
Tying with Network Effects

Jay Pil Choi, Doh-Shin Jeon and Michael D. Whinston

May 11, 2025

Online Appendix

In this Online Appendix, we provide four extensions: multihoming consumers, asym-

metric network effects, product differentiation with partial market foreclosure, and net-

work effects in market A (the tying market).

For completeness and self-containment of the Online Appendix, we restate several

Lemmas and Propositions from the main text. Specifically, Proposition 4, Lemma 3, and

Proposition 5 from the main text are relabeled here as Proposition A.1, Lemma B.1, and

Proposition B.1, respectively.

A Analysis of Tying with Multihoming Consumers

In this Appendix, we provide an extension which allows for a positive fraction of consumers

who can multihome.

A.1 Model

Let µ ∈ (0, 1) denote the fraction of consumers who can multihome at no cost, while

the remaining consumers single-home, as in our main model. We assume that the ability

to multihome is independent of a consumer’s valuation for product A. As in Doganoglu

and Wright (2006) and Jullien, Pavan and Rysman (2021), a multihoming consumer’s

gross market B surplus from consumption of both B1 and B2 equals the higher of the

standalone benefits from the two products, max{v1, v2}, plus β times the total number of

consumers she can interact with through use of B1 and B2 (equal to the network size of

B1 plus the network size of B2 minus the number of multihomers who consume both B1

and B2). In addition, we make the following assumptions:
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• In market B, we maintain the current Assumption 1:

∆ ≡ v2 − v1 > 0,∆ < β <
1

2g(x)
for all x ∈ [0, x].

• In market A, we assume that α is sufficiently large so that firm 1 serves all consumers

with the price of pA = α under independent pricing; i.e., that condition (4) in the main

text holds:

α ≥ 1−G(0)

g(0)
=

1

g(0)
.

A.2 Independent pricing with multihoming consumers

A.2.1 Market A

Under the full market coverage condition (4), firm 1 serves all consumers in market A and

hence the profit of firm 1 in market A is α.

A.2.2 Market B

Observe first that following price offers (pB1, pB2) such that max{v1 + β − pB1, v2 + β −
pB2} ≥ 0, there is always a NE consumer response of the following form:

• If pB2 − pB1 < ∆: There is a NE consumer response in which all consumers buy B2

and none buy B1, and all enjoy a market B surplus equal to v2 + β − pB2.

• If pB2 − pB1 > ∆: There is a NE consumer response in which all consumers buy B1

and none buy B2. (Note that since pB1 ≥ 0 we have pB2 > ∆, which implies that

multihomers do not want to also buy B2.) All consumers enjoy a market B surplus

equal to v1 + β − pB1.

• If pB2 − pB1 = ∆: Both of the above NE consumer responses are equilibria. In

addition, if (pB1, pB2) = (0,∆), then there are also equilibria in which some (or all)

multihomers buy both B1 and B2 while single-homers either all buy B1 or all buy

B2. Every consumer receives the same payoff (equal to v1+β− pB1 = v2+β− pB2)

in all of these NE consumer responses.

In each of these cases, the NE consumer responses described above result in the largest

possible market B surplus for every consumer given the price offers (pB1, pB2). In the first
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two cases, they are the unique NE consumer response satisfying our Pareto dominance

refinement. In the last case, all of the NE consumer responses described are Pareto

undominated NE consumer responses. However, the response in which all consumers buy

only B2 gives firm 1 the lowest possible payoff among these and so is the NE response we

select.1

Now consider equilibrium price offers given these consumer responses. In any equilib-

rium some consumer must be making a purchase: if not, then it must be that vi+β−pBi ≤
0 for i = 1, 2 (otherwise there is a NE consumer response in which all consumers buy the

same product and it gives strictly positive surplus). However, in that case, firm 2 would

have a profitable deviation to charge pB2 = ∆ which would attract all consumers since

v2+β−∆ > 0 – a contradiction. Hence, in any equilibriummax{v1+β−pB1, v2+β−pB2} ≥
0.

If pB2−pB1 > ∆, then (by the discussion above) B1 is making all of the market B sales

at price pB1 ≥ 0. Firm 2 then has a profitable deviation to a price slightly below pB1+∆,

which leads all consumers to buy B2 – a contradiction. If, instead, pB2 − pB1 < ∆, then

firm 2 is selling B2 to all consumers but could do so more profitably if it deviated to a

higher price – another contradiction.

Hence, it must be that pB2−pB1 = ∆ and (by the discussion above) that all consumers

are buying only B2. However, if pB1 > 0, then firm 1 would have a profitable deviation

that lowers pB1 slightly and leads all consumers to buy B1. Hence, in any equilibrium we

must have (pB1, pB2) = (0,∆) and all consumers buying only B2. As neither firm has a

profitable deviation at those price offers, they are the unique equilibrium price offers.2

A.2.3 Summary

Under independent pricing, firm 1’s profit is α and firm 2’s profit is ∆.

1Our conclusion about the market B profits of the two firms in an independent pricing equilibrium
would be unchanged if we did not select this NE consumer response, but rather any of these undominated
NE consumer responses were possible.

2If we do not select the “all consumers buy only B2” NE consumer response when pB2 − pB1 = ∆ we
would derive the same equilibrium profits for the two firms because (i) if firm 2 was making strictly less
than ∆ despite the fact that pB2 ≥ ∆ then firm 2 would have a profitable deviation to a slightly lower
price at which all consumers buy B2 and (ii) if firm 2 was making strictly more than ∆ (and, hence,
pB2 > ∆, pB1 > 0, and firm 2 makes some sales of B2) then firm 1 would have a profitable deviation to
a slightly lower price at which all consumers buy B1. Thus, we must have pB2 = ∆, pB1 = 0, and all
consumers purchasing B2. However, without the equilibrium selection, the same profits could arise in an
equilibrium in which all consumers buy B2 at price pB2 = ∆ but multihomers also buy B1 at a price of
pB1 = 0.
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A.3 Tying with multihoming consumers

We focus on the case of pure bundling to examine how our results generalize with the

presence of consumer multihoming. We begin by examining consumer responses to firms’

price offers, establishing a lemma that extends Lemma 1 in the paper to the case in which

a positive fraction of consumers are capable of multihoming. As in the main text, we

define P̂ = P −α. As we focus on an equilibrium in which all consumers buy the bundle,

any pB2 strictly higher than ∆ leads to zero profit for firm 2 as no multihomer will buy

B2. For this reason, in what follows, we focus on price offers by firm 2 with pB2 ∈ [0,∆]

and consumer responses in which all multihoming consumers purchase B2.3

A.3.1 Consumer responses

For single-homing consumers, let ψs(x,Xs, Xm|P̂ ) be the payoff gain, given P̂ , from pur-

chasing the bundle over purchasing B2 for a single-homing type x consumer (i.e., whose

willingness to pay for A is α + x) if all single-homing consumers and all multihoming

consumers whose types are respectively higher than Xs and Xm purchase the bundle. In

a similar way, define ψm(x,Xs, Xm) to be the payoff gain from purchasing the bundle and

B2 over purchasing only B2 for a multihoming type x consumer. We have

ψs(x,Xs, Xm|P̂ ) = x+ [(1− µ)(1− 2G(Xs))− µG(Xm)] β −∆− (P̂ − pB2) (A.1)

and

ψm(x,Xs, Xm|P̂ ) = x+ (1− µ)(1−G(Xs))β − P̂ (A.2)

Notice that ψs(x,Xs, Xm|P̂ ) is continuous in (x,Xs, Xm), increasing in x, and decreasing

in Xs and Xm, and that ψm(x,Xs, Xm|P̂ ) shares the same characteristics except that it is

independent of Xm. Also, ψs(x,Xs, Xm) ≤ ψm(x,Xs, Xm) for all (x,Xs, Xm). Intuitively,

multihomers are more inclined to buy the bundle (in addition to B2) than are single-

homers since, unlike for single-homers, for multihomers buying the bundle does not forgo

network benefits from the presence of single-homers who buy B2 and does not forego the

better stand-alone value v2.

