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1 Introduction

Financing constraints slow down growth over the lifecycle of a firm. Dynamic contracting
models have proved useful in understanding the underlying agency frictions that generate
financing constraints and can account for several stylized facts on the lifecycle of firms. The
canonical setting in this literature is the dynamic contracting model with cash flow diversion:
at each period, an entrepreneur needs funds from a lender to operate a project, but only
the entrepreneur observes the project’s returns (i.e. cash flows) and can secretly divert
them for consumption. These contracting problems have typically been analyzed assuming
a risk-neutral entrepreneur and i.i.d productivity shocks (Clementi and Hopenhayn (2006),
DeMarzo and Sannikov (2006), DeMarzo and Fishman (2007a), Biais et al. (2007)).! Under
these assumptions, in the optimal contract, the firm size (i.e. working capital invested) drifts
upwards, and the entrepreneur is compensated once the undistorted first best size is reached.
Notably, the optimal contract generates a one-to-one link between firm size and compensation
dynamics, and implementations typically link the entrepreneur’s promised compensation to

her equity share in the firm (Clementi and Hopenhayn (2006)).

In this paper, I revisit the predictions of the optimal contracting solution of dynamic cash
flow diversion models. I depart from the previous literature by allowing the entrepreneur
to be risk averse and to have persistent private information about the firm’s productivity.”
Risk aversion creates a consumption smoothing motive that makes it costly to backload the
entrepreneur’s compensation. Persistence allows the entrepreneur to have more informa-
tion about the firm’s future profitability, thus making her preferences for future contract

arrangements depend on the current profitability.

I show that introducing risk aversion and persistent private information fundamentally
changes the nature of the optimal contract and the resulting firm size and compensation
dynamics. First, the firm size and compensation dynamics are decoupled. The entrepreneur
is compensated for her current and past returns, but the firm size dynamics are driven by
the costs of increasing the entrepreneur’s ability to divert funds at a particular period or

history. Hence, the dynamics of the two variables can be essentially characterized separately.

LA notable exception is Fu and Krishna (2019), who study a similar cash-flow diversion model with risk
neutrality but with persistent shocks. However, as I will show, the role of persistence on firm dynamics
depends on the entrepreneur’s risk aversion.

2With risk neutrality, the contracting problem amounts to maximizing the value of the firm, which can be
justified under complete markets. However, this assumption may be harder to justify in an entrepreneurship
context as it involves significant non-diversifiable risks.



Second, the firm’s size never converges to the first best and its distortions inherit the au-
toregressive properties of the type process. Their drift depends on the initial uncertainty
about the entrepreneur’s productivity. In particular, if the initial type is known — as as-
sumed in the literature — the distortions drift upwards, so firm size tends to decrease over
time. Third, the entrepreneur’s compensation is smoothed intertemporally, but the variance
of consumption grows over time (as in Thomas and Worrall (1990) and Atkeson and Lucas
(1992)). Fourth, I show that implementing the optimal contract with risk aversion requires
separately keeping track of the entrepreneur’s wealth and equity share in the firm. Finally,
I argue that cash flow diversion models always generate a tight link between the firm’s size
and the entrepreneur’s equity share, posing a challenge for this class of models to generate
realistic dynamics for the two variables simultaneously. In particular, they cannot account

for the dilution of the entrepreneur’s equity share as the firm grows.

I first derive a recursive characterization of the optimal contracting problem building on
recent advances in dynamic mechanism design (Pavan et al. (2014), Kapicka (2013), Farhi
and Werning (2013)). With i.i.d shocks, the literature has characterized the optimal contract
using the entrepreneur’s promised continuation utility as a state variable. I can also derive a
recursive representation of the problem with risk aversion and persistent private information
by adding dynamic information rents as an extra state variable. These two state variables
break the tight link between firm size and compensation dynamics. Moreover, risk aversion
creates a consumption smoothing motive that qualitatively and quantitatively modifies the
relation between promised utility and firm size. As a result, in the optimal contract, the
promised utility drives the compensation dynamics, and the dynamic information rents drive

the firm size dynamics with little interaction between the two.

I characterize the firm size dynamics with return-dependent investment wedges, which reduce
capital below its first best level. Investment wedges are positive because more productive
entrepreneurs have a relatively higher ability to divert funds as capital increases. The size
of the investment wedges depends on the upper Pareto coefficient of the distribution of the
marginal product of capital and a normalized shadow cost of information rents. With risk
aversion and persistent private information, the lender reduces the cost of screening types
at period t by promising to lower future expected information rents. However, this increases

the shadow costs of information rents at ¢ + 1 and onwards.” Consequently, when the initial

3With persistent private information, more productive types at ¢ prefer contracts with higher expected
information rents at period ¢+ 1. Therefore, committing to lower information rents at ¢ + 1 reduces the cost
of screening types at t. This is the same reason why the labor wedges tend to increase over time in dynamic



productivity of the entrepreneur is known, the investment wedges tend to increase over time
and firm size tends to decrease because the firm starts operating without any promise to
lower information rents. By contrast, with sufficiently high uncertainty about the initial
type, the wedges decrease over time as the distortions from the initial screening problem
gradually vanish. Finally, with i.i.d productivity shocks, there is no gain of promising to

lower future information rents, so wedges and firm size are (approximately) stationary.

Next, I show that the entrepreneur’s consumption process satisfies a Generalized Inverse
Euler Equation (GIEE) similar to Hellwig (2021). With risk aversion, the lender smooths
the entrepreneur’s compensation intertemporally. After a history of high (low) productivity
shocks, the entrepreneur is rewarded with high (low) consumption. Hence, the cross-sectional
variance of the entrepreneur’s consumption grows over time (Thomas and Worrall (1990),
Atkeson and Lucas (1992)). However, the dispersion in compensation does not translate to
firm size distortions. Numerically, I find that the investment wedges are essentially uncorre-
lated with compensation. For instance, after several periods, the firm’s size can be distorted

downwards, but the entrepreneur receives a high compensation.

To further understand the compensation dynamics, I use numerical simulations and analyze
a (quasi-)implementation with simpler contracts. With i.i.d shocks, the following contract
gets very close to the optimal allocation. The lender gives the entrepreneur a constant
equity share in the firm’s reported returns. Then, the entrepreneur can pledge her shares as
collateral to borrow and smooth consumption given his implied wealth. Pledging shares is a
common practice (Fabisik (2019)); this implementation shows how it can be rationalized as
part of a nearly optimal contract. Moreover, the implementation is independent of dividend

payout policies, which are typically used to implement the compensation with risk neutrality.

With persistent private information, we need an extra instrument to replicate the dynamic
information rents. The entrepreneur’s equity share is a natural candidate because it controls
the sensitivity of the entrepreneur’s compensation to productivity shocks. Intuitively, varying
the equity share is informative for the lender because a more productive entrepreneur expects
higher returns in the future and is less inclined to give up equity. Hence, the entrepreneur’s
equity share tracks the dynamics of the expected information rents. The equity share should
be high when the expected information rents are high, and conversely. In particular, this
implies that the equity share decreases over time if there is no uncertainty about the initial

productivity.

Mirrlees models (see Farhi and Werning (2013) and Makris and Pavan (2020)).



The equity share dynamics help understand the distinct firm size dynamics with risk neu-
trality and risk aversion. Regardless of the entrepreneur’s preferences, the lender provides
more capital when the equity share is high because of the lower incentives to divert funds
—implying that there is always a positive link between the entrepreneur’s equity share and
the firm’s size. Hence, the opposite drift in the firm’s size across different models can be
understood from the opposite drift in the equity share. With risk neutrality, the equity
share instead maps to the promised utility, which drifts upwards (Clementi and Hopenhayn

(2006)). As a result, the equity share and the firm’s size also drift upwards.

The equity share dynamics of the risk neutral model may be at odds with what we observe in
the data. For example, in the venture capital industry, the founder’s equity share gets diluted
over the financing rounds as the firm grows (Sahlman (1990)). By introducing screening
about the initial productivity, the model with risk aversion and persistence can generate
more realistic firm dynamics, but this again implies an increasing equity share. Therefore, it
appears to be challenging for this class of cash flow diversion models to break the embedded
link between the firm’s size and the entrepreneur’s equity share and, consequently, generate

realistic dynamics of these two variables simultaneously.

I explore three extensions to the main model: (i) limited commitment of the entrepreneur,
which can generate dynamics where firm size increases over time as in Albuquerque and
Hopenhayn (2004); (ii) a model where the entrepreneur can choose the fraction of funds
invested and diverted, which delivers the same characterizations of the firm dynamics and
the GIEE; and (iii) allowing the lender to terminate the contract, which may be optimal but
does not affect the equations characterizing the optimal contract. Moreover, in a simplified
version of the model, I show that if termination is optimal, termination probabilities increase
with the persistence of the process. The intuition is similar to that of the equity share

dynamics.

Related literature. This paper contributes to the dynamic financial contracting litera-
ture. Important early work on this class of models includes Clementi and Hopenhayn (2006),
Albuquerque and Hopenhayn (2004), Biais et al. (2007), Biais et al. (2010), DeMarzo and
Sannikov (2006), DeMarzo and Fishman (2007a), DeMarzo and Fishman (2007b) and De-
Marzo et al. (2012).* In particular, I contribute to the literature by studying a workhorse

dynamic cash flow diversion model with risk aversion and persistent private information.

4That firm size decreasing over time can be the outcome of an optimal contract has also been shown in
Clementi et al. (2010). They study a dynamic moral hazard model where the firm’s productivity distribution

4



Models with persistence have been recently analyzed in DeMarzo and Sannikov (2016), Fu
and Krishna (2019) and Krasikov and Lamba (2021), but all these papers assume a risk
neutral entrepreneur. To my knowledge, this is the first paper in the dynamic financial
contracting literature with both persistent private information and risk aversion. I show
that the entrepreneur’s preferences determine the effects of persistent private information
on the firm dynamics. In particular, the distortions to firm size inherit the autoregressive
properties of the type process only with risk aversion. Fu and Krishna (2019) and Krasikov
and Lamba (2021) show that distortions gradually vanish as with i.i.d types, but the speed

of convergence to the first best decreases with the persistence of the process.

Khan et al. (2020) analyze the efficient allocation of capital across a continuum of risk-averse
agents subject to i.i.d productivity shocks. They show that it is optimal to allocate more
capital to agents with higher promised utility. Numerically, this link is weak in my model, so
the dynamic information rents determine the allocation of capital. He (2012) and Di Tella
and Sannikov (2021) also study dynamic contracting models with risk aversion. Both papers
study a hidden savings problem, so the entrepreneur has persistent private information about
his savings. I do not allow for hidden savings but allow for persistent private information

about the firm’s productivity.

Throughout the paper, I use tools and insights from the dynamic Mirrlees literature. I
use the first-order approach (FOA) (Pavan et al. (2014)) and set up the principal’s problem
recursively using dynamic information rents as state variables as in Kapicka (2013), Farhi and
Werning (2013) or Golosov et al. (2016a). The FOA consists of solving a relaxed problem
with the local incentive compatibility constraints and allows for solving the model with

> Applying the FOA to a cash flow diversion model with

persistent private information.
risk aversion, an extra challenge emerges because the marginal information rents depend
on consumption. So if the principal adjusts the consumption of some type 6, the slope
of the profile of information rents for types 6’ > 6 changes. This problem does not arise in
commonly studied Dynamic Mirrlees problems with additively separable preferences between
income and consumption, but it does when preferences are nonseparable. Following Hellwig
(2021), I use incentive-adjusted probability measures to derive analytical characterizations
6

of the optimal contract with risk aversion.” The incentive-adjusted measures reweight the

depends on the entrepreneur’s costly effort exerted. In their model, the entrepreneur becomes wealthier over
time, which lowers the effort and, consequently, firm size.
®A priori, global incentive compatibility constraints may bind. Following the procedure in Kapicka (2013)
and Farhi and Werning (2013), I verify ex-post that this is not the case in all the numerical simulations.
6The idea of using incentive-adjusted measures was developed in Hellwig (2021) to study a dynamic



density of types such that the lender’s evaluation of allocations accounts for the changes in
information rents, and therefore, incentive compatibility is preserved. Moreover, the finding
that firm size can drift downwards follows from the insight of the Dynamic Mirrlees literature
that labor wedges tend to increase over time (Farhi and Werning (2013), Makris and Pavan
(2020)).

Finally, this paper is also related to the literature on insurance with persistent private in-
formation (Williams (2011), Bloedel et al. (2023b) and Bloedel et al. (2023a)). With fixed
capital, the cash flow diversion model studied in this paper is equivalent to the hidden
endowment model used in this literature. Their focus is on the role of persistent private
information for the long-run distribution of consumption and whether or not it features im-
miseration (Thomas and Worrall (1990) and Atkeson and Lucas (1992)). In the paper, I
present some results and discussion on the long-run consumption dynamics. Nevertheless,
numerical simulations show that in this model, immiseration is a very long-run phenomenon

so that it may be irrelevant for the usual lifespan of a firm.

Outline. The rest of the paper is organized as follows. Section 2 describes the model, sets
up the relaxed planning problem, and describes the first best allocation. Section 3 presents
the main results on the firm size and consumption dynamics, and Section 4 illustrates them
with numerical simulations. Section 5 studies the quasi-implementation. Section 6 discusses
the differences in models with risk neutrality and risk aversion and their implications. Finally,

Section 7 briefly summarizes the extensions to the main model, and Section 8 concludes.

2 Model

Time is discrete and indexed by ¢ = 0,1, ...,00. Every period, an entrepreneur (the agent,
“he”) needs funds k; from a lender (the principal, “she”) to operate a project. Both the
entrepreneur and the lender are long-lived. At period ¢, the project generates returns equal
to f(ke, 0;), where 0, € [0,0] is the entrepreneur’s productivity type. The agent’s type history
is denoted by 0" = {6y, ..., 0;} and is the agent’s private information. 6; follows a first-order
Markov process with conditional density ¢;(6;|0;—1) (and CDF ®;(6;/6;_1)), and the initial
type 6y is drawn from the density h(6y) (and CDF H(6,)).

Mirrlees taxation problem with non-separable preferences between consumption, leisure, and productivity.



