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1 Introduction

The threat of renegotiation is ubiquitous in contracting, embodying the problem of collective

opportunism that inherently emerges when dealing with incentive problems. As first pointed

out by Dewatripont (1989), this opportunism arises because contracts that optimally resolve

incentive problems typically do so by implementing allocations that prove inefficient ex-post.

Consequently, when contracting parties are unable to credibly commit to refraining from

renegotiating away ex-post inefficiencies, they find themselves at a disadvantage from an

ex-ante perspective.

In this paper, we present the novel insight that the threat of renegotiation can be

fully mitigated by mediated mechanisms that carefully design the timing of communication.

Specifically, mediated mechanisms uniquely implement the optimal second-best allocation

that is implemented in the absence of any renegotiation.

The result indicates that the threat of renegotiation is a by-product of implicit restrictions

on the set of feasible mechanisms, rather than of legal restrictions on the enforceability of

contractual clauses to prevent contract modifications. Overcoming this threat does not

require to introduce sophisticated mechanisms, nor to modify the standard extensive form

of renegotiation games—it merely requires the mechanism to communicate the outcome of

a random coin toss after it receives a private binary message about the occurrence of a

renegotiation offer.

Our optimal mechanism eliminates renegotiation by making it prohibitively costly. It

incentivizes a contracting party to privately report receiving a renegotiation offer before

deciding whether to accept it. Upon receiving such a report, the mechanism randomly

improves or worsens the prevailing offer and privately communicates this outcome. This

binary lottery satisfies three properties: i) it induces truthful reporting; ii) it ensures

renegotiation offers are accepted only if the lottery worsens the original proposal to the

reporting party; iii) it makes the subsequent acceptance behavior prohibitively expensive

to the proposing party in expected terms. Crucially, private communication prevents the

renegotiating party from conditioning their offer on whether it was reported.

To derive our results formally, we take as a reference Fudenberg and Tirole’s (1990)

classical analysis of moral hazard with renegotiation: a principal incentivizes a risk-averse

agent to provide effort. Because any ex-ante efficient contractual arrangement imposes risk on

the agent, the problem of collective opportunism arises once effort is sunk. Hence, contracting

parties are susceptible to renegotiation after effort has been chosen.

The impossibility to prevent renegotiation is often seen as reflecting a conflict between

2



economic efficiency and legal doctrine. Courts generally refuse to enforce no-renegotiation

clauses, viewing them as violations of the freedom of contract principle.1 Our result reconciles

this conflict: while freedom of contract precludes direct prevention of renegotiation, the legal

doctrine of duress—which protects parties’ ability to seek advice before signing modified

contracts—provides the tools needed for our mechanism to work.

A critique leveled against mediated mechanisms is their dependence on a trustworthy

third party, as they generally require the exchange of private messages back and forth

between the parties and the mechanism. We negate this critique by implementing the

mechanism indirectly via smart contracts using off-the-shelf cryptographic techniques. We

show explicitly how these allow fully transparent, verifiable implementation that is robust

against manipulation while preserving the required private communication.

Related Literature. Our work contributes to the literature on contract renegotiation,

which, starting with Dewatripont (1989), focuses on optimal, renegotiation-proof contracts.

While Fudenberg and Tirole (1990) study renegotiation under moral hazard, the threat of

renegotiation has been also analyzed under incomplete information (e.g., Hart and Tirole,

1988; Laffont and Tirole, 1990).

Bolton (1990) points out that, regardless of the specific informational assumptions,

optimally preventing renegotiation requires to introduce (or to maintain) some degree of

private information at the renegotiation stage. When mechanisms are not mediated, this

private information can only be generated by the agent, requiring her to mix between her

reports and/or efforts at equilibrium. Such a random behavior implies allocative costs,

which makes it impossible to attain the second-best outcome that obtains in the absence

of renegotiation. We construct, instead, a mediated mechanism which generates private

information for the agent, without imposing any random behavior. This allows to successfully

prevent any renegotiation, and to uniquely implement the second-best allocation. As we

discuss in detail in Section 5, these insights are general and extend to a wide range of

renegotiation settings, beyond the moral hazard one in Fudenberg and Tirole (1990).

In traditional approaches to mechanism design (Myerson, 1982, 1986; Forges, 1986),

mediated mechanisms play a welfare-enhancing role, allowing to correlate agents’ independent

actions. Rahman and Obara (2010) provide an instance of this effect in a partnership

1For instance, the US Code on contract law under Title 42,§1981 declares the right of all persons to
“the making, performance, modification, and termination of contracts”. Jolls (1997) and Davis (2006) cite
multiple applications of this code voiding contractual clauses limiting collective renegotiation. A notable
example is Beatty v. Guggenheim Exploration Co. 225 N.Y. 380, 1919, where in his judgement Justice
Cardozo voided an explicit contractual clause forbidding future modification stating that “Those who make
a contract, may unmake it. The clause which forbids a change, may be changed like any other.”
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framework, and show how mediated mechanisms make possible to reconcile individual incentives

with budget balance by virtually implementing an efficient allocation. We emphasize a

different role of mediated mechanisms: by endogenously generating some private information,

they allow to delegate to the agent the punishment against any subsequent renegotiation.

This off-equilibrium effect guarantees a full rather than virtual implementation of the second-best

allocation.

The idea that a principal designs a mediated mechanism with the aim of reducing the

deviations available to his future self has been recently considered in the limited-commitment

literature. Bester and Strausz (2007), Doval and Skreta (2022), and Lomys and Yamashita

(2022) exploit this channel of communication to formulate a revelation principle. Rather

than fully characterizing the set of available communication mechanisms, our objective is to

construct a specific mechanism that fully mitigates the threat of renegotiation.

Brzustowski et al. (2023) and Doval and Skreta (2024) focus on a specific equilibrium

allocation and analyze its implications for the Coase conjecture. Yet, these papers obtain

mediated mechanisms that do not achieve second-best efficiency, while no uniqueness result

is established. We consider instead a renegotiation framework, in which, until both parties

agree on a new offer, the agent retains access to the options incorporated in the original

mechanism, since, unlike under limited-commitment, the initial contract can only be voided

under the mutual consent of its participants. In this context, we are the first to show the

power of mechanisms which send private signals to the agent. We show that exploiting this

channel of communication allows to fully mitigate the threat of renegotiation regardless of

any equilibrium selection criterion that goes beyond the standard concept of Perfect Bayesian

equilibrium.

Because one can also frame the renegotiation problem as one of a designer competing

with its myopic future self to incentivize a common agent, our results are also connected to

those of the common agency literature. Indeed, the random offer that, in our construction,

successfully prevents renegotiation plays a role similar to that of latent contracts under

common agency. These contracts, which are offered but not traded in equilibrium, are key

to deter deviations and support additional equilibrium allocations both under moral hazard

(Bisin and Guaitoli, 2004; Attar et al., 2019) and under adverse selection (Attar et al., 2011,

2022).

Finally, our paper contributes to a nascent literature that studies the concrete use of smart

contract and blockchain technologies as a practical device to implement specific allocation
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mechanisms.2 It sees the main advantage of such implementation for situations in which

there are incentives to manipulate the mechanism, as, for instance, in Akbarpour and Li

(2020). Concrete implementations via smart contracts have been mainly developed in the

context of auction mechanisms (see Omar et al., 2021; Roughgarden, 2021, among others).

More recently, Brzustowski et al. (2023) point out the ability of smart contracts to indirectly

implement mechanisms that receive private messages, but that do not send any signal to

the contracting parties. We add to this the insight that smart contracts can also indirectly

implement mechanisms which allow for private communication in the (more involved) reverse

direction. Thus, we provide the second step for showing how, based on current technologies,

mediated mechanisms can be fully implemented by smart contracts, which dispense with the

need of a mediator or third party, and thus eliminate any risk of manipulation.

The remaining of the paper is organized as follows. In Section 2, we illustrate the

Fudenberg and Tirole (1990) benchmark model. In Section 3, we introduce mediated

mechanisms, and analyze the corresponding renegotiation game. Section 4 presents the

implementation via smart contracts. In Section 5, we discuss how our insights apply to

alternative renegotiation settings. Most proofs are in the Appendix.

2 The Benchmark

We consider the canonical framework of Fudenberg and Tirole (1990) (FT, henceforth),

in which a risk-neutral principal (he) incentivizes a risk-averse agent (she), who takes an

unobservable effort. There are two outputs (states), a good one g and a bad one b, where

g > b > 0. The probability distribution over outputs depends on the binary effort e ∈ E
.
=

{L,H}. Let pe
.
= prob(g|e), and pH > pL so that ∆p

.
= pH − pL > 0. The effort e yields

expected output Ye
.
= peg + (1− pe)b.

Payoffs and Allocations. The agent’s utility is additively separable in income w ∈ R and

effort e ∈ E, so that we express it as U(w)−D(e). The utility function U exhibits U ′(w) > 0

and U ′′(w) < 0 for each w ∈ R, and is unbounded over its domain, i.e., lim
w→−∞

U(w) = −∞
and lim

w→∞
U(w) = ∞. Consequently, the inverse Φ of u is well–defined for any u ∈ R

with Φ′(u) > 0 and Φ′′(u) > 0. The low effort cost is normalized to D(e = L) = 0 and

D(e = H) = d > 0.

For any e ∈ E, final payoffs are determined by the state-contingent transfers that the

principal makes to the agent. A contract is a pair (wg, wb) ∈ R2 of such transfers. Because it

2See Chapter 6 in Townsend (2020) for a recent overview.
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is often more convenient to represent a contract in terms of the induced utilities it provides

to the agent, we also write (with slight abuse of notation) a contract as c = (Ug, Ub), with

Ug = U(wg) and Ub = U(wb). A (deterministic) allocation is a pair (e, c) ∈ E × R2 of

payoff-relevant decisions.

The agent’s expected payoff from (e, c) is

Ue(c) = peUg + (1− pe)Ub −D(e),

where U0 is her reservation payoff.3

The principal’s expected payoff from (e, c) is

Ve(c) = Ye − peΦ(Ug)− (1− pe)Φ(Ub).

Efficient and Incentive-Compatible Allocations. Because the agent is risk-averse, while the

principal is risk-neutral, any Pareto-efficient allocation exhibits full insurance. For any e ∈ E,

let cFI
e (U)

.
= (U +D(e), U +D(e)) denote the full-insurance contract that yields the agent

the expected payoff U ∈ R. We also define, for each e ∈ E, the function V FI
e : R → R where

V FI
e (U)

.
= Ve(c

FI
e (U)) = Ye − Φ(U +D(e))

identifies the principal’s payoff associated with the full-insurance contract leaving expected

payoff U to the agent. As Φ′ > 0, V FI
e is strictly decreasing in U for any e ∈ E.

Because the principal has all bargaining power, the optimal contract with observable

effort implements the efficient allocation that yields the principal his maximal payoff while

still guaranteeing the agent her outside option U0. We refer to this outcome as the first-best.

Thus, the first-best contract is cFB .
= cFI

H (U0), yielding V FB .
= V FI

H (U0) to the principal,

and U = U0 to the agent.4

If, instead, effort is unobservable, any feasible allocation must be incentive-compatible.

Then, the optimal contract for the principal induces e = H and gives at least U0 to the

agent.

We refer to this contract as the second-best; it solves:

argmax
c∈R2

VH(c) = pH(g − Φ(Ug)) + (1− pH)(b− Φ(Ub)) (1)

s.t. pHUg + (1− pH)Ub − d ≥ pLUg + (1− pL)Ub. (2)

pHUg + (1− pH)Ub − d ≥ U0. (3)

3In FT, it holds U0 = 0. Writing the outside option as U0 is more insightful for interpreting results.
4As we follow FT in focusing on the non-trivial case that e = H is optimal in the second-best, we have

that e = H is also optimal in the first-best.
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At a solution, incentive constraint (2) binds. Accordingly, let cIC(U)
.
= (U IC

g (U), U IC
b (U))

denote the contract on the incentive-compatibility frontier leaving expected payoff U to A:

U IC
g (U)

.
= U +

1− pL
∆p

d and U IC
b (U)

.
= U − pL

∆p
d.

