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1 Introduction

Consider the Brownian motion X := (X(t));>0 on the sphere S"*! = R"*? of dimension n + 1 > 1,
time-accelerated by a factor 2, so the generator of X is the Laplacian (and not the Laplacian divided
by 2). Starting from a point, the time marginal laws of X spread over S"*! and approach the uniform
distribution in large times. A traditional question is to estimate corresponding speeds of convergence,
or mixing times, especially for large n. The answer depends on the way the difference between the
time marginal and the uniform distribution is measured. Saloff-Coste [10] has proven that for the
total variation, the mixing time is equivalent to In(n)/(2n) and furthermore a cut-off phenomenon
occurs (see also Méliot [9] for extensions). Due to reversibility and cut-off, general arguments, see
(1.5) in Hermon, Lacoin and Peres [7|, imply that for the separation discrepancy the mixing time
asymptotically belongs to the interval [In(n)/(2n),In(n)/n]. The convergence of X to the uniform
distribution can be brought back to a one-dimensional question, by considering its radial part (with
respect to the starting point), since its “angular part” is at once at equilibrium by symmetry. One-
dimensional diffusions are quite close to birth and death processes, so we can expect from the results
of Diaconis and Saloff-Coste [5] and Ding, Lubetzky and Peres [6] that a cut-off phenomenon equally
occurs in the separation sense. Our goal here is to check this is indeed the case and that this abrupt
convergence occurs at times round In(n)/n. Our proof is based on two ingredients: (1) the resort to
the strong stationary times for X presented in [1] and (2) quantitative estimates on the hitting times
for one-dimensional diffusion processes, obtained via elementary calculus (and a very restricted dose
of stochastic calculus). This alternative point of view on cut-off differs from the traditional approach
based on spectral analysis and could be extended to other situations where less spectral information
is available.

Without loss of generality, we can assume that X starts from zg = (1,0,0,...,0) € S**! = R"*+2,
It was seen in [2] that X can be intertwined with a process D = (D(t)):>o taking values in the closed
balls of S"*1 centered at xg, starting at {xo} and absorbed in finite time 7,, in the whole set S*t. In
[1], several couplings of X and D were constructed (two of them are recalled in Corollary 4 below), so
that for any time ¢ > 0, the conditional law of X (¢) knowing the trajectory D([0,]) := (D(s))se[0,
is the normalized uniform law over D(t), which will be denoted A(D(t),) in the sequel. Furthermore,
D is progressively measurable with respect to X, in the sense that for any ¢ > 0, D([0,t]) depends
on X only through X ([0,¢]). Due to these couplings and to general arguments from Diaconis and Fill
[4], 7, is a strong stationary time for X, meaning that 7, and X (7,) are independent and X (7,) is
uniformly distributed over S™*!. As a consequence we have

Vi=0, s(L(X(1),Uns1) < Pl =1]

where the Lh.s. is the separation discrepancy between the law of X (¢) and the uniform distribution
Up+1 over ST
Recall that the separation discrepancy between two probability measures p and v defined on the
same measurable space is given by
dp

51, = 1——
(,v) essusup 7

where du/dv is the Radon-Nikodym density of p with respect to v.

Remark 1 Note that for any t € [0,7,), the “opposite pole” (—1,0,0,...,0) does not belong to the
support of A(D(t),-). It follows from an extension of Remark 2.39 of Diaconis and Fill [4] that 7, is
even a sharp strong stationary time for X, meaning that

Vit=0, 5(£(X(t))7un+1) = P[Tn = t]

Thus the understanding of the convergence in separation of X toward U,1 amounts to under-
standing the distribution of 7,,. From the bibliographical survey given above, it can be expected that
Ty, is of order In(n)/n.



In confirmation of the above observation, a first purpose of this note is to prove the following result.
Theorem 2 We have for all n large,

In(n)

n

E[mn] ~

Let us go further by showing a cut-off phenomenon, namely that in the scale In(n)/n, the random
variable 7, is in fact close to its mean E[7,]. This property can be written under several forms, see
e.g. the review of Diaconis [3] or the book [8] of Levin, Peres and Wilmer (both in the context of finite
Markov chains). We consider the following simple formulation:

Theorem 3 For any r > 0, we have

TLILH&)P[T” > (1+T)ln(nn)] =0 and TLILII;OIP[TR < (1_T)h1(nn)] =0
For any t > 0, denote R(t) the Riemannian radius of D(t) in S**!, so that R(0) = 0 and
T, = inf{t >0 : R(t) =} (1)
It was seen in [2] that R = (R(t))=0 is solution to the stochastic differential equation
Vie(0,7,), dR(t) = ~2dB(t)+ by(R(t))dt (2)
where (B(t));>0 is a standard Brownian motion in R and the mapping b, is given by

3 sin"(r) ncos(r)
Vore (0’ 7-[-)7 bn(’l“) = 2870' Sinn(u) du sin(r) (3)

It is not difficult to check (see e.g. the bound (32) which is an equivalent as © — 0, ) that as r goes
to 0+

n+ 2
T

bp(r) ~

and this is sufficient to insure that 0 is an entrance boundary for R, so that starting from 0, it will
never return to 0 at positive times.

In the following corollary we explicit two intertwinings, which were constructed in [1] Theorems
3.5 and 4.1.

Corollary 4 Let (X;)i=o0 be a Brownian motion in S"*! started at xo. For x € S"*\{(xo, —x0},
denote by N(x) the unit vector at x normal to the circle with radius p(xo,x) where p is the distance
in the sphere, pointing towards xo: N(z) = —Vp(xo,-)(z).

(1) Full coupling. Let Di(t) be the ball in S**! centered at xo with radius Ry (t) solution started at
0 to the Ito equation

dRi(t) = —vV2AN(Xy),dX;))+ n[2cot(p(xg, X;)) — cot(Ry(t))] dt

This evolution equation is considered up to the hitting time 7721) of m by Ry(t).