The lender cannot observe the returns and instead relies on the entrepreneur’s report. The
entrepreneur can misreport and divert a fraction of the returns for his consumption. There
is a deadweight loss (1 —¢) € [0,1) on diverted funds. That is, for every dollar of funds
diverted, the entrepreneur only gets to consume a fraction ¢. Capital k; fully depreciates at
the end of every period. After the entrepreneur reports returns f(k;, @), the lender asks for
a repayment bt(gt) and advances funds ktﬂ(gt) for the next period. The entrepreneur cannot
privately save, so the entrepreneur’s period ¢ consumption if the true returns are f(k, 6;)
but he reports f(k;,6;) is

o= f ke, 00) = (L= ) (£ ki, 00) = £k, 8)) = bu(B) 1)

In particular, if the entrepreneur does not misreport returns, he consumes ¢; = f(ky, 60;) —
b(0;). As is common, I further assume that the agent cannot overreport his returns. That
is, reports are restricted to 0, < 0,. This assumption is motivated by the restriction that the
entrepreneur cannot save outside the contract with the lender. The entrepreneur also has
limited liability, so his consumption must always be non-negative ¢; > 0. The entrepreneur
is risk averse, derives utility u(c;) from consumption, and discounts the future with factor
B € (0,1). Throughout the paper, I will use the following notation for the derivatives of the

production function

af(kh Qt)
Ok

Of (kt, 0;)

an(kh et)
00, ’

00,0k,

e(ky, 04) fo(ke,0;) = for (K¢, 60,) =

Below, I summarize all the assumptions on the functions f and w and the productivity

process.

Assumptions:

A1: The utility function satisfies u” < 0 < v/, and the Inada conditions lim. o u/'(c) = oo

and lim, . u/(c) = 0.

A2: The production function is twice differentiable and satisfies fir, < 0 < fi, fo > 0, the
Inada conditions limy_,q fx(k,0) = co and limy_, fx(k,0) =0, and fg, > 0.

A3: The conditional density ¢;(6;|0"") is differentiable with respect to the second argument

and persistent, i.e.
Ot (0¢]0¢—1)
00y —1

0,0 1) = ————
(t tl) @t(et\etfl)



is non-decreasing in 6;.

Assumption (A1) implies that the agent is risk averse and the optimal allocation is generally
interior. Assumption (A2) states that there is decreasing marginal product of investment,
higher types obtain higher returns and have a higher marginal product. This last assumption
(for > 0) is key as it will imply that higher capital increases information rents. Finally, as-

sumption (A3) imposes that the type process has either positive persistence or is independent

Ot (0¢0:—1)
001

ferentiability will be needed to use the envelope condition for the local incentive constraint.

over time, in which case = 0. The process is allowed to be time-dependent. Dif-

For future use, it is useful to define:

o)
1 — ®y(0:)0,-1) 55— (1 — ®4(0:]0,-1))
o) = L E[E(0,0,1)|0 > 6,,0,_1] = 2=
pl6) ©i(0:]0r—1) (E(E,60-1)10" 2 61, 61-) (0|0 —1)

(2)

This is the impulse response of 6, to 6, as defined in Pavan, Segal and Toikka (2014). It
is a measure of the persistence of the process. If the type process follows an AR(1) with

autoregressive parameter p, then £(6;,0, 1) = —p%gf“l)/gpt(@wt_l) and p;(0') = p.

2.1 Lender’s problem

The lender is risk neutral and discounts the future with factor ¢ € (0,1). At an ex-ante
stage (t = 0) before the firm starts operating, the lender must screen over the entrepreneur’s
initial type (fp) with continuation contracts for periods ¢ = 1 and onwards. In this initial
screening stage, the entrepreneur does not consume and there is no production. By the
revelation principle, it is without loss to focus on direct revelation mechanisms. At any
history, the entrepreneur sends a report r € [0,6;] about 6; to the lender. Define a reporting
strategy by o = {0(6")}, it implies a history of reports o*(6") = {o1(6p), ..., 0¢(6")}. Let
Y = {o|oy(0") <0, VO € [6,0]'} be the set of feasible reporting strategies. For t > 1, the

entrepreneur’s continuation utility with truth-telling can be written recursively as

wt(et) = “(C(Qt)) +ﬁ/wt+1(9t>9t+1)90t+1(9t+1|9t)d9t+1, (3)



where c(6') = f(k,(6"1),0;) — b(6"). Similarly, the continuation utility of type 6 with

reporting strategy o is

Wl (0 = u(c(By, o' (6)) + B / W (6, 1) Pren (Brsa|B0) By (4)
where
(6,,0"(8) = 1 (ke (0" (671)), 8) + (1 — ) f k(0" (6)), 0(60)) — b0 (6).  (5)

At t = 0, the continuation utility with truth-telling writes

wo(bo) = B / w (6% (61]60) (6)

and with reporting strategy o

i (60) = 5 [ wg(0")o(61160)d01. )

Finally, at the start of the contract, the lender must deliver a minimum level of compensation

to the entrepreneur equal to
(1= m)wo(0o) + / wo(0h)h(0)d6) > v_ (®)

for all 6y € [#,60] and where x € {0,1}.7 I set this up as Makris and Pavan (2020), which
allows us to consider both ex-ante and ex-post participation constraints. If k = 1, we have
an ex-ante constraint that requires the principal to deliver expected utility v_ to the agent.
Conversely, if kK = 0, we have an ex-post constraint so the agent’s utility must be at least v_

for all 6, realizations.

The lender’s problem consists of choosing an allocation {k;1(6"),0,(6")} to minimize its

expected discounted cost subject to the participation, incentive compatibility, and limited

"The constant v_ may correspond to the entrepreneur’s outside option, or it can be pinned down by a
break-even condition for the lender.



liability constraints:

Ko(v-) = min E |k (0p) + (ke (61 — b (6 .
0( ) {kis1(0%),be(6%)} 1( 0) ;q ( t-‘rl( ) t( )) ( )

s.t (1 — k)wo(Bo) + KE[wo(0)] > v_ VO €[0,0] (PK)
wy(0") > w?(0Y) Vo' €[0,0" and o€ X. (IC)
(0" >0 V0" €0,0)" (LL)

2.1.1 Relaxed problem at ¢t > 1

I start by deriving a — relaxed — recursive representation of the problem for periods t > 1,
and then set up the time-0 screening problem in Section 2.1.2. With Markov shocks, it is
sufficient to consider only the temporary incentive compatibility constraint (Fernandes and

Phelan (2000), Kapicka (2013))

wy(8') = max u(c(6y, (0',7))) +5/wt+1(9t_177“a Or1) 11 (0r+1101)db; 11, (10)

r€[0,04]

where type’s 6; consumption if he reports r, ¢(0;, (6", r)), is given by equation (5). This

allows us to solve a recursive problem. Write entrepreneur’s continuation utility under truth-

telling as
wi(60") = u(c(9")) + Bui(0") (11)

w(6') = / Wit (07 e (Bren |01)dB1s (12)

Following Kapicka (2013), Farhi and Werning (2013) and Pavan, Segal and Toikka (2014), I
use a first-order approach. That is, I solve a relaxed problem with the local IC constraint.®

The envelope condition of the temporary IC (10) gives

0
A wi(07) = u'(c(0"))efo(ke(0"7), 0,) + BA(D") (13)
00 \ ~- 4 ——
Static marginal info rent Dynamic marginal info rent
0 01110
A0 = /wtﬂ(@tﬂ)%daﬂ_ (14)
t

8Following Kapicka (2013) and Farhi and Werning (2013), I verify numerically that the global IC con-
straints do not bind. More details can be found in Section 4 and Appendix E.

10



With persistent private information, the marginal information rents depend on two terms.
The static component captures how much the agent can gain by marginally misreporting re-
turns in the current period. The dynamic marginal information rent, which can be rewritten
as A(0') = E [ (9"/“)&‘(‘9’9(?+ J16t|, captures the rent that the agent obtains by having more
information about future types than the principal. If types are i.i.d we have A;(0") = 0.

If the entrepreneur is risk averse, the static marginal information rent (u'(c(6%))efo(k:(6071), 6;))
depends on the entrepreneur’s consumption. Intuitively, if the entrepreneur’s productivity
increases by df;, he generates an extra return of fy(k:(6'"'),0;)df;. The entrepreneur can
then decide to mimic the returns of the type right below him and divert the extra funds,
he can then obtain ¢ fy(k;(6'1), 6;)df; extra consumption units. This extra information rent
has to be transformed into utils by multiplying by u/(c(#")). The fact that information rents
depend on the entrepreneur’s consumption poses a challenge for characterizing the solution
to this problem. If the principal increases the type’s 6; consumption, then this type’s infor-
mation marginal rent changes. But then the information rents of all types # > 6, must be
adjusted non-linearly in order to preserve incentive compatibility. In Section 3.2, I will show
how the incentive-adjusted probability measures developed in Hellwig (2021) can be used to

take into account these changes in information rents.

The principal solves a dynamic programming problem where, within every period, there is

an optimal control problem. I drop the limited liability constraints from the problem and

11



verify ex-post that they do not bind.” For ¢ > 1, the relaxed problem is

Ki(vi—1, Ay1,0i1, k) =

{k glti)% o / [k’t+1(9t) - bt(et) + th+1(Ut(9t), At(et), Or, kt+1(‘9t))} ©1(04]0;-1)d0;
t+1 ,0t )
wi(0%),0:(0°),A4(6%)}

st (PE) w(0)) = u(c(0)) + Bul8) 00 1)6(0")]
v = [ @060 8O- (15)
(IC) w(0) = w(cl6))ufo ke, 0 + BAE)  [1(0)]
B = [ty 220 g 010,110
(Feasibility) ¢(0") = f(ke,0;) — by(6")

Note that I write the multipliers associated with each constraint inside square brackets. The
Hamiltonian of this problem and the derivation of the optimality conditions can be found in
Appendix B. To economize notation, I will write directly u(#*) and f(6") instead of u(c(6"))
and f(k(0'7"),0).

Along with the promised utility, v;_1, the previous period’s type, #;_1, and the funds advanced
at t — 1, k;, the past dynamic information rents, A;_;, become an extra state variable of
the problem. The principal can lower current dynamic information rents by promising to
reduce information rents in future periods. Intuitively, she does so by reducing the expected
sensitivity of the entrepreneur’s value to his productivity, i.e. by reducing his exposure to
returns. Because the past promises must be satisfied, A;_; has to be added as an extra
state variable of the problem. Throughout the paper, I will refer to this state variable as the
promised information rent. The co-state variable of the within period Hamiltonian is s (6").
This co-state variable will become key for the dynamics later. We will refer to it as the
shadow cost of information rents, as it captures the principal’s resource gain from reducing

information rents.

9The allocation is generally interior because of the Inada condition on u. However, without extra assump-
tions on the utility function, understanding the behavior of the contract around the boundary ¢; = 0 is more
complex with persistent private information (see Bloedel et al. (2023b)). In any case, this is only a concern
in the immiseration limit, which is not the focus of the paper, and numerically, I find that consumption is
always strictly positive.

12



2.1.2 Time-0 problem

At t = 0, the principal screens over 0, with the continuation contracts for periods t = 1 and

onwards. I also employ the FOA and solve the following relaxed problem!’

K(](’U_) = min / (k?l (80) + qu (U()(@()), AQ(Q()), 60, ]{31(9()))) h(eo)deo
{k1(60),wo(60),
v0(60),A0(60)

s.t wo((%) = 61}0(00)
vo = (1 —kK)we(0) + fi/wo(é’o)h(t%)d%

1o (0o) = BAo(0h)

When there is no uncertainty about the initial type (i.e. 6y is fixed), the problem can be
directly solved by treating Ay and k; as free variables and setting v_ = vy: Ko(v_) =
minAO’kl lﬁ -+ QKl(U,, AO; 90, /ﬁ)

2.2 First Best

To gain intuition on the model, it is useful to first look at the first best allocation, i.e. with

no private information. The results are summarized in the following proposition.

Proposition 1. In the First Best, at any history 0%, there is

1. No diversion of funds

F(ke, 0,) = f(ke, 6,). (16)

2. No distortion of the firm’s size

1
= = E [fulkua(0).0u)/0]. (a7)
3. Full insurance and intertemporal consumption smoothing

/ t _ 6 / t+1
u'(c(0")) = Pl (c(67))- (18)
0Notice that in the ex-post participation constraint, I have used the fact that if wg(€) = v_, the constraint
must also hold for 6y > 6 due to the incentive constraint.
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By the revelation principle and because diverting funds is inefficient, there will also be no
diversion of funds in the second-best. However, points 2. and 3. of the proposition do not
hold in the second best allocation. In particular, firm size is distorted downwards, and the
entrepreneur is exposed to risk. In the following section, we will study how, with private
information, the firm size and compensation dynamics differ from the first best benchmark

and the risk neutral and i.i.d cases.

3 Optimal allocation

In this section, I present the main results on the dynamics of the optimal allocation. I begin
with a brief overview of the optimal contract in the benchmark with risk neutrality and
discuss why risk aversion breaks the tight link between compensation and firm size dynamics
(Section 3.1). As a result, the firm size and compensation dynamics can be characterized
separately. I start with the firm size dynamics (Section (3.2)). First, I show that they are
driven by the dynamics of the normalized shadow cost of information rents (1i;). Second, I
introduce the incentive-adjusted probability measures as in Hellwig (2021) to characterize
fr and its dynamics. Then, I turn to the compensation dynamics (Section (3.3)). I again
use incentive-adjusted measures to characterize the entrepreneur’s consumption process and

discuss the implications.

3.1 Risk neutral benchmark and breaking the size-compensation
link

To facilitate the comparison, I now simplify the model as in Clementi and Hopenhayn (2006),
but I allow the entrepreneur to be risk averse. That is, I assume binary i.i.d shocks 6 € {0, 1},
a return function of the form 6f (k) and that there is no deadweight loss on diverted funds.

Dropping the time subscripts, the incentive constraint of the high type (0 = 1) now writes
u(f(k) =) + Bo > u(f(k) —b") + pot,

or

B —v") > u(f(k) = b") —u(f (k) —b™),
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where superscripts H and L denote allocations for types 6 = 1 and € = 0, respectively. With
risk-neutrality, Clementi and Hopenhayn (2006) show that the limited liability constraint
binds for both types (i.e. b = f(k) and b* = 0) outside the region with no distortions.
Intuitively, the principal wants as high-powered incentives as possible with risk neutrality,
so the agent receives zero compensation until the first best is reached. In this case, the

incentive constraint, which always binds, writes

So, the current firm size uniquely pins down the required spread in continuation utilities.
The cost of spreading continuation utilities increases with the concavity of the lender’s value
function. With risk neutrality, the value function is increasing and concave, and it becomes

flat for a high enough v. As a result, firm size increases with v until it reaches the first best.

When the entrepreneur is risk averse, the consumption smoothing motive implies that it is
never optimal (except, possibly, in the immiseration limit) to set b = f(k) or b* = 0. Hence,
firm size does not directly pin down the required spread in continuation utilities because the
incentive constraints also depend on the repayments b and b*. Therefore, consumption
smoothing breaks the tight link between the promised utility and firm size. It may still
be the case that, in the optimal contract, capital increases with the promised utility as in
Khan et al. (2020)."" However, in the numerical simulations (Section 4), I find that firm size
is approximately constant with i.i.d shocks. As I show in the following section, persistent
private information generates time-varying dynamic information rents that drive the firm

size dynamics with risk aversion.