It is convenient to define, for each e ∈ E, the function V IC
e : R → R, which denotes the

principal’s payoff when the agent takes e ∈ E and cIC(U) is implemented:

V IC
e (U)

.
= Ve(c

IC(U)) = Ye − peΦ

(
U +

1− pL
∆p

d

)
− (1− pe)Φ

(
U − pL

∆p
d

)
.

Since V IC
H is decreasing in U , the participation constraint (3) binds at the solution,

implying that the second-best contract is cSB
.
= cIC(U0). It yields V SB .

= V IC
H (U0) to the

principal, and UH(c
IC(U0)) = U0 to the agent.

The Renegotiation Game. FT point out that the second-best allocation (H, cSB) is interim

inefficient, i.e., after effort is chosen but before output is realized. This leads FT to analyze

an extension Gr of the game G, in which the principal can renegotiate away any such

inefficiency by offering a new contract at the interim stage. Because, at this stage, the

agent is privately informed about her effort choice, FT let the principal design a revelation

mechanism, which specifies a contract for each effort announced by the agent. Specifically,

a (deterministic) revelation mechanism is a mapping γc : E → R2, and C denotes the set of

all such mechanisms. The game Gr unfolds as follows:

1. The principal offers a mechanism γc ∈ C.

2. The agent accepts or rejects γc. If the agent rejects, the game ends and outside options

accrue. If the agent accepts, the game continues as follows:

3. The agent chooses e = H with probability x ∈ [0, 1] and e = L with probability 1− x.

4. Without observing e, the principal makes a renegotiation offer γr
c ∈ C ∪ {∅}, where ∅

represents the principal’s decision not to renegotiate.

5. The agent accepts or rejects γr
c by declaring ρ ∈ {y, n}. She then sends a message

m ∈ E in the mechanism she participates in.

6. If ρ = n, transfers occur according to γc(m). If ρ = y, transfers follow from γr
c (m).

Any mechanism γc that the agent accepts yields a subgame Gr(γc) as of stage 3. In

any such subgame, choosing x = 1 is not part of an equilibrium. To see this, suppose
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the agent takes e = H with probability one. Then, the principal’s best reply is to offer

the full-insurance contract cFI
H (U0) in stage 4 that is accepted by the agent. But against

this renegotiation offer, the agent would be strictly better off choosing e = L. FT then

show that the overall game Gr admits only one (perfect Bayesian) equilibrium allocation.

At equilibrium, renegotiation is successfully prevented. Yet, the agent takes e = H with

probability xFT < 1.

In their analysis, FT restrict attention to revelation mechanisms, which, by construction,

do not incorporate any private communication with the agent.5 We next argue that this

restriction is critical. Specifically, we show that if the principal can use mediated mechanisms

that allow private communication with the agent, then the unique equilibrium allocation

remains (H, cSB).

3 Mediated Mechanisms

We frame contract renegotiation in the dynamic mechanism design tradition as developed

by Forges (1986) and Myerson (1986). Thus, to control the moral hazard problem and the

threat of renegotiation, the principal has, in addition to setting the conditional transfers,

the power to select a communication protocol. The communication protocol does not only

prescribe the available set of messages, but also the specific timing of communication between

parties.

To demonstrate that the threat of renegotiation can be fully mitigated by design, it

suffices to exhibit a communication protocol, which the principal can select to achieve the

second-best allocation as the unique equilibrium one.6 Specifically, the protocol we consider

requires the agent to report in a mechanism only once, right after the renegotiation offer

has been made, straight after which, the mechanism sends back a signal to the agent. Only

after this communication phase between the agent and the mechanism, the agent makes the

decision to accept or reject the principal’s renegotiation offer.7

We let Γ represent the class of feasible mechanisms, which is such that the timing of

communication is fixed according to the communication protocol described in the previous

5They write: “[...] there is no loss of generality in restricting the contract space to be C”, since “[...] the
revelation principle implies that, at the interim stage, the principal can implement any allocation obtained
through a complex contract” (Fudenberg and Tirole, 1990, p. 1283).

6This exercise differs from that of characterizing a canonical structure of communication, to establish
a version of the revelation principle, which is at the centre-stage of the Forges (1986) and Myerson (1986)
perspective.

7As discussed in the introduction, the legal doctrine of duress, protecting a party’s ability to seek advice
before signing a new or modified contract, effectively grants the principal de-jure authority to mandate this
communication phase.
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paragraph, but all other aspects of the mechanism can be determined at the principal’s

discretion. A mediated mechanism γ = {M,S, σ, τ} in the set Γ consists of a (finite) set of

messages M sent privately from the agent, a finite set of signals S privately received by the

agent according to the distribution σ : M → ∆(S), and a decision rule τ : M × S → R2

that associates a utility pair (UH , UL) to any combination of messages and signals. It is

mediated in the sense that the transfers are made contingent on the private communications

exchanged between the agent and the mechanism itself, thereby leaving the principal in the

dark at the renegotiation stage.

3.1 The Mediated Renegotiation Game

The principal’s fixed timing allows us to formulate the mediated renegotiation game GΓ. In

this game, the principal can offer any mechanism in Γ, but is susceptible to the threat of

renegotiation considered by FT; at the renegotiation stage, he may offer any other mechanism

to the agent as an alternative. The mediated renegotiation game GΓ itself unfolds as follows:

1. The principal offers a mechanism γ ∈ Γ.

2. The agent accepts or rejects γ. If the agent rejects, the game ends and outside options

accrue. If the agent accepts, the game continues as follows:

3. The agent chooses e = H with probability x ∈ [0, 1] and e = L with probability 1− x.

4. Without observing e, the principal makes a renegotiation offer γr = {Mr,Sr, σr, τ r}∈
Γ ∪ {∅}, where ∅ represents the principal’s decision not to renegotiate.

5. The agent sends a private message m ∈ M in the initial mechanism γ.

6. The mechanism γ extracts private signal s ∈ S according to distribution σ(m) ∈ ∆(S).

7. After privately observing s, the agent accepts or rejects γr by declaring ρ ∈ {y, n}.

8. If ρ = n, transfers occur according to γ(m, s), after message m and realized signal s

are publicly revealed. If ρ = y, the agent sends mr ∈ Mr, receives a private signal

sr ∈ Sr, and transfers occur according to γr(mr, sr), after message mr and realized

signal sr are publicly revealed.

A (pure) strategy for the principal in GΓ is a mechanism γ, followed by a renegotiation

offer γr. The agent’s (behavioral) strategy in GΓ, which we denote λ, involves three parts.

First, it associates to any γ ∈ Γ a probability distribution over efforts. Further, for
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any history (e, γr), λ specifies a probability distribution over messages in γ, and, for any

(e, γr,m, s) such that γr ̸= {∅}, a probability distribution over the participation choices

in γr. Finally, λ specifies a probability distribution over messages in γr, at any history

(e, γr,m, s, y) such that γr ̸= {∅}.
In line with FT, we take perfect Bayesian equilibrium as our solution concept. We

denote GΓ(γ) the subgame induced by γ ∈ Γ as of stage 3. We let λ(γ) represent the agent’s

(continuation) strategy in GΓ(γ), while the principal’s strategy is a renegotiated mechanism

γr ∈ Γ. As the subgame GΓ(γ) is also an extensive form game with imperfect information,

a perfect Bayesian equilibrium of GΓ also prescribes a perfect Bayesian equilibrium for

the subgame GΓ(γ). That is, the principal chooses an optimal mechanism γ, given that

the players continuation strategies constitute a perfect Bayesian equilibrium (henceforth

equilibrium) of GΓ(γ).

Remark 1 The sequence of physical decisions, including the participation ones, in GΓ co-

incides with that considered in FT. Indeed, for |M| = 2 and |S| = 1, mechanisms in Γ

reduce to mechanisms in C as defined in FT. Moreover, comparing the subgame GΓ(γ) to

the subgame Gr(γc) in FT reveals that a mediated mechanism transforms the simultaneous

decision of the agent about her message m and acceptance decision ρ into a sequential one,

comprising three substages: first, the agent sends message m, she then privately observes

random signal s, and finally accepts or rejects the renegotiation offer. Crucially, the agent

receives her (private) signal s before deciding about accepting the renegotiation offer.

Remark 2 The game GΓ also preserves the commitment assumptions outlined in FT. In

particular, both the communication and the decision rule of the original mechanism γ are

halted mid-execution if and only if the parties mutually agree on a renegotiated mechanism

γr. This in turn implies that γr may affect the relevant communication protocol only after

the agent has accepted to renegotiate. So even though we allow the renegotiation offer γr

to be also mediated, the communication protocol of any optimal renegotiation offer will be

trivial and an optimal γr is, just as in FT, a menu of insurance contracts.

3.2 Implementing the Second Best

We next identify a mediated mechanism γ∗ ∈ Γ that fully mitigates the threat of renegotiation.

That is, we show that in any equilibrium of GΓ, the principal obtains the second-best

payoff V SB, the agent picks e = H with probability one, and there is no incentive for

renegotiation. Specifically, we first exhibit a mechanism γ∗ ∈ Γ which implements the
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second-best allocation, and then show that this allocation is the unique equilibrium outcome

of the overall game GΓ.

To fully mitigate the threat of renegotiation, the mechanism is to impose a costly

punishment in expected terms on the principal when he makes a “relevant” renegotiation

offer to the agent. The agent is to trigger this punishment by truthfully reporting to the

mechanism such a renegotiation attempt. Upon receiving this report, the mechanism is then

to improve or worsen contracting terms randomly so that the agent rejects the renegotiation

offer when, from the principal’s perspective, it worsens his contracting terms. Hence, the

punishment itself must be carefully calibrated so that, on the one hand, it is incentive

compatible for the agent to report truthfully, while, on the other hand, it ensures that the

punishment on the principal deters him from making such an offer in the first place.

While there are many ways to implement this idea, the concrete way we do so is by setting

up the original contract so that if the agent reports about the renegotiation attempt, the

mechanism simply randomizes between demanding the principal to provide an extra utility

of ∆U to the agent or by demanding that the agent is compensated by a utility of ∆U less.

Randomizing between these two options with equal probability, ensures that, for any ∆U , it

is incentive compatible for the agent not to trigger the random change if the principal does

not make a renegotiation offer.

On the other hand, when ∆U is large enough, the agent will indeed reject the renegotiation

offer when the outcome of the lottery demands the principal to provide her with ∆U utility

more. As intended, this rejection acts as a punishment to the principal, which is triggered

with probability 1/2. Consequently, the principal is better off refraining from making a

renegotiation offer when ∆U is large enough.

The next lemma confirms this formally and is hence key for establishing our main result.

Lemma 1 There exists ∆U ∈ (0,∞) such that for all e ∈ E:

V IC
e (U0) > max

{
V FI
e (U0 +∆U),

1

2
V FI
e (U0 −∆U) +

1

2
V IC
e (U0 +∆U)

}
. (4)

The lemma states that, for any e ∈ E, the principal prefers the second-best contract,

cSB = cIC(U0), to a full-insurance contract that leaves an extra utility of ∆U to the agent.

Additionally, the principal prefers cSB to a 50-50 lottery between the full-insurance contract

leaving ∆U less to the agent, and the incentive-compatible one leaving the agent an extra

utility ∆U . This in turn allows to construct a mediated mechanism γ∗ such that the principal

attains the lefthand side of (4) when he does not renegotiate, while the righthand side of (4)
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corresponds to what the principal expects from the best possible renegotiation offer that the

agent accepts with a strict positive probability.

Let γ∗ = {M∗,S∗, σ∗, τ ∗} be such that M∗ = {N,R} and S∗ = {h, t}. The signals are

extracted according to σ∗ : M∗ → ∆(S∗) with:

σ∗(h|m) = σ∗(t|m) =
1

2
for each m ∈ {N,R}.

The decision rule τ ∗ : M∗ × S∗ → R2 is:

τ ∗(N, h) = τ ∗(N, t) = cSB; τ ∗(R, h) = cIC
(
U0 −∆U

)
; τ ∗(R, t) = cIC(U0 +∆U).