(2) Full decoupling, reflection of D on X. Let Dy(t) be the ball in ST+ centered at xo with
radius Ro(t) solution started at 0 to the Ito equation

dRy(t) = —+/2dW; + 2dLE?(p(x0,-))(X) — ncot(Ry(t)) dt

where (W;)i=0 is a real-valued Brownian motion independent of (X;)i=o and LI?[p(zo, X)] is the
local time at O of the process Re — p(xg, X). These considerations are valid up to the hitting time

2 of ™ by Ra(t).

Let D(t) be the ball in S"*! centered at xo with radius R(t), defined in (2), and let T, be the stopping
time defined in (1).
Then we have:

(1) fori=1,2 X_ @) 15 uniformly distributed in Sn+t

(2) the pairs (7—7{01)7 (Dl (t))tE[O,Ty(Ll)])’ (TT(LQ)J (D2 (t))tE[O,TT(LQ)]) and (TTM (D(t))tE[O,Tn]) have the same law.

In particular TT(ZI) and T7(L2) satisfy Theorems 2 and 3.

Heuristically speaking, the mapping b, is of order n (see Lemma 7, nevertheless mitigated by
Proposition 8), thus renormalizing time by a factor 1/n, we end up with a small noise diffusion, so
large deviation estimates could lead to the desired result.

Indeed, in the next section we will show that In(n)/n is an equivalent of the time needed to go
from 0 to 7 for the dynamical system obtained by removing the Brownian motion in (2). But instead
of subsequently resorting to the large deviation theory, which cannot be directly applied here due to
the existence of two scales 1/n and 1/4/n, we present in Section 3 an alternative direct perturbative
argument to estimate hitting times, leading to curious optimization problems over avatars of the drift.
The latter are approximatively solved in Section 4, leading to the proofs of Theorems 2 and 3. The
additional material section justifies the resort to avatars, by showing that the cut-off phenomenon
cannot be deduced by only working with the initial drift.

2 Corresponding dynamic systems

In the spirit of the small noise approach alluded to above, we give here a heuristic justification of the
In(n)/n term by forgetting the Brownian motion in (2). Nevertheless the following computations are
not disconnected from our main goal, as they will be re-used later on.

The dynamical system associated to (2) is defined by
rog = 0
. 4
{ Ty = bn(.fUt) ( )

up to the time 7, it hits 7 (Proposition 8 below will imply in particular that (z;)[o,7,] is increasing
and that T;, is finite).
The goal of this section is to show the following behavior for this hitting time:

Theorem 5 For large n we have

This bound can serve as an “explanation” for the quantity In(n)/n as Theorem 2 will be obtained
via perturbative arguments around this result.

The proof of Theorem 5 consists of the two matching lower and upper bounds separately presented
in the next subsections. In both cases, b, will be replaced by more manageable drifts.



2.1 The upper bound

Our goal here is to show one “half” of Theorem 5, the most interesting one if we were in a sampling
context, since it serves as a guarantee for convergence.

Proposition 6 We have

n
I o<1
P () "

In order to prove Proposition 6, we replace b, by a simpler drift b < by, whose corresponding
hitting time T of m will furnish a time satisfying T =>T,.
Here is the first step in this direction:

Lemma 7 We have
V z e (0,m), bo(x) = n|cot(z)]
Proof
First consider the case where z € [7/2,7). Since sin”(z) > 0 and { sin"(u) du > 0, we get

ba(@) > —n T o)

sin(x)

Next consider the case where = € (0, 7/2]. Define for such fixed z,

VO<wv<uz, fw) = sin(z —v) —sin(z) + cos(z)v
We compute
f'(v) = —cos(z—v)+cos(z) <0
and since f(0) = 0, we deduce that
VO0<wv<uz, sin(rx —v) < sin(x) — cos(z)v
It follows that
f: <21223>” du = J: <s1nSl(ralc(x)v)>n dv < f; (1 — cot(z)v)" dv

* 1
< L exp(—ncot(z)v)dv = m[l — exp(—ncot(z)z)]

Coming back to b,, we get

1
1 — exp(—ncot(z)x)
1 + exp(—ncot(x)x
1 — exp(—n cot(z)

~necot(z) — ncot(x) < 2 - 1)

bp(z) = 2ncot(z) 1 — exp(—ncot(x)x)

= ncot(z) ; > ncot(x) = n|cot(z)]

The previous bound has the drawback to vanish at = 7/2, which is problematic for the hitting
time of . So we need another lower bound for b,,:



Proposition 8 There exists a constant ¢ > 0 such that for all n large enough,
V x e (0,m), bo(z) = ¢vn
Fix some A > 0 and note that for = € (0, 7) outside [7/2 — A/y/n,7/2 + A/+/n], we have
A A
|cot(z)] = |cos(z)] = cos <72T - \/ﬁ> ~ 7 (5)

It follows from Lemma 7 that to prove Proposition 8, it sufficient to investigate the behavior of

bn(x) on [w/2 — AJy/n, /2 + A//n].
We begin with the point 7/2:

Lemma 9 For large n, we have

Proof

By definition, we have for any n € N,

with
/2
Ly = f sin” (u) du

By integration by part, it appears that this quantity satisfies,

n—1
Vn=2, by = ln—9
n

from which we get that for n large

by~ — (6)

and we deduce the wanted equivalent.
[ |

For the other points z € [7/2 — A/y/n,m/2 + A/y/n] (with n > 4A2/7?), we are to systematically
consider the change of variable

a = n (a: - f) e [~A,A] (7)
We need the following ingredients.

Lemma 10 With the parametrization (7), we get for large n, uniformly over a € [—A, A],

sin”(x) ~ e 2 and I,(z) ~ hla)

NG

cos(z) ~ 7

where



Proof

Writing z = § + %, the first equivalent is obtained via an immediate expansion around /2.

For the second equivalent, note that

sin"(z) = ( 1— cos2(:n))" — exp (Z In <1 — cos? <72T + jﬁ)))
~ exp <—;L cos? <72T + jﬁ)) ~ o4/2

For the last equivalent, write
/2 T
I,(z) = J sin” (y) dy + J sin” (y) dy
0 /2
From the previous computation, especially its uniformity, we deduce

r @ 2 dv
sin"(y)dy ~ j eV =
L/z 0 Vn

From Lemma 9 we have for large n,

/2 T 1 (° 2
sin"(y)dy ~ = f e V2 qy
fo ) 2n v J_o

and thus finally the wanted equivalent.

