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Abstract

This paper concerns the analysis of network data when unobserved node-specific
heterogeneity is present. We postulate a weighted version of the classic stochastic
block model, where nodes belong to one of a finite number of latent communities and
the placement of edges between them and any weight assigned to these depend on the
communities to which the nodes belong. A simple rank condition is presented under
which we establish that the number of latent communities, their distribution, and the
conditional distribution of edges and weights given community membership are all
nonparametrically identified from knowledge of the joint (marginal) distribution of
edges and weights in graphs of a fixed size. The identification argument is constructive
and we present a computationally-attractive nonparametric estimator based on it.
Limit theory is derived under asymptotics where we observe a growing number of
independent networks of a fixed size. The results of a series of numerical experiments
are reported on.
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1 Introduction

Pairwise interactions between agents give rise to network data. In a graph where agents are

nodes, a (possibly) weighted edge is present between two nodes if they interact; the weight

on the edge corresponds to the output of the interaction. In this paper we are interested

in the analysis of this type of network data in the presence of agent-specific unobserved

heterogeneity.

The setting that we analyse is similar to the ones in Barrat, Bartélemy, Pastor-Satorras

and Vespignani (2004), Newman (2004), and Mariadassou, Robin and Vacher (2010) and

can be described as follows. Each of n agents first draws his (latent) heterogeneity type

independently from a common discrete distribution. Next, n(n−1)/2 decisions are made

whether or not to place an (undirected) edge between each pair of agents and weights are

assigned to the edges that have been placed. Conditional on the types of all n agents

edge placement and weight assignment are jointly independent across agent pairs. The

probability that an edge is formed between two agents and the distribution from which its

weight is generated depend on the latent type of both agents involved. When agents only

decide on the placement of edges, and so no weights are present, our setting reduces to the

stochastic block model of Holland, Laskey and Leinhardt (1983). Hence, our generalization

may be seen as a weighted stochastic block model.

Motivation for considering the weighted case may be found in Newman (2004) and

Bonhomme (2021), for example. Borrowing from the latter work, consider a setting where

agents pair up in teams to produce an output; examples are researchers producing research

papers (Ahmapoor and Jones 2019, Ductor, Fafchamps, Goyal and van der Leij 2014)

or scientists creating innovations (Akcigit, Baslandze and Stantcheva 2016, Bell, Chetty,

Jaravel, Petkova and Van Reenen 2019). Our model allows for these agents’ decision to pair

up to depend on their latent types, and thus accommodates different patterns of sorting,

and for their joint output to be a function of their latent types, allowing for the presence

of complementarity in production.

The weighted stochastic block model has three sets of primitive parameters. These
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are (i) the number of latent heterogeneity types; (ii) the distribution of these types; and

(iii) the conditional distribution of edges and their weights given a pair of types. This

paper provides a simple condition under which all these parameters are nonparametrically

identified from knowledge of the joint distribution of edges and weights in a graph of fixed

size n. The condition in question is a linear-independence requirement on the distributions

of (a collection of) edges and weights for a single agent, as a function of his type. We discuss

this condition in detail and give examples below. In the simplest case, the (unweighted)

stochastic block model with two types, it boils down to the demand that the expected degree

is different across the two types. Our findings improve on results in Allman, Matias and

Rhodes (2011), where considerably stronger restrictions are used to identify the unknown

distributions given knowledge of the number of latent types.

Our identification argument readily suggests an estimation strategy based on solving a

collection of multilinear restrictions. We propose a nonparametric estimator of the model

parameters that is computationally attractive. It is built around a joint (approximate)

diagonalization step tailored to our setup. This type of routine has its origins in blind source

separation (Cardoso and Souloumiac 1993) and has found applicability in the estimation

of mixtures elswhere (Bonhomme, Jochmans and Robin 2016a,b, 2017). Here we use it as

an auxiliary estimator in the construction of our estimators of (ii) and (iii); an estimator of

(i) follows readily from adapting arguments in Kwon and Mbakop (2021). Our estimator

can be constructed from a single network of size n or from multiple, say m, independent

networks, each of size n (say). We provide limit theory for our estimator as m grows large

while n is kept fixed. Our estimators of the type distribution and (linear) functionals of the

component distributions are estimated at the parametric rate and converge in distribution

to a Gaussian random variable. We characterise the variance and provide a consistent

plug-in estimator for it. We evaluate our procedures by means of several Monte Carlo

experiments.

To the best of our knowledge ours is the first nonparametric estimator of (weighted)

stochastic block models for which any theoretical guarantees are available under many small

network asymptotics. In the parametric case one can, in principle, proceed by maximizing
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the likelihood. However, the likelihood can have many local maxima and the EM algorithm

is generally intractable (see, e.g., Bickel, Choi, Chang and Zhang 2013, Snijders and Nowicki

1997, and Nowicki and Snijders 2001).Even in very small graphs with only two types of

unobserved heterogeneity we found that implementation was cumbersome and convergence

to a local optimum was frequent. In contrast, by virtue of the joint-diagonalization step,

our estimator is computationally stable and very fast to compute.

Our estimator is also consistent and asymptotically normal when computed from a single

network and the number of nodes, n, grows large. Under such single-network asymptotics,

however, several alternative estimation strategies could be concocted. Moreover, in large

graphs, it is possible to correctly classify units into latent groups even in sparse graphs,

where the expected degree shrinks with n; see von Luxburg, Belkin and Bousquet (2008),

Rohe, Chatterjee and Yu (2011), Sussman, Tang, Fishkind and Priebe (2012), Lei and

Rinaldo (2015), and Yan, Sarkar and Cheng (2018) for consistency results for such spectral

clustering techniques under various conditions. Given a consistent assignment of units

to types one could, in principle, proceed with estimation of the model parameters; see

Channarond, Daudin and Robin (2011) and Tang, Cape and Priebe (2022) for results

along these lines in the unweighted case. Our identification argument is for a fixed network

size; it does not rely on the ability to correctly classify nodes and the concept of a sparse

graph does not arise. Adapting the limit theory for our estimator to the sparse case is left

for future work.

The rest of the paper is structured as follows. In Section 2 we formally set up the model

of interest. In Section 3 we state and discuss the linear-independence condition that is at

the heart of our identification result and provide our constructive proof of identification. In

Section 4 we present the implied estimator and provide its limit distribution under many

small network asymptotics. In Section 5, finally, we give the results of three simulation

studies.
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2 Stochastic block model

Consider n units, labeled 1, . . . , n. Each unit belongs to one of r latent communities, labeled

1, . . . , r. Community membership is recorded in the random variables Z1, . . . , Zn, which

are not observable in the data. These variables are independent and identically distributed;

we let

pz := P(Zi = z)

for 1 ≤ z ≤ r. For each unordered pair of units (i1, i2), with i1 ̸= i2, we observe a random

variable Xi1,i2 ∈ X ⊆ R. Conditional on Z1, . . . , Zn, the variables {Xi1,i2 : 1 ≤ i1 < i2 ≤ n}

are independent and the distribution of Xi1,i2 depends only on Zi1 and Zi2 , with probability

distribution

Pz1z2(x) := P(Xi1,i2 ≤ x|Zi1 = z1, Zi2 = z2)

for 1 ≤ z1, z2 ≤ r and any x ∈ X . Given that units in a pair are unordered it is natural

to work under a symmetry condition on these measures, so that Pz1z2 = Pz2z1 for all

1 ≤ z1 ≤ z2 ≤ r.

The distribution of the array {Xi1,i2 : 1 ≤ i1 < i2 ≤ n} is invariant to a permutation of

the indices i1, . . . , in. It thus follows by the Aldous-Hoover theorem (Hoover 1979, Aldous

1981) that we may equivalently view it as being generated through a structure of the form

Xi1,i2 = X(Zi1 , Zi2 , Vi1,i2), (1)

where the variables {Vi1,i2 : 1 ≤ i1 < i2 ≤ n} are independent, uniformly distributed

on [0, 1], and independent of Z1, . . . , Zn, and the function X is symmetric in its first two

arguments. This corresponds to a non-separable model for dyadic data with (discrete)

two-way heterogeneity.

