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Abstract

Because of risk aversion, any sensible investment valuation system should value less
projects that contribute more to the aggregate risk. In theory, this is done by adjusting
discount rates to consumption betas. But in reality, most public institutions use a dis-
count rate that is rather insensitive to the risk profile of their investment projects. The
economic consequences of the implied misallocation of capital are severe. I calibrate a
Lucas model in which the investment opportunity set contains a constellation of projects
with different expected returns and risk profiles. The model matches the traditional finan-
cial and macro moments, together with the observed heterogeneity of assets’ risk profiles.
The welfare loss of using a single discount rate is equivalent to a permanent reduction
in consumption that lies somewhere between 15% and 45% depending upon which single
discount rate is used.
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1 Introduction
It is an enduring common practice in most western countries to value public investments and
policies by measuring the present value of their flow of expected social benefits using a single
discount rate. As already noticed by Bazelon and Smetters (1999) and Cherbonnier and
Gollier (2023) for example, this means that no insurance value is recognized to policies that
hedge the macroeconomic risk such as improving earthquake-resistant construction norms,
increasing pandemic-treatment capacities, or building a strategic petroleum reserve. Sym-
metrically, no penalty is imposed to policies involving benefits materializing mostly in good
states of nature, such as expanding the capacity of energy and transportation infrastructures.
It is never too late to change this inefficient practice. In this paper, I estimate its social cost.
It is large.

Any investment decision criterion that recognizes risk aversion should value less projects
that raises the aggregate risk borne by the decision-maker, everything else unchanged. Mod-
ern asset pricing and investment theories translated this simple idea into practice by rec-
ommending that discount rates be adjusted for the projects’ betas, which measure their
contribution to the aggregate risk. The Consumption-based Capital Asset Pricing Model
(CCAPM) pioneered by Rubinstein (1976), Lucas (1978) and Breeden (1979), and its exten-
sions (Bansal and Yaron, 2004; Barro, 2006) to solve the asset pricing puzzles (Mehra and
Prescott, 1985; Weil, 1989), provide a normative framework to justify this methodology. The
large market risk premium observed over the last century suggests that the risk-adjustment
embedded in the efficient discounting system should play a crucial role in the investment
evaluation process. In a recent international survey among professional economists, Gollier
et al. (2023) document a consensus in which more than 75% of the respondents supported a
risk-adjustment mechanism to evaluate project-specific discount rates.

But, as explained in the next section, most governments and international organizations
use a single discount rate that is not sensitive to the risk profile of the decision under scrutiny.
This dogma of a single discount rate for the public sector has long been believed to be
supported by the influential Arrow-Lind theorem (Arrow and Lind, 1970), which claims
that "the government invests in a greater number of diverse projects and is able to pool
risks to a much greater extent than private investors", thereby washing out risk completely.
Many people interpreted this result as meaning that all public investment projects should
be discounted at the risk-free interest rate. But, as stated by Sandmo (1972), Lucas (2014),
Baumstark and Gollier (2014) and the CCAPM literature in general, this result is valid only
for projects with a zero CCAPM beta. Notice that Arrow and Lind mentioned this point in
their paper.1 Because a vast majority of projects have a positive beta, the use of the risk-free
rate as the discount rate implies an excess of positive NPV projects compared to the capacity
of public funding, thereby often forcing governments to impose a capital rationing scheme on
top of the valuation process.

In this paper, I measure the welfare loss associated with using a single discount rate when
performing the benefit-cost analysis to determine the optimal allocation of capital, either at
the individual level, or in the economy as a whole. Contrary to the standard endowment
economy that is used in the CCAPM (Lucas (1978), Martin (2013)), I examine a dynamic

1"The results ... depend on returns from a public investment being independent of other components of
national income." (p. 373)
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model in which the profiles of investments are endogenously selected in an opportunity set
with heterogeneous risk profiles and expected benefits. At the beginning of each period, iden-
tical infinitely-lived expected-utility agents must determine what share of their wealth should
be consumed, and which investments should be implemented. The equilibrium investment
rule entails a CCAPM discounting system in which project-specific discount rates are linearly
risk-adjusted, using an equilibrium risk-free rate and aggregate risk premium. The model is
calibrated in Section 4 to fit the following empirical moments: interest rate, aggregate risk
premium, and expected growth and volatility. My calibration is also disciplined to match the
observed diversity of CCAPM betas of implemented projects in the economy. This is a key
ingredient for the estimation of the welfare loss generated by inefficient discounting systems.
In order to solve the standard asset pricing puzzles, I introduce infrequent macroeconomic
catastrophes à la Barro (2006).

In Section 5, I first measure the welfare loss incurred by an isolated agent who would use a
single discount rate to value assets and to determine this agent’s portfolio. If this agent uses
the average cost of capital prevailing in the rational equilibrium as the unique discount rate
to value all projects, the welfare loss is equivalent to an immediate reduction of this agent’s
wealth by 27%. In Section 6, I move to an equilibrium analysis in which all agents use the
same inefficient discounting system with a single discount rate equaling their average cost of
capital. The welfare loss is estimated to around 15% of global wealth in that case. Finally,
I examine an equilibrium model in which all agents use the equilibrium interest rate as their
single discount rate. Because the set of potential projects passing the test of a positive NPV
is very large in that case, no such equilibrium exists without imposing a rationing scheme for
the capital allocation. If one combines this single discount rate with a rationing scheme in
which only 60% of the projects with a positive NPV are implemented, an equilibrium exists
with a welfare loss equivalent to a 45% drop in initial global wealth compared to the rational
equilibrium with a first-best discounting system. This is a reminder of the importance of the
allocation of capital in our economy to generate collective prosperity.

2 Public discounting in practice
France is currently the only country in the world in which public investment projects must
be evaluated using a discount rate that is sensitive to the project’s risk profile (Guesnerie
(2023)). The French discounting system is based on the CCAPM with a risk-free discount rate
of 1.2% and a systematic risk premium of 2%.2 The evaluators are thus required to estimate
the consumption beta of their project, which is defined as the elasticity of the project’s net
benefit to changes in aggregate consumption. Personal anecdotes suggest that lobbies from
high-beta sectors have periodically attempted to go back to a single discount rate, or to
reduce the level of the aggregate risk premium by referring to the equity premium puzzle.