Recalling the definition of b, given in (3), we deduce from Lemma 10 that uniformly for a € [— A, A],

bn (JI) ~ \/E/B(a’)

with

VaeR, Bla) = 2———+a (8)

This mapping will be precisely investigated in Section 4, but for the moment just note that by
continuity we can choose A > 0 sufficiently small so that

Vac[-A Al Bla) > 5(;) _ %

Proposition 8 then follows from this bound and (5), for any given ¢ € (0,4/2/7 A A).

The previous lower bounds on b,, lead us to introduce a new function by, on (0,7) via

Vae(Om), D) = {W Jif e [n/2— Afy/i,m/2 + Aly/n)

n|cot(x)| , otherwise

Our interest in En is its simplicity and the fact that

~

b, = by
Thus if we replace (4) by
Zo 0
< Y~ 9
{52 e )



defined up to the time T,, it hits T, we get
Vne N, Tn < Tn
Proposition 6 is an immediate consequence of this bound and

Lemma 11 For n large, we have

T, ~
n
Proof
We decompose ’fn into :F,S” + T,?) + T ,&3) where
~ . - T A
Tél) = 1nf{t>0 : xt=2—\/ﬁ}

T2 = inf{t>0:

TG = inf{t=>0: ff«pﬁfut =}

and we analyse each of these times separately.

e For t € [0, :ﬁﬁl)), we rewrite the second equation of (9) as

@) < e —Ln(eos(@))

dt

cos(Ty) o

Integrating between 0 and T}(Ll) we get

nT( = In(cos(0)) — In (COS <g - jﬁ» - (COS G

For large n, we have

and it follows that

and by consequence

O )
" 2n

e Forte (ﬁ(}),ﬁgl) + TT(LQ)), (9) writes

and we get

- s
R N

}

(|5



e Forte (TT(LQ) —+ T}(LQ),T,?) + ﬁ(Lz) + ﬁ(;’)) we rewrite the second equation of (9) as

_SlIl(IL‘t)x;t - 7

cos(Ty)

which can be treated as before to show that

" 2n

Putting together these estimates, we deduce the desired result.

[ |
2.2 The lower bound
Our goal here is to show the second “half” of Theorem b5:
Proposition 12 We have
lim inf %Tn > 1
As in the _previous section, we are to replace b by a simpler drift b, Bn, whose corresponding

hitting time T of m will furnish a time satisfying T < Ty.
We start by remarking that the arguments that have led to Proposition 8 imply equally:

Lemma 13 For any A > 0, we can find a constant ¢4 > 0 such that for all n large enough,

T a
—4,A n\ 5 - < c
Vae[-A, Al b <2+\/ﬁ> cav/n

Fix A > 0. Here is an analogue of Lemma 7.

Lemma 14 There exists a quantity ¢(A) > 0 such that for all n sufficiently large, depending on A,

Ve (0,m)\(r/2—A/n,m/2+ A/\/n), bn(x) < (14 €(A))n|cot(z)]
Furthermore, we have

li A) = 1
A o) =0 1)

Proof
Two cases are treated separately:
e For z € [7/2 + A/\/n, ), we have on one hand,

sn sn A —A2/2
< ) ~
sin"(z) sin <7r/2+ \/ﬁ> e

for n large, and on the other hand

L(z) > L(r/2) ~ 4[5

It follows that for n sufficiently large, we have

bn(z) < 3\/56_A2/2\/ﬁ+n|cot(:n)|
T



Furthermore we have for large n,

cot (m + Q‘%)‘ -~

|cot(z)] =

It follows that for n large enough,

9 2 —A2)2
3\/76_142/2\/5 < 4\/76 n| cot(z)]
0 T A

bn(z) < (1+e€4(A))n|cot(z)|

9 67A2/2
€4+ (A) = 4\/; A

e For x € (0,7/2 — A/+/n], we have

implying

with

z Sinn+1 T
In(x) = fo COS(U) sin”(u) du = n—i_i)
so that
by () 22&&)1) — ncot(x)

Introduce x4 € (0,7/4) so that

1 < (1 + i) cos(z4)

For any = € (0,x 4], we have cos(x) > cos(z4) and thus

bp(x) < (2(n+1) (1 + i) - 1) ncot(x) < (1 + i) n cot(x)

n

for n large enough.
Denote 7, = 1/4/n and assume that n is sufficiently large so that n, < z4. For z € [z4,7/2 —

A/+/n], we have

X 1 T
I(z) = J sin(u)du > ——— J cos(u) sin" (u) du
" T—"n COS(l‘ - nn) T—1n
B 1 sin™ 1 (u) 1" B 1 sin"tl(z)  sin"tl(z —1n,)
~ cos(z—m,) | n+1 - ~cos(z—mnp) | nmt+1 n+1

cos() [ - <sin(x—77n)>n+1] ( sin™*1(z)

cos(z — 1) sin(z) n + 1) cos(x)

Note that

) cos(z) e (pa /o - _ cos(m/2 — A/y/n)
min | o gy e a2 AN | = SRR

and the r.h.s. converges toward A/(A + 1) for large n.

10



We also have

(B ovinon-ava) - (S

for large n.

and the .h.s. converges toward e~ (AT1?*/2e4%/2 — o=(A+1/2)

It follows that for n sufficiently large,

A
A+2

sin" ()

(n + 1) cos(z)

L(z) > (1—e 4

and we deduce that for z € [x4,7/2 — A/\/n)],

bn(z) < <2A(1A_—i_62_14>—1>ncot(w) = (14 e_(A))ncot(x)
with
oA
e-(A) = 25(14_:4(3_%‘)

The wanted bound follows with €(A) = e_(A) v €4 (A), satisfying (10).