Intuitively, the mediated mechanism sets the second best contract cSB as the “default”

but allows the agent to trigger a random “counter-offer” by sending m = R, indicating that

the principal made a renegotiation offer. The counter-offer gives the agent either an extra

utility of ∆U or a utility of ∆U less. On average, it yields the agent the same utility as the

default cSB, but is more expensive in terms of wages. To the principal, the counter-offer is

random, whereas to the agent, the realized counter-offer is revealed after sending m = R but

before she has to decide about the principal’s renegotiation offer.

Hence, γ∗ shares with mechanisms in FT the restriction to only two messages for the

agent. By contrast, it extends on FT by selecting one of two signals with equal probability

and privately disclosing it to the agent. Although, in general, the distribution of the signal

may depend on the message m, the specific mediated mechanism γ∗ does not exploit this

feature. Effectively, the signal represents a 50-50 coin toss about whose realization—head or

tail—A is informed privately.

Proposition 1 The second-best allocation (H, cSB) is supported in an equilibrium of the

subgame GΓ(γ
∗).

Since the principal cannot obtain more in a game with renegotiation than without any

renegotiation, Proposition 1 implies that the game GΓ has an equilibrium in which the

possibility of renegotiation does not constrain final outcomes. The result stands in stark

contrast to that in FT, who do not consider mediated mechanisms.

To establish Proposition 1, observe that, by reporting m = N in γ∗, the agent gets

the second-best contract cSB, which makes e = H an optimal choice. In the absence of

renegotiation, this yields U0 to the agent and V SB to the principal. Hence, it suffices to

exhibit a profile of continuation strategies that support these behaviors in an equilibrium of

GΓ(γ
∗).
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Let mr
e ∈ Mr denote an agent’s optimal message when she accepts renegotiation offer γr

having chosen an effort e ∈ E. In addition, let Û r
e denote her corresponding payoff. That is:

mr
e ∈ argmax

m∈Mr

∑
s∈Sr

σr(s|m)Ue(τ
r(m, s)) and Û r

e =
∑
s∈Sr

σr(s|mr
e)Ue(τ

r(mr
e, s)). (5)

By construction, sending mr
e is sequentially rational for the agent following any history

(e, γr,m, s, y).

We now describe the strategies {λ(γ∗), γr(γ∗)} supporting (H, cSB) in an equilibrium of

GΓ(γ
∗). The principal’s strategy is not to renegotiate, i.e. γr(γ∗) = {∅}, while the agent’s

strategy λ(γ∗) is as follows:

1. The agent chooses e = H with probability one.

2. Her messages in γ∗ and subsequent participation decisions in γr, depend on the history

(e, γr) as follows:

(i) For any e ∈ E, if γr = {∅}, and for any γr such that Û r
e ≤ U0 −∆U , the agent

sends m = N in γ∗, followed by ρ = n.

(ii) For any e ∈ E and any γr ̸= {∅} such that Û r
e ∈ (U0 −∆U,U0 +∆U ], the agent

sends m = R in γ∗, followed by ρ = y when s = h, and by ρ = n when s = t.

(iii) For any e ∈ E and any γr ̸= {∅} such that U r
e > U0+∆U , the agent sends m = R

in γ∗, followed by ρ = y for any s ∈ {h, t}.

3. For any history (e, γr ̸= {∅},m, s, y), the agent sends mr
e.

We show that the strategies {λ(γ∗), γr(γ∗)}, together with the principal’s belief that the

agent picked e = H with probability x = 1, constitute an equilibrium of GΓ(γ
∗).

Note that the only non-trivial information set in GΓ(γ
∗) is at the renegotiation stage,

where the principal offers γr. The only belief consistent with the strategies {λ(γ∗), γr(γ∗)}
is, indeed, x = 1, as λ(γ∗) prescribes the agent to pick e = H. Observe, finally, that if the

strategies {λ(γ∗), γr(γ∗)} are played, then the principal gets V SB and the agent gets U0.

We develop our argument in two lemmas. First, we characterize the agent’s equilibrium

behavior in GΓ(γ
∗).

Lemma 2 The agent’s strategy λ(γ∗) is sequentially rational.

Proof. We already noted that sendingmr
e is sequentially rational for any (e, γ

r ̸= {∅},m, s, y).

Next, consider any history (e, γr ̸= {∅}). It is optimal for the agent to send m = N in γ∗ if

max{U0, Û r
e } ≥ 1

2
max

{
U0 −∆U, Û r

e

}
+

1

2
max{U0 +∆U, Û r

e }, (6)
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where Û r
e is defined in (5). The left(right)-hand side of (6) is her continuation payoff after

sending m = N(R). The following holds:

(i) If Û r
e ≤ U0 −∆U ∨ γr = {∅}, then (6) is satisfied because it reduces to U0 ≥ U0 since

Û r
e ≤ U0−∆U < U0. Sending m = N in γ∗, followed by ρ = n, as prescribed by λ(γ∗),

is hence optimal.

(ii) If Û r
e ∈ (U0 −∆U,U0 +∆U ], then, upon sending m = R, it is optimal for the agent

to choose ρ = y when s = h (as rejection leads to U0 − ∆U < Û r
e ), and ρ = n when

s = t (as rejection leads to U0 + ∆U ≥ Û r
e ). We next argue that sending m = R

in γ∗, as prescribed by λ(γ∗), is optimal. That is, the sign of the inequality in (6) is

reversed, where we note that, due to Û r
e ∈ (U0 −∆U,U0 +∆U ], its RHS reduces to

Û r
e /2 + (U0 +∆U)/2. Hence, we only need to show that

max{U0, Û r
e } ≤ 1

2
Û r
e +

1

2
(U0 +∆U). (7)

To get the result, it is sufficient to observe that:

(a) If Û r
e < U0, then (7) rewrites as U0−∆U ≤ Û r

e , which is satisfied by assumption.

(b) If Û r
e ≥ U0, then (7) rewrites as Û r

e ≤ U0+∆U , which is satisfied by assumption.

(iii) If Û r
e ∈ (U0 + ∆U,∞), then we have U0 < U0 + ∆U < Û r

e , implying that the agent

is indifferent between m = N and m = R, followed by ρ = y for any s ∈ {h, t}.
In particular, as prescribed by λ(γ∗), sending m = R in γ∗, and then accepting to

participate in γr for any received signal is optimal. ■

The next lemma characterizes the the principal’s equilibrium behavior in GΓ(γ
∗). In

this subgame, the principal makes a renegotiation offer γr, given his belief that x = 1, and

anticipating the agent’s continuation strategy derived from λ(γ∗).

Lemma 3 P’s strategy γr(γ∗) = {∅} is a best response to his (Bayes-consistent) belief x = 1,

and to the agent’s strategy λ(γ∗).

Proof. We first argue that the principal can improve on any renegotiation that does not

achieve full insurance to the agent. Indeed, since the agent is risk-averse and the principal

holds a degenerate belief x = 1, any optimal renegotiation offer γr involves full insurance, i.e.,

for any (m, s) ∈ Mr ×Sr, there exists U r
H(m, s) such that τ r(m, s) = (U r

H(m, s), U r
H(m, s)),

with the interpretation that τ r(m, s) yields the payoff U r
H(m, s) to the agent when she picks

e = H, regardless of the output level.
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Since any renegotiation that does condition transfers non-trivially on the agent’s private

signal implies that the agent is not fully insured, we only need to consider offers γr such

that Sr = {sr}. But then there is also no loss in considering offers such that Mr is a

singleton, as the principal correctly anticipates that for any |Mr| > 1, the agent randomizes

over messages mr ∈ argmaxm∈MrU r
H(m, sr), implying that the principal can do just as well

by letting Mr = {mr} and implementing his preferred full-insurance contract. Thus, there

is no loss in assuming Sr = {sr}, Mr = {mr}, and τ r(mr, sr) = (U r
H(m

r, sr), U r
H(m

r, sr)),

which implies that any γr can be characterized by the payoff Û r = U r
H(m

r, sr) ∈ R that the

renegotiation offer leaves to the agent when she picks e = H. We next verify that, for any

Û r ∈ R, the principal’s expected payoff does not exceed V SB = V IC
H (U0), his utility when

not renegotiating. We distinguish three cases:

(i) If Û r ≤ U0 −∆U then λ(γ∗) prescribes (m = N, ρ = n) and the principal gets V SB.

(ii) If Û r ∈ (U0 − ∆U,U0 + ∆U ] then λ(γ∗) prescribes (m = R, ρ = y when s = h, and

ρ = n when s = t), and the principal gets

1

2
V FI
H (Û r) +

1

2
V IC
H (U0 +∆U) <

1

2
V FI
H

(
U0 −∆U

)
+

1

2
V IC
H (U0 +∆U) < V SB, (8)

where the first inequality follows from V FI
H decreasing, and the second from Lemma 1.

(iii) If Û r > U0 + ∆U then λ(γ∗) prescribes (m = R, ρ = y) for any received signal, and

the principal gets

V FI
H (Û r) < V FI

H (U0 +∆U) < V SB (9)

where the first inequality follows from V FI
H decreasing, and the second from Lemma 1.

Thus, the principal cannot gain by offering any γr ̸= {∅}. ■

We complete the proof of Proposition 1 by considering the agent’s effort choice. Given

the principal’s strategy γr(γ∗) = {∅}, this is straightforward, as the agent does not expect γ∗

to be renegotiated. In particular, she expects U0 from either effort level, because UL(c
SB) =

UH(c
SB) = U0, so that choosing e = H is indeed optimal.

Thus, as claimed in Proposition 1, strategies {λ(γ∗), γr(γ∗)} together with the principal’s

belief x = 1 at his non-trivial information set, form a perfect Bayesian equilibrium of GΓ(γ
∗),

in which the agent chooses e = H with probability one, and the principal obtains V SB.

The presented verification of Proposition 1 proves that the mediated mechanism γ∗ makes

any renegotiation unprofitable to the principal. It is, in particular, instructive to consider

the agent’s behavior towards the renegotiation offer γFI(U0) that in FT undermines any
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equilibrium in which the agent picks e = H with probability 1. Indeed, the mediated

mechanism γ∗ induces the agent to reject γFI(U0) after receiving s = t, which occurs with

probability 1/2. The principal’s anticipation of this random rejection makes these offers

unprofitable to him, since, in case of rejection, he faces highly unfavorable contracting terms.

Random vs. Mediated Mechanisms. Because γ∗ conditions the final transfers on the random

signal s, it effectively induces a random contract. It is therefore natural to ask whether there

is a random but non-mediated mechanism, i.e., a map associating any agent’s message to a

random contract, which allows to implement the second-best allocation.

We claim that the answer is negative. To see this intuitively, note that in line with Chade

and Schlee (2012), the optimal renegotiation offer against any probability distribution over

the agent’s efforts is deterministic. Then, simple backward-induction reasoning guarantees

that the principal cannot gain by committing ex-ante to a random mechanism.8

At this point, it is important to clarify that a non-degenerate random mechanism is

random for both the principal and the agent, in the sense that neither party can condition

any of their decisions on the realization of the randomness. By contrast, our mediated

mechanism γ∗ is random for the principal, but not for the agent, because the agent can

condition her choice whether to accept some renegotiation offer on the realization of the

random component. Indeed, γ∗ crucially exploits this feature to generate the agent’s private

information.

An Alternative Communication Protocol. We derived our result by focusing on the principal

picking a specific communication protocol, requiring the agent to send a message and receive

a signal after obtaining a renegotiation offer but before making her acceptance decision. In

this protocol, the agent’s communication in the original mechanism cannot be prevented

by the principal when renegotiating. We see the protocol as reflecting the legal doctrine of

duress, protecting parties’ ability to seek advice before signing modified contracts.

Yet, we point out that this specific protocol is not strictly necessary to our implementation.