Between 1997 and 2012, Norway used a simplified version of the CCAPM to evaluate
large public investment projects, with project-specific discount rates ranging from 3.5% to
8% depending upon the project’s beta. But a report published in 2012 (Hagen et al. (2012))
claimed that "considerable room for discretionary assessments with regard to estimates as

2All discount rates discussed in this paper are real discount rates. I limit this description to short-term
discount rates. The French system also imposes a smaller risk-free discount rate and a larger risk premium
for longer maturities.
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to project-specific risk ... may offer incentives to choose assumptions that may influence the
outcome of the analysis in the direction favored by various interest parties... These circum-
stances suggest that it may be preferable to recommend simple and transparent rules that
capture the most important aspects of the matter, without being too complex to understand
or to apply" (page 77). Consequently, the report recommends the use of a single discount
rate of 4%. It has been determined by combining a risk-free rate of 2.5% and an average risk
premium of 1.5%.

More recently, the Netherlands has adopted three public discount rates (Rijksoverheid
(2020)): An all-purpose discount rate of 2.25%, with two exceptions. A lower discount rate
of 1.6% should be used for "costs that are largely or wholly independent of usage (i.e. fixed
costs)". A larger discount rate of 2.9% should be used for "benefits that are highly non-linear
relative to usage, where usage, moreover, depends on the state of the economy." This could
be interpreted as a simplified version of the CCAPM discounting system, with the partition
of the investment opportunity set into three beta segments.

All other countries that have published a discounting guideline have been using since a
long time – and are still using – a single discount rate. In the United Kingdom, the official
discount rate has been 3.5% since 2003, using the Ramsey rule (Treasury (2018)). In the
European Union, it is equal to 5.5% for the "Cohesion countries" (basically the more recent
member states) and 3.5% for the others (Florio (2008)). The discounting system prevailing
in the United States is a special case. For a long time, two discount rates of 3% and 7%
were used in that country (OMB, 2003). This official document justifies these two rates as
respectively the "real rate of return on long-term government debt" and the "average before-
tax rate of return to private capital in the U.S. economy". Nordhaus (2013) claimed that "the
OMB discussion is completely confused... because the difference is not the difference between
investment and consumption" but instead "the risk premium on leveraged corporate capital"
(quoted by Sunstein (2014)). This confusion and the absence of guideline about which of
these two discount rates should be used in practice represents a procedural failure that has
been used by the Trump administration to increase the discount rate for carbon pricing to
7 percent, yielding a large drop in the tutelar carbon price. After more than 20 years with
this discounting system, OMB (2023a) decided to reduce the discount rate to 2%. This rate
is based on the average real risk-free interest rate over the last 30 years. In this new Circular
A-4, the OMB recommends to use this rate to discount the flow of certainty equivalent net
benefits. This methodology is supported by the theory as explained for example by Bazelon
and Smetters (1999), but it fails to fit observed investment decisions because of the standard
asset pricing puzzles that prevail in expected utility theory without extreme macroeconomic
events. The Circular A-94 (Appendix D) of OMB (2023b) also recommends to use a "real
discount rate of 2.0% if the benefits or costs reflect certainty-equivalent valuations and 3.1%
if they do not". This default discount rate of 3.1% combines the risk-free discount rate of
2% with a single risk-adjustment based on a deleveraged equity premium of 2.5% and a
correlation coefficient of 0.45, "which captures the correlation in equity markets for economic
sectors closest to government investment".

The absence of consensus on the Social Cost of Carbon (SCC) in our profession illustrates
the mess in which economists and practitioners have to survive under this inefficient public
discounting system. In climate economics since the publication of the Stern Review (Stern
(2007)), most proponents to the debate used the Ramsey rule (Ramsey, 1928) to evaluate
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the rate at which future climate damages should be discounted.3 The problem is that the
Ramsey rule and its extension to uncertainty (Hansen and Singleton, 1983) characterize the
rate at which safe benefits should be discounted. The first reference to the necessity to adjust
the climate discount rate to the risk profile of the climate damages emerged when the Obama
administration convened a commission aimed at making recommendation on the SCC. The
Technical Support Document (Interagency Working Group on Social Cost of Carbon, 2010)
used three discount rates: 2.5%, 3% and 5%, this latter rate reflecting "the possibility that
climate damages are positively correlated with market returns." Dietz et al. (2018) showed
that in the DICE model of Nordhaus (2008), the CCAPM beta of climate damages is close to
unity: In the business-as-usual scenario, future climate damages will be larger if the future
will be more prosperous. This implies that the entire debate on the SCC has long been
misleading by ignoring the crucial risk-adjustment of the climate discount risk.4

Whether the private sector uses more efficient investment decision rules remains an open
question. On one side, standard textbooks in finance strongly recommend the CCAPM rule
to evaluate investment projects (Bodie and Merton, 2000; Brealey et al., 2017), and most
CFOs claim to use it (Graham and Harvey, 2001; Jacobs and Shivdasani, 2012). On the
other side, there is ample evidence in observed asset prices that the CCAPM pricing rule is
only partially able to explain them. The Security Market Line – which links expected returns
to betas – is too flat (Fama and French, 1992). This generates a problem similar to the
one observed in the public sector, with low-beta projects being undervalued, and large-beta
projects being overvalued. Dessaint et al. (2021) confirm this finding by examining a large
sample of mergers and acquisitions. Another standard misunderstanding in this field is what
Krueger et al. (2015) have termed the "WACC fallacy". It consists in using the Weighted
Average Cost of Capital (WACC) of an institution as the single discount rate used by this
institution to evaluate its investment opportunities. In a sense, this is the private sector
version of the fallacious interpretation of the Arrow-Lind theorem.