The two previous upper bounds on b, lead us to introduce a new function gn on (0,7) via

~ o { cav/n Jifxe[n/2—A/y/n, /2 + A/\/n]

Ve (0,m), bn () (1 + €(A))n|cot(x)| , otherwise

satisfying b, < b Replacing (4) by

(2236 ()

Ze o= bo(@)
defined up to the time fn it hits 7, we get
VneN, T, = 1T,
The proof of Lemma 11 shows

. no A

We deduce that for any A > 0,

. n
h,?l,lo%f MTTL > 1+ ¢€(A)

and letting A go to +o0, we deduce

.. n
llﬁl{gf%Tn > 1

In conjunction with Proposition 6, this bound ends the proof of Theorem 5.

11



3 Perturbative arguments for absorption

We present here general and very simple perturbative arguments for the expectation and the concen-
tration of a hitting time.

Consider a diffusion on [0, 7] of the form

1
dX(t) = \/§dB(t)+mdt (12)

where ¢ : [0,7] — R4 is twice continuously differentiable and increasing on [0, 7] and such that
0 is an entrance boundary (insured by liminf, .o, z/¢'(z) = 1), and where (B(t));>0 is a standard
Brownian motion.

We start with Xy = 0 and the above diffusion is defined up to the hitting time 7 of #. By the
above assumptions 7 is a.s. finite and our first objective here is to give a simple upper bound of E[7]
in terms of ¢.

Lemma 15 Assume that miny ) " > —1. Then we have

E[’T] < 80(77') — 90(0)
T4 mingg -] ¢”

Proof
By Ité’s formula, we have
dox(1) = Pxmxm+ Do),
= V20 (X())dB(t) + dt + " (X (t))dt

Thus integrating between 0 and 7, we get

o) — 0l(0) = fT<P’(X(t))dB(t)+ | 1oy (13)

which implies the desired bound.

The above arguments equally lead to a reverse bound:

Lemma 16 Assume that maxjq ) ¢" > —1. Then we have

1 + max[o ] "

These two results will be the unique insertion into the field of stochastic calculus needed to deduce
Theorem 2. They will be reinforced by Lemmas 17 and 18 below to get Theorem 3.

We would like to apply them with ¢’ = 1/b,, but as we will see at the end of next section, this is
not a good idea.

12



It is better to first slightly improve the bounds of Lemmas 15 and 16. Consider

[077‘-] CEHO_'.

U, (o) = {1,!} e C%([0,7],Ry) : ¥ = ¢, miny” > —1 and limsup¢/(z)/z < 1}

For any ¢ € ¥, (¢), which should be seen as an avatar of ¢, consider the diffusion starting with
Y (0) = 0 and satisfying
1
dY(t) = V2dB(t) + —rrrrdt 14
up to the hitting time o of .

The definition of ¥ insures that 0 is an entrance boundary and that 7 < 0. We deduce the upper
bound

and finally
S (0

< 15
Yev i (p) 1+ mingg 1 ¥" (15)

To evaluate the r.h.s. seems an interesting optimisation problem. We will not investigate it here
in general, but we will see that for our particular problem it leads to the right equivalent (while only
considering 1) = ¢ € ¥ does not).

Similarly, introduce

U_(p) = {¢ e C%([0,7],Ry) : ¢/ < ¢, I[Iola}]m/)” > —1 and limsupv/(z)/z < 1}
)T I4>0+

Then we have

P(m) = (0)
B = peu () 1+ max(p - 0 (16)

Both (15) and (16) will enable us to get the equivalent given in Theorem 2 for the expectation of
the strong stationary time 7,, since we will exhibit appropriate avatars whose second derivatives will
be smaller and smaller in terms of the parameter n.

By going a little further, it is possible to deduce the cut-off phenomenon of Theorem 3: instead
of using that the expectation of a martingale is zero, as in Lemmas 15 and 16, we can evaluate its
variance via its bracket. It leads to the following result for the hitting time 7 of 7 by the diffusion
(12) starting from 0.

Lemma 17 Assume that p(0) = 0 and minyy - ¢" > —1/3. Then we have for any r > 0,

P [T > Lﬁ)”(l + r)} < = fr(ga’(u))?’du

1 +minpg ) ¢ r2p2(m)(1+ 3 mingg ") Jo

Proof
From (13), we deduce

(1+ 1[%)1173 O < o)+ 2

13



where Z := — {] ¢/(X(t)) dB(t), so that

P[T>Hnﬁ$ﬂw(l+r)] = P[(1+ﬁiﬂr]w”>7><ﬂ(ﬂ)(1+?")} < P[Z > o(m)r]

1

< 1 gy - !

Let us evaluate the last expectation as we have done for E[r]. Denote v the function on [0, 7]
satisfying v(0) = 0 and

[ ey as)

0

Vaelo,n], A = (J()°

so that, taking into account that +” = 3()%¢",

@) = "+ =3 < A"+ -3 <1[f{)u7rr]1 w”) (¢')?

It follows that

(o) el s

A

B| [ 1+ 1) as)
= E[s0) 20 - [ VX ) aBe)]| = atm)

0

The wanted result follows.

The same arguments show:

Lemma 18 Assume that ¢(0) = 0 and ming - ¢" > —1/3. Then we have for any r > 0,

P |:T < &”(1 — r)] < : fr(go'(u))3 du

1+ maxjo ) ¢ 22 (m)(1 + 3mingy 1 ¢") Jo

The comparison with diffusions of the form (14) leads to the following extensions of the two previous

lemmas: for any ¢ € ¥, (¢), such that minpg 9" > —%,

P[T>1+minww"<” )| < SO S 7 Jp ¢ (7

and for any 1 € W_(y), such that minpg 9" > —%,

GRSV 1 " o
F [T = 1+ maxiq ] 1/;”(1 )} < r2(¢(m) —(0))2(1 + 3min[0m] 0 L (V' (u)”d (18)

4 Construction of appropriate avatars

We come back to the diffusion defined in (2). We would like to apply the bounds of the previous
section with ¢} = 1/b,, for given n € N. It leads us to construct appropriate avatars i, € U, (¢y)
and ¢, — € V_(¢y,), whose corresponding bounds will imply Theorems 2 and 3.