When X = {0, 1} our setup corresponds to the stochastic block model as in Holland,

Laskey and Leinhardt (1983). It presents a parsimonious approach to introduce latent

heterogeneity in the Erdős and Rényi (1959) random-graph model. Here, the units can

be seen as nodes in a network. The probability of an edge to be formed between any

two nodes depends on the types of both nodes. The random graph so formed can then
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exhibit degree heterogeneity, where some nodes are involved in more edges than others,

or assortative matching (homophily), where nodes are more likely to form edges between

them when they are of a similar type; see McPherson, Smith-Lovin and Cook (2001) and

Newman and Leicht (2007), for example.

More generally, our model can be seen to generate a weighted graph, where nodes do not

only decide to place an edge but also to assign a weight to it. This weight can have many

interpretations, depending on the problem at hand. It could refer to a type of connection

(as in Nowicki and Snijders 2001) or to its intensity (as in Newman 2004), for example.

In light of Eq. (1) it could also be interpreted as the result of a generic dyadic interaction

between units, i.e., X could be seen as a production function for Xi1,i2 , with its functional

form depending on (Zi1 , Zi2).

In a weighted graph it is useful to code the absence of an edge as the event Xi1,i2 = 0,

that is, as assigning zero weight to it. Let pz1z2 be the probability that an edge is formed

between nodes belonging to communities z1 and z2. When an edge is placed between

two such nodes, in a second step its (non-zero) weight is drawn from some distribution

Qz1z2 supported on X \{0}. The implied density of Pz1z2 at x ∈ X (with respect to the

appropriate measure) then factors as

fz1z2(x) := {x = 0} (1− pz1z2) + {x ̸= 0} pz1z2 qz1z2(x), (2)

where qz1z2 is the density of Qz1z2 . From knowledge of fz1z2 we can first recover pz1z2

as 1 − fz1z2(0) and, next, qz1z2 as fz1z2/pz1z2 on the whole set X \{0}. This formulation

highlights that the formation of the network and the weights placed on edges may jointly

depend on community membership. Furthermore, conditional on Xi1,i2 ̸= 0, the variables

Zi1 and Zi2 are not independent.

As an example, suppose thatXi1,i2 is the pair-level output of two workers, withXi1,i2 = 0

capturing that they did not work together (and thus did not produce any output). This

type of setting is discussed in Ahmapoor and Jones (2019) and Bonhomme (2021). The

presence of latent communities means the presence of different worker types 1 ≤ z ≤ r.

The dependence of pz1z2 on the types accommodates sorting between workers based on their
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latent type while the dependence of qz1z2 on the types allows for match-quality aspects such

as complementarity between the worker types to affect the output that is being produced.

3 Identification

The (weighted) stochastic block model has three sets of primitive parameters. These are

(i) the number of communities, r; (ii) the size of each community, pz for 1 ≤ z ≤ r;

and (iii) the conditional probability measures Pz1z2 for 1 ≤ z1 ≤ z2 ≤ r. Our aim is to

provide conditions under which these parameters are non-parametrically identified from

the (marginal) distribution of {Xi1,i2 : 1 ≤ i1 < i2 ≤ n}. Of course, as this distribution is

invariant to a relabeling of the latent communities, identification here is to be understood

as being up to label swapping.

To proceed, for any integer q ≥ 1, we first introduce the q-dimensional random variable

X i1,i
′
q
:= (Xi1,i

′
1
, Xi′1,i

′
2
, . . . , Xi′q−1,i

′
q
),

where i′q := (i′1, . . . , i
′
q) and all the indices appearing in i1 and i′1, . . . , i

′
q are distinct. We

then let

Gz(xq) := P(X i1,i
′
q
≤ xq|Zi1 = z)

for 1 ≤ z ≤ r and all xq = (x1, . . . , xq) ∈ X q. This is the distribution of edge weights

along a path over q different nodes when starting at a node that belongs to community z.

It depends on the path only through its length, q. To conserve on notation we make this

dependence explicit only through the dimension of its argument. For the minimal value

q = 1, X i1,i
′
1
= Xi1,i

′
1
and Gz reduces to the distribution of edge weights for a node from

community z. In this case, Gz(x) is a mixture with mixing components Pzz′(x) and mixing

weights pz′ for 1 ≤ z′ ≤ r. For larger values of q, Gz has an iterative representation as a

mixture in the sense that, for any q, Gz(x1, . . . , xq) is a mixture of Pzz′(x1)Gz′(x2, . . . , xq)

with weights pz′ for 1 ≤ z′ ≤ r.

We will work under the following assumption.
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Assumption 1. There exists a finite integer q such that the functions Gz for 1 ≤ z ≤ r

are linearly independent.

Assumption 1 is a rank condition and is reminiscent to conditions that appear in the analysis

of multivariate latent-variable models; see, e.g., Hu (2008), Kasahara and Shimotsu (2009),

Bonhomme, Jochmans and Robin (2016a,b), and Higgins and Jochmans (2023). It demands

that the community to which a unit belongs sufficiently affects how edges involving this

unit are weighted. An extreme but simple example where the requirement fails is the Erdős

and Rényi (1959) model (or a weighted version thereof). There, Pz1z2 = P for some P and

all 1 ≤ z1 ≤ z2 ≤ r. The latent community structure then has no observable implications,

and Gz does not depend on z.

On the other end of the spectrum the Pz1z2 for 1 ≤ z1 ≤ z2 ≤ r are all linearly

independent. This is the assumption under which Allman, Matias and Rhodes (2011)

develop their general results. It implies that Assumption 1 holds for any q and, in particular,

for q = 1. It can, nevertheless, be a strong assumption to impose. At a minimum, it needs

|X | ≥
(
r + 1

2

)
;

compare this to the corresponding restriction that |X | ≥ r for Assumption 1 to hold for

q = 1. This rules out the binary-edge case, for example, where the 2 ×
(
r+1
2

)
matrix of

probability distributions necessarily has reduced column rank, even for the minimal case

where r = 2. Nevertheless, Assumption 1 goes through for q = 1 when r = 2 provided that

(p12 − p22) ̸=
p1

1− p1
(p12 − p11), (3)

which is rather weak. It allows, notably, that p11 = p22, provided that p1 ̸= 1−p1, and thus

covers the affiliation structure of Frank and Harary (1982), which falls outside the scope of

the linear-independence restrictions of Allman, Matias and Rhodes (2011). For more than

two communities Assumption 1 cannot be satisfied for q = 1 in the binary-edge case but it

can for q > 1. Here, the state space of the variable X i1,i
′
q
consists of all ordered sequences

of zeros and ones of length q, which has cardinality 2q. Thus, in terms of Assumption 1,
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working with larger values of q amounts to working with the probability distribution of a

random variable with a richer support.

At a minimum, Assumption 1 requires that

r ≤ |X |q.

The richer the support of Xi1,i2 the easier this restriction can be satisfied for a given q and

r. When X is an uncountable set q = 1 will suffice for Assumption 1 in many cases, but not

always. An example where the cardinality of X is, in fact, irrelevant is a weighted version

of the affiliation model. There we have, for (different) probability distributions Q0 and Q1,

Pz1z2 =

 Q0 if z1 ̸= z2

Q1 if z1 = z2
.