3 The model
The model is an adaptation of the CCAPM in which the dynamics of heterogenous capital
allocation is endogenous. There is a single consumption good that can be either consumed
or invested. An investment project is characterized by a pair (θ, β) ∈ R2, and the investment
opportunity set in the economy is described by a distribution function F over this pair. This
distribution is stationary. For simplicity, capital is short-lived. One unit of capital invested
in project (θ, β) at date t − 1 generates a single benefit xt(θ, β) that materializes at date t,
with

xt(θ, β) = θ + βyt + ε̃t(θ, β), (1)

with Et−1ε̃t = 0. We assume that risks ε̃(θ, β) are idiosyncratic, in the sense that ε̃(θ, β) and
ε̃(θ′, β′) are statistically independent for all (θ, θ′, β, β′). The project-specific benefit xt(θ, β)
is sensitive to the realization of a common factor whose realization yt at date t is unknown

3See for example Arrow (2007), Nordhaus (2007), Dasgupta (2008) and Weitzman (2010).
4EPA (2023) addressed this issue by using the Stochastic Discount Factor (SDF) approach to the SCC. The

SDF approach is an alternative to the CCAPM in which the value of an asset under uncertainty is defined as
the expectation of its contingent present value, using the relevant Ramsey-discount rate in each contingency
or scenario. The SDF and CCAPM approaches are equivalent in the Gaussian world.
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at date t− 1, with Et−1yt = 0. We assume that (y0, y1, y2, ...) is a vector of independent and
identically distributed random variables that are independent of the idiosyncratic risks ε̃. To
sum up, a project is characterized by its expected gross return on investment (ROI) θ and
by its sensitivity β to the common factor y. Without loss of generality, we assume that the
average β among all projects belonging to the investment opportunity set is equal to unity:∫∫

βdF (θ, β) = 1. (2)

The decision variable αt(θ, β) represents the capital invested in projects (θ, β) at date t.
If the investment strategy αt is chosen at date t, it generates total wealth zt+1 at date t+ 1
which is equal to

zt+1 =
∫∫

αt(θ, β)xt+1(θ, β)dF (θ, β) = θt + βtyt+1, (3)

with
θt =

∫∫
αt(θ, β)θdF (θ, β) (4)

and
βt =

∫∫
αt(θ, β)βdF (θ, β). (5)

Observe from equation (3) that idiosyncratic risks ε̃t(θ, β) associated to investing in the family
of projects (θ, β) are washed out by diversification. Consumption at date t equals ct = zt −αt,
where αt is total investment expenditure at date t, with

αt =
∫∫

αt(θ, β)dF (θ, β) (6)

I assume that the capital which can be invested at date t in any project (θ, β) in the economy
is constrained to be non-negative and smaller than capacity zt/η, with η ∈ [0, 1]. Without
this constraint, investors would invest their entire wealth in the single project (θ, β) with the
best risk-return profile, as idiosyncratic risk ε can be washed out by diversification. This
capacity constraint means that individuals are forced to disperse their investments (to full
capacity) into a fraction η of projects available in the investment opportunity set.

There is a continuum of infinitely-lived agents in the economy. They are endowed with the
same initial wealth and they all face the same opportunity set of investment projects. They
maximize the discounted expected utility of their flow of consumption. Their preferences
are characterized by their common utility discount factor δ and by their increasing and
concave utility function u over consumption. I assume a CRRA utility function with u(c) =
c1−γ/(1−γ), with γ > 0. In the calibration section of this paper, I will solve the asset pricing
puzzles by assuming rare disasters in the distribution of y.

4 The rational equilibrium

4.1 Characterization

A rational equilibrium is an allocation in which all agents follow the investment strategy that
maximizes their discounted expected utility. Because all agents have the same preferences
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and the same initial endowment, autarky is an equilibrium. I first characterize the optimal
investment strategy in this economy. It solves the following recursive problem:

V (zt) = max
αt:R2→[0,zt/η]

u(zt − αt) + δEV (θt + βty). (7)

The first-order condition for the investment decision in project (θ, β) can be written as follows:
For all (θ, β) such that dF (θ, β) > 0,

u′(zt − α∗
t ) = δE

[
(θ + βy)V ′(θ∗

t + β
∗
t y)
]

+ ψt(α, β) (8)

with

ψt(θ, β)


≥ 0 if α∗

t (θ, β) = 0,
= 0 if α∗

t (θ, β) ∈ ]0, zt/η[,
≤ 0 if α∗

t (θ, β) = zt/η.
(9)

I consider the following guess solution:

V ∗(z) = h∗ z
1−γ

1 − γ
(10)

Proposition 1 describes the solution of this problem, which is based on this guess solution.
It is easy to check that this solution satisfies the equilibrium conditions (7)-(9).

Proposition 1. If it exists, the rational equilibrium investment strategy α∗
t (θ, β) = α∗(θ, β)zt/η

is such that

α∗(θ, β)


= 0 if θ ≤ R∗ + βπ∗,
∈ [0, 1] if θ = R∗ + βπ∗,
= 1 if θ ≥ R∗ + βπ∗,

(11)

The risk-free rate R∗ and the aggregate risk premium π∗ are defined respectively as

R∗ =
η1−γ − δE

(
θ

∗ + β
∗
y
)1−γ

δ(η − α∗)E
(
θ

∗ + β
∗
y
)−γ , (12)

and

π∗ = −
Ey

(
θ

∗ + β
∗
y
)−γ

E
(
θ

∗ + β
∗
y
)−γ , (13)

where the triplet (α∗, θ
∗
, β

∗) ∈ R3 is such that α∗
t = α∗zt/η, θ∗

t = θ
∗
zt/η and β

∗
t = β

∗
zt/η.

The welfare measure h∗ at equilibrium equals

h∗ = (η − α∗)1−γ

η1−γ − δE
(
θ

∗ + β
∗
y
)1−γ . (14)

This rational equilibrium exists if and only if η1−γ is larger than δE
(
θ

∗ + β
∗
y
)1−γ

.
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Function α∗(θ, β) characterized by equation (11) describes the optimal investment strat-
egy. Projects (θ, β) are implemented at full capacity if and only if their expected rate of return
θ is larger than the project-specific discount rate R∗ + βπ∗. Variable α∗ can thus be inter-
preted as the proportion of projects in the investment opportunity set that are implemented.
It implies a constant consumption/wealth ratio equaling 1 − α∗/η.