It is useful to observe the following:

Claim A.1 Suppose that pB2 ∈ [0,∆] and that no consumers buy the bundle. Then:

3When pB2 = ∆ multihomers are indifferent about buying B2 in addition to the bundle, but in
equilibrium they must buy B2 for otherwise firm 2 would deviate to a slightly lower price.
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(i) Single-homing consumers with x = x are indifferent between the bundle and B2 if

and only if P̂ = x− β − (∆− pB2).

(ii) Multihoming consumers with x = x are indifferent between buying both the bundle

and B2 and buying only B2 if and only if P̂ = x.

Proof. (i) The indifference condition for single-homing consumers is given by

ψs(x, x, x|P̂ ) = x− β −∆− (P̂ − pB2) = 0.

(ii) The indifference condition for multihoming consumers is given by

ψm(x, x, x|P̂ ) = x− P̂ = 0.

Claim A.2 Suppose that pB2 ∈ [0,∆] and that all consumers buy the bundle. Then:

(i) Single-homing consumers with x = 0 are indifferent between the bundle and B2 if

and only if P̂ = (1− µ)β − (∆− pB2).

(ii) Multihoming consumers with x = 0 are indifferent between buying both the bundle

and B2 and buying only B2 if and only if P̂ = (1− µ)β.

Proof. (i) The indifference condition for single-homing consumers is given by

ψs(0, 0, 0|P̂ ) = β(1− µ)−∆−
(
P̂ − pB2

)
= 0.

(ii) The indifference condition for multihoming consumers is given by

ψm(0, 0, 0|P̂ ) = (1− µ)β − P̂ = 0.

We introduce an assumption to ensure that the values of P̂ identified in Claims A.1

and A.2 are well-ordered – specifically, to ensure that x− β − (∆− pB2) > (1− µ)β:

Assumption M: x > (2− µ)β +∆

Next, using (A.1) and (A.2), define a NE consumer response in cutoff strategies with

cutoffs (X̃s, X̃m) ∈ (0, x)2, by

ψs(X̃s, X̃s, X̃m) = 0, (A.3)
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ψm(X̃m, X̃s, X̃m) = 0. (A.4)

A NE consumer response in cutoff strategies is a NE consumer response in which single-

homers with x ≥ X̃s and multihomers with x ≥ X̃m buy the bundle.

Claim A.3 Suppose that pB2 ∈ [0,∆]. In an interior NE consumer response in cutoff

strategies with cutoffs (X̃s, X̃m) ∈ (0, x)2, we have X̃s > X̃m.

Proof. From (A.3) and (A.4) (as well as (A.1) and (A.2)), whenever (X̃s, X̃m) ∈ (0, x)2,

we have

X̃s − X̃m = β[(1− µ)G(X̃s) + µG(X̃m)] + (∆− pB2) > 0. (A.5)

Next, we observe that there is at most one interior pair of cutoffs – i.e., there is a

unique solution to (A.3) and (A.4) – and it is increasing in P̂ :

Claim A.4 There is a unique solution to equations (A.3) and (A.4) and it is increasing

in P̂ .

Proof. Totally differentiating (A.5), we have

dX̃m

dX̃s

=
1− β(1− µ)g(X̃s)

1 + βµg(X̃m)
> 0

by Assumption 1. As dX̃m

dX̃s
> 0, there is a one-to-one relationship between X̃s and X̃m,

and we can write

X̃m = φ(X̃s),

where φ′(X̃s) > 0.

Let us define H(Xs) = Xm + [(1− µ)(1−G(Xs)] β subject to Xm = φ(Xs). Then,

any interior equilibrium (X̃s, X̃m) = (X̃s, φ(X̃s)) satisfies

H(X̃s) = φ(X̃s) +
[
(1− µ)(1−G(X̃s)

]
β = P̂ ,

by conditions (A.2) and (A.4).
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To demonstrate the uniqueness of the interior equilibrium, we establish that H(X̃s) is

a strictly increasing function.

H ′(X̃s) = φ′(X̃s)− (1− µ)g(X̃s)β

=
1− β(1− µ)g(X̃s)

1 + βµg(X̃m)
− (1− µ)g(X̃s)β

=
1

1 + βµg(X̃m)

[
1− β(1− µ)g(X̃s)(2 + βµg(X̃m))

]
From Assumption 1, we have 1 > 2βg(x) for any x. Hence,

1− β(1− µ)g(X̃s)(2 + βµg(X̃m)) > 1− (1− µ)

2
(2 +

µ

2
)

= 1− (1− µ)− µ(1− µ)

4

> µ(1− (1− µ)

4
) > 0

This implies that there can be only one interior equilibrium that satisfies (A.3) and (A.4).

In addition, as P̂ increases, X̃s increases and hence X̃m increases as well.

The above claims suggest the following pattern of consumer responses when pB2 ∈
[0,∆]: At very high values of P̂ no consumers buy the bundle. As P̂ falls, multihomers of

type x are the first to find purchase of the bundle (in addition to B2) to be a dominant

strategy. They do so if P̂ < x. As P̂ falls further and additional multihomers buy

the bundle (by iterated dominance), single-homers of type x come to find purchase of

the bundle to be optimal (regardless of what any other single-homers and the remaining

multihomers do). This happens at a bundle price P̂ (which we denote by P int), which

is above x − β − (∆ − pB2), the bundle price P̂ at which single-homers of type x find it

dominant to buy the bundle if no other consumers are doing so. As P̂ declines further,

consumer responses are interior until P̂ falls to a level (which we denote by P int) at which

multihomers of type x = 0 find it optimal to buy the bundle given the other single-

and multihoming consumers who are definitely buying the bundle. Because some single-

homing consumers still are buying B2, P int is strictly below (1−µ)β, the bundle price at

which they would find it optimal to do so if all other consumers were buying the bundle.4

4When pB2 = ∆, single-homers and multihomers all come to buy the bundle at the same price P̂ and
we have P int = (1− µ)β.

7



Finally, when P̂ falls to (1−µ)β− (∆−pB2) all single-homers also find buying the bundle

to be optimal given that all other consumers definitely are doing so.