Indeed, an alternative protocol that also implements the second best is one that allows the

agent to actually choose at which stage to communicate in the original mechanism. Such

a protocol leads to a larger game, but at any equilibrium of this enlarged game, the agent

chooses to send messages, and, subsequently, to receive signals only after a renegotiation

offer γr is made, so to make an efficient use of her information. Thus, although the principal

may want to offer γr after the agent communicates in the original mechanism γ∗, the agent

has instead an incentive to postpone the timing of her communication, so to activate her

8The result is formally established in Appendix B.
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preferred option in γ∗. As a consequence, we are able to extend Proposition 1 to such a richer

strategic scenario.9 Indeed, any restriction on the agent’s freedom to communicate with third

parties before agreeing to a renegotiation offer could be seen as a form of contractual duress,

which violates contract law.

3.3 Unique Implementation of the Second Best

Proposition 1 shows that the mediated mechanism γ∗ induces a subgame supporting the

second-best allocation at equilibrium. Because this outcome yields to the agent the payoff

U0, it is also incentive-compatible for her to accept γ∗ at stage 2, as she cannot strictly gain

by rejecting it. Moreover, the principal cannot attain a payoff greater than V SB, in the game

without renegotiation. This then shows that an equilibrium exists in the overall game GΓ

that yields the second-best allocation.

From the Myersonian mechanism design perspective that the principal can pick not

only the mechanism but also the (continuation) equilibrium to be played, the presence

of an equilibrium yielding the second-best allocation provides a satisfactory answer to its

implementability. However, taking a stricter implementation perspective, one may worry

that GΓ may also admit other equilibrium outcomes. Indeed, the mechanism γ∗ makes the

agent indifferent over her messages as well as over her effort choices. As a consequence, γ∗ can

be shown to implement a continuum of allocations for the subgame GΓ(γ
∗). In particular,

any x ∈ [0, 1] together with the principal not renegotiating (i.e. γr = {∅}) can be supported

by an equilibrium of GΓ(γ
∗). Consequently, γ∗ does not uniquely implement the second-best

allocation. Yet, although the subgame GΓ(γ
∗) admits multiple equilibrium allocations, the

next proposition shows that only the second-best one is supported at equilibrium in the

overall game GΓ.

Proposition 2 The renegotiation game GΓ has a unique equilibrium allocation, which co-

incides with the second-best one (H, cSB).

The proof of Proposition 2 constructs a mechanism γε by perturbing γ∗ in such a way

that, in the subgame GΓ(γε), for any belief x ∈ [0, 1], choosing not to renegotiate is the

unique best response of the principal to any sequentially rational behavior of the agent.

This, in turn, guarantees that e = H is the unique optimal choice.

9The result is formally established in Appendix B.
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4 A Decentralized Smart Contract Implementation

Our analysis provides the insight that the inefficiencies typically associated with the threat

of renegotiation result from restrictions made on the set of feasible mechanisms. Such

restrictions may however be reasonable if the mechanisms that fully mitigate the threat of

renegotiation require an excessive degree of complexity. Indeed, a common critique leveled

against mediated mechanisms is that, in contrast to non-mediated ones, they often require

a trustworthy third party for their implementation. We negate this critique by explicitly

demonstrating how existing blockchain technologies allow to implement our efficient outcome

via a decentralized smart contract, de-facto dispensing with the need for any third party.10

In so doing, we show that the approach suggested by Brzustowski et al. (2023) extends to a

large class of mediated mechanisms.

To develop our analysis, we start with acknowledging an important limitation of current

technologies: smart contracts are currently unable to send private signals to players.11 This

prevents a direct implementation of our mechanism γ∗: if signal s were public, then, for

instance, the signal-conditional renegotiation offer γr = (γr
t , γ

r
h) = (cFI(U0 + ε), cFI(−∞)),

with ε > 0 small, undermines γ∗ to implement the second-best allocation. This is so, because

this conditional offer triggers the agent’s message m = N , and her acceptance of γr in case

s = t, yielding the principal a myopic gain and thus invalidating the second-best outcome.

Preventing Renegotiation with Public Signals. We next show that the privacy of the

signal s can be dispensed with by appropriately adapting the mechanism γ∗. Consider, in

particular, the modified mechanism γ∗∗ with three private messages, i.e. M∗∗ = {N,R1, R2},
and two public signals, i.e. S∗∗ = {h, t}, extracted with probability 1/2 each. Let the decision

10While smart contracts are technically immutable at the code level, this property alone does not make
them renegotiation-proof from a contract theoretical perspective. A crucial vulnerability arises when smart
contracts rely on external accounts for executing conditional transfers, as these accounts must maintain
sufficient funds for the contract’s execution. This makes such contract directly susceptible to renegotiation:
contracting parties can effectively trigger a renegotiation by deliberately depleting the external accounts that
the smart contract depends on for execution. Although the technical immutability of smart contracts could
theoretically prevent this through complete internalization of all funds, such a solution would require each
party to lock up, at the contract’s initiation, sufficient capital to cover any possible conditional transfer, both
on- and off-path, i.e., including any funds needed for indirect enforcement. The capital costs of such full
internalization would typically be prohibitive, as these funds would need to remain locked for the contract’s
entire duration, creating substantial opportunity costs.

11Brzustowski et al. (2023) can sidestep this issue, because they consider mechanisms that do not require
sending private signals. Indeed, the ability for smart contracts to send signals privately, is currently under
active development. See for instance, work on fully homomorphic encryption such as Zama-AI on Github.
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rule τ ∗∗ be

τ ∗∗(N, h) = τ ∗∗(N, t) = cIC(U0) = cSB;

τ ∗∗(R1, t) = cIC
(
U0 +∆U

)
; τ ∗∗(R1, h) = cIC(U0 −∆U);

τ ∗∗(R2, t) = cIC
(
U0 −∆U

)
; τ ∗∗(R2, h) = cIC(U0 +∆U).

Effectively, γ∗∗ allows the agent the option between two random counter-offers, which only

differ by the face of the coin flip that leads to the better or worse contract.12

Analogously to the proof of Proposition 1, one can show that γ∗∗ implements the second-best

allocation.13 In particular, γ∗∗ induces the agent to respond to a relevant renegotiation offer

by picking the counter-offer that with probability 1/2, grants her the payoff U0 + ∆U and

leads her to reject this offer. Just as under γ∗, this punishes the principal so that he is better

off not renegotiating.

Observe, in addition, that the modified mechanism γ∗∗ still requires that the agent’s

message m remains private if she accepts the principal’s renegotiation offer. To see this, note

that if m were public, then the message-conditional renegotiation offer γr = (γr
N , γ

r
R1
, γr

R2
) =

(cFI(U0 + ε), cFI(−∞), cFI(−∞)) undermines γ∗∗ to implement the second-best allocation.

We now argue that, despite its dependence on the messages’ privacy, γ∗∗ is implementable

via a decentralized smart contract on a transparent blockchain.

Preventing Renegotiation with Decentralized Smart Contracts. In general terms,

smart contracts are self-executing programs that run on a decentralized network, automatically

executing the terms of an agreement between parties. While these contracts can receive and

send messages, it is crucial to note that all these messages are publicly recorded on the

blockchain.14

Because the privacy of the agent’s message plays a crucial role in the mediated mechanism

γ∗∗, the public nature of smart contract interactions presents a challenge for indirectly

implementing γ∗∗. However, by combining smart contracts with the off-the-shelf cryptographic

“commit-and-reveal” technique, we are able to overcome the challenge. Doing so allows us to

12Hence, implementation with an observable signal s comes at the complexity cost of an extra message m.
13This is shown formally in Appendix B.
14For an extensive definition of a smart contract see Szabo (1996) and Catalini and Gans (2020) for

a discussion of potential economic applications for smart contracts. We here emphasize however that, in
general, an enforcement of smart contracts depends on the shadow of the law. To see this in our specific
context of γ∗∗, note that because its transfers condition on the realized output value Y ∈ {g, b}, the realized
output value must somehow be reported to the smart contract. This can be done by, for instance, the
principal, but only the verifiability by a court ensures that the principal will do so truthfully, anticipating
its prohibitively large punishment when misreporting.
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emulate the storage of messages on the blockchain that are initially secret and only publicly

revealed later on.

The commit-and-reveal technique is a cryptographic protocol that allows a party to

commit to a value without disclosing it immediately.15 The technique involves two distinct

phases: the initial “commit phase” and the subsequent “reveal phase”. In the commit

phase, it uses a cryptographic hash function to create a hashed output (the “commitment”)

of the original message together with a random seed. This hash function has the property

of being one-way and collision-resistant, meaning it’s computationally infeasible to derive

the original message from the hash without knowing the random seed or to find two random

seeds so that two different messages generate the same hash. The party thus submits this

commitment to the smart contract, effectively “locking in” her choice without revealing it.

In the reveal phase, the party can publicly reveal the choice by disclosing the random seed

publicly. This is so because the disclosure of the random seed allows a verification of the

chosen message, as only this random seed and the chosen message generate the hash value,

and collision-resistance implies that the party cannot find a seed that together with another

message generates the publicly recorded hashed value.

By using this commit-and-reveal technique, we can emulate γ∗∗’s property of recording

a secret message that is only revealed at a later time, despite the public nature of the

blockchain. During the commit phase, the message remains hidden, known only to the

agent, while the commitment is publicly recorded on the blockchain. Later, during the

reveal phase, the agent can choose to disclose the original message. The smart contract

can then verify that this revealed message indeed corresponds to the earlier commitment by

applying the same hash function and comparing the result to the stored commitment. This

process ensures that the message was not altered since the commitment while maintaining

its secrecy until the designated reveal time.

An Explicit Example of a Smart Contract. We close this section with an example of a

smart contract for a fully parameterized version of our framework using the commit-and-reveal

technique. In particular, let the CRRA utility function u(w) =
√
w describe the agent’s

preferences over transfers, implying that the monetary equivalent is Φ(u) = u2. Let U0 = 10

be the agent’s reservation utility. The cost of high effort is d = 2 with success probability

pH = 3/4, while for low effort the probability is pL = 1/4, i.e., ∆p = 1/2. The output is

g = 1300 in the good state, and b = 100 in the bad one. Hence, yH = 1000 and yL = 400.

15See Narayanan et al. (2016, Chapter 1) for a more in-depth introduction to cryptographic hash functions
and the reveal-and-commit technique.
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1 pragma s o l i d i t y ˆ 0 . 8 . 0 ;
2 contract CommitRevealTransfer {
3 address constant AddressP = 0x362CbcC7a9955332e61d47c107543398C3D25261 ;
4 address constant AddressA = 0x818CbcC8de183AED16f850B17c300DB40a4544Eb ;
5 uint256 constant TG = 169 ; uint256 constant TGH = 225 ; uint256 constant TGT = 121 ;
6 uint256 constant TB = 81 ; uint256 constant TBH = 121 ; uint256 constant TBT = 49 ;
7 bytes32 public HASHCOMMIT; string public S ; string public Y;
8 bool public isCommitted ; bool public i sRevea l ed ; bool public i sYSent ;
9 con s t ruc to r ( ) {

10 require (msg . sender == AddressP , "Only AddressP can deploy" ) ;
11 }
12 function commit (bytes32 hashCommit ) ex t e rna l {
13 require (msg . sender == AddressA , "Only AddressA can commit" ) ;
14 require ( ! isCommitted , "Already committed" ) ;
15 HASHCOMMIT = hashCommit ;
16 isCommitted = true ;
17 }
18 function generateS ( ) i n t e r n a l {
19 require ( isCommitted , "Waiting for commit" ) ;
20 S = block . timestamp % 2 == 0 ? "Head" : "Tail" ;
21 }
22 function sendY ( string c a l l d a t a Y) ex t e rna l {
23 require (msg . sender == AddressP , "Only AddressP can send Y" ) ;
24 require ( isCommitted , "Waiting for commit" ) ;
25 require (keccak256 ( abi . encodePacked ( Y) ) == keccak256 ( abi . encodePacked ( "G" ) ) | |

keccak256 ( abi . encodePacked ( Y) ) == keccak256 ( abi . encodePacked ( "B" ) ) , "Y must be G

or B" ) ;
26 Y = Y ;
27 i sYSent = true ;
28 generateS ( ) ;
29 }
30 function r e v e a l ( string c a l l d a t a message , string c a l l d a t a s a l t ) ex t e rna l {
31 require (msg . sender == AddressA , "Only AddressA can reveal" ) ;
32 require ( isYSent , "Waiting for Y" ) ;
33 require ( ! i sRevea led , "Already revealed" ) ;
34 require (keccak256 ( abi . encodePacked ( message , s a l t ) ) == HASHCOMMIT, "Invalid reveal" ) ;
35 require (keccak256 ( abi . encodePacked ( message ) ) == keccak256 ( abi . encodePacked ( "N" ) ) | |

keccak256 ( abi . encodePacked ( message ) ) == keccak256 ( abi . encodePacked ( "R1" ) ) | |
keccak256 ( abi . encodePacked ( message ) ) == keccak256 ( abi . encodePacked ( "R2" ) ) , "