Along this optimal stationary investment strategy, the growth process entails serially
independent shocks:

zt

zt−1
= ct

ct−1
= θ

∗

η
+ β

∗

η
yt. (15)

In equation (1), we expressed the return of any project (θ, β) as a linear function of the
artificial common factor y. Using the above equation, we can rewrite this return as a linear
function of the growth rate of aggregate consumption:

xt(θ, β) =
(
θ − β

θ
∗

β
∗

)
+ β

η

β
∗
ct

ct−1
+ ε̃t(θ, β). (16)

Notice that this equation is the classical CCAPM regression in which the return of a project
(θ, β) is regressed on the growth rate of consumption. It implies that the CCAPM beta of
this project is defined as follows:

βCCAP M (β) = β
η

β
∗ . (17)

The optimal intertemporal welfare is measured by V ∗(z0). Normalizing z0 to unity, it
can be more intuitively measured by the permanent equivalent consumption level cpe that
generates the same intertemporal utility, yielding

cpe∗ = ((1 − δ)h∗)
1

1−γ . (18)

This variable is a convenient measure of optimal intertemporal welfare. A similar policy
evaluation instrument has been used by Epstein et al. (2014) in another context.

4.2 Calibration

In order to derive market implications of the model presented in the previous section, I
calibrate it using an annual frequency. I discipline the choice of the parameters to match key
moments observed on financial markets. These moments are summarized in Table 1. The
most important moment to match for this exercise is undoubtedly the aggregate risk premium,
that is the excess expected return of a claim on GDP. I use its estimation at 2.2% by Lustig
et al. (2008). Assuming a CCAPM beta for equity around 3, as suggested by Bansal and
Yaron (2004) for example, this corresponds to an equity premium around 6.6%. I also want
to match the risk-free interest rate. Jorda et al. (2019) estimated a post-1950 mean return
on bills at 0.88%. The mean and the standard deviation of the growth rate of consumption
are also crucial to match in order to have a realistic representation of the macroeconomic
stochastic dynamics. I use here the estimation by Bansal and Yaron (2004), with an expected
growth rate of 1.8% and a standard deviation of 2.9%. I also want to duplicate the kind of
catastrophic macroeconomic events that have been documented by Barro (2006), as explained
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later on in this section. Finally, an important ingredient to evaluate the welfare loss of an
inefficient risk-adjustment of the discounting system relies on the distribution of CCAPM
betas in the economy. If all projects would have the same beta, they should all be optimally
evaluated with a single discount rate. There would be no inefficiency associated with the
WACC and the fallacious interpretation of the Arrow-Lind theorem in that case. To estimate
the heterogeneity of these betas, we use the Fama-French dataset of annual value-weighted
returns of 49 industries over the period 1930-2018. The list of estimated CCAPM betas for
these 49 industries is given in Table 2. The empirical standard deviation of these betas is
equal to 0.63.

The parameters of the benchmark calibration that closely replicate these moments are
summarized in Table 3. I assume a constant relative risk aversion of γ = 3 and a utility
discount factor of δ = 0.99, which are in line with the literature. I assume that, in the
constellation of feasible investments, the mean payoff θ and the sensitivity β to the common
factor are independently distributed.5 I also assume that they are normally distributed,
with θ ∼ N(µθ, σ

2
θ) and β ∼ N(µβ, σ

2
β). The expected return of feasible projects in the

investment opportunity set has a mean of 3%, and a standard deviation of 2%. Parameter
σβ measures the heterogeneity of the investment risk profiles in the investment opportunity
set. I take σβ = 0.5. I also assume that η = 0.5, which means that the entire wealth
in the economy would be able to finance 50% of all possible investment projects. Finally,
in order to solve the classical asset pricing puzzles that prevail in the standard CCAPM,
I use the Barro’s approach based on the possibility of macroeconomic catastrophes (Barro
(2006), Martin (2013)). I assume that the common factor y is distributed as random variable
exp(Y ) − E exp(Y ) with

Y ∼
(
N(µbau, σ

2
bau), 1 − p;N(µcat, σ

2
cat), p

)
. (19)

With probability 1 − p, the state is business-as-usual (bau) and the distribution of Y condi-
tional to that state is normal with mean µbau and volatility σbau. But with a small probability
p, the catastrophic state occurs, and the distribution of Y conditional to that state is normal
with mean µcat << 0 and volatility σcat. The calibration of these parameters is documented
in Table 3. They will be justified later on in comparison to the standard Barro’s calibration.
I use Barro’s estimated probability of macroeconomic catastrophes at p = 1.7% per year.

I numerically characterize the rational equilibrium described in Proposition 1. Because
R∗ and π∗ depend upon the triplet (α∗, θ

∗
, β

∗) that is determined by the optimal invest-
ment strategy α∗(., .), this proposition describes the optimal solution only implicitly. I solve
this problem by observing that this optimal strategy is a function of pair (R∗, π∗), so are
θ

∗(R∗, π∗), β∗(R∗, π∗) and α∗(R∗, π∗), using respectively equations (4), (5) and (6). Thus,
equations (12) and (13) can be interpreted as a system of two equations with two unknowns,
R∗ and π∗ that I solve numerically.

The rational investment strategy and its implication in terms of risk, return and intertem-
poral welfare are described in Table 4. The aggregate risk premium and the risk-free discount
rate and are respectively equal to 2.22% and 0.86%, which match their empirical moments
almost perfectly. Under this calibration, the dynamic equation (15) for consumption can be

5Because of the optimal selection process, they will be positively correlated within the family of implemented
projects.
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rewritten as follows:
ct − ct−1
ct−1

= 0.0151 + 0.778y. (20)

The parameters (µbau, σbau) governing the growth process in the business-as-usual state imply
that, conditional to that state, the expected growth rate of wealth and consumption equals
1.87% and its volatility equals 3.12%, close to Barro’s calibration using respectively 2% and
3.5%. The parameters (µcat, σcat) governing the growth process in the catastrophe state im-
plies an expected drop in consumption of 19.5%, and a standard deviation of 23.5%. This
is in the order of magnitude of catastrophic events documented by Barro (2006). Uncondi-
tionally, wealth and consumption grow at a trend of 1.51%, with a volatility of 2.76%, in line
with the moments to be matched. Finally, the equilibrium investment selection process is
determined by the optimality test θ ≥ R∗ + βπ∗ for invesment. One can translate this into a
distribution for the CCAPM betas of these projects by using equation (17). This distribution
is described by the smooth curve in Figure 1. These CCAPM betas have a mean of 1.03 and
and a standard deviation of 0.59. The relative concordance of the distribution of the CCAPM
betas predicted by the model with this empirical distribution provides an additional support
to this calibration exercise.

