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“To understand how economies work and how we can man-
age them and prosper, we must pay attention to the thought
patterns that animate people’s ideas and feelings, their an-
imal spirits.” (Akerlof and Shiller, 2009)

Introduction

While the theoretical literature has offered many insights on the role of animal spirits in driving
economic dynamics either in models of indeterminate equilibria (see e.g. Cass and Shell, 1983;
Diamond, 1982; Benhabib and Farmer, 1994, 1999), or more recently in models of incomplete
information (see e.g. Acharya et al., 2021; Angeletos and La’O, 2013; Angeletos, 2018; Angeletos
et al., 2018; Benhabib et al., 2015), it has mainly relied on highly specified structural models
that makes them susceptible to misspecification. Very little is however known about the role
of sentiment shocks or shocks to animal spirits in less constrained environments.1 This paper
contributes to the literature by unraveling the dynamic causal effects of higher order belief
(HOB, e.g. beliefs about the beliefs of others) shocks on the economy in an unrestricted dynamic
setting —e.g. a Vector AutoRegressive (VAR) model, relying on an instrument derived from a
theoretical model.

The identification of sentiment shocks, or HOB shocks, poses a clear challenge to the ap-
plied econometrician as such shocks do not have any direct observable counterpart. Consumer
or business confidence indices, as obtained from survey data, are, at best, proxies for such shocks,
and likely contaminated by other structural shocks in so far they affect current business condi-
tions and their perception by economic agents. Likewise standard identification techniques, as
used in the Structural VAR (SVAR) literature, are likely to fail properly identify such shocks.
Imposing short-run exclusion restrictions, by assuming for example that some variables do not
react on impact to these shocks, would certainly be misleading and yield spurious results, as
these shocks are precisely shocks to the expectations about short-run economic outcomes and
should precisely exert most of their effect in the short-run. Imposing long-run restrictions may
not be appropriate either. These shocks are indeed not expected to exert long run effects, and
imposing such constraints would not provide any relevant information for their identification.
Sign restrictions do not seem to offer a promising avenue either as, since they are usually inter-
preted as real demand shocks (see e.g. Angeletos, 2018), they could easily be confounded with
other demand shocks. Finally max-share identification techniques may give rise to combination
of shocks rather than provide a proper identification of a unique shock.

In order to circumvent all these difficulties, this paper adopts a proxy-VAR approach ini-
tially proposed by Beaudry and Saito (1998), further developed in Mertens and Ravn (2013),
Stock and Watson (2018), Kilian and Lütkepohl (2018) and recently applied by Gertler and
Karadi (2015), Lagerborg et al. (2023) or Baker et al. (2024) in various contexts. This approach

1One important exception is Lagerborg et al. (2023) who rely on a structural vector autoregression approach
to identify the dynamic causal effect of a form of sentiment shocks.
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proposes to use an external instrument —a proxy variable correlated with the shock of inter-
est but with no other shocks— to unravel the dynamic causal effect of the shock under study.
Finding such an instrument to identify higher belief shocks is challenging, as most candidates,
such as confidence indices, are susceptible to being correlated with other fundamental shocks.
Lagerborg et al. (2023) solve this problem by using the number of fatalities in mass shootings
in the US to instrument consumer confidence. They indeed find a significant effect of the asso-
ciated sentiment shocks on the economy. In this paper, we propose an alternative approach to
identification. More precisely, we borrow from Stock and Watson (2012) and exploit exogenous
variations in a proxy measure of expectations about short-run economic outcomes generated
by a Dynamic Stochastic General Equilibrium (DSGE) model. In so doing, we maintain the
unrestricted dynamic setting of the VAR model while relying on a theoretically sound external
instrument. More precisely, we rely on the paper by Angeletos et al. (2018) that enriches a
DSGE model with a tractable form of aggregate variations in higher-order beliefs. They esti-
mate the model on quarterly US data, which in turn enables them to explore the quantitative
implications of such variations for the business cycle. Their approach offers the possibility to
use Kalman techniques to recover these exogenous variations and use them as a proxy in our
VAR.2 At this stage, it is worth mentioning some technical, although important, issues. First,
none of the variable included in our benchmark VAR (i.e. expectation error, unemployment,
industrial production, capacity utilization and and the first two business cycle factors identified
by McCracken and Ng (2021)) is used to recover our proxy from the DSGE model.3 Further-
more, when variables are added to this benchmark, we make sure that they are kept totally
external to Angeletos et al. (2018) (i.e. macroeconomic uncertainty at various horizons, credit
spreads, risk premium, confidence indices, …). Second, our proxy suffers from a generated re-
gressor problem that ought to bias inference. In order to accommodate this problem, we take
advantage of the fact that Angeletos et al. (2018) estimated the model using Bayesian maximum
likelihood techniques, randomly draw N vectors of parameters from the posterior distribution
of the structural parameters and generate one realization of the proxy variable for each draw.
Combining this procedure with standard bootstrapping techniques when drawing inference on
the VAR accounts for the generated regressor problem. More importantly, this also permits to
consider a variety of models, as multiple draws of structural parameters correspond to different
models featuring various degrees of real and nominal rigidities and, more importantly, degrees
of information frictions (e.g. HOB shocks).

We estimate a VAR model for the US economy using quarterly data from 1968Q4 to 2019Q4.
Importantly for our identification the model includes the forecast error on the unemployment
rate, which is instrumented by our DSGE-based proxy. The proxy-VAR approach is valid in so
far as the model is invertible, and the proxy satisfies two conditions: exogeneity and relevance.
We start by running the invertibility test developed by Plagborg-Møller and Wolf (2022), which

2To our knowledge, this is the sole quantitative medium-scale model featuring real, nominal and information
frictions offering a reasonable fit of US data and allowing for the construction of HOB shocks.

3Although they display some correlation with the variables used by Angeletos et al. (2018), this correlation is
far from being perfect (see e.g. Appendix A).
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amounts to test whether the proxy jointly Granger causes the variables of the VAR, and find
that the invertibility condition is satisfied across all the draws of the proxy. By construction,
our proxy shall be exogenous with respect to the other shocks present in the DSGE model.
Nevertheless, we also verify that, for any of the draw we consider, the proxy is not Granger
caused by the variables of the VAR. The test clearly rejects Granger causality in more than
97.5% of the cases. Finally, we assess the relevance of the set of proxies by conducting a standard
Montiel Olea and Pflueger (2013) weak instrument test. The test reveals that the instrument
is indeed relevant in more than 98% of the draws of the proxy from the DSGE model.

The HOB shock induces an economic boom, characterized by a significant and persistent
decline in the unemployment rate, an increase in industrial production and capacity utilization.
Even though the effect of the shock on expectation errors is short lived, the response of the
macro aggregates displays a clear hump-shaped pattern, which suggests a strong persistence
mechanism at play in the transmission of these shocks. HOB shocks are also found to be
key contributors to the volatility of aggregates (unemployment, industrial production, capacity
utilization). It however leaves no footprint on industrial production in the long run. All these
results are found to be robust to variations in the timing of the expectation error, substituting
the error on unemployment by the error on output, variations in the estimation method used
to recover the dynamic causal effect (Cholesky VAR, Local Projections). Using a placebo
experiment, we also establish that they are also not the outcome of a divine coincidence.

These findings extend to other business cycle indicators, such as consumption expenditures
of durable goods, gross private domestic investment or hours worked. In contrast, these shocks
do not affect inflation. Using the technique developed by Angeletos et al. (2020), we show
the HOB shocks are a key contributor of the main business cycle (MBC) shock —i.e. the
shock that explains the bulk of various indicators volatility at business cycle frequencies (6-32
quarters). The response of the main aggregates to the MBC shock are essentially identical to
the HOB shock. The history of aggregates conditional on both shocks are also found to be
highly correlated, especially over the last 20 years.

We then examine additional implications of HOB shocks on the economy, starting with
macroeconomic uncertainty. Our results indicate that HOB shocks lead to a drop in macroe-
conomic uncertainty, as measured by Jurado et al. (2015), and account for about 30% of its
volatility in the short-run and quickly fades away. This can be interpreted as HOB shocks
ease the short-run forecasting task of economic agents, which provides a candidate transmission
channel to the rest of the economy. In line with this result, the shock leads to a reduction in the
risk premium faced by economic agents and accounts for about 30% of its short-run volatility.
A similar result obtains for the credit spread, which recedes in the short-run, indicating that
HOB shocks do indeed improve the financial conditions in the economy, which in turn promotes
the boom. Interestingly, while HOB shocks shall be interpreted as shocks pertaining to what
agents think about the beliefs of others, they do not explain the evolution of confidence indices

—the Michigan consumer confidence index— at any horizon. In fact, replacing the expectation
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error by the confidence index in our VAR to identify the dynamic causal effect of HOB shocks
makes the proxy suffer from a weak instrument problem. In other words, the proxy does not
provide useful information about confidence as measured by economic surveys.

One potential challenge lies in the possibility that HOB shocks be confounded with another
source of shifts to expectations: technological news. We therefore consider a version of our
VAR featuring, in the lines of Beaudry and Portier (2006), stock prices and total factor pro-
ductivity (TFP). The HOB shock does not affect the evolution of TFP, explaining less than
2% of its volatility at any horizon in a Vector Error Correction Model. The HOB shock is
therefore not confounded with a technological news shock. When we use the DSGE-based news
shock to instrument the expectation error, this instrument is found to suffer a serious weak
instrument problem, hence reinforcing the preceding conclusion. Similar conclusions hold with
other structural shocks such as unanticipated technology, investment, discount factor or policy
shocks.

The remaining of the paper is organized as follows. Section 1 provides an overview of our
methodology, first outlining the proxy VAR identification strategy and then delving into the
construction of our model-based instrument. Section 2 presents our main results. It starts by
considering a baseline VAR and draws the connection to the main business cycle shock identified
in Angeletos et al. (2020). It then provides additional insights on the effects of our HOB shock on
key economic variables such as uncertainty and spreads. It also make precise the way in which
our identification does not confound variations in HOB with other shifters of expectations.
Section 3 finally assesses the robustness of our findings to variations in the econometrician’s
information set and identification strategy. A last section offers some concluding remarks.