As suggested by the computations of Section 2, it is important to understand the behavior of b,
at the scale 1/4/n: we fix A > 0 and consider the change of variable © = 7/2 + a/y/n for a € [ A, A].
Here is a first result about the mapping /3 defined in (8):

14



Lemma 19 There exists a unique ag € R such that 5'(ag) = 0. Furthermore, we have ag > 0.

Proof

We compute

)
ae e @

O

—a?/2

VaeR, B'(a) = -2 +1

Denote X := e~%/2/h(a), so that §'(a) = 0 is equivalent to the equality

20X +2X? -1 = 0
Furthermore we compute

YV aceR, B"(a) = —2X[1-a®-3aX —2X?]

It follows that if a € R is such that §'(a) = 0, then

B"'(a) = 2aX(a+ X) (19)
We examine separately two cases:
e If a > 0, then 8”(a) > 0, namely the critical point a is a local minimum.
o If a = 0, we verify directly that

1 4

e If a <0, let us show that a + X > 0. Indeed, for u < a < 0, we have 1/u > 1/a and thus

a 1 a 1
h(a) = J You/2 gy < f we 2 du = ——ema/2 (20)
- —0

o U a a

implying a + X > 0. We deduce from (19) that 3”(a) < 0, i.e. the critical point a is a local maximum.

Since two different local minima (respectively maxima) are necessarily separated by a local max-
imum (resp. minimum), we deduce there is at most one point a in (0, 4+0) (resp. (—o0,0)) satisfying
f'(a) =0

Note that as a goes to +00 we have f(a) ~ a and that as a goes to —o0, f(a) ~ —a. The latter
relation comes from the fact that (20) is well known to be an equivalent for h(a) as a — —oo (this is
proven by an integration by parts). It follows that coming from —co and going to +00, 8 cannot have
first a local maximum. Since § must have at least one local minimum, it appears finally that § has a
unique critical point ag, which is a local minimum. We also infer that ag > 0.

[

Fix g9 > 0 sufficiently small so that the following quantities are finite for any € € (0,¢¢):

= inf{a > ag : f'(a)/B*(a) = €}
a_(g) = supfa <ag : B'(a)/B?*(a) = —¢}

S
+
—~

™
~—

1

(the existence of such an g9 > 0 is a consequence of 5”(ag) > 0, as seen in the above proof).
Consider the fonction f, given by

| tan(z))|

Vaelon\{r/2},  fa()

15



We have for large n and for any given a # 0,

with

For ¢ € (0,&¢), consider

as illustrated by Figure 1.

Figure 1: The mappings ¢ and 1/ are respectively in blue and red. The half-tangents with slope —e and ¢ are in
green.

The following observation will be important:

Lemma 20 We have

lim my(e) = 40 and lim m_(¢) = —©
E—>0+ E—>O+

16



Proof
Fix any M > 2f(ap). Taking into account that

lim ay(e) = ap
€*>0+
for € > 0 sufficiently small, we have
LM —a(e) > g > G(M)
- —a
Blat(e)) ! 25(ao)

It follows there exists m € (M, 1/(a4(g)e) + a4 (e)) such that

M%(mmg)) = 4(m)

and we deduce

liminfmy(e) > M
€—>0+

and finally the first desired divergence.
The second one is obtained in the same way.

Consider the function 6 defined on R by

<Z>(a)1 yifa<m_(g) or a>my(e)
————+4cela—a-(e)) ,ifae[m_(g),a_(e)

acm o) = | B !l ]
Blas(e)) —ela—ay(e)) ifaclay(e),me(e)]
1/8(a) yif a € [a—(¢), a4 (e)]

Lemma 21 We have
V aeR\{m_(e),m4(e)}, 0'(a)] < €
In particular, we get

lim sup 'l = 0

204 R\{m_(e),m4 (e)}

Proof

By construction, 6 is differentiable on R, except maybe at m_(¢) and m4 (g), where the left and
right derivates may differ.
By definition of a_(¢) and a4 (¢), we have

Vaela(c)as(e)],  10'(a)] = |(1/B)(a)] < e

Furthermore, note that

Vae(m ()a (@] olas@)mie), Wl = e
Finally, we have
Vazmi(e), W@l = ¢l =

17



so that

1
Va>my(e), 0 (a)] <
+ ‘ )‘ ,n,LQ+ (5)
and similarly
Va<m (), 0@ < —
a<m_ a)l <
’ m2 (g)

We deduce |0'(a)| < max(1/m?2(g),1/m%(¢),e). To conclude to the desired bound, note that at
m(€), we have

—e < ¢/(my(e) <0

since after m. (¢), ¢ is above the line of slope —¢ passing through ¢(m. (¢)). Thus we get 1/m?% () < e.

Similarly we have 1/m?2 (¢) < e and the announced result follows.
]

Let us check that for € > 0 small enough, 6 remains above 1/8.

Lemma 22 There exists €1 € (0,e9) such that for any € € (0,e1), we have 0 = 1/f.

Proof

To simplify the notation, let us write ¢ := 1/5 and let us work on [ag, +00), similar arguments are
valid on (—o0, ap].

For € € (0,¢0), define

= min<{m >a ';— m—a = p(m
cele) = min{m > a,(0) s gt sm - a.(2) = o)

On [ag, +0), it is clear from the definition of 6 that § > ¢, except maybe on [a(¢),cs(€)] (note
that on (C+(5)7m+(8))7 0 = qb = q)'
We have already seen that

lim ay(e) = ap
€*>0+
and we have
lim ci(e) = ¢4(0) (21)
8—>0+

where ¢4 (0) = 1/g(ao) is the unique positive solution a of ¢(a) = q(ao).
We compute that

VacR, @) - 1—(+DW (22)
from which, we get
VaeR @) - —a@)— 21+ D)) 29
Thus we can find €9 > 0 such that
Y a € [ag, ap + €2], q"(a) < q”(;(]) = _a0q2(2a0) <0



Let €3 > 0 be such that for € € (0,e3), we have ay(¢) € (ag,ap + €2/2). By the strict concavity
of q on [ag, ap + e2], the affinity of 6 on [a + (€), m4(¢)] and the fact that §'(a4(g)) = ¢'(a+(¢)), we
deduce that for € € (0,¢3),

Vaelar(e)ma(e) a(a+e)l.  0a) > gla)

Furthermore, up to reducing €3 > 0, we can assume that m () > ag + £2.

