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Abstract

The European Sovereign debt crises (2010-2012) showcased how excessive private

leverage can threaten sovereign debt sustainability, making the existing fiscal rules

targeting only public debt insufficient. In this paper, I study the optimal joint design of

fiscal rules and macroprudential policies with sovereign default risk. I first consider a

stylized two-period model of a small open economy where both the local government

and a representative household borrow internationally. A central authority internal-

izes externalities from sovereign default by the local government and designs fiscal

rules and macroprudential policies. The model yields two insights: (i) it provides a

novel rationale for macroprudential policies, and (ii) sovereign debt limits that are a

function of the quantity of private debt (private-debt-dependent fiscal rules) can im-

plement the optimal allocation. Then, I generalize these results to a multiperiod model

with heterogeneous households, aggregate risk, and a rich asset structure. Finally, I

calibrate a quantitative version of the model to compute the private-debt-dependent

fiscal rules and the size of the macroprudential wedges.
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1 Introduction

Ireland and Spain experienced large increases in sovereign bond spreads during the Euro-
pean sovereign debt crisis years (2010-2012). Yet, both countries had previously complied
with the European Union sovereign debt limits with a ratio of public debt to GDP below
40% in 2007. Thus, the fiscal rules in place targeting the quantity of public debt were
insufficient to prevent the crises. Instead, excessive private leverage was highlighted as
one of the leading causes of the crises for these economies (Lane (2012)), suggesting that
macroprudential policies targeting private debt –lacking at the time– would have been
more effective than tighter fiscal discipline (Martin and Philippon (2017)). These events
illustrated the need for an integrated policy design that accounts for how financial insta-
bility can threaten sovereign debt sustainability.

This paper studies the optimal joint design of fiscal rules (i.e., restrictions to sovereign
debt) and macroprudential policies (i.e., restrictions to private debt) with sovereign de-
fault risk. I consider a small open economy where the local government and households
can borrow internationally. The local government finances expenditures through distor-
tionary taxes and external debt and can default strategically. A central authority designs
fiscal rules and macroprudential policies, taking into account extra costs from sovereign
default that the local government does not internalize. Consider, for example, a central
authority in a monetary union taking into account externalities from sovereign default on
the other countries of the union (Tirole (2015)).

In this environment, I proceed in three steps. First, I study a stylized two-period model
where I present two main results: (i) the optimality of macroprudential policies and (ii)
the implementation of the optimal allocation through sovereign debt limits that are a
function of private debt (private-debt-dependent fiscal rules). Then, I generalize and ex-
tend these results in a richer model. Finally, I calibrate a quantitative model to compute
and quantify the optimal fiscal rules and macroprudential policies.

Stylized two-period model. In the two-period model (Section 2), I assume a representa-
tive household that borrows with uncontingent and non-defaultable bonds. Starting with
the (laissez-faire) local government’s problem, I first show that although private debt is
not defaultable, higher household leverage increases the probability of sovereign default
because the gain of not taxing and defaulting increases with the household’s marginal
utility (i.e., its leverage). Moreover, because taxes are distortionary, the local government
borrows to smooth tax distortions. As a result, the Frisch elasticity of the household’s
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income – a measure of the government’s tax capacity – is a key parameter determining
the quantity of sovereign and private borrowing.

The central authority maximizes the household’s utility but also takes into account exter-
nalities from sovereign default. It can impose restrictions on sovereign and private debt
but cannot enforce the repayment by the local government. For exposition, I first assume
the default externalities are high enough so that default is never optimal. Therefore, its
problem reduces to finding the combination of sovereign and private debt that maximizes
the household’s value while preventing default.

The first result of the paper shows that we can decentralize the solution of the central au-
thority’s problem by imposing a limit on sovereign debt that is a function of the quantity
of private debt and then letting the local government choose the allocation freely. This is
a solvency constraint that is not too tight as in Alvarez and Jermann (2000) because it binds
only when the government would (weakly) prefer defaulting, but it is a function of pri-
vate debt. We can think of this type of solvency constraint as a private-debt-dependent
fiscal rule. In practice, fiscal rules typically impose limits on deficits and sovereign debt
invariant to other macroeconomic factors, such as private debt. For example, the Maas-
tricht Treaty and the Stability and Growth Pact intended to limit public deficits to 3%
and sovereign debt to 60% of GDP.1 The model indicates that better arrangements can be
obtained when these limits are a (decreasing) function of private debt.

The second result characterizes the optimal macroprudential policy as a function of the re-
strictions on sovereign debt. That is, I derive a formula linking the wedges on sovereign
and private debt, which are defined as distortions relative to the (laissez-faire) alloca-
tion of local government’s problem. The wedge on private debt inherits the sign of the
wedge on sovereign debt, implying that it is optimal to restrict private debt whenever
sovereign debt is restricted. More concretely, the wedge on private debt equals the wedge
on sovereign debt times two adjustment factors. The first one is the derivative of the
sovereign debt limit with respect to private debt. Because the default probability in-
creases with private debt, reducing private borrowing allows for an increase in sovereign
debt while holding the default probability constant. The second one measures the ben-
efits of an increase in sovereign debt in the first period by adjusting for the deadweight
loss of taxation. Intuitively, when sovereign debt is restricted, taxes are inefficiently high
in period one. So, increasing sovereign debt enables a decrease in taxes and a smaller tax
distortion.

The formula provides a rationale for macroprudential policies based on distortionary tax-

1This type of fiscal rules are prevalent, see Bova et al. (2015).
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ation and sovereign default externalities. This motive is different from the pecuniary
(Lorenzoni (2008), Bianchi (2011) and Dávila and Korinek (2018)) and aggregate demand
(Farhi and Werning (2016)) externalities identified in the literature. Arce (2023) studies
the interactions between private borrowing with pecuniary externalities and sovereign
default in a quantitative model and finds that it implies larger optimal macroprudential
taxes. However, I show that macroprudential policies can be optimal even without pecu-
niary externalities and zero sovereign debt spreads.

This simple model admits two other formulas relating the wedges in terms that can be
more closely linked to the data. In the first one, this relation only depends on the ratio
of marginal utilities in default and repayment. To first order, this is equivalent to the
coefficient of relative risk aversion times the percentage increase in consumption after
default – which is increasing in the public and private leverage and the output gains from
eliminating tax distortions. The second one is expressed as the ratio of the derivatives of
the default probability with respect to every type of debt times the deadweight loss from
taxes.

Then, I consider the case where the default externalities are small enough that allowing
for a positive default probability can be optimal. In this case, the local government may
conduct macroprudential policies by itself (i.e. restrictions relative to the decentralized
borrowing of the representative household) to lower the cost of sovereign borrowing. I
show that the previous results on the private-debt-dependent fiscal rules and the optimal
macroprudential wedges easily generalize.

Finally, I also study the effect of suboptimal policies that only restrict either private or
sovereign debt. These policies are less effective if the economy substitutes and borrows
more in the unrestricted debt (see Martin and Philippon (2017)). The Frisch elasticity de-
termines this substitution because, from the local government’s perspective, it determines
how (price-) substitutable the two types of debt are. For a country with high tax capacity
– i.e. low Frisch – the cost of not smoothing taxes is small, so it can easily substitute be-
tween the two types of debt after a change in relative prices. Conversely, substitution is
more costly for a country with low tax capacity. Thus, these suboptimal policies may be
less effective if the country has a high tax capacity.

General model. In the second part of the paper (Section 3), I generalize the previous
results on private-debt-dependent fiscal rules and optimal macroprudential wedges for-
mulas in a dynamic model with heterogeneous households, aggregate risk, and a rich
asset structure. The definition of the solvency constraints is now more involved because,
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with state-contingent assets, the states where the government may default can be a non-
monotone function of the households’ portfolios. However, I show how the solvency
constraints can be appropriately defined to derive similar formulas for the optimal macro-
prudential wedges. These wedges are state, household, and asset-specific. So, it allows us
to study how the optimal macroprudential interventions depend on the payoff structure
of each asset or the household’s characteristics. Finally, I also allow for domestic hold-
ings of sovereign debt and household default. I assume the households automatically
default on some assets after a sovereign default. In this case, the wedge formulas are sim-
ilar to those of the domestic sovereign debt and imply larger distortions than when the
households cannot default.2

Quantitative model. Finally, I solve and calibrate a quantitative version of the model
to compute the private-debt-dependent fiscal rules and the size of the macroprudential
wedges (Section 4). I extend the model by introducing long-term sovereign debt to better
match the data. I calibrate an exogenous borrowing limit on private debt to match the
level of private external debt of Spain in 2007. As in the two-period model, I find that
higher private debt increases the default probability. The optimal private-debt-dependent
fiscal rule can be computed directly from the solution of the local government’s problem,
which, in turn, allows us to infer the magnitudes of the optimal macroprudential wedges.
Hence, this approach allows us to quantify the optimal policies without solving the full
Ramsey problem of the central authority.

The quantitative results show that the private-debt-dependent fiscal rule is rather flat.
That is, how much the government is allowed to borrow is not very sensitive to the level
of private debt. In particular, going from zero private debt to the (exogenous) borrow-
ing limit allows the government to increase sovereign debt by 7.8%. In turn, this implies
that the optimal macroprudential wedges will be small. However, in the model, private
debt only increases the default probability mechanically by increasing the household’s
marginal utility. These estimates should be interpreted as a lower bound. The slope of
the fiscal rule and the size of the wedges could be much larger, with, for example, pecu-
niary externalities (Arce (2023)), bank-sovereign doom loops (Farhi and Tirole (2018)), or
private default following a sovereign default.

2In Appendix D, I also explore an extension where I allow the (representative) household to default
strategically without sovereign default. The – appropriately defined – private-debt-dependent fiscal rule
still implements the optimal allocation. Moreover, when only the no private default constraint binds, the
macroprudential wedges are larger than the wedge on sovereign debt.
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Related literature. This paper contributes to the literature studying the interaction be-
tween sovereign default and private debt by studying the joint design of fiscal rules and
macroprudential policies. Arce (2023) studies a quantitative sovereign default model with
private debt and pecuniary externalities as in Bianchi (2011). It shows that the interaction
between sovereign default and private debt increases the frequency of financial crises and
the size of the optimal macroprudential taxes. I contribute by studying the design of fiscal
rules and macroprudential policies jointly from the perspective of a central authority that
takes into account default externalities. Moreover, I show that in this context, macropru-
dential interventions are optimal even without pecuniary externalities or sovereign debt
spreads and derive analytical formulas for the macroprudential wedges in a model with
heterogeneous agents and multiple state-contingent securities.

A related literature studies the welfare effects of centralized international borrowing (pub-
lic debt) versus decentralized borrowing (private debt) (see Wright (2006), Jeske (2006)
and Kim and Zhang (2012)). In the benchmark model, I study an economy with two as-
sets (public and private debt), but where only public debt is defaultable. Moreover, since I
solve the Ramsey problem of the local government, I am focusing on centralized borrow-
ing. Other papers studying the interaction between sovereign default risk and the private
sector include Mendoza and Yue (2012), Arellano et al. (2017), and Kaas et al. (2020). They
study the productivity losses from a sovereign debt crisis due to domestic firms’ inability
to finance imports or reduced access to financing due to depressed banks’ balance sheets.

The EU sovereign debt crisis (2010-12) has motivated a large body of positive and nor-
mative.3 Martin and Philippon (2017) use a DSGE model to identify the drivers of the
European crisis across different countries. For Ireland and Spain, they find that the lead-
ing cause of the crisis was the large build-up of private debt, so macroprudential policies
would have been preferable to tighter fiscal discipline. Building on their work, I study
the optimal fiscal rules and macroprudential policies in a model where the government
can default strategically. Moreover, they find that a strategic government may respond
to macroprudential policies by increasing public debt. I identify the Frisch elasticity as
the key parameter that determines this substitution. A large literature has emerged that
studies the feedback loops between sovereign and bank insolvency –the so-called doom
loops– and derives implications for macroprudential policy and banking supervision and

3For positive work see, for example, Lane (2012), Gourinchas et al. (2017), Chodorow-Reich et al. (2019) or
Brunnermeier and Reis (2019) for a broad overview. For normative work see Tirole (2015) and Gourinchas
et al. (2020). Abrahám et al. (2018), Ferrari et al. (2020), and Liu et al. (2022) use dynamic contracting methods
to study optimal risk-sharing arrangements in the European context. Relatedly, on optimal risk sharing and
fiscal policy in monetary unions, see Auclert and Rognlie (2014), Farhi and Werning (2017), Aguiar et al.
(2015), or Eijffinger et al. (2018)
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regulation. Some important contributions include Acharya et al. (2014), Bocola (2016),
Brunnermeier et al. (2016), and Farhi and Tirole (2018). Instead, I focus on the leverage of
the household sector and study the implications for the design of fiscal rules.

Finally, I also contribute to the literatures studying fiscal rules with sovereign default
(Hatchondo et al. (2022)) and fiscal rules in economic unions (Chari and Kehoe (2007)),
Dovis and Kirpalani (2020), Broner et al. (2021), Sublet (2022), Berriel et al. (2023a), and
Berriel et al. (2023b)).4 I study the optimal design of fiscal rules with private borrowing
and show that private-debt-dependent fiscal rules can implement the optimal allocation.