3.2 Firm size dynamics

The firm dynamics implied by this cash flow diversion model with risk neutrality are well
understood. On average, firm size tends to increase over time until it converges to the first
best (Clementi and Hopenhayn (2006)). This is true regardless of whether the shocks are
i.i.d or persistent (Fu and Krishna (2019)). The firm dynamics are remarkably different when

we allow the entrepreneur to be risk averse. First, the firm’s size is always below its first best

HHigher capital increases information rents and requires higher sensitivity of consumption. Khan et al.
(2020) show that, with decreasing absolute risk aversion, this implies that it is optimal to allocate more
capital to agents with higher promised utility.
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level. With persistent private information, the firm size distortions inherit the autoregressive
properties of the type process, and the drift depends on the uncertainty about the initial
type. In particular, if 0y is fixed — as typically assumed in the literature — the firm’s size

tends to decrease over time.

Following the Public Finance tradition, it is helpful to describe the optimal allocation in
terms of implicit wedges, i.e. distortions in the second best allocation relative to the first

best. I define the lending wedges as distortion to the cost of capital faced by the lender

1

a7y ~ Bk (@).0:016]. (19)

Besides the direct effect of the productivity process {6}, now the dynamics of the firm’s
size (k11(0")) also depend on the dynamics of the lending wedge. Therefore, to characterize
the firm size dynamics in the second best, it is sufficient to focus on the dynamics of the
lending wedge. The following proposition shows that this wedge can be characterized with

return-dependent investment wedges.
Proposition 2. At any history 0, the lending wedge 7%(0') satisfies

E[fk<0t+l)7_k<0t+l) |6;t]

PO = g

(20)
where the return-dependent investment wedges satisfy

Tk(9t+1) = L\Iff’“ (9t+1) % ljt+1(9t+l) > ()

where L By (B |61)
gl gty — 1 — P00 9+ > 0.
) fk(9t+1)80t+1(9t+1|9t)fe’k( )2
141
s (041 = 10Ty >

S 1- D11 (0r4110:)

Because 7%(6'*1) > 0 we have 7%(6') > 0, so the lending wedge lowers capital below its
first best level, i.e. k75 (0") < k5 (6"). From now on, I will focus on the return-dependent
investment wedges 7%(0"*1). The first term of 7%(0'*!) equals the upper Pareto coefficient of
the distribution of the marginal product of capital, U/x(#**1), times the ability to consume

diverted funds, ¢.!? Intuitively, because fg, > 0, increasing capital increases the returns

12The upper Pareto coefficient of the distribution of the marginal product is defined as W/*(g*+1) =
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of higher types relatively more. Therefore, their ability to divert funds increases, i.e. the
higher types’ information rents (in consumption units) increase by more, which is costly
for the lender. Hence, W/*(6"t1) measures the total increase in information rents above
0:+1. Finally, the cost of increasing the information rents is proportional to the normalized
shadow cost z7(6"™1). This term increases when the lender wants (or has promised) to lower

information rents. So when f1(6"™!) is high, increasing information rents is more costly.

For log-additive production functions, i.e. f(kit1,0;) = g(0r)f(kirr), WH(67F1) is only
a function of 0;,,. Consequently, this term usually only depends on the (exogenous) type
process, and is stationary as long as the process is also stationary. Therefore, the normalized

shadow cost of information rents (z(0**1)) typically drives all the wedge dynamics.

It has been shown in dynamic screening models that with risk aversion and persistent private
information, these shadow costs (and so wedges) are persistent, and - if the initial type is
fixed- they tend to increase over time (Farhi and Werning (2013), Makris and Pavan (2020)).
In what follows, we first characterize the shadow costs at periods t > 2 and ¢ = 1 and then

discuss how the dynamics depend on the time-0 uncertainty.

Characterization of ;. As discussed, the main challenge for characterizing the optimal al-
location in this problem is that the static marginal information rents, u/(c(6"))¢ fo(k:(0°1), 6;),
depend on consumption. This implies that any perturbation of the allocation of some type
0; — either through a change in capital or consumption — induces a non-uniform change in
the information rents of types 6, > 6;. To understand this, fix a history §'~!, and consider
a perturbation in the consumption of type 6; that changes its utility by Au(6") > 0. This
changes its marginal information rent by %Au(&ﬂ. For types 0, > 0;, due to the
change in the slope of the profile of information rents, incentive compatibility requires a

change in utility equal to:

/92 u”(@t*l, Q/I)Lfg(etfl, 9//)
0

Au(6'",0;) = exp ( W (61,07 d9"> Au(6").

t

This non-separability between consumption and information rents is also a feature of dynamic

Mirrlees taxation problems with arbitrary non-separable preferences between consumption,

T (:Le:ﬁj;’;%"((f:(;mf;ﬁmy where g/* (G/*) are the density (CDF) of the distribution of the marginal product of

capital. Then, using G/*(f(071)|0) = ®(0,]0;—1) and g/* (fx(01T1)|0") = (1 — p(0:|0:-1)) fo.r(0'T1) we get
the equation in the proposition.
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income, and productivity U(c,y, 0) (see Hellwig (2021)). Hellwig (2021) shows that account-

ing for this non-separability amounts to evaluating the changes in utility of each type 6;
fy u//<9t_1v0/)Lf9<9t_lv0/)de/
0t u/(et—l,e’) (

according to m(#') = e and the changes in consumption according
to M(0") = mm(et)). Crucially, the factor m(6") can be interpreted as a reweighting of

the type distribution. Accordingly, we define the incentive-adjusted probability measures as

SOt(et’etfl)m(@t)'

@e(0:10) E[m(6)]6,_1]

(21)

Figure 1: Incentive-adjusted probability measure

- ¢
s
—m

//

0‘8 0‘9 1;0 1?1 1‘2
0
Note: The plot is computed with the same calibration as the main simulations in Section 4 for i.i.d types.
Observe that m is monotonically decreasing, and the incentive-adjusted measure ¢ puts more weight on
the lower type realizations.

Therefore, the new measure ¢ reweights the density of types such that these perturbations

preserve incentive compatibility. Because 7:;((5:)) = “”(it,)(;{%(et) < 0, the function m(6") is de-

creasing in ;. So, ®y(-|6,_;) first-order stochastically dominates ®;(-|¢*~1). That is, incentive
compatibility requires evaluating allocations as if the principal puts more weight on lower
types, see Figure 1. Intuitively, because lower types have a higher marginal utility, their
information rents are more sensitive to changes in consumption. Therefore, the incentive-
adjusted measure that guarantees incentive compatibility has to put more weight on lower
types. The following proposition uses the incentive-adjusted measure to characterize fi; for
periods t > 2.

Proposition 3. (Hellwig (2021)) The normalized shadow cost of information rents iz, (6")
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satisfies, fort > 1,

B 1 - @t(9t|9t 1)

~ 9t+1 — MB 6t+1 9t+1 et 7 29
:U’H-l( ) ( ) ( )qu(et)ﬁpt<9t|0t 1) t( ) ( )
with
~ E (m(@t 0’)’9, 2 9t+1 6,5) ~ 1 ~ 1
MB(§"+) = ’ ’ E|—— |0 > 041,60 —E|———|0"] ¢ >
( ) M(6+1) u (6,6 | 0" > 0141, o (9t+1)| =0
(23)
A E (m(6t, 00" > 0,,:4,0 . , .
pot) = ot M)(!9t+1) 0 {E [£(0,0") |0 > 0,41,0"] —E [5(9t+1;9t)‘9t}} 0.

—~

24)

Note that the operator [ denotes expectations under the measure ¢. The proposition shows
that the normalized shadow cost of information rents is a function of two terms. The first,
M B(6"+1), is the current marginal benefit of redistributing consumption from types ¢’ > 6,4
to 0" < 0,1 while preserving the promise-keeping constraint.'® The incentive-adjusted mea-
sure accounts for the non-uniform utility adjustments resulting from the changes in marginal
information rents. Because lower types have higher marginal utility, this perturbation car-
ries a cost reduction for the lender, implying that this term is always (weakly) positive. The
second is a backward-looking term that accounts for how changes in information rents at
t 4+ 1 affect information rents at t. Intuitively, it measures the pass-through of information
rents from periods ¢ + 1 to ¢ (captured by p(*™!)), times the cost of the resulting change
in information rents at ¢t. Hence, these shadow costs inherit the autoregressive properties of

the type process.

Proposition 3 shows that the shadow costs (and wedges) inherit the autoregressive properties
of the type process. The time-0 screening problem determines the starting value of this
process, i.e. fi;(0'). The following proposition shows that, at ¢ = 1, a similar backward-
looking term accounts for the promises to lower information rents in the time-0 screening

problem.

13The literature on dynamic mechanism design with risk aversion typically analyses hidden effort models
with separable preferences of the form U(6, e, c) = u(c) — (e, ), where e is the (unobservable) agent’s effort.
This includes dynamic taxation models with separable preferences, but also models of managerial compen-
sation, among others. With these preferences, the static marginal information rents (e, 6) are independent
of consumption. So, if the principal increases the utility of type 0, it is sufficient to increase utility uniformly
to all types 6] > 6; to preserve incentive compatibility, so consumption has to be redistributed in proportion
to ﬁ. As a result, in these settings, one can derive the same characterization but under the original

measure ¢ and with m(#') = 1 (Makris and Pavan (2020), Brendon (2013), Hellwig (2021)).
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Proposition 4. Att =1, the normalized shadow cost of information rents satisfies
fn(0') = MB(6") + p(6")M Bo(6") (25)

where MB(0Y) and p(6") are given by equations (23) and (24), respectively, and M By(6°)

solves

MBy(°) = 1;(—};’(;” (B M (65)16, > 6] — K5 [\ (60)]) (26)
where
A(f) = E [ﬁre] T MBA(0)E €0, 00)]64]. (27)

In particular, if the initial type Oy is fized, M By(6°) = 0.

When k = 1, the backward-looking term in zi; measures the marginal benefit of redistributing
expected continuation utilities vy(fp) from types ¢ > 6y to 0" < 6y. With the ex-post
constraint (x = 0), this is simply the marginal benefit of lowering the continuation utilities
of types 6’ > 6y. In both cases, this term is zero when 6, is fixed, so there is no backward-
looking term in ji;. More generally, as I find numerically, this term should typically increase
with the variance of 6. Moreover, because Ej, [A;(6p)] > 0, this marginal benefit will usually
be much larger with the ex-post constraint, especially if the constraint is tight so that the

multipliers \;(6y) are large.'

Dynamics of ;. Proposition 3 shows that the shadow costs fi;,1 are persistent. Iterating

backward on equation (22) and using (25) we get

N o t §>TT—1(A s 1—® (0_s|01—s1) ) A 1ot
fie+1(0777) Z(q g Pr1-s(0 )'U//(et_s)@t—s(etfs|0t7571) MB(0 ) (28)

7=0

BT (- Ly 1= (Bdfeacr) Y o .
+ (E) g (pt-l-l—s(@t-i' )u’(et_s)SDt—s(et—s|9t_5_1)) p(0° )M By(0”)

The formula shows that the shadow costs of information rents are a function of current and
past marginal benefits of redistribution {M B(#"+'~7)} and M By(6°). In particular, because

the passthrough terms ﬁt+175(9t+1_8)u,(lei_q:t);i(_gzggs;'_e:fe’i:i)_l)

are always positive, the shadow

“Notice also that M By(f) is typically inverse U-shaped in 6y with x = 1 but decreasing with x = 0.
Thus, the firm size distortions will be the largest for the intermediate (lowest) types with ex-ante (ex-post)
constraints.

20



costs are always increasing in the past marginal benefits. Moreover, the drift will depend
on whether the time-0 marginal benefits M By(6°) are larger than the marginal benefits in
subsequent periods {MB(#"+1"7)}.

Consider first the case where 6 is fixed so that M By(6y) = 0. Then, ji;,1(0*"!) and 7%(6'*1)
will tend to grow with the distance from the starting period. The intuition is the following.
With persistent private information, different types 6, have different preferences for period
t+1 contracts. In particular, higher types value relatively less contracts with low information
rents at t+1, as they know they are expected to be more productive then and so collect higher
information rents. The principal can use this to lower the resource cost of screening types
at every period. More concretely, if the principal promises to lower the future information
rents to type (671, 6) (i.e lowers Ay (6", 0")) this relaxes the incentive constraints of types
(0'1,0") with 6" > ¢'. Because every period the principal can gain by promising to lower
future information rents, the shadow costs p; will tend to increase over time. More concretely,
the gain of relaxing type (#'',0')’s incentives constraint equals the marginal benefit of
redistributing consumption around him. Hence, the increases in 1,11 are proportional to the
intertemporal passthroughs of information rents times the marginal benefits {M B(#"+1-7)}.
However, as will be shown in the numerical simulations, the wedges may, over time, converge
to a stationary distribution. I use this intuition to explain why the lender may want to use
equity purchases in the implementation (see Section 5.2).'> It is important to stress that, in
this case, for every type 0, firm size (k;;1(6;)) is never larger than in the initial period. The
reason is that the principal initializes the contract by setting A freely. So Ag is set to not
have any “promises” to lower dynamic information rents. Consequently, for every 6, € [, 6],

the wedges will not be smaller than in the initial period.

In the time-0 problem, by the same logic, the lender also lowers dynamic information rents
(Ag(6p)) to reduce the cost of screening over 6. Hence, with initial uncertainty, the shadow
costs at t = 1 can already be high, which can make wedges decrease over time. Consider the
extreme case where all the uncertainty about the entrepreneur’s productivity is realized in the
initial period, i.e. 6; = 6 for all ¢ > 1. Then, the marginal benefits of redistribution would
be zero for all periods following t = 0, i.e. MB(@t) =0 for all £ > 1. If the passthrough term

15 Alternatively, imagine the principal increases consumption of all types (eH,'e}) with 6, > 6,. To
preserve incentive compatibility, the principal needs to adjust the information rent of all types (8'~2, 9;71)
with 9;71 > 0;_1. Because if types are persistent (i.e p;(6%) > 0), types 9;71 > 0;_1 have a higher probability
of being type ; at period ¢. This adjustment has to be done for all types (07,0, ) with 6, | > 6._; at
all periods 7 < t. Therefore, these costs will tend to increase over time if types are persistent. For a clearer
and more detailed intuition on this, see Makris and Pavan (2020).
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times § is smaller than one — as will typically be the case with a mean-reverting process—

the effect of the time-0 screening problem on the shadow costs will gradually vanish and
the investment wedges go to zero. More generally, the drift in the wedges will depend on
the relative magnitudes of MB,(6°) and {MB(#")}. With sufficiently high variance in 6,
M By(6°) can be high enough such that the shadow cost and investment wedges decrease
over time. As I will show numerically, if the initial variance is not as high, the investment

wedges can increase during a few initial periods and then gradually decrease.