1 Empirical Approach

In this section, we briefly review the proxy-VAR approach, as developed by Beaudry and Saito
(1998), Mertens and Ravn (2013), Stock and Watson (2018), Kilian and Lütkepohl (2018) and
applied by Gertler and Karadi (2015), Lagerborg et al. (2023) or Baker et al. (2024), to identify
and estimate the dynamic causal effects of higher order beliefs (Hereafter HOB) shocks on
aggregate activity. This approach relies on external instruments —a variable that is correlated
with a shock of interest, but not with other shocks— to estimate dynamic causal effects of a
structural shock on macroeconomic aggregates.4 We then explain in detail the construction of
our instrument and its main time series properties.

4Note that although we will focus on a proxy VAR approach to recover the dynamic causal effects of higher
order belief shocks, we will also assess the robustness of our results to using a Cholesky decomposition (see Sims,
1980; Lagerborg et al., 2023; Plagborg‐Møller and Wolf, 2021) and a local projection IV approach (see Ramey
and Zubairy, 2018; Stock and Watson, 2018).
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1.1 The Proxy-VAR Approach

Let Yt be a ny × 1 vector of second order stationary endogenous variables, whose dynamics can
be represented by the following Vector-AutoRegressive (VAR) process

A(L)Yt = ut (1)

L denotes the lag operator (LiYt = Yt−i) and A(L) = I −
∑p

i=1AiL
i is a matrix polynomial

where Ai a (ny × ny) matrix, p denotes the number of lags in the VAR.5 ut is a (ny × 1) vector
of canonical innovations satisfying E[ut] = 0 and E[utu

′
t] = Σ and E[utu

′
t−j ] = 0 for any j > 0.

These innovations are assumed to be linear combinations of ny mutually orthogonal shocks, εt

such that
ut = Sεt (2)

where S is a non-singular (ny × ny) matrix. The orthogonal shocks satisfy E[εt] = 0 and
E[εtε

′
t] = Ω where Ωij = 0 for i ̸= j. The Wold decomposition of the process is given by

Yt = C(L)εt (3)

where C(L) = A(L)−1S. In this paper, we are interested in identifying a single structural shock
—the HOB shocks. By convention, and for notation convenience, we will order this shock first
in this vector, ε1,t. Our approach to identifying this shock follows the instrumental strategy
developed by Stock and Watson (2018).

Let Zt be the (uni-dimensional) proxy variable —the instrument— for ε1,t. This instrument
has to satisfy

E[ε1,tZt] = θ ̸= 0 (Relevance)

E[εj,tZt] = 0 ∀j > 1 (Exogeneity)

The first condition, relevance, ensures that the instrument exhibits a significant correlation with
the shock of interest. The second condition, exogeneity, guarantees orthogonality between the
instrument and the remaining shocks. Using (2) and the relevance and exogeneity conditions,
we have

E[utZt] = SE[εtZt] = S

(
θ
0

)
=


S1,1θ
S2,1θ

...
Sny ,1θ


When the effect of the shock of interest on a reference variable (say the first appearing in the
vector Yt) is normalized to unity (S1,1 = 1)6, the last equality implies that in this case, Si,1 can
be directly recovered as:

Si,1 = E[ui,tZt]
E[u1,tZt]

5Without loss of generality we omit constant terms.
6In our case, the shock is the HOB shock and, as will become clear in the next section, the variable of interest

is an expectation error.
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which is readily obtained from the IV regression

ui,t = Si,1u1,t +
ny∑

j=2
αi,jεj,t.

Since the innovations ut are unobservable, direct estimation of this regression is possible
only at the cost of a generator regressor problem. In order to circumvent this problem, we
follow the method proposed by Stock and Watson (2018) and exploit the fact that ui,t =
Yi,t − P[Yi,t|Yt−j , j > 1], where P[Y |X] denotes the projection of Y onto X, to rewrite the
previous regression as:

Yi,t = Si,1Y1,t + ψi(L)Yt−1 +
ny∑

j=2
αi,jεj,t for i = 2, . . . , ny

where ψi(L) collects all the coefficients of the projection of Yi,t −Si,1Y1,t onto the space spanned
by the past history of Yt. Subsequently, Si,1 and ψi(L) can then simply be estimated using a two
stage least square method, employing Zt as an instrument for Y1,t. By applying this regression
to each variable, we obtain the column vector S·,1 conditional on S1,1 = 1.

In this paper, we do not impose a unit effect of the shock on the variable of reference, but
rather impose a unit shock. This requires a re-scaling of S·,1. This is achieved by noting that
as long as (2) holds, we have ε1,t = γut where γ = S′

·,1Σ−1/(S′
·,1Σ−1S·1). Consequently, the

volatility of ε1,t can be computed as σ2
ε1 = γΣγ′ = (S′

·,1Σ−1S·,1)−1, which can be used to re-
scale S by 1/σε1 . In this scenario, the experiment effectively applies a unit shock to the system.
Impulse responses and the associated forecast error variance decomposition can then be derived
from (3). Note that, critically, this final step is embedded into the bootstrap procedure when
drawing inference.

1.2 A Model Based Instrument

The previous section underscored the need for an instrument to identify HOB shocks. Lagerborg
et al. (2023) employed mass shootings in the US as an instrument. In this paper, we follow Stock
and Watson (2012) and leverage the latest advancements in modeling sentiment/HOB driven
fluctuations within Dynamic Stochastic General Equilibrium (DSGE) models to construct such
an instrument. Our approach hinges on the idea that a structural model can provide a theory-
driven proxy for the instrument. We emphasize the use of the term ‘proxy’ to acknowledge the
potential misspecification of the model, as it is likely calibrated/estimated to a specific economy
and sample period. However, from a theoretical standpoint, if the model incorporates HOB
shocks as a significant factor, it will impose useful constraints on its behavior. Furthermore,
we will meticulously consider a variety of models and, consequently, instruments to assess the
sensitivity of the results to a population of instrumental variables.

Standard macroeconomic models, in particular those within the DSGE framework, leave no
room for the possibility of phenomena such as waves of optimism, pessimism, or sentiments.
In these idealized economies, all agents possess the same information, share a common prior,
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have perfect knowledge of the beliefs of other players, and fully comprehend their behavior
in response to exogenous shocks. Consequently, they reach a unanimous consensus regarding
the current state and future economic outlook. However, relaxing these stringent assumptions
opens the door to models that can accommodate phenomena akin to coordination failures and
self-fulfilling fluctuations, despite the existence of a unique equilibrium (see e.g. Angeletos and
La’O, 2013, among others).

In this paper, we will derive our instrument employing the framework developed in Angeletos
et al. (2018), which offers a simple way to recover a higher order belief shock. Following
Angeletos and La’O (2013), they consider a setup in which the economy consists of a continuum
of islands and a mainland. Each island is populated by households and firms that interact
on local input markets, where they produce differentiated intermediate goods. At this stage,
agents on different islands are unable to communicate or coordinate their decisions, leading to
incomplete information regarding the choices made on other islands. Subsequently, all island-
specific intermediate goods are traded on the centralized mainland market, where they are
combined to produce the final good for consumption and investment purposes.

Each period is split into two interim stages, Stage 1 and Stage 2. Stage 1 —the stage in
which firms decide on their inputs for a given period t— deviates from the common knowledge
assumption. Each island i observes only a vector of private signals, sit, related to the vector of
fundamental shocks, zt. The fundamental shocks7 are modeled as an autoregressive process of
the form:

zt = Φzt−1 + εz,t (4)

where εz,t follows a Gaussian distribution with mean 0 and diagonal covariance matrix Σz. The
matrix Φ has all its eigenvalue inside the unit circle. The signal sit is given by

sit = zt + ηit (5)

where ηit is an island specific noise. This structure is then used to engineer variations in higher
order beliefs by departing from the common prior assumption. While each island considers
its own signal to be unbiased —i.e. ηit ∼ N(0, σ2)— it assumes that other islands’ signals are
systematically biased —i.e. ηjt ∼ N (ξt, σ

2) ∀j ̸= i. The bias ξt represents the commonly known
disagreement among agents in Stage 1 and is assumed to follow an AR(1) process of the form

ξt = ρξt−1 + εξ,t (6)

where εξ,t follows a Gaussian distribution with mean 0 and standard deviation σξ, and E[εzεξ] =
0. Finally, innovations in the gap between first- and higher-order beliefs can exhibit some
persistence but eventually vanish, |ρ| < 1. In that setting, for all agents i, all other agents j ̸= i,

7The model features 8 fundamental shocks: a news shock, a permanent and a transitory technology shock, a
permanent and a transitory investment shock, a discount factor shock, a government expenditure shock and a
monetary policy shock.
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all periods t, and all states of nature, agent i’s belief during stage 1 satisfy

E1
it[zt] = sit,

E1
it[E1

jt[zt]] = E1
it[sjt] = sit + Λξt,

where Λ is a matrix loading the belief shock on the fundamental shocks. We denote s̄t the
average signal in the economy and note that the “truth” is such that sit = s̄t = zt. However,
this true state is not publicly revealed until Stage 2 of period t. In stage 1, instead, each island
erroneously believes that

E1
its̄t = sit + Λξt.

In stage 2, the realizations of the fundamentals, zt, of all the signals, sit, and of all the Stage
1 decisions become common knowledge. Furthermore, the actual realization of the signals are
such that sit = zt for any period t and any agent i. This implies in particular that, in an
equilibrium,

E2
it−1s̄t = Φzt−1 + Λρξt−1.

Angeletos et al. (2018) propose a tractable method for solving the model under this infor-
mation structure. Specifically, they show that, as long as the cross-sectional volatility of signals
σ = 0,8 the solution of the (log-linearized) model can be expressed as:9

Xt+1 = ΦxXt + Φsst + Φξξt (7)

Yt = ΠxXt + Πsst + Πξξt (8)

where Yt denotes the vector of forward-looking variables and Xt is the vector of predetermined
variables. The matrices Φx, Φs, Πx, Πs correspond to those associated with the standard
full information setting under rational expectations, Φξ and Πξ are specific to the information
structure.10 Using the information structure and the form of the solution in an equilibrium, we
can readily derive the stage-2 forecast error of Yt, ζY

t|t−1 ≡ Yt − E2
it−1[Yt], as11

ζY
t|t−1 = Πsεz,t︸ ︷︷ ︸

Fundamental
innovations

+ Πξεξ,t︸ ︷︷ ︸
HOB

innovations

−ΠsΛρξt−1 (9)

In other words, the expectation error is shifted both by the fundamentals and the higher or-
der belief shock. Belief shock identification can therefore be achieved working directly with

8This essentially amounts to assume that all agents attribute the same bias, ξt, to the other agents’ beliefs.
9The reader should keep in mind that, in an equilibrium, st = zt.