2 Two-period model

There are two periods t ∈ {1,2}. I consider a small open economy composed of two
agents: a representative household and a benevolent local government. Both can borrow
internationally in the first period, but only the local government can default. The third
agent is a central authority. As the local government, it wants to maximize the utility of
representative household, but it also internalizes some extra costs arising from sovereign
default. A natural interpretation is that the small open economy (e.g., Spain or Ireland)
belongs to an economic union, and the central authority (e.g., European Commission)
takes into account that sovereign default imposes externalities on other members in the
union (Tirole (2015)).5 I first describe and characterize the problems of the representa-
tive household and the local government in Sections 2.1 and 2.2, respectively. Then, I
introduce the central authority in Section 2.3.

2.1 Households

The representative household’s per-period utility is

u(ct − v(yt)),

4Hatchondo et al. (2022) argue that fiscal rules based on sovereign debt spreads are preferable to rules
based on the quantity of sovereign debt. As I discuss in the paper, if the spreads price the default probability
correctly, this type of rule is equivalent to the private-debt-dependent fiscal rule and can also implement
the optimal allocation.

5The model also fits the European context in that I assume that the local government does not have
access to independent monetary policy and that the exchange rate is fixed.
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where ct denotes consumption and yt the household’s income.6 The function u is in-
creasing and concave, and the disutility of producing income v is increasing, convex, and
isoelatic so that the Frisch elasticity η ≡ v′(y1)

v′′(y1)y1
> 0 is constant. The representative house-

hold’s discount factor is β ∈ (0,1). At t = 1, the households can borrow internationally
with one-period uncontingent bonds a2, so −a2 is the quantity of private debt. I assume
that the households cannot default and that they borrow at the international risk-free rate
1
q − 1. I relax this assumption in Section 3, where I consider an extension in which the
households also default internationally after the government defaults. At every period,
the households’ income is taxed at a linear rate τt ∈ [0,1]. From the households’ perspec-
tive, the income tax in the second period is stochastic as it depends on the government’s
default decisions. More precisely, τ2(θ) is a function of a random variable θ ∈ [θ,θ] real-
ized at t = 2 and that affects the government’s default decisions, as I specify in the next
section.

Household’s problem. Given a tax system {τ1, (τ2(θ))θ∈[θ,θ]}, the representative house-
hold maximizes

VHH
1 = max

c1,y1,a1,
c2(θ),y2(θ)

u(c1 − v(y1)) + βEθ [u(c2(θ)− v(y2(θ)))]

subject to the budget constraints at t = 1

c1 + qa2 = (1 − τ1)y1, (1)

and at t = 2
c2(θ2) = a2 + (1 − τ2(θ))y2(θ), (2)

for all θ ∈ [θ,θ].

The solution to the household’s problem is characterized by the following optimality con-
dition for income

1 − τt = v′(yt), (3)

for all τt, and the Euler equation

u′
1 = βq−1E[u′

2(θ)], (4)
6I write income in the utility function directly. But, in the background, we can think of an economy

where households supply labor l with disutility v(l) and a competitive representative firm produces with
the constant returns production f (l) = l. The price of the final good is normalized to one, so the equilibrium
wage is also one, and y = l.
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where u′
1 and u′

2(θ) denote the marginal utility of consumption in the first period and in
the second period in state θ, respectively.

2.2 Local government

At t = 1, the local government taxes income linearly and borrows externally with one-
period uncontingent bonds to finance some (exogenous) government expenditures G1.7

Let B2 denote the bonds issued by the government, so −B2 is the quantity of sovereign
debt. At t = 2, the local government may default, so the foreign lenders demand a
price QB(B2, a2), which may depend on the default probability.8 However, I assume that
QB(B2, a2) = q when the default probability is zero. Therefore, the budget constraint of
the government at t = 1 writes

G1 + QB(B2, a2)B2 = τ1y1. (5)

At the beginning of period t = 2, the local government decides whether to repay B2 or
default. I introduce taste shocks to the value of defaulting by assuming that default carries
a stochastic utility penalty θ ∈ [θ,θ] realized at the beginning of period 2, with θ ≥ 0 and
continuous density π(θ). Therefore, from the government’s perspective, the utility at
period t = 2 after default is u(c2 − v(y2)) − θ. I assume that there are no government
expenditures to be financed at t = 2. As a result, if the government repays, we have the
following budget constraints for the government and the household

−B2 = τ2y2, (6)

c2 = a2 + (1 − τ2)y2, (7)

where the quantity of sovereign debt directly pins down the required tax rate. After
default, because there are no government expenditures in the second period, the govern-
ment does not tax (τ2 = 0), so the budget constraint of the household is

c2 = a2 + y2. (8)

Thus, we can think of the zero tax on the household after a default essentially as a bailout.
It is important to understand why public and private debt are non-fungible in the model

7I assume G1 is low enough such that it can be financed with income taxes.
8The setting allows for the case where foreign lenders expect to always be repaid by the central authority

after a default, so QB(B2, a2) is constant.
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so we cannot collapse them and consider only total external debt B2 + a2. First, sovereign
debt is defaultable, but private debt is not. Although private debt affects the incentives to
default, it does not do it in the same way as sovereign debt. Second, transferring resources
between the budget constraints of the government and the household is costly because
taxation is distortionary. Thus, even without sovereign default, we need to keep track
of B2 and a2 separately. Hence, fungibility would emerge if taxes were lump-sum (i.e.,
η → 0) and both or none of the two types of debt were defaultable.

Government’s problem. The local government chooses government expenditures, sets
taxes, borrows, and makes default decisions to maximize the representative household’s
utility. That is, it solves a Ramsey problem. Hence, we use the optimality condition (3)
of the household as an implementability condition for the output tax rate. Because we
solve the primal problem, the government directly chooses how indebted the household
is, i.e., c1 and a2, and there is no associated implementability condition because the price
q is fixed. The implicit assumption is that the government has sufficient instruments to
control private debt perfectly.9

At period 1, the local government maximizes

V1 = max
c1,y1,B2,a2

u(c1 − v(y1)) + βV2(B2, a2) (9)

subject to the budget constraints (1) and (5), the implementability condition (3), and the
bond price function QB(B2, a2). The expected value at period t = 2 is defined as

V2(B2, a2) = Eθ

[
max{VR

2 (B2, a2),VD
2 (a2,θ)}

]
, (10)

where VR
2 (B2, a2) is the value of defaulting and VD

2 (a2,θ) the value of repaying. The value
of repaying writes:

VR
2 (B2, a2) = max

c2,y2
u (c2 − v (y2))

subject to the budget constraints (6), (7) and the implementability condition (3). The value
defaulting writes:

VD
2 (a2,θ) = max

c2,y2
u (c2 − v (y2))− θ

subject to the budget constraint (8).

9More broadly, although full control may be a strong assumption, it is reasonable to assume that it
has some influence on private debt through, for example, tax instruments, the strictness of the banking
supervision (Farhi and Tirole (2018)), etc.
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Properties of the government’s problem. Because taxation is distortionary (i.e. the Frisch
elasticity is positive η > 0), the government wants to borrow to smooth tax distortions
across the two periods. Hence, it is generally not optimal to set B2 = 0 and only have
private borrowing –even if it is cheaper ex-ante– as this would require τ2 = 0, so all G1

would have to be financed with τ1. To see this more formally, let λG and λHH be the multi-
pliers on the government and the household budget constraints, respectively. Combining
the first-order conditions for c1 and y1, we can derive

λG =

(
1 − η

τ1

1 − τ1

)
λHH, (11)

where λHH = u′
1. All the derivations can be found in Appendix A.1. The term

(
1 − η τ1

1−τ1

)
links the multiplier on the household and the government’s budget constraints. First, no-
tice η τ1

1−τ1
= τ1

y1

dy1
dτ1

is the elasticity of income with respect to the tax rate, and so it measures
the deadweight loss of taxation. Hence, it captures how distortionary taxes are, i.e., the
tax capacity of the government. More generally, we can think of it as the cost of trans-
ferring resources from the household’s budget constraint to that of the government.10

Second, the multipliers λG and λHH also pin down the marginal costs of borrowing in
sovereign and private debt. Notice that the optimality conditions for B2 and a2 write:

λG(QB + B2
∂QB

∂B2
) = β

∂V2

∂B2
(12)

λHHq = β
∂V2

∂q2
(13)

Therefore, the government will choose the combination of public and private debt that
minimizes borrowing costs while also accounting for the costs associated with the tax
distortions. In Section 2.6, I show that η determines how much the government substi-
tutes between sovereign and private debt and, therefore, how it responds to changes in
debt prices.

Finally, before studying the central authority’s problem, it is useful to understand how
each type of debt affects the default probability. Let δ(B2, a2) = Pθ(VR(B2, a2) ≤ VD(a2,θ))
denote the default probability as a function of the quantity of sovereign and private debt.
The changes in default probability from an increase in sovereign debt (−B2) and private

10If η → 0, taxes become lump-sum, and this term is equal to one, so there is no deadweight loss from
taxation. By contrast, at the top of the Laffer curve τ1

1−τ1
= 1

η , and so the term goes to zero.
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debt (−a2) are proportional to (see Appendix A.1)

dδ(B2, a2)

d(−B2)
∝ − dVR

2
d(−B2)

=
u′

2(R)
1 − η τ2

1−τ2

> 0 (14)

dδ(B2, a2)

d(−a2)
∝ −

(
dVR

2
d(−a2)

− dVD
2

d(−a2)

)
= u′

2(R)− u′
2(D) > 0, (15)

where u′
2(R) and u′

2(D) denote the marginal utility of consumption in the second period
if the government repays and if it defaults, respectively. Equation (14) shows that higher
sovereign debt increases the default probability because it decreases the value of repay-
ing. An increase in sovereign debt requires an increase in taxes in the second period to
repay it, which brings a deadweight loss of η τ2

1−τ2
, and so lowers the households’ utility

by u′
2(R)

1−η
τ2

1−τ2

. Equation (15) shows that private debt also has an (indirect) effect on the de-

fault probability. Higher private debt lowers the household’s consumption at t = 2 due to
the larger repayment. Because the marginal utility is higher after repayment, an increase
in private debt lowers the value of repaying relatively more than the value of defaulting,
thereby increasing the default probability. Intuitively, when private leverage is high, the
consumption gain from defaulting brings a larger increase in utility for the household.
However, because 1 − η τ2

1−τ2
< 1, sovereign debt always has a larger effect on the default

probability.

2.3 Central authority’s problem

The objective of the central authority is to maximize the representative households’s util-
ity, but taking into account that sovereign default has an extra cost S > 0. We may think of
this cost as externalities on the rest of the countries of the union (Tirole (2015)). These may
include the contagion to other countries through financial markets or the real economy,
costs from a bailout, etc. The objective of the central authority is

W1 = V1 − Sδ(B2, a2). (16)

The central authority solves a similar primal problem as the local government: It sets
taxes and chooses private and sovereign debt, but it cannot force the local government
not to default. More concretely, the central authority is constrained by the fact that there
is default whenever VR

2 (B2, a2) < VD
2 (a2,θ). I assume that S is high enough such that

having a positive default probability would never be optimal. Thus, the problem of the
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central authority is the same as that of the local government (problem (9)), but with the
extra constraints

VR
2 (B2, a2) ≥ VD

2 (a2,θ) ∀θ ∈ [θ,θ]. (17)

This assumption simplifies the exposition because it allows us to keep the price of sovereign
debt fixed. In Section 2.5, I show how the main results on optimal fiscal rules and macro-
prudential policies easily generalize to the case where S is small and the central authority
allows for a positive default probability. Throughout, I will define a fiscal rule (macro-
prudential policy) as any intervention to the choice of sovereign (private) debt relative to
the solution of the local government’s problem (9).

General solvency constraints and private-debt-dependent fiscal rules. Instead of solv-
ing the central authority’s problem with constraint (17), it is more illustrative to use an
equivalent constraint where we impose a limit on sovereign debt that is a function of the
quantitative of private debt. Moreover, this can be directly interpreted as a decentral-
ization of the central authority’s solution where the local government can choose public
and private borrowing freely as long as it satisfies the private-debt-dependent limit on
sovereign debt.

To this end, notice first that because VD
2 (a2,θ) is decreasing in θ, we only need to consider

the constraint VR
2 (B2, a2) ≥ VD

2 (a2,θ).11 I define the function Bmax(a2) as the maximal
level of sovereign debt that guarantees there is no default given a quantity of private debt
a2. That is, Bmax(a2) is implicitly defined as

VR
2 (Bmax(a2), a2) = VD

2 (a2,θ). (18)

Then we can substitute constraint (17) by the following limit on sovereign debt

B2 ≥ Bmax(a2). (19)

Notice that this is a slight generalization of the solvency constraints that are not too tight de-
fined in Alvarez and Jermann (2000) because it binds only when the agent would (weakly)
prefer defaulting, but it is a function of private debt. We can think of this constraint as
a private-debt-dependent fiscal rule. That is, how much the government is allowed to
borrow depends on the level of private debt in the economy. In practice, fiscal rules are
usually independent of other macroeconomic and financial variables such as private debt.