Moreover, both risk aversion and persistence are necessary to have these investment wedge
dynamics. If the agent is risk neutral we have M B(6"!) = 0, which implies fi,41(6/1!) = 0.
If the type process is not persistent we have p,(6") = p;(6") = 0 and

fir1(0) = MB(6") (29)

so past marginal benefits of lowering information rents do not affect the current shadow costs.
However, it is still the case that wedges are always positive and so firm size is below the first
best. As I will show in the numerical simulations, wedges are approximately stationary with

i.i.d types.

The persistence of the wedges can be amplified or dampened with the incentive-adjusted
measure relative to the impulse responses under the original type measure p;(6"). The

(unnormalized) persistence is

— (60,]6,1)
u'(0)p(0:10:-1)

pe(0") = pe(0")

if py(6, 61— 1) 2 o (; )9{9(?)9? 2 is increasing /constant /decreasing in 6 (see proposition 3 in Hell-

wig (2021)). This condition depends, in particular, on the properties of the utility func-

tion. For instance, assume that the type process is (log) AR(1) with autoregressive pa-

< O0p(0e]0i—1) _ Opi(0t|0r—1)
rameter p (i.e ===t = —p=rro ==t

is linear in the type (i.e fpg = 0). Then, the persistence of the wedges is amplified, i.e.

% pi(0) > p, if the utility features decreasing absolute risk aversion (DARA), but

1-d(6,]0 ;
W +(0") = p with CARA utility.'0

and p;(6") = p) and that the production function

In the data, we consistently observe a strong lifecycle component in firm dynamics (Evans

(1987)). Young firms are usually small and face strong financing constraints. Over time,

6Note CRRA utility functions belong to the DARA class.
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the firm size tends to increase, and financing constraints are relaxed. A cash flow diversion
model with a risk neutral agent and limited liability (Clementi and Hopenhayn (2006), Fu
and Krishna (2019)) can qualitatively replicate the dynamics observed in the data. However,
this is no longer the case once we introduce risk aversion and persistent private information
in the benchmark without time-0 uncertainty. The opposite dynamics emerge: the firm size
tends to decrease over time, and it never reaches the first best. In Section 6, I discuss in
more detail why models with risk neutrality generate different firm dynamics using intuitions
from the implementation. Introducing uncertainty about the starting productivity can solve

this and generate dynamics where firm size increases over time.

3.3 Compensation dynamics

We now turn to the compensation dynamics. As in all dynamic insurance models, at the
optimum, the principal equalizes the cost of increasing the agent’s utility at periods ¢ and

t + 1 in an incentive-compatible manner, i.e.

e (8) = (0 (30)
where A\p11(60") is the multiplier on the period ¢+ 1 promise keeping constraint and (") is the
multiplier on the type’s 6° period t continuation utility constraint. Again, when the principal
promises to increase utilities at period ¢ + 1, this changes all marginal information rents (as
they depend on consumption). So, utility has to be distributed non-uniformly to preserve
incentive compatibility. Hellwig (2021) shows how incentive-adjusted measures can be used
to derive a Generalized Inverse Euler Equation (GIEE). I derive a similar characterization

in this model.

Proposition 5. In the optimal allocation, the following Generalized Inverse Euler Equation

holds at any history 6°

q 1 TN s(6
where
)= (OB g, CUIOD N KO,

The GIEE provides an intuitive representation that clarifies what effects drive consumption
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dynamics and allows to perform direct comparative statics. As in the standard Inverse Euler

Equation, the costs of increasing utility at period t and t 4+ 1 are proportional to ﬁ and

m.” However, expectations are taken with respect to the incentive-adjusted probability
measure because utility at ¢t + 1 has to be redistributed non-uniformly to preserve incentive
compatibility. Moreover, an extra wedge emerges that captures how savings decisions affect
marginal information rents at periods ¢t and ¢ + 1. Changes in marginal information rents at
t+1 lower information rents in period ¢ at rate p;1(0*"'). Therefore, the size and sign of the
savings wedge depend on the persistence of the process. Intuitively, when the persistence
is higher, increasing consumption at ¢ + 1 lowers the cost of incentive provision at ¢ by
more, and so the principal wants relatively higher savings. In general, if persistence (i.e.
pi+1(071)) is not too high, we will have s(f') < 0. The savings wedge is then scaled by the

cost of information rents at period ¢.

The savings wedge takes a particularly simple form with CARA utility u(c) = —e™7¢ with
o > 0. Assume also an autoregressive process p(6%) = p and f(k,0) = 6f(k), then

s(0") = —ouy x T(0") x (f(kt) - Pf(kt+1(9t))>
= =0 x 70" x (f (ke 0;) = E [f(kes1(8"), 011 6:])

Because —auf; x 78(6') < 0, we have s(6) < 0 if p < % Moreover, savings are, on
the margin, more discouraged when the agent is more risk-averse (higher o), the costs of
diverting funds are small (high ¢), and the costs of incentive provision are high (high 7%(8?)).
With fixed capital (k, = k) and « = 1, this model nests a hidden endowment model.'”® In
this case, s(6") = 0 if p = 1 and we can use the following result.

Proposition 6. Assume % <1 and E <%:2)|9t+1) > 0, if s(0") > 0 marginal utility
follows a super-martingale

u'(60") > E [u'(6"))6;] .1

17As in the characterization of fi, in hidden effort models with separable preferences it is sufficient to
increase utility uniformly across all realizations of 6,1 to preserve incentive compatibility. So, equation

(30) leads to the well know Inverse Euler Equation m = gE [th}. One cannot derive this

tight characterization in all other settings studied in the literature: this includes models with taste shocks
(as in Atkeson and Lucas (1992)), hidden endowment (as in Thomas and Worrall (1990)), Mirrlees with
non-separable preferences, and also this model. For this reason, results on the agent’s consumption process
are usually derived from the principal’s marginal cost martingale (see Golosov et al. (2016b)).

18With CARA utility, it is also equivalent to a taste shocks model as in Atkeson and Lucas (1992).

19With i.i.d shocks, it is easy to verify that the inequality E (d%(jiz) |9t+1> > 0 holds. However, with
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Moreover, if s(0') >0 for all 0*, u' — 0 almost surely.

The proposition shows that the marginal utility dynamics are preserved under the original
measure when s(6%) > 0. Therefore, in a hidden endowment model with a unit root process
(p = 1) there is no immiseration (Thomas and Worrall (1990) and Atkeson and Lucas (1992)),
and the contract sends the agent to bliss, which is consistent with the results in Bloedel et al.
(2023b) and Bloedel et al. (2023a).”° When s(#") < 0, we do not have direct implications for
the dynamics under the original measure. The numerical simulations indicate, as expected,
that consumption converges to zero, and so there is immiseration. However, the convergence

is very slow, so these results may be irrelevant for the usual lifespan of a firm.

Compared to a hidden endowment model, time-varying capital generates an extra motive to
increase the variance in compensation over time. For the parametric specification above, as
_ fke)
long as T @) |
s(0") < 0if ; < 6, and s(6") > 0 otherwise.?! So, savings are on the margin more discouraged

is decreasing in 6, given some high enough p, there can exist a 575 such that

for lower types. Intuitively, because fgr > 0, higher capital increases information rents. If
lower types will have less capital at ¢+ 1, their incentive constraints will be less tight. Hence,

the benefit of increasing consumption at ¢ + 1 to lower information rents is smaller for lower

types.

In sum, the lender minimizes the cost of compensating the agent across periods in an
incentive-compatible manner. For this reason, it is optimal to smooth the entrepreneur’s
compensation over time. Moreover, because the entrepreneur always needs to be compen-
sated for reporting high returns, the cross-sectional variance of consumption grows over

time.

persistent private information, the principal can provide incentive by lowering the dynamic information rents,
and, a priori, this inequality may not hold (see Bloedel et al. (2023b)). Hence, I include it as an assumption
in the proposition and verify that it holds in all numerical simulations.

20Bloedel et al. (2023b) and Bloedel et al. (2023a) have corrected the findings in Williams (2011) and
shown (with more general utility functions and processes) that there is immiseration whenever there is some
mean-reversion in the type process.

2IThe condition that % is decreasing in #; would not be satisfied if, for some types 6; > 60}, the
t+1

effect of higher wedges at t + 1 for type 6, is stronger than from the higher expected productivity. The
numerical simulations verify that k;y1(6") is indeed increasing in 6;, see Figure 7 in Appendix A.
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4 Numerical simulations

In this section, I numerically solve and simulate the model. This will help us better un-
derstand the results in the previous section and allow us to quantify the effect of persistent
private information on firm size and compensation dynamics. The numerical simulations

will also be used to guide the implementation in Section 5.

I assume the agent has CRRA utility

l—0c
u(e) = +—,
and the production function is given by
f(k,0) = 20k,

where a € (0,1) and z is a positive constant used to scale up the problem. The agent’s

productivity follows a geometric AR(1) process
9t = etp_lgt:

where log(e;) ~ N(p,02) . I'set « = 3/4, 1 — 1 = 0.05, 0 = 2 and assume the lender and
the entrepreneur have the same discount rate § = g = 0.95. For the productivity process,
I set 4 =1 and 02 = 0.01. The comparative statics of this section focus on the effect of
the persistence p. The model is solved with p = 0 (i.i.d types) and p = 0.7. I also solve
the model with different parametrizations of the utility function (log utility (¢ = 1) and
CARA), qualitatively, the results are the same (see Appendix A). Details on the solution
method, algorithm and the procedure to check global incentive compatibility can be found
in Appendix E. After solving for the value functions (K, v and A), the policy functions (¢,
Ai+1, Ver1 and kgyq), and the costate (u), I run a Monte Carlo simulation with 10% draws
over 25 periods each. I start with the benchmark case where 6, is known, and at the end of

the section, introduce the screening over 6.

Consumption dynamics. Figure 2 illustrates the evolution of the mean and standard
deviation of consumption along the cross-section over time with p = 0 and p = 0.7. As
expected, the variance of consumption is permanently increasing in both cases. With i.i.d

types, average consumption is approximately constant. With persistence, there is also a

26



slight increase in average consumption in the initial periods. Since the savings wedge s(6")
is proportional to the investment wedge 7%(6?), this is consistent with the initial increase in
the investment wedge that we will observe (see Figure 4). Moreover, because the agent is

risk averse, the average marginal utility tends to increase over time.

To visualize the immiseration dynamics, in Figure 6 in Appendix A I plot the median and
quantiles of the distribution of consumption over a long time horizon. The median consump-
tion monotonically decreases, indicating that consumption will converge to its lower bound.
However, the decrease is very slow, so it may be irrelevant for the usual lifespan of a firm.
Figure 2: Consumption dynamics
(a) i.id (p =0) (b) Persistence (p = 0.7)
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Note: For both panels, I initialize the simulation by setting A\g = 15.9. The initial types, 61, are drawn
from the ergodic distribution of each process. For each period, the blue line is the mean consumption along
the cross-section, and the shaded blue area is one standard deviation.

Separating compensation and firm size distortions. The separation between com-
pensation and firm size (or wedge) dynamics can be illustrated very clearly with the numerical
simulations. Figure 3 shows the relation between the promised utility and the investment
wedge at age 20. There appears to be some positive association between the two variables,
but they are not linked one to one. We can observe that there is some probability that at
age 20, the entrepreneur receives a high compensation (high v;) but that the firm is finan-
cially constrained (high 7%). The converse is also possible: the compensation is low, but the
financing constraints are also low. As discussed, this is not the case in a model with risk
neutrality (Clementi and Hopenhayn (2006)), where the promised utility is linked one-to-one

with the distortions to firm size.
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Figure 3: Investment wedge and promised utility at ¢ = 20 (p = 0.7)
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Note: Each dot is a random realization of the investment wedge and promised utility at period 20. The red
line is a linear regression line on the 500 draws ploted.

Firm and wedge dynamics without time-0 screening. Figure 4 plots the firm size and
investment wedge dynamics. In both cases, the firm size closely follows the dynamics of the
investment wedge. With i.i.d shocks, the wedges are approximately stationary, so firm size
is constant (Panels 4a and 4c).”* Hence, the firm size dynamics are essentially independent
of the compensation dynamics. Intuitively, the lender compensates the entrepreneur by
permanently increasing his consumption, not by lending more capital to the firm. Moreover,
the wedges are small, so firm size is also very close to — but always below — the first best

level.

For the persistent case, at the first best, the variation in firm size is driven only by differences
in expected returns. Moreover, because the type process is mean-reverting, firm size is
stationary. At the second best, on average, the wedges tend to increase over time and firm
size tends to decrease (Panels 4b and 4d). However, the wedges do not increase indefinitely.
Over time, they converge to a stationary distribution, and so does firm size. With log utility
(lower risk aversion), the wedges and the decrease in firm size are smaller (see Figure 12 in
Appendix A). Overall, the decrease in firm size will be larger the higher the risk aversion

and persistence.

22This is also the case with the other parametrizations of the utility function.
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Figure 4: Firm size and investment wedge dynamics (6 fixed)

(a) Size (k) i.id (p=0) (b) Size (k) with persistence (p = 0.7)
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Note: Panel (a): The red line is the size at the first best (constant). The blue line is the average size at the
second best; it is the same for almost all realizations as expected wedges are approximately constant.
Panel (b): The red (blue) line is the average size in the first (second) best. The dashed green lines are the

average size in the first period.
Panels (c) and (d): The blue lines are the average investment wedges, and the shaded blue areas are one
standard deviation.

Wedge dynamics with time-0 screening. [ now introduce the time-0 screening prob-
lem. For this, I assume an ex-ante participation constraint and consider two parametrizations
of h. In the benchmark, I set it equal to the ergodic distribution of #; but double the stan-
dard deviation, and I increase the standard deviation by five times in the second one. Panel
ba in Figure 5 plots the average investment wedge over the initial type 6. As usual, the
average wedges are inverse U-shaped in 6y due to the no distortions at the top and bottom

in the time-0 screening problem. Moreover, as expected, the average wedges are larger in
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the calibration with higher variance. Panel 5b plots the investment wedge dynamics starting
with the 6y with the lowest promised information rent (i.e. lowest Ag(6p)). In the high
variance calibration, we see now that the investment wedge gradually decreases over time.
Interestingly, with a lower variance, the wedges initially increase for a few periods and then
gradually decrease. Consistent with equation (28), in the first periods, the marginal benefits
of redistribution from ¢ > 1 onwards (M B(0'), MB(6?)...) are summed with the initial
marginal benefit M By(6°), making the initial wedges increase. Over time, the distortions
from the time-0 screening start to vanish because the passthrough term is below one, and so
wedges start to decrease. Accordingly, the wedges appear to converge to the same stationary
distribution with both calibrations. As discussed, the wedges will typically be much larger
with an ex-post participation constraint, so they could decrease over time even with a much
smaller variance. Moreover, in that case, the average 7{* would be decreasing in 6, instead

of inverse U-shaped.