For q = 1, Assumption 1 concerns the distributions

Gz(x) = Q0(x)P(Zi ̸= z) +Q1(x)P(Zi = z) = pz (Q1(x)−Q0(x)) +Q0(x),

for 1 ≤ z ≤ r. In the two-community case these distributions are linearly-independent if

(and only if) p1 ̸= p2; this generalizes our finding below Eq. (3) beyond the binary-edge

case. Inspection of the problem, however, reveals that, for larger r, these distributions will

always be linearly-dependent, no matter the set X . Nevertheless, looking at larger values

of q continues to provide a way forward. When q = 2, for example, Assumption 1 involves

Gz(x1, x2) = Q1(x1)
(
Q1(x2)w

11
z +Q0(x2)w

10
z

)
+Q0(x1)

(
Q1(x2)w

01
z +Q0(x2)w

00
z

)
for 1 ≤ z ≤ r, where we used the shorthands w11

z := p2z, w
10
z := pz (1−pz), w

01
z :=

∑
z′ ̸=z p

2
z′ ,

and w00
z :=

∑
z′ ̸=z(1 − pz′)

2 to keep the expression light. It can be verified that, in this

case, Assumption 1 goes through for all r ≤ 4, provided that the probabilities pz are all

different.

We note that if Assumption 1 holds for some q, then it also holds for all q′ > q. From

here on out, we will, therefore, take q to indicate the smallest such value for which the

linear-independence requirement is satisfied. With this ambiguity settled we can move on

to establishing identification.

We begin by showing the following result.
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Proposition 1. Let Assumption 1 hold. Then the number of latent communities, r, is

non-parametrically identified from the distribution of edge weights in a graph with 2q + 1

nodes.

Proposition 1 does not have a counterpart in Allman, Matias and Rhodes (2011). Its proof

is simple. It relies on the fact that any two collections of edge weights are dependent only

if they have one (or more) nodes in common, and that any such dependence stems from

their joint dependence on the latent community-membership indicators. Consider an index

i1 and two index sets i′q = (i′1, . . . , i
′
q) and i′′q = (i′′1, . . . , i

′′
q), with all indices involved being

different. Then the random vectors X i1,i
′
q
and X i1,i

′′
q
are dependent only through their

joint dependence on Zi1 . Hence, using the definition of Gz, their joint distribution factors

as

P(X i1,i
′
q
≤ x′

q,X i1,i
′′
q
≤ x′′

q) =
r∑

z=1

pz Gz(x
′
q)Gz(x

′′
q).

This is a bivariate mixture of identically distributed random variables with component

distributions Gz and mixture weights pz for 1 ≤ z ≤ r. Further, because the component

distributions are linearly independent by Assumption 1, it follows from an application of the

results in Kwon and Mbakop (2021, Propositions 2.1 and 2.3) that r is non-parametrically

identified.

We now move on to establish identification of the remaining parameters of the stochastic

block model. The proof is constructive and will form the basis of our estimation procedure

laid out below.

To begin, let Q be a finite subset of X q with |Q| = r and let G be the r × r matrix

obtained on stacking G1(xq), . . . , Gr(xq) for all xq ∈ Q. Consider an index i1 and two

index sets i′q = (i′1, . . . , i
′
q) and i′′q = (i′′1, . . . , i

′′
q), with all indices involved being different.

Collect the probabilities P(X i1,i
′
q
≤ x′

q,X i1,i
′′
q
≤ x′′

q) for (x
′
q,x

′′
q) ∈ Q2 in the r × r matrix

A. Then, by the same argument as in the proof of Proposition 1, we have the factorization

A = GDG⊤

for D := diag(p1, . . . , pr). By Assumption 1 there exist sets Q such that rank(G) = r

and we work with such a set henceforth. Note that this rank condition is testable, as
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rank(A) = r if (and only if) it holds, and A is identified (and estimable from data; see

below). From an eigendecomposition of A we then construct an r × r matrix V for which

V AV ⊤ = Ir,

where Ir denotes the r × r identity matrix. When combined with the bivariate-mixture

decomposition from the previous display this yields

Ir = V AV ⊤ = V (GDG⊤)V ⊤ = (V GD
1/2)(V GD

1/2)⊤ = Q0Q
⊤
0 ,

where we introduced the shorthand Q0 := V GD
1/2, which is a full-rank r× r orthonormal

matrix. Now, for some s ≤ q, consider a third index set i′′′s = (i′′′1 , . . . , i
′′′
s ), which again

does not involve i1 and does not share any indices with i′q and i′′q . For each xs ∈ S ⊂ X s,

collect the probabilities P(X i1,i
′
q
≤ x′

q,X i1,i
′′′
s
≤ xs,X i1,i

′′
q
≤ x′′

q) for (x
′
q,x

′′
q) ∈ Q2 in the

r × r matrix Axs . Then, using the shorthand notation Dxs
:= diag(G1(xs), . . . ,Gr(xs)),

we have

Axs = GD
1/2DxsD

1/2G,

because (X i1,i
′
q
,X i1,i

′′′
s
,X i1,i

′′
q
) are dependent only because they share the index i1 and so

are independent conditional on Zi1 . By using the matrix V , we have that, for each xs ∈ S,

V AxsV
⊤ = Q0DxsQ

⊤
0 .

Thus the collection of matrices V AxsV
⊤ for xs ∈ S share the same eigenvectors, Q0.

Furthermore, by Assumption 1 there exists a set S on which the distributions Gz for

1 ≤ z ≤ r are all different, and so it follows from Belouchrani, Abed-Meraim, Cardoso and

Moulines (1997, Theorem 3) that the matrix Q0 is identified up to permutation and sign

of its columns. Moreover, for an r × r diagonal matrix ∆ containing only 1 or −1 and an

r × r permutation matrix Σ, we have recovered Q := Q0∆Σ.

With W := V ⊤Q at hand we can now proceed to show that the pz for 1 ≤ z ≤ r

and the Pz1z2 for 1 ≤ z1 ≤ z2 ≤ r are identified up to the same labelling of the latent

communities. We will first establish that, for any chosen scalar function φ, the expectation

φz1z2 := E(φ(Xi1,i2)|Zi1 = z1, Zi2 = z2)
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(assuming that it exists) is identified. For φ(Xi1,i2) = {Xi1,i2 ≤ x} this yields Pz1z2(x),

which suffices for the current proof, but allowing for other functions will lead to a convenient

way to estimate linear functionals of Pz1z2 without the need to first estimate the distribution

itself. For a chosen φ, collect the φz1z2 in the r×r matrixHφ. Next collect the expectations

E({X i1,i
′
q
≤ x′

q}φ(Xi1,i2) {X i2,i
′′
q
≤ x′′

q}) for (x′
q,x

′′
q) ∈ Q2, where i2 is any of the indices

in i′′′s , in the r × r matrix Aφ. Because (X i1,i
′
q
, Xi1,i2 ,X i2,i

′′
q
) are independent conditional

on (Zi1 , Zi2) we have

Aφ = GDHφDG⊤.

Therefore,

V AφV
⊤ = (V GD

1/2)D
1/2HφD

1/2(V GD
1/2)⊤ = Q0D

1/2HφD
1/2Q⊤

0 ,

from which we can recover

W⊤AφW = Σ⊤∆D
1/2HφD

1/2∆Σ

for any function φ. Here, the permutation matrix Σ reshuffles the rows and columns

of ∆D
1/2HφD

1/2∆, whose entries are φz1z2 δz1δz2
√
pz1 pz2 for 1 ≤ z1 ≤ z2 ≤ r, using

the notation ∆ = diag(δ1, . . . , δr). The reshuffling amounts to a relabelling of the latent

communities, and the presence of Σ is merely a manifestation of the fact that identification

can only be achieved up to an arbitrary labelling. What matters for our purposes is that

this labelling is independent of the function φ as, then, with W = (ω1, . . . ,ωr), we have

that, for 1 ≤ z1 ≤ z2 ≤ r, the scalars ω⊤
z1
Aφωz2

identify the φz1z2 δz1δz2
√
pz1 pz2 for any

function φ up to an arbitrary but common (and, thus, irrelevant) labelling of the latent

communities 1 ≤ z ≤ r.

For the constant function φ(x) = 1 we have H1 = 1r1
⊤
r for 1r the r vector of ones, and

that the matrix A1 collects the products P(X i1,i
′
q
≤ x′

q)P(X i2,i
′′
q
≤ x′′

q) for (x
′
q,x

′′
q) ∈ Q2.