11This may not be the case with more general asset structures and shocks, as the state where default is
more attractive can depend on the household’s portfolio. I will show how this can be handled in Section 3.
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For example, the Maastricht treaty and the Stability and Growth Pact intended to impose
a limit of 60% of public debt to GDP and budget deficits at 3%.12 As I show below, as long
as more private debt increases the incentives to default, it is optimal that the sovereign
debt limit is a function of private debt.

In Section 3, I generalize this constraint in a richer model. The sovereign debt limit Bmax

will be a function of the financial wealth positions and sovereign debt holdings of all
household types in all t + 1 aggregate states.

2.4 Optimal wedges

I define the wedges on sovereign and private debt as the distortions in the allocation of the
central authority relative to the problem of the local government (i.e., problem (9)). More
concretely, they are defined as deviations from the optimality conditions for sovereign
debt (equation (12)) and private debt (equation (13)) of the local government’s problem
with zero default probability. Therefore, the wedge on sovereign debt τB is defined as:

τB = 1 − βq−1

(
u′

1
1 − η τ1

1−τ1

)−1
u′

2(R)
1 − η τ2

1−τ2

. (20)

Similarly, I define the wedge on private debt τa as:

τa = 1 − βq−1 (u′
1
)−1 u′

2(R). (21)

If the local government would never default, i.e., constraint (19) (or equivalently con-
straint (17)) does not bind, we have τB = 0. Otherwise, sovereign debt is restricted and
τB > 0. Then we ask, if τB > 0, is it optimal also to restrict the choice of private debt? And
by how much? The following proposition derives a relation between the two wedges.

Proposition 1. The optimal wedge on private debt satisfies the following equation:

τa =

(
−∂Bmax(a2)

∂a2

)
τB

1 − η τ1
1−τ1

. (22)

Moreover, whenever τB > 0, we have τB > τa > 0.

All results are derived in the Appendix. The proposition shows that it is optimal to restrict
private debt (i.e., τa > 0) whenever sovereign debt is restricted (i.e., τB > 0). This provides

12This type of rules are also common outside the EU, see Bova et al. (2015)
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a rationale for macroprudential policies based on externalities from sovereign default.
Pecuniary (Lorenzoni (2008), Bianchi (2011) and Dávila and Korinek (2018)) or aggregate
demand (Farhi and Werning (2016)) externalities are not required for macroprudential
policies to be optimal.

Equation (22) also helps us understand the rationale for restricting private debt in this
model. We can always prevent default by only reducing sovereign debt (the local govern-
ment never defaults if B2 = 0). But this is not optimal, and we can do better by restricting
private debt. The government wants to borrow to smooth the tax distortions of financ-
ing G1. Without default, it is easy to show that the local government would set τ1 = τ2.
However, when τB > 0, taxes are inefficiently high at t = 1. By reducing private debt,
sovereign debt can be increased by − ∂Bmax(a2)

∂a2
> 0 while keeping the default probability at

zero. This allows the government to cut taxes at t = 1, which induces a resource gain pro-
portional to 1

1−η
τ1

1−τ1

. If private debt did not affect the default incentives, we would have

∂Bmax(a2)
∂a2

= 0 and τa = 0. Finally, the proposition shows that whenever sovereign debt is
restricted, the wedge on private debt is always smaller than the wedge on sovereign debt.
Intuitively, because private debt always has a smaller effect on the default probability, it
is optimal that the distortion is smaller.

Arce (2023) studies the interactions between sovereign default and pecuniary externalities
in private debt and shows that sovereign default increases the size of the optimal macro-
prudential wedges. However, even without pecuniary externalities, the incentives to de-
fault are higher when the household is more leveraged. So, combined with the sovereign
default externalities and the distortionary taxation, it is sufficient to rationalize macro-
prudential policies in a sovereign default context.13

In Section 3, I will show how this formula generalizes to a fully dynamic model with het-
erogeneous households, aggregate shocks, and a more general asset structure. However,
we can also write the wedge formula in terms that can be mapped more directly to the
data.

Proposition 2. The wedge on private debt can be rewritten as

τa

1 − τa =

(
1 − u′

2(D)

u′
2(R)

)
τB

1 − τB (23)

13In Arce (2023), because the government has access to lump-sum taxes, the choice of sovereign and
private debt balances the costs of sovereign debt spreads and hitting the borrowing constraint for private
debt. By contrast, when taxation is distortionary, the tax smoothing motive pins down sovereign borrowing.
Therefore, the macroprudential policy is optimal – even when sovereign debt spreads are zero – because it
allows for better tax smoothing.
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and

τa =

 ∂δ(B2,a2)
∂a2

∂δ(B2,a2)
∂B2

|δ(B2,a2)=0

 τB

1 − η τ1
1−τ1

. (24)

The first equation shows that only the difference in marginal utilities after repayment and
default is required to pin down the wedge on private debt.14 The simplification comes
from that, in this simple model, the only deviation from full tax smoothing comes from the
wedges.15 The second equation uses the fact that ∂−Bmax(a2)

∂a2
is also the ratio of the change

in the default probability from an increase in private and sovereign debt evaluated at the
region with 0 default probability.

Assuming constant relative risk aversion σ ≡ −u′′(c)c
u′(c) , to first order the first formula can

be rewritten as
τa

1 − τa ≈ σ
∆c

c2(R)
τB

1 − τB . (25)

Hence, the relation between the wedges depends on the coefficient of relative risk aver-
sion and the percentage increase in consumption from defaulting.16 In particular, the
macroprudential wedge is increasing in both the risk aversion and the increase in con-
sumption. Using the household’s budget constraints (7) and (8), we get

∆c
c2(R)

=
1

1 + a2
y2(R) +

B2
y2(R)

 (− B2

y2(R)
)︸        ︷︷        ︸

Direct gain default

+
y2(R)− y2(D)

y2(R)︸               ︷︷               ︸
Gain lower tax distortion

 .

So, the percentage change in consumption is mechanically increasing in the public lever-
age (− B2

y2(R)) and in the relative output gains from eliminating tax distortions after de-
fault. Moreover, because higher private debt lowers consumption after repayment but
does not affect the change in consumption from default, the macroprudential wedges are
also increasing in the quantity of private debt.

Discussion of the decentralization and spread-based rules. The decentralization with
a private-debt-dependent fiscal rule works because, conditional on not defaulting, the

14In the general model, if we assume no income effects, we will also obtain an extended version of this
formula.

15Recall that to minimize tax distortions, the local government borrows to perfectly smooth tax (i.e τ1 =

τ2). With the wedges instead we have
1−η

τ1
1−τ1

1−η
τ2

1−τ2

= 1−τB

1−τa .

16Interestingly, this expression bears some resemblance with the Baily-Chetty formula for optimal unem-
ployment insurance (Baily (1978), Chetty (2006)).

15



preferences of the local government and the central authority are perfectly aligned. That
is, they both agree on the pair of sovereign and private debt that minimizes distortions.
Therefore, imposing this private-debt-dependent fiscal rule guarantees that the local gov-
ernment implements the optimal macroprudential policy by itself. Hatchondo et al. (2022)
have shown that spread-break rules, that is, limits on fiscal deficits when spreads are
above a certain threshold, can be preferable to limits on sovereign debt. In this model, if
spreads ( q

QB(B2,a2)
− 1) price the default probability correctly, the private-debt-dependent

limit (19), and a rule that imposes zero spreads are clearly equivalent. So a govern-
ment faced with this spread-based rule would optimally choose the same combination
of sovereign and private debt and implement the optimal macroprudential policy.

2.5 Optimal policies with positive default probability

I now show that the above results on the optimal macroprudential wedges and the imple-
mentation through private-debt-dependent fiscal rules extend when S is smaller so that
allowing for a positive default probability may be optimal.

First, it is interesting to study the local government’s problem when the default proba-
bilities are positive. In this case, the local government wants to restrict private debt even
without any intervention by the central authority. The Euler equation of the household is:
u′

1 = βq−1 ∂V2
∂a2

. However, the Euler equation for private debt of the local government has

a wedge τa,LG defined as τa,LG = 1 − βq−1(u′
1)

−1 ∂V2
∂a2

, which is equal to

τa,LG =
1

1 − η τ1
1−τ1

q−1 ∂QB

∂a2
(−B2).

Because higher private debt increases the default probability, the local government can
lower the spread on sovereign debt by restricting private debt. A lower spread carries
a resource gain for the government proportional to (−B2), which allows for a tax cut
with a further resource gain of 1

1−η
τ1

1−τ1

due to reduced tax distortion. Hence, when the

default probability is positive, the local government implements macroprudential policies
to lower the spreads on sovereign debt.17

Private-debt-dependent fiscal rules with positive default probability. The previous
results can be generalized by imposing a private-debt-dependent fiscal rule that guaran-

17This rationale is also discussed in Arce (2023); with distortionary taxes, the tax smoothing motive im-
plies larger gains from lower sovereign debt spreads and so the size of the macroprudential wedge.
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tees that the default probability never exceeds a certain threshold. Notice that the de-
fault probability can be expressed as δ(B2, a2) = P(θ ≤ θ∗(B2, a2)), where VR

2 (B2, a2) =

VD
2 (a2,θ∗(B2, a2)). Given the one-to-one relationship between the default cutoff θ∗ and

the default probability, it is convenient to directly define the debt limit as a function of θ∗

instead of the default probability. That is, we define the function Bmax(a2;θ∗) as

VR
2 (Bmax(a2;θ∗), a2) = VD

2 (a2,θ∗), (26)

and impose the solvency constraint

B2 ≥ Bmax(a2;θ∗). (27)

Then, the central authority chooses the cutoff θ∗ that maximizes its value. More con-
cretely, letting V1(θ

∗) denote the local government’s value under constraint (27), the opti-
mal default cutoff for the central authority is

θ∗ = argmax
θ̃

V1(θ̃) + Π(θ̃)(−S).

I now define the wedge on sovereign debt τB as

τB = 1 − β(QB +
∂QB

∂B2
B2)

−1

(
u′

1
1 − η τ1

1−τ1

)−1
∂V2(B2, a2)

∂B2
,

and on private debt τa as

τa = 1 − τa,LG − βq−1(u′
1)

−1 ∂V2(B2, a2)

∂a2
.

Notice that because the wedges are defined relative to the solution of the local govern-
ment’s problem, the wedge τa,LG is not included in τa. The following proposition shows
that this fiscal rule implements the optimal allocation and derives formulas relating the
wedges on private and sovereign debt akin to those derived in the previous section.

Proposition 3. The optimal allocation of the central authority can be decentralized by imposing
the solvency constraint (27) with the optimal default cutoff θ∗. Moreover, the wedges on private
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and sovereign debt are linked through:

τa =
QB + ∂QB

∂B2
B2

q

(
−∂Bmax(a2;θ∗)

∂a2

)
1

1 − η τ1
1−τ1

τB

=
QB + ∂QB

∂B2
B2

q

(
1 − u′

2(D)

u′
2(R)

) 1 − η τ2
1−τ2

1 − η τ1
1−τ1

τB

The macroprudential wedge formulas are the same as before, except for the term
QB+ ∂QB

∂B2
B2

q .
This is the ratio of the increases in resources from a marginal increase in sovereign and
private debt. Hence, this term takes into account that with positive default probability,
an increase in sovereign debt lowers its price, so the resources for the government only
increase by QB + ∂QB

∂B2
B2 instead of q.

2.6 Tax capacity, substitution and the effects of third best policies

It is also useful to understand the effects of suboptimal policies that only restrict one type
of debt. Martin and Philippon (2017) found that in their model, a biased government re-
sponds by borrowing more after private debt is restricted through macroprudential poli-
cies. This is also the case here. After one type of debt is restricted or its price increases,
the local government can substitute and borrow more with the other type of debt.18 So,
these policies will be less effective when the local government can substitute more eas-
ily. I show in this section that the Frisch elasticity η is the parameter that determines the
magnitude of this substitution.

For exposition, assume that the local goverment cannot default and consider the follow-
ing policies: (i) an increase in the cost of sovereign debt by εB > 0, i.e., q(1− εB)B2; and (ii)
an increase the cost of private debt by εa > 0, i.e., q(1 − εa)a2. The following proposition
derives a tax smoothing formula that only depends on the difference in debt costs and the
Frisch elasticity.

Proposition 4. The difference in optimal taxes across periods can be approximated by the follow-
ing formula:

τ2

1 − τ2
− τ1

1 − τ1
≈ 1

η

[
εa − εB

]
. (28)

18Anecdotically, before the EU sovereign debt crises (2010-2012), Ireland and Spain were complying with
the sovereign debt limits dictated by the Maastricht Treaty but experienced large increases in private debt.