Figure 5: Investment wedge with time-0 screening

(a) Average T (b) Wedge dynamics (highest starting distortion)
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Note: Panel (a): On a grid for 6y, I compute the policy functions (A1(6g),v1(00), k1(0o)) from the time-0
problem. Then, I use these policies as starting values to compute the average 7* with a Montecarlo
simulation.

Panel (b): For both paths, I start with the 6y with the lowest v1(6p). The shaded areas are one standard

deviation.

5 Quasi-implementation

The optimal contract studied thus far may a priori be complex, which limits the insights we

can derive from the problem. Therefore, it is helpful to study implementations of the optimal
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contract. This will also provide intuition on what drives the different firm size dynamics in
models with risk neutrality and risk aversion. A full implementation of the optimal contract
is challenging and left for future work. Instead, I analyze two simpler problems. In this
section, I use numerical simulations to study a quasi-implementation with simpler contracts
that approximate the optimal allocation. Then, in Appendix D, I study a full implementation

in a simplified two-period version of the model.

The two implementations are also different in the sense that they are based on two different
margins of distortion for the lender. In particular, we consider two ways in which the
principal can lower dynamic information rents to better screen types. In the first one,
the lender dynamically distorts the entrepreneur’s compensation. Given the distortions to
compensation, she may then optimally adjust the firm size (k;y1).>® In the second, the lender

directly distorts firm size by discouraging the entrepreneur from reinvesting profits.

The approach to deriving the quasi-implementation with the numerical simulations will be
the following. First, I use regressions with the model simulated data to better understand
the compensation dynamics. Then, I propose a simple contract and use the simulated data
and regression estimates to calibrate the parameters of the contract. Finally, I solve the
entrepreneur’s problem under the simple contract and compare the induced consumption
dynamics with the optimal contract. With i.i.d types, firm size is constant, so I also fix
capital to be constant in the implementation. For simplicity, I will also keep capital fixed

for the persistent case. Therefore, we will focus solely on the compensation dynamics.

5.1 1i.i.d types

I use the simulated data from Section 4 to run regressions of consumption on returns and
promised utility. The regression results are in Table 4 in Appendix A; we make three obser-

vations:

1. Returns at any period t — k have the same effect as returns at ¢ on consumption at ¢
(column 2). Relatedly, consumption follows a random walk (column 5). This suggests

that compensation is perfectly smoothed across periods.

2. The sensitivity of compensation to returns does not depend on the current promised

utility. Note the interaction returns; X v;_; is close to 0 in column 3.

23In this sense, the cash flow diversion model is equivalent to a hidden endowment model (as in Thomas
and Worrall (1990)) where the principal has some control over the agent’s income process.
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3. The sensitivity of compensation to returns is close to linear. See the linear relation
between consumption and returns in Figure 9 in Appendix A or note that returns? is

close to 0 in column 4.

Points 2. and 3. suggest that a constant equity share can be a good approximation. If the
promised utility (v;_1) were related to the equity share, we would observe that it affects the
sensitivity of consumption to returns, even if the entrepreneur is smoothing consumption
intertemporally. Point 1. indicates that in the implementation, the entrepreneur’s implicit
wealth can be used to perfectly smooth consumption intertemporally. As is known, the
promised utility can be naturally mapped to the agent’s wealth (Atkeson and Lucas (1992)).
Let W, denote the agent’s wealth and y the (inside) equity share, i.e. the portion of the
returns accruing to the entrepreneur. Let f(k;) = E[f(k;,6;)] denote the expected returns
if capital is k;. I fix capital to the optimum in the second best ksp. The entrepreneur also
receives initial cash W;.?* Therefore, at period 1, the entrepreneur’s wealth is
W, = W + X?(kSB).
l—q

At every period, after returns are realized, if the entrepreneur does not misreport, his wealth
changes by x (f(kSB,Qt) —7(1{;53)). So, the law of motion of the entrepreneur’s wealth

follows )
¢+ WtJrl = 5Wt + X (f(kSBa et) - T(kSB)) = C(Wta 915) (33)

Given the entrepreneur’s wealth, savings can be chosen to smooth consumption. Therefore,
this contract is equivalent to allowing the entrepreneur to pledge his shares as collateral and
borrow to consume. This practice is prevalent; Fabisik (2019) reports that between 2007 and
2016, 7.6% of CEOs of US public companies had pledged shares. Moreover, she estimates
that 90.5% of CEOs use it to obtain liquidity while maintaining ownership. This motive is
consistent with this implementation. Pledging shares aligns the entrepreneur’s consumption
with the firm’s value but without having to sell shares, which is costly as it reduces the
entrepreneur’s incentives. Moreover, the implementation is independent of dividend payout
policies. Notice that it is equivalent if the extra returns (f(ksg,6:) — f(ksg)) are paid as
dividends or are kept as savings inside the firm, and the entrepreneur and the firm face the

same interest rate % — 1.

24This is just a free variable used to match the chosen initial promised utility in the second best, so we
may also have Wy < 0 if the entrepreneur initially transfers funds to the lender.
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The next step for the numerical implementation is to obtain a value for x. I back out this
value from the regressions on model simulated data. For an entrepreneur that does not

misreport and is allowed to save by himself, to a first-order approximation, we have

dCt

= ﬁﬁffﬁs = 0088 ~ 1, where Syepurns 18 the

regression coefficient on returns in column (1) of Table 4. So I set directly ¥ = ¢.?> Then,

So x can be identified from the regressions as y

given Y, the entrepreneur’s recursive problem with wealth W; and productivity 6, is

W (W, 0,) = Igljgu(gt) + BY(Wis1)

st Wy = qC(W,,6,) (34)
e = (1—q)C(W,,0,)
& =ci+ u(f(ksp, 0) — fksp,0))

where V(Wis1) = EW(Wiir, 6i1)], C(W,,60,) = LW, + 3 <f(k:53,§t) —f(kSB)) and W,
is chosen such that V(W;) = vy, i.e. the promised utility under the direct mechanism.
Throughout the paper, I have assumed that the entrepreneur cannot secretly save. So in the
implementation, there is a double deviation problem if the entrepreneur is allowed to save
freely. That is, the entrepreneur deviates by misreporting funds and saving more. For this
reason, | assume that the lender directly assigns a consumption/savings level given the en-
trepreneur’s report and wealth (W, gt) 20 Equivalently, we can imagine that the entrepreneur
is penalized if the lender observes that his savings choices are not optimal given the reported

type and wealth.

I solve numerically for the policy functions 6(W;,6;) in the entrepreneur’s problem (34).
Then, I run the same Monte Carlo simulation as for the optimal allocation and compare

the results.?” Figure 10 in Appendix A shows that the consumption paths are very close

2t is a regular result in cash flow diversion models (especially in static versions) that the equity share is
linked to the deadweight loss of diverting funds.

26T assign the consumption to be ¢; = (1 — q)C(Wt,gt) because I observe that average consumption
is approximately constant in the numerical simulations. But this is not the optimal savings level of the
entrepreneur, as he would save more for precautionary motives. To relax this restriction, we could introduce
an extra wedge (or tax) on the entrepreneur’s returns on savings to exactly counteract the precautionary
motive.

27To have accurate comparisons, in the Monte Carlo simulation, for each realization of the shock process

33



Table 1: Welfare comparisons i.i.d

Deadweight loss ~ Risk premium
Total Welfare diversion of funds (relative to SB)

Optimal contract (SB)
Quasi-Implementation (x = 0.95)

-55.88 0 0
-56.11 (-0.4% loss) 5.7e-8 0.22

to the optimal allocation and that this contract induces minimal diversion of funds. Not
surprisingly, this simple contract also reaps most of the benefits of the optimal allocation
(see Table 1). Given a fixed initial promised utility (vg), we can decompose the lender’s loss

from using the simple contract
KI(UQ, 90) — KSB(U(), 90) =

(1-)E Zq( Flksp, 0%) — f(kss, 0,(0 ))|90 +E Zq — SB(0Y) [6y], (35)

N J/

>0,Deadweight loss diversion of funds Risk premium,>0 1f less risk in SB

where the superscript I is used to denote allocations under the implementation. As shown
in Table 1, most of the losses from the simple contract result from exposing the entrepreneur
to more risk, but the differences are negligible. The implementation performs even better

with log utility, see Figure 11 in Appendix A.

5.2 Persistent types

With persistent private information, the dynamic information rents (A;_;) must be added
as an extra state variable in the problem. Intuitively, this variable captures the expected
sensitivity of the entrepreneur’s utility to the productivity realization (i.e. his exposure), as

equation (14) can be written as

Ay = { (Qt)aaét )|0t 1} . (36)

{e:}?2, 1 compute consumption for both the optimal allocation and the implementation. Then for each
realization and period, I compute the distance and average across all draws. That is, I compute for every

period ¢fi*t = 3. \/(ch({EH}tT:l) - c{({sm}izl))a where ¢ is the consumption under the optimal
allocation and ¢! under the implementation.
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We can also verify this in the regressions with model simulated data, where we obtain
Cy = _02***97& — 3-327***At71 -+ 1011***0t X At,1 -+ 0.652***9t,1 -+ 0.382***'015,1.

The coefficient on the interaction term A;_; x 6; is positive. So, for a given level of persis-
tence, when the lender has promised low information rents (i.e low A, 1), the entrepreneur’s
exposure to returns decreases. In this implementation, the exposure of the entrepreneur is
controlled by the equity share. Notice that for the i.i.d case (problem (34)), if it is optimal

for the entrepreneur to not divert funds, we have

OW(W4, 6;)

g5, = x> u(c)folksp, th).

Thus, a full implementation of the optimal contract would need to allow for a time-varying
equity share. In general, lowering the entrepreneur’s equity is beneficial as it increases
the entrepreneur’s insurance against productivity shocks, but it also comes at the cost of
increasing the incentives to misreport funds. If types are persistent, there is an extra gain

of lowering the equity share at period t 4+ 1 because it helps screen types.

Why does buying equity help screen types? Imagine that, at period ¢, the lender offers
to buy some equity from type (07! 6’). Assume also that the lender offers to pay him a
price Pa, ((6°71,6')) such that he is indifferent between accepting the offer or rejecting it. If
returns are persistent, types (01, 0"”) with §” > ¢’ have higher expected returns at period
t + 1. So it is not attractive for them to sell equity at price Pa,((#7,6")). That is, if
the entrepreneur is not willing to sell equity at a fair price relative to the projected returns
— which both parties agree upon given the current reported returns — it signals that he is
misreporting funds. Therefore, the lender can use equity purchases, which inefficiently lower

the equity share, to better screen types.

An implementation with a time-varying equity share is substantially more challenging.?®
However, I find that the contract with a constant equity share still delivers small welfare

losses relative to the optimal contract.?” Compared to the i.i.d case, we now only have to

28Now it is more challenging to infer the equity share from the regressions directly. Moreover, it may
follow a complicated stochastic process. As it would be persistent but also because there is no distortion at
the top () and bottom (6) in the promised information rents.

29T have experimented with contracts where the equity share is uniformly decreased over time for all types.
The idea is that when the agent underreports at ¢, he experiences a capital loss but expects to recover it at
t + 1 with returns that are higher than expected. However, if his equity share is lower at ¢ + 1, he cannot

fully recover the capital loss. However, I have not found any gains from these types of contracts.
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Table 2: Welfare comparison with persistence

Total Welfare

Deadweight loss  Risk premium
diversion of funds (relative to SB)

-58.49 0 0
-59.12 (-1.07% loss) 3e-3 0.572

Optimal contract (SB)
Quasi-Implementation (x = 0.95)

make one modification. Notice that when the entrepreneur’s period ¢ returns increase, the
net present value of the firm’s future returns also increases. So, the firm’s value increases

and the entrepreneur experiences a capital gain. Define the value of the firm by

Feii(ksp,0:) =B | Y ¢ f(ksp, 6141)|6s
T=1

Recall capital is fixed to the same level kgp as in the i.i.d case. Then, the entrepreneur’s

cash on hand at period t if he reports type gt and his past type report was @_1 is

C(Wy, 01, 0,-1) = éwt X (F(ks2.00) + aFvia (s, 00) = Filkss, Bi1)) (37)

= éWt +x | fkss,0) —E f(kSBagt)’gt—l] +q <?t+1(kSB>§t) - ft_—I—l(kSB,gt—l)>

/

S

Vv Vv
Innovation returns Capital gain

The entrepreneur’s problem is the same as in (34) but with the cash on hand given by (37).
Because the entrepreneur can borrow using his shares as collateral, the capital gains also
increase the entrepreneur’s consumption. Moreover, we also need to keep track of the past
report @_1 as an extra state variable because it affects the expected returns. Table 2 contains
the welfare comparison and decompositions with the optimal contract, assuming that the
initial type is fixed in both cases. The risk premium is higher than for the i.i.d case, but the

welfare losses from the simple contract continue to be small.*’

30In general, the optimal contract studied is not renegotiation-proof. When the principal lowers A, at
period t, this is inefficient from the period ¢ + 1 perspective. The optimal contracts are renegotiation-proof
with i.i.d types because these effects are not present. I conjecture that this quasi-implementation with
constant equity could be a good approximation to the optimal renegotiation-proof contract with persistent
private information. The constant equity implies constant sensitivity as the optimal renegotiation proof
contracts in Strulovici (2022). Moreover, as in Strulovici (2022), the sensitivity is increasing in the level
of persistence because capital gains are larger. Because the constant equity contract delivers small welfare
losses compared to the optimal, I further conjecture that, at least for the calibration used, the losses from
restricting to renegotiation-proof contracts may be small.

36



Fu and Krishna (2019) study a similar model with persistent private information and a
risk neutral entrepreneur. They show that as persistence increases, the sensitivity of the
entrepreneur’s compensation to returns also increases. In their implementation, this implies
that the entrepreneur is compensated more with stock options and less with equity. A
priori, a full implementation of the optimal contract could require using stock options. But
only with equity the entrepreneur already has a higher exposure to returns. Because the
entrepreneur experiences a capital gain and can borrow using his shares as collateral, his
compensation increases by more than his equity share times the reported returns. Intuitively,
simply accounting for capital gains may allow the implementation to approximate the optimal
contract because it (approximately) generates the extra sensitivity in compensation required
by the dynamic information rents. To understand this, notice that by expanding the dynamic

information rent term (Equation (36)), we can write

A=t xE Z Y0771 (c(0"9) fo ke, 00400

Jj=1

where I/ (0"%7) = p(0") x ... x p(67) are the impulse response functions as defined in
Pavan et al. (2014). With y = ¢ and fixed capital, this is actually the capital gain of the
entrepreneur from an increase in productivity d; if the firm is priced with the entrepreneur’s

stochastic discount factor.