In this case the scalars ω⊤
z1
A1ωz2

for 1 ≤ z1 ≤ z2 ≤ r identify the δz1δz2
√
pz1 pz2 up to the

same common labelling as before. Putting everything obtained so far together shows that

φz1z2 = (ω⊤
z1
A1ωz2

)−1(ω⊤
z1
Aφωz2

) (4)
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for 1 ≤ z1 ≤ z2 ≤ r and

pz = ω⊤
z A1ωz (5)

for 1 ≤ z ≤ r are all identified up to an arbitrary but common labelling of the latent

communities. Here, to arrive at the last equality, we have made use of the fact that δ2z = 1

for all z.

Finally, note that, from Eq. (4), we immediately obtain the identification of ratios of

conditional expectations, i.e., ratios of the form φ′
z1z2

/φ′′
z1z2

for two functions φ′ and φ′′ as

(ω⊤
z1
Aφ′′ ωz2

)−1(ω⊤
z1
Aφ′ ωz2

) = (φ′′
z1z2

)−1(φ′
z1z2

).

A prime application of this result has φ′′(x) = {x < x ≤ x} and φ′(x) = φ(x)φ′′(x) for

chosen φ, which returns conditional expectations of φ(Xi1,i2) given that x < Xi1,i2 ≤ x

and latent-community membership. In the context of Eq. (2) this allows to immediately

recover functionals of the density qz1z2 that conditions on a link being present, as well as

the match probability pz1z2 .

We have established our next result.

Proposition 2. Let Assumption 1 hold. Then the probabilities pz for 1 ≤ z ≤ r and the

distributions Pz1z2 for 1 ≤ z1 ≤ z2 ≤ r are non-parametrically identified (up to an arbitrary

but common labelling of the latent communities) from the distribution of edge weights in a

graph with 2q + s+ 1 nodes.

Propositions 1 and 2 dictate values for the size of the graph, n, as a function of q. Moreover,

Proposition 1 requires that n ≥ 2q+1 while Proposition 1 goes through for n ≥ 2q+ s+1

or, more conservatively but as a function of q only (by recalling that we have s ≤ q),

that n ≥ 3q + 1. The (weighted) stochastic block model may thus be fully identifiable

from the distribution of (certain subsets of) edge weights in networks involving as little

as four agents. This finding is to be contrasted with the results of Allman, Matias and

Rhodes (2011, Theorems 14 and 15) where, assuming that r is known, graphs of size nine

are needed to arrive at the conclusion of Proposition 2 while, at the same time, demanding
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the more stringent condition that the conditional distributions Pz1z2 for 1 ≤ z1 ≤ z2 ≤ r

are all linearly independent.

Assumption 1 demands that |X |q ≥ r or, equivalently, q ≥ ⌈log(r)/ log(|X |)⌉, where

⌈a⌉ is the smallest integer greater than or equal to a. For Proposition 2, this translates to

n ≥
⌈
2

log(r)

log(|X |)
+ s+ 1

⌉
,

which, as a function of the number of communities, grows at a logarithmic rate. Recalling

that s ≤ q a lower bound on n that does not depend on s is ⌈3 log(r)/ log(|X |)+1⌉. For the

case of binary edge weights and probabilities pz1z2 that are different for all 1 ≤ z1 ≤ z2 ≤ r,

Allman, Matias and Rhodes (2011, Theorem 2) give another lower bound on n. Theirs,

however, grows like r4.

4 Estimation

We now turn to the construction of estimators of φz1z2 for 1 ≤ z1 ≤ z2 ≤ r and of pz for

1 ≤ z ≤ r; an estimator of r can be constructed as in Kwon and Mbakop (2021). The proof

of Proposition 2, and Equations (4) and (5) in particular, suggests estimators of the form

φ̂z1z2 := (ω̂⊤
z1
Â1 ω̂z2

)−1(ω̂⊤
z1
Âφ ω̂z2

) (6)

and

p̂z = ω̂⊤
z Â1 ω̂z, (7)

where ω̂z is an estimator of ωz for each 1 ≤ z ≤ r and Âφ is an estimator of Aφ for any

function φ.

The proof equally provides a routine to construct the matrix (ω̂1, . . . , ω̂r) = Ŵ = V̂
⊤
Q̂

from estimators Â and Âxs for xs ∈ S of the matrices A and Axs for xs ∈ S. First, matrix

V̂ := Ŝ
−1/2

Û
⊤

is constructed from the eigendecomposition Â = Û Ŝ Û
⊤
, where Ŝ is an r × r diagonal

matrix containing the eigenvalues of Â and Û is an r × r orthonormal matrix collecting

14



the associated eigenvectors. Next, the r × r matrix Q̂ is computed as the (approximate)

joint diagonalizer of the collection of matrices V̂
⊤
ÂxsV̂ for xs ∈ S. More precisely, we let

Q̂ := argmin
Q̄

∑
xs∈S

r∑
z1=1

∑
z2 ̸=z1

(
Q̄

⊤
(V̂ ÂxsV̂

⊤
) Q̄
)2
z1,z2

,

where the minimization is over the set of all r × r orthonormal matrices. This can be

achieved efficiently using the JADE algorithm developed by Cardoso and Souloumiac

(1993).

From a single network of size n, the estimators of the matrices Â and Âxs for xs ∈ S

take the form of U-statistics. More precisely, the entries of the r× r matrix Â are equal to

1

n(n− 1) · · · (n− 2q)

∑
i1 ̸=i′1 ̸=···̸=i′′q

{X i1,i
′
q
≤ x′

q} {X i1,i
′′
q
≤ x′′

q}

for (x′
q,x

′′
q) ∈ Q2. The entries of each of the |S| matrices Âxs , each again of size r× r, are

similarly given by

1

n(n− 1) · · · (n− 2q − s)

∑
i1 ̸=i′1 ̸=···̸=i′′q

{X i1,i
′
q
≤ x′

q} {X i1,i
′′′
s
≤ xs} {X i1,i

′′
q
≤ x′′

q}

for (x′
q,x

′′
q) ∈ Q2 and all xs ∈ S. In the same way, for any function φ, matrix Âφ has

entries

1

n(n− 1) · · · (n− 2q − 1)

∑
i1 ̸=i′1 ̸=···̸=i′′q

{X i1,i
′
q
≤ x′

q}φ(Xi1,i2) {X i2,i
′′
q
≤ x′′

q}

for (x′
q,x

′′
q) ∈ Q2. In the above estimators, the summation ranges over all ordered subsets

of, respectively, 2q + 1, 2q + s + 1, and 2q + 2 distinct indices from the set of n nodes.

Each estimator is unbiased for their respective estimand. In fact, from Janson and Nowicki

(1991),

∥Â−A∥max = Op(n
−1/2), ∥Âxs −Axs∥max = Op(n

−1/2) for all xs ∈ S,

and

∥Âφ −Aφ∥max = Op(n
−1/2)
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for any function φ for which φ(Xi1,i2) has finite variance. From this we can deduce that, as

the size of the network grows, the estimators in Eq. (6) and Eq. (7) will be
√
n-consistent and

asymptotically normally distributed. The limit distributions follow from our results below

on plugging the appropriate influence functions for the estimators of the input matrices

just given into Eq. (8). These influence functions equal the projection of the (symmetrized)

kernel of the relevant U-statistic on Zi1 .

Here we pursue the case where multiple independent networks, each of size n (say), are

available. Let X i := {Xi1,i2; i : 1 ≤ i1 ≤ i2 ≤ n} be the data from network 1 ≤ i ≤ m.

Then estimators of the different input matrices can be constructed as the sample averages

Â := 1/m
m∑
i=1

Â(X i), Âxs
:= 1/m

m∑
i=1

Âxs(X i) for xs ∈ S, Âφ := 1/m
m∑
i=1

Âφ(X i),

where Â(X i), Âxs(X i), and Âφ(X i) are the U-statistic estimators above computed from

network X i. We now characterize the limit distribution of the estimators in Equations (6)

and (7) as m → ∞ while n is being kept fixed when the number of latent communities, r,

is treated as known.