10Huo and Takayama (2023) also derive a state space representation of the solution of the model in the more
general case where σ > 0 and agents share a common prior. The form of the solution is however more complicated
as it involves higher order AR and MA components.

11This results derives from the fact that the Stage 1 forecast of island i about Yt as E1
itYt = ΠXXb

t + Πssit +
(Πξ + ΠsΛ)ξt. Keeping in mind that in Stage 2 shocks are perfectly observed, its Stage 2 forecast of Yt in the
previous period is given by E2

it−1Yt = ΠXXb
t + ΠsΦzt−1 + (Πξ + ΠsΛ)ρξt−1. The perfect observability of the

shock in stage-2 implies that E2
it−1[Yt] = E2

jt−1[Yt] = E2
t−1[Yt]. Accordingly, the expectation error is given by

ζY
t|t−1 ≡ Yt − E2

it−1[Yt] = Πs(st − Φzt−1) + Πξ(ξt − ρξt−1) − ΠsΛQξt−1. Using the fact that in equilibrium,
st = sit = zt, the result follows.
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expectation errors. This principle will guide us in the design of our VAR in the next section.
Since εξ,t is an innovation (E[εξ,tξt−j ] = 0 ∀ j ∈ N\{0}) and since E[εz,tεξ,t−j ] = 0 ∀ j ∈ Z,
then the projection of ζY

t|t−1 onto εξ,t identifies the belief shock in the data. In other words, our
instrument is the innovation to the belief shock process, as identified in the DSGE model.

In what follows, we use a New-Keynesian model, in the lines of Smets and Wouters (2007),
as reported in Angeletos et al. (2018) to obtain realizations of the innovation of the belief shock.
Specifically, we draw 200 parameter realizations from the posterior density of the structural
parameters estimated in their study. For each parameter realization, we solve the model and
employ the Kalman smoother to recover the structural shocks of the model from the observed
quarterly data for real GDP, consumption (non-durables and services), investment (gross pri-
vate domestic investment + durables), total hours worked, GDP deflator inflation, and the
federal fund rate over the period 1968Q4-2019Q4. This procedure yields 200 time series for our
instrument, each corresponding to a particular model. This approach allows us to achieve two
important goals. First, from a purely statistical point of view, it takes model uncertainty into
account when drawing inference in our proxy-VAR analysis. Second, it permits to obtain HOB
instruments in a variety of models, each characterized by different degrees of nominal, real fric-
tions and properties of the belief shock. In this sense, it allows us to assess the robustness of our
instrument approach across various economic environments. Table 1 illustrates this point by
presenting descriptive statistics for parameters related to real frictions (investment adjustment
cost, IAC, and habit persistence in consumption, HPC), nominal rigidities (Calvo probability
of price resetting) and the properties of the HOB shock. Real frictions display substantial

Table 1: Variations in Rigidities
Frictions Beliefs

IAC HPC Calvo Persistence Volatility
min 0.800 0.539 0.579 0.405 0.180
mean 3.427 0.752 0.730 0.826 0.671
max 8.378 0.902 0.851 0.979 2.057
s.d. 1.059 0.057 0.033 0.061 0.270
Note: IAC: investment adjustment cost and HPC: habit persistence
in consumption.

variation, with the investment adjustment costs parameter ranging from 0.8 to 8.4, and the
degree of habit persistence ranging from 0.5 to 0.9, Notably, the posterior distribution of the
Calvo parameter implies an average length of price contracts ranging from 2.4 to 6.6 quarters.
The HOB shock displays substantial variation in persistence—which can be interpreted as the
persistence of coordination failures— ranging from 0.4 to 0.98, and volatility, from 0.18 to 2.06.
Our analysis will therefore span a large spectrum of models.

Panel (a) of Figure 1 depicts the dynamics of the constructed HOB shock (left panel) and
its associated innovation (right panel). The shaded band surrounding each series represents the
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Figure 1: A Variety of Models
(a) Dynamics of Instruments
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(b) Cross-Model Volatility
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Panel (a): Plain Line: average across models, Shaded area: 95% of the across models distribution, Vertical shaded
areas: NBER recessions.

95% cross-model variation for each period. The vertical shaded areas indicate NBER recession
periods. The figure clearly demonstrates that beliefs tend to decline during recessions and rise
during periods of economic expansion. Panel (b) of the figure illustrates the cross-sectional
(model) variation of the belief shock and its innovation for each period. It reveals that drawing
economies from the posterior distribution generates substantial and time-varying cross-sectional
volatility in both the belief shock and its innovation. In other words, this procedure introduces
significant variability into the instrument, which, as previously mentioned, accounts for model
uncertainty and allows us to assess the robustness of our instrument.

Figure 2: Serial Correlation of the Instrument across Models
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Figure 2 reports the cross-model distribution of the autocorrelation of the innovation of order
1 and 2. The graph suggests that the innovation exhibits minimal serial correlation, making it
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a suitable candidate as a shock instrument.12

2 Empirical Results

This section unveils our main findings, encompassing both the impulse response function (IRF)
of key economic aggregates to a HOB shock and its contribution to the forecast error variance
decomposition (FEVD). Subsequently, we delve into the question of whether this HOB shock
truly represents a business cycle shock. Further, we explore the broader implications of this
shock for the economy and its potential entanglement with another important expectation
shifter: news shocks.

2.1 Baseline VAR

To capture the effects of HOB shocks on business cycle dynamics and their contribution to
overall business cycle volatility, we begin by estimating a VAR model for the US economy
using quarterly data from 1968Q4 to 2019Q4. The model includes a set of key business cycle
variables: the unemployment rate (u), the industrial production index (IP, in log. difference)
and capacity utilization (Util) obtained from the Federal Reserve Economic Database (https:
//fred.stlouisfed.org/). Additionally, we incorporate the first two business cycle factors
identified by McCracken and Ng (2021) to capture any potential missing information about the
business cycle, and hence avoid any nonfundamentalness representation issue (see Forni and
Gambetti, 2014; Beaudry et al., 2019). Finally, and most importantly, the VAR includes the
forecast error on the unemployment rate, ζu

t|t−1, which will play a key role in our identification
(see Equation 9). This variable is constructed by subtracting the one-step-ahead forecast of the
unemployment rate, ue

t|t−1, as reported in the survey of professional forecasters, from the first
release of the unemployment rate for that period. The VAR features 4 lags, as selected by a
standard Bayesian Information Criterion.

For our proxy-VAR analysis to be valid, the HOB shock must be invertible —i.e. spanned
by past and current (but not future) values of the endogenous variables. As shown by Plagborg-
Møller and Wolf (2022), this is equivalent to saying that our instrument does not Granger
cause the variables included in the VAR.13 Plagborg-Møller and Wolf (2022) propose a simple
test consisting of expanding the VAR with the instrument and testing for the joint Granger
causality of the instrument on the other variables. Figure 3(a) reports the distribution of the
test statistics across our 200 models. The vertical dashed line corresponds to the threshold value
of joint significance of the HOB in the VAR at the 95% confidence level, the plain vertical line is
the average of the test across our 200 models. First and foremost, the average value of the test
lies way below the threshold, indicating that, on average, the HOB shock is indeed invertible.

12Note that, at this stage we have establish neither the relevance of the instrument nor its exogeneity, which
will be assessed in Section 2.

13Intuitively, if the MA(∞) of the shock is invertible, then the lags of the variables in the VAR capture all the
forecasting power of lags of the HOB shock. In other words, the lags of the instrument do not help predict the
variables in the VAR.

12

https://fred.stlouisfed.org/
https://fred.stlouisfed.org/


Additionally, the probability that the test statistics lies below the threshold is 1, indicating that
the invertibility of the model cannot be rejected.

Figure 3: Preliminary Tests
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Note: Vertical line: Average value of the Test across 200 models , Vertical dashed line: Threshold value of the
test (rule of thumb threshold of 10 for the weak instrument test).

A second key assumption of the approach is that our instruments be exogenous. Note
that, by construction, in the DSGE model, the innovation of the HOB shock, our instrument,
is orthogonal to any of the other fundamental shocks (technology, investment, discount rate,
monetary policy, …) and is structurally exogenous.14 Nevertheless, we present the Granger
causality test of the VAR variables onto our instrument across the 200 models in Figure 3(b).
As for the invertibility test, the average value of the test (plain vertical line) lies way below
the threshold (dashed vertical line), indicating that, on average, the HOB shock is not Granger
caused by any of the macroeconomic aggregates we consider. Likewise, the probability that the
test statistics lies below the threshold is greater than 0.975, indicating that the shock is not
Granger caused by any of the macroeconomic aggregates across almost all models.

Finally, we assess their relevance by conducting a standard Montiel Olea and Pflueger (2013)
weak instrument test across our 200 draws of the belief shocks from the model. This test
evaluates the significance of the instrument in the projection of the unemployment forecast
error, ζu

t|t−1, onto lags of the variables in the VAR and our instrument. Figure 3 depicts the
empirical cumulative distribution function of the test statistic for the information set utilized
in our VAR. The average of the distribution (represented by the plain vertical line) is well
above the rule-of-thumb threshold (dashed vertical line) of 10. In fact, the test values exceed
this threshold in more than 98% of the draws, strongly suggesting that the weak instrument
problem is unlikely to be an issue over all models. Figure 4 illustrates this point and reports the
joint evolution of the forecast error on the unemployment rate and the average HOB instrument
across models. 15 The two series are clearly highly correlated (-0.58), and the HOB instrument
closely tracks the booms and recessions.

Figure 5 reports the impulse response functions (hereafter IRF) of the variables of the VAR
to a 1 standard deviation HOB shock, along with the ±1 standard deviation band (shaded

14We address the possibility, in sample, of a correlation between the HOB shock and other fundamental shocks
in Sectionsec:corrxi.

