribute endogeneity and random coefficients in
preferences, including the preference for the uncertain attribute.

In our second approach, we develop novel moment inequalities that rely on less
stringent assumptions than the finite mixture model. In some settings, it can be a strong
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assumption that researchers can specify all the potential information variables that agents
may use. We relax this assumption and prove the set-identification of preferences by
bounding the observed market shares by the type-specific choice probabilities of a single
information type. We assume that we know the information set of that single type in the
data. This allows us to estimate the conditional expectation of the uncertain attribute of
this observed type and its prediction errors. Next, we show we can specify an instrument
that selects observations in the data where the observed information type makes extreme
errors. A feasible instrument is a cut-off for extreme values of the estimated prediction
errors of this observed information type. The selection of extremal data points is similar to
D’Haultfœuille et al. (2018). Contrary to the finite mixture approach, we do not need to
specify all possible information sets, nor do we need to assume shared minimal information
as in DM18. We show the identifying power of this method theoretically and in simulations.

We apply the methods developed in this paper to two empirical settings. First, we revisit
DM18, which estimates a model of exporters’ destination choices. Using the observed
ex-post profits, we estimate the conditional expectations that firms form ex-ante about
these profits based on combinations of all the information variables in the original dataset.
We assume that we capture every potential information type in the DGP and estimate a
finite mixture model of four information types. Reassuringly, our information mixture
model yields parameter estimates with overlapping confidence intervals relative to those
derived from the set identification method in DM18 based on minimal information. We
also confirm that every information type receiving a positive weight in the estimation
incorporates the minimal information set specified in DM18, with the most prevalent type
additionally employing the number of existing exporters in forming expectations about
future export profits. As such, our finite mixture model validates the main assumption in
DM18 and extends the estimated parameters to include proportions of information types
that account for the observed export choices. Moreover, we demonstrate the feasibility of
our moment inequality approach in this setting, assuming that at least one exporter type
uses the minimal information set. This is different from the main assumption in DM18,
which requires the minimal information set to be used by all exporters. We obtain similar
confidence intervals from both approaches.

In a second application, we revisit the estimation of consumer fuel cost valuations when
making automobile purchases (Grigolon et al. (2018)) (GRV18 hereafter). This literature
typically makes strong assumptions about the exact expectations consumers form regarding
fuel costs by plugging in a perfect information prediction of fuel costs in the choice model.
We apply our model by estimating a conditional expectation function for every possible
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combination of the underlying information variables that can predict fuel costs. We then
specify the model as a finite mixture of all the possible information types and estimate
their weights. We find that the estimated valuation for fuel costs in GRV18 is substantially
biased upwards, and our results show that we can reject the presence of consumers with
full information about fuel costs. We find that a majority of car buyers form fuel cost
expectations either based on the fuel efficiency of the cars or based on the fuel type of the
car, rarely using both sources of information to accurately predict fuel costs.

Our paper contributes to an empirical literature that models agent beliefs when making
choices. DM18 proposes a minimal information set approach with set identification that
is expanded in Dickstein et al. (2024) for physicians’ prescription choices, and Porcher
et al. (2024) for migration. Our paper contributes by making different assumptions on
the information structure, allowing us to achieve point identification in a finite mixture
approach and to also provide a novel moment inequality approach compatible with
market-level data. Other applications, such as Arcidiacono et al. (2020); Brown and Jeon
(2024); Vatter (2024), exploit specific individual-level data about the information formation
of decision-makers, such as survey evidence or quality ratings. We contribute by specifying
a model where researchers only need to observe the realization of the uncertain attribute
and the set of potential information variables agents use to form expectations. Abaluck
and Compiani (2020) show that choice data alone can be sufficient to identify preferences
when consumers are uncertain about attributes. By relying on more structure and observed
information variables, our approach allows us to estimate both preferences and the
unobserved information structure compatible with the data. Bergemann et al. (2022) studies
how to make counterfactual predictions in a setting where Bayesian individuals hold latent
information that is unobserved by researchers. Our approach is consistent with using any
mental model to form expectations as long as it can be specified as a conditional rational
expectation.

Our finite mixture method can be interpreted as a generalization of previous methods
that incorporate rational expectations into choice models, see CHN05 and Cunha and
Heckman (2007). These methods have found applications in many empirical settings
(Houmark et al. (2024);Aucejo and James (2021)). This approach consists of formulating
how information enters the decision of agents and separating information from error terms
(noise). Across choices, these noise terms should be independent of the information used in
decision-making if the researcher correctly specifies the information set. This then allows
us to test agents’ use of different information sets. Although our approach is conceptually
similar, we differ in that we estimate a distribution over the information sets that best fit the
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data. In a DGP with a single homogeneous information set, our procedure would put all
weight on this correct information set because placing weight on alternative information
sets would not maximize the data likelihood. Our finite mixture approach is more general
in three ways. First, our procedure selects the information sets that best explain the choices.
This removes the need for testing specific information sets against each other. Second, our
approach allows for heterogeneity in the information sets used by agents through the
mixing function. Third, our approach is readily applicable to multinomial choice settings,
market-level datasets, and different types of agents’ prediction problems as it does not
require the explicit specification of the bias stemming from misspecified information.

Our moment inequality approach contributes to the literature by relying on minimal
assumptions on the unobserved information structure. Relative to DM18, we develop an
approach compatible with individual- and market-level choice data. Bounding aggregate
choice probabilities by individual choice probabilities in combination with extremal
selection is a method that can be broadly useful in other settings with unobserved
individual heterogeneity.

Our paper is structured as follows. Section 2 presents the choice model. Section 3 explains
the estimation issues stemming from the unobserved information structure. Section 4
introduces the finite mixture approach. Section 5 introduces the moment inequality
approach. Section 6 covers estimation. Section 7 presents the simulation results. Section 8
presents the two empirical applications.

2 Choice Model

There are T markets indexed by t ∈ T = {1, . . . , T}. In each market t there are Nt individuals
indexed by i ∈ Nt = {1, . . . , Nt}. Each individual i chooses one option j ∈ J = {0, 1, . . . , J}
where j = 0 denotes the outside option. We assume that the indirect experience utility that
individual i derives from option j in market t is given by

uijt ≡ Xjtβ + γgijt + ξ jt + ϵijt, (1)

where Xjt ∈ RK1 is a (row) vector of choice characteristics, gijt ∈ R is an uncertain choice
attribute whose actual value is realized only after the choice is made, ξ jt ∈ R is the
characteristic of option j that researchers cannot observe, and ϵijt ∈ R is an idiosyncratic
taste shock that is i.i.d. Extreme value type I (EVT1) distributed in all options j for each
individual i in market t. The indirect utility of the outside option is normalized as ui0t = ϵi0t.
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The vector of preference parameters of interest is θ = (β′, γ)′.

Denote agent i’s decision variable dijt, with dijt = 1 if she chooses option j in market t
and dijt = 0 otherwise. Agent i faces uncertainty about attribute gijt when making decisions
and chooses the option j that offers the highest expected utility in market t:

dijt ≡ 1

{
E [uijt|Iit] ≥ max

j′∈J
E [uij′t|Iit]

}
, (2)

where Iit denotes individual i’s information set about market t, and E [·|Iit] is her conditional
expectation operator reflecting her beliefs. We allow the information set to be individual-
specific to capture the information heterogeneity in the population. We assume individuals
have rational expectations and, hence, E [A|Iit] = E [A|Iit] for any random vector A, where
E is the empirical expectation from the data.

We now specify an agent’s information at the decision-making stage. We assume
that when making decisions, individuals observe the choice characteristics Xjt and ξ jt,
and their taste shocks ϵijt. However, the attribute gijt is unknown to individuals in the
decision-making stage, and they form an expectation ge

ijt of this unknown attribute. We
specify the agent’s information set as

Iit = (Wit, {Xjt}j∈J , {ξ jt}j∈J , {ϵijt}j∈J , θ′), (3)

where Wit is the set of information variables that individual i uses to form predictions for
the uncertain attribute gijt. Specifically, we define the set Wit as a collection of information
variables kmjt ∈ R, i.e., Wit = {kmjt}m∈Mi,j∈J , where Mi is the index set of information
variables used by the individual i to form her expectations of gijt. Since each individual
may use different information variables to predict the uncertain attribute, the set Mi can
be individual-specific. For instance, one individual may have an index set Mi = {1, 2} and
uses two information variables k1jt and k2jt (i.e., Wit = ({k1jt}j∈J , {k2jt}j∈J )) to predict
the uncertain attribute, while another individual i′ may have Mi′ = {3} and uses k3jt

instead (i.e., Wi′t = ({k3jt}j∈J )). Note that the realized values of the information variables
kmjt can vary across options j and markets t.

In the decision-making stage, individual i predicts the uncertain attribute gijt based on
her information set. We model the prediction as follows:

ge
ijt ≡ E

[
gijt
∣∣Iit
]
= E

[
gijt
∣∣Wit, {Xjt}j∈J

]
. (4)
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{ξ jt}j∈J , {ϵijt}j∈J do not help the agent forecast the uncertain attribute. A corollary of
this is that agents’ predictions ge

ijt are not correlated with the unobserved attribute ξ jt.1 For
simplicity, we omit {Xjt}j∈J from the conditional expectation and assume that agents only
use Wit to form their predictions in the rest of the paper.

Given (1) and (4), agent i’s expected utility from choice j in market t is

ue
ijt ≡ E [uijt|Iit] = Xjtβ + ξ jt + γge

ijt + ϵijt. (5)

The expected utility of the outside good remains the same as the indirect utility ue
i0t =

ui0t = ϵi0t. We decompose the expected utility (5) into the sum of three components: a
mean utility term δjt ≡ Xjtβ + ξ jt, an individual-specific utility term µijt ≡ γge

ijt, and an
individual error term ϵijt.2

Researchers observe a random sample of T markets. For each market t, we observe
choice characteristics Xt = {Xjt}j∈J but not ξt = {ξ jt}j∈J . Our main challenge is not
observing the expected values of the uncertain attribute ge

t = {ge
ijt}i∈Nt,j∈J that agents use

when making decisions. Instead, researchers observe the realized values of the uncertain
attribute gt = {gijt}i∈Nt,j∈J . Besides, researchers typically do not observe the exact
content of the information sets Wit. Instead, we observe a list of K2 information variables,
Kt = {(k1jt, . . . , kK2 jt)}j∈J , that individuals can potentially use to form expectations.

We consider settings where researchers observe individual choices dt = {dijt}i∈Nt,j∈J or
aggregate choice data sjt = {sjt}j∈J . Our objective is to consistently estimate the preference
parameters θ based on the observed data {dt or st, Xt, gt,Kt}t∈T and recover the contents
of individuals’ information sets. We close this section with two illustrative examples.

Example I (Exporting Firms): Researchers observe the individual-level data {dt, Xt, gt,Kt}t∈T .
This is the case in DM18 where researchers observe the export decision dijt of each Chilean
firm i to different countries j given the year-sector t. The utility function uijt specified in
Equation (2) corresponds to exporter i’s profit that depends on the observed attributes Xjt,
such as the distance between Chile and the destination country. The profit also depends
on the export revenue gijt that is uncertain to exporters at the decision-making stage.
Each exporter i needs to form predictions about the revenue E

[
gijt
∣∣Iit
]

based on their

1This assumption parallels the standard demand estimation assumption that unobserved preference
heterogeneity is not correlated to unobserved product quality. However, in informational settings, it can be
argued that the information used to predict attributes might be related to unobserved quality. We find that
this potential correlation of two unobservable is difficult to tackle without more data and discuss this further
in Section 4.