We will work under the following regularity condition.

Assumption 2. The eigenvalues of A are all simple.

This assumption simplifies the analysis of the estimator V̂ and could, in principle, be

relaxed. As it holds generically, we see it as mild.

Moving on requires the introduction of some additional notation. With ⊗ the Kronecker

product, let S ⊕ S := (S ⊗ Ir) + (Ir ⊗ S) and S ⊖ S := (S ⊗ Ir) − (Ir ⊗ S) denote,

respectively, the Kronecker sum and difference of S with itself. Write
c
⊗ for the columnwise

Kronecker product and
r
⊗ for the row-wise Kronecker product and let a ∗ superscript on a

matrix denote its Moore-Penrose generalized inverse. We then introduce the two matrices

M 1 := (Q⊤ ⊗Q⊤)
{
(S ⊖ S)∗( Ir ⊗ S)− 1/2(Ir

c
⊗ Ir)(Ir

r
⊗ Ir)

}
(V ⊗ V )

and

M 2 := (Q⊤ ⊗Q⊤)(S ⊖ S)∗(S ⊕ S)(V ⊗ V ).
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Next, write O− for the matrix obtained on (vertically) concatenating (Dxs ⊖Dxs), O+ for

the matrix obtained on concatenating (Dxs ⊕ Dxs), and O× for the matrix obtained on

concatenating (Dxs ⊗ Ir). Each of these matrices is of dimension |S| r2 × r2. Also write

R for the |S| r2 × r2 |S| block-diagonal matrix (I |S| ⊗ W⊤ ⊗W⊤). With these matrices

in hand, we introduce

N 1 := (Ir ⊗W )
{(

Ir2 + (O⊤
−O−)

∗(O⊤
−O+)

)
M 1 − (O⊤

−O−)
∗(O⊤

−O×)M 2

}
and N 2 := (Ir ⊗ W )(O⊤

−O−)
∗(O⊤

−R). These two matrices have the interpretation of

Jacobians, translating estimation noise in, respectively, Â−A and ˆ̄A−Ā into randomness

in Ŵ − W , where ˆ̄A and Ā are the horizontal concatenations of the matrices Âxs and

Axs for xs ∈ S.

Let Ξφ(X i) for 1 ≤ i ≤ m be the r × r matrix with entries

(Ξφ(X i))z1,z2 := (ω⊤
z2
⊗ ω⊤

z1
) vec(Âφ(X i)−Aφ)

+
{
(e⊤

z2
⊗ ω⊤

z1
Aφ) + (e⊤

z1
⊗ ω⊤

z2
Aφ)

}
N 1 vec(Â(X i)−A)

+
{
(e⊤

z2
⊗ ω⊤

z1
Aφ) + (e⊤

z1
⊗ ω⊤

z2
Aφ)

}
N 2 vec(

ˆ̄A(X i)− Ā),

(8)

where the r-vectors e1, . . . , er denote the standard basis of the r-dimensional Euclidean

space (i.e., they are the columns of Ir). For any pair of functions φ′ and φ′′ (with finite

variance), we let

Σφ′,φ′′ := E(vec(Ξφ′(X i)) vec(Ξφ′′(X i))
⊤),

which is a matrix of dimension r2 × r2 containing covariances.

Let

ϑφ := ω⊤
z1
Aφωz2

and write ϑ̂φ for the corresponding estimator. The notation leaves the dependence of these

objects on (z1, z2) implicit.

Proposition 3. Let Assumptions 1 and 2 hold. Consider functions φ′ and φ′′ so that

var(φ′(Xi1,i2)) < ∞ and var(φ′′(Xi1,i2)) < ∞. Then

√
m

 ϑ̂φ′ − ϑφ′

ϑ̂φ′′ − ϑφ′′

 d→ N

  0

0

 ,

 σφ′,φ′ σφ′,φ′′

σφ′′,φ′ σφ′′,φ′′

  ,
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where σφ′,φ′′ := (ez2 ⊗ ez1)
⊤Σφ′,φ′′ (ez2 ⊗ ez1), as m grows large while n is being held fixed.

This result yields two corollaries. The first deals with estimators θ̂ of ratios of the form

θ := ϑφ′/ϑφ′′ ; an example is the estimator φ̂z1z2 given in Eq. (6), which has φ′(x) = φ(x)

and φ′′(x) = 1.

Corollary 1. Let Assumptions 1 and 2 hold. Consider functions φ′ and φ′′ so that

var(φ′(Xi1,i2)) < ∞ and var(φ′′(Xi1,i2)) < ∞. Then, provided that ϑφ′′ is not equal to

zero,

√
m(θ̂ − θ)

d→ N

(
0,

(ez2 ⊗ ez1)
⊤(Σφ′,φ′ − 2θΣφ′,φ′′ + θ2Σφ′′,φ′′)(ez2 ⊗ ez1)

ϑ2
φ′′

)

as m grows large while n is being held fixed.

This result covers θ =
∫
φ(x) fz1z2(x) dx and θ =

∫
φ(x) qz1z2(x) dx, for example, which

includes the conditional distributions at a given point as well as their moments. The

corollary could equally be used to establish the asymptotic distribution of (generalized)

method-of-moment estimators of a parameter δ defined through moment conditions of the

form
∫
φ(x, δ) fz1z2(x) dx = 0 under standard identification and regularity conditions for

such estimators.

The second corollary concerns the size of each latent community.

Corollary 2. Let Assumptions 1 and 2. Then,

√
m(p̂z − pz)

d→ N(0, (ez ⊗ ez)
⊤Σ1,1 (ez ⊗ ez))

as m grows large while n is being held fixed.

Inference based on the result of the corollaries can be done using the variance estimator

Σ̂φ′,φ′′ := 1/m
m∑
i=1

vec(Ξ̂φ′(X i)) vec(Ξ̂φ′′(X i))
⊤,

where Ξ̂φ(X i) is the plug-in estimator of Ξφ(X i) obtained on replacing all unknown

quantities in Eq. (8) by their respective sample counterparts. Because those estimators are
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all consistent it is easy to see that, for any function φ for which var(φ(Xi1,i2)) < ∞, we

have

1/m

m∑
i=1

∥vec(Ξ̂φ(X i))− vec(Ξφ(X i))∥2 = op(1),

from which we obtain Σ̂φ′,φ′′
p→ Σφ′,φ′′ under the conditions given in Proposition 3 as m

grows large while n is being held fixed.

5 Numerical illustrations

We next present the results of three Monte Carlo experiments. Our first experiment is built

around Eq. (2). There are two latent communities, with p1 = .3 and p2 = .7. Edges are

placed between units of the different communities with probabilities p11 = .50, p12 = .20,

and p11 = .80. Next, weights are assigned to edges that have been placed. These weights

are drawn from Qz1z2 , which are taken to be Beta distributions with (shape) parameters

ϖ11 = (2, 6)⊤, ϖ12 = (2, 2)⊤, and ϖ22 = (6, 2)⊤. To motivate, one can think about units

as workers of either low type or high type that are paired up into (multiple) teams to

produce an output. Because Beta distributions are supported on (0, 1) we can think about

the weight on an edge as a quality measure of the output produced by the pair of units

involved. With p12 < p11 < p22 there is assortative matching in link formation, so units of

the same type are more likely to be sorted into a team. Also, with µz1z2 :=
∫
x qz1z2(x) dx,

we have µ11 = .25, µ12 = .50, and µ22 = .75, and so µ11 < µ12 < µ22. This means that

average quality increases when more workers are of the high type.

We implemented our estimators with q = 1 and usedQ = {.3, .7} and S = {.2, .4, .6, .8}.