18



Because G1 is fixed, the left-hand side of the formula uniquely pins down the quantity of
sovereign debt B2. The right-hand side contains the difference in the price of sovereign
and private debt divided by the Frisch elasticity. If the prices are the same, we have
τ2 = τ1, so the local goverment borrows just enough to perfectly smooth taxes, as this
minimizes the tax distortion. Now consider an increase in εa, then τ2 > τ1 and B2 in-
creases. The increase in sovereign debt is inversely proportional to the Frisch elasticity
because it determines the costs of deviating from perfect tax smoothing. For η → 0, taxes
become lump-sum, so tax distortions go to zero, and the response goes to infinity.19 Con-
versely, as η → ∞ the costs of not smoothing taxes are very high, so the response goes to
zero. Essentially, η determines how (price-)substitutes the two types of debt are. In this
model, we can think of η as a measure of the country’s tax capacity. Then, the implication
is that for countries with high tax capacity (low η), policies that only restrict one type of
debt would be less effective. Therefore, a joint design of fiscal rules and macroprudential
policies becomes more important.

3 General model

In this section, I generalize the previous results in a fully dynamic model with heteroge-
neous households, aggregate risk, and multiple state-contingent assets.

Environment and households. The time horizon is infinite t = 1,2, ...,∞. There is a
stochastic aggregate state st, with history up to t denoted by st = (s1, ..., st). I assume st

is continuous and let π(st|st−1) be the transition density. The local economy is populated
by a finite set of household types I . Type i ∈ I has mass πi, welfare weight ωi, and utility
Ui(ci,yi, s), which is a function of its consumption, ci, income, yi, and the aggregate state
s. I denote, for x ∈ {c,y}, Ui

x = ∂Ui

∂x and Ui
xx = ∂Ui

∂2x , and assume Ui is twice continuously
differentiable, and satisfies Ui

c > 0 > Ui
cc, Ui

y < 0 and Ui
yy < 0. Moreover, I assume that

∂2Ui

∂y∂s > 0 so that we can interpret higher s as increasing the households’ productivity. The
government and all the household types have a common discount factor β ∈ (0,1).

Assets. There is a set K of assets available to the households.20 Each asset k ∈ K has
payoff Rk(st, st+1) and price qk(st), and ai

k(s
t) denotes type i’s position on asset k. I as-

19In this case, and without default or debt constraints, the government would go infinitely long in one
type of debt and short in the other. Therefore, distortionary taxation ensures that this kind of arbitrage is
not optimal.

20I model the financial market in a similar fashion as Berger et al. (2023).
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sume that, for all k ∈ K and st−1, the payoff Rk(st−1, .) and asset price qk(.) functions
are continuous and almost everywhere differentiable.21 The households may also hold
domestic sovereign debt bi(st) ≥ 0 and they face the following portfolio constraints

Hi
(

bi(st),{ai
k(s

t)}k∈K, st
)
≥ 0, (29)

where Hi is a vector-valued function. The constraints do not include asset prices, so I
abstract from pecuniary externalities. Define the household’s financial wealth net of the
payments from domestic sovereign debt as

Ii
t+1(s

t+1) ≡ ∑
k∈K

R̃k(st, st+1)ai
k(s

t), (30)

where R̃k(st, st+1) = Rk(st, st+1) + qk(st+1). The budget constraint of household i is

ci(st) + ∑
k

qk(st)ai
k(s

t) + QB(st)bi
t+1(s

t) = (1 − τi(st))yi(st) + Ii
t(s

t) + bi
t(s

t−1), (31)

where τi(st) is the type and state-specific income tax and QB(st) is the equilibrium price of
domestic sovereign debt in state st. To economize notation, let Xi

t+1(s
t+1) = (Ii

t+1(s
t+1),bi

t+1(s
t)).

Foreign Lenders. There is a continuum of foreign lenders. I assume they are deep-
pocketed, and so they will price all assets. Thus, the households and the local government
take the asset prices {qk(st)} as given. The price of sovereign bonds QB(Bt+1(st),{Xi

t+1(s
t+1)}, st)

depends on the default probability, but when that is zero, the price is QB = q.22

Government. The government taxes the households’ income and borrows with one-
period uncontingent bonds to finance a stochastic stream of government expenditures
{G(st)}. The budget constraint of the government following repayment is

G(st) + QB((Bt+1(st),{Xi
t+1(s

t+1)}i∈I ,st+1 , st)Bt+1(st) = ∑
i

πiτi(st)yi(st) + Bt(st−1). (32)

21This assumption will be used in Lemma 1. It implies that we are not allowing for discrete jumps in
the payoff function. However, it can accommodate, for example, standard put and call options of securities
where the price of the underlying is a continuous function of the aggregate state st+1.

22Note that 1
q − 1 may not necessarily be the rate at which the households can borrow.
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As before, we have an implementability condition for the income tax

1 − τi(st) = −
Ui

y(st)

Ui
c(st)

. (33)

Following repayment, the planning problem of the government is

VR
t

(
Bt,{Xi

t}i∈I , st
)
= max ∑

i∈I
ωiπiUi(ci(st),yi(st), st)+ βEst+1|stVt+1

(
Bt+1(st),{Xi

t+1(s
t+1)}i∈I , st+1

)
subject to the constraints (29)-(33), and where

Vt+1

(
Bt+1(st),{Xi

t+1(s
t+1)}i∈I , st+1

)
=

max{VR
t+1

(
Bt+1(st),{Xi

t+1(s
t+1)}i∈I , st+1

)
,VD

t+1

(
{Ii

t+1(s
t+1)}i∈I , st+1

)
},

and VD
t+1 is the value function after default. We can allow for general default penalties and

different probabilities of regaining access to international markets after default. Later, I
will also allow for changes in the assets available to the households, which nests private
defaults following sovereign default. The budget constraints of the government and HH
after default are

GD(st) = ∑
i

πiτi(st)yi(st), (34)

ci(st) + ∑
k

qk(st)ai
k(s

t) = (1 − τi(st))yi(st) + Ii
t(s

t) (35)

where GD(st) ≥ G(st) for all st.23 I introduce a default productivity costs by assuming
that utility after default is Ui(ci,yi, s; D) = Ui(ci,yi, h(s)), with h(s) ≤ s. After default, the
government regains access to financial markets with exogenous probability ι. Therefore,
the value of default solves:

VD
t

(
{Ii

t(s
t)}i∈I , st

)
= max ∑

i∈I
ωiπiUi(ci(st),yi(st), h(st)) + βEst+1|stVC

t+1

(
{Ii

t(s
t+1)}i∈I , st+1

)
(36)

subject to (29), (30) and (33)-(35), and the continuation value solves

VC
t+1

(
{Ii

t(s
t+1)}i∈I , st+1

)
= ιVR

t+1

(
0,{Xi

t+1(s
t+1)}i∈I , st+1

)
+(1− ι)VD

t+1

(
{Ii

t(s
t+1)}i∈I , st+1

)
,

with Xi
t+1(s

t+1) = {Ii
t+1(s

t+1),0}.

23This assumption guarantees that the government would never default when Bt = 0.

21



3.1 Central authority’s problem and general solvency constraints

As in the two-period model, we proceed by directly assuming that the default costs are
high enough that default is never optimal for the central authority. That is, the central
authority’s problem imposes the constraints

VR
t+1

(
Bt+1(st),{Xi

t+1(s
t+1)}i∈I , st+1

)
≥ VD

t+1

(
{Ii

t+1(s
t+1)}i∈I , st+1

)
∀st+1. (37)

Moreover, I also solve a decentralized version of the problem with generalized solvency
constraints. However, a more careful definition is required as, with state-contingent as-
sets, the states st+1 where constraint (37) binds may depend on the households’ asset
positions in a non-monotone way. That is, a priori, the constraint could bind in some
state s′t+1 but not in st+1 < s′t+1, and conversely.

Define, for all {Xi
t+1(s

t+1)}i∈I and st+1, the cutoff level of sovereign debt B that guaran-
tees there is no default implicitly as

VR
t+1

(
B({Xi

t+1(s
t+1)}i∈I , st+1),{Xi

t+1(s
t+1)}i∈I , st+1

)
= VD

t+1

(
{Ii

t+1(s
t+1)}i∈I , st+1

)
.

(38)
Then, I define the maximum sustainable sovereign debt as

Bmax({Xi
t+1(s

t+1)}i∈I ,st+1) = max
st+1

B({Xi
t+1(s

t+1)}i∈I , st+1). (39)

Throughout, I will assume that the utility functions Ui(c,y, s) and payoff functions R̃k(st, st+1)

are such that the function B has a unique maximum. Notice that the function Bmax de-
pends on the asset positions of all household types in all aggregate states st+1. Hence, we
impose the following solvency constraint

Bt+1(st) ≥ Bmax({Xi
t+1(s

t+1)}i∈I ,st+1). (40)

Again, this constraint generalizes the solvency constraints that are not too tight of Alvarez
and Jermann (2000) to a limited commitment setting where constraints are a function of
the portfolios of all household types. In Alvarez and Jermann (2000), the agents trade
one-period state-contingent assets (Arrow securities), but after defaulting, the agents are
excluded from financial markets and can only consume their flow endowment. Hence,
the value of defaulting on one particular asset (here sovereign debt) does not depend on
the rest of the portfolio. Instead, here, the value of default depends on the rest of the
economy’s portfolio because households cannot default in international markets. Thus,
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the solvency constraints must be written as a function of the households’ positions.

The function Bmax is always well-defined and bounded above by zero because

VR
t+1

(
0,{Xi

t+1(s
t+1)}i∈I , st+1

)
> VD

t+1

(
{Ii

t+1(s
t+1)}i∈I , st+1

)
for all

(
{Xi

t+1(s
t+1)}i∈I , st+1).24 The following lemma shows that this function is also

differentiable and satisfies an envelope formula, which will be used to derive the optimal
wedges. The envelope formula shows that Bmax only depends on the positions in the state
where the local government is most likely to default.

Lemma 1. The function Bmax is bounded above by zero and, letting x ∈ {b, I}, it satisfies

∂Bmax({Xi
t+1(s

t+1)}i∈I ,st+1)

∂xi
t+1(s

t+1)
=


∂−B({Xi

t+1(s
t+1)}i∈I ,st+1)

∂xi
t+1(s

t+1)
if st+1 = s∗t+1

0 otherwise
(41)

where s∗t+1 = argmax
st+1

B({Xi
t+1(s

t+1)}i∈I , st+1).

3.2 Optimal wedges

The wedges are defined as in the two-period model. The wedge on sovereign debt is

τB(st) = 1 − β

qλG(st)
Est+1|st

∂VR(st+1)

∂Bt+1(st)
, (42)

where λG(st) is the multiplier of the government budget constraint (32). Similarly, I define
the wedge on asset position ai

k(s
t) by

τk,i(st) = 1 − 1
qk(st)λHH,i(st)

(
⟨µH,i(st),Hi

ai
k
(st)⟩+ β ∑

st+1

R̃k(st, st+1)
∂VR

t+1
(
st+1)

∂Ii
t+1(s

t+1)

)
, (43)

where λHH,i(st) is the multiplier on type i’s budget constraint (31), µH,i(st) is a vector
of multipliers on the portfolio constraints (29), and ⟨, ⟩ is the dot product operator. As
in the lemma, I define s∗t+1 = argmax

st+1

B({Xi
t+1(s

t+1)}i∈I , st+1) and let st+1,∗ = (st, s∗t+1).

Notice that s∗t+1 depends on all the positions {Xi
t+1(s

t+1)}i∈I ,st+1 and so is endogenous to
the optimal wedges. However, I leave the dependence implicit for ease of notation. The
following proposition generalizes the wedge formula of Proposition 1.

24This inequality is guaranteed by the assumptions GD(st) ≥ G(st) and h(s) ≤ s.
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Proposition 5. The optimal wedge on asset position ai
k(s

t) is:

τk,i(st) =
R̃k(st, st+1∗)

qk(st)
q

∂ − B({Xi
t+1(s

t+1,∗)}i∈I , st+1,∗)

∂Ii
t+1(s

t+1,∗)

λG(st)

λHH,i(st)
× τB(st). (44)

The first term contains the ratio of returns in state s∗t+1 between sovereign debt and as-
set k. Then, similar to the two-period model, the second term depends on how much a
higher financial wealth of agent i in state st+1,∗ allows for an increase in sovereign debt
while keeping the default incentives fixed. The third term is the shadow cost of transfer-
ring resources from the budget constraint of household type i to the government in state
st. Recall that in the two-period model with no income effects, this term was just 1

1−η
τ1

1−τ1

where η τ1
1−τ1

is the deadweight loss of taxation. Therefore, the rationale for macropruden-
tial policy described in the two-period models extends to a more general setting.

As in the two-period model, I denote by Ui
c(st+1,∗, R) and Ui

c(st+1,∗, D) the marginal utility
of consumption in state st+1,∗ following a repayment and a default, respectively. Similarly,
τ(st+1,∗, R) is the tax rate in state st+1,∗ if the government repays. Assuming a utility
function with no income effects, we can derive a formula akin to that in Proposition 2.