0 1 2 3
βCCAPM

0.2

0.4

0.6

0.8

Figure 1: Histogram of the OLS estimators of the CCAPM betas of the 49 Fama-French
industries of the US economy, based on industry-specific value-weighted equity returns (Table
2). Its standard deviation equals 0.63. The plain curve describes the density function of the
distribution of the CCAPM betas of the implemented project predicted by the model. The
standard deviation of these CCAPM betas predicted by the model is 0.59. The dashed curve
is the density function N(µβ, σ

2
β) of the betas of the projects in the opportunity set.

Other observations are noteworthy. The rational selection of projects allows for both an
increase in the mean expected return and a reduction in the mean sensitivity of the selected
projects compared to their distribution in the opportunity set. The mean sensitivity is 1
in the opportunity set, and is only 0.80 among implemented projects. The mean expected
return is 3% in the opportunity set, and it increases to 4.43% among implemented projects.
It yields a price-earning ratio of 22.57. Given the optimal discounting system, 48.60% of
the investment projects pass the test of a positive NPV. Because each implemented project
requires two units of wealth (η = 1/2), 97.20% of total wealth is reinvested every period,
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yielding a consumption-wealth ratio of 2.80%. Notice that we did not attempt to match this
variable with real data given the lack of consensus surrounding the estimation of wealth in
the economy (Lustig et al., 2008). Finally, observe that the intertemporal welfare obtained
from following this optimal investment strategy at equilibrium is equivalent to consuming a
constant flow of 4.64% of initial wealth z0.

4.3 Sensitivity analysis

I also performed a sensitivity analysis to test the fitness of the match in the selected cali-
bration. This exercise is summarized in Table 5. As explained earlier, the heterogeneity of
the betas in the investment opportunity set is the central source of inefficiency of valuation
rules that ignore the risk-adjustment of discount rates. In the calibration, I assume σβ = 0.5.
If I raise it to 1, the standard deviation of the betas of the implemented projects goes up
to 1.43, which is more than twice its observed value. Moreover, the aggregate risk premium
goes down to 1.17%, which is vastly smaller than its observed value of 2.2%. This is because
investors can take advantage of the much safer projects in the opportunity set to reduce the
risk of their optimal portfolio, thereby reducing the equilibrium price of risk. Finally, the
reduced macroeconomic risk raises the equilibrium interest rate to an unrealistically large
level.

An alternative way to make the investment opportunity set more diverse is to increase
the standard deviation of the expected return θ from σθ = 2% to 4%. The optimal selection
procedure allows investors to raise the expected return of their portfolio, at a cost of an
increase in risk. This alternative calibration fails to match the aggregate risk premium,
which is too large, and the interest rate, which is too small. I also examined the impact of
an increase in the mean expected gross return from µθ = 1.03 to 1.05. The main impact of
this change is to raise the equilibrium interest rate to an unrealistically large 2.98%.

Finally, I analyzed the impact of a change in the capacity constraint related to η. Re-
member that η = 0 corresponds to the unconstrained case in which investors are able at the
limit to pick the single project with the best risk-return tradeoff. In the selected calibration, I
assume η = 0.5, which means that individuals are forced to disperse their investments to half
of the opportunity set (in the absence of consumption). If I reinforce this capacity constraint
to η = 0.55, this makes the choice problem too bad to be realistic. Indeed, the interest rate
goes down to 0.48%.

5 An irrational agent in the rational equilibrium
In this section, I consider the case of an irrational agent who uses a single discount rate to
determine his dynamic investment strategy. All other agents behave optimally as described
in the previous section. Therefore, the existence of this marginal agent has no effect on the
equilibrium. The dynamics of the economy, and therefore on equilibrium asset prices, are the
ones that have been examined in the previous section. The irrational agent uses the following
decision rule based on his single discount rate ρ:

α∗(θ, β)


= 0 if θ ≤ ρ,
∈ [0, 1] if θ = ρ,
= 1 if θ ≥ ρ.

(21)
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This rule has the advantage of not requiring the irrational agent to estimate the beta of the
projects under scrutiny, but it implies an inefficient portfolio allocation. Given the ρ selected
by the agent, one can characterize his investment portfolio and his wealth and consumption
dynamics. It yields a triplet (αρ, θρ, βρ) similar to what has been described earlier, expect
that this triplet is now a function of ρ. Since it is assumed that θ and β are independently
distributed, the investment decision rule (21) implies that the mean beta of the implemented
projects will be equal to unity, so that βρ equals αρ in this model. The intertemporal welfare
of this agent with initial wealth z0 and using the single discount rate ρ is denoted Vρ(z0). It
is defined recursively as follows:

Vρ(z) = u

(
z

(
1 − αρ

η

))
+ δEVρ

(
z

η
(θρ + βρy)

)
. (22)

Using this decision rule implies that the intertemporal welfare of the isolated agent is equal
to Vρ(z0) = hρz

1−γ
0 /(1 − γ) where hρ satisfies the following condition:

hρ = (η − αρ)1−γ

η1−γ
ρ − δE

(
θρ + βρy

)1−γ . (23)

5.1 The isolated WACC strategy

This solution is a function of the single discount rate ρ that is used by the irrational agent As
a benchmark, let us first examine the "WACC strategy" which consists in using the average
cost of capital in the economy as the all-purpose discount rate used by the irrational agent.
The agent knows that the average beta of the projects that he will implement is equal to 1.
Because all other agents behave rationally, the equilibrium asset returns are as described in
the previous section, with r∗ = 0.86% and π∗ = 2.22%. The WACC of the irrational agent will
thus be equal to r∗+π∗ = 3.08%. He selects this rate as the single discount rate for investment
evaluation. In Table 6, I describe the outcome of this investment strategy and I compare
it to the optimal strategy already described in the previous section. The two investment
strategies are described in Figure 2. The irrational agent invests in approximately the same
number of projects (48.4%) than the rational agents (48.6%). However, the compositions of
the portfolio are quite different. The irrational agent undertakes too many risky projects
(those in the north-east red quadrant in Figure 2 should not be implemented), and too few
safe projects (those in the south-west red quadrant should be implemented). This yields more
uncertainty about future consumption, with a volatility of wealth and consumption growth
going up from 2.76% to 3.44% for rational investors. This is only partially compensated by
a larger expected portfolio return (4.65% up from 4.43%). The bottom line is a massive
27% reduction in the measure of intertemporal welfare. Indeed, the permanent equivalent
consumption level cpe goes down from 0.0464 to 0.0339.