2Our approach is compatible with any other individual unobserved utility terms, such as random
coefficients, as long as the unobserved heterogeneity is uncorrelated with the information variables.
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information sets Iit.3 If the individual error term ϵijt is EVT1 distributed, we obtain the
individual choice probability:

Pr(dijt = 1|Iit) =
exp

(
δjt + γge

ijt

)
1 + ∑J

j=1 exp
(

δjt + γge
ijt

) . (6)

Example II (Automobile Purchase): Researchers observe the market-level data {st, Xt, gt,Kt}t∈T ,
as in Berry (1994) and Berry et al. (1995). For example, in one of our applications, GRV18
uses market-level data to estimate consumers’ valuation of fuel costs when purchasing
automobiles. The utility function uijt specified in Equation (2) corresponds to consumer i’s
utility from purchasing a car j in the year-country t. This utility depends on the observed
attributes Xjt, such as the price pjt of the car. It also depends on the fuel costs gijt that are
uncertain to consumers at the decision-making stage. Each consumer i predicts the future
fuel costs E

[
gijt
∣∣Iit
]

based on their information sets Iit. Given the EVT1 distributed errors
ϵijt, the predicted market share sjt is an integral of the individual choice probabilities over
the distribution of the heterogenous predictions:

sjt(δt; θ) =
∫

ge
ijt

exp
(

δjt + γge
ijt

)
1 + ∑J

j=1 exp
(

δjt + γge
ijt

)dF(ge
ijt), (7)

where δt = (δ1t, . . . , δJt)
′ ∈ RJ denotes the mean utility vector in market t. The researcher

does not observe car buyers’ expectations of fuel costs, ge
ijt, but observes the realized fuel

costs gijt based on mileage, fuel prices, and fuel economy.

3 Estimation Challenges from Unobserved Information
Structures

In this section, we discuss the estimation issues that result from misspecifying the infor-
mation agents use when making choices. We illustrate this with the market-level data
setting.4

3In DM18, the observed list of information variables Kt corresponds to the minimal information set that
every exporter uses to predict the uncertain revenue. Thus, the observed list Kt is a subset of each exporter’s
information sets, i.e., Kt ⊆ Iijt.

4See DM18 for a similar discussion for individual-level data.
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Bias in Preference Parameters: We focus on γ, the parameter quantifying the valuation
for the expected attribute ge

ijt. A primary challenge is that ge
ijt ≡ E

[
gijt
∣∣Iit
]

remains
unobserved for the researcher in the decision utility and depends on each individual’s
information set Iit. A common simplifying assumption is perfect foresight, where ge

ijt is
taken to be equal to the actual realization gijt.

To illustrate the bias, consider a simple demand model with homogeneous agents, i.e.,
ge

ijt = ge
jt, gijt = gjt, and each agent predicts gjt up to an error gjt = ge

jt + ejt. The market
shares sjt in Equation (7) are:

sjt(δt; θ) =
exp

(
Xjtβ + γge

jt + ξ jt

)
1 + ∑J

j=1 exp
(

Xjtβ + γge
jt + ξ jt

) . (8)

Following Berry (1994), we obtain the following linear equation that relates the observed
market shares with covariates:

log(sjt/s0t) = Xjtβ + γge
jt + ξ jt

= Xjtβ + γgjt − γejt + ξ jt

= Xjtβ + γgjt + ξ̃ jt,

(9)

where the last line combines the decision-maker’s prediction error with the product-market-
specific residual: ξ̃ jt = −γejt + ξ jt.

When assuming perfect foresight, researchers use the last line of Equation (9) to
estimate the parameters. However, the perfect foresight assumption introduces a bias
through the expectational errors ejt. Indeed, gjt = ge

jt + ejt implies that E[ejt|gjt] ̸= 0,
and so gjt is correlated to ξ̃ jt, which biases the estimation of the parameter γ. Because
Cov(gjt, ejt) = Var(ejt) > 0 there will be an upward bias (in absolute value) in the estimates
of γ, which implies an overestimated valuation of expected attributes.

While this resembles a regular measurement error problem as described in Wooldridge
(2010), IV methods require potential instruments based on information shifters that
encounter two issues. First, any information shifter used as an instrument must be
uncorrelated with unobserved information shifters; otherwise, it will be correlated with the
expectational error. This means that it is generally difficult to find excluded instruments for
information. Agarwal and Somaini (2022) proposes excluded instruments in a different but
related setting with unobserved choice sets. However, the existence of these instruments is
setting-specific and may not be generally applicable. Second, linear IV approaches are not
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directly applicable in a setting with individual heterogeneity in information sets. Both our
applications deal with individual-specific information sets.

Point and Partial Identification: We discuss what restrictions are needed to achieve
point and partial identification with market-level data {st, Xt, gt,Kt}t∈T in Appendix
A. The intuition is straightforward. One cannot identify the parameter γ that reflects
agents’ preferences associated with the unobserved predictions ge

ijt when the information
structure is not observable. We show that under mild specification assumptions, the
parameter of interest γ can be point-identified if we know the variance of the distribution
of unobserved expectations. The minimal information set assumption in DM18 is not
enough for point identification since it only represents the common knowledge of the
information distribution and provides no knowledge about its variance. We must restrict
how the distribution of unobserved expectations varies across individuals to point-identify
γ, and the rational expectations assumption gives us a valuable set of restrictions.

4 Finite Mixture Model

In this section, we present a semi-parametric approach based on the idea of observing an
exhaustive set of information variables. We propose a two-step finite mixture model to
solve the unobserved expectations problem in a setting with heterogeneous information. In
the first step, we construct conditional expectations based on combinations of information
variables to predict the uncertain attribute g. This results in a set of possible conditional
expectation functions individuals might use to form their expectations about the attribute.
In the second step, we fit the predicted conditional expectations as informational types
in a finite mixture model. The conditional expectation functions vary when agents use
different information variables to form their expectations, informing the researcher about
the proportion of information types generating the observed choice patterns in the data.

4.1 Finite Mixture Approximation of the Information Structure

We propose a semi-parametric finite mixture model to approximate the distribution of
unobserved individual-specific expectations F(ge

ijt). Our key assumption that restricts the
distribution of heterogeneous expectations is the following:

Assumption 1 The set of observed information variables Kt = {(k1jt, . . . , kK2 jt)}j∈J represents
a set of information variables that individuals can use to form their expectations ge

ijt. No other
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information is available to predict ge
ijt.

This assumption restricts the composition of individuals’ information set to observable
information variables. This contrasts with the minimal information set assumption in DM18.
Instead of assuming that we know the minimal set of observed information variables used
by all individuals, we assume that we know the set of all potential information variables
that any individual could use to form their expectations, thereby allowing for a flexible
information structure. Our approach also differs from CHN05. Their approach assumes
that all individuals share the same set of information variables. They also require that
the information factors are mutually independent. In contrast, we assume the researcher
can specify all possible information variables and explicitly accommodate heterogeneous
information sets across individuals. Our approach also allows for arbitrary correlation
among the information variables.

Based on Assumption 1, we can collect all combinations of information variables
in the set Kt to construct the set of information types potentially existing in the data.
Suppose that all individuals use at least one information variable, then the total number of
information types, indexed by K3, is given by K3 = ∑K2

k=1 (
K2
k ) = 2K2 − 1 where K2 is the

number of observed information variables in the list Kt. Each information type, indexed by
κ ∈ {1, . . . , K3}, corresponds to a specific information set Wκt. Relating the type-specific
information set to the individual-specific information set, we have Wit ∈

⋃K3
κ=1 Wκt, ∀i. This

framework nests the perfect foresight case when there is an information type using the
ex-post value gijt as the information variable. This discretization allows us to obtain a finite
and countable number of information types.

Given the information set Wκt, we can compute the expectation ge
κ jt = E[gijt|Wκt] for

each information type κ. We further assume:

Assumption 2 The functional form of the conditional expectation E[gijt|Wκt] is correctly specified.

Assumption 3 Denote the fraction of each information type κ in the population by ϕκ, the
distribution of unobserved expectations F(ge

ijt) is approximated by a finite mixture of the expectation
distributions F(ge

κ jt) across all information types κ:

F(ge
ijt) ≈

K3

∑
κ=1

ϕκF(ge
κ jt),

where the fraction parameters satisfy ∑K3
κ=1 ϕκ = 1, ϕκ ∈ [0, 1].
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Assumption 3 is in line with the previous approaches of DM18 and CHN05.5 Assumption
3 draws on well-known results in statistics that finite mixtures can approximate any
arbitrary distribution under sufficient regularity conditions (McLachlan and Peel, 2004;
Ghorbanzadeh et al., 2017; T. Tin Nguyen and McLachlan, 2020). We focus on approximating
the unobserved distribution of heterogeneous expectations ge

ijt about choice attributes,
while previous approaches such as Berry and Jia (2010), Nevo et al. (2016), and Bonhomme
et al. (2022) approximate the unobserved distribution of preference heterogeneity.

Incorporating this finite mixture model into the demand system, we can rewrite the
choice probability Pr(dijt = 1|Iit) in Equation (6), when researchers have individual-level
data, or the market share sjt in Equation (7) (when researchers have market-level data) as a
discrete sum of type-specific choice probabilities:

Pr(dijt = 1|Iit) =
K3

∑
κ=1

ϕκ

exp(δjt + γge
κ jt)

1 + ∑J
j=1 exp(δjt + γge

κ jt)
, (10)

and

sjt(δt, ge
t ; Θ) =

K3

∑
κ=1

ϕκsκ jt(δt, ge
κt; θ) =

K3

∑
κ=1

ϕκ

exp(δjt + γge
κ jt)

1 + ∑J
j=1 exp(δjt + γge

κ jt)
, (11)

where sκ jt is the choice probabilities of the information type κ, δt = {δjt}j∈J is the vector
of mean utilities, ge

κt = {ge
κ jt}j∈J is the vector of expected attributes for the information

type κ, ge
t = {ge

κt}κ=1,...,K3 is the J × K3 matrix of expected attributes for all information
types. The vector of parameters extends to Θ = (θ′, ϕ′)′ where θ is a vector of preference
parameters and ϕ = {ϕκ}κ=1,...,K3 is a vector of fraction parameters characterizing the
distribution of individuals’ heterogeneous information. The fraction parameters ϕ capture
the information heterogeneity in the distribution of unobserved expectations, which drives
heterogeneity in choices. Hence, each fraction parameter ϕκ can also be interpreted as the
probability that an individual i, choosing the option j, belongs to a specific information
type κ.

The choice probabilities in Equation (10) and (11) impose semi-parametric restrictions on
the shape of the distribution of unobserved expectations. Specifically, we impose restrictions
on the unknown variance of the information distribution by specifying a discrete number

5In applications, we estimate with various specifications of the conditional expectation and select the one
that best fits the observed correlation between the predicted attribute gijt and the information variables Wκt,
thus minimizing the approximation error of the conditional expectation.
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of values of the type-specific expectations ge
κ jt. However, our specification remains flexible

compared to the perfect foresight assumption or a single information set plug-in approach
as we allow for the presence of different information types and estimate the fractions ϕ

from the impact of information heterogeneity on individuals’ choices.