Finally, this implementation bears some resemblance with the "Dynamic Incentive Account"
(DIA) implementation in Edmans et al. (2012) for a CEO compensation model. There, the
DIA tracks the agent’s NPV of future pay (i.e., his wealth) and invests a fraction in the
company stock and a fraction in interest-bearing cash. This portfolio is then constantly
rebalanced as the firm value changes to maintain incentives. By contrast, here, because the
agent’s compensation comes solely from his ownership of the firm, letting him borrow against
his stock is (approximately) sufficient to implement the required compensation. Moreover,
the lender uses equity purchases to lower dynamic information rents, but in this cash flow
diversion model, there is no need to rebalance the agent’s portfolio every period to maintain

incentives.

37



6 Comparison with risk neutral and equity dynamics

The quasi-implementation helps understand the different firm size dynamics with risk neu-
trality and risk aversion. In Table 3, I summarize the main features of the optimal contract
and implementations with the different assumptions about the agent’s utility and shock pro-
cess. With risk neutrality, as long as the limited liability constraint (¢ > 0) is satisfied,
increasing the agent’s exposure to risk bears no cost. After high returns, it is optimal to
compensate the entrepreneur with a higher stake in the project, i.e. by increasing his equity
share. Therefore, with risk neutrality, the entrepreneur’s promised utility maps to the value

of equity, as shown in Clementi and Hopenhayn (2006).

If the entrepreneur is risk averse, increasing his exposure to risk through a higher equity
share is costly. In the numerical simulations, we have seen that the entrepreneur’s exposure
to returns is independent of his promised utility. So with i.i.d types, a constant equity
share and mapping the entrepreneur’s promised utility to his private wealth gives a good
approximation to the optimal allocation. With persistent types, the equity share should
also be time-varying as in the risk neutral model, but the driving forces are different. With
persistence, the lender has an incentive to lower equity below the efficient level at ¢t + 1 as
it helps screen types at period t. Hence, when 6, is fixed and so the dynamic information
rents decrease over time, the equity share of the entrepreneur also tends to decrease. Then,
when the equity share is low, the entrepreneur has more incentives to divert funds, so the

lender is less willing to provide capital.

In both models there is a positive relation between the entrepreneur’s equity share and firm
size. A lower equity share always increases the implicit lending costs because the incentives
to divert funds are higher. However, without time-0 uncertainty, the equity share drifts
in opposite directions: upwards with risk neutrality and downwards with risk aversion and
persistence. With risk neutrality and i.i.d types, firm size converges to the first best level
only because the entrepreneur’s equity share goes to one (Clementi and Hopenhayn (2006)).
That is, he becomes the sole owner of the firm, and the value of debt and outside equity
go to zero. With persistent types and risk neutrality, the equity share does not necessarily
have to converge to one for the firm’s size to reach the first best (Fu and Krishna (2019)).
However, the combination of equity and stock options also increases once the firm becomes
unconstrained, and so it also tends to increase over time. These equity dynamics may be
inconsistent with what is observed in the data. For example, in the venture capital industry,

the founder’s ownership is typically diluted over time as the firm’s capital grows through
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multiple financing rounds (Sahlman (1990)).

By introducing uncertainty about the entrepreneur’s initial type, we have seen that it is
possible to have an upward drift in firm size even with risk aversion and persistent private
information. However, this is achieved by making the information rents increase over time,
which implies that the equity share should also increase in an implementation. Accordingly,
to simultaneously explain firm size and equity dynamics, it may be necessary to break the

tight link between equity and firm size that these models generate.

Table 3: Comparisons optimal contract and implementation across models

Risk neutral Risk neutral

& ii.d & persistent Rlzl; ia;/((eirse glj ISErzsLiVsireSnet
(CH 2006)  (FK 2019) - P
Convergence to FB Yes Yes No No
Deferred compensation Yes Yes No No
Link firm Sae Yes (strong) Yes Weak No
& compensation
Firm size drift (Approximately)
w/out time-0 Increasing Increasing PP Y Decreasing
. Constant
uncertainty
| Eaquity + Wealth + Wealth +
Implementation Equity & stock options Equity (fixed)  Equity (varying)
P cons. = div. & cons. = quity duity yme

div. - option & cons. # div. & cons. # div.

Notes: CH 2006 stands for Clementi and Hopenhayn (2006), FK 2019 for Fu and Krishna
(2019), cons. for consumption and div. for dividends. Implementations of the optimal contract
are generally not unique. So, in the table, I just describe the implementation in each of the
corresponding papers.

7 Extensions
The problem studied throughout the paper is the simplest version of a cash flow diversion

model with persistent private information and risk aversion. To focus on the role of per-

sistence and risk aversion, I have imposed some assumptions and abstracted from other
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interesting margins. I explore three extensions in Appendix C.

Limited commitment. In Appendix C.1, I relax the assumption of full commitment of
the entrepreneur. At every period, the entrepreneur can steal all the capital advanced by the
lender and leave the contract. This friction also lowers firm size but adds an incentive to have
promised utilities increase over time. So when the limited commitment is binding, it can
generate dynamics where firm size increases over time, as in Albuquerque and Hopenhayn

(2004), even with risk aversion and persistence.

Endogenous termination. [ have assumed that the lender does not have the option
to terminate the project. I discuss endogenous termination in Appendix C.2. Although
termination may sometimes be optimal, I show that it does not affect any of the results
presented. [ also discuss what inefficiencies may cause termination with risk aversion and
persistence: too low promised information rents or a combination of private information and

limited commitment, similar to Dovis (2019).

Moreover, if at some point terminating with some probability a;(6") € (0, 1) is optimal, oy (6")
increases with the persistence of the shocks. I show this in a simplified two-period and two-
type version of the model. The intuition is similar to the equity purchases. Imagine that the
principal increases the termination probability of type 6% while increasing his payment after
termination such that his ex-ante utility is held constant. With persistence, types (6'71,6’)
with 6’ > 0, know they have higher expected returns at t+ 1 than 6;, so a higher termination
probability is relatively less attractive for them. Hence, a higher termination probability can

discourage misreporting for types 6’ > 6;, and so it lowers the cost of screening types.

Divert funds before investing (screening). Finally, in Appendix C.3, I study a model
where instead of diverting the returns, the entrepreneur can choose the fraction of available
funds invested in the firm and divert the rest. Then, the lender can observe the project
returns but not invested funds. The investment wedge can now be defined as the distortion
to invested and diverted funds relative to the first best. Moreover, this model yields the
same characterizations of the shadow cost of information rents, the GIEE, and the firm size

dynamics.
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8 Conclusion

In this paper, I revisited the firm size and compensation dynamics predicted by the optimal
contracting solution of dynamic cash flow diversion models. I departed from the previous
literature by allowing the entrepreneur to be risk averse and to have persistent private

information about the firm’s productivity.

Relaxing these assumptions leads to remarkably different dynamics than those of models
with a risk neutral entrepreneur. First, the interaction between risk aversion and persis-
tent private information decouples the dynamics of the firm’s size and the entrepreneur’s
compensation. Second, the firm’s size never converges to the first best, and its distortions
inherit the autoregressive properties of the type process. Moreover, if there is no initial un-
certainty about the entrepreneur’s productivity —as assumed in the literature— the distortions
tend to increase over time, so the firm’s size tends to decrease. Third, the entrepreneur’s
compensation is smoothed intertemporally, but the variance of consumption increases over
time. Finally, implementing the optimal contract requires separately keeping track of the

entrepreneur’s wealth and equity share in the firm.

I argue that canonical cash flow diversion models cannot simultaneously generate realistic
firm size and equity share dynamics due to the embedded link between the two variables.
Accordingly, an important avenue for future work is to study departures from this model
that can break the tight between the firm’s size and the entrepreneur’s equity share. In
particular, an empirical regularity that these models should be able to rationalize is the

dilution of the entrepreneur’s equity share as the firm grows.
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Appendix

A Additional tables and figures

(a) Consumption i.i.d (p = 0)

Figure 6: Immiseration in the long run

(b) Consumption with persistence (p = 0.7)
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Note: The figures show the median, 10%, and 90% quantiles of the distribution of consumption at every
period. For reference, the red line displays the median at period ¢ = 0. The median monotonically
decreases and the growth of the 90% quantile decreases over time. This implies that consumption will
converge to its lower bound. However, we also observe that this convergence is very slow.

Figure 7: Relation k;+1(6;) and 6,

10 L

K t+1
»

0.8 1.0 1.2 14
theta_t

Note: For a random subsample of 1000 realizations, the plot shows the policy functions of k1 as a
function of 8;. The blue dots are policies at period ¢ = 2, and the red dots at t = 15.
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Figure 8: Shadow cost information rents p at different
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Note: For a fixed (A_, k,6_), the figure shows the shadow cost p as a function of the shock ¢ for different
~_. The dynamic information rent A_ is increasing in y_. So when the agent is promised lower
information rents (low A_ and «y_), the shadow costs p are higher. The increase is more pronounced for
the types in the middle.

Table 4: Regressions with i.i.d type process

T @ ® W0
returns; 0.0489 0.0511 0.0508 0.0704
(10558.17) (399.15)  (108.58) (926.10)
Vi1 0.792 0.790 0.792
(14968.42) (1459.73)  (15010.68)
returns;_s 0.0490
(382.92)
returns, * vs_q 0.000386
(4.13)
returns; -0.00185
(-283.17)
Ci_1 0.998
(5300.13)
N 2400000 1900000 2400000 2400000 2300000
R? 0.999 0.139 0.999 0.999 0.924

t statistics in parentheses
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Figure 9: Consumption and returns residualized (i.i.d)
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Note: Using simulated data, I residualize both consumption and returns on vy_;.

Figure 10: Simulations implementation i.i.d

(a) Average distance consumption SB and implemen- (b) Average fraction of diverted funds
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Note: The left figure shows, for every period, the average distance between consumption in the optimal
contract (¢°F) and the implementation (c), i.e. /" = L3 /(7B ({e; -} 1) — el ({eir }oi))2
The right figure shows the average of the diverted funds as a fraction of total returns, i.e.
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Figure 11: Simulations implementation i.i.d with log utility (o = 1)

(a) Average distance consumption SB and implemen-
tation

(b) Average fraction of diverted funds
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4.2

Figure 12: Log utility (o = 1)

(a) Consumption i.i.d (p =0)

4.0

39

38

37
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(e) Investment wedge i.i.d (p = 0)
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(b) Consumption with persistence (p = 0.7)
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(d) Firm size with persistence (p = 0.7)
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Figure 13: CARA utility

(a) Consumption i.i.d (p = 0) (b) Firm size i.i.d (p = 0)
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B Derivations and proofs

The Hamiltonian of the recursive principal’s problem is

H = [ker1(0°) = 0(0") + q K1 (ve(0°), Ar(0"), 0, kg1 (6%))] 01(0:10,—1)
—Apr(04]0i-1) [wt(et) - Ut—l] = Ve (0]6-1) [wt(et)g(et,et 1) — A 1}
(%) [/ (f (Be, 0) — 0(0°)) e fo(Ke, 6:) + BA(6")]

+E(0")p1(0e]6-1) [wi(6°) — u(f (Ke, 6:) — be(6")) — Bun(6")]

The optimality conditions are

by (6") :

The envelope conditions are
0K,

Ju(0)

a[<t—l-1 _ ( t)
an,6n) ~

= /\t+1(9t)
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0Kt

Dhrr (0] E [—&a (07 (07 fi(67)10:] + (41)

Ht+1(9t+1)

E
80t+1(9t+1 |9t)

(u/,(8t+1)bf9(9t+1>fk(9t+l) + Ul(0t+1)bf9k(0t+1)) |0t )

Using the envelope conditions (39) and (40) we get
v (6Y)

dea (8 = 26.(0") (42)
At(ﬁt) .

B p1e(6°)
q @t(et‘et—l)‘

Substituting (38) and (41) into the FOC for ki, 1(6") we get

%+1(9t) =

Mt+1(9t+1)

(075 for (07116, ] . 44
th—i—l(et—&—lwt) ( ) f@kz( >| t ( )

1
) sz(et—H) o
q

Finally, the law of motion for the co-state is

ﬂt(et) == [ft(et) — At — 1E (0, 9t—1)] ©1(0¢|0:-1) (45)

Proof of Proposition 1. Set u(6") = 0 for all #*, then from equation (44) we obtain
point 3. For point 2, note that with y;(6") = 0, equation (45) becomes

ft(et) - >\t-
From equation (38),
1 t
ey ~ )

and using (42) gives point 2. Point 1 holds in the first best and second best allocations.
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Proof of Proposition 2. From the FOC for ki, 1(6") (equation (44)), multiplying the

second term inside the expectation by % and letting
9t+1 9t+1
Tk(9t+1) _ Nt+1( ) ul(9t+1)Lf9k< ) (46)

fk (0t+1> ’

we have % =E[f(0")(1 — 7%(#*"1))]6;]. Combining with the definition of 7*(6?),

- 80t+1(9t+1 Wt)

(1= 74 E)E [felkir(8), 02)16] = E [k (8). 6ra) (1= 70" )) 16']

or

E [fk(ktJrl(et)v 9t+1)7'k(9t+1)|6t}
E [fi(kiy1(0), 0111)167]

Finally, to write the return-dependent wedge as in the proposition 7%(6'*!) multiplying by

1Py y1(0r41]0t)
1—P41(0¢4116¢)

(0 =

and rearrange terms to get

_ Lfek(etH) 1 — ®441(0141101) " fre1(0°)
Te(0F) 01 (0i41]6r) 1 — @y 1(0141161)

Tk(et—s-l) ul(et-i-l).