It remains to consider the situation on the segment [ag + 2, ¢4 (¢)].

Taking into account (21) and the fact that the slope of 6 tends to zero as e — 04, to show that
0 = q on [ag + €2,c4(¢)] (for € € (0,£1) for some £ € (0,e3)), it is sufficient to show that ¢’ < 0 on
(ag, +0).

By contradiction, assume there exists a; > ag such that ¢’(a;) = 0. From (23), we deduce that

q"(a1) = faqu(al) <0

From the fact that ¢’(ap) = 0 and ¢"(ag) = —apq?(ag) < 0, there must exist as € (ag,a;) with
q'(az) = 0 and ¢"(ag) = 0. This is in contradiction with the fact that ¢”(a2) = —a2¢*(az) < 0.
]

Fix € € (0,¢1) and take A > 0 large enough, so that —4 < m_(¢) and A > m(g). For n > A2
define the mapping &, on [0, 7] satisfying &, (0) = 0 and

Vxe(0,m), ¢ (z) = {\/15 (a) ,ifae[—A, A

In(2) , otherwise (24)

(recall that a = \/n(z — 7/2)).

The function &, may not be strictly differentiable at 7/2 — A/4/n and 7/2 + A/y/n (the above
formulas giving the right derivative at —A and the left derivative at A), nor twice differentiable at
/2 — m_(g)/4/n and 7/2 + my(e)/y/n. But outside these four points, &, is twice differentiable.
Convoluting &, with an approximation of the Dirac mass at 0 and taking into account Lemma 21, we
construct an increasing function v, twice differentiable on (0, 7) such that for n large enough,

1

sup |[¢)| < e(l+e¢) (26)

(0,m)
Furthermore, the computations of Lemma 11 show that for large n,

In(n)
fulm) ~ T
thus for n large enough,
In(n)
n

Un(m) = Pn(0) < (1+¢) (27)

Taking into account that for € > 0 small enough, we have for n large enough, v, 4 =, /(1 —¢€) €
U (¢n), we deduce from (15)

1+e
l—e—e(l+¢)

lim su
ol In(n)

E[r.] <

(where 7, is the strong stationary time defined in (1)) and letting ¢ go to zero, we conclude to the
bound

li ——Elr,| < 1 28
P ey L -
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To get a reverse bound, it is sufficient to apply (16) with appropriate avatars ¢, — € ¥_(py).
Inspired by the computations of Section 2.2, we first take A > 0 sufficiently large and consider the
quantity €(A) > 0 defined there. Up to choosing A even larger, the above arguments are still valid,
except that (25) and (27) can respectively be replaced by

by < (1+5)1Z;(m
Ua(m) ~al0) > (1)) (29)

It follows in particular that for n large enough, ¢, — = 9, /[(1 + €(A))(1 + €)] € ¥_(¢,) and we
deduce from (16),
1—-¢
(1+e)(1+e€e(A) —e(l+e¢)

. n
lim inf ME[%] >

Letting & go to zero and A to to +00, we deduce

A n
llﬁl(gme[Tn] > 1

In conjunction with (28), this ends the proof of Theorem 2.

To end this section, let us show Theorem 3.

We begin by its first convergence, where r > 0 is fixed from now on.

For € > 0 sufficiently small, consider again the mapping v, + € ¥4 (p,) defined above. According
to (17), we have for any r > 0,

Y+ (T) — Y0 +(0) ] 4 o 3
v [Tn T mingg .1 ¥y 4 L)) < 72 (Yn,4 (1) = P4 (0))2(1 + 3mingg ¢y, 1) fo (¥, ()" du

Up to choosing € > 0 even smaller, (26) and (27) insure that for all n sufficiently large, we have

VY, +(m) — Pn +(0) In(n)
T ming. 1/4,+ 1+7r/2) < 1+r)——=

implying
In(n) 4 " 3
P> en 2] < . | @iy au
[ " n 2 (P4 (1) = o4 (0)2(1 + 3mingg v ) Jo = ™"
Thus the first convergence of Theorem 3 is a consequence of (29) and
Lemma 23 We have
tim —— ()L ) = 0
s In*(n) Jo " R
Proof
The above convergence is equivalent to
im 2 (WP = 0 (30)
nl—r>I010 1112(7’L) 0 nit v

Since differentiation and convolution commute and convolution is a contraction in LP, for p > 1

(recall that ¢, > 0), (30) is itself implied by

n2 T
lim J € (w)du = 0 (31)

n—w In?(n) Jo
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Coming back to Definition (24), we write

| e -

f (€ (w)* du + f (€ (w)* du
0.7\ [ /2~ A/ /24 A/ /] [ /2~ A/ /24 A ]
1

1 (A
= = | tan(u)|? du + — f 63(a) da
= J(0,m)\[m/2—A/v/n,m/2+A)\/n] neJ-a

Note that the first term of the r.h.s. si equal to

33 F/Q_A/ﬁtan (u)du = 33 " cot®(u) du < 33 v %du
" Jo e Jajyn e Jajym U
_ 1[_1]“/2 <iln _ 1
(G RGPV T 3 A2 (An)?
and thus
n? 1 1
W(mﬁf(o,ﬂ\wfzA/ﬁm/%A/M'tan(uﬂgdU S (Amm)?

converging toward 0 for large n.