Alternative sets were also experimented with; they led to essentially the same conclusions as

those reported on here. In Table 1 we report the median, interquartile range, and (actual)

coverage rate of 95% confidence intervals of our estimators of (p1, p2), of (p11, p12, p22), and of

(µ11, µ12, µ22) (as computed over 10, 000 Monte Carlo replications) for various sample sizes.

There is some bias and undercoverage in the smaller sample sizes for some of the parameters,

but the results show that our method is able to accurately recover all parameters and yield
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Table 1: Experiment 1

p1 p2 p11 p12 p22 µ11 µ12 µ22

truth .3000 .7000 .5000 .2000 .8000 .2500 .5000 .7500

(m,n) = (500, 5)

median .3533 .6735 .4752 .2043 .8090 .2940 .5731 .7516

iqr .2114 .1780 .2445 .2022 .1976 .2779 .4038 .0767

coverage .8060 .8250 .8390 .9476 .9507 .8635 .9624 .9676

(m,n) = (500, 10)

median .2992 .7003 .5002 .2006 .7990 .2503 .5008 .7501

iqr .0597 .0324 .0711 .0537 .0419 .0859 .1436 .0254

coverage .9451 .9463 .9486 .9479 .9509 .9490 .9547 .9496

(m,n) = (1000, 5)

median .3256 .6881 .4939 .2003 .8051 .2616 .5301 .7494

iqr .1456 .1171 .1894 .1468 .1270 .2101 .3154 .0527

coverage .8573 .8661 .8591 .9535 .9512 .9073 .9556 .9538

(m,n) = (1000, 10)

median .2991 .7007 .5007 .2000 .7993 .2504 .4991 .7502

iqr .0412 .0224 .0500 .0373 .0294 .0626 .1009 .0179

coverage .9523 .9513 .9532 .9514 .9472 .9514 .9586 .9552

reliable inference.

Our second experiment serves to assess the impact of increasing the number of latent

communities. We use a variation of the affiliation model to construct a design that scales

naturally as a function of r. Moreover, we set pz = 1/r for 1 ≤ z ≤ r and draw weights

from the (continuous) uniform distribution on (0, r + 1) when units belong to different

communities and from the (symmetric) triangular distribution on (z− 1, z +1) when both

units belong to community z. We implement our approach with Q and S set to equidistant

points on (0, r + 1) and consider r ∈ {2, 3, 4, 5} for (m,n) = (1000, 25) in Table 2. We
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Table 2: Experiment 2

p1 p2 p3 p4 p5 µ11 µ22 µ33 µ44 µ55

r = 2

truth .5000 .5000 — — — 1.0000 2.0000 — — —

median .4999 .5000 — — — 0.9998 2.0000 — — —

iqr .0117 .0101 — — — .0115 .0191 — — —

coverage .9564 .9474 — — — .9504 .9504 — — —

r = 3

truth .3333 .3333 .3333 — — 1.0000 2.0000 3.0000 — —

median .3330 .3332 .3331 — — 0.9991 1.9999 3.0013 — —

iqr .0119 .0205 .0207 — — .0350 .0527 .0830 — —

coverage .9544 .9520 .9506 — — .9502 .9638 .9488 — —

r = 4

truth .2500 .2500 .2500 .2500 — 1.0000 2.0000 3.0000 4.0000 —

median .2496 .2508 .2515 .2499 — 1.0012 2.0085 2.9936 3.9874 —

iqr .0264 .0315 .0577 .0609 — .1832 .1526 .1950 .5182 —

coverage .9464 .9520 .9294 .9362 — .9464 .9656 .9492 .9098 —

r = 5

truth .2000 .2000 .2000 .2000 .2000 1.0000 2.0000 3.0000 4.0000 5.0000

median .1972 .2017 .2047 .2209 .1939 0.9787 2.0039 3.0007 3.9155 4.9447

iqr .0284 .0423 .0481 .0799 .0971 .3198 .4303 .2107 .5627 1.1861

coverage .9366 .9512 .9388 .8760 .8774 .9546 .8846 .9444 .8598 .8574
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Table 3: Experiment 3

p1 p2 µ11 µ12 µ22

γ = .00

truth .5000 .5000 1.0000 1.5000 2.0000

median .4999 .5000 0.9998 1.5000 1.9998

iqr .0116 .0101 .0116 .0107 .0191

coverage . 9528 .9514 .9534 .9532 .9488

γ = .25

truth .5000 .5000 1.0000 1.3750 1.7500

median .4999 .4999 1.0001 1.3749 1.7500

iqr .0118 .0096 .0097 .0078 .0111

coverage . 9500 .9494 .9508 .9558 .9504

γ = .50

truth .5000 .5000 1.0000 1.250 1.5000

median .5000 .4999 1.0000 1.2501 1.5000

iqr .0168 .0135 .0095 .0083 .0103

coverage . 9450 .9484 .9496 .9486 .9484

γ = .75

truth .5000 .5000 1.0000 1.1250 1.2500

median .4999 .4992 1.0004 1.1251 1.2497

iqr .0500 .0490 .0167 .0158 .0170

coverage . 9454 .9468 .9474 .9502 .9482
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provide the same summary statistics as before for our estimators of pz and µzz for 1 ≤ z ≤ r.

To conserve on space we do not report results for µz1z2 when z1 ̸= z2, which are all equal

to (r+1)/2 and were very well estimated.

The results show that in all cases our estimators perform well. As r grows the probability

of drawing from any of the latent communities shrinks and it becomes more likely to draw

weights from the uniform distribution. This explains why the interquartile range of all

estimators increases as r grows. The volatility also tends to be most pronounced for the

larger z, which is in line with the asymptotic variance formula from Corollary 1 depending

on the estimand. When r is at its largest the increased sampling noise is starting to affect

the quality of inference. The additional model complexity from increasing r should then

be offset by an increase in the sample size.

Our third experiment maintains the mixture structure from the previous experiment

but focusses on the impact of moving the distributions closer to each other. We maintain

a two-community structure, with p1 = p2 as before. Let γ ∈ {.00, .25, .50, .75}. When

z1 ̸= z2 we draw weights from the uniform distribution on (0, 3 − γ). When z1 = z2 = 1

we draw weights from the Triangular distribution on (0, 2) and when z1 = z2 = 1 we

draw weights from the Triangular distribution on (1 − γ, 3 − γ). In Table 3 we observe

that shifting the distributions toward each other does not have any major impact on the

performance of the estimators for the range over which γ is being moved. If the shift

parameter γ is moved down further the label-swapping issue starts making reliable Monte

Carlo evaluation complicated. Of course, as γ → 1 we have that G2 → G1, at which

point we lose identification. Our techniques will no longer provide reliable inference in the

weakly-identified setting where γ is very close to unity. In practice the estimator Â is often

close to being a singular matrix in such cases, making the estimator ω̂z for 1 ≤ z ≤ r

unstable.
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Appendix

Proof of Proposition 3. Consider ϑ̂φ = ω̂⊤
z1
Âφ ω̂z2 and ϑφ = ω⊤

z1
Aφωz2 . We first derive

the limit distribution of the estimators Âφ and Ŵ = (ω̂1, . . . , ω̂r). We then combine the

results to obtain the result of the proposition.

Input matrix Âφ. Observe that

Âφ = 1/m

m∑
i=1

Âφ(X i)

is a sample average of i.i.d. random variables. The entries of the r × r matrix Âφ(X i) are

1

n(n− 1) · · · (n− 2q − 1)

∑
i1 ̸=i′1 ̸=···̸=i′′q

{X i1,i
′
q ; i

≤ x′
q}φ(Xi1,i2; i) {X i2,i

′′
q ; i

≤ x′′
q}

for (x′
q,x

′′
q),∈ Q2. They are unbiased for the corresponding entries ofA. Furthermore, they

have finite second moment. To see this, we observe that the expected squared summand is

equal to E({X i1,i
′
q ; i

≤ x′
q}φ(Xi1,i2; i)

2 {X i2,i
′′
q ; i

≤ x′′
q}) and factors as

r∑
z1=1

r∑
z2=1

Gz1(x
′
q) pz1 E(φ(Xi1,i2)

2|Zi1 = z1, Zi2 = z2) pz2 Gz2(x
′′
q),

using the conditional-independence restrictions of the stochastic block model. This is

bounded by
∑r

z1=1

∑r
z2=1 E(φ(Xi1,i2)

2|Zi1 = z1, Zi2 = z2) pz1 pz2 = E(φ(Xi1,i2)
2) because

maxz supxq
|Gz(xq)| = 1. The latter moment is finite by assumption. We therefore have

that

vec(Âφ −Aφ) = 1/m

m∑
i=1

vec(Âφ(X i)−Aφ) + op(m
−1/2),

and a standard central limit theorem applied to the sample average on the right-hand side

yields asymptotic normality.