An important additional benefit is that the framework allows for testing the content
of agents’ information sets. We can test whether the type κ using the information set Wκt

exists if the associated fraction parameter ϕκ significantly differs from zero. A positive
and significant ϕκ implies that the information variables in the set Wκt are used by some
individuals to form expectations. This test can be conducted for each information type κ.
The estimated information type shares κ could be of direct interest when researchers want
to estimate the impact of information intervention policy.

Example (Market-level Data): Assume that the uncertain attribute is constant across
individuals. i.e., gijt = gjt, and that gjt can be decomposed into two observed information
variables as gjt = k1jt + k2jt. The set of observed information variables is hence Kt =

{k1jt, k2jt}, the number of information variables is K2 = 2 and the number of information
types is K3 = 2K2 − 1 = 3. Denote the three information types as κ = A, B, C. The
information sets for each type are WAt = {k1jt}, WBt = {k2jt}, and WCt = {k1jt, k2jt},
respectively. Each information type forms the expectations ge

κ jt as follows: ge
Ajt = k1jt +

E[k2jt|k1jt], ge
Bjt = k2jt + E[k1jt|k2jt], and ge

Cjt = k1jt + k2jt = gjt. Thus, the information type
C corresponds to the perfect foresight type. The market share in Equation (11) now writes

sjt(δt, ge
κt; Θ) = ϕA

exp(δjt + γge
Ajt)

D(δt, ge
At; θ)

+ ϕB
exp(δjt + γge

Bjt)

D(δt, ge
Bt; θ)

+ ϕC
exp(δjt + γge

Cjt)

D(δt, ge
Ct; θ)

= ϕA
exp(δjt + γ(k1jt + E[k2jt|k1jt]))

D(δt, ge
At; θ)

+ ϕB
exp(δjt + γ(k2jt + E[k1jt|k2jt]))

D(δt, ge
Bt; θ)

+ ϕC
exp(δjt + γgjt)

D(δt, ge
Ct; θ)

,

where the second equation plugs in the expectations with observed information variables
and D(δt, ge

κt; θ) = 1 + ∑J
j=1 exp(δjt + γge

κ jt) is the exponential of the inclusive value of the
information type κ.

4.2 Identification

We focus on the case where researchers have aggregate market-level data to show identifi-
cation. The individual-level data case can be treated similarly.
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Proposition 1 For a given value of θ, the information heterogeneity parameters ϕ are identified in
market t if the following sufficient conditions hold:

1. The matrix of type-specific choice probabilities At = {sκ jt}j∈J ; κ=1,...,K3 has full column rank,
where K3 is the number of information types.

2. The number of inside goods J is at least K3 − 2.

3. The fraction parameters ϕ are constant across options j.

Because each value of θ is associated with a unique vector of ϕ, identification of θ relies on the
invertibility of the market share system as in Berry and Haile (2014).

Proof. In each market t, one can write a system of J + 1 equations (including the outside
option) using Equation (11) as Atϕ = st, where the vector ϕ ∈ RK3 and

At
(J+1)×K3

= {sκ jt}j∈J ; κ=1,...,K3 =


s10t s20t . . . sK30t

... ... . . . ...
s1Jt s2Jt . . . sK3 Jt

 , st
(J+1)×1

=


s0t
...

sJt

 .

If the square matrix A′
t At is invertible, there exists a unique vector of fractions ϕ that solves

Atϕ = st in each market t. The sufficient condition to identify information parameters ϕ

is that the matrix At has full column rank and more rows than columns, i.e., J + 1 ≥ K3.
We need at least J = K3 − 1 options (excluding the outside option) to identify the fraction
parameters ϕ. We can add the summation restriction on fraction parameters ∑K3

κ=1 ϕκ = 1
into the system of equations and adjust the matrices At, st to achieve identification with
K3 − 2 options and an outside good. With knowledge of ϕ, identification of the parameters
θ follows Berry and Haile (2014) when the market share system is invertible.

The full column rank requirement implies that the variation across columns (i.e., type-
specific choice probabilities sκ jt) is crucial for identifying ϕ. The type-specific expectations
ge

κ jt, generated by the different information variables, are the source of variation across
columns. We highlight that the identification argument for ϕ holds within each market
t. Thus, variation across markets is unnecessary to identify the information structure ϕ.
Consequently, the information parameters ϕ can be market-specific ϕt if there is enough
variation in expectations ge

κ jt across types and options for identification. Additionally,
the number of information types K3 can also be market-specific if we observe different
information variables across markets.6

6In our empirical applications, we assume constant fraction parameters ϕ across markets; hence,
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Because the ϕ vector is identified from the information variables, we can extend the
model in Equation (11) to include preference heterogeneity, e.g., by introducing random
coefficients βi and γi. As in Berry and Haile (2014), identifying the distribution of random
coefficients relies on variation across markets in the market shares and choice attributes.
As we discussed in Section 2, we require that the information variables are uncorrelated
with unobserved preferences heterogeneity.

It is often difficult to distinguish preference and information heterogeneity because
one cannot attribute the choice for an option to a strong preference for that option or to
specific information about the option. We provide one way to overcome the difficulty of
separating preferences and information in our approach. First, we recover the specific effect
of information on choice through the rational expectation assumption and the variation
in observed information shifters. Second, we disentangle information from preferences
because preferences are stable across options and markets, while information variables
realize differently across options and markets. See Barseghyan et al. (2021), Molinari (2020),
and Agarwal and Somaini (2022) for other examples of disentangling preferences and
information.7

The semi-parametric finite mixture model developed so far relies on Assumption 1:
we need to specify the complete set of information variables that any agent might use
and this comes with two limitations. First, there is a curse of dimensionality: the number
of information parameters ϕ increases exponentially with the number of information
variables. Second, researchers might be unable to posit an exhaustive set of information
variables. The mixture model will be biased when agents have latent information not
included by the researcher among the potential information variables.

5 Moment Inequalities with Extremal Information

We now turn to a partial identification approach to make inference about preferences
without specifying a comprehensive set of information variables. We contribute by deriving
novel moment inequalities based on evaluating choices when information variables take
extreme values. Our approach relaxes Assumption 1 as we do not need the exhaustive set

observations from different markets improve the precision of the estimation by increasing the sample size.
In practice, a constant fraction assumption implies that each market contains the same proportion ϕκ of
individuals that use a specific set of information variables (e.g., {k1, k2}). However, this does not imply that
the same proportion of individuals has the same expectations across markets as the value of information
variables {k1, k2} still varies across both markets and options.

7These papers are different from ours because they focus on settings with unobserved choice sets.
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of information variables. Relaxing this assumption comes at a cost: the decisions of many
unobserved information types cannot be exactly distinguished in the data, and therefore,
we only achieve partial identification.

We argue that partial knowledge about the distribution of expectations, in particular
its properties at extremums, is sufficient to set-identify the preference parameters θ. This
partial identification approach requires the researcher to observe at least the information
set of a single information type existing in the data, and for that type to be the extremal
information type at some realizations of the information variables. This approach is
compatible with market-level data, while previous moment inequality approaches, such as
those found in DM18, are compatible with individual-level data.

We start by defining the moment inequalities conditional on the information variables
Zjt = {Wκ jt}κ∈Kt :

mmax(Zjt; θ) ≥ 0

mmin(Zjt; θ) ≥ 0,
(12)

with

mmax(Zjt; θ) ≡ E

[
− log

sjt

s0t
+ max

κ

{
−γeκ jt

}
+ γgjt + Xjtβ + ξ jt

∣∣∣∣Zjt

]
,

mmin(Zjt; θ) ≡ E

[
log

sjt

s0t
− min

κ

{
−γeκ jt

}
− γgjt − Xjtβ − ξ jt

∣∣∣∣Zjt

]
.

(13)

Let Θ denote the set of all possible parameter values θ and Θ0 denote the subset of
those values consistent with the conditional moment inequalities defined in (12), we have

Theorem 1 Let θ∗ be the true parameters of model (11). Then θ∗ ∈ Θ0.

Theorem 1 states that the extremal moment inequalities are consistent with the true
parameter value θ∗. We provide a proof in Appendix B. To convey the intuition of the proof,
we rewrite inequalities (13) as two bounds for the observed log-ratio of market shares:

min
κ

{
−γeκ jt

}
+ γgjt + Xjtβ + ξ jt ≤ log

sjt

s0t
≤ max

κ

{
−γeκ jt

}
+ γgjt + Xjtβ + ξ jt. (14)

Inequalities (14) show that individuals who commit extremal errors when predicting the
uncertain attribute gjt bound the log market share ratio.8 The two sides of the inequality

8The inequalities mirror those found in Gandhi et al. (2023), who employed linear conditional inequalities
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are not redundant. Holding fixed all parameters except γ and assuming without loss of
generality that γ < 0, the right-hand side of (14) is decreasing in γ and therefore identifies
an upper bound on γ. Conversely, the left-hand side is a lower bound on γ. Appendix
Figures A1a and A1b graphically illustrate the power of these inequalities.

Inequalities (14) cannot be estimated directly, since they contain the unobserved terms
ξ jt, max

κ

{
eκ jt
}

and min
κ

{
eκ jt
}

. We aim to express some of these terms as observables. To
begin, it is helpful to define an extremal type, an individual that has the largest or smallest
prediction error:

Definition 1 (Extremal Types) The extremal type κmax predicts the uncertain attribute gjt with
the largest error eκ jt ≡ gjt − ge

κ jt, among all the information types κ, for option j in market t,
i.e. eκmax jt ≥ eκ jt∀κ ̸= κmax, i.e., eκmax jt = max

κ

{
eκ jt
}

. Equivalently, the extremal type κmin

predicts the uncertain attribute gjt with the smallest error eκ jt, i.e. eκmin jt ≤ eκ jt∀κ ̸= κmin, i.e.
eκmin jt = min

κ

{
eκ jt
}

.9

It is infeasible to recover the full distribution of the extreme errors (max
κ

{
eκ jt
}

, min
κ

{
eκ jt
}
)

because that would require knowing the extremal types for each observation gjt. Instead,
we assume that there exists an information type κ̃ for which the researcher observes the
information set Wκ̃ jt. Based on this information type, the researcher can select instances in
the data where the observed type κ̃ is the extremal type using a selection condition ZS

jt.
Additionally, our approach can account for cases where the observed attribute vector Xjt

contains endogenous attributes, such as prices correlated with the unobserved attribute ξ jt.
In these cases, one needs additional instruments for price ZP

jt, such as cost shifters, and
include them in the instrument set Zjt = (ZP

jt, Xjt,Wκ̃ jt). We formalize the assumption as
follows:

Assumption 4 - Extremal Selection: To set-identify preference with extremal information types,
we assume:

(i) We observe the information set Wκ̃ for at least one information type κ̃ that exists in the data.
(ii) ZS

max jt is an indicator function that selects data points jt where the observed information

type κ̃ is the extremal type κmax so that E
[
eκ̃ jt · ZS

max jt

∣∣∣Zjt

]
= E

[
eκmax jt · ZS

max jt

∣∣∣Zjt

]
.

(iii) ZS
min jt is an indicator function that selects data points jt where the observed information

type κ̃ is the extremal type κmin so that E
[
eκ̃ jt · ZS

min jt

∣∣∣Zjt

]
= E

[
eκmin jt · ZS

min jt

∣∣∣Zjt

]
.