Similarly we have
n? 1 (4 I
—— 03(a)da = J 63(a) d
In?(n) n? J—A (a)da In?(n) J_a (a) da

converging toward 0 for large n and ending the proof of (31).
|

The proof of the second convergence of Theorem 3 follows a similar pattern, via (18) applied to

Un,— € ¥_(on).
Indeed, r € (0,1) being fixed, we first find A > 0 sufficiently large and € > 0 sufficiently small so

that for all large enough n,

Une(m =90 g gy o (1o

1+ min[o’ﬂ n,— n

and we get

P [Tn <(1—nt 1 J " ()P du

- -
n 72 (¥n,— () = ¥, (0))*(1 + 3mingo ¥y ) Jo

This bound implies the second convergence of Theorem 3 via the analogue of Lemma 23, where
Yy, + is replaced by v, _, and which is proven in exactly the same way.
We also deduce the following consequences from the proof of Lemma 23:

Corollary 24 For any v € S"*!, let X* = (X¥)i=0 be the Brownian motion on the sphere S"+!
(time-accelerated by a factor 2), starting with X§ = x. There exist C > 0 and ng € N such that for all
r >0 and for all n = ng,

C
X — Ugn < —
‘£< (1+r)1n£")> Her by r21n?(n)
C 1
v Sn-i—l P(”+1) > 1—
ye ’ (147) ) (z,9) r2 1n2(n) vol(Srn+1)

where | - |t stands for the total variation norm, L(X[) is the law of X[, pgn+1 is the uniform measure
in SP and Pt(n+1)(-, \) is the heat kernel density at time t > 0 associated to the Laplacian on S"*!.

21



Proof

From the computations in the proof of Lemma 23, there exist a constant C' depending on the
quantity max{SfA 6%(a) da, 45}, and ng € N such that for all n > n,

] G

P [Tn > (1+47r) - TTE () 2 (n)

The first conclusion follows, since
In(n)

The second conclusion follows by definition of the separation discrepancy, since for all y € S**! and
t>0,

tv

1— P (@ y)vol(S™Y) < s(L(XF), pgnin)

Funding;:
The third author was funded by the grant ANR-17-EURE-0010.

5 Supplementary material: on the necessity of avatars

Our goal here is to see the bound given in (15) can be strictly better than Lemma 15.

Indeed, it will a consequence of the following result.
For any n € N, consider the function ¢,, defined on [0, 7] satisfying ¢, (0) = 0 and
1 sin(x) I, (x)

Vae(0,m), ¢hlr) = bo(x) 280" (2) — ncos(x)l,(x)

From the computations of Section 2, we have for large n,

In(n)

n

on(m) ~

But we have:
Proposition 25 The limit lim,, .o, mingg » ¢}, exists and its value belongs to [-5/11, —1/T7].

Thus Lemma 15 alone would not have permitted us to prove Theorem 2.

On the two following subsections, we respectively investigate ¢! on [0,7/2] and [7/2, 7].

51 On [0,7/2]

Before investigating the minimum of ¢” on [0, 7/2], we start with some considerations valid on [0, 7].
For any z € [0, 7], we have

T

cos(x)Ip(z) < J (32)

in”“(u)]gC ~sin"t(2)
0 0

s
() du —
cos(u) sin" (u) du [ T T
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We deduce that the denominator of ¢/, (z) satisfies

sin"*1(x) n+2

2sin" " (z) — ncos(z),(z) = 2sin"t(z) —n - sin™+(z)

which stays positive on (0, 7).
Furthermore, as x tends to 0., we have

so that

At the other boundary m, we get

n+1 n+1

n+ 2

2sin" 1 (z) — ncos(z) I, (z) ~ msin”“(m)
, x
~ =0
I,(m) sin(z)
/ n
~ — - 0
P () T (r

We compute for any x € (0, 7),

n"1(x) + cos(z) I, (z)

Pplx) =

2sin?("*+ ) (1) —

2sin

n+1

(
() — ncos(z)l,(x)
_sin(@)In(z)[2(n

+ 1) cos(z) sin™(x) + nsin(x)I,(z) — ncos(z) sin”(x)]

(2sin™*(x) — ncos(x)I,(z))?

2n cos(z) sin™ ()1, (x) — nI2(x)

Let us rewrite ¢! (x)

with

(2sin™ " (z) — ncos(z)I,(z))?2

= N(x)/D?*(z) with
N(z) = 2—2ncos(x)J,(z) —nJ>(z)
D(z) = 2—ncos(z)J,(x)
Tn(@) = snfgffgx)

Here are some observations on this function

Lemma 26 We have

Tn(@) =

1
sin(x)

(1 = (n+1)cos(x)Jn(z))

and in particular J, is increasing on (0, 7).

Proof

Indeed, we compute

T ()

sin™(x) sin" " (x) — (n + 1) cos(x) sin™(z) I, ()

1

sin(x)

Sin2(n+1) (CC)

(1= (n+1)cos(x)Jn(z))

23
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From inequality (32), we get that for any x € (0,7), J),(x) = 0 on (0, ).

Since the first bound in (32) is an equivalent for small z, we also get

. 1

and thus

2 1 2(n+1)* -2 1) — 2
lm N(z) = 2- no_ _ (n+1) n(n+1)—n _on+
04 n+1 (n+1)2 (n+1)2 (n+1)?

We now restrict our attention to the case where x € (0, 7/2).

Lemma 27 We have

V ze (0,7/2), N(z) = 0

Proof
We compute that for any x € (0, ),
N'(z) = 2nsin(z)J,(z) — 2ncos(z)J) (z) — 2nJ,(z)J),(x)
= 2nsin(z)J, () — 2n(cos(z) + J,(z))

- SIEE;) (sinQ(x)Jn(x) — (cos(z) + Jn(2))(1 — (n + 1) cos(z) Jn(2)))

Sn (@) (1= (n+1)cos(z)p(z))

— 27;;10&(;) (—1 +ncos(x)Jp(x) + (n + 1)J,2L(:L'))

Assume there exists some xq € (0,7/2) such that N(z¢) = 0, namely
2 — 2ncos(x0)Jn (o) — nJ2(xg) = 0
then we get

1
—1 +ncos(xo)Jn(z0) + (n + 1)J2(x0) nr

—1 + ncos(zo)Jn(z0) +

_n :; 2 _ (n + 2) cos(zo)Jn(z0)

n+2 n+2
n n+1

(2 — 2ncos(xg)Jn(x0))

> 0

From this observation we get N'(zp) > 0 and in conjunction with the fact that

N(0) = (:jf)Q > 0

we deduce that N remains non-negative on (0, 7/2).