Interior consumer responses arise for the range of bundle prices P̂ ∈ (P int, P int). As

noted in the previous paragraph, the upper end of this range, P int, is the level of P̂ at

which just enough multihomers are buying the bundle so that single-homing consumers

of type x are indifferent between the bundle and B2 if no other consumers other than

those multihomers buy the bundle. The required cutoff type of multihomers, which we

denote by X int
m is given by the solution to ψs(x, x,X

int
m |P int

) = 0. When no single-homing

consumers are buying the bundle, a multihomer of type X int
m is indifferent about buying

the bundle when

ψm(X
int
m , x,X int

m |P̂ ) = 0 ↔ X int
m = P̂ .

Thus, P int is the unique solution to5

ψs(x, x, P
int|P int

) = x−
[
(1− µ) + µG(P

int
)
]
β −∆−

(
P

int − pB2

)
= 0. (A.6)

The lower end of the range of bundle prices that lead to interior consumer responses,

P int, is the level of P̂ at which just enough single-homing consumers are buying the bundle

so that multihoming consumers of type x = 0 are indifferent between buying both the

bundle and B2 and buying B2 only if all of the remaining single-homers buy B2. The

required cutoff type of single-homing consumers, which we denote by X int
s , is given by

the solution to ψm(0, X
int
s , 0|P int) = 0. The cutoff X int

s and P int are therefore the unique

solution to the following two equations:6

ψm(0, X
int
s , 0|P int) = (1− µ)(1−G(X int

s ))β − P int = 0.

and

ψs(X
int
s , X int

s , 0|P int) = X int
s + (1− µ)(1− 2G(X int

s ))β −∆−
(
P int − pB2

)
= 0.

For P̂ above P
int
, single-homing consumers all buy B2 so if any multihomers buy the

bundle it is those types x > X̃m such that ψm(X̃m, x, X̃m|P̂ ) = 0 if such a solution exists

and X̃m = x if not. The cutoff X̃m that satisfies this condition (which is X̃m = P̂ ) is

5There is a unique solution to this equation since it is positive at P int = 0, negative at P int = x, and
a decreasing function of P int.

6Uniqueness follows because substituting for P int in the second equation it becomes Xint
s − (1 −

µ)G(Xint
s ))β−∆+pB2 = 0 which is non-positive atXint

s = 0, non-negative atXint
s = x by Assumption M,

and an increasing function by Assumption 1. Observe that when pB2 = ∆, Xint
s = 0 and P int = (1−µ)β.
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unique and strictly increasing in P̂ for P̂ < x.

Likewise, for P̂ below P int, multihomers all buy the bundle so if any single-homers

buy B2 it is those types x < X̃s such that ψs(X̃s, X̃s, 0|P̂ ) = 0 if such a solution exists

and X̃s = 0 otherwise. The cutoff X̃s that satisfies this condition is unique and increasing

in P̂ for P̂ > (1− µ)β − (∆− pB2).

Observe that the arguments above imply:

Claim A.5 There is a unique NE consumer response in cutoff strategies.

The following lemma summarizes these consumer response outcomes and shows that

they are the unique outcome of iterated elimination of dominated strategies.

Lemma A.1 Under Assumptions 1 and M and the full coverage condition (4), when

firm 1 offers only a bundle for sale, given prices of P for the bundle and pB2 ∈ [0,∆]

for product B2, and defining P̂ = P − α, the unique outcome in consumers’ choices that

survives iterated deletion of dominated strategies is as follows:

(i) If P̂ ≥ x: all consumers purchase B2 only (i.e., X̃s = X̃m = x).

(ii) If P̂ ∈ [P
int
, x): we have 0 < X̃m < X̃s = x, where X̃m = P̂ .

(iii) If P̂ ∈ (P int, P
int
): we have 0 < X̃m < X̃s < x where X̃s and X̃m satisfy

X̃s +
[
(1− µ)(1− 2G(X̃s))− µG(X̃m)

]
β −∆−

(
P̂ − pB2

)
= 0; (A.7)

X̃m + (1− µ)(1−G(X̃s))β − P̂ = 0. (A.8)

(iv) If P̂ ∈ ((1− µ)β − (∆− pB2), P
int]: we have X̃s > 0 and X̃m = 0 where X̃s satisfies

X̃s + (1− µ)(1− 2G(X̃s))β −∆− (P̂ − pB2) = 0.

(v) If P̂ ≤ (1− µ)β − (∆− pB2): we have X̃s = X̃m = 0.

If pB2 = ∆, then the above results hold with (1 − µ)β − (∆ − pB2) = P int = (1 − µ)β –

i.e., Case (iv) disappears.
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Proof. We first define the iterations we use to establish iterated dominance. Given

cutoffs (Xn
s , X

n
m) and a price P̂ , we define the next cutoffs Xn+1

s = Γs(X
n
s , X

n
m|P̂ ) and

Xn+1
m = Γm(X

n
s , X

n
m|P̂ ) as follows:

Γs(X
n
s , X

n
m|P̂ ) =


x if ψs(x,X

n
s , X

n
m|P̂ ) ≤ 0;

0 if ψs(0, X
n
s , X

n
m|P̂ ) ≥ 0;

{x|ψs(x,X
n
s , X

n
m|P̂ ) = 0} otherwise,

and

Γm(X
n
s , X

n
m|P̂ ) =


x if ψm(x,X

n
s , X

n
m|P̂ ) ≤ 0;

0 if ψm(0, X
n
s , X

n
m|P̂ ) ≥ 0;

{x|ψm(x,X
n
s , X

n
m|P̂ ) = 0} otherwise.

Observe that these are weakly increasing functions: if more other consumers are buy-

ing the bundle (corresponding to lower values of (X
n

s , X
n

m)), then any given type x of

consumer is more willing to buy the bundle, weakly lowering the values Γs(X
n
s , X

n
m) and

Γm(X
n
s , X

n
m).

We first define a sequence of iterated dominance cutoffs starting at (X
0

s, X
0

m) = (x, x).

Observe that when P̂ < x, we have Γm(X
0

s, X
0

m) < x (i.e., multihomer types near x find

buying the bundle dominant). This starts a decreasing sequence of cutoffs Γm(X
n

s , X
n

m)

that converge to some (X
∗
s, X

∗
m) with X

∗
m < x.

We next define a sequence of iterated dominance cutoffs starting at (X0
s, X

0
m) = (0, 0).

Observe that when P̂ > (1−µ)β−(∆−pB2), we have Γs(X
0
s, X

0
m) > 0 (i.e., single-homing

consumer types near x = 0 find buying B2 dominant). This starts an increasing sequence

of cutoffs Γs(X
n
s , X

n
m) that converge to some (X∗

s, X
∗
m) with X∗

s > 0 and (X0
s, X

0
m) ≤

(X
0

s, X
0

m).

Observe that when P̂ ≥ x the increasing sequence begins but not the decreasing

sequence, while the reverse is true when P̂ ≤ (1− µ)β − (∆− pB2).

Given the definition of the functions Γs(·) and Γm(·), the cutoffs (X
∗
s, X

∗
m) and (X∗

s, X
∗
m)

(whenever the corresponding decreasing or increasing sequence exists) both satisfy the

conditions to be NE consumer responses in cutoff strategies. As there is always a unique

such NE consumer response, the cutoffs (X
∗
s, X

∗
m) and (X∗

s, X
∗
m) must both equal the

cutoffs in that consumer response.
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So the NE consumer responses in Cases (i)-(v) arise as a consequence of iterated

elimination of dominated strategies.