(iv) E
[
ξ jt · ZS

max jt

∣∣∣Zjt

]
= 0 and E

[
ξ jt · ZS

min jt

∣∣∣Zjt

]
= 0.

with market-level data to perform robust inference in settings featuring zero market shares.
9This does not mean that κmin has the most accurate expectations, expectation are correct (perfect

foresight) when eijt = 0
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As an illustration, consider a selection condition ZS
max jt for maximum errors. One such

selection rule is an indicator for the prediction error of the observed type κ̃ exceeding
a certain threshold a: ZS

max jt = 1{eκ̃ jt ≥ amax}. The selection condition ensures that the
observed type κ̃ equals the extremal type κmax for the selected observations. Because
κmax makes the largest prediction error, eκmax jt ≥ eκ jt, ∀κ, we can recover the unobserved
expectations E

[
max

κ

{
eκ jt
}
· ZS

max jt

∣∣∣Zjt

]
= E

[
eκmax jt · ZS

max jt

∣∣∣Zjt

]
= E

[
eκ̃ jt · ZS

max jt

∣∣∣Zjt

]
. A

similar threshold instrument can be defined for minimum errors.10

In practice, the selection threshold can be constructed from extremal realizations of
the prediction errors of type κ̃, which we are able to construct. For instance, amin and
amax can be the 5th of 95th percentile of these prediction errors. Selecting extremal values
of the prediction errors of type κ̃ makes it likely that we select market shares where the
extreme information type is κ̃. This selection does introduce a bias-variance trade-off
(D’Haultfœuille et al., 2018). A loose selection threshold decreases the variance of the
moments, but introduces bias. We discuss this bias-variance trade-off in our simulations in
Section 7.

Together, applying these instruments to the moment functions (13) imply the following
moment inequalities:

mκ̃
max(Zjt; θ) ≡ E

[(
− log

sjt

s0t
+ γge

κ̃ jt + Xjtβ + ξ jt

)
· ZS

max jt

∣∣∣∣Zjt

]
≥ 0,

mκ̃
min(Zjt; θ) ≡ E

[(
log

sjt

s0t
− γge

κ̃ jt − Xjtβ − ξ jt

)
· ZS

min jt

∣∣∣∣Zjt

]
≥ 0,

(15)

where we plugin the observed type κ̃’s prediction ge
κ̃ jt = gjt − eκ̃ jt.

Example (Automobile Purchase): Consider fuel cost expectations as in Example II and
GRV18. Suppose we observe fuel prices and fuel economy, and assume that when fuel
prices are extreme, individuals who predict fuel costs solely based on fuel economy commit
larger errors than those using other information sets. For the inequalities and selection
conditions to work, it suffices to assume that some individuals in the DGP base their
predictions only on fuel economy and that, for them, their prediction error becomes larger
than any errors made by other individuals when fuel prices exceed a certain threshold.

10Alternatively, the selection instrument can be defined with a threshold on the information variable k jt,
e.g., ZS

max jt = 1{k jt ≥ amax} since the prediction (and the error) can be expressed as a function of information
variables.
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6 Estimation

6.1 Finite Mixture Approach

Estimation with Individual-level Data: Given individual-level data, we estimate our
parameters of interest with maximum likelihood. The likelihood function is

L(Θ|d, I) = ∏
ijt

[
Pr(dijt = 1|Iit; Θ)

]dijt
[
1 − Pr(dijt = 1|Iit; Θ)

]1−dijt . (16)

where the choice probability Pr(dijt = 1|Iit; Θ) is defined in Equation (10). The estimation
proceeds in three steps. First, the researcher states the set of possible information variables
and constructs all information types from this set. Second, for each type, the researcher
predicts the uncertain attribute.11 Third, the researcher constructs the likelihood using the
predicted uncertain attributes for each information type.

Estimation with Market-level Data: We extend the GMM approach based on Berry et al.
(1995), which imposes mean independence of the structural errors ξ jt relative to a set of
instruments: E

[
ξ jt|Zjt

]
= 0, where Zjt ∈ RK4 represents the vector of K4 instruments. The

estimation algorithm searches over parameter vectors Θ to minimize a criterion function
based on unconditional sample moment conditions formed between the structural errors
ξ jt and the instruments Zjt:

min
Θ

ξ(Θ)′Z′WZξ(Θ)

subject to
K3

∑
κ=1

ϕκ = 1, ϕκ ∈ [0, 1],

where W is the optimal weighting matrix, the vectors and matrices are stacked over all
markets t.

We assume that the observed product characteristics Xjt and information variables kmjt

11In applications, we do not know the expectation form E[·]. In practice, we plot the joint and conditional
distribution between the ex-post attribute and information variables to learn about the potential shape of the
conditional expectations ge

κ jt. We then use non-parametric methods or polynomial approximations to the
functional form.
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are mean independent of the structural error.12 Our identification condition writes

E
[
ξ jt|Xjt,

{
kmjt

}K2
m=1

]
= 0. (17)

While the information variables are obvious candidates as instruments, they perform
poorly in simulations and applications because they do not capture the nonlinearity
through which information impacts shares through the predicted attribute. At the same
time, not all information variables are necessarily relevant as the researcher might include
variables not used by any individual.

We find that in applications, Chamberlain’s approximation of optimal instruments
(Chamberlain, 1987) works well to address the non-linearities through its statistical form
as derivatives targeting each parameter. These instruments correspond to the expected
Jacobian matrix E

[
∂ξ jt(Θ)

∂Θ′

∣∣∣Zjt

]
of the structural error ξ with respect to the parameter vector

Θ, conditional on exogenous variables Zjt. First, it constructs the required exogenous
variations via a non-linear operator (i.e., the conditional expectation) on the instruments
Zjt, including information variables. Second, as first derivatives, they are tailored to each
parameter ϕ and γ. If there is an irrelevant information type κ, then one can expect
the derivative of the structural error with respect to that irrelevant parameter ϕκ to be
asymptotically zero. In other words, Chamberlain’s instruments delete irrelevant types
based on the data by assigning negligible weights to moments associated with non-existing
types while favoring other moments related to information that affects market shares. This
helps smooth the objective function and ensures consistent estimates.

Reynaert and Verboven (2014) highlight the performance of Chamberlain’s instruments
in identifying non-linear parameters and provide a procedure to compute an empirical
approximation of these instruments. We follow their two-stage process. We first estimate
the model using regular instruments (Xjt,

{
kmjt

}K2
m=1) in the first stage. Then, we compute

Chamberlain’s instruments as the expected value of the derivatives of the structural error ξt

with respect to the parameters (ϕ′, γ)′ conditional on the first stage’s regular instruments.
These derivatives are evaluated at the first-stage estimates and mean utility terms. Finally,
we estimate the model again in a second stage leveraging Chamberlain’s instruments.

12When there are endogenous regressors, such as prices, among the observed regressors Xjt, we use
exogenous cost shifters and differentiation IVs, denoted as ZP, as additional instruments. The identification
condition rewrites E

[
ξ jt|Xjt,

{
kmjt

}K2
m=1 , ZP

jt

]
= 0.
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6.2 Moment Inequalities Approach

The estimation of the moment inequality approach proceeds in three steps. First, we
specify the information set Wκ̃t for the information type κ̃ and estimate her predictions
ge

κ̃ jt = E[gjt|Wκ̃t] and the associated prediction errors eκ̃ jt. Second, we form the instrument
ZS

jt that selects observations where the prediction errors eκ̃ jt reach their extreme values.
This instrument choice involves a tradeoff. A loose selection criterion that retains much data
risks possible misspecification whenever κ̃ is not the extremal type. Finally, we adapt the
general conditional moment inequality framework of Andrews and Shi (2013) to estimate
the confidence region for our parameter of interest based on the conditional moment
inequalities defined in (15).13

7 Simulations

To illustrate the power of our approaches, we conduct simulations of both the finite mixture
and moment-inequalities approach. We focus on settings with market-level data.

7.1 Setup

Our simulation is based on the example described in Section 4.1 with three information
types. We perform a Monte Carlo exercise with 1,000 datasets, each consisting of T = 25
markets and J = 10 products. The indirect utility is defined as

ue
ijt = β0 + βxxjt − αpjt + γge

jt + ξ jt + ϵijt.

The product characteristic is uniformly distributed xjt
iid∼ U(1.5, 2.5). We simulate the

price pjt = 1 + zjt + νjt to be exogenous with a cost shifter zjt
iid∼ U(0, 1) and a cost shock

νjt
iid∼ U(−0.25, 0.25). The uncertain attribute is assumed to be constant across individuals

gijt = gjt and equals the sum of two observed information variables gjt = k1jt + k2jt.
The two information variables are independent of each other. The first information
variable is uniformly distributed k1jt

iid∼ U(0, 1) with expectation E[k1jt] = 0.5 and variance
Var[k1jt] = 1/12. The second follows a log-normal distribution log(k2jt)

iid∼ N(0, 1) with

13Andrews et al. (2023) and Cox and Shi (2023) provide alternative inference procedures in settings with
linear conditional moment inequalities, but applying Andrews and Shi (2013) has been sufficiently powerful
to obtain reasonable results in our simulations.
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Table 1: Information Types in the Simulation

Types Expectations Expectational Errors Error Variances

A ge
Ajt = k1jt + exp(0.5) eAjt = k2jt − exp(0.5) e(e − 1)

B ge
Bjt = k2jt + 0.5 eBjt = k1jt − 0.5 1/12

C ge
Cjt = k1jt + k2jt = gjt eCjt = 0 0

Notes. This table summarizes the values of expectations ge
κ jt ≡ E[gjt|Wκ jt], expectational errors eκ jt ≡

gjt − ge
κ jt and the variance of expectations errors Var(eκ jt) of each information type κ = A, B, C specified

in our simulation. The information sets are WAt = {k1jt}, WBt = {k2jt}, and WCt = {k1jt, k2jt}. The true
value is specified as gjt = k1jt + k2jt.

expectation E[k2jt] = exp(0.5) and variance Var[k2jt] = e(e − 1) where e is Euler’s number.
The demand shifters are uniformly distributed ξ jt

iid∼ U(−1, 1). The demand shocks follow
an EVT1 distribution. The preference parameters are θ = (β0, βx, α, γ)′ = (1, 1, 1.5,−1.5)′.

There are three information types in the simulations, indexed by κ = A, B, C, where
the information set of each type is WAt = {k1jt}, WBt = {k2jt}, and WCt = {k1jt, k2jt}.
The proportion of each information type is ϕA = 0.15, ϕB = 0.5, ϕC = 0.35. Given this
information structure, the average market share of the outside option is 21.7%. Each
information type forms the expectations ge

κ jt as follows: ge
Ajt = k1jt + E[k2jt|k1jt], ge

Bjt =

k2jt +E[k1jt|k2jt], and ge
Cjt = k1jt + k2jt = gjt. Here, the information type C corresponds to a

perfect foresight type. The expectations ge
κ jt, the expectational errors eκ jt, and the variances

of the expectational errors Var(eκ jt) are in Table 1.

We also provide simulations where we introduce preference heterogeneity through
random coefficients on the valuation of expected attributes γ. The random coefficient
is specified as γi = γ + σγvi where γ = −1.5 and σγ = 0.5. The distribution of γi

is constructed by 500 draws of vi from the standard normal distribution and we have
γi

iid∼ N(−1.5, 0.5). To ensure that this setup generates a similar average market share of the
outside option as the previous data, we adjust the distribution of the exogenous attribute
xjt

iid∼ U(2, 3). The average market share of the outside option is 19.4%.