Proposition 6. Assume Ui(ci,yi, s) = ui(ci − vi( yi

s )) and ηi = (vi)′(y)
(vi)′′(y)y , the optimal wedge on

asset position ai
k(s

t) can be written as:

τk,i(st) =
R̃k(st, s∗t+1)

qk(st)
q
(

1 − Ui
c(st+1,∗, D)

Ui
c(st+1,∗, R)

) 1 − ηis∗t+1
τi(st+1,∗,R)

1−τi(st+1,∗,R)

1 − ηist
τi(st)

1−τi(st)

× τB(st). (45)

The first term in the formula is the same. As in the two-period model, the second term
depends on the ratio of marginal utilities in the default and repayment states because this
captures how much the agent’s financial wealth affects the incentives to default. The third
term captures the deviation from full tax-smoothing between states st and st+1,∗.

We can also derive simple relations between the wedges across different assets and house-
hold types. For any k,k′ ∈ K, we have

τk′,i(st) =

R̃k′ (s
t,s∗t+1)

qk′ (st)

R̃k(st,s∗t+1)

qk(st)

τk,i(st).

Hence, for any household type, the relative distortions in its portfolio only depend on the
payments of each asset in the state s∗t+1. In particular, the household should hold more of
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(or borrow less in) assets that pay more in state s∗t+1. Similarly, for any i, i′ ∈ I , we can
derive

τk,i′(st) =

∂−B(Xi′
t+1(s

t+1,∗),st+1,∗)

∂Ii′
t+1(s

t+1,∗)
1

λHH,i′ (st)

∂−B(Xi
t+1(s

t+1,∗),st+1,∗)

∂Ii
t+1(s

t+1,∗)
1

λHH,i(st)

τk,i(st)

=

(
Ui′

c (st+1,∗, R)− Ui′
c (st+1,∗, D)

Ui
c(st+1,∗, R)− Ui

c(st+1,∗, D)

)
Ui

c(st)

Ui′
c (st)

τk,i(st),

where the second equality assumes a utility function with no income effects (i.e., Ui(ci,yi, s) =
ui(ci − vi( yi

s ))). Intuitively, a larger difference in marginal utilities in default and repay-
ment implies that the gains from default for this agent are larger, and so its wedge should
also be larger. Notice that the optimal wedges do not directly depend on the mass πi or
the Pareto weight ωi of each household type. Because these are constant, the effect on the
incentive to default of higher πi or ωi is exactly offset by the welfare cost of increasing
distortions at t.

Optimal wedges to domestic sovereign debt. We can also derive a similar formula for
the domestic holdings of sovereign debt. I define the wedge on position bi

t+1(s
t) as

τb,i(st) = 1 − β

qλHH,i(st)
Est+1|st

∂VR(st+1)

∂bi
t+1(s

t)
. (46)

The following proposition characterizes the optimal wedges on domestic sovereign debt
holdings.

Proposition 7. The optimal wedge on position bi
t+1(s

t) satisfies

τb,i(st) =
∂ − B({Xi

t+1(s
t+1)})

∂bi
t+1(s

t)

λG(st)

λHH,i(st)
τB(st)

=
1 − ηist+1,∗

τi(st+1,∗,R)
1−τi(st+1,∗,R)

1 − ηist
τi(st)

1−τi(st)

τB(st),

where the second inequality assumes no income effects.

The first line shows that the rationale for distorting bi
t+1(s

t) is the same as for other assets.
However, the second line is now different from the formula in Proposition 2. Intuitively,
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higher bi
t+1(s

t) directly increases the value of repaying by Ui
c(st+1,∗, R) but does not affect

the value of defaulting. Hence, we have a 1 instead of 1 − Ui
c(st+1,∗,D)

Ui
c(st+1,∗,R)

. Notice that because

bi
t+1(s

t) ≥ 0, τb,i(st) > 0 implies that holding domestic sovereign debt is subsidized. An
important caveat of this formula is that because I keep the spreads on sovereign debt at
zero, there are no interactions between the bond prices and the private sector’s losses. In
particular, I am abstracting from the doom loop dynamics that played a crucial role in the
European sovereign debt crises (Farhi and Tirole (2018)). The formula only accounts for
the commitment effects of domestic sovereign debt.

Asset restrictions and household default. The model also allows us to study the im-
plications of household default in international markets following a sovereign default. I
assume now that only a subset K̃ ⊂ K of assets are available after sovereign default. Let
K̃D = K \ K̃, then for asset kD ∈ K̃D, we say that the household defaults on the asset
in international markets if R̃kD(st, st+1)ai

kD(st) < 0. It is easy to verify that Proposition 5
extends to this setting for all k ∈ K. For kD ∈ K̃D, without income effects, we now have

τkD,i(st) =
R̃kD(st, s∗)

qkD(st)
q

1 − ηist+1,∗
τi(st+1,∗,R)

1−τi(st+1,∗,R)

1 − ηist
τi(st)

1−τi(st)

× τB(st).25 (47)

The formula is now as in Proposition 7 for domestic sovereign debt but with the ratio
of returns between asset kD and sovereign debt. As for domestic sovereign debt, assets
kD ∈ K̃D affect the value of repayment but not the value of default. Notice that if we
consider two assets k, kD that have the same prices and payoffs but with k ∈ K̃ and kD ∈
K̃D, we have τkD,i(st) > τk,i(st) because 1 − Ui

c(st+1,∗,D)

Ui
c(st+1,∗,R)

< 1. Therefore, macroprudential
policies are more stringent if the households also default in international markets after
sovereign default. Moreover, some domestic households may have a long position on
these defaultable assets. In this case, saving in these assets is subsidized for the same
commitment motive as domestic sovereign debt.

In Appendix D, I study an extension where I allow for private default without sovereign
default. This case may resemble the Icelandic financial crisis, where the bank’s liabilities
were so large relative to the size of the local economy that a bailout from the sovereign
was unfeasible. I show that the same private-debt-dependent fiscal rule can implement

25Notice that with household default, there could potentially exist some {Xi
t+1(s

t+1)} where the func-
tion Bmax is unbounded. That is, the government could want to default at any level of sovereign
debt. Hence, here we need to assume that for all {bi,{ai

k(s
t)}k∈K} that satisfy the portfolio constraints

Hi (bi,{ai
k(s

t)}k∈K, st) ≥ 0, the function Bmax is bounded.
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the optimal allocation with the appropriately defined limit Bmax. Whether the constraints
preventing private or sovereign default bind, the formula in Proposition 1 continues to
hold. However, when the no private default constraint binds, the macroprudential wedge
is larger than the wedge on sovereign debt.

4 Quantitative analysis

In this final section, I solve and calibrate a quantitative version of the model. The objec-
tives are: (i) quantify the effect of private debt on default probabilities, (ii) compute the
private-debt-dependent fiscal rules, and (iii) quantify the size of the optimal macropru-
dential wedges. The fiscal rules can be computed directly from the value functions of
the local government’s problem. In turn, this allows us to back out the magnitude of the
macroprudential wedges. Therefore, this approach will allow us to quantify the optimal
policies without solving the full Ramsey problem of the central authority.

It is well known that standard quantitative sovereign debt models with short-term debt
cannot match the high debt levels observed in the data. Following Hatchondo and Mar-
tinez (2009) and Chatterjee and Eyigungor (2012), I extend the model by introducing
long-term debt. I assume that sovereign bonds pay a geometrically declining sequence of
coupons. That is, absent default, a bond pays λ ∈ (0,1) at t+ 1, λ(1−λ) at t+ 2, λ(1−λ)2

at t + 3... I assume foreign lenders are risk-neutral, and the risk-free rate is 1
q − 1, so the

price of this bond satisfies

QB
t = qE[δt+1(λ + (1 − λ)QB

t+1)], (48)

where δt+1 = 1 if the government repays and δt+1 = 0 otherwise. To solve the model with
long-term debt, I follow Dvorkin et al. (2021) and introduce extreme value shocks to the
value of borrowing (see Appendix B.2).

The household side is kept similar to Section 2. So there is a representative household
with utility function U(c,y, s) = u(c − v(y/s)), and that can borrow internationally with
one-period uncontingent bonds at the risk-free price q. The household and the local gov-
ernment have common discount factor β ∈ (0,1). After default, the household faces a pro-
ductivity loss such that its productivity in state s is sD = h(s), for some function h(s) ≤ s.
I introduce the following borrowing limit on private debt

at+1 ≥ a, (49)
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where a < 0. Then, the budget constraint of the government is

G + QB(Bt+1, at+1, st)Bt+1 = λBt + (1 − λ)QB(Bt+1, at+1, st)Bt + τtyt, (50)

where I assume that the flow government expenditures G are constant. As usual, the
government maximizes the expected discounted utility of the household subject to the
sequence of budget constraints of the government and the household, the bond prices
(48), the borrowing limit on private debt, and the implementability conditions for the
income tax (see Appendix B.1 for the formal definition of the recursive problem). For
simplicity, I assume that after default, the government is permanently excluded from
borrowing (both domestically and internationally). However, the household may still
borrow internationally at the risk-free rate.

Parameterization. The utility function is parameterized by u(x) = x1−γ

1−γ and v(x) =

χ x1+ 1
η

1+ 1
η

, where I set γ = 2 as standard. For the Frisch elasticity, I set η = 1
2 following Chetty

et al. (2011) for the main calibration. However, as discussed, this parameter should be
interpreted more broadly as a measure of the government’s tax capacity. For this reason,
I also recalibrate the model with η = 3/4 to quantify the effect of a lower tax capacity
(see Appendix B.3 for the calibration details). I calibrate the disutility parameter χ to nor-
malize the average output to one. The international risk-free rate is set to 1

q − 1 = 0.017
which equals the average US quarterly interest rate. The household’s discount factor β is
calibrated to match the average default probability. I parameterize the productivity cost
of default by h(s) = s − max{ζ0s + ζ1s2,0} following Chatterjee and Eyigungor (2012),
where the parameters ζ0 and ζ1 are calibrated to match the average debt to GDP and
average spreads, respectively.26 The debt decay rate λ is chosen to generate an average
maturity of 4 years (Chatterjee and Eyigungor (2012)).

I assume (log-) productivity follows an AR(1) process log(zt) = ρlog(zt−1) + εz
t , with

E(εz
t) = 0 and E((εz

t)
2) = σ2. The persistence parameter is set to ρ = 0.95 following

Neumeyer and Perri (2005), and the standard deviation σ is calibrated to target the av-
erage standard deviation of GDP. I fix the flow government expenditures to G = 0.14 in
order to replicate the average government expenditures to GDP. Finally, the private debt
limit is set to a = 0.7, which is approximately the value of private debt to GDP of Spain in

26Following Hatchondo and Martinez (2009), I compute spreads as follows: let r∗(Bt+1, at+1, st) =

λ
QB(Bt+1,at+1,st)

− λ, then the annualized spread is Rs =
(

1+r∗(Bt+1,at+1,st)
1+r f ree

)4
− 1 where r f ree = 1

q − 1 is the
risk free rate.
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the years prior to the sovereign debt crises (2007-2011), see Arce (2023).27

Table 1 summarizes all the external and internally calibrated parameters. Table 2 summa-
rizes the targeted moments in the data and model. The model does a reasonable job of
approximating the targeted features of the data.

Table 1: Calibration parameters

External parameters

Source

Relative risk aversion γ = 2 Standard
Frisch elasticity η = 1/2 Standard
Persistence productivity ρ = 0.95 Neumeyer and Perri (2005)
Risk-free debt price q = 1

1+0.017 Average US interest rate (quarterly)
Debt decay rate λ = 0.05 Average maturity
Government expenditures G = 0.14 Gov. expenditures to GDP
Private debt limit a = 0.7 Private Debt to GDP Spain (2007-2011) (Arce (2023))

Internal parameters

Moment matched

Discount factor β = 0.983 Default probability
Disutility parameter χ = 0.836 Normalization avg. income
Productivity cost default ζ0 = −0.193 Debt to GDP
Productivity cost default ζ1 = 0.201 Mean Spread (Hatchondo and Martinez (2009))
Std. dev. productivity σ = 0.01 Std. dev GDP

Table 2: Model fit

Data Model

Std. dev GDP 3.08 3.2
Default probability, % 4.5 3.7
Debt to GDP % −32.5 −28.5
Mean Spread % 7.4 8.3
Avg. GDP (normalization) 1.0 1.0

Private debt and default probability. Figure 1 plots the default probability as a func-
tion of the quantity of sovereign debt for high (at = −0.7) and low (at = −0.1) levels of

27Notice that for both G and a we can assign the value directly because the average output is normalized
to one.
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private debt. When positive, the default probability is always higher when private debt
is high, which verifies that the mechanism of the two-period model goes through in this
quantitative model. The effect of private debt on the default probability is much larger in
the calibration with low tax capacity (see Figure 5 in Appendix C).