It is useful to examine how this estimate of the welfare loss is sensitive to the value of the
parameters of the model. To do this, I used the same changes in the parameters that I used
in Table 5. This robustness analysis is summarized in Table 7. Without surprise, increasing
the dispersion of betas in the opportunity set from σβ = 0.5 to 1 raises the welfare cost of
inefficient valuation methods and capital allocation. In this case, the first-best strategy leads
to a welfare of cpe = 0.0517, whereas the alternative WACC strategy reduces it to 0.0258,
which corresponds to a 50.0% reduction in welfare. This mostly doubles it compare to the 27%
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Figure 2: Comparison of the "optimal", the "WACC" and the "Arrow-Lind" investment strate-
gies. We draw a sample of 10.000 projects from the joint normal distribution of (β, θ), using
the benchmark calibration described in Table 3. The ellipses are iso-density curves of this
joint distribution. The oblique and horizontal plain lines describe respectively the optimal
and WACC frontiers, with the set of implemented projects above these lines. The dashed
line corresponds to the Arrow-Lind strategy.
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Figure 3: Ratio of the permanent equivalent consumption under a single discount rate ρ to
the first-best permanent equivalent consumption cpe

fb. Among these second-best strategies,
the optimal single discount rate is ρ1 = 3.06%.

reduction in the benchmark calibration. But remember that this alternative calibration fails
to match observed asset prices and dispersion of consumption betas. The other (unrealistic)
changes in parameters examined in this table generate a welfare loss generated by using the
suboptimal WACC strategy between 9% and 25% of initial wealth.

5.2 The isolated Arrow-Lind strategy

One could alternatively examine the "Arrow-Lind strategy" which would consist in using the
risk-free interest rate r∗ = 0.86% as the single discount rate. However, this discount rate
is too small to yield a feasible solution. Indeed, implementing this investment evaluation
procedure would imply that 86% of the investment projects would yield a positive NPV,
implying that the irrational agent should spend every period 172% of his wealth to invest.

In fact, the irrational agent has a very narrow interval of possible single discount rates
to choose from in order to generate a positive intertemporal welfare. More specifically, if he
chooses a single discount rate smaller than 3%, consumption would be negative, as in the
Arrow-Lind strategy. If he chooses a discount rate larger than 3.09%, early consumption is
too large and capital accumulation too small to support a positive permanent consumption
equivalent. In Figure 3, I show how the intertemporal welfare of the irrational agent is related
to the choice of the single discount rate.

6 The WACC equilibrium
In this section, I assume that all agents in the economy use the same single-DR strategy
(21). Contrary to the previous section, the fact that all agents follow the same inefficient
investment strategy means that the dynamics of growth and thus the equilibrium asset prices
are affected by the irrationality of the agents. The WACC equilibrium is defined as a dynamic
allocation of capital is which all individuals select their portfolio based on decision rule (21),
where ρ = ρ1 is the average cost of capital in the economy, i.e., ρ1 equals R1 + π1. In
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that economy, the risk-free interest rate and the risk premium must satisfy the following
equilibrium conditions:

R1 = (η − αρ1)−γ

δhρ1E
(
θρ1 + βρ1y

)−γ , (24)

and

π1 =
−Ey

(
θρ1 + βρ1y

)−γ

E
(
θρ1 + βρ1y

)−γ . (25)

By replacing hρ1 by its expression in (23), we can rewrite the WACC condition ρ1 = R1 + π1
as follows:

ρ1 =
η1−γ − δE(θρ1 + βρ1y)1−γ

δ(η − αρ1)E(θρ1 + βρ1y)−γ
+

−Ey(θρ1 + βρ1y)−γ

E(θρ1 + βρ1y)−γ
. (26)

This equation, which is solved numerically, characterizes the WACC equilibrium. It is de-
scribed in Table 8. The global WACC is equal to ρ1 = 3.06%. Notice that this single discount
rate combines a risk-free interest rate and a risk premium that are very different from the
individual WACC strategy described in the previous section in the isolated case. Indeed, un-
der this equilibrium in which all agents behave irrationally, the equilibrium interest rate goes
down to -1.48% because of precautionary savings, and the equilibrium risk premium goes up
to 4.54% because of the larger macroeconomic uncertainty. Again, under this single discount
rate rule, the decision-maker overinvests in risky projects and underinvests in relatively safer
ones. This absence of selectivity on the risk dimension implies that the average beta is equal
to 1.00, to be compared to only 0.80 under the equilibrium with rational agents. The good
news is that the average expected return equals 4.64% under the second-best strategy, to be
compared to only 4.43% under the first best. Also, people invest a larger fraction of their
wealth in projects, so that the consumption-wealth ratio is reduced from 2.80% to 2.52%.
This is due to a precautionary effect, since the volatility of consumption growth is markedly
increased from 2.76% to 3.46%. The bottom line is again an important deterioration of in-
tertemporal welfare. The permanent equivalent consumption drops from 0.0464 to 0.0396,
a permanent 15% reduction in consumption. Notice that the small difference between the
single discount rate used in the individual WACC solution and in the WACC equilibrium
implies a sizeable effect on welfare. This is because the marginally smaller discount rate in
the isolated case marginally increases the saving rate. But because the consumption-wealth
ratio is small, this has a sizeable effect to reduce the consumption rate, yielding an important
impact on intertemporal welfare.

It is useful to search for the single discount rate that maximizes the intertemporal welfare
of irrational agents that use a single-DR strategy. In other words, what is the ρ that maximizes
Vρ(z0) = hρu(z0)? The answer to this question is obtained by using equation (23). It is easy
to check that the first-order condition to this problem is given by equation (26). In short, the
equilibrium WACC ρ1 = 3.06% is the single discount rate that corresponds to the maximum
in Figure 3. This result is summarized in the following proposition.