Proof of Proposition 3. The proof follows similar steps as Proposition 1 in Hellwig
(2021). Substitute & (0*) in the LOM of the co-state (45)

jl6) + () O] { 1

uw'(0%) o Ae = 1€ (0, 0t—1):| ©i(04|01—1),

substitute Z((gf)) = “//(it,)(‘é){e)(et), using the boundary conditions () = 0 and y,(6) = 0 and

integrating upwards

— (0" )m(0) = /0 Pt +0E W, 0:1)

n

1

m] 00011 )m(0")de"

Using the definition of the incentive-adjusted measure

1(09m(0') =(1 — (0,160,1))E [m(6"2,0)[0 > 0111, 6,] (47)

" 1 t—1
e[y 17 200

- ’YtIAE [5(0,, Qt_l) | 9/ Z Qt, Qt_l} — )\t} .
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To get )\, note that using the boundary conditions we have

0 1
= A 0,0,_1) — —— 0,10 )ym(6")do’
0 /9 [ ¢+ €0, 0:1) u’(@’,@t_l)} ACA ym(0°)

or
8 1 -1 s -1
)\t =K |:u/ (Qt) | Qt :| - ’YtE [S(Qt,gt_l) | Qt j| .
Substituting back \; into Equation (47), using the definition of p(6") (Equation (24)), mul-
tiply both sides by u/(#"), collecting terms and using zi;(6") = %u’ (0") we get the

equation in the propositon. Finally, the inequalities MB(0") > 0 and p,(6") > 0 follow
by using that W and £(#',0,_1) are non-decreasing due to incentive compatibility and
assumption A.1, respectively.

Proof of Proposition 4. Equation (47) also holds for period ¢ = 1, hence we only need
to characterize v, (0o)(= —M By(6p)) from the time 0 problem. I start with the case x = 1.
Using g(0y) = S00(6p), the Hamiltonian writes

H = [k1(60) + qK1(v0(00), Ao(6o), 0o, k1(60))] h(6o)
= Xoh(6o) [Bvo(o) — v-] + (o) A1 (6)

Combining the optimality condition for Ag(fy) and the Envelope condition (40) gives:

1 p(6o)
q h(6o)

Y1(6o) = (48)

Using the Envelope condition (39), the LOM of the co-state satisfies
fu(00) = = [gA1(6o) — BAo] h(0o).

Integrating, we get ¢E; [A1(6y)] = BAo, and

1p(6o) 1 — H(6) o )
ThB) ~ () EnPu(80)I6 > O] = En[ha(B0)]} = MBo(6)

where the last equality uses (48). The inequality M By(6p) > 0 holds because wvg(6y) is

increasing in 6y (by the IC constraint) and the multiplier A;(6y) is increasing in vo(6y).

For the case k = 0, notice we can set Ay = 0 and because wy(d,) is not a free variable we
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only have the boundary condition () = 0. Integrating the LOM:
11(60) = p(0o) — qH (00)E [A1(0)]0 < 6o] -

So we have

1(8,) = E [Mi(60)]

and
1 11(6p) B 1 — H(6y) N
gh(ﬁo) — H0) E [\ (65)10y > 00] -

Finally, if 0y is fixed we can drop the incentive constraint so p(6y) = 0 and M By(6p) = 0.

Proof of Proposition 5. This proof also follows similar steps to Theorem 1 in Hellwig
(2021). Using the characterization of A; in Proposition 3 and substitute the multipliers
Aey1(0") and 7441(60") from the optimality conditions (42) and (43), and using equation (38)
to substitute for &;:

1 ,ut('gt) u”((gt)Lfg(Qt) o gA 1 . M(Qt) . .
5 ) 5 ] g 000, @

where we can rewrite

H:: [8(9t+1, 9t)|9t:| _ E |:p(6t+1)u//<0t+1)bf9(9t+1> ’9ti| .

u/(9t+1)
To show this, note that

(7 |9t)m(9t+1)
E [m(6"+1)|6;]

9
E [£(611,0,)]6'] = / E(Orir, 0% 1
0

/

1 0 9 / / / .
“Em@ 6, / (— E(0,0,) (0 |et>de) (6" 1) b .

Ot 41

Integrate by parts and use E [E(0;41,0:)|0:] = ff%ﬂd@wl = 0. Then using the defini-
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. m/ t u// t L t
tion of p(¢"*') and m((gt)) = (i,ie’?)“’ ),

m/(9t+l)

E [m(g1)]6] !

T
B0 00 = [ [ €@ b)pn @100
0 JOi1

0 1 7] m/(9t+1) m(ﬁt‘H)
= _ E 9/,(9t 0’161 do’ 6,.10.)do
/9 P TRT /a O 0)eenr G106V Tommy ey 21 Pra 00) 261

4 u! et . et .
:/e P(etﬂ)%@tﬂwtﬂ‘gt)det-%l'

(6°)

Substitute back and use Equation (46) to substitute W

LR ) O a1 ] ) ) e W60
0 @) w0 w ey [u«eﬂl)'e}*fek(et) u'wt)E{”(“ a1

Finally, rearranging we get

qn 1 t| _ u,/(9t>bf9(9t)_A iy WO ) Lfo(0) 1T fe(6Y) kgt 1
B [u/(em)'e] ”[ (67) E[p” ISy 'Herkww 1 )

=s(0")

Proof of Proposition 6. If s(6") > 0,

L) B
w(0f) = LW ] B (0) M (0|6
where M (9'1) = %, rearranging

E [u/(0t+1)M(9t+1) |9t]

EMOT6] ' (0").

Because u/(6"™!) is decreasing, to show E[u/(6"71)|0'] < u/(0') we only need to show that

M (6" is weakly decreasing. Differentiating

d (M(9t+1>) _ M(9t+1)u”(9t+1) (Lf <6t+1) o C/(0t+1>)
6,41 o (o) VY ’
<0
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E dw(9t+2)‘9t+1
from the the local IC constraint 2@ — 200D o have (0 + 5M =

dfii1 00141 u/ (95+1) o
tfo(0'T1). Then, the assumption E <d%€:2)|9t+1> > 0 implies ¢fp(0') — (1) > 0, and

so M(0"1) is weakly decreasing. For the second part, assume s(6") > 0 for all 6, then v’
follows a non-negative super-martingale. By Doob’s super-martingale convergence theorem,
u' converges almost surely to a finite limit. By contradiction, assume u’ converges to a
positive limit u/ > 0. Then, almost sure convergence implies that for some 7 we have
31

' (07) = /' (07,0,41) = ... = u/, which would violate incentive compatibility.*! Hence, we

must have v’ — 0 almost surely.

C Extensions

C.1 Limited commitment

In this section, I relax the assumption of full commitment of the entrepreneur. Limited
commitment leads to firm size and compensation dynamics that are very different from
those with the private information friction. The limited commitment works as follows. At
every period, before knowing the realization of his productivity, the entrepreneur can divert
and consume all the funds advanced by the lender and terminate the project. In this case, I
assume the entrepreneur would obtain utility h(k;y1(0")), where h is increasing and concave.
Therefore, the agent will not terminate the project at period t + 1 if h(ky1(6%)) < v,(6%).%
This limited commitment constraint can be added directly to the planning problem (15).
Because the limited commitment constraint does not affect the within-period insurance and
incentives trade-off, the characterization of the shadow cost of information rents (Proposition

3) is not affected by the limited commitment assumption.

However, the limited commitment constraint does modify the consumption and firm size
dynamics. Let 7,(#") be the multiplier on the limited commitment constraint. Then, the
GIEE is given by

4+ 1 t :L (6 1 (60)
5 Lu(em)‘e] iy L)+ T

31Formally, this is statement is true because the proposition assumes fixed capital. Otherwise, this would
be incentive compatible by setting k;11(6%) = 0, which is generally not optimal because of the Inada condition
].imk;*)O fk(k7 9) = Q.

32 A natural specification of the function b is %_ﬁq)k‘“), this is the value that the agent would obtain

if he could keep a fraction (1 —¢) of the capital and then save outside the contract at rate é.
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Because 7,(0") > 0, the limited commitment gives a force to have a downward drift in
marginal utilities. As is well known, in models with only limited commitment, the agent’s
consumption is backloaded, and consumption follows a sub-martingale. Therefore, the pri-
vate information and limited commitment frictions will generally have opposite effects on

consumption dynamics.

The investment wedge is now given by

h' (ke (6))
fk(kt+1 (et)7 et)

Tk,LC(et-H) — Tk(et) 4 nt(et) 2 0

Y

where 7%(0?) is the wedge from the private information friction in Proposition 2. Because
N (0" (ki 1(67)) > 0, the limited commitment friction also lowers firm size relative to the
first. However, if the promised utility increases over time, the limited commitment constraint
will eventually not bind (n,(0*) = 0). Therefore, this friction still gives an incentive to have

firm size increasing over time.

C.2 Endogenous termination

In this section, I show how the model can be extended to allow for endogenous termination
of the contract. As is well known, in regions of the state space where the contract becomes
very inefficient, the principal may be better off terminating the project or randomizing
between terminating and continuing the contract at an efficient point. I assume that after
termination, the lender receives a scrap value S. At period ¢, based on !, the lender can
choose a probability a;;1(6") of termination at ¢ + 1. In that event, the principal can also
give the entrepreneur a compensation of Q;11(6"). In case of no termination at period ¢ the
objective of the principal is

/ [=b(0") + r41(0')q (S = Qe11(6")) + (1 — r1(8")) (Beqr (0°) + qK v (v:(6"), Ar(8°), 6%, ke 11(6°)))] 1(0:10:—1)db;.

I assume that after terminating the contract, the entrepreneur can freely save Qyy1(6°)

and obtains a per period gross return %. Then, his value after terminating the contract is

u((1-9)Qe+1(6"))

=) . The continuation utility now becomes

u((1—q)Qus1(6"))

(=g + (1= e (07))ue(6")]

w(0) = u(c(0)) + B | e ()
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and the local IC
we(07) = u'(c(0"))efo(ke, 00) + B(1 — a1 (07)) A(6").

It is then easy to see that the optimality conditions for b(#"), k.1 (6%),0,(6"), A,(6") and w, (6")
are the same as in the main model. Therefore, although it may be optimal to terminate the
contract, the characterizations of the optimal allocation presented in the paper do not rely

on the assumption of no termination.

It is interesting to understand when and where (in the state space) termination may occur
in this model and how it compares with the risk neutral case. With risk neutrality (Clementi
et al. (2010)) the Pareto frontier is increasing in the promised utility. Consequently, termi-
nation occurs when the promised utility is low. Moreover, because utilities drift upward, the
termination probability tends to decrease over time. With risk aversion, the Pareto frontier
is decreasing in promised utility (see Figure 14a). So, the motives for termination differ from

the risk neutral case.

Two other sources of inefficiencies could motivate the termination of the firm. First, low
promised information rents (i.e. low Ap) is inefficient. Panel 14b shows that the Pareto
frontier is increasing in Ag. Over time, if the lender has promised too low information rents
to the entrepreneur, termination could potentially become optimal. Second, introducing a
limited commitment constraint as in Section C.1 could also generate endogenous termination.
If v;(0") decreases sufficiently, the limited commitment constraint may require that k;, ;(6") —
0. Then, as shown in Dovis (2019), the Inada condition limy_o fi(k,6) = oo implies that
in this region, the Pareto frontier is increasing in v. When the frontier is increasing, there
may be a range of scrap values S where it is optimal for the lender to randomize between
termination and continuing at a higher v. Because the shadow costs of information rents and
the variance of promised utility tend to increase, both inefficiencies should imply that the
termination probabilities tend to increase over time. Again, these are the opposite dynamics

of what is found with risk neutrality.
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Figure 14: Pareto frontier

(a) As a function of promised utility vg (b) As a function of promised information rent Ay
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Note: For Panel (a), the promised information rent is set at the optimal level at ¢t = 0, i.e. I set 49 = 0. For
Panel (b), Ag is adjusted for every value of A so that vy is kept fixed.

Persistent shocks and optimal termination probabilities. Another interesting ob-
servation is that whenever termination is optimal, the lender may have more incentives to
increase the termination probabilities when the persistence of the shocks is higher. The rea-
son is that a higher termination probability decreases the dynamic information rents. The
intuition is similar to the equity purchases and the distortions in firm size. Imagine that,
at history #~!, the lender increases the termination probability of type #; and compensates
him by increasing Q(6") such that his ex-ante continuation utility is kept constant. Types
0" > 0, know they are expected to obtain higher returns at ¢ + 1, so they have a relatively
higher preference for continuing to operate the firm. Therefore, the increase in «(6") makes

deviations less attractive for # > 6;, and so it lowers the cost of screening types.

I show this intuition more formally in a simplified two-period and two-type version of the
model. Assume the entrepreneur’s productivity can take values {67,6L} with 67 > §%. In
the first period, P(6; = 0%) = p', and in the second one, P(f, = 0|0, = 67) = pH and
POy = 0710, = 0F) = pl. Let p = p —p= > 0, if p > 0 we say types are persistent. We
assume the production function is of the form f(6,k) = 6, so we can abstract away from
the choice of firm size. In the second (and last) period, we assume that the entrepreneur

consumes all its endowment, so there is no repayment. The principal’s objective is

K(v) =p' [=b" 4+ qa"(S = Q™)] + (1 = p') [-b" + g™ (S — Q)] .
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The values of the high and low types are

w = (0" = ") + B [a"u(@Q") + (1 — a™)E" (u(62))]
wh = u(®" — ") + B [ u(Q) + (1 — a")E" (u(6r))],

where for j € {H, L}, E7 (u(fs)) = p"u(6) + (1 — p/)u(0*). The participation constraint is

pwf + (1 —phHw* =v

and the IC constraint can be written as

w = wh + (@ —bY) —u(@* — ") + (1 — ) Bp(u(0?) — u(6")).
static i;l?o rent Dynami;rinfo rent

Notice that the dynamic information rent is increasing in p and decreasing in o”. I directly
assume that the parameters are such that ol € (0, 1) is optimal and show that the principal

increases the termination probability when the persistence increases.

Proposition 7. If ¥ € (0,1) is optimal, the optimal contract is such that % >0.

Proof. The proof is as follows. Starting from the optimal contract, we consider a perturbation
where we increase o while preserving the IC and PK constraints, and show that the resource
gains are increasing in p . To this end, let Aa* = ¢ > 0, for £ small. We perturb the allocation

along the low type’s indifference curve, so to keep w’” constant, we increase Q* by

[4(@") ~E* (u(®)] ,

V=@

The perturbation lowers the dynamic information rents, and so it relaxes the IC constraint.

This allows us to lower the high type’s period one utility by
Aut = —Bp(u(67) — u(0%))e.