Invalid message" ) ;
36 i sRevea l ed = true ;
37 uint256 transferAmount = determineTransferAmount ( message ) ;
38 payable (AddressA ) . t r a n s f e r ( transferAmount ) ;
39 }
40 function determineTransferAmount ( string memory message ) i n t e r n a l view r e tu rn s (uint256 ) {
41 i f (keccak256 ( abi . encodePacked ( message ) ) == keccak256 ( abi . encodePacked ( "N" ) ) ) {
42 return keccak256 ( abi . encodePacked (Y) ) == keccak256 ( abi . encodePacked ( "G" ) ) ? TG : TB;
43 } e l s e i f (keccak256 ( abi . encodePacked ( message ) ) == keccak256 ( abi . encodePacked ( "R1" ) ) ) {
44 i f (keccak256 ( abi . encodePacked (Y) ) == keccak256 ( abi . encodePacked ( "G" ) ) ) {
45 return keccak256 ( abi . encodePacked (S) ) == keccak256 ( abi . encodePacked ( "Head" ) ) ? TGH :

TGT;
46 } e l s e {
47 return keccak256 ( abi . encodePacked (S) ) == keccak256 ( abi . encodePacked ( "Head" ) ) ? TBH :

TBT;
48 }
49 } e l s e {
50 i f (keccak256 ( abi . encodePacked (Y) ) == keccak256 ( abi . encodePacked ( "G" ) ) ) {
51 return keccak256 ( abi . encodePacked (S) ) == keccak256 ( abi . encodePacked ( "Head" ) ) ? TGT :

TGH;
52 } e l s e {
53 return keccak256 ( abi . encodePacked (S) ) == keccak256 ( abi . encodePacked ( "Head" ) ) ? TBT :

TBH;
54 }
55 }
56 }
57 r e c e i v e ( ) ex t e rna l payable {
58 require (msg . sender == AddressP , "Only AddressP can send Ether" ) ;
59 }
60 }

Figure 1: The smart contract implementing the mediated mechanism γ∗∗ with a
reveal-and-commit technique based on the keccak-256 hash function in Solidity.
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It is easy to check that ∆U = 2 together with the parameterized example satisfies (4)

and yields the mediated contract γ∗∗ with the following transfers

τ ∗∗(N, h) = (169, 81); τ ∗∗(N, t) = (169, 81)
τ ∗∗(R1, h) = (225, 121); τ ∗(R1, t) = (121, 49)
τ ∗∗(R2, h) = (121, 49); τ ∗(R2, t) = (225, 121).

Figure 1 presents an explicit smart contract that implements the mediated mechanism

γ∗∗ over the Ethereum blockchain using the commit-and-reveal technique for our numerical

example. The smart contract is written in Solidity, which is currently the most common

language for Ethereum smart contracts. We use its current version 0.8.0.

To allow the agent to send a secret (hashed) messagem ∈ {N,R1, R2} with a random seed

σ, the smart contract implements the commit-and-real technique as previously discussed,

based on the public keccak-256 hash function. After sending the hashed message the smart

contract responds with sending either the signal s ∈ {h, t} in a (quasi)-random fashion

by recording the realized signal publicly on the blockchain. After the signal s is sent, the

principal reports the realized output level Y ∈ {g, b}. Finally, the agent is to report the seed

σ to the smart contract by which the smart contract can recover the original message m so

that it can make the transfers according to τ ∗∗.

We set up the contract such that if the agent does not reveal the seed σ honestly, this is

interpreted as tearing up the original contract and accepting a renegotiated one, (ρ = y), so

that the smart contract stops in that no transfers flow and message m stays hidden.

These steps are detailed enough to correctly generate the corresponding smart contract

in Solidity with an AI-Assistant such as Claude.AI. This contract is presented in Figure 1.

5 Mitigating Alternative Forms of Renegotiation

As thoroughly summarized by Bolton (1990), standard approaches to renegotiation share the

idea that any optimal, renegotiation-proof mechanism should generate private information

at the renegotiation stage, thereby leaving the renegotiating principal in the dark when he

tries to renegotiate upon the the original decision rule. In all these approaches, such private

information is generated by inducing an agent to randomize at equilibrium. This in turn

requires to make her indifferent over several alternatives, which, for incentive-compatibility

reasons, imposes an allocative cost.

For the specific context of Fudenberg and Tirole (1990), we have formally shown that

mediated mechanisms allow to spare this incentive-compatibility cost. They generate private

information costlessly, without any need for the agent’s random behaviors. In addition, a
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mediated mechanism needs to generate the relevant uncertainty only off-equilibrium. Hence,

in equilibrium, the contracting parties do not need to incur any indirect costs associated

with private information, such as an increased randomness on a risk-averse agent.

We next discuss the extension of this result to other settings of contract renegotiation.

In Fudenberg and Tirole (1990), a monopolist provides incentives to an agent who takes

a non-observable effort. Since the mediated mechanism effectively operates after effort is

chosen, our results do not depend on the assumption of a binary effort, and easily extend

to the continuum of effort case.16 Moreover, our solution does not depend on the principal’s

objective of maximizing revenue. Indeed, a mediated mechanism similar to that we construct

in Section 3 can be also exploited by a utilitarian planner to implement a second-best

insurance policy under the threat of renegotiation thereby addressing the government failure

emphasized by Netzer and Scheuer (2010).

More generally, mediated mechanisms allow to restore the full-commitment equilibrium

allocations in contexts of incomplete information rather than moral hazard. To make this

concrete, consider a version of the procurement model in Laffont and Tirole (1990). A buyer

(principal) contracts over 2 periods with a privately informed seller (agent), who produces

a single good through a convex-cost technology. The seller’s marginal cost θi, with i = 1, 2,

is her private information, and θ2 > θ1. The second-best involves rationing: type θ2 ends up

selling less than her first-best quantity. This allocation is however fragile to renegotiation:

in the last period, the buyer can make a new offer to exploit all gains from trades on θ2.

Thus, renegotiation-proofness requires that the agent’s type is not perfectly revealed after

her first purchase: renegotiation slows down the speed of information revelation, upholding

private information vis-a-vis the principal. Following the logic developed in Section 3, we

can construct a mediated mechanism that successfully prevents renegotiation. In particular,

the mechanism makes available a new set of contracts, which induce a random participation

of θ2 off-equilibrium. Reflecting the arguments above, the random participation effectively

generates private information off-equilibrium, attaining renegotiation-proofness costslessly.17

Importantly, the agent’s risk-neutrality does not prevent the effectiveness of a mediated

mechanism. This paves the way to extend our approach to the renegotiation setting of

Hart and Tirole (1988), who analyze the Coase-conjecture under the assumption of linear

preferences for both trading parties.

16This is the extension that Fudenberg and Tirole (1990) consider in their Section 5.A.
17Compared with our mediated mechanism γ∗, the construction also guarantees that it is not incentive

compatible for type θ1 to activate the implied punishments. A specific description of such a mechanism is
available from the authors.
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Appendix A

This appendix collects the proofs of Lemma 1 and Proposition 2.

Proof of Lemma 1. For a given e ∈ E, define the function Ṽe : [U
0,∞) → R as

Ṽe(U)
.
=

1

2
V FI
e (2U0 − U) +

1

2
V FI
e (U).

The function satisfies the following properties:

a) Ṽe(U) is well-defined, continuous and twice differentiable for U ∈ [U0,∞), because

Φ(U), and, thus V FI
e (U), are defined for every U ∈ (−∞,+∞) and, moreover, are

continuous and twice differentiable.

b) Ṽe(U) is strictly decreasing since

∂Ṽe(U)

∂U
=

1

2

∂V FI
e (U)

∂U
− 1

2

∂V FI
e (2U0 − U)

∂U
< 0

for any U ∈ (U0,∞), where the inequality obtains since U > 2U0 − U , and because

V FI
e (U) is concave so that ∂V FI

e /∂U is decreasing.

c) Ṽe(U) is strictly concave since

∂2Ṽe(U)

∂U2
=

1

2

∂2V FI
e (U)

∂U2
+

1

2

∂2V FI
e (2U0 − U)

∂U2
< 0,

where the inequality follows because ∂2V FI
e (U)/∂U2 < 0.

d) It follows from (b) and (c) that lim
U→∞

Ṽe(U) = −∞.

e) For each e ∈ E, there is a U e ∈ (U0,∞) such that

V IC
e (U0) = Ṽe(U e) and V IC

e (U0) > Ṽe(U) ∀U ∈ (U e,∞).

This holds since Ṽe(U
0) = V FI

e (U0) > V IC
e (U0) > lim

U→∞
Ṽe(U) = −∞, where the

first inequality follows from the convexity of Φ. Because Ṽe(U) is continuous, the

intermediate value theorem guarantees that there is a U e ∈ (U0,∞): Ṽe(U e) =

V IC
e (U0). Because Ṽe(U) is strictly decreasing, we have Ṽe(U) < Ṽe(U e) = V IC

e (U0)

for all U > U e.

It follows from (e) that for any Un > max{UH , UL}, we have

V IC
e (U0) > Ṽe(U

n). (10)
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Since Un > U0 ⇔ Un > 2U0 − Un, it follows from V FI
e (U) decreasing and Φ convex:

Ṽe(U
n) =

1

2
V FI
e (2U0 − Un) +

1

2
V FI
e (Un) > max{V FI

e (Un),
1

2
V FI
e (2U0 − Un) +

1

2
V IC
e (Un)}.

(11)

Taking ∆U = Un − U0 > 0 together with both (10) and (11) imply (4). ■

Proof of Proposition 2. We construct a mechanism γε that uniquely implements e = H

and yields a principal’s payoff arbitrarily close to V SB.

Define for any ε ∈ (0, ε̄) with ε̄ > 0, the contract

cSBε =

(
U0 +

(1− pL)d+ (1− pH)ε

pH − pL
, U0 − pLd+ pHε

pH − pL

)
.

Note that cSBε yields the agent the payoff U0 if she selects e = H, and U0 − ε if e = L.

Mechanism γε = {M∗,S∗, σ∗, τε} coincides with γ∗, except for τε:

τε(N, h) = τε(N, t) = cSBε ; τε(R, t) = cIC(U0 +∆U); τε(R, h) = cIC(U0 −∆U − 3ε).

We consider the subgame GΓ(γε), and construct ε̄ > 0 so that, for any belief x ∈ [0, 1]

and any ε ∈ (0, ε̄), the principal is strictly worse off from any renegotiation offer that the

agent accepts with a strictly positive probability.

Given γε, let Λ(γε) denote the set of the agent’s sequentially rational strategies in GΓ(γε).

Starting from the terminal nodes of GΓ(γε), we characterize Λ(γε).

Recalling (5), note that in any history (e, γr,m, s, y) with γr ̸= ∅, the agent sends any

(distribution of) mr
e that satisfies the lefthand side of (5), expecting to obtain Û r

e from

accepting γr as expressed in the righthand side of (5).

Given Û r
e and rule τε, we derive the agent’s optimal acceptance behavior (ρ(h), ρ(t)):

(a) For (e,m) = (H,R) and (e,m) = (L,R), we have

ρ(h) ∈


{y} if Û r

e > U0 −∆U − 3ε;

{n} if Û r
e < U0 −∆U − 3ε;

{n, y} if Û r
e = U0 −∆U − 3ε;

and ρ(t) ∈


{y} if Û r

e > U0 +∆U ;

{n} if Û r
e < U0 +∆U ;

{n, y} if Û r
e = U0 +∆U.