Finally, we simulate a third simulation with datasets that only contain two information
types κ = B, C with fractions ϕB = 0.4, ϕC = 0.6 to test if our method can recover consistent
estimates when there are fewer information types in the data than specified. The average
market share of the outside option is 17.6% in such datasets.
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Table 2: Demand Estimation in the Three-type Monte Carlo Simulation

Three-Type Three-Type & RC

Regular IV Chamberlain’s IV Chamberlain’s IV

param. true est. st. err. bias est. st. err. bias est. st. err. bias
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11)

β0 1 0.88 (0.228) 0.12 1.00 (0.023) 0.00 0.97 (0.435) 0.03
βx 1 1.01 (0.021) -0.01 1.01 (0.006) -0.01 1.00 (0.133) 0.00
α 1.5 1.51 (0.016) -0.01 1.50 (0.006) 0.00 1.50 (0.123) 0.00
ϕA 0.15 0.14 (0.021) 0.01 0.15 (0.003) 0.00 0.15 (0.024) 0.00
ϕB 0.5 0.46 (0.089) 0.04 0.50 (0.008) 0.00 0.48 (0.093) 0.02
ϕC 0.35 0.40 (0.028) -0.05 0.35 (0.104) 0.00 0.37 (0.099) -0.02
γ -1.5 -1.42 (0.176) -0.08 -1.51 (0.009) 0.01 -1.49 (0.115) -0.01
σγ 0.5 0.48 (0.124) 0.02

Notes. All estimates are from 1,000 Monte Carlo simulations and the DGP includes three information types κ = A, B, C. Columns
(3) to (8) are from a DGP where there is no individual heterogeneity in the distribution of preference parameters while columns
(9) to (11) are from a DGP where individuals’ valuation of the expected attribute follows a normal distribution with mean γ and
standard deviation σγ. Regular instruments are the intercept, product characteristics xjt, prices pjt and two information variables
k1jt, k2jt. Chamberlain’s IV replaces the latter two information variables in the instrument set.

7.2 Simulation of Finite Mixture Approach

We estimate the model without preference heterogeneity using the GMM two-step proce-
dure described in Section 6. Specifically, we employ as regular instruments constant, xjt, pjt, k1jt

and , k2jt in the first stage. We calculate the approximated Chamberlain’s instruments for
parameters γ and ϕ based on the first stage estimates following Reynaert and Verboven
(2014). Then, we replace the information variables k1jt, k2jt in the set of regular instruments
with Chamberlain’s instruments in the second stage. 14

Table 2 displays the estimation results of a Monte Carlo simulation over the 1,000
datasets when three information types are present in the DGP. Columns (3)-(8) show
that the bias of estimates using Chamberlain’s instruments is smaller than those using
regular instruments. Especially for the intercept, information parameters ϕ, and valuation
of the expected attribute γ, the bias is significantly reduced when using Chamberlain’s
instruments. In Columns (9)-(11), we precisely estimate the information type shares and
the random coefficients on the valuation of the expected attribute γ.

Table 3 displays the estimation results when the DGP includes two information types B

14When estimating the dataset with preference heterogeneity, we find that the first-stage estimates
are usually heavily biased due to the lack of strong instruments, affecting the quality of Chamberlain’s
instruments in the second stage. To address this issue, we implement a three-step procedure by constructing
Chamberlain’s instrument twice.
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Table 3: Demand Estimation in the Two-type (B, C included) Simulation

Regular IV Chamberlain’s IV

param. true est. st. err. bias est. st. err. bias
(1) (2) (3) (4) (5) (6) (7) (8)

β0 1 4.02 (0.243) -3.02 1.06 (0.168) -0.06
βx 1 0.92 (0.183) 0.08 1.01 (0.084) -0.01
α 1.5 1.57 (0.139) -0.07 1.51 (0.083) -0.01
ϕA 0 0.01 (0.011) -0.01 3.30E-04 (0.004) 0.00
ϕB 0.4 0.80 (0.059) -0.40 0.43 (0.032) -0.03
ϕC 0.6 0.19 (0.107) 0.41 0.57 (0.111) 0.03
γ -1.5 -3.30 (0.245) 1.80 -1.55 (0.086) 0.05

Notes. All estimates are from 1,000 Monte Carlo simulations and the DGP includes two information
types κ = B, C. Regular instruments are the intercept, product characteristics xjt, prices pjt and two
information variables k1jt, k2jt. Chamberlain’s IV replaces the latter two information variables in the
instrument set.

and C, but we include A, B and C as potential information types to test if we can successfully
estimate ϕA to equal zero. Columns (3)-(5) show that the regular instruments, similar to
Table 2, are substantially biased. Using Chamberlain’s instruments shrinks the bias and
results in smaller standard errors. The estimated fraction ϕA is negligible in scale and has a
very small standard error, so we can statistically exclude the importance of Type A in the
DGP.15

7.3 Simulation of Moment Inequality Approach

For ease of computation, we modify the setup in 7.1 and simulate a single dataset consisting
of T = 2, 500 markets and J = 10 products. The indirect utility now excludes the price
variable and is defined as

ue
ijt = β0 + βxxjt + γge

jt + ξ jt + ϵijt.

The data-generating process follows the standard three-type finite mixture setting,
except that we swap the fractions of types A and B, setting ϕA = 0.5 and ϕB = 0.15. We
estimate the moment inequalities in (15) using the information type A as the observed
type κ̃ defined in Assumption 4. We select observations where type A’s prediction errors

15By plotting the GMM objective function, we observe that the regular instruments lead to a problematic
objective function with multiple local minima, as shown in Appendix Figure A2. However, the GMM objective
function becomes well-behaved when using Chamberlain’s instruments, as depicted in Appendix Figure A2,
further supports the effectiveness of Chamberlain’s instruments.
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Table 4: Simulation Results with Different Selection Thresholds for κ̃ = A

βx γ # Obs. # Misclass # Pts in CI
(1) (2) (3) (4) (5)

True value 1 -1.5
a
0.9 [-0.14,1.94] [-2.20,-0.15] 5 000 0 285
0.8 [0.14,1.77] [-2.09,-0.48] 10 000 0 199
0.7 [0.14,1.66] [-1.98,-0.48] 15 000 478 164
0.6 [0.25,1.61] [-1.88,-0.58] 20 000 2 869 126
0.5 [0.36,1.49] [-1.77,-0.69] 25 000 5 369 89

Notes. All estimates are from a large dataset of 25,000 observations. The data-generating process includes three
information types κ = A, B, C and we specify A as the observed extreme type κ̃ in the estimation. The instruments
are the intercept, xjt, and estimated expectations of the extreme type ĝe

Ajt. We present results for different selection
thresholds a from 0.9 to 0.5. The selected samples’ sizes are reported in column (3). Among the selected observations,
we count the number of cases where their ĝe

Ajt are not the most extreme of all type-specific predictions ĝe
κ jt, κ =

A, B, C. This is reported in column (4). Both numbers of observations (3) and misclassification (4) are the sum of data
points constructing the max and min inequalities (e.g., at 90% percentiles, we have 2,500 obs. for the max side and
another 2,500 obs for the min side). In our simulation, the number of misclassified data points used in the estimation
all comes from the max side of the inequality. For ease of computation, we do not estimate the intercept and fix it at
its true value. We define a grid of 40 values for the other two parameters, with βx ranging from −0.2 to 2 with a step
of 0.055 and γ from −2.2 to −0.1 with a step of 0.0575, whose interactions form a final grid of 402 + 1 = 1601 points.
Extreme points of the 95% confidence set are reported in square brackets. The number of points (β̂x , γ̂) inside the
95% confidence set is reported in column (5).

eAjt are above the a-th quantile qa (and conversely below the (1 − a)-th quantile q1−a) of its
empirical distribution, with a ∈ {0.9, 0.8, . . . , 0.5}. The selection conditions are defined as
ZS

max jt = 1{eAjt ≥ qa} and ZS
min jt = 1{eAjt ≤ q1−a}.

The moment inequalities in (12) rely on knowledge of the prediction error eκ̃ jt for the
extreme information type κ̃. In practice, the true extreme type may vary across observations
and the selection instrument might misclassify observations where other types than κ̃.
are extremal. Such misclassification introduces noise into the moment conditions, which
weakens their ability to correctly detect violations and may lead to conservative confidence
regions. Intuitively, the looser the selection threshold a, the greater the risk that the observed
type is not sufficiently extreme relative to other types. On the other hand, including more
observations increases the effective sample size, which improves statistical precision.

Our simulation setting allows us to observe the predictions of all information types
when generating the data. This allows us to assess the misclassification errors and the
bias-variance trade-offs of our threshold instrument.

Table 4 presents the simulation results. Our moment inequality approach yields
informative and precise confidence bounds. We experiment with different selection
thresholds to illustrate the bias-variance trade-off inherent in our framework. Column (4)
of Table 4 reports the number of misclassified observations included in the estimation
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Figure 1: 95% Confidence Regions across Different Selection Thresholds (κ̃ = A)

Notes. This figure plots the 95% confidence regions (in red) for two representative selection thresholds a = 0.8 and a = 0.6. The blue
point indicates the true value. The confidence region shrinks when the sample size increases from a = 0.8 to a = 0.6. Although the
sample with a = 0.6 contains around 14% misclassified observations, the estimated confidence region remains valid.

sample. As expected, we find that as the sample size increases, the number of misclassified
observations also increases, but their share, in general, remains small relative to the total
estimation sample.

We find that, as the selection threshold decreases (i.e., more observations are included),
the size of the confidence region continues to shrink, indicating that the sample size effect
dominates the misclassification effect, and the inference is not overly conservative. Until a
threshold of a = 0.8 there is no misclassification in the simulated data. When the threshold
is reduced to a = 0.7, although there are around 3% of misclassified observations, the
confidence region remains nearly identical to the one obtained with a = 0.8. When we
decrease the threshold to a = 0.5, the full sample is used, and the misclassified observations
account for over 20% of the estimation sample. Only in this case does the misclassification
problem dominate and result in the exclusion of the true parameter from the confidence
region.

Figure 1 illustrates the bias-variance trade-off by graphically showing the evolution of
the confidence region. Supplemental evidence is also provided in Figure A3 that plots the
estimated bounds for each parameter βx and γ across different thresholds. This exercise
demonstrates that our moment inequality approach can deliver informative and valid
inference, provided that (1) the sample size grows sufficiently fast relative to the number of
misclassified observations, and (2) the share of misclassified observations remains bounded
within the estimation sample.

26



8 Empirical Applications

We revisit two empirical papers where unobserved information structures play an important
role. First, we revisit DM18, which uses individual-level data, and apply both our finite
mixture and moment inequality approach. Second, we revisit the market-level data setting
of GRV18 and apply our finite mixture approach.

8.1 What Do Exporters Know?

DM18 studies the information structure of exporters in Chilean manufacturing sectors
using moment inequalities based on a minimal information set shared by all exporters.
On the contrary, our key identification assumption in (1) requires that the observed list of
information variables allows us to construct every information type among the exporters.
We can directly infer the distribution of exporters’ information types by estimating the
fraction of each information type in the mixture. We can not only answer the question
“What do all exporters know?” but also estimate the fraction of exporters with different
information sets. In our moment inequality approach, we assume that an exporter type
exists that uses the minimal information set, but we do not have to assume the minimal
information set is shared among all exporters.