15Appendix B reports the corresponding figure for the forecast error of output. In that case, the correlation is
0.46.
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Figure 4: HOB instrument vs Forecast Error on Unemployment Rate
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The HOB instrument corresponds to the average of the HOB instrument across models. Both series is filtered
by applying the Christiano and Fitzgerald’s 2003 filter (6-32 quarters frequencies).

area).16 The shock induces an economic boom, characterized by a significant and persistent

Figure 5: Baseline VAR: Impulse Response to a HOB Shock
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decline in the unemployment rate, an increase in the (log) level of industrial production, and a
surge in the capacity utilization rate. Even though the effect of the shock on expectation errors
is short lived, the IRFs point to the presence of a strong propagation mechanism, evident from
the overshooting dynamics that suggests the existence of some form of learning behavior. Inter-
estingly, this comes together with a reduction in the expectation error. In other words, following
a positive HOB shock, agents tend to underestimate the actual decline in the unemployment
rate. Table 2 reports the contribution of the HOB shock at various horizons. The shock is a
major contributor to the overall business cycle volatility. It accounts for a substantial 55% of
the expectation error and unemployment fluctuations, and over a third of the volatility in the
(log) level industrial production and utilization rates upon impact. This influence persists, with
the shock contributing close to 70% to unemployment volatility (55% for industrial production
and 52% for utilization) after a year. Furthermore, the shock essentially leaves no footprint
on business cycle volatility in the long run. For instance, the shock only accounts for 1% of

16We abstract from the IRFs of the 2 McCracken’s factor as they have no clear economic interpretation per se.
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Table 2: FEVD: Baseline VAR

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Exp. Error (ζu

t|t−1) 54.32 51.26 43.38 41.11 42.03 41.54
Unemployment Rate 54.79 72.66 69.78 63.68 47.05 28.04
Industrial Production 34.40 55.62 55.50 47.57 30.33 1.39
Capacity Utilization 33.19 53.37 52.15 46.11 39.96 12.76

the overall volatility of industrial production in the long run, which confirms that while HOB
shocks may exert a persistent effect on the business cycle they do not leave a permanent mark
on the economy.17

To further examine the business cycle implications of our HOB shock, we expand our
VAR model by introducing, one at a time, investment indicators (consumption expenditures
on durable goods, and gross domestic private investment), and hours worked. This allows us
to assess the extent to which our HOB shock drives fluctuations in the economy. Figure 6 and
Table 3 depict the IRFs and variance contribution of the HOB shock across these variables,
respectively. These results suggest that our HOB shock effectively generates a business cycle by
inducing simultaneous increases in durable goods consumption, investment, and hours worked.
Additionally, Table 3 reveals that the HOB shock accounts for between 35 and 40% of the
volatility of durable goods and investment at the one-year horizon and 75% of the volatility of
hours worked. This highlights the significant role of HOB shocks in driving the business cycle.
Interestingly, just as for industrial production, the HOB shock does not exert a long run effect
on neither the consumption of durables nor the gross private domestic investment, while no
long run restriction was imposed. This reinforces the view that these HOB shocks have purely
transitory effects.

Figure 6: Impulse Response to a HOB Shock: Additional Business Cycle Variables
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Note: GPDI: Gross Private Domestic Investment

In contrast, inflation remains largely unaffected, with its response insignificant even at the
68% confidence level. Accordingly, its impact on inflation volatility remains muted, with con-

17Note that no long-run restriction was imposed on the VAR. Furthermore, also note that industrial production
was evaluated in first-difference, implying that, by construction, any shock is left free to exert a permanent effect
on its level in the long run
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Table 3: FEVD: Additional Business Cycle Variables

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Business Cycle Indicators
Durables 39.83 46.84 43.41 33.72 20.23 4.22
Investment (GPDI) 0.82 27.51 34.71 24.42 13.12 2.99
Hours Worked 55.16 75.24 74.16 71.45 62.65 6.87

Nominal Variables
Inflation Rate 4.12 4.13 3.88 5.90 4.60 1.56
Federal Fund Rate 65.91 76.70 73.00 55.40 26.75 4.53

Note: GPDI: Gross Private Domestic Investment, Inflation refers to CPI inflation.

Figure 7: IRF in the Nominal Side
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tributions below 5% across all horizons. The HOB shock is therefore non-inflationary and
hence not confounded with a monetary policy shock. This finding is also reminiscent of the
non-inflationary real demand shock interpretation of HOB shocks (see e.g. Angeletos, 2018).

A version of the VAR in the lines of Angeletos et al. (2020)18 featuring the expectation error,
GDP, consumption (non durables+services), investment (fixed private investment+durables),
the unemployment rate, hours worked, the inflation rate and the federal fund rate yields very
similar results. The shock effectively induces a business cycle, simultaneously raising GDP, con-
sumption, investment, and hours worked, while reducing the unemployment rate and minimally
impacting the inflation rate. The shock also explains a sizeable share of economic fluctuations.
For instance, it accounts for about 40% of unemployment and GDP , 50% of hours worked,
about 25% of investment and 70% of consumption at the one year horizon.

All these dynamics are a mix of the dynamics taking place at various frequencies. In the
next section we explore the extent to which HOB shocks indeed account for business cycle
fluctuations.

18The detailed results are presented in Appendix C. Although this version of the VAR model produces inter-
esting and corroborating results, it was not chosen as our preferred specification due to its reliance on variables
employed for constructing our instrumental variables.
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2.2 The HOB Shock as a Main Business Cycle Shock

This section explores the relationship between our methodology and that proposed by Angele-
tos et al. (2020), who identified a main business cycle (MBC) shock —the shock that accounts
for the bulk of macroeconomic aggregate fluctuations within business-cycle frequencies (6-32
quarters). More specifically, the main business cycle shock is identified as the shock that con-
tributes the most to the volatility of a particular variable over the business cycle frequency band
(2π/32, 2π/6). This approach is similar to the “max-share” method developed in Faust (1998)
and Uhlig (2004), but is formulated in the frequency domain.19

We employ this approach on our baseline VAR,20 which encompasses the forecast error of
unemployment (ζu

t|t−1), the unemployment rate (ut), the industrial production index (IPt) and
the rate of capacity utilization (Utilt). Panel (a) of Figure 8 compares the responses to an HOB
shock (plain line) with the responses to an MBC shock when the latter is identified by targeting
either the expectation error, the unemployment rate or the industrial production index. The
outcomes align with those reported in Angeletos et al. (2020).

Figure 8: Extended VAR on MBC component: IRFs
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As in Angeletos et al. (2020), the MBC shocks, obtained by targeting the unemployment
rate, industrial production or capacity utilization, are all interchangeable in that they all indeed
induce the same business cycle, characterized by an increase in industrial production and the
utilization rate and a decrease in the unemployment rate and the expectation error on unemploy-
ment rate. The figure also presents the MBC obtained by targeting the expectation error on the
unemployment rate. The results are essentially identical. One may argue that this observation
should not come as a surprise, as targeting either the unemployment rate or its forecast error
should yield the same shock. This holds true in a rational expectations framework, but there is
actually no a priori reason it should hold in the survey of professional forecasters. For instance,
within our sample, the first-order (resp. second-order) autocorrelation of the expectation error
ζu

t|t−1 is 0.51 (resp.0.36). Similarly, the Granger causality tests yield p-values of 0.0 for the
expectation error, the unemployment rate and first McCracken factor, indicating that these
variables significantly Granger-cause the expectation error. These findings together suggest a

19See Appendix D.1 for details.
20Angeletos et al. (2020) consider all variables in level. We stick to this specification in this section, but

also report results with the industrial production in difference in Appendix D.2. If anything, the difference
specification reinforces our findings.
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departure from rational expectations.

Table 4: FEVD: Baseline VAR (MBC Shocks)

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Exp. Error (ζu

t|t−1)
Exp. Error (ζu

t|t−1) 90.84 90.25 88.97 88.74 88.71 88.67
Unemployment Rate 76.12 86.48 90.78 90.36 88.48 87.30
Industrial Production 51.08 58.77 62.09 60.66 53.34 34.33
Capacity Utilization 50.47 58.29 62.29 62.65 62.77 62.28

Unemployment Rate
Exp. Error (ζu

t|t−1) 74.06 76.67 76.63 77.06 77.88 77.91
Unemployment Rate 84.00 93.40 98.10 97.84 95.68 94.42
Industrial Production 56.53 66.04 70.87 69.66 61.55 39.73
Capacity Utilization 55.85 65.48 71.04 71.73 71.76 71.17

Industrial Production
Exp. Error (ζu

t|t−1) 42.36 48.47 50.12 51.22 52.30 52.29
Unemployment Rate 48.94 61.43 70.27 70.07 66.80 66.46
Industrial Production 88.54 95.56 98.07 96.47 89.29 66.91
Capacity Utilization 85.52 92.92 96.04 95.46 94.48 93.61

More importantly, the impulse responses to an MBC shock are almost identical to those to
an HOB shock. This points to the existence of a strong connection between the MBC shock and
the HOB shock identified by the proxy-VAR. It, however, does not imply that the HOB shock
is the sole cause of the MBC shock, as the MBC shock likely arises from a combination of many
structural shocks. Instead, these findings suggest that the HOB shock likely plays a significant
role in driving the dynamics of the MBC shock. In order to investigate this issue further, Figure
9 reports the bandpass filtered (6-32 quarters) history of the variables conditional on the HOB
shock only, and on the MBC (targeting the unemployment rate). As can readily be seen from
the figure, the two variables comove positively and generate the same business cycle.

Figure 9: MBC vs HOB: Conditional History
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Table 5 indicates that the two conditional histories are quite strongly correlated over the
whole sample. The correlation ranges from 0.53 for the expectation error to 0.60 for the indus-
trial production index. This correlation evolved over the sample. In the seventies, the main
business cycle shock was less connected to HOB shocks than in the later part of the sample. For
instance, while the correlation between the two conditional histories of unemployment was 0.3
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Table 5: HOB as MBC
Sample ζu

t|t−1 ut IPt Utilt
Whole Sample 0.53 0.56 0.59 0.57
(1968Q4-2019Q4) (0.27) (0.31) (0.34) (0.33)

Pre-Volcker 0.53 0.31 0.36 0.35
(0.26) (0.07) (0.11) (0.10)

Post-Volcker 0.60 0.70 0.71 0.71
(0.35) (0.49) (0.50) (0.50)

1980Q1-2019Q4 0.56 0.69 0.70 0.69
(0.31) (0.48) (0.48) (0.47)

1990Q1-2019Q4 0.68 0.78 0.78 0.77
(0.46) (0.61) (0.60) (0.58)

2000Q1-2019Q4 0.83 0.92 0.91 0.89
(0.68) (0.85) (0.82) (0.80)

Note: MBC shock obtained by targeting the unemployment rate.
The table reports the correlation between the history of each variable
conditional on the MBC and the corresponding history conditional
on our HOB shock. The number in parenthesis is the R2 of the
projection of the history conditional on the MBC shock onto the
history conditional on the HOB shock.

in the pre-Volcker period, it reached 0.9 in the 2000Q1-2019Q4 period. The table also reports,
in parenthesis, the R2 of the projection of the history of each variable conditional on the MBC
shock onto the corresponding history obtained from the HOB shock. In the last sub-sample,
the R2 is above 0.8 for the same business cycle variables, indicating a very strong connection
between the MBC and the HOB shock.