(b) For (e,m) = (H,N), we have

ρ(h) ∈


{y} if Û r

H > U0;

{n} if Û r
H < U0;

{n, y} if Û r
H = U0;

and ρ(t) ∈


{y} if Û r

H > U0;

{n} if Û r
H < U0;

{n, y} if Û r
H = U0.

(c) For (e,m) = (L,N), we have

ρ(h) ∈


{y} if Û r

L > U0 − ε;

{n} if Û r
L < U0 − ε;

{n, y} if Û r
L = U0 − ε;

and ρ(t) ∈


{y} if Û r

L > U0 − ε;

{n} if Û r
L < U0 − ε;

{n, y} if Û r
L = U0 − ε.
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Given (ρ(h), ρ(t)), we derive her optimal messaging behavior for e ∈ E and an offer

γr ̸= ∅, yielding Û r
e if accepted. For e = H, m = N is optimal if

max{U0, Û r
H} ≥ 1

2
max

{
Û r
H , U

0 −∆U − 3ε
}
+

1

2
max{Û r

H , U
0 +∆U}, (12)

while m = R is optimal if the opposite weak inequality holds. For e = L, m = N is optimal

if

max{U0 − ε, Û r
L} ≥ 1

2
max

{
Û r
L, U

0 −∆U − 3ε
}
+

1

2
max{Û r

L, U
0 +∆U}, (13)

while m = R is optimal if the opposite weak inequality holds.

Having characterized Λ(γε), we consider the principal’s behavior at the renegotiation

stage.

First, suppose the principal holds a deterministic belief x ∈ {0, 1} over the agent’s effort.

In this case, the first argument in the proof of Lemma 3 implies that we can characterize

any renegotiated offer that the principal considers optimal by some Û r
x ∈ (−∞,+∞),

representing the agent’s utility that the principal expects given his belief x ∈ {0, 1}. Using

the agent’s sequentially rational behavior as derived above by substituting Û r
H = Û r

1 and

Û r
L = Û r

0 , we derive the payoff that the principal himself expects from Û r
x :

1. For Û r
1 < U0 − ∆U , the principal expects payoff VH(c

SB
ε (U0)) and for Û r

0 < U0 −
∆U − 2ε, the principal expects payoff VL(c

SB
ε (U0)). This follows because the principal

expects the agent to consider her strategy (m, ρ(t), ρ(h)) = (N, n, n) uniquely optimal.

To see this, note that conditional on sending m = N , ρ(t) = ρ(h) = n is strictly

optimal, because

Û r
1 < U0 −∆U < U0 and Û r

0 < U0 −∆U − 2ε < U0 − ε.

To see why the principal expects the agent to strictly prefer m = N over m = R,

consider the two subcases:

(a) If Û r
1 ≤ U0 −∆U − 3ε, then (12) with Û r

H = Û r
1 becomes U0 ≥ U0 − 3

2
ε; likewise,

if Û r
0 ≤ U0 −∆U − 3ε, then (13) with Û r

L = Û r
0 becomes U0 − ε ≥ U0 − 3

2
ε. Both

inequalities are strictly satisfied since ε > 0.

(b) If Û r
1 ∈ (U0 − ∆U − 3ε, U0 − ∆U), then (12) with Û r

H = Û r
1 becomes Û r

H ≤
U0−∆U ; likewise, if Û r

0 ∈ (U0−∆U−3ε, U0−∆U−2ε), then (13) with Û r
L = Û r

0

becomes Û r
0 ≤ U0 −∆U − 2ε. Both inequalities are strictly satisfied in case (b)

by assumption.
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2. For Û r
1 = U0 −∆U or Û r

0 = U0 −∆U − 2ε, the principal expects the agent to consider

only her strategies (m, ρ(h), ρ(t)) = (N, n, n) and (m, ρ(h), ρ(t)) = (R, y, n) optimal,

as, in this case, (12) and (13) both hold with equality. For any randomization over

the agent’s decisions, the principal expects a payoff that is a convex combination of

VL(c
SB
ε ) and 1

2
V FI
L (U0 −∆U − 2ε) + 1

2
V IC
L (U0 +∆U) for x = 0, and of VH(c

SB
ε ) and

1
2
V FI
H (U0 −∆U) + 1

2
V IC
H (U0 +∆U) for x = 1.

3. For Û r
1 ∈ (U0 −∆U,U0 +∆U) or Û r

0 ∈ (U0 −∆U − 2ε, U0 +∆U), the principal

expects the agent to consider only (m, ρ(h), ρ(t)) = (R, y, n) optimal because with

(Û r
H , Û

r
L) = (Û r

1 , Û
r
0 ) both (12) and (13) are violated. Hence, the principal expects the

payoff 1
2
V FI
H (Û r

1 )+
1
2
V IC
H (U0+∆U) for x = 1, and payoff 1

2
V FI
L (Û r

0 )+
1
2
V IC
L (U0+∆U)

for x = 0.

4. For Û r
1 = U0 + ∆U or Û r

0 = U0 + ∆U , the principal expects the agent to consider

exactly the 3 strategies (m, ρ(h), ρ(t)) = (N, y, y), (m, ρ(h), ρ(t)) = (R, y, y), and

(m, ρ(h), ρ(t)) = (R, y, n) optimal. For any mixture over these strategies, the principal

obtains a convex combination between V FI
H (U0+∆U) and 1

2
V FI
H (U0+∆U)+ 1

2
V IC
H (U0+

∆U) for x = 1; and between V FI
L (U0 +∆U) and 1

2
V FI
L (U0 +∆U) + 1

2
V IC
L (U0 +∆U)

for x = 0.

5. For Û r
e ∈ (U0 +∆U,∞), the principal expects the agent to consider exactly strategies

(m, ρ(h), ρ(t)) = (N, y, y) and (m, ρ(h), ρ(t)) = (R, y, y) optimal. For any mixture over

these strategies, the principal obtains V FI
H (Û r

1 ) for x = 1 and V FI
L (Û r

0 ) for x = 0.

From the above it follows that with belief x = 1, the following inequalities guarantee

that the principal believes to be strictly worse off from a renegotiation offer that the agent

accepts with a strictly positive probability:

VH(c
SB
ε )− 1

2
V FI
H

(
U0 −∆U

)
− 1

2
V IC
H (U0 +∆U) > 0, (14)

and

VH(c
SB
ε )− V FI

H (U0 +∆U) > 0. (15)

Observe that, if ε = 0, (14) and (15) are satisfied because they coincide with (8) and (9),

respectively. Since VH(c
SB
ε ) is continuous in ε, there is a εH > 0 such that (14) and (15) are

satisfied for any ε ∈ (0, εH). If, instead, x = 0, the principal believes to be strictly worse off

from the agent accepting a renegotiation offer with a strict positive probability when

VL(c
SB
ε )− 1

2
V FI
L

(
U0 −∆U − 2ε

)
− 1

2
V IC
L (U0 +∆U) > 0 (16)
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and

VL(c
SB
ε )− V FI

L (U0 +∆U) > 0. (17)

Again, since VL(c
SB
ε ) is continuous in ε, there is a εL > 0 such that (16) and (17) are

satisfied for any ε ∈ (0, εL). Defining ε̄
.
= min{εL, εH} implies that if the principal holds

a degenerate belief, then, for any ε ∈ (0, ε̄), he believes that he is strictly worse off from a

renegotiation offer that the agent accepts with a strictly positive probability.

We next argue that the polar cases x ∈ {0, 1} as studied above, imply that, also for an

intermediate belief x ∈ (0, 1), the principal expects to be strictly worse off from the agent

accepting a renegotiation offer with strictly positive probability. To see this, note that the

principal’s expected payoff by not renegotiating is linear in x:

Vx(c
SB
ε ) = xVH(c

SB
ε ) + (1− x)VL(c

SB
ε ).

Moreover, note that by offering γr ̸= ∅ and some sequentially rational behavior λ ∈ Λ(γε)

by the agent, he would instead get

V ∗
x (γ

r, λ(γε)) = xV ∗
H(γ

r, λ) + (1− x)V ∗
L (γ

r, λ).

As the agent’s behavior is independent of the principal’s belief x, this is also linear in x.

We however already obtained that if λ is such that it implies a strict positive probability of

accepting the renegotiation offer then

VH(c
SB
ε ) > V ∗

H(γ
r, λ) and VL(c

SB
ε ) > V ∗

L (γ
r, λ).

Thus, the suboptimality of renegotiation extends to intermediate beliefs x ∈ (0, 1).

Finally, we consider the agent’s effort choice. Since the agent anticipates that the

principal does not make a renegotiation offer that makes her accept it with positive probability,

(e,m) = (H,N) is strictly optimal among all (e,m) ∈ {H,L} × {R,N}. Hence, the

principal’s payoff in GΓ(γε) is VH(c
SB
ε ). Consequently, in any equilibrium of GΓ, the principal

must obtain at least the payoff V SB as

lim
ε→0

VH(c
SB
ε ) = V SB,

Given that the principal cannot obtain more than what he can get without any possibility

of renegotiation, the principal obtains exactly the payoff V SB in any equilibrium. The

analysis in Section 1 guarantees that only cSB yields V SB to the principal without violating

constraints (2) and (3). ■
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Appendix B

This appendix develops three relevant extensions, and collects the proofs of additional results.

Irrelevance of Random Mechanisms in Fudenberg and Tirole (1990)

We here formalize the claim that random mechanism play no role in the FT construction.

Lemma 4 Let G̃r be a game which coincides with Gr, but enlarges the set of available

mechanisms C to C̃, which also includes all stochastic mechanisms γc̃ : E → ∆(R2). Then,

G̃r has only one equilibrium allocation, which coincides with that in Gr.

Proof of Lemma 4. For any stochastic mechanism γc̃ ∈ C̃, define γc̃(e) = c̃e and let

Ũe
.
= peE[Ug|c̃e] + (1− pe)E[Ub|c̃e]

be the the agent’s expected payoff after taking the effort e ∈ E, and truthfully reporting

it in γc̃. Consider the subgame Gr(γc̃), and suppose that e = H is chosen with probability

x ∈ [0, 1]. The revelation principle guarantees that the maximal payoff attainable by the

principal by a renegotiation offer γr ∈ C̃ is the value of the program P (x, ŨH , ŨL):

V ∗(x, ŨH , ŨL) = max
γr
c̃∈C̃

Y (x)− x[pHE(Φ(Ug)|crH) + (1− pH)E(Φ(Ub)|crH)]
− (1− x)[pLE(Φ(Ug)|crL) + (1− pL)E(Φ(Ub)|crL)]

(18)

s.t.: pHE(Ug|crH) + (1− pH)E(Ub|crH) ≥ ŨH (IRCH)

pLE(Ug|crL) + (1− pL)E(Ub|crL) ≥ ŨL (IRCL)

pHE(Ug|crH) + (1− pH)E(Ub|crH) ≥ pHE(Ug|crL) + (1− pH)E(Ub|crL) (ICCH)

pLE(Ug|crL) + (1− pL)E(Ub|crL) ≥ pLE(Ug|crH) + (1− pL)E(Ub|crH) (ICCL)

where Y (x) = xYH + (1− x)YL. The following two results hold:

Claim 1 P (x, ŨH , ŨL) admits a unique solution, which is deterministic.

Proof. See Chade and Schlee (2012, Proposition 1).

Denote γr(γc̃, x) the unique solution to P (x, ŨH , ŨL).

Claim 2 For any γc̃ ∈ C̃ and x ∈ [0, 1] there is a deterministic γc ∈ C such that γr(γc̃, x) =

γr(γc, x).
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Proof. Given γc̃ ∈ C̃, we construct the deterministic mechanism γc yielding the transfers

U e
ω = E(Uω|c̃e) for each (e, ω) ∈ E×{g, b}. Thus, for any x ∈ [0, 1], the optimal renegotiation

offer in G(γc) obtains again from solving P (x, ŨH , ŨL). ■

Finally, if γc is constructed from γc̃ as in the proof of Claim 2, the following holds:

Claim 3 The subgames Gr(γc) and G̃r(γc̃) have the same equilibrium allocations.