Proposition 2. Suppose that all agents in the economy use the same single-discount-rate rule
to determine their investment strategy. The single discount rate that minimizes the welfare
cost of this irrational behavior is the equilibrium WACC ρ1 = R1 +π1, in which R1 and π1 are
respectively the equilibrium interest rate and the equilibrium risk premium in this economy.
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Of course, the WACC equilibrium is dominated by the rational equilibrium, but if all
agents in the economy apply the same single discount rate rule, using the equilibrium WACC
as the all-purpose discount rate is the rule that maximizes intertemporal welfare in the set
of single-discount-rate allocations.

7 The rationed Arrow-Lind equilibrium
In this section, I examine an economy in which all agents believe in the fallacious interpre-
tation of the Arrow-Lind theorem consisting in using the equilibrium interest rate as the
all-purpose discount rate to evaluate investment projects. As we know from the previous two
sections, the equilibrium interest rate is typically too small to be use as a single discount
rate, so that the capital necessary to finance all investment projects that pass the test of a
positive NPV is larger than aggregate wealth. No equilibrium exists under this approach. In
practice, experts who have been using the Ramsey rule to estimate the public discount rate
often addressed the excess demand for public funds that this solution generated by proposing
a capital rationing scheme.6 In practice, the inability to fund all positive-NPV projects un-
der a too low public discount rate has offered discretion to politicians and high-ranked public
servants to prioritize public investments.

I hereafter characterize a family of rationed Arrow-Lind equilibria. Such equilibria are
parametrized by a scalar q which denotes the probability for a project with a positive NPV
to be implemented. The fact that q is less than 1 means that capital is rationed in the
economy. So, an Arrow-Lind equilibrium with rationing q is defined by the fact that all
agents use the equilibrium interest rate in the economy as a all-purpose discount rate, but
only a proportion q of non-negative-NPV projects are actually implemented. The equilibrium
Arrow-Lind discount rate ρAL(q) must thus satisfy the following equilibrium condition:

ρAL(q) =

(
η
q

)1−γ
− δE(θ + βy)1−γ

δ(η
q − α)E(θ + βy)−γ

= R. (27)

I describe in Table 9 two rationed AL equilibria, respectively with rationing ratio q = 0.6
and q = 0.8. Of course, it is inefficient to randomize the access to capital for good projects to
compensate for a single discount rate that is too small. This implies for example that when
we allow only q = 60% of the non-negative-NPV projects to be implemented, the permanent
equivalent consumption level is limited to 0.0253, a catastrophic 45% permanent reduction
in consumption compared to the rational strategy. The risk-free interest rate in this economy
(and thus the single discount rate) is equal to 1.18%. The demand for capital is 63.6% larger
than total wealth in the economy, but only 60% of the demand is satisfied, which leaves
1.84% of wealth for consumption. Financial risk and economic growth are highly volatile in
this economy.

6This is illustrated for example by the last report in France that recommended a single discount rate, where
the Ramsey rule was used, combined with a public capital rationing scheme (Lebègue (2005), pp. 72-76).
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8 Concluding remarks
One of the most puzzling feature of the experts’ debate on the public discount rate is its re-
liance on its misleading cornerstone, the Ramsey rule. This rule, adjusted for the uncertainty
affecting economic growth, provides the right basis to estimate the rate at which risk-free ben-
efits and costs should be discounted. Using that rule to recommend an all-purpose discount
rate in the economy does not only represent a very dangerous interpretation of the theory, as
explained in this paper. It also makes it impossible to initiate a constructive debate about
how to value the future. As long as one ignores the necessity to adjust discount rates to risk
characteristics, all sorts of difficulties materialize, from the WACC fallacy to the rationing
of public investments with a positive NPV. Over the last two decades, the remarkable stale-
mate prevailing in the Stern/Nordhaus debate on the social cost of carbon is another vivid
illustration of our collective inability to transform our consensual asset pricing theory into
practical evaluation rules. I show in this paper that the social cost of this failure is huge.

The recent decision by the U.S. OMB (OMB, 2023b) to either (i) use the risk-free interest
rate of 2% to discount the flow of certainty equivalent net benefits, or (ii) use a single risk-
adjusted discount rate of 3.1% to discount the flow of expected net benefits provides only
a marginal improvement to this situation. Strategy (ii) is inefficient as explained in this
paper, and the welfare loss is in the order of magnitude of 20% of the value of the investment
portfolio. The inefficiency of strategy (i) will depends upon how U.S. evaluators will estimate
certainty equivalent net benefits. If they use an expected utility model with gaussian risks to
perform this task, they will be confronted to the traditional equity premium puzzle, and to
the incoherence of their risk premia with respect to the titular risk-free rate of 2% (risk-free
rate puzzle). In that case, the welfare loss of strategy (i) will be even worse than for strategy
(ii), as the single discount rate of 2% is far off the weighted-average cost of capital in the
economy.
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Moment value source
Aggregate risk premium 2.2% Lustig et al. (2008)
Interest rate 0.88% Jorda et al. (2019)
Expected growth rate of consumption 1.8% Bansal and Yaron (2004)
Volatility of the growth rate of consumption 2.9% Bansal and Yaron (2004)
Standard deviation of CCAPM betas 0.63 own estimation

Table 1: Targeted moments used to calibrate the model, and their estimated value to be
matched.
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Table 2 of the consumption betas using sectoral equity returns