Figure 1: Effects of private debt on default probability

Private-debt-dependent fiscal rules. In Figure 2, I plot the private-debt-dependent fis-
cal rule for a fixed productivity level st = 1. That is, for every level of private debt in the
x-axis, the y-axis contains the maximum level of sovereign debt that guarantees that the
government would not default in any future state, which can be computed directly from
the value function.28 As expected, the borrowing limit is decreasing, so the government is
allowed to borrow more when private debt is low. The slope will be steeper if private debt
has a bigger effect on the default probabilities. So, decreasing private debt would allow
for a larger increase in sovereign borrowing. Going from the (calibrated) borrowing limit
on private debt (at+1 = −0.7 or 70% of the average GDP) to zero private debt (at+1 = 0.0)
allows the government to borrow 11.2% more. Interestingly, it is approximately linear,
so the following rule gives a good approximation: Bmax ≈ −0.26 − 0.042at+1. In Figure 4
in Appendix C, I plot several fiscal rules that allow for a positive default probability, as
in Section 2.6. As expected, allowing for a positive default probability shifts the line up

28Notice that, numerically, the grid of productivity has a lower and upper bound. With the original
AR(1) process with unbounded support, there may always be a low enough s such that the government
may default for any Bt+1 < 0.
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so that the government can borrow more for every level of private debt. However, the
slope of the fiscal rule appears to be approximately independent of the allowed default
probability. The fiscal rule also takes a similar shape in the calibration with η = 0.75 (see
Figure 6 in Appendix C).

The slope of the computed private-debt-dependent fiscal rule should be taken as a lower
bound. With extra amplification channels of private debt, such as pecuniary externali-
ties (Arce (2023)), we should see larger effects of private on the default incentives and a
steeper slope. Similarly, the slope should also increase if the household can default in
international markets after sovereign default.

Figure 2: Private-debt-dependent fiscal rule

Note: For every at+1, I find Bmax by solving the root VR,int(Bmax, at+1, s)− VD,int(at+1, s) where VR,int and
VD,int are the (linearly) interpolated value functions and s is the lowest productivity level in the grid.

Size of the macroprudential wedges. Using Proposition 1, we can also infer the mag-
nitude of the macroprudential wedges without solving for the allocation with no default
constraints.29 For average levels of output and productivity, the deadweight loss from the
income tax is roughly η τ

1−τ ≈ 0.1, and the derivative of the fiscal rule ∂Bmax

∂a ≈ 0.043. This
implies that the size of the macroprudential wedge relative to the wedge on sovereign

29Because the solvency constraints imply that the default probabilities are zero everywhere, the price of
the long-term bond is always Q = λq

1−q(1−λ)
. So an increase in sovereign debt increases resources at t by

λq
1−q(1−λ)

and increases the repayment at t + 1 by λ + (1 − λ) λq
1−q(1−λ)

= λ
1−q(1−λ)

. As a result, the same
wedge formulas are also satisfied in this model with long-term debt.
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debt is approximately τa

τB ≈ 4.7%. With a lower tax capacity (η = 0.75), the deadweight
loss increases to 0.14, but the derivative of the fiscal rule decreases to 0.038, implying a
similar ratio of wedges of approximately τa

τB ≈ 4.4%.30 As for the fiscal rule, we should
also interpret this value as a lower bound for the size of the optimal macroprudential
wedges.

Macroprudential wedge in local government’s problem (τa,LG). As shown in Section
2.5, the local government wants to conduct macroprudential policies by itself when the
default probability is positive. With long-duration sovereign debt, this macroprudential
wedge is equal to

τa,LG
t =

1
1 − η τt

1−τt

q−1 ∂QB

∂at+1
(−(Bt+1 − (1 − λ)Bt)),

which now depends on the net debt issuance at t. I compute this wedge in Figure 3 (Panel
3a) along with the derivative ∂QB

∂at+1
(Panel 3b) for multiple levels of sovereign and private

debt starting from Bt = −0.25. The optimal wedge can grow substantially (up to 2.5%)
when the sovereign debt issuance is high and at+1 approaches the borrowing limit. In
Figure 7 in Appendix C, I plot this wedge and the derivative ∂QB

∂a for the calibration with
η = 0.75. The wedges are slightly higher in this case; in particular, they increase to 3% for
high levels of sovereign and private debt. Although smaller, these wedges are of the same
order of magnitude as the optimal macroprudential taxes computed by Arce (2023) for
Spain between 2008 and 2015. Arce (2023) analyzes a model with pecuniary externalities
in private borrowing but where the government can use lump-sum transfers. Hence,
these results suggest that distortionary taxation is a potentially important amplification
mechanism for the size of the optimal macroprudential interventions.31

30Note, however, that we should interpret this comparative static with caution as with η = 0.75, the
model actually does a much better at matching the targeted levels of public debt and default probability,
which could affect the estimated derivative of the fiscal rule.

31In Figure 7 in Appendix C, I plot this wedge and the derivative ∂QB

∂a for the calibration with η = 0.75.
The wedges are higher in this case, but the difference is very small.
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Figure 3: Macroprudential wedges in local government’s problem

(a) Macroprudential wedges (in %) (b) Derivatives sovereign debt price with respect to
private debt

Note: To compute the wedges I fix Bt = −0.25. For every Bt+1, I approximate the derivative ∂QB

∂at+1
with a

finite difference method.

5 Conclusion

The European Sovereign debt crises (2010-2012) showcased how excessive leverage of
the private sector and financial instability can threaten sovereign debt sustainability and
trigger a sovereign debt crisis. Notably, Ireland and Spain experienced large increases
in sovereign debt spreads while having low levels of public debt in the preceding years
and compiling with the limits imposed by the Stability and Growth Pact. Consequently,
the shortcomings of Maastricht-type rules and the risks of insufficient macroprudential
policy and supervision became clear.

Motivated by these events, this paper studies the optimal joint design of fiscal rules and
macroprudential policies under sovereign default risk. These policies are designed by
a central authority that internalizes externalities from sovereign default of a local gov-
ernment. I start by analyzing a stylized two-period model of a small open economy
where both a local government and a representative household can borrow externally.
The model yields two main insights. First, it provides a rationale for macroprudential
policies based on the default externalities and distortionary taxation. Second, it shows
that sovereign debt limits that are a function of the quantity of private debt (private-debt-
dependent fiscal rules) can implement the optimal allocation.

These results are then generalized to a dynamic model with heterogeneous households,
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aggregate shocks, and multiple state-contingent securities. I show how to define the
private-debt-dependent fiscal rules in this setting, which generalizes the solvency con-
straints that are not too tight of Alvarez and Jermann (2000).

Finally, I solve and calibrate a quantitative version of the model to compute the private-
debt-dependent fiscal rules and the size of the macroprudential wedges. Using the results
from the theory parts, I can compute the private-debt-dependent fiscal rules and infer the
size of the macroprudential wedges without solving the Ramsey problem of the central
authority. Future work could extend this approach of computing the fiscal rules and
macroprudential to richer models. For example, it could study how household leverage
interacts with the bank-sovereign doom loop and quantify how the optimal fiscal rules
depend on both the households’ and banks’ balance sheets.

References

ABRAHÁM, A., CÁRCELES POVEDA, E., LIU, Y. and MARIMON, R. (2018). On the optimal
design of a financial stability fund.

ACHARYA, V., DRECHSLER, I. and SCHNABL, P. (2014). A pyrrhic victory? bank bailouts
and sovereign credit risk. The Journal of Finance, 69 (6), 2689–2739.

AGUIAR, M., AMADOR, M., FARHI, E. and GOPINATH, G. (2015). Coordination and crisis
in monetary unions. The Quarterly Journal of Economics, 130 (4), 1727–1779.

ALVAREZ, F. and JERMANN, U. J. (2000). Efficiency, equilibrium, and asset pricing with
risk of default. Econometrica, 68 (4), 775–797.

ARCE, F. (2023). Private overborrowing under sovereign risk.

ARELLANO, C., BAI, Y. and BOCOLA, L. (2017). Sovereign default risk and firm heterogeneity.
Tech. rep., National Bureau of Economic Research.

AUCLERT, A. and ROGNLIE, M. (2014). Monetary union begets fiscal union. In Working
paper.

BAILY, M. N. (1978). Some aspects of optimal unemployment insurance. Journal of public
Economics, 10 (3), 379–402.

BERGER, D., BOCOLA, L. and DOVIS, A. (2023). Imperfect risk sharing and the business
cycle. The Quarterly Journal of Economics, 138 (3), 1765–1815.

34



BERRIEL, R., GONZALEZ-AGUADO, E., KEHOE, P. J. and PASTORINO, E. (2023a). Fiscal
Federalism and Monetary Unions. Tech. rep., National Bureau of Economic Research.

—, —, — and — (2023b). Is a fiscal union optimal for a monetary union? Journal of Mone-
tary Economics.

BIANCHI, J. (2011). Overborrowing and systemic externalities in the business cycle. Amer-
ican Economic Review, 101 (7), 3400–3426.

BOCOLA, L. (2016). The pass-through of sovereign risk. Journal of Political Economy, 124 (4),
879–926.

BOVA, E., KINDA, T., MUTHOORA, P. and TOSCANI, F. (2015). Fiscal rules at a glance.
International Monetary Fund.

BRONER, F., MARTIN, A. and VENTURA, J. (2021). On public spending and economic
unions. IMF Economic Review, 69, 122–154.

BRUNNERMEIER, M. K., GARICANO, L., LANE, P. R., PAGANO, M., REIS, R., SANTOS, T.,
THESMAR, D., VAN NIEUWERBURGH, S. and VAYANOS, D. (2016). The sovereign-bank
diabolic loop and esbies. American Economic Review, 106 (5), 508–12.

— and REIS, R. (2019). A crash course on the euro crisis. Tech. rep., National Bureau of
Economic Research.

CHARI, V. V. and KEHOE, P. J. (2007). On the need for fiscal constraints in a monetary
union. Journal of Monetary Economics, 54 (8), 2399–2408.

CHATTERJEE, S. and EYIGUNGOR, B. (2012). Maturity, indebtedness, and default risk.
American Economic Review, 102 (6), 2674–2699.

CHETTY, R. (2006). A general formula for the optimal level of social insurance. Journal of
Public Economics, 90 (10-11), 1879–1901.

—, GUREN, A., MANOLI, D. and WEBER, A. (2011). Are micro and macro labor supply
elasticities consistent? a review of evidence on the intensive and extensive margins.
American Economic Review, 101 (3), 471–475.

CHODOROW-REICH, G., KARABARBOUNIS, L. and KEKRE, R. (2019). The macroeconomics
of the Greek depression. Tech. rep., National Bureau of Economic Research.

DÁVILA, E. and KORINEK, A. (2018). Pecuniary externalities in economies with financial
frictions. The Review of Economic Studies, 85 (1), 352–395.

35



DOVIS, A. and KIRPALANI, R. (2020). Fiscal rules, bailouts, and reputation in federal
governments. American Economic Review, 110 (3), 860–88.

DVORKIN, M., SÁNCHEZ, J. M., SAPRIZA, H. and YURDAGUL, E. (2021). Sovereign debt
restructurings. American Economic Journal: Macroeconomics, 13 (2), 26–77.

EIJFFINGER, S. C., KOBIELARZ, M. L. and URAS, B. R. (2018). Sovereign default, exit and
contagion in a monetary union. Journal of International Economics, 113, 1–19.

FARHI, E. and TIROLE, J. (2018). Deadly embrace: Sovereign and financial balance sheets
doom loops. The Review of Economic Studies, 85 (3), 1781–1823.

— and WERNING, I. (2016). A theory of macroprudential policies in the presence of nom-
inal rigidities. Econometrica, 84 (5), 1645–1704.

— and — (2017). Fiscal unions. American Economic Review, 107 (12), 3788–3834.

FERRARI, A., MARIMON, R. and SIMPSON-BELL, C. (2020). Fiscal and currency union
with default and exit. Available at SSRN 3673917.

GOURINCHAS, P.-O., MARTIN, P. and MESSER, T. E. (2020). The economics of sovereign debt,
bailouts and the Eurozone crisis. Tech. rep., National Bureau of Economic Research.

—, PHILIPPON, T. and VAYANOS, D. (2017). The analytics of the greek crisis. NBER
macroeconomics Annual, 31 (1), 1–81.

HATCHONDO, J. C. and MARTINEZ, L. (2009). Long-duration bonds and sovereign de-
faults. Journal of International Economics, 79 (1), 117–125.

—, — and ROCH, F. (2022). Fiscal rules and the sovereign default premium. American
Economic Journal: Macroeconomics, 14 (4), 244–73.

JESKE, K. (2006). Private international debt with risk of repudiation. Journal of political
Economy, 114 (3), 576–593.

KAAS, L., MELLERT, J. and SCHOLL, A. (2020). Sovereign and private default risks over
the business cycle. Journal of International Economics, 123, 103293.

KIM, Y. J. and ZHANG, J. (2012). Decentralized borrowing and centralized default. Journal
of International Economics, 88 (1), 121–133.

LANE, P. R. (2012). The european sovereign debt crisis. Journal of economic perspectives,
26 (3), 49–68.

36



LIU, Y., MARIMON, R., WICHT, A. et al. (2022). Making sovereign debt safe with a financial
stability fund. Tech. rep.

LORENZONI, G. (2008). Inefficient credit booms. The Review of Economic Studies, 75 (3),
809–833.

MARTIN, P. and PHILIPPON, T. (2017). Inspecting the mechanism: Leverage and the great
recession in the eurozone. American Economic Review, 107 (7), 1904–37.

MENDOZA, E. G. and YUE, V. Z. (2012). A general equilibrium model of sovereign default
and business cycles. The Quarterly Journal of Economics, 127 (2), 889–946.