A.3.2 Equilibrium price offers

We examine conditions under which there is an equilibrium in which firm 1 sells the

bundle to all consumers, setting a bundle price of P ∗ = α+ (1− µ)β, and firm 2 sells B2

to all multihomers by setting p∗B2 = ∆. In this outcome, the network size of the bundle is

1 while that of B2 is µ.

We consider, in turn, firm 1’s and firm 2’s incentives to deviate from these price offers.

Firm 1’s deviation incentives

Since firm 1 is selling the bundle to all consumers when P̂ = (1 − µ)β and pB2 = ∆,

it has no incentive to lower P̂ below (1− µ)β. So we focus on whether it would want to

raise P̂ above (1 − µ)β. Since P inf = (1 − µ)β when pB2 = ∆, such a deviation leads

to one of Cases (i)-(iii) in Lemma A.1. Clearly firm 1 will not deviate in a manner that

leads to Case (i), in which its profit is zero. We next consider Cases (iii) and (ii) in turn.

Firm 1’s profit as a function of P̂ is

Π1(P̂ ) = (α + P̂ )
[
(1− µ)(1−G(X̃s)) + µ(1−G(X̃m))

]
whose derivative is

Π′
1(P̂ ) =

[
(1− µ)(1−G(X̃s)) + µ(1−G(X̃m))

]
−
(
α + P̂

)[
(1− µ)g(X̃s)

∂X̃s

∂P̂
+ µg(X̃m)

∂X̃m

∂P̂

]
.

(A.9)

We first consider Case (iii) and show that Π′
1(P̂ ) < 0 at all P̂ ∈ ((1 − µ)β, P

int
). To

do so, we first establish the following result:

Claim A.6 dX̃s

dP̂
> 1 and dX̃m

dP̂
> 1 .

Proof. By totally differentiating the two equations (A.3) and (A.4) characterizing the

interior equilibrium, we have[
1− 2(1− µ)g(X̃s)β −µg(X̃m)β

−(1− µ)g(X̃s)β 1

][
dX̃s

dP̂
dX̃m

dP̂

]
=

[
1

1

]
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By applying Cramer’s rule, we have

dX̃s

dP̂
=

∣∣∣∣∣ 1 −µg(X̃m)β

1 1

∣∣∣∣∣∣∣∣∣∣ 1− 2(1− µ)g(X̃s)β −µg(X̃m)β

−(1− µ)g(X̃s)β 1

∣∣∣∣∣
=

1 + µg(X̃m)β

1− 2(1− µ)g(X̃s)β − µ(1− µ)g(X̃m)g(X̃s)β2
> 1

dX̃m

dP̂
=

∣∣∣∣∣ 1− 2(1− µ)g(X̃s)β 1

−(1− µ)g(X̃s)β 1

∣∣∣∣∣∣∣∣∣∣ 1− 2(1− µ)g(X̃s)β −µg(X̃m)β

−(1− µ)g(X̃s)β 1

∣∣∣∣∣
=

1− (1− µ)G(X̃s)β

1− 2(1− µ)g(X̃s)β − µ(1− µ)g(X̃m)g(X̃s)β2
> 1

Now, for P̂ ∈ ((1− µ)β, P
int
), we have

Π
′

1(P̂ ) =
[
(1− µ)(1−G(X̃s)) + µ(1−G(X̃m))

]
− (α + P̂ )

[
(1− µ)g(X̃s)

dX̃s

dP̂
+ µg(X̃m)

dX̃m

dP̂

]
<

[
(1− µ)(1−G(X̃s)) + µ(1−G(X̃m))

]
− (α + P̂ )

[
(1− µ)g(X̃s) + µg(X̃m)

]
= (1− µ)

[
(1−G(X̃s)− (α + P̂ )g(X̃s)

]
+ µ

[
(1−G(X̃m))− (α + P̂ )g(X̃m)

]
< 0

The first inequality follows from Claim 6 while the last inequality follows because the

full market coverage assumption and the monotone hazard rate condition for G(·) imply

that

α ≥ 1−G(0)

g(0)
>

(1−G(X̃s))

g(X̃s)
and α ≥ 1−G(0)

g(0)
>

(1−G(X̃m))

g(X̃m)

Thus, firm 1 has no incentive to deviate to any price P̂ that induces case (iii).

We next consider Case (ii). If there is a deviation that induces Case (ii), in which firm

1 sells only to multihoming consumers and X̃m = P̂ , firm 1’s profit becomes

Π1(P̂ ) = µ(α + P̂ )(1−G(P̂ )) < (α + P̂ )(1−G(P̂ )),

which is firm 1’s profit under independent pricing. We know that it is maximized with

P̂ = 0 and thus it cannot be higher than α, which is strictly less than the profit with

12



P̂ = (1− µ)β.

Thus, firm 1 does not have any incentive to deviate.

Firm 2’s deviation incentives

Firm 2 has no incentive to deviate to pB2 > ∆, which leads to zero profit. We thus

consider incentives to charge a lower price pB2 < ∆.

We first show that any such deviation will lead to an interior equilibrium per Case

(iii) of Lemma A.1 by showing that for any pB2 ∈ [0,∆) we have P
int

> P̂ = (1 − µ)β.

To see this, note first from (A.6) that P
int

is increasing in pB2. The result then follows

since (A.6) implies that when pB2 = 0 we have

P
int

= [x− (1− µ)β −∆]− µβG(P
int
) > (1− µG(P

int
))β ≥ (1− µ)β = P̂ ,

where the first inequality follows from Assumption M.

Given P̂ = (1− µ)β, firm 2’s demand for any pB2 ∈ [0,∆] can be written as

D2(pB2) = µ+ (1− µ)G(X̃s).

Thus, firm 2’s profit is given by

π2(pB2) = pB2D2(pB2).

For there to be no incentives to deviate from pB2 = ∆, a sufficient condition is

dπ2(pB2)

dpB2

> 0 for all pB2 ∈ [0,∆].

We have

dπ2(pB2)

dpB2

= D2(pB2) + pB2
dD2(pB2)

dpB2

=
[
µ+ (1− µ)G(X̃s)

]
+ pB2

[
(1− µ)g(X̃s)

dX̃s

dpB2

]
.

Totally differentiating (A.3) and (A.4) gives

dX̃s = −dpB2 + β
[
(1− µ)2g(X̃s)dX̃s + µg(X̃m)dX̃m

]
13



dX̃m = β(1− µ)g(X̃s)dX̃s,

which imply that

dX̃s

dpB2

= − 1

1− β
[
(1− µ)2g(X̃s) + µg(X̃m)β(1− µ)g(X̃s)

] < 0

since

β
[
(1− µ)2g(X̃s) + µg(X̃m)β(1− µ)g(X̃s)

]
< β

[
(1− µ)

1

β
+ µ

1

2β
β(1− µ)

1

2β

]
= (1− µ)(1 +

µ

4
)

< (1− µ)(1 + µ) < 1,

where the first inequality is from g(·) < 1/(2β) of Assumption 1.

Therefore, the sufficient condition above can be rewritten as

µ+ (1− µ)G(X̃s) > pB2(1− µ)g(X̃s)

∣∣∣∣∣ dX̃s

dpB2

∣∣∣∣∣ .
As G(X̃s) ≥ 0 and pB2 ≤ ∆, the above condition is satisfied if

µ > ∆

[
(1− µ)g(X̃s)

∣∣∣∣∣ dX̃s

dpB2

∣∣∣∣∣
]
.