2.3 Further Implications

In this section we derive additional implications of the HOB shock for the economy, delving into
its effects on financial variables and uncertainty. We also go back to the relationship between
HOB shocks and confidence. Finally, we investigate whether our shock can be confused with
another shifter of expectations (news shock).

2.3.1 HOB Shocks and Uncertainty

We first examine the impact of the HOB shock on uncertainty. To do so, we augment our
benchmark specification with the macroeconomic uncertainty measure developed by Jurado
et al. (2015) (JLN hereafter). This measure captures the conditional volatility of the purely
unforecastable component of the future value of a broad range of macroeconomic time series. It
essentially gauges whether the economy has become more or less predictable. JLN constructed
this measure for various forecasting horizons. In the sequel, we incorporate measures of uncer-
tainty at the 1-month, 3-month, and 1-year forecast horizons into our VAR model.

Figure 10 depicts the IRF of the macroeconomic uncertainty measure for various forecasting
horizon to a HOB shock, introduced one at a time in our benchmark VAR. To save space, we
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focus solely on the response of the uncertainty measures (and later FEVDs). However, it’s
worth noting that the response of the other VAR variables is qualitatively and quantitatively
very similar to those obtained in the benchmark VAR presented in Section 2.1. A positive

Figure 10: IRF of Uncertainty Measures
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HOB shock triggers a decline in uncertainty, suggesting that it acts as a coordinating device,
inducing agents to align their forecasts and consequently reduce the JLN’s uncertainty measure.
However, the effect varies across the horizon of the uncertainty measure. A positive shock elicits
a stronger response for shorter-horizon uncertainty measures.

Table 6: FEVD: The Broader Economy

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Uncertainty
JLN (1-Month ahead) 29.50 29.26 18.29 11.40 10.02 8.30
JLN (3-Months ahead) 23.07 20.60 10.80 7.32 7.18 5.80
JLN (1-Year ahead) 6.45 3.15 4.67 10.06 10.56 7.32

Risk Premium
JLN (1-Month ahead) 29.46 29.67 19.96 15.35 16.47 16.06
Risk Premium 13.15 16.88 22.40 19.60 16.19 15.05

Credit Spread
Credit Spread 49.52 49.81 51.08 48.27 43.09 18.63

Credit Spread + Labor Productivity
Credit Spread 43.33 44.53 47.68 47.24 44.94 36.39
Labor Productivity 12.83 12.90 6.38 3.82 2.62 11.68

Confidence
12-month Index 8.28 13.10 9.77 7.68 6.79 5.81
5-year Index 5.31 11.99 10.19 7.66 5.59 3.56
Synthetic Index 13.41 20.06 14.74 10.18 7.93 6.83

This is corroborated by the FEVD reported in Table 6, where the HOB shock accounts for
about 30% of the volatility of the 1-month ahead uncertainty upon impact. This contribution
drops to 23% for the 3-month ahead uncertainty and further drops to about 6.5% for the 12-
month ahead uncertainty. This finding reinforces the notion that the HOB shock primarily
affects expectations about short-run economic outcomes. The effect on uncertainty is short-
lived and fades away rapidly, as reflected both by the IRFs and the FEVDs. For example, the
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contribution of the HOB shock to the volatility of the 1-month ahead uncertainty is one third
its short-run contribution after 2 years (11%).

2.3.2 HOB Shocks and Financial Conditions

We first consider a variant of our benchmark VAR that incorporates the 1-month ahead macroe-
conomic uncertainty measure and a risk premium indicator,21 in order to shed light on how
financial markets value the drop in volatility that follows a positive HOB shock. Figure 11
illustrates the responses of uncertainty and the risk premium to the HOB shock. The uncer-

Figure 11: Uncertainty and the Risk Premium
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tainty measure declines in response to the HOB shock and remains significantly influenced by
the shock. Consequently, the risk premium falls upon impact and stays below its initial level
for about two years. As reported in Table 6, the shock explains approximately 20% of the risk
premium’s volatility at the same two-year horizon. In the next section we delve further in the
implications of the shock for financial conditions.

Financial conditions, particularly the severity of financial frictions, can be represented by
the credit spread, measured as the gap between Moody’s BAA corporate bond rate and the 10-
year maturity bond. We augment our benchmark VAR by incorporating this credit spread. As
depicted in Figure 12, a positive HOB shock induces a persistent decrease in the credit spread,
indicating an easing of credit conditions, which aligns with the wave of optimism associated with
the shock. The shock is a significant contributor to the credit spread’s volatility, accounting for
approximately 40% of its short-run volatility (see Table 6).

While these findings support the notion of a shock that stimulates economic activity, they
pose a challenge, as they suggest that our HOB shock could be confused with a financial shock.
To the extent that financial frictions and financial shocks impedes the efficient allocation of
resources, a financial shock should have a non-negligible effect on productivity (see e.g. Moll,
2014). Therefore, we augment our latest VAR to incorporate labor productivity. Figure 12
illustrates the response of labor productivity to our shock and indicates that productivity re-
mains largely unaffected. This is corroborated by Table 6. The shock explains approximately
13% of labor productivity volatility upon impact and only about 6% after one year. In other

21The risk premium is computed as the difference between the Moody’s BAA and AAA corporate yield rates.
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Figure 12: Credit Spread
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words, our shock is unlikely to be confounded with a financial shock22 and instead triggers an
improvement in financial conditions.

2.3.3 HOB is not Confidence

Previous studies exploring the role of belief and sentiment shocks (see e.g. Barsky and Sims,
2012; Forni et al., 2017; Fève and Guay, 2019; Lagerborg et al., 2023) heavily relied on confi-
dence indices, such as the Michigan Consumer Sentiment Index, to facilitate their identification.
However, we caution readers that HOB shocks may not provide substantial information about
such indices, and relying solely on these indices for identification may not be appropriate.

We start by incorporating various measures of consumer sentiment into our benchmark
VAR. The University of Michigan provides several indices that capture insights into consumer
confidence. In this paper, we will utilize three of these indices. The first index indicates how
consumers feel confident about short-run (12 months) economic outcomes, the second index
relates to longer run (5 years) economic outcomes, the last one synthetizes the two indices.23

Figure 13 depicts the IRF of the three confidence indices to a sentiment shock, introduced one
at a time in our benchmark VAR. As in the previous section, we focus solely on the response
of confidence measures (and later FEVDs). However, it’s worth noting that the response of
the other VAR variables is qualitatively and quantitatively very similar to those obtained in
the benchmark VAR presented in Section 2.1. Inspection of the average response of household
confidence, across all indices, indicates that the HOB shock triggers a surge of optimism, con-
sistent with theoretical expectations. However, the magnitude of the effect varies depending
on the index’s horizon. A positive shock elicits a much stronger response for shorter-horizon
confidence indices, further corroborating that the HOB shock measures sentiment about near-

22This is not the case for a transitory investment shock. For instance, when we use it as an instrument (See
Section 2.3.5 for details about the construction of this shock) in place of our HOB shock, we indeed see a mild
decrease in the credit spread but it is accompanied by a persistent increase in labor productivity.

23The first one, which we will refer to as the 12-month index, summarizes responses to the question (BUS_12R):
”Now turning to business conditions in the country as a whole, do you think that during the next twelve months
we’ll have good times financially, or bad times, or what?” The corresponding question for the 5-year index
(BUS_5R) reads: ”Looking ahead, which would you say is more likely–that in the country as a whole we’ll have
continuous good times during the next five years or so, or that we will have periods of widespread unemployment
or depression, or what?”. The last index gathers information about 5 questions related to the overall economic
situation. Greater details are available from https://data.sca.isr.umich.edu/fetchdoc.php?docid=75432.
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Figure 13: IRF of Confidence Indices
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term economic outcomes. Importantly, these responses are imprecisely estimated, which, in
this case, would lead to reject the existence of an effect at the 68% confidence level. As shown
in lower panel of Table 6, the HOB shock’s contribution to the overall volatility of confidence
is small across all considered horizons. In other words, the HOB shock does not provide much
information about the evolution of the confidence index, as measured by the Michigan index.
This observation holds true for all the indices considered. Even at its peak, the HOB shock
contributes less than 15% to the synthetic index volatility, and this contribution falls below
10% for both the 12-month and 5-year indices.

Since, the HOB shock is not informative about the Michigan index, there may not be enough
information to properly identify the HOB shock from this variable. In order to evaluate this
statement, we replace the expectation error by one of the three confidence measures. Then we
conduct a standard Montiel Olea and Pflueger (2013) weak instrument test across our 200 draws
of the HOB shocks from the model. Figure 14 reports the empirical cumulative distribution
function of the test statistics across our 200 experiments. The results indicate that the all

Figure 14: Weak Instrument Test for Confidence Based Identification
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Vertical line: Average value of the Test , Vertical dashed line: rule of thumb threshold (10).

of the distribution’s mass lies below the 10 rule-of-thumb threshold, suggesting that the null
hypothesis of a weak instrument is unlikely to be rejected. In other words, our instrument
cannot be effectively used in conjunction with the confidence index to elucidate the economic
dynamics following a HOB shock.

2.3.4 Can it be news shock?

Thus far, we have maintained that our procedure identifies a shifter of beliefs about short-run
economic outcomes. In this section, we examine whether it could be confounded with another
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shifter of beliefs about economic outcomes: news shocks about TFP (see Beaudry and Portier,
2014, for a review).