Because w’” is kept fixed, this changes the ex-ante utility by p'!Aufl. Then, to satisfy the
PK constraint, we increase the period one utility of both types in an incentive-compatible
manner. Because information rents depend on consumption, increasing utilities uniformly

would not be incentive compatible. If we increase the low type’s utility by Au”, the IC
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constraint requires increasing the utility of the high type by

u/(eH _ bL)

— At
u/(gL _ bL) u

AUH’IC —

The ex-ante utility is kept fixed if

1u/(9H_bL) L 1 L 1A, H

which implies
P (6" — b

— Aufl
plu/ (67 — L) + (1 — ph)u/ (AL — L) u

Aut =

Therefore, the total change in the high type utility is

AU TOT — AyH 4 Ay HIC
u’(QL — bL)

H
T (T e D

=(1-p"

Finally, the resource gain from this perturbation is

AK 1
—=p

e {u(eH—lvH) :

w (68 — bL)
N 1 1 W' (0F — bb)
~ [u/(QL —bL) o w' (0H — bH)] pu! (OH — bE) 4+ (1 — p)u/ (AL —

AuH’TOT} +(1-pY { Au*| +Q

by pHp' Bpu(6™) —u(0)) + Q

where () collects all the terms that do not depend on p. Because the initial allocation

is optimal, [u,(eLl_bL) _ u/(eHl—bH)] < 0 and u(0) — u(6Y) > 0. Therefore, the principal’s
AK

. . D . . B Ce
resource gain from this perturbation is increasing in p, i.e. 5 < 0, which implies that

% > (0 is optimal. ]

C.3 Screening model: divert funds before investing

In this section, I study a screening version of the model where the entrepreneur can choose
what fraction of the funds available he invests in the project. The remaining funds are
secretly diverted for consumption. Now, the lender can observe the entrepreneur’s returns
but not the entrepreneur’s productivity nor invested and diverted funds. In this sense, the

investment decision is similar to the labor /leisure choice in the Mirrlees taxation problem.
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This model yields the same characterization of the shadow costs i, the GIEE, and the firm
size dynamics. Moreover, we can directly define the investment wedge 7%(6") as the wedge

between invested and diverted funds relative to the first best.

Denote by B, the funds advanced by the lender. The entrepreneur can use these funds to
invest in the project k;, but he can also divert a portion a; of the funds for his consumption.

Therefore, invested and diverted funds are subject to the constraint
kt + ay S Bt. (50)

The lender now observes returns f(k;, 8;) but not productivity ¢, and how funds are used,
i.e. k; and a;. Diverted funds are converted into consumption units according to the function

g(ay), with ¢” <0 < ¢, so the entrepreneur’s consumption is

et = f(ke,0:) — b + g(ay). (51)

The principal’s within period objective now is B; — b;. The envelope condition of the agent’s

problem is

0 :
a—ewt(et) = u'(ci(0)) fo(ke(0"), 00) + BALE").
t
Now the investment wedge can be defined explicitly as the distortion in invested and diverted

funds relative to the first best (where we would have f.(k:(6"),6;) = ¢'(a:(0")). Define

oo ga(8)
T =1 G, 0

The rest of the planning problem is the same but with the extra flow of funds constraint

(50). The optimality condition for diverted funds is

G(0") = g'(ar(0")),
where (;(0") is the multiplier on constraint (50). The FOC for investment is

Mt(et)

Wu’(& ) for(K:(07), 61)

Ge(0') = fr(ke(6"),0,) —
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Then, combining the two optimality conditions, we get

k/nty _ Mt(et) f@k(et)u/ t
T = @ e >0

which is the same as in Proposition 2. Because 7%(6') > 0, there is more cash diversion than
in the first best. This is the standard screening result; the principal distorts effort (here
investment k;) downwards to screen types at a lower cost. When shadow costs (u;(6")) are
high, the principal increases distortions to reduce the costs of screening types. Moreover,
this wedge also captures the distortions to firm size as in the cash flow diversion model.
Combining the FOC for By y1(0") and the envelope condition, we get

I " pe1 (07F) 1(pt+1 t
= =E | fulke1(0°), 0p1) — u'(0°7) for (ki1 (0°), 0141) 10,
q <Pt+1(9t+1|9t+1)

=E [fk(kt+1(8t), 011 (1 - Tk(gtH)) |9t} ’

which is exactly how the wedges were defined for the cash flow diversion model in equation
(19). Then, it is also easy to verify that this model yields the same characterization for the
shadow costs (") and the GIEE.

D Full implementation in two-period model

In this section, I study a full implementation in a simplified two-period version of the model.
Now, the entrepreneur can freely choose between paying himself dividends or reinvesting
in the firm. This implementation focuses on another way the principal can lower dynamic
information rents. Instead of buying equity, the principal discourages reinvesting profits to
distort firm size. Because lower future capital is less attractive for higher types if shocks
are persistent, this margin can be used to screen types. This implementation of the optimal
allocation involves either a (nonlinear) subsidy on dividend payouts or a (nonlinear) tax
on reinvested funds so that capital is lowered in period 2 relative to the first best. The

magnitudes of the marginal subsidy (or tax) are increasing in the persistence of productivity.

There are two periods ¢ = 1,2. I assume the production function is of the form f(k,0) =
0f(k); for the first period, I normalize f(k;) = 1 and assume there is no cost of diverting

funds ¢« = 1. The entrepreneur is risk neutral in the second period and there is no repayment.
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So the entrepreneur’s utility if he is type 6, and reports 51 is
w(6y,01) = u(6y — b(61)) + BE [62]61] f (2(61)).
Solving the lender’s problem, we obtain

(0, — b(6h)) = BE [02]601] f'(k(61)) (1 — 7"(61))

where

(6,) = Fioy) L= 20 ( el b(“)) -0

0(01) \E[|6:] /(61 —b(61))

The wedge to investment is increasing in the persistence of the process, as with higher
persistence, higher types have an even higher preference for future capital. But now, it
also depends on the absolute risk aversion.*> We now turn to the implementation. The
entrepreneur can freely use his returns to pay dividends d or reinvest in the firm I. The
optimal can be implemented with either a tax T on investment such that ky = T(I) or a
subsidy on dividend payments ¢ = S(d). Here, I consider only the subsidy on dividends, so

I = ky. Then the entrepreneur’s problem is

w(f:) = 732XU<S(d)) + BE [02]01] f(k2)

d,k

st d+ ke =0,

The marginal subsidy on dividend payments that implements the optimum is

1

S'(d(6)) = T=7h(0,)"

Moreover, we have S'(d(6)) = S'(d(0)) = 1 and S’(d(#)) > 1 for 6 € (§,0), so the marginal
subsidy is inverse U-shaped. Because 7%(f;) is increasing in the persistence of productivity,

the marginal subsidy will also be increasing in the persistence.

33Because there is no repayment by in the second period, capital also plays a similar role as savings for
the entrepreneur.
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E Details numerical simulations

I follow a similar procedure as Farhi and Werning (2013), Stantcheva (2017) and Ndiaye
(2020). In these papers (and in Kapicka (2013) and Golosov et al. (2016a)), the model
is solved with a geometric random walk process. This allows to normalize the principal’s
optimization problem and drop 6;_; as a state variable. Here, the problem can also be
normalized if the production function is assumed to be of the form f(k,0) = 20"k~
However, I am interested in performing comparative statics with respect to the persistence

of the process (p). Therefore, I solve the full problem without renormalizing.

It is convenient to transform the problem to write the Hamiltonian as a function of the
current shock &; instead of the current productivity 6;. Denote the density function of the
shock by g.(¢;), then it follows that

07
Moreover, we also have that
o (04 | 01-1) ___7r 1 (logf — plog 1 — 1) exp 4 — (log 0y — plog 01 — M)2
00,1 0,1 0.2 o? 202
and
dge(er) 1 (loge, —p) ol (loger — 1)
ey €204/ 2w o? P 202
Therefore,

_ B 9g:(s) 0,70 00 (0, 0,-1)
Ge(et) = g-(g¢) + ¢ 95 s 96, .

Then note that df, = 67_,de, implies

2 (9t ‘ 9t71) df, = g€<5t)d5ta

and
Dy (9t | Qt—l)
00,1

Je (5t)
011

d@t =p dEft.
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The planning problem over the shock ¢; is

K(viy, A1, ke, 0i-1) = min/ (ktﬂ(at) — bi(er) + qK (ve(er), As(er), kv (€), Hf_lst)) ge(er)dey
st (PE) wi(z) = ula(e)) +Aule)  lo-(e06e)
ver = [uedg.e)dz loe)hen)
(10) tinfer) = 00, (u (cle))efolkin 8 12) + BA=)) )
Biv= [wlegatede loelein)

t—1

(Feasibility) ci(e) = f(ki, 07_180) — bi(&e)

The optimality conditions are

g _ 1 M(Et) e, P 4" (c
InGe) = s |14 250t b0 et 52
_ _é o M(Et)
e = = o o (53)
and the two LOM
. o q P §5<5t>
f1(er) = — E)\t(ﬁt) — A1t %—1@95(50 <(et) (54)
() = 07y (W (c(er))efolke, 07_160) + BA(er)) - (55)

I truncate the distribution of ¢; at the 0.01 and 0.99 percentiles, the boundary conditions
then need to be adjusted to ;u(8) = —y-152-29:(€) and p(g) = —y-157-€g:(€)-

To solve the model, the state space is modified to (A_,~v_,k,6_) , so the multipliers A_ and
~_ are used instead of v_ and A_, respectively. I use 20 grid points for A_, 14 for vy_, 25 for
k and 15 for #_. I interpolate on K, v and A with cubic splines and allow to extrapolate.
To solve the model with an i.i.d type process, the algorithm is the same but with A = 0 and

without the state variables v_ and 6_.
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Algorithm

Step 0: Guess the value function K’, promised utility v and promised marginal utility A’
on the grid (A_,v_,k,0_)

Step 1: Compute the policy functions for k4 on a grid (Apor, Ypor, @) by minimizing

k+ + qKI(/\pol@)v fYPOl(i)7 kJr? 9(2))

(Note: k. needs to be computed multiple times at every step while solving the ODE. But to
improve speed, we can solve before the policies on a dense grid and then interpolate when

solving the ode).

Step 2: For each point in (A_,y_, k,0_), solve the optimal control problem with a shooting
method.

e a) Guess continuation utility of lowest type w(g) = w.

e b) For each ¢, solve A(¢) in equation (52) and v(¢) in equation (53). To compute c(e),
first compute k, (¢) by interpolationg the array of policies on (A(¢),7(¢),0”¢). Then
obtain v(g) by interpolation of v" on (A(g),7(¢), k4 (¢),0%¢) and solve

c(e) =u (w(e) — Bu(e)) .

With these solutions solve the differential equations (54) and (55). Note when solving
(54) also need to interpolate A" on (A(g),~v(e), ky(g),0%¢).

e c) Check the boundary condition u(€) = —vy_7~2¢.(€). If it does not satisfy the

tolerance, go back to step a).

Step 3: Given the solution (u(e),w(e)), repeat step b) to obtain all policy functions on a
grid (A_,v_,k,0_,¢), also compute b(e) = f(k,0”¢) — c(e).

Step 4: Compute the lender’s value function, promised utility and expected marginal utility

at every grid point

v(A_, v, k,0) = /w()\_,v_,k,9_,6)95(8t)d8t
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Ay k0 ) = /w()\_,y_,k,H_,s)Qﬁgs(at)dat

K (A, v-,k,0-) Z/(/f+(>\—,7—,/<, 0_.e) = b(A_, 7=, k,0-,€) + ¢K'(A(e),7(e), ki (e), 072)) ge(e1)dev.

Calculate the distance with previous guess of K’, v and A’ | and repeat from Step 1 until

the convergence criteria is satisfied.

When solving the model without time-0 screening, for the Montecarlo simulation, the initial
Ao and 6, can be fixed at arbitrary values. Because 4 is a free variable, we must set 75 = 0.

Then k; is chosen optimally given (\g, ) and o = 0.

E.1 Time-0 problem

[ also solve the time-0 problem with a shooting method by iterating on vy(#). To solve the
problem, we use the value functions v(\,~,0,k) and A(X, 7,0, k) and the policy function

k(X v, 0) from the solution of the recursive problem.

Algorithm.

1. Guess the lowest type continuation utility vy (0)
2. Solve the ODEs ’U(OO) = Ao(eo) and ,u(@o) = — [)\1 ((90) — )\0] 9(90)

(a) At every step for every (v(6y), 1(0o))

i. Get 1 (6o) from: —(6p) = 4

ii. With ~(0y), 6y and vg(fy) can back out the corresponding \;(6y). Note, v
will be computed on a grid (A1(6),71(00), 0o, k1(6o)), so for every A;(6p) need

to get the optimal k;(6p) (from the policy functions in the recursive problem)

and then use this to get v until solve the root.
iii. With (A(6),71(6p),6p) can in turn also back out Agy(6p)
iv. Update the LOM

3. Check p(0) = 0, if it doesn’t satisfy tolerance go back to 1. with a new guess

4. Repeat (a) to recover all the policy functions on a grid for 6,
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E.2 Check global IC constraints

The first-order approach consists of solving a relaxed problem where only the local incentive
constraints are considered. A priori global incentive constraints may bind, in which case the
solutions of the relaxed program (15) and the full program (9) would not coincide. I follow
the approach outlined in Kapicka (2013) and Farhi and Werning (2013) to verify ex-post

that only the local incentive constraints bind.

The procedure is the following. First, after solving numerically the relaxed problem, we
have obtained the policy functions A(A_,v_, k,0_. &), y(A_,v_, k,0_,¢), ky(A_,v_,k,0_,¢)
and b(A_,v_, k,0_,e) and the value function v(A_,v_, k,6_). Let € denote the agent’s report
about the innovation to the productivity. Then we consider a problem where the entrepreneur

takes as given the policy functions and can report any & € [g,¢] and verify that for every
(A, 7- k,0-.¢€)

e =argmaxu(c(A_,v_,k,0_,¢,¢))

g€le,e]
+/6’U()‘()‘—77—7k79—7aa7()‘—77—7k79—7g>7k+()‘—77—7k79—7g>a9ga
s.t /5<)‘*>’777k79*7€7g) = Lf(k,E) + (1 - L)f(k;7g> - b<)‘77’777k7977g)'

E.3 Solution implementation

With persistent shocks and constant equity, the entrepreneur’s problem in the quasi-implementation
is
W<Wt7 etfb 515717 E'\t) = i Hé?x U(a) + ﬁV(Wt+1, etpflgta aﬁ)
<0, 1t
s.t Wipr = qC (W, 5157 5&1)
e = (1= q)C(W;, 0,6, 1)
& =co + u(f (ksp, 60_121) — f(ksp, 61))

where

C(Wh, 8,01 y) = éwt X (F (ks 00) + aF (ks ) — F ks 0r1))
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f(ksp,0;) =E

Z q " fksp, Oryr)]0;
T=1

and
V(Wt+1,9t>§t) :/W(Wt—i-la0t7§t75t+1)ga(5t+1)d5t+1-

With i.i.d shocks, the problem is the same but without 6, ; and @_1 as state variables
and with f(ksg) independent of 6,. The problem is solved with standard value function
iteration, and to have the closest comparison with the solutions of the optimal allocation,

V(Wiiq, 6y, é;) is computed with numerical integration.
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