Note that by Assumption 1,∣∣∣∣∣ dX̃s

dpB2

∣∣∣∣∣ = 1

1− β
[
(1− µ)2g(X̃s) + µg(X̃m)β(1− µ)g(X̃s)

]
<

1

1− (1− µ)(1 + µ
4
)
.

As ∆g(X̃s) <
1
2
by Assumption 1, the sufficient condition is satisfied whenever µ ≿ 0.52.

The case of the uniform distribution
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The condition above (µ ≿ 0.52.) is a sufficient one that ensures firm 2 has no incentive

to deviate, regardless of the distribution of G(·). However, it is not a tight condition and

is far from necessary in most cases. To illustrate this, we consider the special case in which

x is uniformly distributed over [0, x] with density 1/x. Then, Assumption 1 becomes

0 < ∆ < β <
x

2
.

We can verify that

X̃s =
P ∗ − α + (∆− pB2)

(
1− β µ

x+µ

)
− β(1− µ)

1− β
x

[
2(1− µ) + µ(x−(1−µ))

x+µ

]
and

dX̃s

dpB2

= −
1− β µ

x+µ

1− β
x

[
2(1− µ) + µ(x−(1−µ))

x+µ

] < 0,

where both the numerator and the denominator are strictly positive because of 2β < x

under Assumption 1.

Thus, we have

dπ2(pB2)

dpB2

= 1− (1− µ)(1− X̃s

x
)− pB2(1− µ)

x

1− β µ
x+µ

1− β
x

[
2(1− µ) + µ(x−(1−µ))

x+µ

]
and

d

dpB2

(
dπ2(pB2)

dpB2

)
= −2

(1− µ)

x

1− β µ
x+µ

1− β
x

[
2(1− µ) + µ(x−(1−µ))

x+µ

] < 0

Since firm 2’s profit function is strictly concave in pB2, it has no incentive to deviate

if dπ2(pB2)
dpB2

∣∣∣
pB2=∆

≥ 0.

When firm 2’s first-order condition is evaluated at pB2 = ∆,

dπ2(pB2)

dpB2

∣∣∣∣
pB2=∆

= µ− ∆(1− µ)

x

1− β µ
x+µ

1− β
x

[
2(1− µ) + µ(x−(1−µ))

x+µ

] ,
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which is weakly positive if and only if

µ

1− µ
≥ ∆

x

1− β µ
x+µ

1− β
x

[
2(1− µ) + µ(x−(1−µ))

x+µ

] . (A.10)

Hence, under the uniform distribution, firm 2 has no incentive to deviate when x is

sufficiently large.

A.4 Comparison of tying and independent pricing equilibria

For completeness and self-containment of the Online Appendix, we restate Proposition 4

from the main text as Propostion A.1. Summarizing, we have:

Proposition A.1 Suppose that fraction µ ∈ (0, 1) of consumers can multihome without

any cost and that Assumptions 1 and M as well as the full coverage condition are satisfied.

If µ ≿ 0.52, tying leads to the following equilibrium

P ∗ = α + (1− µ)β and p∗B2 = ∆,

in which all consumers buy the bundle and all multihoming consumers buy both the bundle

and B2. Tying raises firm 1’s profit relative to independent pricing but reduces firm 2’s

profit as well as consumer and total welfare.

Proposition A.1 shows that the mechanism we identified in our baseline model, through

which firm 1 can profitably employ tying to leverage its market power in market A into

market B, continues to operate despite the presence of multihoming consumers. However,

firm 1’s gain from doing so is more limited in this case, as tying leads to a quasi-installed

base advantage only due to capturing the single-homing consumers through sales of the

bundle (which gives a value advantage of (1− µ)β). When all consumers can multihome

costlessly, this ability goes away.

In addition, two somewhat surprising observations are worth noting. First, multihom-

ing can make tying more profitable than single-homing. This occurs if

(1− µ)β > β −∆ ⇔ ∆ > µβ.

Second, under the same condition, the multihoming reduces consumer surplus: Note that

the net surplus that multihomers obtain from buying B2 is zero. Then, what matters
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for the consumer surplus comparison is the price of the bundle, which is higher under

multihoming. So we have:

Corollary 1 Multihoming increases the tying firm’s profit and reduces consumer surplus

relative to no multihoming if and only if ∆ > µβ.

The reason for this result is that with a sufficient share of multihoming consumers, firm

2 does not lower its price in response to firm 1’s tie.

B Analysis of Tying with Asymmetric Network Ef-

fects

In this Appendix, we extend the analysis by considering the case in which B1 and B2 can

have different network effects.

B.1 Model

Consider the case in which B1 and B2 also differ in their network effects, denoted by β1

and β2. The assumption that B2 is the superior product in market B now can be restated

as v1 + β1 < v2 + β2. Defining ∆v ≡ (v2 − v1) and ∆β ≡ (β2 − β1), this assumption is

equivalent to ∆v +∆β > 0.

We modify Assumption 1 as follows:

Assumption 1A: ∆v +∆β > 0, β1 > ∆v, and

β1 + β2 <
1

g(x)
for all x ∈ [0, x].

The second part of Assumption 1A (i.e., β1 > ∆v) states that the network effects associ-

ated with B1 more than offset its disadvantage in stand-alone value relative to B2. The

last part of Assumption 1A ensures that demand for the bundle decreases as the bundle

price increases, as we show below.

We also assume in this appendix that the condition for full coverage in market A holds,

specifically that α is sufficiently large so that firm 1 serves all consumers with the price

of pA = α in market A under independent pricing:

α ≥ 1−G(0)

g(0)
=

1

g(0)
.
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B.2 Independent pricing

Consider the competition in market B. By a similar argument as in the main text, the

equilibrium in market B has pB1 = 0 and pB2 = (v2 + β2)− (v1 + β1) = ∆v +∆β, with all

consumers buying B2.

Thus, under independent pricing, firm 1’s total profit is α, and firm 2’s total profit is

(v2 + β2)− (v1 + β1) = ∆v +∆β > 0.

B.3 Tying

We extend Lemma 1 as follows.

Lemma B.1 When firm 1 offers only a bundle for sale, given prices of P for the bundle

and pB2 < v2 for product B2, and defining P̂ = P −α, the unique outcome in consumers’

choices that survives iterated deletion of dominated strategies is as follows:7

(i) If P̂ − pB2 ∈ (β1 − ∆v, x − β2 − ∆v), consumers whose valuation for A is higher

than X̃ ∈ (0, x) purchase the bundle while consumers whose valuation is lower than X̃

purchase B2, where X̃ satisfies

X̃ + β1

[
1−G(X̃)

]
− β2G(X̃)−∆v = (P̂ − pB2); (B.1)

(ii) If P̂ − pB2 ≤ β1 −∆v, all consumers purchase the bundle (i.e., X̃ = 0);

(iii) If P̂ − pB2 ≥ x− β2 −∆v, all consumers purchase B2 only (i.e., X̃ = x).