We begin by augmenting our benchmark VAR with Total Factor Productivity (TFP) and
the real stock price index –the two variables utilized by Beaudry and Portier (2006) to identify
news shocks.24 We then investigate the degree to which our HOB shock explains TFP volatility.
To account for the long-run behavior of both TFP and stock prices, we consider three distinct
specifications. The first specification mirrors our benchmark specification, assuming that indus-
trial production, TFP, and the stock price are all represented in log-differences. In the second
specification, all variables are expressed in (log-)levels. The final specification, VECM, incor-
porates the first difference of (log-)TFP, the residual of the cointegration relationships between
TFP and the log of the real stock price (resp. industrial production). Figure 15 reports the
IRFs of TFP and the stock price index to a HOB shock in our three specifications.25 TFP shifts
up on impact and eventually seems to settle on a higher level. In the VECM case, the TFP
IRF mirrors that reported in Beaudry and Portier (2006), barely responding on impact and
eventually reaching a higher level in the longer run, suggesting some similarity to the response
to a news shock. This resemblance is further accentuated by the immediate increase in the
stock price index, which effectively front-loads the effects of a positive news shock.

Figure 15: IRF of TFP and the Stock Price Index
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Does our shock effectively capture a news shock? Table 7 summarizes the variance con-
tribution of our HOB shock to the volatility of TFP and the stock price index. The results
unequivocally demonstrate that our shock does not contribute significantly to TFP volatility.
This is particularly evident in the cointegration specification, where the contribution of the
shock is less than 5% at any horizon and around 1% in the long run. Similarly, the shock’s
contribution to the volatility of stock prices fades away beyond the first quarter. Taken together,
these observations effectively rule out the possibility of the shock being a news shock.

To further investigate the potential confounding effect of the news shock on our HOB shock,
we replicate our identification procedure using the news shock, generated from the DSGE model,

24We use the measure of TFP corrected for utilization provided by Fernald (2012). The real stock price index
is obtained from Shiller’s website (https://www.econ.yale.edu/~shiller/).

25Like in the previous sections, the results pertaining to the variables present in our benchmark case survive.
We therefore focus on TFP and the stock price index in this section.
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Table 7: FEVD: News

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
TFP and Stock Prices
First Difference
TFP 3.46 2.44 1.09 1.09 7.69 20.60
Stock Price 25.74 20.88 14.92 9.59 4.56 7.45

Level
TFP 1.60 1.17 1.57 1.33 5.84 8.09
Stock Price 16.12 13.50 10.65 7.66 6.38 4.60

Cointegration
TFP 1.44 1.00 0.92 1.01 8.54 1.55
Stock Price 16.29 13.46 10.02 6.48 3.29 3.68

News Shocks
Exp. Error (ζu

t|t−1) 4.82 5.92 7.58 7.61 7.86 7.86
Unemployment Rate 4.62 6.81 9.82 11.17 13.97 23.56
Industrial Production 8.59 9.06 8.01 7.10 4.92 24.44
Capacity Utilization 8.65 9.25 8.82 9.24 10.81 25.79

as the instrument. Specifically, we follow the methodology outlined in Section 1.2. Employing
the 200 parameter realizations from the posterior density of the structural parameters we used
to derive the HOB shock, we utilize the Kalman smoother to recover 200 realizations of the
news shock from the solution of the model. Subsequently, we apply our identical proxy-VAR
approach, substituting the news shock for the expectation error as the instrument. Figure 16
illustrates the IRFs to the news shock. Strikingly, none of these IRFs is precisely estimated.

Figure 16: IRF to a (DSGE-) News Shock
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Furthermore, the shock’s contribution to the volatility of each variable, as shown in Table 7, is
negligible, therefore suggesting that our HOB shock cannot be confused with news —the other
belief shifter. One reason is that news shift beliefs about the longer run economic outcomes.
This can actually be seen from Table 7 —the maximal contribution of the news shock is found
in the very long run, although it remains limited.

A second reason is that this shock ought not to be informative about the expectation error.
To assess this, we conduct the Montiel Olea and Pflueger (2013) weak instrument test across
our 200 draws of the HOB shocks from the model. Figure 17 reports the empirical cumulative
distribution function of the test statistics across our 200 experiments. The results indicate that
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Figure 17: Weak Instrument Test: News
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Vertical line: Average value of the Test , Vertical dashed line: rule of thumb threshold (10).

all of the mass of the distribution lies below the 10 rule-of-thumb threshold, suggesting that
news shocks are indeed a weak instrument for the expectation error. All in all, our HOB shock
does not capture information that could be confused for a news shock.

2.3.5 Other Fundamental Shocks?

Equation (9) in Section 1.2 suggests that the expectation error ought to be shifted by any of
the fundamental shock driving the dynamics of the DSGE model. We therefore recover all the
shocks from the DSGE model and use each of them as a potential instrument in our proxy-VAR.
In particular, we run the Montiel Olea and Pflueger (2013) weak instrument test across our 200
draws of each of the shocks from the model.

Figure 18: Weak Instrument Test
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Figure 18 presents the cumulative distribution function of the weak instrument test across
the range of models we consider. In all case but the investment transitory shock, the average of
the test statistics falls way below the conservative rule of thumb threshold of 10, demonstrating
that none of the remaining structural shocks are promising instruments. In the case of the
transitory investment shock, although the average statistics lies above 10, there is a significant
mass of models (about 30%) for which the weak instrument test is below the threshold.26 One

26Assume that the transitory investment shock be recovered from a complete information version of the model
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may however wonder to what extent there can be a potential confounding effect between the
HOB shock and this investment shock. However, the two shocks are mutually orthogonal, with
an average correlation of -0.04 across models. Taken together, all these observations lead us to
conclude that none of the other shocks present in the DSGE model is a likely candidate for a
relevant instrument.

3 Robustness

This section investigates the robustness of our findings to variations in the information and the
identification approach employed to recover the HOB shock. Additionally, we conduct a placebo
experiment to further examine the validity of our instrument strategy.

3.1 Alternative Expectation Errors

This section investigates the robustness of our main findings to changes in the expectation
error. We delve into two distinct aspects of the expectation error’s definition: the timing of the
expectation and the variable for which we calculate the expectation error.

Timing: Figure 20 contrasts the impulse response functions of the principal variables in our
benchmark VAR to those generated by a VAR in which the one-step-ahead expectation error
is not calculated as ζu

t|t−1 = ut − ue
t|t−1 but rather as ζu

t+1|t = ut+1 − ue
t+1|t (dashed line).27

While these two measures would be identically distributed and convey identical information in
a purely rational expectation stationary environment, this is not likely the case in survey data.
This is illustrated in Figure 19 which depicts how two expectation errors are not identically
distributed. The distribution of ζu

t+1|t is slightly shifted to the left, suggesting that individuals
tend to overestimate unemployment rates in economic downturns to a greater extent when
forming expectations in period t compared to their expectations formed in period t− 1.

Figure 20 indicates that this does not markedly affect the dynamics of the economy following
a HOB shock. The impulse response functions of the VAR variables are only marginally affected
by this change in timing. Similarly, as indicated by the left panel of Table 8, the contribution
of the HOB shock remains essentially unaffected. The shock accounts for about 70% of the
unemployment volatility at the 1-year horizon, 50-55% of that of industrial production and
40-45% for capacity utilization.

We also consider the expectation error associated with the nowcast of the unemployment
rate — namely ζu

t|t = ut − ue
t|t. Figure 20 reveals that, consistent with the previous case, the

dynamics of the VAR variables to a HOB shock are only marginally affected by the change in

—therefore ignoring HOB shocks. In that case, a sizeable part of the variation captured by HOBs is transmitted to
this transitory investment shock, leaving the econometrician with the impression that this shock indeed matters
a lot for business cycle volatility, while the data overwhelmingly favor the incomplete information version (see
Section 5.4 in Angeletos et al. (2018)). Why is the information captured by the transitory investment shock? The
investment decision trades-off the cost of investing in capital accumulation against the expected future benefits
of this investment, which are precisely affected by the transitory investment shock as of the short-run. Therefore,
it’s natural that HOB shock variations are reflected in these investment shocks. See Section E in the Appendix.

27In the latter case, all variables of the VAR are shifted by one period to preserve the timing of expectations.
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Figure 19: Distribution of Expectation Errors: Timing
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Figure 20: Impulse Response to a HOB Shock: Varying the timing of Expectations
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Table 8: FEVD: Varying Expectations

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Error on Unemployment (ζu

t+1|t)
Exp. Error 51.60 69.98 53.70 48.77 49.04 48.23
Unemployment Rate 51.64 70.51 68.94 62.99 46.60 28.64
Industrial Production 35.49 56.90 57.53 49.65 33.01 0.50
Capacity Utilization 34.18 54.42 53.60 47.38 40.59 11.04

Error on Unemployment (ζu
t|t)

Exp. Error 36.10 37.11 36.05 35.70 35.83 30.07
Unemployment Rate 53.20 74.24 71.86 58.92 40.10 23.06
Industrial Production 33.10 53.68 51.92 42.60 25.16 1.15
Capacity Utilization 31.82 51.22 47.95 40.43 33.92 12.33

Error on Output (ζy
t|t−1)

Exp. Error 43.47 43.40 39.28 36.26 35.82 32.45
Unemployment Rate 57.34 72.46 72.50 66.08 50.06 31.73
Industrial Production 36.30 52.73 51.70 44.43 28.28 5.54
Capacity Utilization 35.14 50.64 48.29 42.60 37.60 16.66
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the definition of the expectation error. Similarly, as evidenced in the right panel of Table 8, the
HOB shock accounts for a substantial proportion of the short-run volatility of unemployment,
industrial production, and capacity utilization.

Support Variable: We now explore the implications of utilizing the expectation error on
real output instead of unemployment. One potential challenge of utilizing the real output
expectation error stems from the multiple changes in the base year for computing the GDP
deflator across the sample period, leading to artificial shifts in the expectation error. To address
these jumps, we project the expectation error on a set of dummy variables that take the value
1 in years where a base year change occurred and 0 otherwise, and employ the residual of
this regression as our expectation error. This approach completely eliminates the variation in
those years, which may raise concerns. However, we also investigated alternative approaches to
rectify these jumps, including replacing those observations with an average of the neighboring
observations. The findings are only marginally affected by such alterations.

Figure 21: Impulse Response to a HOB Shock: Output vs Unemployment Expectation Error
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Figure 21 and Table 8 present, respectively, the impulse response functions (IRFs) of the
VAR variables to a HOB shock and its contribution to the volatility of the same variables.
The responses are remarkably similar regardless of whether the unemployment or the output
expectation error is used to identify the HOB shock. The only distinction lies in the sign of the
response of the expectation error itself. This is unsurprising, given the negative correlation be-
tween output and unemployment. In both cases, this suggests that agents tend to underestimate
the response of output or the unemployment rate.