It follows that

. VA
o2 7"

V
o
w
=
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5.2 On [7/2,7]
We study here the minimum of ¢” on [7/2,7].

Let us change the notations of the previous section and rather write for x € (0, ),

" N (z
D) = i
where
N(z) = 2sin?™*D(z) — 2n cos(z) sin™ ! (2) 1, (z) — nl(z)
D(z) = 2sin""(z) — ncos(x)l,(x)

As in Section 2, fix some A > 0, and for n > A2, we consider the parametrization x = 7/2 + a/y/n
with a € [0, A]. Taking into account Lemma 10, introduce the functions v and ¢ defined on R, via

via) = 2e 4 2ae~"/2h(a) — h2(a)
Vaz=0, )
6(a) = 2%/ +ah(a)
We get for large n, uniformly over a € [0, A],
N(z) ~ v(a) and D(xz) ~ d(a)

(except that if v(a) = 0 the first equivalence must be replaced by lim,_,o, N(z) = 0).

Taking into account that our equivalences are up to a factor of the form 1+ O,(1/4/n) where the
bounding factor in the Landau notation O, is uniform over a € [0, A], we deduce that uniformly over
a€[0,A],

lim @ (r) = X(a) = g0

n—ao0 6
Here are the variation of the function y:

Lemma 28 There exists ag > 0 such that x is decreasing on [0, ag] and increasing on [ag, +0). This
ag 18 the unique solution of

(2 + a2)e™ ™ + ag(3 + a2)e 2 h(ag) — h2(ag) = 0O (35)

Proof
We have that for any a > 0,

, V'(a)d(a) —2v(a)d (a
Y(a) = ()()53(@)()()

and we want to show that there exists a unique ag > 0 such that x’(ag) = 0 and that furthermore y’
is negative on (0, ag) and positive on (ag, +00).
We compute

Vi(a) = —dae™™ +2¢ " 2h(a) — 2a2e~2h(a) + 2ae™" — 2¢7%" 21 (a)
= 2% — 2a2e*“2/2h(a)
§(a) = —2ae”/? 4+ h(a) + ae” ¥ = _qe 2 4 h(a)
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and thus
(V'§—2v8")(a) = (—2ae*‘12 - 2a2e*“2/2h(a))(267a2/2 + ah(a))
—2(2¢7% + 2ae™2h(a) — h2(a))(—ae~ /% + h(a))
= —2h(a)¢(a)
with
Vaz=0, &(a) = (2+ a2)6_a2 +a(3 + a2)6_“2/2h(a) — h?(a) (36)

Our goal amounts to find a unique ag > 0 such that {(ag) = 0 and that furthermore £ is positive
on (0, ap) and negative on (ag, +0). Let us differentiate: for any a > 0,

2

&a) = a(l—a®e  +(1—a")e " h(a)
It appears that ¢ is increasing on (0,1) and decreasing on (1,+00). Since £(0) =2 —,/F >0,

lim &(a) = —2m < 0

a——+00

we deduce the desired result on &.

]
Note that limg— 1 x(a) = 0, so that x(ag) < 0. As a consequence we get
Proposition 29 We have
1- : f Z —
BLUSINLE Pn (@) x(ao)
Proof
Fix A > ag and for n > A2, consider x,, such that cos(x,) = —A//n. For any x € [z,, 7], we have
2
" —nl;(z) 1 1 1
2 = — 2 — - -
#n() (ncos(z)I,(z))2 n cos?(x) 1 cos2 () A2
We get
inf o (z) > _ L
TE[xn,m] " - A2
From Lemma 28 and since A > ag, we have
lim  inf  l(z) = 37
nl—I}a}o xe[71r?2,:cn] (,On(SC) X(aO) ( )
By choosing furthermore A > ag such that 1/A42 < |x(ag)|, we deduce
: f Z — : f /" : f /" — : f 4
s P = (@ A (@) = en(®)
for n large enough. The announced result now follows from (37).
]

Taking into account (34), we get

lim inf ¢h(z) = x(ao)

n—00 z€[0,7]
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implying in particular the first statement of Proposition 25.
Let us show its last statement.
Extracting h%(ag) from (35):

h2(a) = (2+ad)e™™ + ag(3 + ad)e™0/2h(ao)
and replacing first in v(ap):
viag) = 2% + 2aoe*a3/2h(ag) — h?(ap)
= 2% 4 2aoe_“<2)/2h(a0) —[(2+ a%)e‘a3 +ao(3 + ag)e_“?)ph(ag)]
= —a%e*a8 —ap(l+ a%)e*a?)/Qh(ag)
and next in §%(ag):
6%(ag) = 4e79% + 4a067“3/2h(a0) + a2h*(ao)
= 4% + 4age_“g/2h(ao) +ad[(2 + a%)e—ag +ao(3 + a%)e_a(%/Qh(ag)]
= (4+2a}+ aé)ef‘l% + (Tap + ag)efagph(ao)
we deduce

a%e*“8 + ao(l + a,g)e*ag/Qh(ag)
(4 + 2a2 + aé)e‘“g + (Tag + a%)e‘aﬁ/zh(ao)

a? 1+ad a? 1+ ad
[4—1—2@%4—@3 a 7+ad’ 4+ 2ak + a} Y 7+a%]

—x(ag) =

Recalling (36), it is immediate to compute that £(1) > 0 while £(2) < 0, implying that ag € (1,2).
It follows that

1+ a} 6 6 6 15
0 - e - - | = | =
T+ a2 T+ a2 T+1 T+2 111
Remarking that the mapping a — a?/(4 + 2a% + a*) is increasing on [1,+v/2] and decreasing on
[v/2,2], we furthermore get

ad . 12 . 2? 2 (11
4+ 2ak + a} 4+2x 124147 4+42x22424744+2x2+22| |76
The wanted bounds follow:
15
—x(ao) € [77 11}
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