Proof. The proof follows the logic of the proof of Lemma 1. We have

ψ(x,X) = x+ β1 [1−G(X)]− β2G(X)−∆v − (P̂ − pB2);

Ψ(X) ≡ ψ(X,X) = X + β1 [1−G(X)]− β2G(X)−∆v − (P̂ − pB2).

Under Assumption 1A, Ψ′(X) = 1− (β1 + β2)g(X) > 0. We have

Ψ(x) = x− β2 −∆v − (P̂ − pB2)

and

Ψ(0) = β1 −∆v − (P̂ − pB2),

where x− β2 −∆v > β1 −∆v under Assumption 1A.

7A similar argument to that in Remark 3 in the main text establishes that β1 −∆v < x− β2 −∆v
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We have the following proposition

Proposition B.1 Under Assumption 1A and the full coverage assumption, pure bundling

leads to an equilibrium in which all consumers buy the bundle and

P ∗ = α + β1 −∆v and p∗B2 = 0.

Firm 1’s profit is larger than under independent pricing. Tying harms firm 2 and con-

sumers, and reduces aggregate welfare.

Proof. From the previous lemma, P̂ ∗ = β1 − ∆v and p∗B2 = 0 lead all consumers to

buy the bundle (i.e., X̃ = 0). Hence, firm 1 has no incentive to lower its price. In what

follows, we show that firm 1 has no incentive to raise its price. Note first that a total

differentiation of condition (B.1), which defines X̃, leads to

∂X̃

∂P̂
=

1

1− (β1 + β2) g(X̃)
> 1, (B.2)

where the inequality follows from Assumption 1A. Given p∗B2 = 0, firm 1 chooses P̂ to

maximize its profit, given by

Π(P̂ ) ≡ (α + P̂ )(1−G(X̃)).

The first-order derivative with respect to P̂ is given by

Π′(P̂ ) = (1−G(X̃))− (α + P̂ )g(X̃)
∂X̃

∂P̂
.

We next show that the first-order derivative is negative for any P̂ ≥ β1 −∆v, which

implies choosing P̂ = β1 −∆v maximizes firm 1’s profit. This is the case if the following

inequality holds for any P̂ ≥ β1 −∆v:

1−G(X̃)

g(X̃)
≤ (α + P̂ )

∂X̃

∂P̂
.

Because of the monotone hazard rate assumption on G(·), the full coverage assumption,

condition (B.2), and Assumption 1A (which assumes β1 −∆v > 0), for any P̂ ≥ β1 −∆v

we have
1−G(X̃)

g(X̃)
≤ 1−G(0)

g(0)
< α < α+ P̂ < (α + P̂ )

∂X̃

∂P̂
.
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Firm 1’s profit exceeds α, its profit under independent pricing, while firm 2 earns zero

profit. Regarding consumer surplus, recall that under independent pricing, consumers

are indifferent between coordinating on B1 at pB1 = 0 and coordinating on B2 at pB2 =

∆v +∆β. To compute consumer surplus under tying, we can decompose the bundle price

P ∗ = α + β1 − ∆v into two components: the price for A, given by pA = α and the

implicit price for B1, given by pB1 = β1 −∆v. Thus, holding the price of A constant at

its level under independent pricing, tying effectively increases the price of B1 from 0 to

β1 −∆v > 0.

B.4 Application to the Complementary-products Case

We apply the framework of asymmetric network effects to the case of complementary

products. Consider the situation in Subsection 5.2 where firm 1’s product A1 faces com-

petition from A2. Here, we assume that the added value product A1 brings to the system

over A2 has two components: it increases the stand-alone value of A by α + x for a con-

sumer of type x (as in Subsection 5.2), and it also enhances the value added by product

Bi, raising it from v′i + β′Ni to vi + βNi, where vi > v′i > 0, for i = 1, 2 and β > β′ > 0.

In other words, under this formulation, consumers’ valuations for the system A2/Bi are

(v′i + β′Ni) for i = 1, 2, whereas in Subsection 5.2, we assumed vi = v′i > 0, for i = 1, 2

and β = β′ > 0. Since this modification does not affect the analysis under independent

pricing, we focus below on the tying case.

In the presence of tying, there is competition between two systems A1/B1 and A2/B2.

Let P denote the price of firm 1’s bundled system A1/B1, and let pB2 be the price of

firm 2’s product B2, which also serves as the price of the system A2/B2, as product A2

is provided competitively at a price of zero. Define ∆′ ≡ v′2 − v1, which can be negative.

Since the value added by B1 to the system A1/B1 is v1 + βN1, whereas the value added

by B2 to the system A2/B2 is (v′2+β
′N2), it follows from Assumption 1 that these values

satisfy the last two conditions of Assumption 1A: β(> ∆) > v′2 − v1 and

β + β′ < (2β <)
1

g(x)
for all x ∈ [0, x].

Therefore, we can apply Proposition B.1 to the competition between A1/B1 and A2/B2,

leading to the following result.

Proposition B.2 Suppose Assumption 1 and the full coverage condition in market A

under independent pricing hold. When tying is allowed with complementary products
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and there is an inferior competitively-supplied alternative in market A, there is a unique

equilibrium in which all consumers purchase the A1/B1 bundle and the equilibrium prices

are given by

P ∗ = α + P̂ ∗ = α + (β −∆′), p∗B2 = 0.

Moreover, firm 1’s profit, equal to α + (β −∆′), exceeds that under independent pricing.

Both consumer surplus and social welfare decrease:

C̃S = CS∗ − (β −∆′) < CS∗

ÃS = AS∗ −∆ < AS∗.

Compared to Proposition 3 in the main text, the above result introduces an important

twist: tying forces the superior complementary product B2 to be used alongside the

inferior primary product A2, thereby reducing the overall added value of B2. As a result,

the compensation that firm 1 must offer to consumers decreases from ∆ to ∆′, which can

even be negative. This further strengthens firm 1’s incentive to tie.

C Tying with Product Differentiation and Partial Mar-

ket Foreclosure in the Tied Market

In this Appendix, we introduce horizontal differentiation in market B. We identify con-

ditions under which, consistent with the main text, no independent pricing equilibrium

exists because firm 1 has a profitable deviation to bundling. Moreover, in some cases,

this deviation does not result in complete foreclosure of B2, as firm 1 allows for partial

market access by firm 2.

C.1 Model

C.1.1 Market A

There is a mass one of consumers whose valuation for product A is α + x with x ∈ [0, x]

distributed according to G(·) with density g(·) > 0. We maintain Assumption 1.

We assume there is full coverage in market A. Specifically, α is sufficiently large so

that firm 1 serves all consumers with the price of pA = α in market A under independent

pricing:
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α ≥ 1−G(0)

g(0)
=

1

g(0)
.

C.1.2 Market B

We consider a Hotelling model with a linear transportation cost with parameter t > 0.

Consumers are uniformly distributed along the interval [0, 1]. Firm 1 is located at point

0 and firm 2 at point 1. A consumer’s location—denoted by y, representing the distance

from 0—is assumed to be independent of her valuation for product A. We assume that

the location of a consumer (the distance from 0), denoted by y, is independent from her

valuation for product A. We impose a full coverage assumption, specifically that v1 and

v2 are sufficiently large to ensure that every consumer purchases either B1 or B2.