Table 8 indicates that the influence of the HOB shock on the volatility of the variables
remains consistent when the definition of the expectation error shifts. If anything, the impact
on the unemployment rate strengthens, reaching 72% at the one-year horizon, further reinforcing
the role of HOB shocks in shaping the business cycle.

3.2 Addressing Potential Contamination of Shocks

Our identification strategy rests on the assumption that the innovation of the HOB shock,
our instrument, is orthogonal to the innovation of the other fundamental shocks (technology,
investment, discount rate, monetary policy, …). This is, by construction, true in the DSGE
model. However, one may be concerned that each of the 200 shocks is recovered applying
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Kalman techniques to a small sample of macroeconomic time series. In that case, one cannot
rule out the possibility that the estimated HOB shock be correlated with other fundamental
shocks. In order to address this issue, for each of our 200 models, we project the innovation of
the HOB shock onto the other fundamental shocks and use the residuals of that regression as
our proxy variable. These residuals are then, by construction, orthogonal to the other shocks.

Figure 22: Impulse Response to a HOB Shock: Output vs Unemployment Expectation Error
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Table 9: FEVD: Purged Shocks

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Exp. Error (ζu

t|t−1) 40.22 51.89 48.15 46.76 48.22 47.58
Unemployment Rate 50.28 74.57 79.40 70.32 48.95 30.20
Industrial Production 42.59 69.37 72.75 59.57 36.47 2.14
Capacity Utilization 41.86 68.09 71.59 61.48 53.30 17.33

Figure 22 compares our benchmark IRF (plain line) to the IRF obtained from these “purged”
HOB shocks (dashed line). Table 9 reports the corresponding variance decomposition. Inspec-
tion of the figure and the table clearly indicates that the results are not affected by applying
this projection, which in turn suggests that our instrument does not suffer a contamination
problem.

3.3 Alternative Ways to Recover Dynamic Causal Effects

To assess the robustness of our findings to the identification strategy, we first examine the
responses to a HOB shock identified using a recursive timing approach inspired by Sims (1980).
This approach imposes a sequential ordering on the variables’ responses to the various shocks in
the VAR. Specifically, we expand our benchmark VAR by directly incorporating our instrument
into the vector of endogenous variables, ordering it first in the vector (see Plagborg‐Møller and
Wolf, 2021). The HOB shock then represents the first “structural” shock. The impulse response
functions for the variables in response to the HOB shock are subsequently derived from the
first column vector of the Cholesky decomposition of the VAR’s covariance matrix. Panel (a)
of Figure 23 compares the IRFs obtained from our benchmark VAR to those generated using
the recursive timing approach.

The responses exhibit similarities to our benchmark in that the HOB shock triggers a decline
in the expectation error and the unemployment rate, while simultaneously boosting industrial

30



production and capacity utilization. However, some differences emerge. First, the recursive
timing assumption tends to produce less persistent dynamics. For instance, the peak in the
response of industrial production is reached after 2 quarters in the recursive timing identifica-
tion, while the economy reaches its peak after 1 year in the proxy-VAR. Second, the responses
of unemployment, industrial production, and capacity utilization eventually reverse direction
under Cholesky identification. However, over all, both identification approaches recover very
similar dynamics.

Figure 23: Alternative Identification Strategies: IRFs
(a) Cholesky Decomposition
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(b) LP-IV
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For robustness analysis we also employed a local projection estimator to assess dynamic
causal effects, which entails less stringent assumptions. We utilized a straightforward version of
the local projection estimator, where the impulse responses at horizon h are derived from the
estimates of {φh}H

h=0 obtained from the regression

Yj,t+h − Y j,t−1 = αi,h + φi,hζ
u
t|t−1 + Γi,h(L)Yt−1 + νx

i,j,t+h

where Yj,t represents the j-th variable in vector Yt; Y j,t−1 is a variable that takes the value Yj,t−1

is the variable is growing (Industrial production in our benchmark VAR) and 0 otherwise; νx

denotes the residual of the regression. In this regression, ζu
t|t−1 is instrumented by the HOB shock

drawn from the model. Since we utilize a variety of models – hence, a variety of instruments –
we estimate one such equation for each model i we draw. Note that this regression makes no
invertibility assumption. It however maintains, as in the VAR, the assumption of exogeneity of
the instrument.28

Panel (b) of Figure 23 depicts the average IRF of the VAR variables across models (dashed
line) in this regression alongside those in our benchmark VAR (plain curve). Despite the afore-
mentioned flexibility, the impulse response functions presented in the figure exhibit remarkable
similarities to those obtained from our benchmark VAR. The expectation error falls on impact,

28Note that we also relax the normalization assumption on the effect of the shock on the expectation error.
The IRF is therefore rescaled by σε1 as explained in Section 1.1.
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along with the unemployment rate, while industrial production and capacity utilization rise.
Inflation exhibits a muted response. These responses closely mirror those observed in the VAR,
although some minor discrepancies emerge due to the reduced restrictions imposed in the local
projection approach. Specifically, the response of the expectation error is strikingly similar
throughout the entire trajectory in the local projection estimator compared to the proxy-VAR.
But, the trough in the response of unemployment is reached earlier (after three quarters rather
than four). Likewise, the peaks in the responses of industrial production and capacity utilization
also occur earlier. Nevertheless, these minor variations aside, the responses remain remarkably
similar to those obtained in the proxy-VAR, providing a reassuring validation.

3.4 A Placebo Experiment

This section introduces two placebo experiments that further demonstrate the validity of our
instruments. In the first experiment, dubbed placebo I, we randomly reorder the values of our
instrument across its realizations. In the second experiment, labeled placebo II, we randomly
select a date T within the sample of each realization of our instrument. We then split the time
series of the instrument into two subsequences: the first running from 1968Q4 to T and the
second from T to 2019Q4. We subsequently swap these two blocks to create a new time series.
We then replicate our identification using these artificial instruments, both under the placebo
I and placebo II experiments, and compare the results with those of our benchmark VAR. The
underlying idea is that should our instrument lack informativeness, it should not hold more
information about the HOB shock than these entirely random instruments. Figure 24 compares

Figure 24: Placebo test
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Note: Placebo I: Random permutation of all elements of the instrument, Placebo II: Permutation of
2 blocs of the instrument, cutoff randomly selected. The VAR includes the first two McCracken’s
factors.

the impulse response functions obtained from our benchmark VAR to those obtained both in the
Placebo I and II experiment. The results are clear. The macroeconomic variables actually do
not respond to the shock identified using the placebos. In fact, the placebo instruments are not
sufficiently correlated with the true shocks to provide reliable estimates of their effects. Figure
25 depicts the empirical cumulative distribution function of the test statistics across draws of
the placebo instruments. The figure shows that the distribution of the test statistics is heavily
skewed to the left, with many of the values falling below the critical value, implying that the
placebo instruments are weak instruments and lack sufficient information to effectively identify
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a meaningful HOB shock.29

Figure 25: Weak Instrument Test for Placebo
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Dashed line: 95% threshold. Placebo I: Random permutation of all elements of the instru-
ment, Placebo II: Permutation of 2 blocs of the instrument, cutoff randomly selected.

Therefore, our benchmark instrument captures significant variation associated with higher-
order beliefs, eliciting aneconomic response that none of our placebo variations can explain.

4 Concluding Remarks

This paper examines the role of HOB shocks in driving business cycle fluctuations. The iden-
tification of such shocks is a challenging task for the econometrician as they do not have a
direct observable counterpart in the data. In addition, popular identification schemes are not
well-suited to identify such shocks. A notable exception are proxy-VARs, as exemplified by
Lagerborg et al. (2023), which rely on an instrumental variable to identify the sentiment shock.
In this paper, we employ a similar proxy-VAR approach but leverage exogenous variations in a
variety of proxy measures of expectations generated by a DSGE model (see e.g. Angeletos et al.,
2018).

Our findings highlight the significant impact of HOB shocks on the economy. Positive shocks
trigger economic booms, characterized by a decrease in unemployment, a rise in industrial pro-
duction and capacity utilization, and a persistent hump-shaped response in these variables.
HOB shocks are also found to be a major contributor to the volatility of unemployment, in-
dustrial production, and capacity utilization, explaining a substantial part of their fluctuations
at business cycle frequencies. This is confirmed by the fact that HOB shocks are a major
contributor to the main business cycle shock as identified by Angeletos et al. (2020).

Furthermore, HOB shocks are shown to improve short-run economic forecasting by economic
agents and decrease the risk premium and credit spread, fostering better financial conditions.
Interestingly, HOB shocks do not seem to have a significant impact on inflation or explain
a large share of the volatility in sentiment indices. We also address potential identification
concerns by demonstrating that HOB shocks are not confounded with technological news or
other structural/fundamental shocks like productivity, investment, discount factor, or policy
shocks.

29This weakness is witnessed in the large width of the confidence bands for the impulse responses to our placebo
shocks (reported in Figure 33 in Appendix F.)
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— Appendix —

A Correlation Analysis

Figure 26 reports the correlation between each of the variable in our benchmark VAR and the
variables used to recover the structural shocks in Angeletos et al.’ (2018) model (e.g. GDP,
Investment, Consumption, hours worked, inflation and the fed fund rate). Figure 26 reveals a

Figure 26: Correlation Analysis
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Note: ∆ denotes the fist difference log operator, Yt, Ct, It, Ht, πt and Rt denote, respectively, GDP,
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hours worked, CPI inflation and the Federal Fund Rate. Cap lines: 95% confidence bands.

non-zero correlation between several variable pairs in our study and those employed in Angeletos
et al. (2018). While the strongest correlation, at 0.8, is observed between industrial production
and investment, it remains far from perfect. In fact, most absolute correlation values fall below
0.5. This suggests a weak to moderate relationship between the variables used in Angeletos
et al. (2018) and in our VAR, despite both studying macroeconomic aggregates. This implies
that our VAR model incorporates significant information not exploited in the Angeletos et al.
(2018) model’s recovery of structural shocks.