Transformation matrix Ŵ . The estimator Ŵ = V̂
⊤
Q̂ of W = V ⊤Q is a nonlinear

function of the input matrices Â and ˆ̄A. By the same argument as the one just used for

Âφ, each of these input matrices is m−1/2-consistent and asymptotically normal for their

respective population counterpart. To arrive at an influence-function representation for our

24



estimator of the transformation matrix Ŵ we begin with deriving such representations for

V̂ and Q̂.

Whitening matrix V̂ . Recall the eigendecompositions A = USU⊤ and Â = Û Ŝ Û
⊤
,

which define the matrices V = S−1/2U⊤ and V̂ = Ŝ−1/2Û
⊤
. Under Assumption 2 we can

appeal to the results of Anderson (1963) to obtain

vec(Û −U) = (Ir ⊗U) (S ⊖ S)∗(U⊤ ⊗U⊤) vec(Â−A) + op(m
−1/2), (A.1)

where S ⊖ S = (S ⊖ Ir) − (Ir ⊖ S) and the superscript ∗ denotes the Moore-Penrose

pseudoinverse. Similarly, from Magnus (1985), using the delta method and the definition

of V ,

vec(Ŝ
−1/2 − S−1/2) = −1/2(S−1/2

c
⊗ Ir)(V

r
⊗ V ) vec(Â−A) + op(m

−1/2), (A.2)

where
c
⊗ and

r
⊗ denote, respectively, the columnwise and rowwise Kronecker product.

Now, by a linearization, and letting Kr2 be the r2 × r2 commutation matrix (Magnus

and Neudecker, 1979),

vec(V̂ − V ) = (Ir ⊗ S−1/2)Kr2 vec(Û −U) + (U ⊗ Ir) vec(Ŝ
−1/2 − S−1/2) + op(m

−1/2).

Plugging in Equations (A.1) and (A.2), using that (Ir ⊗S−1/2)Kr2 = Kr2(S
−1/2 ⊗ Ir) and

that V ⊤ = US−1/2 we obtain that, up to op(m
−1/2),

vec(V̂ − V ) =
{
Kr2(Ir ⊗U) (S ⊖ S)∗(V ⊗U⊤)− 1/2(V ⊤ c

⊗ Ir)(V
r
⊗ V )

}
vec(Â−A).

The first term in the expression in the curly braces can be beautified by inserting the

diagonal matrix (Ir ⊗S−1/2)(Ir ⊗S)(Ir ⊗S−1/2) and re-arranging, and subsequently using

the definition of V to arrive at, again up to op(m
−1/2),

vec(V̂ − V ) =
{
Kr2(Ir ⊗ V ⊤) (S ⊖ S)∗(Ir ⊗ S)(V ⊗ V )− 1/2(V ⊤ c

⊗ Ir)(V
r
⊗ V )

}
× vec(Â−A)

as influence function for V̂ that we will bring forward.
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Joint (approximate) diagonalizer Q̂. Let Cxs
:= V AxsV

⊤ and Ĉxs
:= V̂ ÂxsV̂

⊤
for all

xs ∈ S. From our results so far we know that these matrices are m−1/2-consistent and

asymptotically normal. Indeed,

vec(Ĉxs−Cxs) = (V ⊗V ) vec(Âxs−Axs)+(Ir2+Kr2)(V Axs⊗Ir) vec(V̂ −V )+op(m
−1/2)

for all xs ∈ S. From Bonhomme and Robin (2009), but making use of the Moore-Penrose

pseudo inverse to obtain a more convenient expression for our purposes, we further deduce

that

vec(Q̂−Q) = (Ir ⊗Q)

(∑
xs∈S

(Dxs ⊖Dxs)
2

)∗

×

(∑
xs∈S

(Dxs ⊖Dxs)(Q
⊤ ⊗Q⊤) vec(Ĉxs −Cxs)

)
+ op(m

−1/2).

We now aim to work out this expression in terms of the influence functions of the input

matrices. First, we exploit the definitions Q = V GD
1/2 and V = S−1/2U⊤, and the fact

that

Cxs = V AxsV
⊤ = QDxsQ

⊤

for all xs ∈ S to write (V Axs ⊗ Ir) vec(V̂ −V ) as the sum of two terms; the first of these

two terms is

Kr2(Ir ⊗Q)(Ir ⊗Dxs)(Ir ⊗Q⊤)(S ⊖ S)∗(Ir ⊗ S)(V ⊗ V ) vec(Â−A)

and comes from the estimation noise in the eigenvectors, i.e., vec(Û −U), while the second

of the two terms is

−1/2(Q⊗ Ir)(Dxs ⊗ Ir)(Q
⊤ ⊗ Ir)(Ir

c
⊗ Ir)(V

r
⊗ V ) vec(Â−A),

which comes from the noise in the eigenvalues, i.e., vec(Ŝ
−1/2−S−1/2). Next, premultiplying

each of these two terms with (Dxs ⊖Dxs)(Q
⊤ ⊗Q⊤)(Ir2 +Kr2) and re-arranging results

in

(Dxs⊖Dxs)(Ir2+Kr2)(Ir⊗Dxs)(Q
⊤⊗Q⊤)(S⊖S)∗(Ir⊗S)(V ⊗V ) vec(Â−A), (A.3)
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and

−1/2(Dxs ⊖Dxs)(Ir2 +Kr2)(Dxs ⊗ Ir)(Q
⊤ ⊗Q⊤)(Ir

c
⊗ Ir)(V

r
⊗ V ) vec(Â−A), (A.4)

respectively. Both expressions depend on xs only through the matrix Dxs . Now note that

Kr2 is a symmetric and orthonormal matrix; therefore,

Kr2(S ⊖ S)∗ = K∗
r2(S ⊖ S)∗ = ((S ⊖ S)Kr2)

∗ = (−Kr2(S ⊖ S))∗ = −(S ⊖ S)∗Kr2 .

Also, Kr2(Ir

c
⊗ Ir) = (Ir

c
⊗ Ir) and Kr2 vec(Â−A) = vec(Â−A) because Â and A are

symmetric. Therefore, (A.3) can be written as

(Dxs ⊖Dxs)(Dxs ⊕Dxs)(Q
⊤ ⊗Q⊤)(S ⊖ S)∗(Ir ⊗ S)(V ⊗ V ) vec(Â−A)

−(Dxs ⊖Dxs)(Dxs ⊗ Ir )(Q⊤ ⊗Q⊤)(S ⊖ S)∗(S ⊕ S)(V ⊗ V ) vec(Â−A),
(A.5)

and (A.4) can be written as

−1/2(Dxs ⊖Dxs)(Dxs ⊕Dxs)(Q
⊤ ⊗Q⊤)(Ir

c
⊗ Ir)(Ir

r
⊗ Ir)(V ⊗V ) vec(Â−A), (A.6)

where we have used that (V
r
⊗V ) = (Ir

r
⊗Ir) (V ⊗V ). If we then use the matrices defined

in the main text,

M 1 = (Q⊤ ⊗Q⊤)
{
(S ⊖ S)∗( Ir ⊗ S)− 1/2(Ir

c
⊗ Ir)(Ir

r
⊗ Ir)

}
(V ⊗ V ),

and

M 2 = (Q⊤ ⊗Q⊤)(S ⊖ S)∗(S ⊕ S)(V ⊗ V )

and write O− for the r2 |S|×r2 matrix obtained on concatenating (Dxs ⊖Dxs), O+ for the

r2 |S|×r2 matrix obtained on concatenating (Dxs ⊕Dxs), and O× for the r2 |S|×r2matrix

obtained on concatenating (Dxs ⊗ Ir), and R for the r2 |S| × r2|S| block-diagonal matrix

(I |S| ⊗ W⊤ ⊗ W⊤), we can combine both equations compactly to finally arrive at the

expression

vec(Q̂−Q) = (Ir ⊗Q)
(
O⊤

−O−
)∗ (

(O⊤
−O+)M 1 − (O⊤

−O×)M 2

)
vec(Â−A)

+ (Ir ⊗Q)
(
O⊤

−O−
)∗

(O⊤
−R) vec( ˆ̄A− Ā) + op(m

−1/2),
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which we carry forward.