NEUMEYER, P. A. and PERRI, F. (2005). Business cycles in emerging economies: the role
of interest rates. Journal of monetary Economics, 52 (2), 345–380.

SACHS, D., TSYVINSKI, A. and WERQUIN, N. (2020). Nonlinear tax incidence and optimal
taxation in general equilibrium. Econometrica, 88 (2), 469–493.

SUBLET, G. (2022). Fiscal rules with discretion for an economic union.

TIROLE, J. (2015). Country solidarity in sovereign crises. American Economic Review,
105 (8), 2333–2363.

WRIGHT, M. L. (2006). Private capital flows, capital controls, and default risk. Journal of
International Economics, 69 (1), 120–149.

A Proofs and Derivations

A.1 Two period model

Substituting the implementability condition (3), we have the following first-order condi-
tions for problem local government’s problem:

c1:
u′

1 = λHH
1 (51)

y1:
u′

1v′(y1) = λG
1
(
1 − v′′(y1)y1 − v′(y1)

)
+ λHH

1
(
v′′(y1)y1 + v′(y1)

)
(52)
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Substituting the FOC for c1, using 1 − 1
v′(y1)

= − τ1
1−τ1

and rearranging we have

λHH
1 =

(
1 − η

τ1

1 − τ1

)
λG

1 (53)

Letting χ be the multiplier on the solvency constraint (19), the FOC for sovereign debt in
the central authority’s problem is

λG
1

(
1 − χ

qλG
1

)
= q−1β

∂VR
2

∂B2
, (54)

and using the definition of the sovereign debt wedge we get τB = χ

qλG
1

. Similarly, the FOC
for private debt is

λHH
1

(
1 − χ

qλHH
1

∂ − Bmax(a2)

∂a2

)
= q−1β

∂VR
2

∂a2
(55)

and so the wedge for private debt is τa = χ

qλHH
1

∂−Bmax(a2)
∂a2

.

Finally, the envelope conditions for the second period are:

∂VR
2

∂B2
=

u′
2(R)

1 − η τ2
1−τ2

(56)

∂VR
2

∂a2
= u′

2(R) (57)

∂VD
2

∂b2
= u′

2(D) (58)

Changes in default probabilities. First, notice that we can write the default probability
as δ(B2, a2) = P(θ ≤ θ∗(B2, a2)), where θ∗(B2, a2) satisfies

VR
2 (B2, a2) = VD

2 (a2,θ∗(B2, a2)). (59)

Then note that, for x ∈ {B2, a2}, dδ(B2,a2)
dx = dθ∗

dx π(θ∗). Differentiating in the definition of
θ∗, we have

dθ∗

dB2
=

∂VR
2

∂B2

∂VD
2

∂θ

38



dθ∗

da2
=

∂VR
2

∂a2
− ∂VD

2
∂a2

∂VD
2

∂θ

,

where ∂VD
2

∂θ = −1. Using the envelope conditions (56)-(58), we obtain the expressions in
the main text.

Proof of Proposition 1. Combining the wedges derived above to substitute for χ and
using (11), we can derive the equation of the proposition. The inequality τB > τa follows
directly from the first wedge formula in Proposition 2 and u′

2(D)
u′

2(R) < 1. Moreover, using the
definition of Bmax(a2) and differentiating we have

∂ − Bmax(a2)

∂a2
=

∂VR

∂a2
− ∂VD

∂a2

∂VR

∂B2

=
u′

2(R)− u′
2(D)

u′
2(R)

(
1 − η

τ2

1 − τ2

)
. (60)

Then, using u′
2(D)

u′
2(R) < 1 and that

(
1 − η τt

1−τt

)
> 0 for t ∈ {1,2} at the increasing part of the

Laffer curve (it cannot be optimal to be in the decreasing part of the Laffer curve in this
model), it follows that τa > 0 whenever τB > 0.

Proof of Proposition 2. Substituting (60) into the wedge formula of Proposition 1 gives

τa =

(
1 − u′

2(D)

u′
2(R)

) 1 − η τ2
1−τ2

1 − η τ1
1−τ1

τB. (61)

From the wedge definitions, we have the tax smoothing formula:
1−η

τ1
1−τ1

1−η
τ2

1−τ2

= (1−τB)
(1−τa)

. Sub-

stituting gives the first equation in the proposition.

To derive the second equation, we use the derivations above on the change in the default
probabilities to show

∂δ(B2, a2)/∂a2

∂δ(B2, a2)/∂B2
|δ(B2,a2)=0 =

dθ∗
da2

π(θ∗)
dθ∗
dBs

π(θ∗)
|θ∗=θ =

∂VR
2

∂a2
− ∂VD

2
∂a2

∂VD
2

∂θ

∂VR
2

∂B2
∂VD

2
∂θ

=

∂VR
2

∂a2
− ∂VD

2
∂a2

∂VR
2

∂B2

,

which is equal to ∂−Bmax(a2)
∂a2

.
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Proof of Proposition 3. I start by deriving the optimal wedges in the central authority’s
problem. Then, I show how we can obtain the same allocation (i.e., the same implicit
wedges) with the private-debt-dependent fiscal rules and choosing the optimal θ∗. The
FOCs of the central authority’s problem are

λG(QB +
∂QB

∂B2
B2) + Sπ(θ∗)

∂θ∗

∂B2
= β

∂V2(B2, a2)

∂B2
,

and

λHHq + Sπ(θ∗)
∂θ∗

∂a2
+ λG ∂QB

∂a2
B2 = β

∂V2(B2, a2)

∂a2
.

Using ∂θ∗
∂B2

= − u′
2(R)

1−η
τ2

1−τ2

and ∂θ∗
∂a2

= u′
2(D) − u′

2(R), collecting terms and substituting the

multipliers, we get that the wedges are

τB =
1

(QB + ∂QB

∂B2
B2)

1 − η τ1
1−τ1

1 − η τ2
1−τ2

u′
2(R)
u′

1
π(θ∗)S, (62)

and
τa =

1
qu′

1
(u′

2(R)− u′
2(D))π(θ∗)S. (63)

Combining the two equations, we can derive a similar relation between the two wedges
that does not depend on S or π(θ∗):

τa =
QB + ∂QB

∂B2
B2

q

1 − η τ2
1−τ2

1 − η τ1
1−τ1

(
1 − u′

2(D)

u′
2(R)

)
τB, (64)

which is the second equation in the proposition.

The FOC condition for θ̃ gives

χ =
1

∂Bmax

∂θ∗
π(θ∗)(−S) = (−∂VR

2
∂B2

)π(θ∗)(−S) =
u′

2(R)
1 − η τ2

1−τ2

π(θ∗)S

where the first equality follows from differentiating over θ∗ in (26). From the first order
conditions of B2 and a2 in the local governments problem with constraint (27) we obtain

τB =
1

u′
1

1−η
τ1

1−τ1

(QB + ∂QB

∂B2
B2)

χ,
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and
τa =

1
qu′

1
(−∂Bmax

∂a2
)χ.

Substituting χ we recover the same wedges as above solving directly the central author-
ity’s problem (equations (62) and (63)), which shows that this fiscal rule implements the
optimal allocation. Finally, combining the two to substitute for χ we also derive the first
equation in the proposition.

Proof of Proposition 4. With εB and εa and without default, the FOC and envelope con-
ditions give the following Euler equations

u′
1

1 − η τ1
1−τ1

q(1 − εB) = β
u′

2(R)
1 − η τ2

1−τ2

(65)

u′
1q(1 − εa) = βu′

2(R). (66)

Combining the two
1 − η τ1

1−τ1

1 − η τ2
1−τ2

=
(1 − εB)

(1 − εa)
. (67)

Taking logs and rearranging, we can derive the expression in the main text.
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A.2 General model

The lagrangian of the planning problem is, substituting the implementability conditions

and letting MRSi(st) = −Ui
y(st)

Ui
c(st)

,

L = ∑
i∈I

ωiπiUi(ci(st),yi(st), st) + βEst+1|stVR
t+1

(
Bt+1(st),{Xi

t+1(s
t+1)}i∈I , st+1

)
− λG(st)

(
G(st) + qBt+1(st)− ∑

i
πi(1 − MRSi(st))yi(st)− Bt(st−1)

)

− ∑
i∈I

λHH,i(st)

(
ci(st) + ∑

k
qk(st)ai

k(s
t) + qbi

t+1(s
t)− MRSi(st)yi(st)− Ii

t(s
t)− bi

t(s
t−1)

)

+ ∑
i∈I

∫
µI,i(st+1)

(
∑

k∈K
R̃k(st, st+1)ai

k(s
t)− Ii

t+1(s
t+1)

)
dst+1

+ ∑
i∈I

⟨µH,i(st),Hi
(

bi,{ai
k(s

t)}k∈K, st
)
⟩

+ χ(st)
(

Bt+1(st)− Bmax({Xi
t+1(s

t+1)}i∈I ,st+1)
)

The FOCs are

ci(st):
ωiπiUi

c(s
t) = λHH,i(st) +

(
λG(st)πi − λHH,i(st)

)
MRSi

c(s
t)yi(st) (68)

yi(st):

ωiπi(−Ui
y(s

t)) = λG(st)πi +
(

λHH,i(st)− λG(st)πi
)(

MRSi
y(s

t)yi(st) + MRSi(st)
)

(69)

Bt+1(st):

λG(st)

(
1 − χ(st)

qλG(st)

)
= βq−1Est+1|st

∂VR(st+1)

∂Bt+1(st)
(70)

using the definition of the wedge on sovereign debt we get τB(st) = χ(st)
qλG(st)

.

ai
k(s

t) :

qk(st)λHH,i(st) =
∫

µI,i(st+1)R̃k(st, st+1)dst+1 + ⟨µH,i(st),Hi
ai

k
(st)⟩ (71)

Ii
t+1(s

t+1):

βπ(st+1|st)
∂VR

t+1
(
st+1)

∂Ii
t+1(s

t+1)
− qχ(st)

∂Bmax({Xi
t+1(s

t+1)})
∂Ii

t+1(s
t+1)

= µI,i(st+1) (72)
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bi
t+1(s

t):

βEst+1|st
∂VR

t+1(s
t+1)

∂bi
t+1(s

t)
= qλHH,i(st)

(
1 − χ(st)

qλHH,i(st)

∂ − Bmax({Xi
t+1(s

t+1)})
∂bi

t+1(s
t)

)
(73)

and so τb,i(st) = χ(st)
qλHH,i(st)

∂−Bmax({Xi
t+1(s

t+1)})
∂bi

t+1(s
t)

.

Proof of Lemma 1. As discussed in the main text, because GD(st) ≥ G(st) and h(s) ≤ s
and the local government’s value is decreasing in the government expenditure and in-
creasing in productivity, it cannot be optimal to default with Bt+1 = 0, i.e.

VR
t+1

(
0,{Xi

t+1(s
t+1)}i∈I , st+1

)
> VD

t+1

(
{Ii

t+1(s
t+1)}i∈I , st+1

)
.

Therefore, we must have Bmax ≤ 0.

To show the envelope formula, first notice that we can redefine the function B to depend
on the positions in all states: B({Xi

t+1(s
t+1)}i∈I ,st+1 , st+1). For exposition we set bt+1() = 0

so we can write B only as a function of Ii
t+1(), but the same steps apply to bt+1(). For an

arbitrary i′ ∈ I , we consider variations Ii′
t+1 + µγ for µ > 0 and some arbitrary function γ.

Define the Gateaux derivative of Bmax for dimension i′ as

B̂max
i′ ({Ii

t+1}i) = lim
µ→0

Bmax({Ii
t+1}i,i′ , Ii

t+1 + µγ)− Bmax({Ii
t+1}i,i′ , Ii

t+1)

µ
(74)

Notice also that for every, {Ii
t+1}, at the points where {Ii

t+1} are differentiable, s∗t+1 solves
the FOC [

∑
i

∂B
∂Ii

t+1(st+1)

∂Ii
t+1(st+1)

∂st+1
+

∂B
∂st+1

]∣∣∣
st+1=s∗t+1

= 0.

Hence, for any (differentiable) γ, the function Bmax({Ii
t+1}i,i′ , Ii

t+1 + µγ) parameterized
by µ satisfies the – traditional– envelope theorem. Then, differentiating with respect to µ

and evaluating at µ = 0,

B̂max
i′ ({Ii

t+1}i) =
∫ ∂B({Ii

t+1}i∈I , s∗t+1)

∂Ii′
t+1(s

t, s̃t+1)
γ(s̃t+1)ds̃t+1 (75)

where s∗t+1 = argmax
st+1

B({Xi
t+1(s

t+1)}i∈I , st+1). Then equation (75), implies, in particular,
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that
∂Bmax({Ii

t+1}i)

∂Ii′
t+1(s

t+1)
=

∂B({Ii
t+1}i∈I , s∗t+1)

∂Ii′
t+1(s

t, st+1)
.