8.1.1 Model

Firm i decides on whether to export, dijt, to a foreign country j in year t:

dijt ≡ 1
{

E
[
πijt|Iijt, distj, νijt

]
≥ 0

}
,

where πijt is the profit of firm i from exporting to country j in year t, Iijt is the information
set that firm i uses in year t to predict the potential revenue rijt from exporting to country
j, distj is the distance from the destination country j, and νijt is a demand shock. The
profit equals the difference between the revenue η−1rijt, scaled by the demand elasticity η,
calibrated at η = 5, and the fixed cost of export fijt. The fixed cost fijt = β0 + β1distj + νijt

is specified as a linear function of the distance distj and the demand shock νijt. We can
rewrite the decision rule above as

dijt ≡ 1
{

η−1E
[
rijt|Iijt

]
− β0 − β1distj − νijt ≥ 0

}
.
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The demand shock follows a normal distribution νijt|(Jijt, distj)
iid∼ N(0, σ2). The probability

that firm i exports to a destination j in year t writes as:

Pr(dijt = 1|Iijt, distj; θ) = Φ
[
σ−1

(
η−1E

[
rijt|Iijt

]
− β0 − β1distj

)]
, (18)

where Φ(·) denotes the CDF of the standard normal distribution and the parameter of
interest is θ = (β0, β1, σ)′.

The export revenue rijt takes the role of the uncertain attribute gijt in our model.
However, we do not observe the revenue rijt of a firm i if she does not export to the
destination j in year t. To deal with the issue, DM18 further specifies the potential revenue
as a function of the observed domestic revenue riht of firm i in year t:

rijt = αjtriht + eijt,

where the revenue shifter αjt is a sufficient statistic of how destination-specific supply and
demand factors rescale the value of the domestic revenue to the (counterfactual) potential
export revenue rijt, and eijt is the error term. We follow their approach and estimate the
revenue shifter using data on firms that have exported to the destination j in year t. Under
the assumption that Ejt

[
eijt|Iijt, riht, fijt

]
= 0., αjtriht equals the uncertain attribute gijt in

our model.

DM18 discuss the role of five observed information variables: distance distj, last
year’s domestic revenue riht−1, last year’s aggregate revenue Rjt−1 from all firms that
have exported to the destination j, last year’s revenue shifter αjt−1, and the number
of firms Njt−1 that have exported to the destination j in year t − 1. They assume all
exporters know the first three information variables and construct the minimal information
set Im

ijt = {distj, riht−1, Rjt−1}. We retain their minimal information set and use αjt−1

and Njt−1 to construct additional information types. We construct K3 = 4 information
types, indexed by κ = A, B, C, D, where the information set of each type is WA =

{distj, riht−1, Rjt−1}, WB = {distj, riht−1, Rjt−1, αjt−1}, WC = {distj, riht−1, Rjt−1, Njt−1},
and WD = {distj, riht−1, Rjt−1, αjt−1, Njt−1}, respectively.

8.1.2 Estimation with Finite Mixture Approach

DM18 employ an unbalanced panel of N = 266 unique Chilean firms’ decisions to export
in the food and chemical product sectors from 1996 to 2005, i.e., T = 10. We assume
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that firms make binary decisions to export to any of each of Jc = 22 countries in the
chemical sector and J f = 34 countries in the food sector. In each sector and year t, we
observe the export decisions of all firms dijt, their domestic revenue riht, the export revenue
rijt of firms who have exported to the destination j, and a list of information variables
Kijt = (distj, riht−1, Rjt−1, αjt−1, Njt−1).

We separately estimate the export decision in each sector with the maximum likelihood.
In this context, the likelihood function (16) becomes

L(Θ|d,K, dist) = ∏
ijt

[
Pr(dijt = 1|Kijt, distj; Θ)

]dijt
[
1 − Pr(dijt = 1|Kijt, distj; Θ)

]1−dijt ,

and the choice probability Pr(dijt = 1|Kijt, distj; Θ) is specified as

Pr(dijt = 1|Kijt, distj; Θ) =
K3

∑
κ

ϕκΦ
[
σ−1

(
η−1E

[
αjtriht|Wκ

]
− β0 − β1distj

)]
, (19)

where the fraction parameters satisfy the constraints ∑K3
κ ϕκ = 1; ϕκ ∈ [0, 1] and the

parameter vector is Θ = (β0, β1, σ, ϕA, ϕB, ϕC, ϕD)
′.

When bringing the likelihood function (19) to the data, we need to calculate the
type-specific expectations of the potential export revenue E

[
αjtriht|Wκ

]
. We calculate the

conditional expectation with a non-linear exponential specification following DM18. For
instance, the expectation of the potential export revenue in information type A, i.e., the
minimal information type, is

E
[
αjtriht|WA

]
= exp

(
γA1 log(distj) + γA2 log(riht−1) + γA3 log(Rjt−1)

)
, (20)

where we first run a non-linear regression of the ex-post export revenue αjtriht on infor-
mation variables log(distj), log(riht−1), log(Rjt−1) and obtain the estimated coefficients
γ̂A1, γ̂A2, γ̂A3. Then we predict the unobserved expectation as

Ê
[
αjtriht|WA

]
= exp(γ̂A1 log(distj) + γ̂A2 log(riht−1) + γ̂A3 log(Rjt−1)).

We repeat this calculation for each information type κ. The only difference between our
calculation and DM18 is that we do not include any intercept term γκ0 in (20).16

16Indeed, when estimating Equation (20) with intercept γA0, we find that the predicted expectations
Ê
[
αjtriht|Wκ

]
are close to 0 for any information type κ, making them indistinguishable. Without the intercept,
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8.1.3 Estimation with Moment Inequalities

Following the binary choice model in DM18, we estimate the standard deviation σ > 0
of the demand shock νijt, and we abstract from any unobserved product attribute ξ jt. We
assume that νijt follows an EVT1 distribution instead of a normal distribution. This allows
us to directly adapt our inequality specification in Equation (15) as follows:

mκ̃
max(Zijt; θ) ≡ E

[(
− log

sijt

1 − sijt
+ σ−1

(
η−1E[rijt | I κ̃

ijt]− β0 − β1distj

))
· ZS

max ijt

∣∣∣∣∣Zijt

]
,

mκ̃
min(Zijt; θ) ≡ E

[(
log

sijt

1 − sijt
− σ−1

(
η−1E[rijt | I κ̃

ijt]− β0 − β1distj

))
· ZS

min ijt

∣∣∣∣∣Zijt

]
,

with Zijt = (constant, distj, Iκ̃,ijt) and E
[
rijt | Iκ̃,ijt

]
= αjtriht − eκ̃ jt denoting the predicted

export revenue of an observed information type κ̃.

Since our approach relies on observing choice probabilities (market shares), we group
firms with similar revenues αjtriht into 20 deciles for each destination j in year t. The group-
specific export probabilities are sjct =

∑i∈c dijt
Nc

, where Nc is the number of firms in revenue
decile c. We lose information by aggregating sijt to sgjt. Consequently, some observations
lead to moment inequalities that are too weak to reject any candidate parameter values.
We exclude these data points from the estimation sample.17

We define the minimal information type as the observed type κ̃ in Assumption 4(i).
Given that only about 11% of firms in the sample (chemical sector) are exporters, the
estimated group-specific export probabilities sgjt tend to suffer more from a downward
aggregation bias. As a result, the min-side inequalities are much less informative than the
max-side inequalities.

To address this issue, we modify the asymmetric selection thresholds in Assumptions 4(ii)
and 4(iii). Specifically, after estimating the predicted export revenues Ê

[
rijt | Im

ijt

]
for the

minimal information type Im
ijt, we select extreme predictions below the 5-th percentile, i.e.,

ZS
min jt = 1

{
Ê
[
rijt | Im

ijt

]
≤ q0.05

}
, to construct the min-side moments. We use predictions

above the 93-th percentile, i.e., ZS
max jt = 1

{
Ê
[
rijt | Im

ijt

]
≥ q0.93

}
, to construct the max-side

moments.
the predicted expectations vary across information types.

17Alternatively, we could specify an alternative parameter grid, but we prefer to evaluate the inequalities
on the same grid as in DM18.
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8.1.4 Results

Figure 2: 95% Confidence Intervals for the Chemical Sector

Extremal Moment Inequality

DM18's Moment Inequality

Finite Mixture

Minimal Information

Full Information

124.8

395.6

1038.7

78.3 119.3

85.1 115.9

104.1 145.4

178.1 613.0

229.3 1848.0

95 % Confidence Intervals for σ

Extremal Moment Inequality

DM18's Moment Inequality

Finite Mixture

Minimal Information

Full Information

95.5

298.2

745.2

52.7 109.8

62.8 81.1

73.6 117.5

154.8 441.7

175.6 1314.9

95 % Confidence Intervals for β0

0 250 500 750 1000 1250 1500 1750 2000
Parameter Estimate

Extremal Moment Inequality

DM18's Moment Inequality

Finite Mixture

Minimal Information

Full Information

210.8

447.1

1087.8

76.6 204.5

142.5 194.2

162.5 259.0

193.6 700.6

260.4 1915.1

95 % Confidence Intervals for β1

Notes. All estimates are reported in thousands of year 2000 US$, and their magnitudes scale proportionally with the parameter η, which
is set to 5, following DM18. For each parameter σ, β0, and β1, we first plot 95% confidence intervals corresponding to three maximum
likelihood estimators (MLE), with point estimates indicated by an ’x’ at the center of each interval. The "Full Information" corresponds
to the "Perfect Foresight" MLE in DM18, which assumes that firms’ expectations coincide with realized outcomes, i.e., E[rijt|I ijt] = rijt.
The "Minimal Information" replicates the specification in DM18 where firms form expectations using the minimal information set. The
third row presents confidence intervals from our finite mixture model with four information types. Then, we plot the extreme points of
the 95% confidence sets for the two moment inequality estimators. The “Finite Mixture” and the two moment inequality estimators are
robust to unobserved information structure.
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Table 5: Finite Mixture Estimates for Entry Decision in the Chemical Sector

Parameters σ β0 β1 ϕA ϕB ϕC ϕD

124.8 95.5 210.8 0.15 1.17E-12 0.56 0.29
(11) (11) (25) (0.048) (0.092) (0.078) (–)

Notes. All the preference estimates (σ, β0, β1) are reported in thousands of year 2000 US$, and their
values scale proportionally with η, which is set equal to 5, as in DM18. The finite mixture model
consists of four information types κ = A, B, C, D and the estimated share of the information type
D is calculated as ϕD = 1 − ϕA − ϕB − ϕC . Bootstrap standard errors are computed as in DM18
and reported in parentheses.

Figure 2 compares parameter estimates for the chemical sector for 5 specifications.
First, as in DM18, we show results for two naive plug-in approaches, i.e. assuming that all
exporters have full information or minimal information so that there is no heterogeneity in
information sets. Next, we replicate the moment inequality of DM18 based on the minimal
information, which finds small estimates and, thus, a smaller fixed cost of exporting than
naive approaches. Finally, the figure compares these results with our moment inequality
and finite mixture approach results, where we find our results perform just as well as
DM18.