We introduce the following assumption:

Assumption D: t < min{β/2,∆, β −∆}.

This assumption reflects a relatively strong network benefits and value advantage for B2

compared to the degree of product differentiation in market B.

C.2 Independent pricing

The outcome in market A has pA = α, exactly as in the main text under the full coverage

assumption.

Consider market B. We first establish conditions under which there is a NE consumer

response in which all consumers buy B2 or all buy B1.

All buying B2 is a NE consumer response if the consumer with y = 0 prefers to buy

B2 given that all other consumers buy B2. This is true if

v2 + β − t− pB2 ≥ v1 − pB1

or equivalently

∆ + β − t ≥ pB2 − pB1 (C.1)

The payoff of a consumer located at y in this equilibrium is v2 + β − t(1− y)− pB2.

Similarly, all consumers buying B1 is a NE consumer response if the consumer at

y = 1 prefers B1 given that all other consumers are buying B1, which holds if:
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pB2 − pB1 ≥ ∆− β + t (C.2)

The payoff of a consumer located at y in this equilibrium is v1 + β − ty − pB1.

We next establish that there is no interior NE consumer response that is Pareto-

undominated; all consumers either purchase B1 or B2 in any Pareto-undominated Nash

equilibrium.

Lemma C.1 Under Assumption D, there is no interior NE consumer response which is

Pareto-undominated.

Proof. Suppose that there is a NE consumer response which is interior with a critical

consumer type y∗ ∈ (0, 1). Then, the following condition holds:

v1 + (β − t)y∗ − pB1 = v2 + (β − t)(1− y∗)− pB2 (C.3)

Note that condition (C.3) implies that both conditions (C.1) and (C.2) hold. Consider the

all-buy-B2 NE consumer response. Since the network effect for B2 is larger than in the

interior NE consumer response, all consumers located at y ∈ [y∗, 1] are better off in the

all-buy-B2 NE consumer response. Now consider consumers with y < y∗. In the interior

NE consumer response, the payoff of a consumer located at y < y∗ is v1 + βy∗ − ty− pB1.

However, equation (C.3) implies that

v2 + β − (1− y)t− pB2 = v1 + 2(β − t)y∗ + ty − pB1

> v1 + βy∗ − ty − pB1,

where the inequality follows because 2(β − t) > β under Assumption D. Thus, all con-

sumers are better off in the all-buy-B2 NE consumer response.

Lemma 1 implies that there can be only corner solutions in Pareto-undominated NE

consumer response; all consumers purchase B1 or B2. The next lemma establishes that

there is no equilibrium under independent pricing in which all consumers purchase B1.

Lemma C.2 Under Assumption D, there is no equilibrium in which all consumers pur-

chase B1.

Proof. Suppose that there is an equilibrium in which all consumers purchase B1 at

pB1 ≥ 0 with firm 2’s profit being zero. In such an equilibrium, the payoff of a consumer

located at y is v1 + β − ty − pB1. We show that, in contradiction, under Assumption D
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firm 2 would have a profitable deviation to charge pB2 ∈ (pB1, pB1 + (∆ − t)) (note that

∆ − t > 0 by Assumption D) which attracts all consumers and gives firm 2 a strictly

positive profit.

To see this, observe first that since when firm 2 deviates to pB2 satisfying pB2− pB1 <

∆ − t ≤ ∆ + β − t, condition (C.1) holds, so an all-buy-B2 NE consumer response

exists. To complete the argument, we show that this all-buy-B2 NE consumer response

Pareto dominates the outcome in which all consumers buy B1 (the only other possible

undominated NE consumer response, according to Lemma C.1). When all consumers buy

B2, the payoff of a consumer located at y is v2 + β − (1− y)t− pB2. Observe that

v2 + β − (1− y)t− pB2 = v1 +∆+ β − (1− y)t− pB2

= v1 + β + ty − pB1 + [pB1 +∆− t− pB2]

> v1 + β − ty − pB1.

Thus, we have a contradiction.

In conclusion, under independent pricing firm 1 has zero profit in market B under

assumption D.

C.3 Tying

Let P be the price of the bundle and P̂ = P −α. Let n1 be the network size of the bundle

and n2(= 1 − n1) be that of product B2. Let ψ(x, y, n1) represent the payoff gain from

purchasing the bundle over purchasing B2 for type-x consumer located at y ∈ [0, 1] given

the network sizes (n1, 1− n1) :

ψ(x, y, n1) = x−∆+ β(2n1 − 1)− t(2y − 1)− (P̂ − pB2).

Observe that all consumers with (x, y) ∈ [0, x]× [0, 1] satisfying x− t(2y− 1) ≡ z(x, y) ∈
[−t, x+ t] have the same gain. So we can reason in terms of z instead of (x, y). Let H(·)
be the c.d.f. of z with density h(·).

Recall that Assumption 1 implies x > 2β. This, together with Assumption D, implies

z(x, 1) > z(0, 0).
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When G(·) is a uniform distribution, H(·) is given by

H(z) =


1− (x+t−z)2

4tx
if z ∈ (x− t, x+ t]

z
x

if z ∈ [t, x− t]
(z+t)2

4tx
if z ∈ [−t, t)

Observe that

h(−t) = dH

dz

∣∣∣∣
z=−t

= 0.

Let ψ(z, Z) represent the payoff gain from purchasing the bundle over B2 for a type-z

consumer when all consumers whose z is higher than Z buy the bundle and the rest buy

B2. We have

ψ(z, Z) = z −∆+ β(1− 2H(z))− (P̂ − pB2).

Define Φ(Z) as follows:

Φ(Z) ≡ ψ(Z,Z) = Z −∆+ β(1− 2H(Z))− (P̂ − pB2), (C.4)

where Φ(Z) is a strictly increasing function of Z as h(Z) ≤ 1
x
< 1

2β
. We have

Φ(x+ t) = x+ t−∆− β − (P̂ − pB2),

Φ(−t) = −t−∆+ β − (P̂ − pB2),

where x+ t−∆− β > −t−∆+ β under Assumption 1.

Lemma C.3 Suppose that Assumptions 1 and D hold. When firm 1 offers only a bundle

for sale, given prices of P for the bundle and pB2 for product B2, and defining P̂ = P −α,
the unique outcome in consumers’ choices that survives iterated deletion of dominated

strategies is as follows:

(i) If P̂ − pB2 ∈ (−t − ∆ + β, x + t − ∆ − β), consumers whose z is higher than

Z̃ ∈ (−t, x + t) purchase the bundle while consumers whose z is lower than Z̃ purchase

B2 where Z̃ is the unique solution to

Φ(Z̃) = Z̃ −∆+ β(1− 2H(Z̃))−
(
P̂ − pB2

)
= 0. (C.5)

(ii) If P̂ − pB2 ≤ −t−∆+ β, all consumers buy the bundle (i.e., Z̃ = −t).
(iii) If P̂ − pB2 ≥ x+ t−∆− β, all consumers buy B2 (i.e., Z̃ = x+ t).
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Proof. The proof is omitted as it parallels the proof of Lemma 1 in Appendix.

By totally differentiating condition (C.5), which defines Z̃, we can derive

∂Z̃

∂P̂
=

1

1− 2βh(Z̃)
≥ 1.