We can show this following Sachs et al. (2020) by appropriately defining a sequence of
smooth functions γs∗t+1,ϵ such that

lim
ϵ→0

γst+1,ϵ(s̃t+1) = δ(s̃t+1 − st+1),

where δ is the Dirac delta function. Following Sachs et al. (2020), this can be obtained by
defining an absolutely integrable and smooth function γst+1(s̃t+1) with compact support
and

∫
γst+1(s̃t+1)ds̃t+1 = 1 and letting γst+1,ϵ(s̃t+1) = ϵ−1γst+1(

s̃t+1
ϵ ). Then, by the domi-

nated convergence theorem

lim
ϵ→0

∫ ∂B({Ii
t+1}i∈I , s∗t+1)

∂Ii′
t+1(s

t, s̃t+1)
γst+1,ϵ(s̃t+1)ds̃t+1 =

∫ ∂B({Ii
t+1}i∈I , s∗t+1)

∂Ii′
t+1(s

t, s̃t+1)
lim
ϵ→0

γst+1,ϵ(s̃t+1)ds̃t+1

=
∂B({Ii

t+1}i∈I , s∗t+1)

∂Ii′
t+1(s

t, st+1)
.

Finally, if st+1 , s∗t+1, we have
∂B({Ii

t+1}i∈I ,s∗t+1)

∂Ii′
t+1(s

t,st+1)
= 0, and if st+1 = s∗t+1:

∂B({Ii
t+1}i∈I , s∗t+1)

∂Ii′
t+1(s

t, st+1)
= −

∂VR
t+1(s

t+1,∗)

∂Ii
t+1(s

t+1,∗)
− ∂VD

t+1(s
t+1,∗)

∂Ii
t+1(s

t+1,∗)

∂VR
t+1(s

t+1,∗)
∂Bt+1

,

so the derivative exists because
∂VR

t+1(s
t+1,∗)

∂Bt+1
, 0.

Proof of Proposition 5. Combining the FOCs (71) and (72)

qk(st)λHH,i(st)

(
1 −

∫ R̃k(st, st+1)

qk(st)
q

∂ − Bmax({Xi
t+1(s

t+1)})
∂Ii

t+1(s
t+1)

1
λHH,i(st)

χ(st)dst+1

)
(76)

= βEst+1|st R̃k(st, st+1)
∂VR

t+1
(
st+1)

∂Ii
t+1(s

t+1)
+ ⟨µH,i(st),Hi

ai
k
(st)⟩ (77)
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and so τk,i(st) =
∫ R̃k(st,st+1)

qk(st)
q ∂−Bmax({Xi

t+1(s
t+1)})

∂Ii
t+1(s

t+1)
1

λHH,i(st)
χ(st)dst+1. By Lemma 1 we can

write

τk,i(st) =
R̃k(st, s∗t+1)

qk(st)
q

∂ − B({Xi
t+1(s

t+1,∗)})
∂Ii

t+1(s
t+1.∗)

1
λHH,i(st)

χ(st)

Using the FOC for Bt+1(st) (equation (70)) and the definition τB(st) to substitute for χ(st)

we derive the equation in the proposition.

Proof of Proposition 6. Differentiating in the definition of B

∂ − B({Xi
t+1(s

t+1,∗)}i∈I , st+1,∗)

∂Ii
t+1(s

t+1,∗)
=

∂VR
t+1(s

t+1,∗)

∂Ii
t+1(s

t+1,∗)
− ∂VD

t+1(s
t+1,∗)

∂Ii
t+1(s

t+1,∗)

∂VR
t+1(s

t+1,∗)
∂Bt+1

=
λHH,i(st+1,∗, R)− λHH,i(st+1,∗, D)

λG(st+1,∗)
.

(78)
Under the utility function ui(ci − vi( yi

st
)), the FOC conditions (68) and (69) write

ωiπiui
c(s

t) = λHH,i(st) (79)

ωiπiui
c(s

t)
(vi)′( yi(st)

st
)

st
= λG(st)πi +

(
λHH,i(st)− λG(st)πi

) (vi)′′( yi(st)
st

)yi(st)

s2
t

+
(vi)′( yi(st)

st
)

st

 .

(80)
Following similar steps as in the two-period model, and using 1 − st

(vi)′( yi(st)
st

)
= − τi(st)

1−τi(st)

we get

λHH,i(st) = λG(st)πi
(

1 − ηist
τi(st)

1 − τi(st)

)
. (81)

Then combining (44), (78) and (81) we can derive

τk,i(st) =
R̃k(st, s∗)

qk(st)
q
(

1 − Ui
c(st+1,∗, D)

Ui
c(st+1,∗, R)

) 1 − ηist+1,∗
τi(st+1,∗,R)

1−τi(st+1,∗,R)

1 − ηist
τi(st)

1−τi(st)

× τB(st). (82)

Proof of Proposition 7. By Lemma 1, we have ∂Bmax

∂bi
t+1(s

t)
= ∂B(st+1,∗)

∂bi
t+1(s

t)
. From the definition

of B,

∂B
∂bi

t+1(s
t)

=

∂VR
t+1(s

t+1,∗)

∂bi
t+1(s

t)

∂VR
t+1(s

t+1,∗)
∂Bt+1(st)

=
λHH,i(st+1,∗, R)
λG,i(st+1,∗, R)

. (83)
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Combine the wedges τB(st) and τb,i(st) in the FOC (73) to substitute for χ(st) gives

τb,i(st) =
∂ − B

∂bi
t+1(s

t)

λG(st)

λHH,i(st)
τB(st) =

λHH,i(st+1,∗, R)
λHH,i(st)

λG(st)

λG(st+1,∗, R)
τB(st). (84)

And using (81) gives

τb,i(st) =
1 − ηist+1,∗

τi(st+1,∗,R)
1−τi(st+1,∗,R)

1 − ηist
τi(st)

1−τi(st)

τB(st). (85)

B Numerical implementation

B.1 Recursive government problem.

Using 1 − τ = 1
s v′( y

s ), the local government’s value following repayment solves

VR(B, a, s) = max
c,y,B′,a′

u(c − v(
y
s
)) + βEs′|s

[
V(B′, a′, s′)

]
s.t G + QB(B′, a′, s)B′ = λB + (1 − λ)QB(B′, a′, s)B + (1 − 1

s
v′(

y
s
))y

c + qa′ = a +
1
s

v′(
y
s
)y

a′ ≥ a

and bond prices given by equation (48),

where V(B′, a′, s′) = max{VR(B′, a′, s′),VD(a′, s′)} and the value of default solves

VD(a, s) = max
c,y,a′

u(c − v(
y

h(s)
)) + βEs′|s

[
VD(a′, s′)

]
s.t G = (1 − 1

h(s)
v′(

y
h(s)

))y

c + qa′ = a +
1

h(s)
v′(

y
h(s)

)y

a′ ≥ a.
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B.2 Extreme value taste shocks.

Following Dvorkin et al. (2021), to solve the model with long-term debt, I introduce ex-
treme value type I taste shocks to the value of borrowing. Let ϵ be the vector of shocks
to the value of borrowing. Assume they are i.i.d with scale parameter ξ and location
parameter equal to zero. We have one shock for every pair of public and private debt
ϵ(Bi, aj) = ϵi,j in the grid. Let S = {B, a, s} denote the aggregate state variable, and
WR(S, B′, a′) the value of choosing B′, a′ in the repayment state if the aggregate state is
S. Then the ex-ante value for the government (before the realization of the taste shock) is:

VE,R(S) = Emax
B′,a′

{WR(S, B′, a′) + ϵ(B′, a′)}

= ξ log ∑
B′,a′

exp
(

WR(S, B′, a′)
) 1

ξ

= VR(S) + ξlog ∑
B′,a′

exp
(

WR(S, B′, a′)− VR(S)
ξ

)
, (86)

where VR(S) = maxB′,b′ WR(S, B′, a′). Moreover, the probability of choosing B′, a′ is

π(B′, a′,S) =
exp

(
WR(S, B′, a′)

) 1
ξ

∑B̂′,b̂′ exp
(
WR(S, B̂′, â′)

) 1
ξ

=
exp

(
WR(S,B′,a′)−VR(S)

ξ

)
∑B̂′,b̂′ exp

(
WR(S,B′,a′)−VR(S)

ξ

) , (87)

and the bond price is given by

QB(B′, a′, x) = qEx′|x

[
(1 − P(De f ault|B′, a′, s′))

(
λ + (1 − λ) ∑

B′′,a′′
π(B′′, a′′,S′)QB(B′′, a′′, s′)

)]
.

(88)
Note that, without taste shocks to the relative values of defaulting and repaying, we have
P(De f ault|B′, a′, s′)) ∈ {0,1}.

B.3 Calibration with high Frisch elasticity

Table 3 contains the internally calibrated parameters, and Table shows 4 the model fit
with η = 0.75. As before, the model does a good job of matching the targeted moments.
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Table 3: Internal parameters with η = 0.75

Parameters

Moment matched

Discount factor β = 0.9765 Default probability
Disutility parameter χ = 0.8398 Normalization avg. income
Productivity cost default ζ0 = −0.1831 Debt to GDP
Productivity cost default ζ1 = 0.1919 Mean Spread (Hatchondo and Martinez (2009))
Std. dev. productivity σ = 0.0087 Std. dev GDP

Table 4: Model fit with η = 0.75

Data Model

Std. dev GDP 3.08 3.2
Default probability, % 4.5 4.2
Debt to GDP % −32.5 −30.4
Mean Spread % 7.4 8.5
Avg. GDP (normalization) 1.0 1.1

C Extra figures

Figure 4: Private-debt-dependent fiscal rules with positive default probability
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Figure 5: Effects of private debt on default probabilities with η = 0.75

Figure 6: Private-debt-dependent fiscal rule with η = 0.75

Note:
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Figure 7: Macroprudential wedges in local government’s problem with η = 0.75

(a) Macroprudential wedges (in %) (b) Derivatives sovereign debt price with respect to
private debt

D Extension: private default without sovereign default

In this section, I consider an extension of the two-period model where I allow for pri-
vate default without sovereign default. That is, I allow the local government to default
on sovereign debt and/or make the household default. To this end, I assume there are
stochastic utility penalties θB and θa after a default on sovereign and private debt, respec-
tively. Moreover, I assume that the random variables θB and θa are independent and both
drawn from the same continuous density π().

The value of defaulting on private debt is defined as

VD,a
2 (B2,θa) = max

c2,y2
u (c2 − v (y2))− θa

s.t − B2 = τ2y2,

c2 = (1 − τ2)y2

and with the usual implementability condition. Similarly, we now denote the value of de-
fault on sovereign debt as VD,B

2 (a2,θB), which is defined as in the main text. For simplicity,
we assume that private default also carries an externality S and assume it is high enough
such that default is never optimal. Hence, the central authority imposes the constraints

VR
2 (B2, a2) ≥ VD,B

2 (a2,θB) ∀θB

VR
2 (B2, a2) ≥ VD,a

2 (B2,θa) ∀θa
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which is equivalent to VR
2 (B2, a2) ≥ max{VD,B

2 (a2,θB),V
D,a
2 (B2,θa)}. Therefore, in regions

of the state space, (B2, a2), where VD,B
2 (a2,θB) ≥ VD,a

2 (B2,θa), the no sovereign default
constraint may bind, and conversely in the rest of the state space. In any case, we can still
use the fiscal rule B ≥ Bmax(a2), where now Bmax is implicitly defined asVR

2 (Bmax(a2), a2) = VD,B
2 (a2,θB) if VD,B

2 (a2,θB) ≥ VD,a
2 (B2,θa)

VR
2 (Bmax(a2), a2) = VD,a

2 (Bmax(a2),θa) otherwise.

Notice that we could also use the following constraint that imposes a limit on private debt
as a function of the quantity of sovereign debt a2 ≥ amax(B2). If VD,B

2 (a2,θB) , VD,a
2 (B2,θa),

the function Bmax is differentiable and we have the same equation relating the wedges as
in Proposition 1. Therefore, when VD,B

2 ≥ VD,a
2 , the equation τa

1−τa =
(

1 − u′
2(D)

u′
2(R)

)
τB

1−τB of
Proposition 2 also holds.

Conversely, if VD,B
2 < VD,a

2 , we have

∂Bmax

∂a2
=

∂VR
2

∂a2

∂VD,a
2

∂B2
− ∂VR

2
∂B2

=
u′

2(R)
u′

2(D, a)− u′
2(R)

(1 − η
τ2

1 − τ2
),

where u′
2(D, a) denotes the marginal utility at period two after private default. The sec-

ond equality follows because the tax rate τ2 is the same whether there is private default or
not due to the no income effects assumption. Substituting into the formula of Proposition

1, using 1−τa

1−τB =
1−η

τ2
1−τ2

1−η
τ1

1−τ1

and collecting terms

τa

1 − τa = (1 − u′
2(D, a)
u′

2(R)
)−1 τB

1 − τB .

This formula is akin to that of Proposition 2 but with the term (1 − u′
2(D,a)
u′

2(R) )
−1 instead

of
(

1 − u′
2(D)

u′
2(R)

)
because now we are in the converse scenario where sovereign debt is

restricted to avoid too large restrictions on private debt. Finally, notice that because
u′

2(D,a)
u′

2(R) ∈ (0,1), the macroprudential wedge is larger than the wedge on sovereign debt

τa > τB whenever they are positive.
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