Proof. Consider the subgame G̃r(γc̃), and let x ∈ [0, 1] be the equilibrium distribution over

efforts. Let G̃r(γc) be the subgame induced by the mechanism γc, which is obtained from γc̃ as

in the proof of Claim 2. It follows that, in either subgame, the principal’s renegotiation offer

is γr(γc̃, x) = γr(γC , x), which is accepted by the agent, who truthfully reports her former

effort.18 Furthermore, the transfers corresponding to the unique solution of P (x, ŨH , ŨL) are

implemented. Thus, playing e = H with probability x ∈ [0, 1] is sequentially rational for the

agent in G̃r(γc), which implies that Gr(γc) and Gr(γc̃) have the same PBE allocations. ■

To conclude the proof, denote xFT the equilibrium probability of e = H characterized by

FT, and UFT the equilibrium rent of the agent. Claim 3 implies that the upper bound V FT =

V ∗(xFT , UFT , UFT ) of the principal’s payoffs characterized by FT for the deterministic game

Gr is also an upper bound in G̃r. In addition, in the game G̃r, the principal can achieve

V FT as the unique continuation payoff by offering any of the mechanisms characterized in

Fudenberg and Tirole (1990, Proposition 3.4). Thus, the unique equilibrium’s payoff of the

principal in G̃r is V FT as in Gr, and the same distributions over efforts and transfers are

implemented. ■

Endogenous Timing of the Agent’s Report

We here show that Proposition 1 extends to scenarios, in which the agent can send her report

before or after the principal makes a renegotiation offer.

Consider the mechanism µ = {Mµ,Sµ, σµ, τµ} such that µ /∈ Γ and

Mµ = {N,R, ∅}, Sµ = {h, t}, σµ =

(
1

2
,
1

2

)
.

The mechanism µ is a modified version of γ∗ = {M∗,S∗, σ∗, τ ∗} from Proposition 1. If µ is

offered by the principal and accepted by the agent, it induces the following extensive form

game Gµ:

1. The agent selects e ∈ E.

18See Fudenberg and Tirole (1990, p. 1295).
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2. The agent sends m1 ∈ {N,R, ∅}.

3. If m1 ̸= ∅, s ∈ {h, t} is extracted from the distribution
(
1
2
, 1
2

)
and disclosed privately

to the agent.

4. The principal proposes γr ∈ Γ.

5. If m1 = ∅, the agent sends m2 ∈ {N,R, ∅}, and m2 = ∅ otherwise.

6. If (m1 = ∅,m2 ̸= ∅), s ∈ {h, t} is extracted from the distribution
(
1
2
, 1
2

)
and is disclosed

privately to the agent.

7. The agent takes the participation decision ρ ∈ {y, n}.

8. There are three possible situations:

� If γr ̸= {∅} and ρ = y, the agent sends mr ∈ Mr, sr ∈ Sr is extracted from σr

and τ r(mr, sr) is implemented.

� If γr = {∅} or ρ = n, and if m1 = m2 = ∅, the agent sends m3 ∈ {N,R},
then s ∈ {h, t} is extracted from the distribution

(
1
2
, 1
2

)
, and the decision rule

τµ(m1,m2,m3, s) is implemented.

� If γr = {∅} or ρ = n, and m1 ̸= ∅ or m2 ̸= ∅, the agent sends m3 = ∅ and the

decision rule τµ(m1,m2,m3, s) is implemented.

For a given vector of the agent’s messages (m1,m2,m3) let mj ∈ (m1,m2,m3) be the only

one different from ∅, and assume that τµ(m1,m2,m3, s) = τ ∗(mj, s). Note that µ extends the

optimal mechanism γ∗ characterized in the proof of Proposition 2, by giving the agent the

freedom to decide, at each step i = 1, 2, 3 of the interim stage, whether to send the message

mi ∈ {N,R} or to stay silent (mi = ∅).19 Furthermore, the agent must speak, only once,

in the mechanism µ, i.e. if m1 = m2 = ∅, the agent is forced to send a nonempty message

m3 ∈ {N,R} at the last stage of the game, but, if at some point she sends a nonempty

message, her future messages must be empty. Note also that the agent learns the realization

s ∈ {h, t} of the private signal as soon as she sends a nonempty message mi ̸= ∅.
A behavioral strategy for the principal inGµ is a distribution over the set of the renegotiated

offers Γ. In fact, since the message and the signal are exchanged privately, at the renegotiation

stage, the principal does not know whether communication has taken place or not in the

19We assume, for simplicity of exposition and without loss of generality, that the agent cannot send any
message at the ex-ante stage, that is, before taking e ∈ E.
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original mechanism, and thus, he cannot condition his renegotiation on such information.

This crucially implies that the renegotiating principal cannot prevent the agent from waiting

until a renegotiation offer is made, before reporting m in the original mechanism.

A behavioral strategy λ(µ) of the agent specifies an effort probability x ∈ [0, 1] at the

initial history (µ); a distribution over m1 ∈ Mµ for each (µ, e), a distribution over the

decisions ρ ∈ {y, n} at any (µ, e,m1, s, γ
r) with m1 ̸= ∅ and γr ̸= {∅}, followed by a

distribution over mr ∈ Mr at any history such that ρ = y. It also involves a distribution over

m2 ∈ Mµ at any (µ, e, ∅, γr), followed by a distribution over ρ at any (µ, e, ∅, γr,m2, s) and a

distribution over mr ∈ Mr at any continuation (µ, e, ∅, γr,m2, s, y) with γr ̸= {∅}. Finally,

it involves a distribution over m2 ∈ Mµ at any (µ, e, ∅, γr) with γr = {∅}, a distribution

over ρ at any (µ, e, ∅, γr, ∅) with γr ̸= {∅}, a distribution over m3 ∈ Mµ at the continuation

histories such that ρ = n, and a distribution over mr ∈ Mr at the continuation histories

such that ρ = y. One can then show the following:

Lemma 5 The second-best allocation (H, cSB) is supported in an equilibrium of game Gµ.

Proof. We show that there exists an equilibrium in which the principal abstains from

renegotiating, the agent chooses e = H selecting (m1 = ∅,m2 = N) with probability one on

the equilibrium path; also, the agent sends m1 = ∅ off-the-equilibrium path when e = L,

and, following any history such that γr = {∅} and m1 = ∅, she sends m2 = N . Also, at any

history (µ, e,m1, γ
r) such that m1 = ∅ and γr ̸= {∅}, the agent send m2 ∈ Mµ according to

the following rule:

(i) If γr = {∅}, and for any γr such that Û r
e ≤ U0 −∆U , the agent sends m = N in µ.

(ii) For any γr ̸= {∅} such that Û r
e ∈ (U0 −∆U,U0 +∆U ], the agent sends m = R in µ.

(iii) For any γr ̸= {∅} such that Û r
e > U0 +∆U , the agent sends m = R in µ.

Moreover, at any history such that γr ̸= ∅ and mj ∈ {m1,m2}, she selects a participation

decision for each s ∈ {h, t} according to the following rule:

(i) If mj = N and for each s ∈ {h, t}, ρ = y if Û r
e ≥ U0 and ρ = n otherwise.

(ii) If mj = R and s = h, ρ = y if Û r
e ≥ U0 −∆U and ρ = n otherwise.

(iii) If mj = R and s = t, ρ = y if Û r
e ≥ U0 +∆U and ρ = n otherwise.
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At any history such that m1 = m2 = ∅, the agent participates in the renegotiated

mechanism if and only if Û r
e ≥ U0.20 Finally, at any terminal history such that m1 = m2 = ∅

in which she is asked to report some m3 ∈ Mµ into µ, she sends m3 = N , while, at any

terminal history in which she participates in a renegotiated mechanism, she optimally sends

some mr
e ∈ Mr as defined in the proof of Proposition 1.

Note first that, given the the agent’s behavior, the sequential rationality of the principal’s

behavior has already been shown in Proposition 1. The same argument applies to the the

agent’s effort and participation behaviors at any history such that mj ∈ {m1,m2}.
We check the sequential rationality of the other the agent’s decisions, starting from the

terminal nodes. At any history in which the agent sends m3 ̸= ∅ (as well as m2 ̸= ∅ with

γr = {∅}), the agent is indifferent between mj ∈ {N,R} as she obtains the expected payoff

U0 from µ regardless of the report she selects. Thus, it is sequentially rational for her to

send mj = N as we construct.

Consider now the agent’s participation behavior when m2 = ∅. Since in this case the

agent’s strategy prescribes m3 = N , and since s ∈ {h, t} is payoff-irrelevant when mj = N ,

the fact that at any history (µ, e, ∅, γr, N, s) it is sequentially rational to select ρ ∈ {y, n},
implies that the same participation decision ρ ∈ {y, n} is optimal at any (µ, e, ∅, γr, ∅) for

the same renegotiated offer γr. But then, the participation behavior associated to m2 = ∅ is

sequentially rational, since it is equivalent to the one constructed when m2 = N , which has

been shown to be sequentially rational in Proposition 1.

Let us now turn to the agent’s choice of m2 ∈ Mµ at any (µ, e, ∅, γr). Since the agent

is indifferent between sending m2 = ∅ and m2 = N as just argued, she has no incentive to

deviate from m2 = N to m2 = ∅ when prescribed by the behavioral strategy we construct.

Furthermore, deviating from m2 = R to m2 = ∅ yields her no strictly profitable deviation

since m2 = ∅ is equivalent to m2 = N , and thus, the existence of a profitable deviation to

m2 = ∅ would imply the existence of a deviation from m = R to m = N in the original

game studied in Proposition 1. Thus, the the agent’s message behavior corresponding to

m2 ∈ Mµ is sequentially rational. Finally, consider her behavior concerning m1. Since

γr = ∅ at equilibrium, it is payoff-irrelevant for the agent to send the optimal message

mj = N at the stages i ∈ {1, 2}, and thus, there is no profitable deviation from the behavior

that we assume, in which m1 = ∅ and m2 = N . ■

It is also noteworthy that no equilibrium in pure strategies exists such that m1 ̸= ∅, at
least for values of ∆U that are large enough in the mechanism µ. In fact, if the equilibrium

20This is equivalent to her participation behavior when j ∈ {1, 2} and mj = N , for each s ∈ {h, t}.
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strategy of the the agent’s endogenous type e ∈ E ism1 = N , the principal’s optimal response

is to give full insurance to this type, leading the agent to pickmj = R as shown in Proposition

1. Also, if the agent picks m1 = R, for large enough values of U0 + ∆U , the principal

optimally proposes a full-insurance contract targeted only to the type (e, h), which means

that by sending m = R, the agent expects the same payoff as in the absence of renegotiation.

But then, as as shown in Proposition 1, mj = N is the the agent’s unique optimal report.

Thus, the mechanism γ∗ from Proposition 1 provides an incentive to coordinate on equilibria

in which mj is sent after γ
r is posted and before ρ is taken.

Renegotiation with Public Signals

We here show that privacy of the signals is not needed to achieve our efficiency result.

Specifically, we show that the mechanism γ∗∗ as defined in Section 4 supports the second-best

allocation (H, cSB) at equilibrium. To argue this, first consider the subgameGPub
Γ (γ∗∗), which

starts after γ∗∗ is offered and accepted:

1. The agent takes e ∈ {L,H}.

2. The principal offers γr = {Mr,Sr, σr, τ r}, with τ r : Mr × Sr × S → ∆C, allowing to

condition on the realization s ∈ S.

3. The agent privately sends m ∈ M∗∗ = {N,R1, R2}.

4. The signal s ∈ S∗∗ = {h, t} realizes publicly according to σ∗∗.

5. If ρ = y, the agent sends mr ∈ Mr, the signal sr ∈ Sr is realized according to σr,

and the transfers τ r(mr, sr, s) are implemented. If ρ = n or γr = {∅}, the transfers

τ ∗∗(m, s) are implemented.

Observe that the game GPub(γ∗∗) involves a larger strategy space for the renegotiating

principal, who can now make his offer γr contingent on the realized signal s ∈ S. Although

this may in principle create new incentives to renegotiate, the mechanism γ∗∗ allows to fully

mitigate any renegotiation threat. Indeed, the following holds:

Lemma 6 The allocation (H, cSB) is supported in an equilibrium of GPub(γ∗∗).