Table 5 presents the estimation results from the finite mixture model in the chemical
sector. From the estimated fractions ϕκ, we observe a significant share of information type A,
the minimal information type, confirming the findings in DM18. Furthermore, we observe
that firms are more likely to include the number of exporters Njt−1 in their information
set, compared to only using the minimal information set (ϕ̂A = 0.15 < ϕ̂C = 0.56).
Additionally, exporters are unlikely to use the revenue shifter αjt−1 combined with the
minimal information set, as ϕ̂B = 1.17E − 12, which is close to zero and not statistically
significant. Intuitively, information about the number of total exporters might be easier to
obtain for a firm than the revenue shifter. However, there is also a substantial proportion of
firms that use all information variables (ϕ̂D = 0.29).

8.2 Consumer Valuation of Fuel Costs

GRV18 studies the valuation of automobile fuel costs in the EU market. The authors use
a demand model with rich consumer heterogeneity to obtain estimates of consumers’
valuation of fuel costs. Specifically, they allow preference heterogeneity using an empirical
mileage distribution and random coefficients. They provide quantitative evidence that
consumers undervalue their expected fuel cost when purchasing a vehicle. The paper adds
to a large literature following Hausman (1979), that looks at identifying the responsiveness
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of purchases of energy-consuming durables to their energy expenses. This literature has
relied on plug-in approaches. The researcher specifies what consumers expect about
future energy consumption at the time of the purchase and plugs in the expectation in
the purchase decision model. If consumers form expectations differently than what the
researcher specified, these types of models suffer from the bias of misspecified information
structures discussed in Section 3.

We extend GRV18 and investigate the information variables consumers use to form
expectations of fuel costs. We recast the problem in our framework and estimate a finite
mixture of observable information types. This allows us to obtain estimates of consumers’
valuation of their expected fuel costs consistent with a much richer information structure
and to estimate which information types are prevalent in the data.

8.2.1 Model

A consumer i decides whether to purchase a car model j with engine variant k in market
(defined as year-country) t. For simplicity, we omit the market subscript t. Her decision
utility is defined as

ue
ijk = xjkβx

i − αi(pjk + γGijk) + ξ jk + ϵijk,

where each car is defined based on its model j and engine type k, xjk is a (row) vector of
observed car characteristics, pjk is the price, Gijk is consumer i’s expected fuel cost, ξ jk is an
unobserved product attribute and ϵijk is the idiosyncratic valuation for the car, modeled
as an EVT1 random variable. The vector βx

i includes the consumer-specific coefficients
on the car characteristics, αi is the marginal utility of income, and the expected fuel cost
Gijk accounts for individuals’ mileage heterogeneity. Specifically, it represents consumer
i’s present discounted value of expected future fuel costs for the car model j with engine
variant k as

Gijk = ρβm
i ejk fk,

where ρ ≡ ∑S
s=1(1 + r)−s is the capitalization coefficient that depends on the lifetime S of

the car and the interest rate r, βm
i is consumer i’s annual mileage, ejk is the fuel consumption

of the car and fk is the fuel price. Finally, the parameter γ measures consumers’ future
valuation. If γ < 1, consumers undervalue future payoffs Gijk relative to the current payoff
pjk.
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GRV18 assumes that consumers have full information about future fuel costs. We relax
this assumption and investigate what information consumers use to form their expectations
Gijk. We assume consumers know their mileage βm

i , and we aim to estimate ρ. We consider
the observed fuel efficiency ejk and fuel prices fk as the information variables and construct a
mixture model of K3 = 3 information types, indexed by κ = A, B, C, where the information
set of each type is WA = {ejk}, WB = { fk}, and WC = {ejk, fk}, respectively. We denote
the product ejk fk as the uncertain attribute gjk in our model. The expectation of each
information type is ge

κ jk = E[ejk fk|Wκ]. The information type C corresponds to the perfect
foresight type that uses both fuel efficiency and fuel price to predict fuel costs.

The market share for model j with engine k equals

sjk(ξ; ρ, Θ) =
K3

∑
κ=1

ϕκ

[∫
β

exp(xjkβx
i − αi pjk − αiγρβm

i ge
κ jk + ξ jk)

1 + ∑j,k exp(xjkβx
i − αi pjk − αiγρβm

i ge
κ jk + ξ jk)

dFβ(β; θ)

]
, (21)

where the vector of random coefficients βi = (βx
i , αi, γρβm

i )
′ is assumed to be independent

of the taste shock ϵijt and follows a distribution Fβ(β; θ) where θ are means and (co)variance
parameters to be estimated. The parameter vector of interest is Θ = (θ′, ϕA, ϕB, ϕC)

′.

8.2.2 Estimation

The data used to estimate the market share system in Equation (21) is a panel of T
markets. The vector of product attributes in xjkt includes horsepower, size, and height of
the car, whether the car is produced in a foreign country, and a diesel dummy interacted
by country dummy variables. Following GRV18, we restrict the random coefficients to
be βx

i = β̄x + Σxνx
i , where β̄x is the vector of mean valuations and Σx is assumed to

be a diagonal matrix with the vector of standard deviations σx on the diagonal and
νx

i follows a standard normal distribution. The marginal utility of income is inversely
proportional to the market’s income level yt, i.e., αi = α/yt. Individual mileage βm

i is drawn
from the observed empirical mileage distribution. The parameter of interest reduces to
Θ = (β̄x′ , Σx′ , α, γρ, ϕA, ϕB, ϕC)

′.

Finally, the unobserved quality ξ jkt is assumed to be linearly additive as

ξ jkt = ξ j + ξt + ξ̃ jkt,

where ξ j are model-specific fixed effects, and ξt are market-specific fixed effects modeled
as country-specific fixed effects interacted with a time trend and a squared time trend. The
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model is then estimated with GMM using the conditional moment restrictions

E
[
ξ̃ jkt|zt

]
= 0,

where zt is a vector of instruments.

We apply a random forest prediction to approximate the unobserved shape of the
conditional expectation operator ge

κ jk = E[ejk fk|Wκ]. This allows us to capture the non-
linear relationship between the information variables and the expected fuel costs, as
displayed in Appendix Figure A4.

We first estimate the mixture model in Equation (21) without random coefficients,
i.e., βx

i = β̄x using the standard two-step GMM. In the first stage, our instruments zt

include observed product attributes xjkt, cost shifters, BLP instruments and the realized
fuel costs gjkt. Then we follow Reynaert and Verboven (2014) to calculate the approximated
Chamberlain’s instruments for the fraction parameters ϕκ and the undervaluation coefficient
γ based on first stage estimates and instruments. In the second stage, we replace the realized
fuel costs gjkt by those Chamberlain’s instruments in zt.

When allowing preference heterogeneity, the regular two-step GMM fails to deliver
precise estimates in our mixture model (21). We adopt a one-step estimator that continuously
updates the Chamberlain’s instruments, following Bourreau et al. (2021). When minimizing
the GMM objective function in the outer loop, we employ Newton’s method with a
numerical gradient. Our estimates are robust to the alternative gradient-free Nelder-Mead
simplex method used in Bourreau et al. (2021).

8.2.3 Results

Table 6 presents the estimation results. The first three columns replicate results from Table 3
in GRV18 for comparison with our findings displayed in columns (4)-(6). Our main result is
that our estimates reject the perfect foresight assumption used in the literature. Specifically,
the estimated fraction of the perfect foresight consumer type ϕC is nearly zero. We find
that more than half of the consumers use only fuel efficiency to predict future fuel costs,
while the remainder rely solely on fuel price. Finally, our mixture model estimates γ̂ = 0.23
much lower than the 0.91 estimated under the full information model. This suggests that
accounting for consumers’ unobserved information about fuel costs is important in this
setting. Our findings align with survey findings discussed in Levinson and Sager (2023),
pointing out that consumers’ ex-post and ex-ante fuel costs differ substantially.
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Table 6: Parameter Estimates for Alternative Demand Models

Table 3 in Grigolon et al. (2018) Finite Mixture

Logit RC Logit I RC Logit II Logit RC Logit I RC Logit II
(1) (2) (3) (4) (5) (6)

Panel A. Mean Valuations
Price/inc. (α) -4.52 -6.22 -5.33 -2.44 -4.45 -4.97

(0.19) (0.22) (0.21) (0.21) (0.21) (0.28)
Fuel costs/inc. (αγρ) -39.03 -46.48 -47.11 -12.73 -18.54 -11.07

(1.41) (0.94) (9.22) (0.33) (0.64) (0.50)
Power (kW/100) 2.28 2.6 0.25 1.14 2.27 -1.87

(0.14) (0.17) (0.61) (0.14) (0.14) (0.17)
Size (cm2/10k) 13.25 16.69 16.77 14.36 15.79 14.39

(0.44) (0.48) (2.02) (0.41) (0.42) (1.37)
Height (cm/100) 3.00 4.45 5.19 3.05 3.87 5.59

(0.30) (0.32) (0.33) (0.26) (0.28) (0.18)
Foreign -0.83 -0.75 -0.89 -0.94 -0.84 -1.09

(0.02) (0.02) (0.04) (0.02) (0.02) (0.05)

Panel B. Fractions of Information Types
Fuel efficiency (ϕA) 0.68 0.66 0.51

(0.02) (0.02) (0.04)
Fuel price (ϕB) 0.32 0.34 0.39

(0.03) (0.03) (0.04)
Perfect foresight (ϕC) 0.00 0.00 0.10

(–) (–) (–)

Panel C. Standard Deviations of Valuations
Power (kW/100) 1.95 2.70

(0.25) (0.18)
Size (cm2/10k) 4.31 6.04

(2.04) (1.21)
Foreign 0.49 1.56

(0.43) (0.06)
Mileage distribution No Yes Yes No Yes Yes

Panel D. Valuations of Future Fuel Costs
Fuel costs/price (γρ) 8.63 7.47 8.84 5.22 4.17 2.23

(0.55) (0.24) (1.77) (–) (–) (–)
Future val. γ (r = 6%) 0.89 0.77 0.91 0.54 0.43 0.23

(0.06) (0.02) (0.18) (–) (–) (–)

Notes. This table reproduces estimates from GRV18 in columns (1)-(3) and applies the finite mixture model
with three information types in columns (4)-(6). Standard errors are reported in parentheses.
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9 Conclusion

This paper introduces two novel econometric approaches to estimating discrete choice
models in the presence of unobserved heterogeneous information sets. We illustrate the
significance of accounting for unobserved information heterogeneity through empirical
applications and simulations. Our analysis of firm export decisions confirms that our
methods successfully find estimates similar to previous approaches but under very different
assumptions. In the context of consumer vehicle purchases, our results reject the commonly
assumed perfect foresight about fuel costs and reveal substantial heterogeneity in how
consumers form expectations.

Our methodological contributions extend existing work on discrete choice under
uncertainty by introducing new tools that can be readily implemented in empirical
research. The finite mixture model offers a tractable solution for recovering informational
heterogeneity using standard choice data. At the same time, the moment inequality
approach provides a more robust alternative in settings where the researcher cannot specify
all information variables. Given the increasing relevance of policy interventions that aim to
influence choice through information provision, our framework is valuable for assessing
how informational heterogeneity affects counterfactual predictions.