Transformation matrix Ŵ . Because W = V ⊤Q and the estimators of the individual

matrices making up W are m−1/2-consistent and asymptotically normal we have, by a

linearization

vec(Ŵ −W ) = (Q⊤ ⊗ Ir)Kr2 vec(V̂ − V ) + (Ir ⊗ V ⊤) vec(Q̂−Q) + op(m
−1/2).

Now, using the expression for vec(V̂ − V ) obtained above together with the definition of

M 1 and the fact that Q is orthonormal—so that (Q⊤ ⊗Q⊤) (Q⊗Q) = (Ir ⊗ Ir) = Ir2 ,

we see that

(Q⊤ ⊗ Ir)Kr2 vec(V̂ − V ) = (Ir ⊗W )M 1 vec(Â−A) + op(m
−1/2),

while, using the definition of W , (Ir⊗V ⊤) vec(Q̂−Q) can be written, up to op(m
−1/2), as

(Ir ⊗W )
(
O⊤

−O−
)∗ {(

(O⊤
−O+)M 1 − (O⊤

−O×)M 2

)
vec(Â−A) +O⊤

−R vec( ˆ̄A− Ā)
}
.

Thus, with

N 1 = (Ir ⊗W )
{(

Ir2 + (O⊤
−O−)

∗(O⊤
−O+)

)
M 1 − (O⊤

−O−)
∗(O⊤

−O×)M 2

}
and N 2 = (Ir ⊗ W )

{
(O⊤

−O−)
∗(O⊤

−R)
}

as defined in the main text we arrive at the

influence-function representation

vec(Ŵ −W ) = N 1
1/m

m∑
i=1

vec(Â(X i)−A) +N 2
1/m

m∑
i=1

vec( ˆ̄A(X i)− Ā) + op(m
−1/2).

Quadratic form ϑ̂φ. A linearization readily gives, up to op(m
−1/2),

ϑ̂φ − ϑφ = (ω⊤
z2
⊗ ω⊤

z1
) vec(Âφ −Aφ) +

{
(e⊤

z2
⊗ ω⊤

z1
Aφ) + (e⊤

z1
⊗ ω⊤

z2
Aφ)

}
vec(Ŵ −W ),

where we have used that (ω⊤
z2
Aφ⊗e⊤

z1
)Kr2 = (e⊤

z1
⊗ω⊤

z2
Aφ). This holds for every function

φ (whose variance is finite) and for all 1 ≤ z1 ≤ z2 ≤ r. From above we know that
√
m vec(Âφ−Aφ) and

√
m vec(Ŵ −W ) are both asymptotically normally distribution as

m → ∞. Asymptotic normality of the linear combination in the influence function then

follows readily.

28



Proof of Corollary 1. A delta-method argument together with Proposition 3 yields that

ϑ̂φ′/ϑ̂φ′′ − ϑφ′/ϑφ′′ =
(ϑ̂φ′ − ϑφ′)− (ϑφ′/ϑφ′′)(ϑ̂φ′′ − ϑφ′′)

ϑφ′′
+ op(m

−1/2)

and that the dominant term on the right-hand side is asymptotically normal with the

variance given in the corollary.

Proof of Corollary 2. This is an immediate consequence of Proposition 3.
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Erdős, P. and A. Rényi (1959). On random graphs. Publicationes Mathematicae 6, 290–297.

Frank, O. and F. Harary (1982). Cluster inference by using transitivity indices in empirical

graphs. Journal of the American Statistical Association 77, 835–840.

Higgins, A. and K. Jochmans (2023). Identification of mixtures of dynamic discrete choices.

Journal of Econometrics 237, 105462.

Holland, P., K. Laskey, and S. Leinhardt (1983). Stochastic blockmodels: First steps. Social

Networks 5, 109–137.

Hoover, D. N. (1979). Relations on probability spaces and arrays of random variables.

Technical report, Institute of Advanced Study, Princeton.

30



Hu, Y. (2008). Identification and estimation of nonlinear models with misclassification

error using instrumental variables: A general solution. Journal of Econometrics 144,

27–61.

Janson, S. and K. Nowicki (1991). The asymptotic distributions of generalized U-statistics

with applications to random graphs. Probability Theory and Related Fields 90, 341–375.

Kasahara, H. and K. Shimotsu (2009). Nonparametric identification of finite mixture

models of dynamic discrete choices. Econometrica 77, 135–175.

Kwon, C. and E. Mbakop (2021). Estimation of the number of components of non-

parametric multivariate finite mixture models. Annals of Statistics 49, 2178–2205.

Lei, J. and A. Rinaldo (2015). Consistency of spectral clustering in stochastic blockmodels.

Annals of Statistics 43, 215–237.

Magnus, J. R. (1985). On differentiating eigenvalues and eigenvectors. Econometric The-

ory 1, 179–191.

Magnus, J. R. and H. Neudecker (1979). The commutation matrix: Some properties and

applications. Annals of Statistics 7, 381–394.

Mariadassou, M., S. Robin, and C. Vacher (2010). Uncovering latent structure in valued

graphs: A variational approach. Annals of Applied Statistics 4, 715–742.

McPherson, M., L. Smith-Lovin, and J. M. Cook (2001). Birds of a feather: Homophily in

social networks. Annual Review of Sociology 27, 415–444.

Newman, M. E. J. (2004). Analysis of weighted networks. Physical Review E 70, 056131.

Newman, M. E. J. and E. A. Leicht (2007). Mixture models and exploratory analysis in

networks. Proceedings of the National Academy of Sciences 104, 9564–9569.

Nowicki, K. and T. A. B. Snijders (2001). Estimation and prediction for stochastic block-

structures. Journal of the American Statistical Association 96, 1077–1087.

Rohe, K., S. Chatterjee, and B. Yu (2011). Spectral clustering and the high-dimensional

stochastic blockmodel. Annals of Statistics 39, 1878–1915.

Snijders, T. A. B. and K. Nowicki (1997). Estimation and prediction for stochastic block-

models for graphs with latent block structure. Journal of Classification 14, 75–100.

Sussman, D. L., M. Tang, D. E. Fishkind, and C. E. Priebe (2012). A consistent adjacency

31



spectral embedding for stochastic blockmodel graphs. Journal of the American Statistical

Association 107, 1119–1128.

Tang, M., J. Cape, and C. E. Priebe (2022). Asymptotically efficient estimators for stochas-

tic blockmodels: The naive MLE, the rank-constrained MLE, and the spectral estimator.

Bernoulli 28, 1049–1073.

von Luxburg, U., M. Belkin, and O. Bousquet (2008). Consistency of spectral clustering.

Annals of Statistics 36, 555–586.

Yan, B., P. Sarkar, and X. Cheng (2018). Provable estimation of the number of blocks in

block models. Proceedings of the 21st International Conference on Artificial Intelligence

and Statistics 84, 1185–1194.

32


	Introduction
	Stochastic block model
	Identification
	Estimation
	Numerical illustrations