Proof. Observe first that a strategy for the principal in GPub(γ∗∗) is a signal-contingent

renegotiated offer γr. An agent’s behavioral strategy λ consists of a randomization (1−x, x)

over e ∈ E at the initial history of GPub(γ∗∗), a randomization over messages in M∗∗ at
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each history (e, γr), a randomization over participation decisions ρ ∈ {y, n} at each history

(e, γr,m, s) where γr ̸= {∅} and a randomization over messages in Mr at each history

(e, γr,m, s, ρ) such that (γr ̸= ∅, ρ = y).

For any signal s ∈ S∗∗ extracted in γ∗∗, let mr
e(s) ∈ Mr be an optimal message when

the agent accepts γr having chosen the effort e ∈ E. Following (5), we denote Û r
e (s) the

corresponding payoff. That is:

Û r
e (s) =

∑
sr∈Sr

σr(sr|mr
e(s), s)Ue(τ

r(mr
e(s), s

r, s)) ∀s ∈ S∗∗. (19)

We now construct a PBE of GPub(γ∗∗) which implements the allocation (H, cSB).

The principal’s equilibrium strategy is not to renegotiate, i.e. γr(γ∗∗) = {∅}, while the

agent’s strategy λ(γ∗∗) is as follows:

1. The agent chooses e = H with probability one.

2. Her messages in γ∗∗, and her subsequent participation decisions in γr, depend on the

history (e, γr) as follows:

(i) For any e ∈ E, for γr = {∅}, and for any γr such that

1

2
max{U0, Û r

e (h)}+
1

2
max{U0, Û r

e (t)} ≥

max
{1

2
max{U0 −∆U, Û r

e (h)}+
1

2
max{U0 +∆U, Û r

e (t)},
1

2
max{U0 +∆U, Û r

e (h)}+
1

2
max{U0 −∆U, Û r

e (t)}
} (20)

the agent sends m = N in γ∗∗, followed by ρ = n. Observe that the lhs of (20)

corresponds to the agent’s expected payoff of reporting m = N in γ∗∗, followed by her

(optimal) signal-contingent participation decisions. The rhs of (20) characterizes the

payoff corresponding to the best alternative report.

(ii) For any e ∈ E, and for any γr ̸= {∅} such that (20) is not satisfied, the agent sends

m = R1 in γ∗∗ whenever

1

2
max{U0 −∆U, Û r

e (h)}+
1

2
max{U0 +∆U, Û r

e (t)} ≥
1

2
max{U0 +∆U, Û r

e (h)}+
1

2
max{U0 −∆U, Û r

e (t)},
(21)

followed by the (optimal) signal-contingent participation ρ = y whenever Û r
e (s) ≥

Ue(τ
∗∗(m, s)), and ρ = n otherwise, for any s ∈ S∗∗.
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(iii) For any e ∈ E, and for any γr ̸= {∅} such that (20) and (21) are not satisfied, the

agent sends m = R2 in γ∗∗ followed by the (optimal) signal-contingent participation

described in (ii).

3. For any history (e, γr ̸= {∅},m, s, y), the agent sends mr
e(s).

It is immediate to check that the agent’s strategy λ(γ∗∗) is sequentially rational. In

particular, it is optimal for her to choose e = H with probability one since, on the equilibrium

path, the incentive-compatible transfers cSB = cIC(U0) are executed.

To conclude the proof, it remains to check that, given λ(γ∗∗), there is no renegotiated

offer γr ̸= {∅} yielding the principal a strictly higher payoff than V SB. We partition the set

of available renegotiated offers according to the reports that λ(γ∗∗) induce in the mechanism

γ∗∗.

Observe first that, for any γr such that λ(γ∗∗) prescribes to report m = R1 in γ∗∗, the

principal’s payoff cannot exceed

V R =
1

2
V FI
H (U0 −∆U) +

1

2
V FI
H (U0 +∆U),

that is, the payoff providing full insurance to the agent conditional on each realized signal. In

this case, Lemma 1 guarantees that V SB > V R. Thus, the principal prefers not to renegotiate

than renegotiating an offer which induces the report m = R1. A symmetric argument applies

to any γr such that λ(γ∗∗) prescribes to report m = R2 in γ∗∗. In any such case, one can

also check that the principal cannot achieve a payoff greater than V R.

Thus, for any profitable renegotiation γr, the agent’s equilibrium strategy λ(γ∗∗) must

prescribe to report m = N in γ∗∗. That is, given (20), and since e = H, one should have:

1

2
max{U0, Û r

H(h)}+
1

2
max{U0, Û r

H(t)} ≥

max
{1

2
max{U0 −∆U, Û r

H(h)}+
1

2
max{U0 +∆U, Û r

H(t)},
1

2
max{U0 +∆U, Û r

H(h)}+
1

2
max{U0 −∆U, Û r

H(t)}
}
.

(22)

We now argue that (22) is satisfied only if one of the following two conditions is met:

Û r
H(s) < U0 ∀s ∈ S∗∗ ∧ Û r

H(s) ≥ U0 +∆U ∀s ∈ S∗∗. (23)

To see this, suppose that (23) does not hold, which leads to consider three cases.

� If Û r
H(t) < U0 and Û r

H(h) ≥ U0, then the lhs of (22) is 1
2
Û r
H(h) +

1
2
U0 and its rhs is at

least 1
2
Û r
H(h) +

1
2
(U0 +∆U), which obtains for m = R1. The latter is strictly greater

than the former, which violates (22).
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� If U0 ≤ Û r
H(t) < U0+∆U , then the lhs of (22) is 1

2
max{U0, Û r

H(h)}+ 1
2
Û r
H(t). Suppose

now that Û r
H(h) < U0 + ∆U : the value of the rhs is at least 1

2
(U0 + ∆U) + 1

2
Û r
H(t),

which obtains for m = R2. The latter is strictly greater than the former, which violates

(22). In the mutually exclusive case Û r
H(h) ≥ U0 +∆U , the value of the rhs is at least

1
2
Û r
H(h) +

1
2
(U0 +∆U), which obtains for m = R1, which leads to violate (22) again.

� If Û r
H(t) ≥ U0 + ∆U , and Û r

H(h) < U0 + ∆U , the lhs of (22) is 1
2
max{U0, Û r

H(h)} +
1
2
Û r
H(t), and the rhs is at least 1

2
(U0 +∆U) + 1

2
Û r
H(t), which obtains for m = R2. The

latter is strictly greater than the former, which violates (22)

Thus, following a renegotiation γr, λ(γ∗∗) prescribes m = N and only if (23) holds. Two

cases must then be considered:

(i) If Û r
H(s) < U0 ∀s ∈ S∗∗, then (22) rewrites U0 ≥ U0, and is thus satisifed with equality.

Thus, λ(γ∗∗) prescribes to report m = N in γ∗∗ and to choose ρ = n, which yields the

principal the same profit V SB obtained without renegotiation.

(ii) If Û r
H(s) ≥ U0 + ∆U ∀s ∈ S∗∗, then (22) rewrites U0 + ∆U ≥ U0 + ∆U , and is thus

satisfied with equality. Thus, λ(γ∗∗) prescribes to report m = N in γ∗∗. In addition,

for any such γr, the agent is guaranteed the payoff U0 +∆U in the continuation play,

which implies that the principal’s payoff cannot exceed V FI
H (U0 + ∆U), which is not

greater than V SB, as shown in Lemma 1.

Thus, the principal’s strategy γr(γ∗∗) = {∅} is sequentially rational. ■
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, Thomas Mariotti, and François Salanié, “Nonexclusive Competition in the Market

for Lemons,” Econometrica, 2011, 79(6), 1869–1918.

, , and , “Regulating Insurance Markets: Multiple Contracting And Adverse

Selection,” International Economic Review, August 2022, 63 (3), 981–1020.

37



Bester, Helmut and Roland Strausz, “Contracting with imperfect commitment and

noisy communication,” Journal of Economic Theory, 2007, 136, 236–259.

Bisin, Alberto and Danilo Guaitoli, “Moral Hazard and Nonexclusive Contracts,”

RAND Journal of Economics, 2004, 35(2), 306–328.

Bolton, Patrick, “Renegotiation and the dynamics of contract design,” European Economic

Review, May 1990, 34 (2-3), 303–310.

Brzustowski, Thomas, Alkis Georgiadis-Harris, and Balasz Szentes, “Smart

Contracts and the Coase Conjecture,” American Economic Review, 2023, 113(5),

1334–1359.

Catalini, Christian and Joshua S. Gans, “Some simple economics of the blockchain,”

Communications of the ACM, 2020, 63 (7), 80–90.

Chade, Hector and Edward Schlee, “Optimal insurance with adverse selection,” Theo-

retical Economics, 2012, 7 (3), 571–607.

Davis, Kevin E., “The Demand For Immutable Contracts: Another Look At The Law

And Economics Of Contract Modifications,” New York University Law Review, May 2006,

81, 487–549.

Dewatripont, Mathias, “Renegotiation and Information Revelation Over Time: The

Case of Optimal Labor Contracts,” The Quarterly Journal of Economics, 1989, 104 (3),

589–619.

Doval, Laura and Vasiliki Skreta, “Mechanism design with limited commitment,” Econo-

metrica, 2022, 90 (4), 1463–1500.

and , “Optimal mechanism for the sale of a durable good,” Theoretical Economics,

2024, 19 (2).

Forges, Francoise, “An approach to communication equilibria,” Econometrica: Journal of

the Econometric Society, 1986, pp. 1375–1385.

Fudenberg, Drew and Jean Tirole, “Moral hazard and renegotiation in agency

contracts,” Econometrica, 1990, 58 (6), 1279–1319.

Hart, Oliver D. and Jean Tirole, “Contract Renegotiation and Coasian Dynamics,” The

Review of Economic Studies, 1988, 55 (4), 509–540.

38



Jolls, Christine, “Contracts as Bilateral Commitments: A new Perspective on Contract

Modification,” Journal of Legal Studies, 1997, 26, 203–237.

Laffont, Jean-Jacques and Jean Tirole, “Adverse Selection and Renegotiation in

Procurement,” The Review of Economic Studies, 1990, 57 (4), 597–625.

Lomys, Niccolo and Takuro Yamashita, “A Mediator Approach to Mechanism Design

with Limited Commitment,” Technical Report, Toulouse School of Economics 2022.

Myerson, Roger B., “Optimal coordination mechanisms in generalized principal-agent

problems,” Journal of mathematical economics, 1982, 10 (1), 67–81.

, “Multistage Games with Communication,” Econometrica, March 1986, 54 (2), 323–358.

Narayanan, Arvind, Joseph Bonneau, Edward Felten, Andrew Miller, and Steven

Goldfeder, Bitcoin and Cryptocurrency Technologies: A Comprehensive Introduction,

Princeton University Press, 2016.

Netzer, Nick and Florian Scheuer, “Competitive markets without commitment,” Jour-

nal of political economy, 2010, 118 (6), 1079–1109.

Omar, Ilhaam A., Haya R. Hasan, Raja Jayaraman, Khaled Salah, and

Mohammed Omar, “Implementing decentralized auctions using blockchain smart

contracts,” Technological Forecasting and Social Change, 2021, 168 (C).

Rahman, David and Ichiro Obara, “Mediated partnerships,” Econometrica, 2010, 78

(1), 285–308.

Roughgarden, Tim, “Transaction Fee Mechanism Design,” Papers, arXiv.org June 2021.

Szabo, Nick, “Smart Contracts: Building Blocks for Digital Markets,” 1996. Accessed on

October 3, 2024.

Townsend, Robert M., Distributed Ledgers: Design and Regulation of Financial Infras-

tructure and Payment Systems, MIT Press, 2020.

39


	Introduction
	The Benchmark
	Mediated Mechanisms
	The Mediated Renegotiation Game
	Implementing the Second Best
	 Unique Implementation of the Second Best

	A Decentralized Smart Contract Implementation
	Mitigating Alternative Forms of Renegotiation