Firm 1’s profit is

Π̃1(P̂ , pB2) = (α + P̂ )(1−H(Z̃)).

The first-order derivative of firm 1’s profit with respect to P̂ is

∂Π̃1

∂P̂
= (1−H(Z̃))−

(
α + P̂

)
h(Z̃)

∂Z̃

∂P̂
. (C.6)

From Lemma C.3, by charging P̂ = −t − ∆ + β, firm 1 can sell the bundle to all

consumers even if firm 2 charges pB2 = 0 and by doing so it realizes a profit of α−t−∆+β,

which Assumption D implies generates a larger profit than under independent pricing.

Thus, no independent pricing equilibrium exists.

Moreover, we can show below that the first-order derivative of firm 1’s profit with

respect to P̂ is strictly positive when it is evaluated at P̂ − pB2 = −t − ∆ + β (i.e.,

Z̃ = −t):

(1−H(Z̃))−
(
α + P̂

)
h(Z̃)

∂Z̃

∂P̂

∣∣∣∣∣
Z̃=−t

= (1−H(−t))− (α+P̂ )
h(−t)

1− 2βh(−t)
= 1,

where the last equality follows from the fact that H(−t) = h(−t) = 0. Therefore, in

deviating to tying, firm 1 does not find it optimal to sell the bundle to all consumers and

in any equilibrium firm 1’s profit must exceed that under independent pricing.8

D Network Effects in Market A

In this Appendix, we examine what happens if we introduce network effects in market

A. We show that when firm 1 has an incentive to serve all consumers in market A under

8By continuity, if β −∆− t is negative but close to zero, tying is strictly unprofitable conditional on
full foreclosure but becomes profitable under partial foreclosure.
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independent pricing, adding the network effects in market A does not affect our conclusion

about the profitability of tying.

D.1 Model

Let βA denote the network effect parameter in market A. Market B remains as described

in the baseline model. To reflect network effects in market A, we modify Assumption 1

as follows.

Assumption 1N:

βA + 2β <
1

g(x)
for all x ∈ [0, x].

This condition ensures that demand for product A with independent pricing decreases

with pA and that demand for the bundle when firm 1 offers only a bundle decreases with

the bundle price.

We also assume full coverage in market A. Specifically, that α + βA are sufficiently

large so that firm 1 serves all consumers with the price of pA = α+βA in market A under

independent pricing:

α + βA ≥ 1

g(0)
.

We show below that this is a sufficient condition for full coverage.

D.2 Independent pricing

D.2.1 Market A

Lemma D.1 Under independent pricing, given price pA, and defining p̂A = pA − α,

the unique outcome in consumers’ choices that survives iterated deletion of dominated

strategies in market A is as follows:

(i) If p̂A ∈ (βA, x),
9 consumers whose stand-alone valuation for A is higher than

X̃ ∈ (0, x) purchase A while consumers whose valuation is lower than X̃ do not purchase

A where X̃ satisfies

X̃ + βA

[
1−G(X̃)

]
= p̂A (D.1)

(ii) If p̂A ≤ βA, all consumers buy A (i.e., X̃ = 0).

(iii) If p̂A ≥ x, no consumer buys A (i.e., X̃ = x).

9Assumption 1N implies βA < x.
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Proof. The proof follows the logic of the proof of Lemma 1. We define ψ(x,X) to be

the net gain from purchase of A for a type-x consumer when all consumer types above X

buy A:

ψ(x,X) = x+ βA [1−G(X)]− p̂A;

We then define:

Ψ(X) ≡ ψ(X,X) = X + βA [1−G(X)]− p̂A.

Under Assumption 1N, Ψ′(X) = 1− βAg(X) > 0.

The argument proceeds similarly to the proof of Lemma 1 in the Appendix. For

instance, when p̂A < x a type x consumer finds it optimal to buy A even if no other

consumers do, initiating a decreasing iterated dominance sequence. Conversely, when

p̂A > βA, a type x = 0 consumer finds it optimal not to buy A even if all other consumers

do, triggering an increasing iterated dominance sequence. These two sequences converge

to an interior X̃ at which Ψ(X̃) = 0 when p̂A ∈ (βA, x).

Hence, let X̃(p̂A) be defined by X̃ satisfying (D.1). We have

dX̃

dp̂A
=

1

1− βAg(X̃)
> 1.

Firm 1’s profit is then given by

(α + p̂A)(1−G(X̃(p̂A))).

Its first-order derivative with respect to p̂A is

(1−G(X̃(p̂A)))− (α + p̂A)g(X̃(p̂A))
dX̃

dp̂A
.

Setting p̂A = βA is optimal for firm 1 if the first-order derivative is negative for p̂A ≥ βA,

which holds because of the monotone hazard rate assumption on G(·), the full coverage

assumption and Assumption 1N:

1−G(X̃(p̂A))

g(X̃(p̂A))
≤ 1−G(0)

g(0)
≤ α + βA < (α + p̂A)

dX̃

dp̂A
.

Therefore, in market A, firm 1’s profit is α + βA.

In market B, firm 1’s profit is zero and firm 2’s profit is ∆ > 0. In summary, under
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independent pricing, firm 1’s total profit is α + βA and firm 2’s profit is ∆ > 0.

D.3 Tying

We extend Lemma 1 as follows.

Lemma D.2 When firm 1 offers only a bundle for sale, given prices of P for the bundle

and pB2 for product B2, and defining P̂ = P − α, the unique outcome in consumers’

choices that survives iterated deletion of dominated strategies is as follows:

(i) If P̂ − pB2 ∈ (βA+β−∆, x−β−∆),10 consumers whose valuation for A is higher

than X̃ ∈ (0, x) purchase the bundle while consumers whose valuation is lower than X̃

purchase B2, where X̃ satisfies

X̃ + (βA + β)
[
1−G(X̃)

]
− βG(X̃)−∆ = (P̂ − pB2) (D.2)

(ii) If P̂ − pB2 ≤ βA + β −∆, all consumers buy the bundle (i.e., X̃ = 0).

(iii) If P̂ − pB2 ≥ x− β −∆, all consumers buy B2 (i.e., X̃ = x).

Proof. The proof follows the logic of the proof of Lemma 1. We have

ψ(x,X) = x+ (βA + β) [1−G(X)]− βG(X)−∆− (P̂ − pB2);

Ψ(X) ≡ ψ(X,X) = X + (βA + β) [1−G(X)]− βG(X)−∆− (P̂ − pB2).

Under Assumption 1N, Ψ′(X) = 1− (βA + 2β)g(X) > 0. We have

Ψ(x) = x− β −∆− (P̂ − pB2),

Ψ(0) = βA + β −∆− (P̂ − pB2).

The remainder of the proof closely follows the structure of the proof of Lemma 1.

As in the main text, when firm 2 charges pB2 = 0, this lemma implies that firm 1 can

sell the bundle to all consumers at a bundle price P = α+ βA + β −∆, which exceeds its

profit under the independent pricing equilibrium. Consequently, an independent pricing

equilibrium cannot be sustained, as firm 1 would have a profitable deviation by offering

the bundle. Moreover, firm 1’s profit in any equilibrium involving tying must strictly

exceed its profit under independent pricing.

10Assumption 1N implies βA + β −∆ < x− β −∆.
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