Future research may explore extensions of our methods to dynamic decision-making
settings and contexts with dynamic learning. Additionally, further work is needed to
understand how these approaches can be applied in high-dimensional settings where
the set of potential information variables is large. By bridging the gap between observed
choices and unobserved expectations, our work advances the empirical toolkit available to
researchers studying economic decision-making under uncertainty.
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Appendices

A Proof of Partial Identification

For simplicity, we assume that β = 0K1 , ξ jt = 0, ∀j, t, and the observed list of information
variables Kjt contains only one random variable. The parameter of interest hence reduces
to the scalar γ and the observed data reduces to {st, gt,Kt}t∈T . None of the conclusions in
the proof depend on these simplifications made for illustrative reasons. DM18 presents a
similar proof for the setting with micro-choice data.

We denote Fo(·) for distributions that can be directly observed or estimated and f (·)
for distributions containing any unobserved variables. The data {st, gt,Kt}t∈T allows us to
estimate the joint distribution Fo(sjt,Kjt, gijt) across i, j, and t. Without loss of generality,
we can write

Fo(sjt,Kjt, gijt) =
∫

ge
ijt

f (dijt(ge
ijt),Kjt, gijt)dge

ijt, (22)

where the joint distribution f (dijt(ge
ijt),Kjt, gijt) involves the unobserved individual choices

dijt that is a function of the unobserved expectations ge
ijt. Equation (22) connects the

observed data with the unobserved variable. Using rules of conditional distributions, we
have

Fo(sjt,Kjt, gijt) =
∫

ge
ijt

f y(dijt|Kjt, ge
ijt, gijt) · f y(gijt|Kjt, ge

ijt) · f y(ge
ijt|Kjt) · Fo(Kjt) dge

ijt,

(23)
where Fo(Kjt) denotes the marginal distribution of Kjt and is observed in the data. Any
structure Sy ≡ { f y(dijt|Kjt, ge

ijt, gijt), f y(gijt|Kjt, ge
ijt), f y(ge

ijt|Kjt)} is admissible provided
that it verifies the restrictions imposed in Section 2 and Equation (23). Section 2 implies the
logit form of f y(dijt|Kjt, ge

ijt, gijt) and we have:

f y(dijt|Kjt, ge
ijt, gijt) =

 exp(γge
ijt)

1 + ∑J
j=1 exp

(
γge

ijt

)
dijt

1 −
exp(γge

ijt)

1 + ∑J
j=1 exp

(
γge

ijt

)
1−dijt

.

(24)

Next, we show that γ is partially identified in a model with stricter assumptions than
those in Section 2. The idea is that if we can show partial identification in a more restrictive
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model, then the model defined in Section 2 is also partially identified. Specifically, our
additional assumptions are on the elements of Equation (23):


ge

ijt ∼ N (µge , σ2
ge),

Wjt = ge
ijt + vijt, vijt|ge

ijt ∼ N (µv, σ2
v ),

gijt = ge
ijt + eijt, eijt|(ge

ijt, vijt) ∼ N (0, σ2
e ),

(25)

where we maintain that expectational errors eijt have a zero conditional mean, which is
a property by construction. Those assumptions allow us to further determine the terms
f y(gijt|Kjt, ge

ijt) and f y(ge
ijt|Kjt).

First, the distribution of gijt, given values of ge
ijt = g, is fully determined by the

distribution of eijt, independently of Kjt. Thus, we have the following normal conditional
density:

f y(gijt|Kjt, ge
ijt) = f y(gijt|Kjt, ge

ijt = g) =
1

σ2
e
√

2π
exp

[
−1

2

(
gijt − g

σ2
e

)2
]

.

Second, by Bayes’ rule, we have

f y(ge
ijt|Kjt) =

f (Kjt|ge
ijt) f (ge

ijt)

f (Kjt)
,

where f (Kjt|ge
ijt) is determined by Kjt|ge

ijt ∼ N (ge
ijt + µv, σ2

v ), f (Kjt) is obtained with∫
f (Kjt|ge

ijt)dF(ge
ijt) where F(ge

ijt) is the CDF of N (µge , σ2
ge), and f (ge

ijt) is also determined
by that normal distribution. Then we succeed in writing the right-hand side of Equation
(23) with the parameter γ and other distribution parameters restricting unobservables
(ge

ijt, vijt, eijt) from the system of assumptions (25).

Recall that our objective is to show that there exist empirical distributions Fo(sjt,Kjt, gijt)

for which one can find at least two structuresSy1 ≡ {γy1 , f y1(gijt|Kjt, ge
ijt), f y1(ge

ijt|Kjt)},

Sy2 ≡ {γy2 , f y2(gijt|Kjt, ge
ijt), f y2(ge

ijt|Kjt)},

that satisfy Equations (23), (24), (25) and γy1 ̸= γy2 .
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Define ge
ijt = σge g̃e

ijt such that Var(g̃e
ijt) = 1. We can rewrite equation (24) as

f y(dijt|Kjt, ge
ijt, gijt) =

 exp(γσge g̃e
ijt)

1 + ∑J
j=1 exp

(
γσge g̃e

ijt

)
dijt

1 −
exp(γσge g̃e

ijt)

1 + ∑J
j=1 exp

(
γσge g̃e

ijt

)
1−dijt

.

We can identify the unique γ if we know σge .

To solve for σge , we can use the system of assumptions (25). We note that gijt and Kjt

are jointly normal as each of them is a sum of normal variables. Their joint distribution can
be computed with observed data and reflects the information contained in the system of
assumptions (25). We can use the following three moments to summarize the parameters
involved in that joint distribution:18


σ2

g = σ2
ge + σ2

e ,

σ2
K = σ2

ge + σ2
v + 2ρvge ,

ρgK = σ2
ge + ρvge .

The LHS of this system of equations can be directly observed in the data. This is a linear
system with three equations and four unknowns (σ2

ge , σ2
e , σ2

v , ρvge), which is under-identified
and cannot be solved for a unique σ2

ge . Consequently, our model in Section 2 cannot be
point identified since a more restrictive model with an additional system of assumptions
(25) remains partially identified.

B Proof of Theorem 1

We focus on the demand model with market-level data defined in Equation (11). We begin
our derivation with an inequality that bounds the ratio of market shares with choice
probabilities of two extremal information types.19

Lemma 1 Let ϕκ denote the fraction of an information type κ = 1, . . . , K3 in the population, sκ jt

denote the probability of the information type κ choosing any inside the option j, and sκ0t denote the
probability of the information type κ choosing the outside option 0. By definition, {ϕκ}, {sκ jt} and

18We use e|(ge, v) ∼ N (0, σ2
e ) to compute Cov(v, e) = E [ve] − E [v]E [e] = E [E [ve|ge, v]] −

E [v]E [E [e|ge, v]] = E [vE [e|ge, v]]− E [v]× E [0] = E [v × 0] = 0. Similarly, Cov(ge, e) = 0.
19The inequality, in general, relates the ratio of sums of sequences to the ratio of individual terms in the

sequences.
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{sκ0t} are finite sequences of non-negative real numbers. We have:

min
κ

{
sκ jt

sκ0t

}
≤

sjt

s0t
≤ max

κ

{
sκ jt

sκ0t

}
.

Proof. Let M ≡ max
κ

{
ϕκsκ jt
ϕκsκ0t

}
denote the maximum value of the ratio of type-specific choice

probabilities. For any information type κ, we have ϕκsκ jt ≤ M ·ϕκsκ0t. Taking the summation
over the type index κ on both sides of that inequality, we have ∑K3

κ=1 ϕκsκ jt ≤ M · ∑K3
κ=1 sκ0t,

which implies ∑
K3
κ=1 ϕκsκ jt

∑
K3
κ=1 ϕκsκ0t

≤ M ≡ max
κ

{
ϕκsκ jt
ϕκsκ0t

}
. By Equation (11), the left-hand side of the

latter inequality corresponds to the ratio of market shares for an inside option j and the

outside option 0, i.e., sjt
s0t

=
∑

K3
κ=1 ϕκsκ jt(δt,ge

κt;θ)

∑
K3
κ=1 ϕκsκ0t(δt,ge

κt;θ)
. Thus, we have sjt

s0t
≤ max

κ

{
ϕκsκ jt
ϕκsκ0t

}
= max

κ

{
sκ jt
sκ0t

}
.

The proof is similar for the other side of the inequality.

Intuitively, the inequality relaxes the need for a complete specification of the component
types and mixing proportions that enter the market shares, instead allowing us to bound
parameters with extremal types. These inequalities become equalities when there is no
heterogeneity in information between types, suggesting that the bounds tighten in product
markets where informational differences play a smaller role, much like the identification at
infinity argument in Ciliberto and Tamer (2009).

Next, since the logarithm transformation of ratios is monotone, we can further linearize
Lemma 1 as:

min
κ

{
−γeκ jt

}
+ γgjt + Xjtβ + ξ jt ≤ log

sjt

s0t
≤ max

κ

{
−γeκ jt

}
+ γgjt + Xjtβ + ξ jt,

which gives the moment inequalities in Equation (13).
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C Additional Figures

Figure A1: Graphical Illustration of Inequalities

(a) Under True Value of γ = −1.5 (b) Under False Value of γ = −4.5

Notes. This figure illustrates the power of our inequalities (14) in identifying the correct values of the parameter γ. The right-hand side
of (14) is plotted in blue, while the left-hand side is in green. The observed log market share ratio is plotted in red. Given the true
parameter value γ = −1.5, plot A1a shows that the max side in blue always bounds the market share ratio from above while the min
side in green bounds the data from below. However, given a wrong parameter value γ = −4.5, our inequalities are violated, which will
then rule out such wrong parameter value from the identified set, as depicted in plot A1b.
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Figure A2: Comparison of GMM Objective Function with vs. without Chamberlain IVs

(a) Regular IVs: Gobal View

(b) Regular IVs: Local View

(c) Chamberlain IVs: Gobal View

(d) Chamberlain IVs: Local View

Notes. This figure displays the GMM objective function using two types of instruments: standard IVs in panels (a) and (b) on the left, and
Chamberlain IVs in panels (c) and (d) on the right. The top panels (a, c) illustrate the global shape of the objective function, while the
bottom panels (b, d) focus on the region where the function attains its minimum. The horizontal axis shows the estimated parameter γ;
the vertical axis shows the value of the objective function. The true parameter value, γ = −1.5, is marked by the green box, and the red
circle indicates the objective function’s minimum. We observe that the regular instruments lead to a problematic objective function with
multiple local minima. However, the GMM objective function becomes well-behaved when using Chamberlain’s instruments, further
supports the effectiveness of Chamberlain’s instruments.
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Figure A3: Estimated bounds for βx and γ across different selection thresholds (κ̃ = A)

Notes. This figure plots the estimated bounds for each parameter βx and γ across different thresholds. The y-axis corresponds to the
value of the estimated bound. The x-axis corresponds to the number of misclassification in the estimation sample. The color indicates the
sample size. We observed that, as the sample size increases, the confidence interval becomes more precise (the lower bound increases
while the upper bound decreases).
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Figure A4: Non-linear Relationship between Information Variables and Fuel Costs

Notes. This figure plots the distribution of the fuel costs (gjkt, i.e., “li*gp” on the z-axis) as a function of two information variables–fuel
prices ( fkt, i.e., “gp” on the x-axis) and fuel efficiency (ejkt, i.e., “li” on the y-axis). The fuel costs are defined as gjkt := ejkt · fkt.
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