CCAPM beta Fama-French Industry
0.36 Agriculture
0.44 Food Products
0.43 Candy & Soda
0.74 Beer & Liquor
-0.09 Tobacco Products
1.27 Recreation
1.91 Entertainment
2.35 Printing and Publishing
0.97 Consumer Goods
0.68 Apparel
0.02 Healthcare
1.15 Medical Equipment
0.26 Pharmaceutical Products
0.63 Chemicals
1.19 Rubber and Plastic Products
1.15 Textiles
0.65 Construction Materials
1.70 Construction
1.41 Steel Works Etc
0.42 Fabricated Products
1.61 Machinery
1.68 Electrical Equipment
1.22 Automobiles and Trucks
1.01 Aircraft
1.10 Shipbuilding, Railroad Equipment
0.21 Defense
-0.25 Precious Metals
1.01 Non-Metallic and Industrial Metal Mining
1.04 Coal
1.07 Petroleum and Natural Gas
0.64 Utilities
0.84 Communication
2.23 Personal Services
1.03 Business Services
1.00 Computers
-0.10 Software
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2.20 Electronic Equipment
0.97 Measuring and Control Equipment
1.55 Business Supplies
0.36 Shipping Containers
1.44 Transportation
1.74 Wholesale
0.72 Retail
1.57 Restaurants, Hotels, Motels
0.90 Banking
1.21 Insurance
2.15 Real Estate
1.63 Trading
0.58 Almost Nothing

Table 2: Estimation of the CCAPM betas of the 49 Fama-French industries of the US econ-
omy. The CCAPM beta of an industry is the OLS estimator of the regression of the industry-
specific value-weighted return on the growth rate of real GDP/cap, using annual data from
1930 to 2018. Source: Own computations using the Fama-French database.

parameter value description
γ 3 relative risk aversion
δ 0.99 utility discount factor
1/η 2 investment capacity per project
µθ 1.03 mean expected payoff per unit of capital
σθ 0.02 standard deviation of expected payoff per unit of capital
µβ 1 mean payoff sensitivity to the common factor
σβ 0.5 standard deviation of payoff sensitivity to the common factor
p 1.7% annual probability of a macroeconomic catastrophe
µbau 0 technical parameter of the common factor
σbau 0.04 technical parameter of the common factor
µcat -0.40 technical parameter of the common factor
σcat 0.40 technical parameter of the common factor

Table 3: Benchmark calibration of the model.
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Moment observed equilibrium variable
value value

Aggregate risk premium 2.2% 2.22% π∗

Interest rate 0.88% 0.86% r∗ = R∗ − 1
Expected growth rate of consumption 1.8% 1.51% (θ∗

/η) − 1
Volatility of the growth rate of consumption 2.9% 2.76% β

∗
σy/η

Standard deviation of CCAPM betas 0.63 0.59 numerical estimation
Permanent equivalent consumption 0.0464 cpe∗

Table 4: Description of the rational equilibrium under the benchmark calibration, and com-
parison with the observed moments to be matched.

Moment observed benchmark σβ σθ µθ η
value value 0.5 → 1 2% → 4% 1.03 → 1.05 0.5 → 0.55

aggregate risk premium 2.2% 2.22% 1.17% 2.65% 2.14% 2.32%
interest rate 0.88% 0.86% 1.92% 0.55% 2.98% 0.48%
E[growth] 1.8% 1.51% 1.28% 2.13% 2.14% 1.49%
growth volatility 2.9% 2.76% 2.02% 2.97% 2.74% 2.81%
St.dev. βCCAP M 0.63 0.59 1.43 0.58 0.60 0.58
cpe∗ 0.0464 0.0517 0.0725 0.0811 0.0436

Table 5: Sensitivity analysis of the rational equilibrium.
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Optimal WACC Arrow-Lind
strategy strategy strategy

discount rate 0.86% + β × 2.22% 0.86%+ 2.22% 0.86%= 3.08%
aggregate risk premium 2.22% 2.22% 2.22%
interest rate 0.86% 0.86% 0.86%
E[growth] 1.51% 1.30%
growth volatility 2.76% 3.44%
fraction of projects implemented 48.60% 48.40% 85.76%
consumption/wealth ratio 2.80% 3.20%
E[return] 4.43% 4.65%
E[sensitivity] 0.80 1.00 1.00
cpe 0.0464 0.0339

Table 6: Comparisons of outcomes in an economy in which all agents use the optimal in-
vestment strategy of the rational equilibrium, except one isolated agent who uses a single
discount rate. In the "WACC strategy" column, this discount rate ρ is selected to be the
WACC R∗ + π∗ of the portfolio of investments undertaken by this agent. In the "Arrow-
Lind strategy" column, the discount rate is R∗, yielding an infeasible solution. The "Optimal
strategy" column is copy-pasted from Table 4.

benchmark σβ σθ µθ η
value 0.5 → 1 2% → 4% 1.03 → 1.05 0.5 → 0.55

cpe∗ under optimal strategy 0.0464 0.0517 0.0725 0.0811 0.0436
cpe∗ under WACC strategy 0.0339 0.0258 0.0663 0.0679 0.0329
welfare loss (in %) 27 50 9 16 25

Table 7: Robustness analysis of the welfare loss of an isolated agent using the average cost of
capital in the rational equilibrium as that agent’s unique discount rate to evaluate investment
projects and the portfolio allocation (WACC strategy).
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Rational WACC
equilibrium equilibrium

discount rate 0.86% + β × 2.22% -1.48%+ 4.54%
= 3.06%

aggregate risk premium 2.22% 4.54%
interest rate 0.86% -1.48%
E[growth] 1.51% 2.00%
growth volatility 2.76% 3.46%
fraction of projects implemented 48.60% 48.70%
consumption/wealth ratio 2.80% 2.52%
E[return] 4.43% 4.64%
E[sensitivity] 0.80 1.00
cpe 0.0464 0.0396

Table 8: Comparisons of outcomes of the rational equilibrium and the WACC equilibrium.

Rational Rationed Arrow-Lind
equilibrium equilibrium

q = 0.8 q = 0.6
discount rate 0.86% + β × 2.22% 2.44% 1.18%
aggregate risk premium 2.22% 4.61% 4.73%
interest rate 0.86% 2.44% 1.18%
E[growth] 1.51% 2.74% 6.96%
growth volatility 2.76% 4.34% 5.81%
fraction of projects implemented 48.60% 48.88% 49.08%
consumption/wealth ratio 2.80% 2.24% 1.84%
E[return] 4.43% 4.25% 3.65%
E[sensitivity] 0.80 1.00 1.00
cpe 0.0464 0.0339 0.0253

Table 9: Description of two rationed Arrow-Lind equilibria. Parameter q is the proportion
of non-negative-NPV projects that are implemented.
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