37



B HOB vs Forecast Error on Output

Figure 27: HOB instrument vs Forecast Error on Output
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The HOB instrument corresponds to the average of the HOB instrument across models. Both series is filtered
by applying the Christiano and Fitzgerald’s 2003 filter (6-32 quarters frequencies).
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C A Version of Angeletos et al. (2020)

Table 10: FEVD: ACD VAR

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Expectation Error 20.46 29.24 30.04 32.12 34.36 34.46
Unemployment Rate 20.86 30.92 39.80 36.62 28.42 39.88
Hours Worked 25.02 38.16 49.66 49.19 38.74 56.77
Output 21.81 32.81 39.26 34.35 19.39 56.56
Investment 7.75 17.01 24.11 19.39 14.54 25.04
Consumption 63.28 65.89 67.97 65.33 55.79 63.55
CPI Inflation 0.47 2.11 11.42 19.66 26.84 30.80
Fed. Fund Rate 33.84 42.51 55.61 61.31 64.20 62.45

Figure 28: ACD VAR
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D The Main Business Cycle Shock
D.1 Methodology

This section gives technical details regading the construction of the MBC shock as identified in
Angeletos et al. (2020). For exposition purposes, let us repeat the VAR reported in Equation
(1)

A(L)Yt = ut,

where the definitions of A(L), Yt and ut are the same and satisfy the same properties as in Section
1.1. The innovations, ut, are assumed to be linear combinations of ny mutually orthogonal
shocks, ηt, such that

ut = Rηt (10)

where R is an invertible ny × ny matrix and ηt is i.i.d. over time, with E(ηtη
′
t) = I. We let

R = SQ, where S is the Cholesky decomposition of the covariance matrix, Σ, of the VAR
residuals, and Q is a rotation matrix (i.e. QQ′ = I). As R is invertible, it follows that
ηt = R−1ut = Q′S−1ut. This implies that each orthogonal shock ηt can be expressed as a linear
combination of the Choleski shocks S−1ut. The coefficients of this linear combination are given
by the corresponding column of matrix Q. The main business cycle shock is then obtained as
the linear combination of the Choleski shocks —the column vector, q, of Q—that maximizes
the variance of a particular variable at business cycle frequencies. The identification proceeds
in three steps.

First, Angeletos et al. (2020) obtain the Wold representation of the VAR as

Yt = B(L)ut

where B(L) = A(L)−1 is an infinite matrix polynomial, or B(L) =
∑∞

τ=0BτL
τ . Replacing

ut = SQηt, this rewrites as
Xt = C(L)Qηt = D(L)ηt,

The infinite matrix polynomials C(L) and D(L) are defined as C(L) =
∑∞

j=0CjL
j and D(L) =∑∞

j=0DjL
j , where Cj ≡ BjS and Dj ≡ CjQ for all j ⩾ 0. The sequence {Dj}∞

j=0 corresponds
to the IRFs of the VAR variables to the shock of interest. These IRFs can be obtained as a linear
combination of the IRFs of the variables to each of the Choleski shock, which are represented
by the sequence {Cj}∞

j=0. The weights of the linear combination are then simply given by the
column vector q. Henceforth, we will denote by Dk

j (respectively Ck
j ) the j-horizon response of

the k-th variable in vector Y .
Second, they build the contribution of the shock of interest to the volatility of the k-th

variable of vector Y over a given band of frequency [ω;ω]

V (q; k, ω, ω) = q′ Ω(k, ω, ω) q

where30

Ω(k, ω, ω) ≡
∫ ω

ω
Ck(e−iω)Ck(e−iω)dω

30For any vector v ∈ C, v denotes the complex conjugate of v.
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represents the volatility of the k-th variable in Yt over the aforementioned frequency band,
expressed in terms of the contributions of all the Cholesky shocks.

Finally, the main business cycle shock is identified by maximizing its contribution to the
volatility of a particular variable over the business cycle frequency band (2π/32, 2π/6) —i.e.
q ∈ Argmax V (q; k, 2π/32, 2π/6). It follows that q is the eigenvector associated to the largest
eigenvalue of the matrix Ω(k, 2π/32, 2π/6). This approach is similar to the “max-share” method
developed in Faust (1998) and Uhlig (2004), but is formulated in the frequency domain.

D.2 Difference Specification

Figure 29: Extended VAR on MBC component: IRFs (Difference Specification)
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Table 11: FEVD: Baseline VAR (MBC Shocks, Difference Specification)

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
Expectation Error
Exp. Error (ζu

t|t−1) 89.98 90.45 89.24 88.58 88.22 88.08
Unemployment Rate 76.83 86.68 91.09 89.67 81.87 76.39
Industrial Production 56.31 56.31 58.59 56.24 46.37 16.32
Capacity Utilization 55.39 58.84 57.38 53.32 52.15 52.83

Unemployment Rate
Exp. Error (ζu

t|t−1) 72.87 76.18 76.43 76.84 77.44 77.34
Unemployment Rate 83.30 92.02 96.99 95.47 86.18 79.53
Industrial Production 62.57 62.57 66.55 64.66 53.94 19.05
Capacity Utilization 61.68 66.86 67.24 63.50 61.29 61.02

Industrial Production
Exp. Error (ζu

t|t−1) 37.35 44.29 46.57 48.67 50.19 50.08
Unemployment Rate 44.43 55.87 64.76 62.31 52.32 45.59
Industrial Production 92.50 92.50 96.70 96.67 90.22 50.75
Capacity Utilization 90.27 94.75 96.08 93.70 87.25 81.61
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Figure 30: MBC vs HOB: Conditional History (Difference Specification)
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Table 12: HOB as MBC
Sample ζu

t|t−1 ut IPt Utilt
Whole Sample 0.57 0.68 0.75 0.70

(0.33) (0.47) (0.56) (0.48)

Pre-Volcker 0.60 0.56 0.73 0.63
(0.35) (0.30) (0.52) (0.38)

Post-Volcker 0.62 0.75 0.80 0.77
(0.39) (0.56) (0.63) (0.58)

1980Q1-2019Q4 0.58 0.74 0.80 0.75
(0.34) (0.55) (0.63) (0.57)

1990Q1-2019Q4 0.69 0.80 0.82 0.79
(0.47) (0.64) (0.67) (0.63)

2000Q1-2019Q4 0.84 0.94 0.87 0.90
(0.70) (0.88) (0.75) (0.80)

Note: MBC shock obtained by targeting the unemploy-
ment rate. R2 of the projection of the history conditional
on the MBC shock onto the history conditional on the
HOB shock.

42



E Alternative Shocks from a Complete Information Model

This section investigates whether alternative shocks, derived from a standard New Keynesian
model (essentially Angeletos et al. (2018) without information frictions), can replicate the busi-
ness cycle dynamics we uncovered using HOB shocks. We leverage the same approach employed
to recover the belief shock in the main text. We extract 200 parameter sets from the posterior
distribution estimated by Angeletos et al. (2018) for their perfect-information model (i.e., no
role for HOB shocks). For each parameter set, we solve the model and utilize the Kalman tech-
niques to extract structural shocks from observed quarterly data (1968Q4-2019Q4) on GDP,
consumption, investment, hours worked, inflation, and the federal funds rate. This process
yields 200 sets of instrumental time series, each corresponding to a specific model configuration,
encompassing permanent and transitory technology and investment shocks, a discount factor
shock, a government spending shock and a monetary policy shock.

We begin by winnowing down the candidate instruments for our expectation error within
the benchmark VAR. Figure 31 depicts the distribution of the weak instrument test across all

Figure 31: Weak Instrument Test (No HOB shock model)
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parameter draws. Except for the transitory investment shock, the test statistics decisively fall
below the conventional threshold of 10, indicating that the remaining shocks are unsuitable
instruments. Interestingly, this mirrors findings from the HOB shock model (Section 2.3.5).
However, unlike the HOB case where 30% of models passed the test, less than 5% do in the
perfect-information model. This stark reduction suggests the transitory investment shock likely
captures the variation previously explained by HOB shocks.

To verify the latter assumption, Figure 32 presents impulse response functions along with
1 standard deviation bands for key variables in our VAR. These responses are generated using
the transitory investment shock instrument extracted from both the complete and incomplete
information models. Table 13 complements this analysis by reporting the corresponding forecast
error variance decompositions. Two key findings emerge. First, the transitory investment shock
instrument derived from the incomplete information model yields less precise estimates for the
impulse responses. Notably, the effect of the shock on unemployment becomes statistically
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Figure 32: Impulse Response to a Transitory Investment Shock
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insignificant (at the 68% confidence level) after just four quarters, compared to two years with
the complete information instrument. Second, the complete information model’s transitory
investment shock response closely resembles the HOB shock response in our VAR. Conversely,
the incomplete information version exhibits significantly weaker responses, confirmed by FEVD
analysis. For instance, the complete information shock explains 65% of unemployment volatility
on impact (44% after one year) compared to a 20 percentage point (50% after one year) reduction
in the incomplete version. Taken together, these findings suggest that HOB shock information
is captured by the complete information model’s transitory investment shock.

Table 13: FEVD: Baseline VAR (Transitory Investment Shock, w/ and w/o HOB)

Impact 1-Quarter 1-Year 2-Years 5-Years Long-Run
HOB Model
Exp. Error 57.74 33.99 24.96 25.76 24.63 24.47
Unemployment Rate 44.16 34.39 20.28 14.46 9.76 7.10
Industrial Production 53.99 42.20 23.76 15.21 8.06 1.17
Capacity Utilization 54.57 43.31 25.97 19.07 17.95 6.41

No HOB Model
Exp. Error 56.03 39.62 31.51 31.36 30.13 29.81
Unemployment Rate 65.37 61.53 44.02 32.73 22.06 18.39
Industrial Production 65.42 61.32 41.66 28.61 16.89 3.84
Capacity Utilization 64.59 60.18 40.01 28.37 25.68 13.17

Two intriguing questions remain. First, why isn’t this information transmitted to news
shocks, which are shocks to expectations? Unlike HOB shocks that target short-run outcomes,
news shocks focus on longer-term productivity gains. Second, why is the information captured
by the transitory investment shock? The investment decision trades-off the cost of investing in
capital accumulation against the expected future benefits of this investment, which are precisely
affected by the transitory investment shock as of the short-run. Therefore, it’s natural that HOB
shock variations are reflected in these investment shocks.
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F Placebo

Figure 33: Placebo test
(a) Placebo I
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(b) Placebo II
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Note: Placebo I: Random permutation of all elements of the instrument, Placebo II: Permutation of
2 blocs of the instrument, cutoff randomly selected. The VAR includes the first two McCracken’s
factors.
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